
From Security Enforcement to Supervisory Control in Discrete Event
Systems: Qualitative and Quantitative Analyses

by

Yiding Ji

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical and Computer Engineering)

in the University of Michigan
2019

Doctoral Committee:

Professor Stéphane Lafortune, Chair
Assistant Professor Jean-Baptiste Jeannin
Assistant Professor Necmiye Ozay
Professor Demosthenis Teneketzis

Yiding Ji

jiyiding@umich.edu

ORCID iD: 0000-0003-2678-7051

©Yiding Ji 2019

mailto:jiyiding@umich.edu

DEDICATION

To all the people who have helped me through the journey of my PhD study.

ii

ACKNOWLEDGEMENTS

I would like to convey, through this acknowledgment, my sincere gratitude to all

the people who have supported me, inspired me, instructed me, encouraged me, and

accompanied me during the past years of my PhD study.

First, I would like to thank my advisor Professor Stéphane Lafortune, who opened

the gate of Discrete Evnet Systems for me and guided me in exploring this interesting

field. I am also very grateful for the freedom he gave me to conduct my research

during the past years and I have learned a lot from him.

Next, I would like to say thanks to Professor Ozay and Professor Teneketzis at

this moment. I benefited significantly from taking their courses and they gave me

insightful instructions for completing this dissertation. I am so lucky to be Professor

Teneketzis’s last officially instructed doctoral student before his retirement. Here I

would also like to thank Professor Jeannin for being a member of my dissertation

committee and helping me to finish this dissertation.

I want to express my thanks to Professor Xiang Yin at Shanghai Jiao Tong Univer-

sity, who used to be my colleague and labmate at the Univesity of Michigan. Xiang

contributed to many of my publications and is always a model for me towards being a

mature researcher. I will never forget his helpful and insightful instructions.

During my graduate study, I have acquired vast knowledge from the excellent

courses offered by the University of Michigan. This should be largely attributed to

the instructors, and I want to thank you all.

While at the University of Michigan, my colleagues in UMDES group shared many

great ideas with me about the research in Discrete Event Systems. I had a deeper

iii

understanding of my research from the fruitful discussions with you guys: Dr. Yi-

chin Wu, Dr. Xiang Yin, Romulo Meira Góes, Dr. Lilian Carvalho, Dr. Richard Hill,

Dr. Eunsuk Kang, Dr. Christoforos Keroglou, Dr. Balke C. Rawlings and Dr. Sahar

Mohajerani. By the way, I want to thank all the undergraduate students who worked

for our lab during the past years.

Then I would thank my faculty instructor Professor Brent Gillespie and my stu-

dents at the course Linear System Theory during the 2018 fall semester. You gave me

a wonderful experience of being a teaching assistant.

It is never enough to express my thanks to all of my dear friends at each period

of my life. You are always there to help me out of the difficulties and selflessly back

me no matter when or where. A true friendship never perishes, and I will cherish it

forever. I am so sorry for not being able to mention all the names here as that is a long

list. Thank you all, my friends!

I would like to acknowledge the financial aid from the National Science Founda-

tion and the University of Michigan that allowed me to finish my study.

I am always grateful for the Depertment of Electrical Engineering and Computer

Science, the College of Engineering and the University of Michigan for providing

me a wonderful environment of study and research, which values equality, diversity,

inclusiveness, valiance, social responsibility, and eagerness for truth. I feel respected

and have a strong sense of belonging. Wherever I go, I will go blue!

Recalling my life, I hope to express my warmest gratitude to all my family mem-

bers, especially my mother Haiyan Guo and my father Weiguang Ji. My parents de-

voted so much to me and they are the first teachers in my life. Their everlasting love

and support lead me to where I am now. No word may eulogize your love and I may

only wish to accompany you more in the future.

iv

TABLE OF CONTENTS

DEDICATION ii

ACKNOWLEDGEMENTS iii

LIST OF FIGURES vii

ABSTRACT ix

CHAPTER

I Introduction 1

I.1 Background and Motivation 1
I.2 Literature Review 4

I.2.1 Opacity Notions and Enforcement Methods 5
I.2.2 Graph Games with Quantitative Objectives 7

I.3 Qualitative and Quantitative Supervisory Control 8
I.4 Organization and Contributions of the Dissertation 9

I.4.1 Organization 9
I.4.2 Main Contributions 10

II Enforcement of Opacity by Public and Private Insertion Functions 11

II.1 Introduction 11
II.2 System Model 13
II.3 Insertion Mechanism and Opacity Notions 14

II.3.1 Private Enforceability 15
II.3.2 Private and Public Enforceability 16

II.4 All Insertion Structure and Analysis 19
II.4.1 Construction of the AIS 19
II.4.2 Analysis of AIS 24

II.5 PP-Enforcing Insertion Functions 26
II.5.1 A Sufficient condition for PP-enforcing Insertion Functions 26
II.5.2 Greedy PP-enforcing Insertion Functions 27

II.6 The INPRIVALIC-G Algorithm 29
II.7 Conclusion 32

III Opacity Enforcement using Nondeterministic Publicly-Known Edit Functions 34

III.1 Introduction 34
III.2 System Model 35

v

III.3 Edit Functions and Opacity Notions 36
III.3.1 Edit Mechanism 36
III.3.2 Private Safety and Public Safety 37

III.4 Three-Player Observer 39
III.5 All Edit Structure 44
III.6 Synthesis of Nondeterministic Privately Safe and Publicly Safe Edit Functions 50

III.6.1 Reachability Tree of the AES 50
III.6.2 Synthesis Algorithm 54

III.7 Conclusion 57

IV Enforcing Opacity by Insertion Functions under Multiple Energy Constraints 59

IV.1 Introduction 59
IV.2 System Model 60
IV.3 Problem Formulation 62
IV.4 Energy Insertion Structure 65

IV.4.1 Building the Verifier 65
IV.4.2 Energy Information States 66
IV.4.3 Building the Energy Insertion Structure 70

IV.5 Solve the Constrained Opacity Enforcement Problem 76
IV.6 Bounded Cost Rate Insertion Strategies 84

IV.6.1 Motivation and Problem Formulation 84
IV.6.2 Hyperplane Separation Technique 86
IV.6.3 Synthesize Bounded Cost Rate Insertion Strategies 87

IV.7 Conclusion 91

V Optimal Mean Payoff Supervisory Control under Partial Observation 93

V.1 Introduction 93
V.2 System model 95
V.3 Problem Formulations 98
V.4 First Cycle Energy Inclusive Controller 100

V.4.1 Energy Information States 101
V.4.2 Build the First Cycle Energy Inclusive Controller 104

V.5 Mean Payoff Decision Problems 112
V.6 Mean Payoff Optimization Problems 118
V.7 Conclusion 127

VI Conclusion and Future Work 130

VI.1 Conclusion 130
VI.2 Future Work 131

BIBLIOGRAPHY 133

vi

LIST OF FIGURES

I.1 The insertion mechanism 2
I.2 Location-based service and insertion mechanism 3
I.3 The general mechanism of energy-aware supervisory control 4

II.1 Current-state estimator E ; states 7 and 8 contain only secret states 16
II.2 Desired estimator E d 23
II.3 Feasible estimator E f 23
II.4 Verifier V without dangling δvd transitions 23
II.5 Unfolded verifier Vu 24
II.6 AIS in Example II.4.1 24
II.7 E with secret-revealing state 7 31
II.8 All insertion structure with greedy-maximal criterion 32
II.9 A PP-enforcing insertion function encoded as an I/O automaton 32

III.1 The observer in Example III.5.1 49
III.2 AES pre in Example III.5.1 (without dashed states and transitions) 49
III.3 The AES in Example III.5.1 50
III.4 The observer in Example III.6.1 57
III.5 The AESt in Example III.6.1 58

IV.1 System G with secret states x7, x8, x10 75
IV.2 The observer Obs(G) 77
IV.3 The verifier Gv where dashed transitions are δvd transitions and solid transitions are

δvs transitions 77
IV.4 Energy Insertion Structure (without dashed states) 77
IV.5 EIS w with a winning insertion strategy indicated by blue lines 83
IV.6 An insertion function that solves Problem IV.3.1 84
IV.7 EIS m after merging states 91

V.1 An automaton with unambiguous cycle payoffs 100
V.2 The automaton G in Example V.4.1 110
V.3 The First Cycle Positive Energy Controller in Example V.4.1(without ze

7) 111
V.4 The FCEICw with dashed green lines connecting good leaf states with their subsumed

states; Wins is the set of all states 117
V.5 A supervisor solving the mean payoff decision problem 118

vii

V.6 The energy inter-connected system w.r.t. the FCEICw in Example V.5.1. The blue
and green dashed rectangles correspond to the Y-states and Z-states in the FCEICw,
respectively. The leaf states are marked in dark blue. 128

V.7 Optimal decisions of the supervisor at each Y-state (indicated in red) and the VF
values for each state of the FCEICw 129

V.8 An optimal supervisor solving Problem V.3.1 and Problem V.3.2 129

viii

ABSTRACT

Cyber-physical systems are technological systems that involve physical components that are

monitored and controlled by multiple computational units that exchange information through a

communication network. Examples of cyber-physical systems arise in transportation, power, smart

manufacturing, and other classes of systems that have a large degree of automation. Analysis and

control of cyber-physical systems is an active area of research. The increasing demands for safety,

security and performance improvement of cyber-physical systems put stringent constraints on their

design and necessitate the use of formal model-based methods to synthesize control strategies

that provably enforce required properties. This dissertation focuses on the higher level control

logic in cyber-physical systems using the framework of discrete event systems. It tackles two

classes of problems for discrete event systems. The first class of problems is related to system

security. This problem is formulated in terms of the information flow property of opacity. In this

part of the dissertation, an interface-based approach called insertion/edit function is developed to

enforce opacity under the potential inference of malicious intruders that may or may not know the

implementation of the insertion/edit function. The focus is the synthesis of insertion/edit functions

that solve the opacity enforcement problem in the framework of qualitative and quantitative games

on finite graphs. The second problem treated in the dissertation is that of performance optimization

in the context of supervisory control under partial observation. This problem is transformed to a

two-player quantitative game and an information structure where the game is played is constructed.

A novel approach to synthesize supervisors by solving the game is developed.

The main contributions of this dissertation are grouped into the following five categories. (i)

The transformation of the formulated opacity enforcement and supervisory control problems to

games on finite graphs provides a systematic way of performing worst case analysis in design

ix

of discrete event systems. (ii) These games have state spaces that are as compact as possible

using the notion of information states in each corresponding problem. (iii) A formal model-based

approach is employed in the entire dissertation, which results in provably correct solutions. (iv)

The approaches developed in this dissertation reveal the interconnection between control theory

and formal methods. (v) The results in this dissertation are applicable to many types of cyber-

physical systems with security-critical and performance-aware requirements.

x

CHAPTER I

Introduction

I.1 Background and Motivation

Security and performance optimization are two important research topics in Discrete Event Sys-

tems. In modern large-scale cyber-physical systems, many components of the system are poten-

tially vulnerable to attackers with malicious purposes to infer some confidential information about

the system and inflict damage. Therefore, it is important to develop formal tools to preserve the

security of the system. Meanwhile, it is also necessary to evaluate the performance of the system

quantitatively and optimize relevant performance measures.

In the context of discrete event systems, opacity is an information-flow based security property

that characterizes whether or not secrets of a given dynamic system can be inferred by an out-

side observer termed intruder with potentially malicious intentions. Due to its general formulation

that is applicable to many security and privacy issues arising in networked systems, opacity has

received significant attention in the literature on security and privacy since it was first introduced

in [75]. In the setting of opacity, the external intruder is often modeled as an observer that knows

the structure of the system and attempts to infer secrets of the system by passively observing the

system’s outputs. The system is called opaque if the intruder fails to determine system’s secrets

unambiguously from its observations. Opacity has been thoroughly discussed in discrete event sys-

tems, which provide a convenient and systematic way for problem modeling and analysis. Several

notions of opacity have been proposed in discrete event systems and studied ever since [19, 20].

1

In practice, opacity may not always hold so that the problem of opacity enforcement naturally

arises. In this dissertation, we mainly focus on the problem of enforcing opacity by insertion

functions and edit functions, which serve as an interface between the output of the system and

the intruder. The edit function may insert some strings into the output of the system or erase

some events, so what the intruder observes is different from the actual output. In that sense, the

intruder may be obfuscated and fails to infer critical information from its observations. Based on

the intruder’s knowledge about the implementation of the obfuscation methods, we consider both

strong and weak attack scenarios in this dissertation, where the intruder may or may not know

the implementation of insertion/edit functions. For both scenarios, we characterize the properties

of insertion/edit functions and propose methods to synthesize them for opacity enforcement. We

show the mechanism of insertion functions in Figure I.1, while the mechanism of edit functions is

similar, which also includes event erasure.

Output behavior Modified behaviorInsertion
function

additional observable events

System

Intruder

Figure I.1: The insertion mechanism

Along with qualitative analysis of opacity enforcement, we also extend our obfuscation meth-

ods to consider opacity enforcement under quantitative constraints. We assume that the system has

several types of resources whose amounts are all fixed. The system’s resource levels may change

due to event occurrences and defense of secrets. Under this framework, our objective is to guaran-

tee that secrets are not disclosed to the intruder while each type of resource is never depleted in the

process of enforcing opacity.

Therefore, we consider opacity enforcement by leveraging the technique of insertion functions

and further investigate it under a quantitative setting. This problem is inspired by the rapidly

growing application of location-based services (LBS). Suppose there is a device providing LBS,

which sends personalized information to the user by exploiting the user’s real time location. There

2

may be a malicious eavesdropper which intends to infer some critical information of the user

from the queries sent by the device, through the open communication network. To prevent the

disclosure of secrets, some fictitious queries may be inserted to the ongoing queries if they are

going to reveal the user’s critical information. Then the resulting query sequences must be made

consistent with some existing queries not revealing any secret information. This mechanism is

shown in Figure I.2. Since inserting queries may cost certain resources like electricity, bandwidth

and memory, the insertion functions may not insert arbitrary long or arbitrary many queries for

obfuscation in practice. They should be properly designed so that the resource budget requirements

are always satisfied and the resources are not consumed too sharply, i.e., the insertion functions

work economically.

Figure I.2: Location-based service and insertion mechanism

Together with security obfuscation, this dissertation also studies another important research

topic in discrete event systems, i.e., performance optimization by some quantitative measures. In

many practical situations, the system may generate or consume some resources, e.g., energy, dur-

ing the operation and over an arbitrarily long time horizon. In this circumstance, two requirements

arise naturally. One is to ensure that the resource is never depleted as long as the system is oper-

ating, given a fixed amount of initial resource. The other requirement is to guarantee that the long

run average rate of resource generation (consumption) is above (below) a given threshold. Fur-

thermore, if the system does not terminate, it is preferable to optimize the above mentioned long

run average rate so that the system works in an economical way. Those requirements motivate the

problems discussed in this dissertation.

To achieve such objectives, proper supervisors are designed to restrict the behaviors of the sys-

tem. The classic supervisory control theory in discrete event systems was initiated in [93] where

3

the supervisor dynamically enables/disables events to ensure that the plant achieves certain speci-

fication. As it is not always feasible to sense every step of the operation of the plant, the supervisor

may only have partial observation of the system. Given these considerations, we investigate the

so called energy-aware supervisory control problem whose general mechanism is shown in Fig-

ure I.3. In the figure, IA stands for information acquisition which determines the supervisor’s

observation for the system. As is seen, the supervisor’s commands are subject to quantitative en-

ergy/resource constraints. Specifically, we investigate optimal mean payoff supervisory control

under partial observation in this dissertation, where our principal objective is optimize the long-

run average resource payoff by supervisory control. To be more specific, we will transform the

supervisory control problem to a two-player game and propose a novel information structure to en-

code the strategies for both players. Then we leverage results from quantitative graph game theory

to further analyze the game. Finally we develop a systematic approach to synthesize the optimal

supervisor by solving the game.

Figure I.3: The general mechanism of energy-aware supervisory control

I.2 Literature Review

In the context of discrete event systems, many problems related with opacity have been studied

after it was first discussed in the computer security literature [19, 20]. Those problems may be

categorized into two classes: proposing new notions of opacity and enforcing opacity. We will

briefly review some representative works on both topics. Since two chapters in this dissertation are

also inspired by quantitative graph game theory in theoretical computer science, which considers

4

reactive synthesis under the game framework, we also do a brief literature review here on graph

games with quantitative objectives. Finally, we list some relevant works on supervisory control

theory, which is closely related to the last technical chapter of this dissertation.

I.2.1 Opacity Notions and Enforcement Methods

Since initiated by [20], opacity has received significant attention in the context of discrete event

systems. Various representations of the system secret have been considered in the study of opacity.

These representations have led to the formalization of several notions of opacity for event-driven

models of dynamic systems. In the context of automata models, the notions of initial-state opacity,

current-state opacity, language-based opacity, K-step opacity and infinite step opacity, have been

proposed; see, e.g., [25,70,99,102,127]. Opacity has also been generalized to the settings of infinite

state systems, see.,e.g., [35], modular systems, see.,e.g., [74] and timed systems, see.,e.g., [24,

117], while opacity under so-called Orwellian observers is investigated in [79]. Another important

model in discrete event systems is Petri nets where opacity is discussed in many works such as [20,

112, 113]. In addition, system secrecy and opacity has been extend to quantitative settings [8, 36],

while specifically, several stochastic notions of opacity have been defined and investigated; see,

e.g., [6, 7, 61, 100]. In [132], an algorithm was proposed for verification of infinite-step opacity in

stochastic discrete event system. A different framework was proposed in [131] to study opacity

in networked control systems with insecure control channels. Some recent survey papers such

as [52, 67] may be consulted for a detailed review of the literature on opacity in discrete event

systems.

To alleviate the issue of heavy computation for opacity verification, some formal methods

may be applied, like abstraction and composition. For abstraction, simulation and observation

equivalence [76] are well-known methods to abstract the state space of an automaton. In gen-

eral, bisimulation and observation equivalence do not preserve opacity properties. A variant called

opacity-preserving bisimulation was discussed in [134] to reduce the state space of the system

when verifying infinite-step opacity. A unified abstraction method called visible bisimmulation

5

equivalence was proposed in [68] and then extended in [81] for abstraction-based opacity verifica-

tion. Furthermore, the authors of [82] constructed observer of modular systems incrementally for

verification and enforcement of current state opacity, which avoids the explosion of state space.

When a given notion of opacity is violated, researchers have proposed various methods for

its enforcement. One popular approach is to design a minimally restrictive supervisor, which dis-

ables certain behaviors that violate opacity [38, 41, 101, 110]. A uniform approach was proposed

in [126] to embed in a finite structure all feasible supervisors that enforce opacity and this struc-

ture is applied to synthesize supervisors with desired properties. The work in [133] also lies in

this category but discusses the problem from the perspective of maximum information release.

While [114] also adopts supervisory control for opacity enforcement, however it assumes that the

intruder and the supervisor has incomparable observation. On the other hand, several works, such

as [25, 124, 129, 130], apply another sensor activation framework to enforce opacity by building

dynamic observers or most-permissive observers. Along with the above mentioned two popular

techniques, a run-time method was discussed in [45] for enforcement of several notions of opacity.

In contrast to the above approaches, [119] introduces insertion functions as a new method,

which insert fictitious events into the system’s output to obfuscate the intruder. The insertion

functions serve as an interface between the system’s output and the intruder’s observation. After

that, [120] investigates opacity enforcement under the assumption that the intruder may or may

not know the implementation of the insertion functions. To capture this situation, two concepts of

private safety and public safety are defined and studied for evaluating the performance of insertion

functions. As a following work, [121] discussed optimal insertion function in terms of the average

insertion cost. Furthermore, the authors of [122] proceed to extend insertion functions to edit

functions, which modify the system’s output by inserting, erasing or replacing events. All these

works enforce opacity in a deterministic setting, i.e., any string is mapped to a unique string.

6

I.2.2 Graph Games with Quantitative Objectives

In theoretical computer science, games on graphs with a quantitative objective [4] is a thor-

oughly investigated topic. Games provide a theoretical method to deal with logical requirements

in reactive synthesis while games with quantitative objectives are natural models for design in

resource-constrained environments. The specifications for such reactive systems usually have both

a quantitative component specifying the resource constraints and a qualitative component spec-

ifying the logical goal. And some of the most intensively studied games include reachability

games [2, 16, 27, 39], mean payoff games [17, 43, 135], energy games [12, 26], mean payoff and

energy parity games [29, 32], etc.

Among all the above mentioned classes of games, we are especially interested in energy games

and mean payoff games as they inspired some of our works in this dissertation. The energy game

is a two-player quantitative game on weighted graphs, where the weights represent energy gain

or consumption. The objective of the first player is to keep the energy level not below 0 while

the other player intends to do the opposite. Depending on whether the initial-credit energy is

fixed or not, the fixed initial energy problem studies whether the objective could be achieved given

a certain amount of energy while the unknown initial energy problem asks whether there exists

certain amount of initial energy to achieve the objective. The other way of classifying energy

games is by the information available to the players. In the full observation case, both players

have complete knowledge about the strategies and positions of each other [11, 30]. And partial

information is reflected in one or both players being unable to determine the precise location of the

other player [10, 31, 40, 51]. Considering partial observation in energy games results in enormous

increase in the complexity of the problem, in terms of strategy synthesis [87, 95]. Some types of

imperfect information energy games may be reduced to and solved as a reachability game with

perfect information. Energy games with fixed initial energy is decidable with incomplete informa-

tion, while they become undecidable when the initial energy is not fixed [51]. In general, mean

payoff games with incomplete information are not decidable while some special decidable classes

of games are presented in [51].

7

Energy games and mean payoff games have also been extended from one dimension to mul-

tiple dimensions to characterize different resource constraints [44, 60, 116], which are generally

more complex than their single dimension counterpart. Recently, stochastic games have also been

investigated [18, 28, 46], where each player’s decisions are made with certain probability and their

objective is evaluated with probability. Some researchers in DES also studied supervisory control

by energy game with partial observation [90].

I.3 Qualitative and Quantitative Supervisory Control

Supervisory control under the framework of discrete event systems has been widely studied for

qualitative specifications, such as safety and liveness, since it was initiated in [93]. The DES under

control is modeled by an automaton with event set partitioned as controllable and uncontrollable

event sets. The supervisor restricts the original behavior of the system so that a given specification

is satisfied. Since then, supervisory control theory has been discussed under various settings in

DES [23, 105, 118], such as Petri nets, see, e.g., [48], timed systems, see, e.g., [14], networked

systems, see, e.g., [107], distributed systems, see, e.g., [63], decentralized systems, see, e.g., [71,

97], stochastic systems, see, e.g., [47, 64], and so on.

In the context of discrete event systems, due to the limited sensing capabilities, the plant is

usually partially observed, which gives rise to supervisory control under partial observation [72].

Many works fall into this category, see, e.g., [1, 21, 22, 37, 49, 62, 96, 108, 111, 115, 128, 129],

which discuss the problem from different perspectives. Recently, a novel approach was developed

in [125] and extended in [126] to synthesize maximally permissive partial-observation supervisors

for enforcement of a series of qualitative properties in discrete event systems without assumptions

on the relation between controllable events and observable events. The following work [123]

adopted this approach to investigate supervisory control for mealy automata with output functions.

Besides logical properties, supervisory control has also been investigated by introducing some

quantitative performance measures. Optimal supervisory control is one problem of particular in-

8

terest, starting with [86]. Since then, different frameworks of optimal supervisory control have

been developed. For example, [106] defined both event enablement and disablement costs, then

found the controller with minimum total costs by dynamic programming. This framework was

extended in [73, 89] to consider partial observation of the system. Furthermore, [84] studied opti-

mal supervisory control in probabilistic discrete event systems and [109] proposed a timed optimal

supervisor. In [65], the authors viewed the weighted automaton as a flow network and solved the

optimal supervisory control problem by leveraging the max-flow min-cut theorem. Besides, [94]

defined a quantitative language measure and discussed the corresponding optimal supervisory con-

trol problem based on it. As a variant, the optimal stabilization problem under disturbances was

investigated in [88]. All the above works evaluated the performance of the supervisor by consider-

ing finite behaviors. In contrast, [91] optimized the worst case limit average weight of the infinite

sequences generated by the controlled system. The problem was formulated and solved as a mean

payoff game between the supervisor and the environment, under full observation. In practice,

optimal supervisory control has been applied to some engineering fields, see, e.g., [15, 85, 104].

I.4 Organization and Contributions of the Dissertation

I.4.1 Organization

The remaining chapters of the dissertation are organized as follows. Chapter II presents the work

on opacity enforcement by insertion functions [54]. Chapter III presents the work on opacity

enforcement by (nondeterministic) edit functions [53, 58]. Chapter IV presents the work on opac-

ity enforcement by insertion functions under (multiple) energy constraints [56, 57]. Chapter V

presents the work on optimal supervisory control with quantitative objectives and under partial

observation [55, 59]. Finally, Chapter VI concludes the dissertation and presents some potential

future research directions.

9

I.4.2 Main Contributions

This dissertation mainly concentrates on two problems: opacity enforcement by insertion/edit

functions and optimal mean payoff supervisory control under partial observation. In terms of the

methodologies, we transform both problems to the settings of qualitative or quantitative games and

solve them on the games. In this manner, we find a proper way to deal with worst-case analysis in

both problems, as we need to ensure that the synthesized insertion/edit functions and supervisors

are reactive to all potentially possible circumstances imposed by the environment.

More specifically, for the opacity enforcement problem, this dissertation has the following ma-

jor technical contributions: (i) it shows that publicly and privately safe insertion functions always

exist when privately safe insertion functions exist; (ii) it provides a way of synthesizing publicly

and privately safe insertion functions based on a two-player game structure called All Insertion

Structure; (iii) it characterizes public safety for edit functions and proposes a novel three-player

game structure called All Edit Structure to embed edit functions; (iv) it introduces nondeterminis-

tic edit functions and develops an approach to synthesize them; (v) it discusses insertion functions

under multiple energy constrains and presents a way of synthesizing insertion functions for opacity

enforcement without making the system’s energy levels below 0; (vi) it proposes and solves the

bounded cost rate insertion problem where the rate of insertion cost associated with each type or

resource is bounded by certain threshold.

For the optimal supervisory control problem, the contributions are three-fold: (i) it discusses

mean payoff supervisory control under partial observation for the first time in discrete event sys-

tems; (ii) a systematic approach is developed to transform the supervisory control problem to a

two-player game by leveraging results from energy games and mean payoff games with incom-

plete information; (iii) an algorithm is given to synthesize the optimal supervisor on the game in a

dynamic programming manner.

10

CHAPTER II

Enforcement of Opacity by Public and

Private Insertion Functions

II.1 Introduction

In [119], it is assumed that the insertion function used by the system is always kept private from the

intruder. Under this assumption, a method is presented on how to synthesize insertion functions

that only output strings consistent with the non-secret behavior of the system and thus prevent

the intruder from being certain that a secret behavior has occurred. In this chapter, we relax that

assumption. While the implementation of the insertion function may be kept private at first, a so-

phisticated intruder may learn the full set of modified behaviors output by the insertion function,

compare it with the system model, and potentially reverse engineer the insertion function. Also,

if the intruder knows the system’s optimality criteria, it may follow the optimal synthesis algo-

rithm in [121] and discover the correct insertion function. It may also be the case that the system

designers decide to make the insertion function public, as is done in public-key cryptography, for

example. Hence, there is a need to design insertion functions that enforce opacity even when their

implementation becomes known to the intruder. Under the same insertion mechanism as in Fig-

ure I.1, to enforce opacity regardless whether or not the intruder knows the implementation of the

insertion function, we formally characterize a property called public-and-private enforceability,

or PP-enforceability for short. A PP-enforcing insertion function is guaranteed to enforce opacity

11

when the insertion function is kept private and when it becomes known to the intruder. In the

former case, the insertion function outputs only behaviors consistent with non-secret behaviors of

the system. In the latter case, the insertion function is designed such that for every secret behavior

of the system, there is a non-secret behavior of the system that has the same modified output from

the insertion function.

The main contributions of this chapter are as follows. First, we formally characterize the prop-

erties of public enforceability and of public-private (PP) enforceability, in the context of opacity

enforcement by insertion functions. We present conditions for PP-enforceability and use them

to derive an effective test under which opacity is public-private enforceable. It turns out that if

there exists an insertion function that is privately enforcing, then there also exists a (potentially

different) insertion function that is PP-enforcing. This result is established by defining a so-called

greedy criterion for selecting insertion functions in the All Insertion Structure (AIS) introduced

in [119]. These new results lead to an algorithmic procedure, called Algorithm INPRIVALIC-G,

that is guaranteed to synthesize a PP-enforcing insertion function if one exists.

The remaining sections of this chapter are organized as follows. Section II.2 introduces the

system model and the notion of opacity. Section II.3 formally introduces insertion functions and

the notion of public-and-private enforceability, along with conditions under which private enforce-

ability and public-private enforceability hold for a given insertion function. Section II.4 starts by

reviewing the construction procedure of the All Insertion Structure (AIS) from [121] and then

identifies relevant concepts and properties. In Section II.5, we first present a sufficient condition

for insertion functions to be PP-enforcing, then define the greedy criterion and show that a greedy

insertion function is PP-enforcing. Then, in Section II.6, the INPRIVALIC-G Algorithm is pre-

sented, which synthesizes PP-enforcing insertion functions by using a greedy-maximal insertion

criterion within the AIS. Finally, Section II.7 concludes the chapter.

12

II.2 System Model

We consider opacity in the framework of discrete event systems modeled as finite-state automata [23]:

G = (X,E, f ,X0)

where X is the finite set of states, E is the finite set of events, f : X × E → X is the partial state

transition function and X0 ⊆ X is the set of initial states. Specifically, we denote XS ⊂ X as the

set of secret states. The transition function is extended to domain X ×E∗ in the standard manner

and we still denote the extended function by f . We denote by s � u if s is a prefix u, and s ≺ u if

s � u, s 6= u. Also, we denote by t ∈ s if string t is a substring of s. In opacity problems, the initial

state may not be known a priori by the intruder and thus we include a set of initial states X0 in the

definition of G. The language generated by G is defined as L(G) = {s ∈ E∗ : ∃x0 ∈ X0, s.t. f (x0, s)!}

where ! means “is defined”.

In system G, given a string s = e1e2 · · ·ek−1, its corresponding execution is a sequence of the

form 〈x1,e1, . . . ,ek−1, xk〉, where xi ∈ X, ei ∈ E and xi+1 = f (xi,ei), ∀i ∈ {1,2, . . . ,k−1}. An execution

forms a cycle if x1 = xk and a cycle is an elementary cycle if ∀i, j ∈ {1,2, . . . ,k−1} : i 6= j⇒ xi 6= x j.

Besides, string s contains a cycle if ∃t ∈ s, t 6= ε, ∃x ∈ X, s.t. f (x, t) = x. Otherwise, we call s a

cycle-free string.

We assume that the system G is partially observable and the event set E is partitioned as E =

Eo∪Euo, where Eo is the set of observable events and Euo is the set of unobservable events. Given

a string t ∈ E∗, its natural projection P : E∗→ E∗o is recursively defined as P(t) = P(t′e) = P(t′)P(e)

where t′ ∈ E∗ and e ∈ E. The projection of an event is P(e) = e if e ∈ Eo and P(e) = ε if e ∈ Euo∪{ε},

where ε is the empty string.

Given a set of states q ⊆ X and an observable event eo ∈ Eo, the unobservable reach, denoted as

UR(q), is defined as: UR(q) = {x ∈ X : ∃x′ ∈ q,∃s ∈ E∗uo, s.t. f (x′, s) = x}. Besides, the observable

reach, denoted by Next(q,eo), is defined as: Next(q,eo) = {x ∈ X : ∃x′ ∈ q, s.t. f (x′,eo) = x}. Then,

the observer of G is defined as: Obs(G) = (Xobs,Eo, δ, xobs,0) where Xobs ⊆ 2X, xobs,0 = UR(X0)

13

and for any xobs ∈ Xobs, eo ∈ Eo, δ(xobs,eo) = UR(Next(xobs,eo)). We denote the state reached by

δ(xobs,0, s), s ∈ P[L(G)] as the current state estimate associated with s.

II.3 Insertion Mechanism and Opacity Notions

We first review the concept of current-state opacity.

Definition II.3.1 (Current-State Opacity (CSO)). Given system G = (X,E, f ,X0), projection P, and

the set of secret states XS , G is CSO if ∀t ∈ LS := {t ∈ L(G,X0) : ∃x0 ∈ X0, f (x0, t)∩ XS 6= ∅},

∃t′ ∈ LNS := {t ∈ L(G,X0) : ∃x0 ∈ X0, f (x0, t)∩ (X \XS) 6= ∅} such that P(t) = P(t′).

In words, whenever the system generates a string t that ends at a secret state in XS , there must

exist a string t′ such that t′ ends at a state in X \XS and P(t) = P(t′). Hence, the intruder cannot

ascertain for sure that the current system state is in XS .

An insertion function is defined as a (potentially partial) function fI : E∗o×Eo→ E∗o that outputs

a string with inserted events based on the past observed behavior and the current observed event.

Given observable string seo ∈ P[L(G)], fI(s,eo) = sIeo when string sI ∈ E∗o is inserted before eo.

We also define the string-based version of fI , denoted by f str
I , recursively from fI: f str

I (ε) = ε

and f str
I (seo) = f str

I (s) fI(s,eo). Given G, the modified language output by insertion function fI is

denoted by f str
I (P[L(G)]) = {s̃ ∈ E∗o : ∃s ∈ P[L(G)], f str

I (s) = s̃} . When multiple events are inserted,

we assume that they are inserted, hence observed, one by one. Notice that the insertion functions

fI (and corresponding f str
I) considered in this chapter are deterministic.

We encode a given insertion function as an input/output (I/O) automaton

IA = (Xia,Eo,E+
o , fia,qia, xia,0)

and call it an insertion automaton. The state set Xia of IA could potentially be infinite. The input

set is Eo; the output set is a set of strings in E+
o = E∗oEo; the transition function fia defines the

dynamics of IA; the output function qia is defined such that qia(x,eo) = sIeo where fia(xia,0, s) = x,

14

if fI(s,eo) = sIeo; and finally xia,0 is the initial state. More details on I/O automata can be found

in [23].

II.3.1 Private Enforceability

Admissibility is an input property for insertion functions; it requires insertion functions to be

defined for all P[L(G)].

Definition II.3.2 (Admissibility). Consider G, P, LS and LNS . An insertion function fI is admis-

sible if: ∀seo ∈ P[L(G)], where s ∈ E∗o,eo ∈ Eo, ∃sI ∈ E∗o s.t. fI(s,eo) = sIeo.

Private safety is an output property of insertion functions. We term this property “private”

safety because it is under the assumption that the intruder has no knowledge of the insertion func-

tion at the outset. Consequently, the intruder is expecting to observe behaviors that are consistent

with the system’s transition structure. Notice that we consider insertion functions that are used

to enforce opacity online. Hence, every modified output behavior from the insertion function

should always be consistent with an original non-secret behavior from the system. Because of this

“always” requirement, every modified output behavior should be observationally equivalent to a

string in the safe language Lsa f e, which is the supremal prefix-closed sublanguage of P(LNS) and

is calculated by the equation:

Lsa f e = P[L(G)] \ {P[L(G)] \P(LNS)}E∗o

This equation is an application of a result in [66] and a similar expression was also proposed

in [41]. Hereafter, we call a string s ∈ P[L(G)] safe if it is in Lsa f e and unsafe otherwise, so

Lunsa f e = P[L(G)] \ Lsa f e. From the definition of safe language, if a string is unsafe, then all its

continuations are unsafe.

Definition II.3.3 (Private Safety). Consider G with P, LS and LNS . An insertion function fI is

privately safe if ∀s ∈ P[L(G)], f str
I (s) ∈ Lsa f e; equivalently, f str

I (P[L(G)]) ⊆ Lsa f e.

15

LBO

CSO IFO ISO

3.2.2.2
3.2.2.1

3.2.3.2
3.2.3.1

3.2.1.1 3.2.1.2

3.2.43.2.4

0

1

8

2
d

a

b

5 6
a b 7c

3b 4c

(m0,m0)

(m0,m0), a (m0,m0), b

(m1,m1), b (m2,m1), b (m2,m3), a

(m2,m2), a

(m1,m1) (m2,m1) (m2,m3)

(m2,m2)

a b

b b a

a

(m0,m0) (m2,m0) (m1,m0)

(m1,m1) (m2,m3

(m2,m2

X,X,X

X,{0,1},{0,1} {2,0},X,{2,0}

{1},{0,1},{1} {2,0},{0,1},{0}

b c

a b

{1},X,{1}

a

b

c

c

b

b

a

c b

(m0,m0), A

(m0,m0), A, a (m0,m0), A, b

(m1,m1), B, b (m2,m1), B, b (m2,m3), C, a

(m2,m2), D, a

(m1,m1), B (m2,m1), B (m2,m3), C

(m2,m2), D

a b

b b a

a

(m0,m0),A (m2,m0),A (m1,m0),A

(m1,m10),B (m2,m3),C

(m2,m2),D

Figure II.1: Current-state estimator E ; states 7 and 8 contain only secret states

If we delete all states violating CSO from Obs(G) and take the accessible part, the resulting

automaton just generates Lsa f e. We define it as desired observer Obsd(G) = (Xobsd,Eo, δd, xobsd,0).

II.3.2 Private and Public Enforceability

Privately enforcing insertion functions enforce opacity by insuring that the intruder never observes

an unsafe string. A naive intruder, with no knowledge of the insertion function at the outset, would

therefore never be certain about the secret being revealed; in fact, the intruder would have no reason

to suspect the existence of an insertion function. However, a privately enforcing insertion function

may fail if it becomes known to the intruder, as illustrated by the following example.

Example II.3.1. Consider the current-state estimator in Figure II.1. These estimator states repre-

sent sets of system states; they are numbered from 0 to 8 for simplicity. Assume that states 7 and

8 contain only secret states; i.e., these estimator states reveal the secret. Suppose that opacity is

enforced by the privately enforcing insertion function where f str
I (b) = ab, f str

I (a) = da and no other

insertions are made. If the intruder has no knowledge of fI , then it would never conclude that the

secret is revealed, as the output from fI is always safe; here, Lsa f e = {dabc,ab}. However, if the

intruder knows the implementation of fI , then it would be able to conclude that the state estimate

is state 8 when it observes ab. This is because if ab were the genuine output behavior from the

system, then it would have been modified to dab; and the intruder knows that. Hence, the only

system output that would produce ab is string b.

Example II.3.1 shows how an intruder can infer the secret if it knows the implementation of

the insertion function. Indeed, there are ways for intruders to learn the implementation of the

16

insertion function. For example, the intruder could use learning algorithms, such as in [3], to learn

the modified system G̃, which is the parallel composition of G with insertion automaton IA, and

then use G̃ and G to reverse engineer IA. This type of parallel composition of a regular automaton

with an I/O one is sometimes called “input parallel composition”; we refer the reader to [119]

for its formal definition. Alternatively, if the intruder knows the optimality criteria used by the

system’s designer, it could follow certain synthesis algorithm and construct the correct insertion

function. In either case, we wish to use an insertion function that still enforces opacity when its

implementation becomes known. In this manner, the system designers may be able to eventually

reveal the structure of fI , if so desired.

PP-enforceability is a specification that we characterize under the assumptions that: (i) the

intruder does not know about the implementation of the insertion function at the outset; but (ii)

the intruder can possibly learn or be told the correct implementation. Consequently, to enforce

opacity under assumption (i), insertion functions should be privately safe. Also, under assumption

(ii), insertion functions should be defined so that the intruder is still not able to determine the

occurrence of the secret even if it knows about the insertion function’s implementation. The second

requirement is formally characterized as a property called public safety, defined as follows.

Definition II.3.4 (Public Safety). Consider G with P, LS and LNS . An insertion function fI is pub-

licly safe if ∀s̃ ∈ f str
I (P[L(G)]),∃t ∈ Lsa f e s.t. f str

I (t) = s̃; equivalently, f str
I (P[L(G)]) ⊆ f str

I (Lsa f e).

In contrast to Definition 4 in [120], we use Lsa f e instead of P(LNS) in the above definition to

better capture the on-line operation of the system, where public safety must be preserved for every

prefix of a safe string. The idea behind public safety is that no matter what the insertion function

outputs, this output could have been obtained from a safe string; hence opacity holds.

When an insertion function is admissible and publicly safe, we say that it is publicly enforcing.

Moreover, we say that an insertion function satisfies the property of private-and-public enforce-

ability, or PP-enforceability, if it is admissible, privately safe, and publicly safe.

Definition II.3.5 (PP-Enforceability). Insertion function fI is PP-enforcing if it is admissible, pri-

vately safe, and publicly safe.

17

Example II.3.2. In Example II.3.1, insertion function fI is privately enforcing but not PP-enforcing.

Specifically, for s̃ = ab, there is no t ∈ Lsa f e for which f str
I [P(t)] = ab. Let us define another inser-

tion function: f ′I (ε,a) = da, f ′I (ε,b) = dab, and f ′I (s,eo) = eo,∀seo ∈ P[L(G)]\{a,b}. One can verify

that f ′I is PP-enforcing. Specifically, f ′I is admissible because it is defined for every P[L(G)]; it is

privately safe as f ′I (P[L(G)]) = {dabc} ⊆ Lsa f e; also, f ′I is publicly safe since for every s̃ ∈ {dabc},

there exists t ∈ Lsa f e that is observationally equivalent and is unmodified by f ′I , which is sufficient

to ensure the condition in Definition II.3.4.

It may be tempting to think that a publicly enforcing insertion function should also be privately

enforcing, as if we deprive the intruder from the knowledge of the insertion function, it should

make its inference task harder. However, this is not true in general, as shown in the following

example.

Example II.3.3. Consider the current-state estimator with strings {ab,b}, where string ab is se-

cret. Consider the insertion function fI: fI(ε,b) = ab and fI(s,eo) = eo,∀seo ∈ {ab}. This insertion

function is publicly enforcing since it is admissible and the only unsafe behavior ab is now observa-

tionally equivalent to safe behavior b. However, if the intruder does not know the implementation

of fI , it would always believe that the secret has occurred. Hence, the secret will be revealed when

the system indeed outputs ab.

The issue in the preceding example is that a publicly safe insertion function is free to map

strings to anything, as long as the condition in Definition II.3.4 holds. It is not required that the

output string be safe. This explains our choice of using PP-enforceability as our specification for

insertion functions. We do not wish to make any assumptions about the intruder’s knowledge,

either at the outset or as it keeps observing the system. Thus, insertion functions should enforce

opacity regardless what the intruder knows about the implementation of insertion function, in-

cluding nothing. Hence, by also requiring private safety, PP-enforceability ensures that only safe

strings will be output.

Our goal is to develop a synthesis algorithm for PP-enforcing insertion functions. For this

purpose, we use the discrete structure called “All Insertion Structure”.

18

II.4 All Insertion Structure and Analysis

We originally developed in [119] a procedure to synthesize privately enforcing insertion functions

based on a special discrete structure called the All Insertion Structure (AIS). In this section, we

start by reviewing the process of building the AIS, but following the procedure in [121], which is

more efficient than the one in [119, 120].

II.4.1 Construction of the AIS

The review of the construction procedure of the AIS herein is necessary in order to explain how

we employ this structure for the purposes of this chapter and also to define relevant notations. The

AIS is a game-like bipartite structure between the system and the insertion function, with so-called

Y states and Z states. When the system plays, it outputs an observable event e0 that is defined at

the current Y-state y of the AIS, and it leads to a Z-state z = (y,e0) in the AIS. On the other hand,

when the insertion function plays, certain insertion decisions are made at Z-state z corresponding

to strings that can be inserted before the last observed event e0. As shown in [119], the AIS embeds

in its transition structure all privately enforcing insertion functions.

There are three steps in the construction of the AIS: (1) building the i-verifier; (2) building

the unfolded verifier; (3) obtaining the AIS. We start by describing step (1). First, we build the

desired estimator E d by deleting all the secret states from the original estimator E and taking the

accessible part. As was mentioned earlier, E = (M,Eo, δ,mo) is the standard observer automaton

of G with M ⊆ 2X. Therefore, by construction, E d generates exactly the safe language Lsa f e. We

define the resulting sub-automaton of E as E d = (Md,Eo, δd,mo).

Next, we build the feasible estimator E f , which includes all possible insertions: we insert a

self-loop at each state for each observable event, unless that self-loop is already defined in E . We

will use the new transition function δsl to denote those inserted self-loop transitions, and only those,

in E f . Therefore, we obtain E f = (M,Eo, δ,δsl,mo). Hereafter, we wish to distinguish between two

sets of transitions, normal and inserted ones, in E f ; this is why we use two transition functions in

19

its definition.

Finally, we synchronize E d and E f by a special type of parallel composition called verifier par-

allel composition, resulting in a new automaton called the verifier. All possible insertion functions

are included in this automaton. The verifier parallel composition is denoted by ‖v. It is a synchro-

nization between two kinds of automata, one with only “normal” transitions and the other with

both “normal” and “inserted” self-loop transitions. Since we wish to again distinguish between

these two sets of transitions, we use two transition functions in the definition of the i-verifier V , as

was done above in E f .

Definition II.4.1 (Verifier parallel composition ‖v). The verifier parallel composition is a special

kind of parallel composition between automata E d and E f . Two kinds of transition functions, δvs :

(Md ×M)×Eo→ (Md ×M) and δvd : (Md ×M)×Eo→ (Md ×M), are defined for synchronization:

V := (Mv,Eo, δvd, δvs,mv0) = E d‖vE
f =

Ac(Md ×M,E0, δvd, δvs, (m0,m0))

where the transition functions are defined as

δvs((md,m f),e) := (δd(md,e), δ(m f ,e))

δvd((md,m f),e) := (δd(md,e), δsl(m f ,e)) = (δd(md,e),m f)

The first equation corresponds to a normal transition labeled by e in both E dand E f ; the second

equation corresponds to a normal transition labeled by e in E d and an inserted self-loop transition

labeled by e in E f .

Hereafter, we assume that the two transition functions δvs and δvd are extended to strings of

events in Eo.

In step (2) of the AIS construction, we “unfold” all deterministic insertion decisions from the

i-verifier resulting in a game structure between the “system player” G and the “insertion function

20

player”; we call this structure the unfolded verifier. This unfolding procedure is given in Algo-

rithm 1 in [121]. The essence of the construction is to: (i) include all possible system plays, i.e.,

newly-generated observable events, at a given Y-state, and (ii) include all insertions that are possi-

ble before that observable event at a given Z-state, based on existing paths of inserted transitions

in the i-verifier.

In order to synthesize admissible insertion functions, in step (3) of the AIS construction, we

follow Algorithm 2 in [121] to prune away all the inadmissible insertion decisions (i.e., those that

lead to deadlock at Z-states, since the insertion function should always play) from the unfolded i-

verifier and call the final bipartite structure the AIS. This iterative pruning and associated trimming

is described in Algorithm 2 in [121]. As explained in [121], it can be interpreted as a supremal

controllable sublanguage calculation. Notice that there may be multiple paths of inserted events

between two states mv and m′v in V and this is captured by the function Ins(mv,m′v) = {sI ∈ E∗o :

δvd(mv, sI) = m′v} in Section IV.A of [121]. (In contrast with [121], we do not use the notation Ei

in this chapter since it is the same as Eo.) Notice that Ins(mv,m′v) may be an infinite set if there is

a cycle of inserted events in the path from mv to m′v. In this chapter, we make the assumption that

such cycles are redundant (from the viewpoint of event insertion) and extract only the finite set of

cycle-free paths from mv to m′v, i.e., cycles of inserted events are replaced by ε.

The function Ins is used in line 5 of Algorithm 2 in [121] to label transitions from Z-states

to Y-states in the AIS as sets of admissible strings that can be inserted when such transitions are

taken. For the sake of simplicity of notation, we denote hereafter these sets by L(z,y) for a given

transition between state z and state y. It can be shown from the construction of V and of the AIS

that any two L(z,yi) and L(z,y j) are disjoint for any two distinct successors yi and y j of z. Moreover,

these sets are all finite since cycles of inserted events have been removed as mentioned above. As

defined, the AIS does not pre-specify which string in an L(z,y) set is to be selected and thus all the

possible insertion choices are encoded in it. The reader is referred to [119, 121] for further details.

As shown in [119], opacity is privately enforceable if and only if the AIS is not empty.

For the sake of completeness, we formally define this bipartite transition system. Let I =

21

Md ×M denote the set of all information states.

Definition II.4.2 (All Insertion Structure). The All Insertion Structure w.r.t. current-state estimator

E is the tuple: AIS = (Y,Z,Eo,2E∗o , fAIS ,yz, fAIS ,zy,Γ,y0), where

• Eo ⊆ E is the set of observable events.

• Y ⊆ I is the set of Y-states.

• Z ⊆ I × E0 is the set of Z-states. Let I(z) denote the information state component in Z; then z =

(I(z),e) for some e ∈ Eo.

• fAIS ,yz : Y ×E0→ Z is the transition function from Y-states to Z-states.

• fAIS ,zy : Z×2E∗o → Y is the transition function from Z states to Y states.

• Γ : Z→ 2E∗o is the set of insertion choices at Z states defined as follows:

Γ(z) =
⋃
{L(z,y) : fAIS ,zy(z,L(z,y)) is defined }

• y0 ⊆ Y is the initial Y state where y0 = (m0,m0) and m0 is the initial state of E .

Example II.4.1. Here we show an example to illustrate the whole construction process of the AIS.

The current state estimator E is the same as in Example II.3.1 and is shown in Figure II.1. In

this example, states 7 and 8 are secret states, so we delete them as well as transitions leading to

them and then obtain the desired estimator E d in Figure II.2. Next, we add self-loops for events

{a,b,c,d} at each state of E and obtain the feasible estimator E f in Figure II.3. After that, we do

the verifier parallel composition between E d and E f and obtain verifier V in Figure II.4. Notice

that dashed transitions that are not followed by any solid transition are not shown in the figure.

Those transitions do not indicate valid insertions and play no role in building the unfolded verifier.

By the insertion mechanism, events are inserted before the occurrence of the next observable event,

thus every δvd transition should be followed by a δvs transition somewhere in the verifier. Then we

construct the unfolded verifier in Figure II.5, where the rectangular states are Y states and the

oval states are Z states. As is seen in the figure, Z state ((6,6),c) is a deadlock state and should

22

0

1

5 6 7

2 3 4

8

a b c

d

a

b

b c
0

1

5 6

2 3 4a b c

d

a b

ai,bi,ci,di ai,bi,ci,di ai,bi,ci,di ai,bi,ci,di

ai,bi,ci,di ai,bi,ci,di ai,bi,ci,di

ai,bi,ci,di

ai,bi,ci,di

0,0

1,1 2,2 3,3 4,4a b c

d

5,5 6,6a
b

1,0 2,5
d

a 3,6 4,7b c

2,0 3,8
b5,0

6,8

a

b

a

0 1 2 3 4a b cd

0,0 1,1 2,2 3,3 4,4a b cd

1,0 2,5

d
a 3,6 4,7b c

2,0 3,8
b

a

Figure II.2: Desired estimator E d

0

d
1 2

a
3

b
4

c

5
a

6
b

7

8

b

c

a,b,c,d

a,b,c,d a,b,c,d a,b,c,d a,b,c,d

a,b,c,d a,b,c,d a,b,c,d

a,b,c,d

Figure II.3: Feasible estimator E f

be pruned away in the next step of building the AIS. Following Algorithm 2 in [121], the shaded

path in Vu is pruned away. Finally, we obtain the AIS in Figure II.6. The game starts at the initial

Y-state (0,0) where the system plays; initially the system can output a, b, or d. If the system outputs

b, the game then reaches Z-state ((0,0),b), where the insertion function plays. The transition a

between states ((0,0),b) and (6,8) stands for insertion of event a and all the other transitions from

Z states to Y states can be interpreted similarly. The insertion function can choose to insert a or

da, leading the system to state (6,8) or (3,8), respectively.

0

1

5 6 7

2 3 4

8

a b c

d

a

b

b c
0

1

5 6

2 3 4a b c

d

a b

ai,bi,ci,di ai,bi,ci,di ai,bi,ci,di ai,bi,ci,di

ai,bi,ci,di ai,bi,ci,di ai,bi,ci,di

ai,bi,ci,di

ai,bi,ci,di

0,0

1,1 2,2 3,3 4,4a b c

d

5,5 6,6a
b

1,0 2,5
d

a 3,6 4,7b c

2,0 3,8
b5,0

6,8

a

b

a

0 1 2 3 4a b cd

0,0 1,1 2,2 3,3 4,4a b cd

1,0 2,5

d
a 3,6 4,7b c

2,0 3,8
b

a

Figure II.4: Verifier V without dangling δvd transitions

23

0,0 (0,0),a

1,1

5,5

2,5

(0,0),d

(0,0),b 6,8

(5,5),b

(1,1),a

(2,5),b

2,2

3,6

(6,6),c

(2,2),b

(3,6),c

3,8

3,3

4,7

(3,3),c 4,4

a

d

b

(0,0)

(0,0)

(1,0)

(5,0)

(2,0)

a

b

b

b

c

c

c(1,1)

(5,5)

(2,5)

(2,2)

(3,6)

(3,3)

6,6

1,1(0,0),d (1,1),a 2,2 (2,2),b 3,3 (3,3),c 4,4
d (0,0) a b c(1,1) (2,2) (3,3)

0,0

(0,0),a

1,1

2,5

(0,0),d

(0,0),b 3,8

(1,1),a

(2,5),b

2,2

3,6

(2,2),b

(3,6),c

3,3

4,7

(3,3),c 4,4

(1,0)

(2,0)

a

b

b

c

c

(2,5) (3,6)
0,0

a

d

b

Figure II.5: Unfolded verifier Vu

0,0 (0,0),a

1,1

2,5

(0,0),d

(0,0),b 6,8

(1,1),a

(2,5),b

2,2

3,6

(2,2),b

(3,6),c

3,8

3,3

4,7

(3,3),c 4,4

a

d

b

d

a

b

b

c

c

a

da

0,0 (0,0),a

1,1

2,5

(0,0),d

(0,0),b 6,8

(1,1),a

(2,5),b

2,2

3,6

(2,2),b

(3,6),c

3,8

3,3

4,7

(3,3),c 4,4

a

d

b

d

a

b

b

c

c

a

da

Figure II.6: AIS in Example II.4.1

II.4.2 Analysis of AIS

In the AIS, the insertion function works as follows: it observes some events and then makes a

decision to insert a specific string before the observed event. This process continues as long as the

system generates new observations. In order to better characterize this fact, we define the notion

of run in the AIS:

Definition II.4.3 (Run). A run ω in the AIS is a sequence of alternating states, observable events

and insertion decisions.

ω = 〈y0
e0
−−→ z0

s0
−−→ y1

e1
−−→ ·· ·yn−1

en−1
−−−→ zn−1

sn−1
−−−→ yn〉

where n ∈ N, y0 is the initial state of the AIS, ei ∈ Eo, si ∈ E∗o, s.t., fAIS ,yz(yi,ei) = zi, si ∈ L(zi,yi+1)

where fAIS ,zy(zi,L(zi,yi+1)) = yi+1, ∀i, 0 ≤ i < n. The set of runs is denoted by Ω.

In the definition of run, the insertion choice is determined at each Z state, so we explicitly use

an insertion string from the set of strings labeling a transition out of the Z-state. The length n of a

24

run can be arbitrarily long. We require that a run of finite length could only end at Y-states, since

these are the only possible terminating states in the AIS and this structure embeds only admissible

insertion functions. A Y-state y is terminating if fAIS ,yz(y,eo) is undefined for all eo ∈ Eo.

If we erase all the states from a run and swap every consecutive ei and si pair, then by construc-

tion of the AIS, we get a string generated by a run.

Definition II.4.4 (String generated by a run). The string generated by run ω ∈ Ω is defined as:

S (ω) = s0e0s1e1 · · · sn−1en−1, given ω = 〈y0
e0
−−→ z0

s0
−−→ y1

e1
−−→ ·· ·yn−1

en−1
−−−→ zn−1

sn−1
−−−→ yn〉.

From the definition of safe language, we observe that some safe strings are prefixes of unsafe

strings while others are not. Based on this observation, the safe language is partitioned as follows:

Definition II.4.5 (Partition of safe language). Safe language Lsa f e is partitioned as:

(1) L1
sa f e = L̃sa f e where L̃sa f e = {s ∈ Lsa f e : @u ∈ Lunsa f e, s.t., s < u}.

(2) L2
sa f e = Lsa f e \L1

sa f e.

Clearly, it is a partition of the safe language. Also L1
sa f e is prefix-closed by definition but L2

sa f e

may not be prefix-closed. For strings in L1
sa f e, we can choose not to insert in the AIS since they

are already safe and we could also choose to insert as long as the insertion is feasible in the AIS.

However, for strings in L2
sa f e, we have to insert somewhere to obtain a string in L1

sa f e, otherwise

the secret states would be ultimately reached and private opacity would be violated. We already

know that Lsa f e 6= ∅ if private safety is enforceable. Furthermore, the following proposition shows

the non-emptiness of L1
sa f e when private safety is enforceable.

Proposition II.4.1. L1
sa f e 6= ∅ if private safety is enforceable.

Proof. Proof by contradiction. If L1
sa f e = ∅, then ∀s ∈ P[L(G)], ∃u ∈ Lusa f e, s.t. s < u. Since all

the continuations of unsafe strings are also unsafe, we can never map an unsafe string to a string

in L1
sa f e. Then there always exists a string u′ ∈ Lunsa f e, such that no matter what the privately safe

insertion function fI is and what it inserts, fI(u′) ∈ Lunsa f e, which violates private enforceability.

25

II.5 PP-Enforcing Insertion Functions

Our goal is to exploit the AIS to synthesize PP-enforcing insertion functions. In that regard, we

establish a necessary and sufficient condition for the existence of PP-enforcing insertion functions.

We will proceed in two steps, first establishing preliminary results in Section II.5.1 before present-

ing the main necessary and sufficient condition in Section II.5.2.

II.5.1 A Sufficient condition for PP-enforcing Insertion Functions

Based on the definitions, a privately safe fI maps all strings in P[L(G)] to a subset of Lsa f e.

However, in general, f str
I [P(LS)] may not be a subset of f str

I (Lsa f e). In this case, the intruder, when

knowing the implementation of fI , could determine the occurrence of the secret when it observes

strings in f str
I [P(LS)] \ f str

I (Lsa f e). If, on the other hand, f str
I [P(LS)] is contained in f str

I (Lsa f e),

then f str
I (P[L(G)]) = f str

I (Lsa f e) and thus fI is PP-enforcing. A special case where f str
I [P(LS)] is

guaranteed to be contained in f str
I (Lsa f e) is when f str

I (Lsa f e) is the entire set Lsa f e. Based on this

special case, Lemma II.5.1 and Theorem II.5.1 below show sufficient conditions for a privately

enforcing fI to be PP-enforcing.

Lemma II.5.1. Consider privately enforcing insertion function fI . If f str
I (Lsa f e) = Lsa f e, then fI is

also publicly enforcing; that is, fI is PP-enforcing.

Proof. Because a privately enforcing insertion function fI is admissible, we can prove this Lemma

using the definition of PP-enforceability. We will show that if f str
I (Lsa f e) = Lsa f e, then the def-

inition is satisfied. First, fI is admissible and privately safe from the statement. We then show

fI is also publicly safe to complete the proof: if f str
I (Lsa f e) = Lsa f e, then f str

I (P[L(G)]) ⊆ Lsa f e =

f str
I (Lsa f e). So fI is PP-enforcing.

We now replace Lsa f e with a subset L⊆ Lsa f e and follow the argument in the proof of Lemma II.5.1

to derive a more general condition in Theorem II.5.1 (proof omitted since similar to that of Lemma

II.5.1).

26

Theorem II.5.1. Consider privately enforcing insertion function fI , if there is L ⊆ Lsa f e such that

f str
I (P[L(G)]) = L and f str

I (L) = L, then fI is also publicly enforcing; i.e., fI is PP-enforcing.

The condition in Theorem II.5.1 is sufficient and the following example shows a case when the

theorem does not hold. Thus it remains to be seen whether a PP-enforcing insertion function can

always be synthesized from the AIS.

Example II.5.1. Consider system G with observable event set Eo = {a,b,c,d} and observable

language P[L(G)] = {dabc,abc,bc,c}, where Lsa f e = {dabc,abc,c}. Define fI so that fI(ε,a) =

da, fI(ε,b) = ab, fI(ε,c) = abc and fI(s,eo) = eo otherwise. Because f str
I [L(G)] = {abc,dabc} ⊆

Lsa f e, fI is privately enforcing. One can also check that fI is publicly enforcing. However, the

only set L ⊆ Lsa f e satisfying f str
I (L) = L is {dabc}, which is not equal to f str

I [L(G)] = {abc,dabc}.

Hence, fI is a PP-enforcing insertion function such that no L ⊆ Lsa f e satisfies f str
I [L(G)] = L and

f str
I (L) = L.

II.5.2 Greedy PP-enforcing Insertion Functions

In this section, we introduce the notion of a greedy-maximal PP-enforcing insertion function and

then leverage the results in Section II.4.2 together with Theorem II.5.1.

First, we partition the set of Z states in the AIS into three subsets: (i) Z1, defined as the Z

states where the only insertion defined is ε; (ii) Z2, defined as the Z states where both ε and non-

ε transitions are defined; (iii) Z3, defined as the remaining Z states, where no ε transitions are

defined. If we track the runs generating L1
sa f e, all the Z states should belong to Z1 or Z2, while for

the runs generating L2
sa f e and Lunsa f e, they should contain some Z3 states.

Definition II.5.1 (Greedy-maximal criterion). (i) At any z ∈ Z1∪Z2 in the AIS, choose ε insertion;

(ii) At any z ∈ Z3 in the AIS, choose for insertion choice any string smax ∈ argmax[|si|, si ∈ Γ(z)]

where |· | denotes the length of the string.

Any insertion function that satisfies the greedy-maximal criterion at every Z-state that it visits

in the AIS is called a greedy-maximal insertion function, denoted as fgreedy. By this criterion,

27

fgreedy(L1
sa f e) = L1

sa f e since ε is chosen at every Z state. Moreover, fgreedy(L2
sa f e∪Lunsa f e) ⊆ L1

sa f e,

a fact established below in the proof of Theorem II.5.2. In order to prove that theorem, we fist give

definition of a particular projection Pe.

Definition II.5.2 (Projection Pe). Given a run ω = 〈y0
e0
−−→ z0

s0
−−→ y1

e1
−−→ ·· ·yn−1

en−1
−−−→ zn

sn−1
−−−→ yn〉

where y0 is the initial state of the AIS, the edit projection Pe returns the string Pe(ω) = s =

e0e1 · · ·en−1.

Intuitively speaking, this projection just erases all the insertion choices from a run, and recovers

the original string corresponding to the run. We can now state one of the main results in this chapter.

Theorem II.5.2. A greedy-maximal insertion function is PP-enforcing.

Proof. Consider greedy-maximal insertion function fgreedy. First, by Proposition II.4.1, L1
sa f e 6= ∅.

We also know that ∀s ∈ L1
sa f e, fgreedy(s) = s, i.e., fgreedy(L1

sa f e) = L1
sa f e by our greedy criterion.

Next, we show that fgreedy(L2
sa f e ∪ Lunsa f e) ⊆ L1

sa f e. ∀s ∈ L2
sa f e ∪ Lunsa f e, let fgreedy(s) = s′,

where we know that ∃ω ∈ Ω s.t., Pe(ω) = s and S (ω) = s′. Then we claim that ∃ω′ ∈ Ω, s.t.,

(Pe(ω′) = s′)∧(fgreedy(s′) = s′), which we prove by contradiction. We know that actually (fgreedy(s′) =

s′) ⇒ (Pe(ω′) = s′), and we focus on showing fgreedy(s′) = s′. Suppose this is not the case,

then fgreedy(s′) = s′′ 6= s′ and S (ω′) 6= s′. So ∃z ∈ Z3 in ω′ where only non-ε insertion is feasi-

ble. However, the AIS embeds all admissible insertion choices and this implies fgreedy does not

choose a longest insertion choice at certain z ∈ Z3 in ω, which leaves the possibility for non-ε

insertion in ω′. This contradicts with the insertion mechanism of fgreedy. Therefore, ∀z ∈ ω′,

z ∈ Z1 ∪ Z2, fgreedy(s′) = s′ ∈ L1
sa f e, in other words, fgreedy(L2

sa f e ∪ Lunsa f e) ⊆ L1
sa f e. Overall,

fgreedy(P[L(G)]) = L1
sa f e and this implies fgreedy and L1

sa f e satisfy Theorem II.5.1, thus fgreedy is

PP-enforcing.

This theorem demonstrates that as long as the AIS is not empty, then there exists at least one

greedy-maximal insertion function that is also PP-enforcing. This leads to the following corollary.

28

Corollary II.5.1. Opacity is PP-enforceable if and only if it is privately enforceable.

Proof. The only if part is true since the definition of PP-enforceability implies private enforceabil-

ity.

For the if part, as long as the AIS is not empty, we could always make insertion choices by this

greedy criterion at every Z state and get a PP-enforcing insertion function.

This result is a direct improvement of the preliminary work [120] in the sense that PP-enforcing

insertion function always exists as long as privately safe insertion function exists. Let us revisit

Example II.5.1: it is clear that fI is not greedy-maximal since fI(ε,c) 6= dabc. If we set fI(ε,c) =

dabc, then we obtain a greedy-maximal insertion function that is PP-enforcing.

II.6 The INPRIVALIC-G Algorithm

In this section, we develop a new algorithm that synthesizes a PP-enforcing insertion function by

leveraging Theorem II.5.2. We first build the AIS, which embeds all privately enforcing insertion

functions. The strategy of the proposed algorithm is to identify L1
sa f e and modify all other strings

to strings in L1
sa f e by using the greedy-maximal criterion. As a result, any insertion function

synthesized in that manner is guaranteed to be PP-enforcing by Theorem II.5.2.

Because this algorithm synthesizes INsertion functions with PRIVAte-and-pubLIC-enforceability

property using Greedy-maximal criterion, we call it the INPRIVALIC-G Algorithm. Hereafter, we

denote a greedy-maximal insertion function by fgreedy.

Algorithm II.1: INPRIVALIC-G ALGORITHM
Input : G = (X,E, f ,X0), projection P, Xs ⊆ X
Output: A PP-enforcing IA

1 Build E ,E d,E f ;
2 V = E d‖vE f ;
3 Construct All Insertion Structure (AIS) by algorithms in [121];
4 Synthesize a greedy insertion function from AIS;

29

The INPRIVALIC-G Algorithm is not meant to synthesize all PP-enforcing insertion functions,

but it is guaranteed to find one (unless the AIS is empty).

We discuss the steps of the algorithm, as a way of summarizing the methodology developed

in this chapter. Steps 1 to 3 construct the AIS. These steps were already discussed earlier in

Section II.4.1 and will not be repeated here. After that, step 4 synthesizes an insertion automaton

from the AIS using the greedy-maximal criterion. The main idea is that at each Z-state in the

AIS, a greedy-maximal insertion choice is selected according to Definition II.5.1 and this process

proceeds until: (1) a terminating Y is reached; or (2) a previously visited Y state is visited again.

It is implemented in Algorithm II.2, which builds the reachable part of the AIS for the selections

made, until a complete IA is obtained.

Algorithm II.2: Synthesize a greedy insertion function

Input : AIS = (Y,Z,Eo,2E∗o , fAIS ,yz, fAIS ,zy,Γ,y0)
Output: IA=(Xia,Eo,E+

o , fia,qia, xia,0)
1 xia,0 := yo,Xia := {xia,0};
2 for xia ∈ Xia that has not been examined do
3 for e ∈ Eo s.t. fAIS ,yz(xia,e) is defined and where z = fAIS ,yz(xia,e) = (xia,e) do
4 if ε ∈ Γ(z) then
5 x′ia := fAIS ,zy(z,L(z, x′ia)) where ε ∈ L(z, x′ia);
6 fia(xia,e) = x′ia;
7 qia(xia,e) = e;
8 else
9 pick one smax ∈ argmax[|si|, si ∈ Γ(z)];

10 x′ia := fAIS ,zy(z,L(z, x′ia)) where smax ∈ L(z, x′ia) ;
11 fia(xia,e) = x′ia;
12 fia(xia,e) = x′ia;

13 Xia := Xia∪{x′ia};

14 return IA

The following running example shows all the steps of the INPRIVALIC-G Algorithm.

Example II.6.1. Let automaton G with observable events Eo = {a,b,c,d,e} have the state estimator

shown in Figure II.7, where estimator state 7 reveals the secret. We use this example to illustrate

all the steps of the INPRIVALIC-G Algorithm. Following the algorithm, we build the AIS and

synthesize a PP-enforcing insertion function encoded by an I/O automation.

30

0 5 6

1 2 3 4

7

d a
ca

c

e
d a b
c

c

Figure II.7: E with secret-revealing state 7

In step 1, we build E d by removing state 7 and we obtain E f by adding self-loops for a,b,c,d,e

at each state.

In step 2, we perform the verifier parallel composition of E d and E f and obtain V , which is

not shown here.

In step 3, we unfold the insertions in V for every system output, and build the game structure

Vu. Since there is no inadmissible insertion in Vu, no state will be pruned away and the AIS is

immediately obtained in Figure II.8. There are two types of states in the AIS: square states where

the system plays and round states where the insertion function plays.

With the AIS built, we proceed to the synthesis part. By the greedy-maximal criterion, at state

((0,0),a), ed should be inserted and at state ((3,7),c), ε should be inserted. Similarly for the

other Z-states: we insert ε if it is defined. In Figure II.8 we use bold red lines to indicate the

greedy-maximal criterion in the AIS. Finally, the insertion automaton in Figure II.9 encodes the

constructed PP-enforcing insertion function.

We conclude with a brief discussion of the computational complexity of the INPRIVALIC-

G Algorithm. Consider a system with estimator E ; as shown in [119], the AIS has at most (|Eo|+

1)|XE |
2 states, where |XE | is the number of states in E . The time complexity for building the AIS is

of O(|XE |
6) according to [121]. Finally, the greedy-maximal synthesis step is done by performing

a breadth-first search on the AIS, which requires time complexity linear in its size. In all, the

computational complexity of the INPRIVALIC-G Algorithm is therefore of O(|XE |
6). In the worst

case, |XE |may be 2|X| and the complexity is exponential in terms of |X|. We refer the reader to [119]

31

(0,0) (0,0),e (1,1)

(1,1),d

(2,2)

(2,2),a

(3,3)

(3,3),c(3,3),b

(4,4)

(4,4),c

(0,0),a

(6,7)(3,7)

(6,7),c(3,7),c

(0,0),d

(5,5)(2,5)

(5,5),a(2,5),a

(6,6)(3,6)

(6,6),c(3,6),c

e

d

c

𝜀

ed

𝜀 b

d𝜀

a

𝜀 𝜀

e

a

𝜀

c

𝜀

b

c

a

c

𝜀

𝜀

𝜀

𝜀

c

𝜀

cb

𝜀 b

a

d

Figure II.8: All insertion structure with greedy-maximal criterion

0 5 6

1 2 3 4

7

d/d a/a
c/ca/eda

c/c

e/e
d/d a/a b/b
c/c

c/c

Figure II.9: A PP-enforcing insertion function encoded as an I/O automaton

for numerical tests on the construction of the AIS using an explicit representation, and to [122] for a

symbolic implementation of the AIS construction using binary decision diagrams, which achieves

greater scalability.

Remark II.6.1. The INPRIVALIC-G Algorithm is sound and complete, unlike the INPRIVALIC

Algorithm in [?], which was provably sound only.

II.7 Conclusion

This chapter extends prior works on opacity enforcement by insertion functions to the case where

the insertion function may become known to the intruder. To handle this situation, we defined the

32

notion of public-private (PP) opacity and investigated its enforcement by so-called PP-enforcing

insertion functions. We showed that while not all insertion functions that are privately-enforcing

may be PP-enforcing, if private safety is enforceable, then so is public-private safety. In this

regard, we identified a necessary and sufficient condition for PP-enforceability and then developed

an algorithmic procedure for synthesizing insertion functions that are provably PP-enforcing. This

algorithm (INPRIVALIC-G) is based on a greedy-maximal insertion mechanism.

This chapter also opens several avenues for future investigations. First, it would be of interest

to extend the results herein to the case of edit functions, a generalized form of insertion functions.

This problem will be discussed in the next chapter. Second, it would be worthwhile to identify other

synthesis strategies than the greedy-maximal one of Algorithm INPRIVALIC-G to synthesize PP-

enforcing insertion functions. Finally, it would be of interest to study instances where the intruder

has partial knowledge of the insertion function, as opposed to the full-knowledge or no-knowledge

scenarios considered in this chapter.

33

CHAPTER III

Opacity Enforcement using

Nondeterministic Publicly-Known Edit

Functions

III.1 Introduction

In last chapter, we assume that the edit function’s implementation is known to the intruder and

discuss how to defend secrets by insertion functions under such an adversary. As an extension,

we try to solve the same problem by edit functions in this chapter. We further improve the results

in [53, 54, 119, 122] by considering opacity enforcement using nondeterministic edit functions,

whose outcome is randomly chosen from a pre-calculated set and the intruder does not know the

result a priori. Both private safety and public safety are defined for edit functions to characterize

their performance. Although nondeterministic edit functions seem to release more information

to the intruder by allowing more potential outcomes, they essentially provide the system more

plausible denial of secret disclosure, which contributes to opacity enforcement. It is shown that

a nondeterministic edit function may still achieve private and public safety even when its deter-

ministic counterpart fails to do so. To the best of our knowledge, this chapter for the first time

considers nondeterminism of the defender in opacity enforcement. We introduce a three-player

game structure termed All Edit Structure (AES) to embed edit functions. An algorithm is devel-

34

oped to synthesize privately and publicly safe nondeterministic edit functions based on the AES.

The remaining sections are organized as follows. Section V.2 presents the system model. Sec-

tion III.3 formally introduces the notions of nondeterministic edit functions, private safety and

public safety. Section III.4 defines the three-player observer (TPO), discusses its properties and

introduces edit constraints. Section III.5 defines a special TPO called All Edit Structure (AES)

and presents its construction algorithm. Section III.6 develops an algorithm for synthesizing non-

deterministic publicly and privately safe edit functions based on the reachability tree of the AES.

Finally, Section V.7 concludes the chapter.

III.2 System Model

We consider opacity in the framework of discrete event systems modeled as deterministic finite-

state automata [23]:

G = (X,E, f , x0)

where X is the finite set of states, E is the finite set of events, f : X × E → X is the partial state

transition function and x0 ∈ X is the initial state. Specifically, we denote by XS ⊂ X the set of secret

states. The transition function is extended to domain X ×E∗ in the standard manner [23]. Given

two strings s, u, we denote by s � u if s is a prefix u and t ∈ s if t is a substring of s. The language

generated by G is defined as L(G) = {s ∈ E∗ : f (x0, s)!} where ! means “is defined”. Notice that the

system model here is very similar to that in Chapter II, except that the initial state here is unique.

For simplicity, we write x
e
−→ x′, if x′ = f (x,e) for x, x′ ∈ X and e ∈ E. Given system G, a run is

a sequence of alternating states and events x1
e1
−−→ x2

e2
−−→ ·· ·

en−1
−−−→ xn, where ∀i ≤ n, xi ∈ X and ei ∈ E.

A run contains a cycle if ∃1 ≤ i < j ≤ n, s.t. xi = x j.

The system is partially observed with the event set E partitioned as E = Eo ∪ Euo, where Eo

is the set of observable events and Euo is the set of unobservable events. Given a string t ∈ E∗,

its natural projection P : E∗→ E∗o is recursively defined as P(t) = P(t′e) = P(t′)P(e) where t′ ∈ E∗

35

and e ∈ E. The projection of an event is P(e) = e if e ∈ Eo and P(e) = ε if e ∈ Euo ∪ {ε}, where

ε is the empty string. Then by the standard technique in [23], the observer of G is defined as:

Obs(G) = (Xobs,Eo, δ, xobs,0), where Xobs ⊆ 2X is the state space, Eo is the set of observable events,

δ : Xobs×Eo→ Xobs is the transition function and xobs,0 ∈ Xobs is the initial state. An observer state

can be viewed as an estimate of the system’s current states. Therefore, the observer is often called

“state estimator” in the literature, e.g., [119].

III.3 Edit Functions and Opacity Notions

In this section, we formally define nondeterministic edit functions and discuss the edit mechanism.

We also define private safety and public safety to further characterize how the edit function defends

the secrets of the system against intruders with different knowledge.

III.3.1 Edit Mechanism

We first review the concept of deterministic edit function in [53]: fe : E∗o × Eo → E∗oEε
o where

Eε
o = Eo∪{ε}. Given s ∈ P[L (G)], eo ∈ Eo, fe(s,eo) = sIeo if sI is inserted before eo; fe(s,eo) = ε

if eo is erased; fe(s,eo) = sI if sI is inserted and eo is erased.

By definition, the outcome of a deterministic edit function is unique. Then we extend it and

define a nondeterministic edit function: fne : E∗o × Eo → 2E∗oEεo that outputs a string nondetermin-

istically from a set of potential outcomes. Its output is based on the past observed string and the

current observed event. Given an observable string s ∈ P[L (G)] and an observable event eo ∈ Eo,

a potential outcome of a nondeterministic edit function may be sIeo if sI is inserted before eo or

ε if eo is erased or sI if sI is inserted and eo is erased. In contrast to deterministic edit functions

in [53], the outcome is not pre-calculated and is chosen randomly when the nondeterministic edit

function is implemented. Notice that sI may be ε so that nothing is inserted. The outcome of

such a function is not known by the intruder before it is observed. With a slight abuse of notation,

we also define a string based nondeterministic edit function fne recursively as: fne(ε) = {ε} and

36

fne(seo) = {lpls ∈ E∗o : lp ∈ fne(s), ls ∈ fne(s,eo)}.

An edit function is an interface between the system’s output and the outside world, which

includes the intruder eavesdropping on the system. The edit function works as follows: upon

observing a string, it makes a decision to insert fictitious events before the last observed event or to

erase the last observed event; then the edited string is emitted as the actual output. We assume that

all observable events Eo are allowed to be inserted or erased, and the intruder cannot distinguish

between an inserted event and its genuine counterpart. We define Er
o = {eo→ ε : eo ∈ Eo} to be the

set of “event erasure” events. In this chapter, if we concatenate an “event erasure” event eo → ε

with the observable event eo, the result is simply ε.

Given a nondeterministic edit function fne, the intruder infers secrets from its current state

estimate E fne : P[L(G)]→ 2Xobs and E fne(s) = {xobs ∈ Xobs : ∃t ∈ fne(s), s.t. xobs = δ(xobs,0, t)}. Since

fne is nondeterministic, E fne(s) is generally a set of states in Xobs.

III.3.2 Private Safety and Public Safety

In this subsection, we first review the well-studied concept of current-state opacity (Definition II.3.1)

and then derive two concepts from it.

A system is current-state opaque if for every string reaching a secret state, there exists another

string reaching a non-secret state and both strings share the same projection. CSO can be verified

by building the observer and checking whether any observer state contains solely secret states. If

CSO is violated, an edit function may be used to enforce opacity, which is the problem studied in

this chapter

Based on CSO, we define the safe language [119] as: Lsa f e = P[L(G)]\{[P[L(G)]\P(LNS)]E∗o},

which is prefix-closed. While the unsafe language is Lunsa f e = P[L(G)] \ Lsa f e. Intuitively, we

view all observable continuations of P[L(G)] \ P(LNS) as “unsafe”. If we delete all states vio-

lating CSO from Obs(G), i.e., all observer states that solely contain secret states, and then take

the accessible part, the resulting automaton just generates Lsa f e. We call it desired observer:

Obsd(G) = (Xobsd,Eo, δd, xobsd,0), see [54, 119] for more details.

37

Inspired by private safety and public safety of insertion functions in [54], we redefine those two

concepts for nondeterministic edit functions and call them nondeterministic (ND)-private safety

and nondeterministic (ND)-public safety, respectively.

Definition III.3.1 (ND-Private Safety). Consider system G with P, Lsa f e and Obsd(G), a nonde-

terministic edit function fne is privately safe, if ∀s ∈ P[L (G)], fne(s) ⊆ Lsa f e.

If fne is privately safe, we denote it by fne � ϕndpri where ϕndpri stands for ND-private safety.

ND-private safety is based on the assumption that the intruder does not know about the implemen-

tation of edit functions. Thus, as long as for a given string s and an edit function fne, every element

in fne(s) is also in Lsa f e, then the intruder’s state estimate would never reveal the secrets of the

system.

Definition III.3.2 (ND-Public Safety). Consider a system G, Lsa f e and Lunsa f e, a nondeterministic

edit function fne is publicly safe, if ∀s ∈ Lunsa f e, ∀s̃ ∈ fne(s), ∃t ∈ Lsa f e, s.t. s̃ ∈ fne(t).

If fne is publicly safe, we denote it by fne � ϕndpub where ϕndpub stands for ND-public safety.

ND-public safety is based on the assumption that the implementation of edit functions is known

to the intruder. A sophisticated intruder may learn the implementation of the edit function and

potentially does some reverse engineering to infer the source of the edited string. Thus, for ND-

public safety, we require that no matter how an unsafe string is edited, it should share the same

edited behavior with some safe string. As the intruder does not know how a string is edited before it

makes an observation, ND-public safety and ND-private safety guarantee that the system’s secrets

are never disclosed. A nondeterministic edit function fne is ND-public-private enforcing (ND-PP-

enforcing), denoted by fne � ϕndpp, if fne � ϕndpri and fne � ϕndpub. In this chapter, we require that

an edit function should be able to map every string in P[L(G)] to some strings and we term this

property as admissibility.

38

III.4 Three-Player Observer

In this section, we propose the Three-Player Observer (TPO), which is a three-player game struc-

ture that provides a systematic way of embedding edit functions and evaluating their performance.

Then we discuss some properties of the TPO and define edit constraints.

The TPO is an information-state-based structure, whose current state contains enough infor-

mation for analysis of opacity enforcement and no future information is necessary. We denote the

set of information states as I. The formal definition is as follows:

Definition III.4.1 (Three-Player Observer). Given a system G, its observer Obs(G) and desired

observer Obsd(G), let I ⊆ Xobsd ×Xobs be the set of information states. A three-player observer is

the tuple T = (QY ,QZ ,QW ,Eo,Er
o,Θ, fyz, fzz, f in

zw, f er
zw, f in

wy, f er
wy,y0), where

• QY ⊆ I is the set of information states.

• QZ ⊆ I×Eo is the set of information states augmented with observable events. Let I(z), E(z) denote

the information state component and observable event component of z ∈ QZ respectively, so that

z = (I(z),E(z)).

• QW ⊆ I × (Eo ∪ Er
o) is the set of information states augmented with observable events or event

erasure events. Let I(w), A(w) denote the information state component and edit action component

of w ∈ QW respectively, so that w = (I(w),A(w)).

• Eo ⊆ E is the set of observable events.

• Er
o is the set of “event erasure” events.

• Θ ⊆ Eo∪{ε}∪Er
o is the set of edit decisions at QZ-states.

• fyz : QY × Eo → QZ is the transition function from QY states to QZ states. For y = (xd, x f) ∈ QY ,

eo ∈ Eo, we have:

fyz(y,eo) = z⇒ [δ(x f ,eo)!]∧ [I(z) = y]∧ [E(z) = eo]

39

• fzz : QZ ×Θ→ QZ is the transition function from QZ-states to QZ-states. For z = ((xd, x f),eo) ∈ QZ ,

θ ∈ Θ, we have:

fzz(z, θ) = z′⇒[θ ∈ Eo]∧ [I(z′) = (x′d, x f)]

∧ [x′d = δd(xd, θ)]∧ [E(z′) = eo]

• f in
zw : QZ ×Θ→ QW is the ε-insertion transition from QZ-states to QW-states. For z = ((xd, x f),eo) ∈

QZ , θ ∈ Θ we have:

f in
zw(z, θ) = w⇒[θ = ε]∧ [I(w) = I(z)]∧ [A(w) = eo]

∧ [δd(xd,eo)!]∧ [δ(x f ,eo)!]

• f er
zw : QZ×Θ→QW is the event erasure transition from QZ-states to QW-states. For z = ((xd, x f),eo) ∈

QZ , θ ∈ Θ, we have:

f er
zw(z, θ) = w⇒[θ = eo→ ε]∧ [I(w) = I(z)]

∧ [A(w) = eo→ ε]∧ [δ(x f ,eo)!]

• f in
wy : QW ×Eo → QY is the transition function from QW-states whose edit action component is in

Eo to QY-states. For w = ((xd, x f),eo) ∈ QW , we have:

f in
wy(w,eo) = y⇒[y = (x′d, x

′
f)]∧ [x′d = δd(xd,eo)]

∧ [x′f = δ(x f ,eo)]

• f er
wy : QW ×Eo → QY is the transition function from QW-states whose edit action component is in

40

Er
o to QY-states. For w = ((xd, x f),eo→ ε) ∈ QW , we have:

f er
wy(w,eo) = y⇒[y = (xd, x′f)]∧ [x′f = δ(x f ,eo)]

• y0 ∈ QY is the initial QY-state where y0 = (xobsd,0, xobs,0). xobsd,0 and xobs,0 are the initial states of

Obsd(G) and Obs(G).

The three-player observer is defined to describe the game among a “dummy” player, “edit

function” and “system/environment”. All three players have complete information in the sense

that they know exactly the actions of each other at any moment of the game.

A QY-state (Y-state) is an information state, from which the “dummy” player executes observ-

able events. A Y-state contains both the intruder’s estimate and the system’s estimate. Actually, the

events from Y-states do not really occur and they are the events to be observed by the edit function

player. fyz is defined only to help determine what edit decisions can be made by the edit function

in the next step. That is why we call this player a dummy player.

A QZ-state (Z-state) is an information state augmented with the event executed by the dummy

player, where the edit function makes decisions. If the edit function chooses to insert an event, a

succeeding Z-state will be reached under an fzz transition. If another event is inserted following the

last inserted event, then another succeeding Z-state is reached until the edit function stops inserting.

This corresponds to insertion of multiple events. If the edit function keeps inserting events, we can

expect that a cycle of Z-states and fzz transitions is formed in the TPO. When an event is inserted,

only the intruder’s estimate is updated while the system’s estimate remains the same, which is

reflected in defining fzz. This is consistent with the edit function’s mechanism as the edit function

serves as an interface to modify the intruder’s observation but does not interfere with the system’s

operation. When the edit function decides to stop insertion or to erase the last observed event, the

turn of the game is passed to the system/environment player by f in
zw and f er

zw transitions. We denote

by fzw = f in
zw ∪ f er

zw where f in
zw stands for ε-insertion (termination of insertion) and f er

zw stands for

erasure of the observable event executed by the dummy player. We will use fzw for simplicity in

41

the following discussion if there is no confusion. There may be multiple transitions defined out of

a Z-state, i.e., multiple edit decisions, and we let Θ(z) be the set of edit decisions defined at z ∈ QZ

in a TPO.

A QW-state (W-state) is an information state augmented with an observable event or an “event

erasure” event, from which the system plays. If a W-state contains an observable event, that means

the edit function player has inserted ε from its preceding Z-state. When that event is executed, it

will be observed by the intruder. Thus, an f in
wy transition leads to a Y-state, whose first and second

state components are both updated. If a W-state contains an “event erasure” event, that means

the edit function has decided to erase the observable event. So when the event is executed, it

will not be observed by the intruder. Hence, an f er
wy transition leads to a Y-state, whose first state

component (intruder’s estimate) is updated while the second state component (system’s estimate)

remains unchanged. We just denote by fwy = f in
wy∪ f er

wy and will use fwy when there is no confusion.

Given two TPOs T1 and T2, T1 is a subsystem of T2, denoted by T1 v T2, if QT1
Y ⊆ QT2

Y ,

QT1
Z ⊆QT2

Z , QT1
W ⊆ QT2

W and ∀y ∈ QT1
Y , ∀z,z′ ∈ QT1

Z , ∀w ∈ QT1
W , ∀eo ∈ Eo, ∀θ,θ′ ∈ Θ, we have: (1)

f T1
yz (y,eo) = z⇒ f T2

yz (y,eo) = z; (2) f T1
zz (z, θ) = z′⇒ f T2

zz (z, θ) = z′; (3) f T1
zw (z, θ′) = w⇒ f T2

zw (z, θ′) = w;

(4) f T1
wy (w,eo) = y⇒ f T2

wy (w,eo) = y.

A run in a three-player observer is of the form: r = y0
e0
−−→ z1

0

θ1
0
−−→ z2

0

θ2
0
−−→ ·· ·

θ
m0−1
0
−−−−→ zm0

0

θ
m0
0
−−−→ w0

e0
−−→

y1
e1
−−→ z1

1

θ1
1
−−→ z2

1

θ2
1
−−→ ·· ·zm1

1

θ
m1
1
−−−→ w1

e1
−−→ y2 · · ·

en
−−→ z1

n
θ1

n
−−→ ·· ·zmn

n
θmn

n
−−−→ wn

en
−−→ yn+1, where y0 is the initial

state of T , ei ∈ Eo, θ j
i ∈ Θ(z j

i), ∀0 ≤ i ≤ n, 1 ≤ j ≤ mi and n ∈ N, mi ∈ N+. It characterizes the

information flow in a TPO and we denote the set of runs in a TPO T by Run(T). We also write

yi ∈ r (zi ∈ r or wi ∈ r) if yi (zi or wi) is a state in r. A run corresponds to an unedited string and an

edited string, then we have the following definitions.

Definition III.4.2 (String Generated by a Run). Given a run r = y0
e0
−−→ z1

0

θ1
0
−−→ z2

0

θ2
0
−−→ ·· ·

θ
m0−1
0
−−−−→

zm0
0

θ
m0
0
−−−→ w0

e0
−−→ y1

e1
−−→ z1

1

θ1
1
−−→ z2

1

θ2
1
−−→ ·· ·zm1

1

θ
m1
1
−−−→ w1

e1
−−→ y2 · · ·

en
−−→ z1

n
θ1

n
−−→ ·· ·zmn

n
θmn

n
−−−→ wn

en
−−→ yn+1, the

string generated by r is defined as: lg(r) = θ1
0θ

2
0 · · ·θ

m0−1
0 θm0

0 e0θ
1
1 · · ·θ

m1
1 e1 · · ·en−1θ

1
n · · ·θ

mn
n en, where

∀i ≤ n, θmi
i ei = ε if θmi

i = ei→ ε.

42

Definition III.4.3 (Edit Projection). In a TPO T , given a run r = y0
e0
−−→ z1

0

θ1
0
−−→ z2

0

θ2
0
−−→ ·· ·

θ
m0−1
0
−−−−→

zm0
0

θ
m0
0
−−−→ w0

e0
−−→ y1

e1
−−→ z1

1

θ1
1
−−→ z2

1

θ2
1
−−→ ·· ·zm1

1

θ
m1
1
−−−→ w1

e1
−−→ y2 · · ·

en
−−→ z1

n
θ1

n
−−→ ·· ·zmn

n
θmn

n
−−−→ wn

en
−−→ yn+1, edit

projection Pe : Run(T)→ P[L(G)] is defined such that Pe(r) = e0e1 · · ·en.

That is, the edit projection projects away the edit decisions in a run and “recovers” the unedited

string. While the generated string of a run is just the string after considering the edit decisions.

From a given TPO, we may extract an edit function from it and we define the edit function

embedded in a TPO. With a slight abuse of notation, we write fne ∈ T if fne is embedded in T .

Definition III.4.4 (ND-Edit Function embedded in TPO). Given a TPO T , nondeterministic edit

function fne is embedded in T if ∀s ∈ P[L(G)], ∀s̃ ∈ fne(s), ∃r ∈ Run(T), s.t. Pe(r) = s and lg(r) = s̃.

In a TPO, y ∈ QY is a terminating state if @eo ∈ Eo, s.t. fyz(y,eo)!. And w ∈ QW is a deadlocking

state if @eo ∈ Eo, s.t. fwy(w,eo)!. Also z ∈ QZ is a deadlocking state if @θ ∈ Θ, s.t. fzz(z, θ)! or

fzw(z, θ)!. We call a TPO complete if: (1) there are no deadlocking W or Z states; (2) ∀s ∈ P[L(G)],

∃r ∈ Run(T), s.t. Pe(r) = s. In a complete TPO, all embedded edit functions are admissible and

they can always make a decision no matter what event occurs; also the events executed by the

system can not be blocked from happening. From now on, we will only consider complete TPOs.

Notice that a complete TPO only terminates at Y-states, being consistent with the definition of run.

In practice, the edit functions may be constrained by the outside environment or the preference

of the system’s designer so that certain edit decisions may not be taken and some Y-states may not

be preferred. Thus, we introduce constraints on edit decisions and constraints on Y-states, both in

a generic form.

Definition III.4.5 (Constraints on Edit Decisions). The constraint on edit decisions is a binary

function φdec : Θ→ {0,1} and an edit decision θ ∈ Θ satisfies the constraint if φdec(θ) = 1.

Definition III.4.6 (Constraints on Y-States). The constraint on Y-states is a binary function φy :

QY → {0,1} and a Y-state y ∈ QY satisfies the constraint if φy(y) = 1.

43

Both constraints are problem-dependent and will be specified when a problem is discussed.

They will reduce the state space of the TPO and bring in deadlocking states. In the following

section, we will define the “largest” TPO satisfying both constraints.

III.5 All Edit Structure

In this section, we define a complete TPO such that: [∀y ∈ QY : φy(y) = 1]∧ [∀θ ∈ Θ : φdec(θ) = 1]

and T is “as large as possible”. We call this structure the All Edit Structure (AES). The property

of being as large as possible is as follows: if T1 and T2 are two TPOs satisfying edit constraints,

then their union, in the graph merging sense, is also a TPO satisfying edit constraints. The union

of T1 and T2 is defined as: (1) QT1∪T2
Y = QT1

Y ∪QT2
Y , QT1∪T2

Z = QT1
Z ∪QT2

Z , QT1∪T2
W = QT1

W ∪QT2
W ; (2)

∀y ∈ QT1∪T2
Y , ∀z,z′ ∈ QT1∪T2

Z , ∀w ∈ QT1∪T2
W , ∀θ,θ′ ∈ Θ, ∀eo ∈ Eo, we have: f T1∪T2

yz (y,eo) = z⇔∃i ∈

{1,2} : f Ti
yz (y,eo) = z, f T1∪T2

zz (z, θ′) = z′⇔ ∃i ∈ {1,2} : f Ti
zz (z, θ′) = z′, f T1∪T2

zw (z, θ) = w⇔ ∃i ∈ {1,2} :

f Ti
zw(z, θ) = w and f T1∪T2

wy (w,eo) = y⇔∃i ∈ {1,2} : f Ti
zw(w,eo) = y.

Definition III.5.1 (All Edit Structure). Given system G, edit constraints φdec and φy, the All Edit

Structure (AES) is the largest complete TPO:

AES = (QA
Y ,Q

A
Z ,Q

A
W ,Eo,Er

o,Θ, f A
yz, f A

zz , f A
zw, f A

wy,y0)

where ∀y ∈ QA
Y : φy(y) = 1 and ∀θ ∈ Θ : φdec(θ) = 1. The largest TPO is such that: for all TPO T

satisfying the above two conditions, T v AES .

Algorithm III.1: Construction of the AES
Input : Obs(G), Obsd(G), Er

o, φdec, φy
Output : AES

1 QA
Y = {y0} = {(xobsd,0, xobs,0)}, QA

Z = ∅, QA
W = ∅;

2 AES pre = DoDFS (y0,φdec,φy,Obs(G),Obsd(G),Er
o);

3 AES = Prune(AES pre);

44

Algorithm III.2: DoDFS
Input : y,φdec,φy,Obs(G),Obsd(G),Er

o
Output : AES pre

1 for eo ∈ Eo, s.t. fyz(y,eo)! by Definition III.4.1 do
2 z = ((xobsd, xobs f),eo) = fyz(y,eo);

3 add transition y
eo
−−→ z to f A

yz;
4 if z /∈ QA

Z then
5 QA

Z = QA
Z ∪{z};

6 Θ(z) = ∅;
7 Zext(z) = {z};
8 EXT END−Z(Zext(z),φdec);
9 for z′ ∈ Zext(z) do

10 if ∃θ ∈ Θ, s.t. fzw(z′, θ)! by Definition III.4.1 and φdec(θ) = 1 then
11 w = fzw(z′, θ);
12 Θ(z′) = Θ(z′)∪{θ};

13 add transition z′
θ
−→ w to f A

zw;
14 if w /∈ QA

W then
15 QA

W = QA
W ∪{w};

16 for eo ∈ Eo, s.t. fwy(w,eo)! by Definition III.4.1 do
17 y′ = fwy(w,eo);
18 if φy(y′) = 1 then
19 add transition w

eo
−−→ y′ to f A

wy ;
20 if y′ /∈ QA

Y then
21 QA

Y = QA
Y ∪{y

′};
22 DoDFS (y′,φdec,φy,Obs(G),Obsd(G),Er

o);

Procedure: EXT END−Z(Zext(z),φdec)
23 while ∃z ∈ Zext(z), ∃θ ∈ Θ, s.t. fzz(z, θ)! by Definition III.4.1 and φdec(θ) = 1 do
24 z′ = fzz(z, θ);
25 Θ(z) = Θ(z)∪{θ};

26 add transition z
θ
−→ z′ to f A

zz;
27 if z′ /∈ QA

Z then
28 QA

Z = QA
Z ∪{z

′};
29 Θ(z′) = ∅;
30 Zext(z) = Zext(z)∪{z′};
31 EXT END−Z(Zext(z),φdec);

Algorithm III.1 shows a general procedure for constructing the AES and it calls Algorithms III.2

and III.3 in its operation. In Algorithm III.2, we start searching from y0 = (xobsd,0, xobs,0) and ex-

pand the state space recursively by computing all possible successors of the current state. We

45

Algorithm III.3: Prune
Input : A three-player observer
Output: A three-player observer without deadlocking states

1 while there exist deadlocking W-states or Z-states do
2 for deadlocking W-state w do
3 remove w from the structure
4 for deadlocking Z-state z do
5 if there exist Y-state y and eo ∈ Eo, s.t. z is reachable from y through eo then
6 remove y and z from the structure;
7 else
8 remove z from the structure;
9 take the accessible part of the structure;

terminate searching on a path when a Y-state violates the edit constraint, i.e., φy(y) = 0 or an edit

decision is not allowed by the constraints, i.e., φdec(θ) = 0. This is an iterative procedure, which

allows us to build the whole reachable state space. We also add transitions in this process.

Specifically, at a newly added Z-state, we need to determine feasible edit decisions. There may

be consecutive Z-states between a Y-state and a W-state. Then we search them in the procedure

EXT END−Z, which is also a depth-first search process. In EXT END−Z, we add succeeding

Z-states until no more fzz transitions are defined and no more insertions are made. In this process,

for each z ∈ QA
Z , we define Zext(z) to be the set of Z-states that can be reached from z through fzz

transitions. We keep growing Zext(z) until no more Z-states are added and no new fzz transitions are

defined at states in Zext(z). Consecutive Z-states may form a cycle in the AES, which indicates that

a loop is inserted by the edit function. Since the information state component of a Z-state comes

from 2X × 2X and its event component comes from Eo, both of which are finite sets, then only a

finite number of Z-states are added in each iterate and EXT END−Z always terminates. Similarly,

the information state components of Y-states and W-states also come from 2X ×2X, while the edit

action components of W-states come from Eo or Er
o. All of them are finite sets. Overall, only finite

states will be added to AES pre until some states or transitions violate the edit constraints. Thus,

Algorithm III.2 terminates after a finite number of steps and returns a finite structure.

We denote the output of Algorithm III.2 by AES pre, which may contain deadlocking states

46

since edit constraints preclude transitions out of them or their succeeding states. We prune away

deadlocking states as well as their predecessor states in Algorithm III.3 in an iterative manner until

the structure converges. If a state is deadlocking, then the edit decisions leading to it should not

be considered for synthesizing edit functions. Thus, we also prune away its preceding states. This

process is similar to calculating the supremal controllable sublanguage in non-blocking supervisory

control under full observation [23], by viewing the deadlocking states as undesired marked states

and f A
yz, f A

wy transitions as uncontrollable while f A
zz , f A

zw transitions as controllable. Algorithm III.3

also terminates after a finite number of steps when no more states are to be removed, then it returns

the AES after it is called in Algorithm III.1. The following theorem reveals the correctness and

completeness of the AES, namely, the AES embeds all ND-privately safe edit functions satisfying

the edit constraints.

Theorem III.5.1. Given system G, a nondeterministic edit function fne is ND-privately safe if and

only if fne ∈ AES .

Proof. (⇒) By contradiction. Suppose fne � ϕndpri but fne /∈ AES . Then there should exist a TPO

T such that fne ∈ T . This means that ∃s ∈ P[L(G)], ∃r ∈ Run(T), s.t. Pe(r) = s, lg(r) ∈ fne(s) but

r /∈ Run(AES). Thus, there are some states or transitions in r that are not in the AES. However, this

implies that the union of T and the AES is strictly larger than the AES, which contradicts with the

definition that the AES is the largest TPO satisfying the edit constraints.

(⇐) Suppose that fne ∈ AES , then ∀s ∈ P[L(G)], ∀s̃ ∈ fne(s), ∃r ∈Run(T), s.t. Pe(r) = s∧ lg(r) =

s̃. Since ∀y = (xd, x f) ∈ r, xd ∈ Xobsd, we know fne(s) ⊆ L(Obsd(G)) = Lsa f e and fne is privately

safe.

Remark III.5.1. We briefly analyze the complexity of constructing the AES. First, we evaluate the

complexity of Algorithm III.2. Here we define Qent
Z = {z ∈QA

Z : ∃y ∈QA
Y ,∃eo ∈ Eo s.t. fyz(y,eo) = z} as

the Z-states which can be reached from certain Y-states by fyz transitions. Given system G with |X|

states, its observer Obs(G) has at most |Xobs| = 2|X| states. Since QA
Y ⊆ Xobsd ×Xobs, |QA

Y | ≤ |Xobs|
2.

Also, each Y-state can execute at most |Eo| observable events in line 1, so |Qent
Z | ≤ |Eo||Xobs|

2.

47

In DoDFS , we apply procedure EXT END− Z at each Qent
Z in line 8 to determine edit choices

step by step. This procedure creates at most (|Xobs| − 1) states for each Qent
Z state. Thus, |QA

Z | ≤

|Eo||Xobs|
2(|Xobs| − 1 + 1) = |Eo||Xobs|

3. Furthermore, every Z-state may lead to a W-state by fzw

transition, so |QA
W | ≤ |Eo||Xobs|

3. Thus, the state space complexity of AES pre is O(|Xobs|
3). The

complexity of Algorithm III.3 is quadratic in the size of AES pre as one state is visited at most once

in an iteration. Overall, the space complexity of constructing the AES is polynomial in terms of

|Xobs|.

Remark III.5.2. It can be shown by induction on the length of strings that if the AES is not empty,

then all edit functions embedded in it are admissible. This is a consequence of the pruning process

in Algorithm 3 and we omit the proof here. By the same argument, no admissible edit function

exists if the AES is empty. Hence, we will rule out this situation in the remainder of the chapter.

Example III.5.1. We show an All Edit Structure. The observer of system G is depicted in Fig-

ure V.2. All events {a,b,c,d} are observable and observer state 4 is solely composed of secret

states from G. The desired observer Obsd(G) is simply without state 4 and we omit its figure here.

To begin with, we follow the first two steps of Algorithm III.1 and build AES pre in Figure III.2,

where squared states, oval states and diamond states stand for Y , Z and W states, respectively.

The game is initialized at y0 = (0,0) where the dummy player executes b and d since both

events are defined at state 0 in Obs(G). If b is executed, Z-state ((0,0),b) is reached, where the

edit function plays and there are two edit decisions. At ((0,0),b), if the edit function chooses to

erase b, then the system plays at W-state ((0,0),b→ ε); if the edit function inserts d, then Z-state

((1,0),b) is reached since δd(0,d) = 1. If a is also inserted after d is inserted, then another Z-state

((2,0),b) is reached. Then at Z-state ((2,0),b), if the edit function decides to stop inserting, W-state

((2,0),b) is reached. When the system plays, say, at ((0,0),b→ ε), b occurs and leads to Y-state

(0,4), since b is not observed by the intruder and the first state component is not updated. When

the system plays at ((2,0),b), b occurs and leads to Y-state (3,4) since δd(2,b) = 3, δ(0,b) = 4. The

whole structure is interpreted in a similar way.

In this example, the edit constraints prohibit the edit function from erasing b at ((1,0),b) and

48

((3,2),b), also φy((0,1)) = φy((1,2)) = φy((2,3)) = 0. We use dashed lines in Figure III.2 to indicate

the transitions and states that violate edit constraints. Those transitions/states are not in AESpre.

In Figure III.2, there are some deadlocking W-states such as ((0,0),d → ε), ((1,0),a→ ε) and

((2,2),b→ ε) and no deadlocking Z-states exist. Then we prune away those deadlocking states by

Algorithm III.3 and finally obtain the AES in Figure III.3.

0

1 2 3

4

d
a b

c

b

Figure III.1: The observer in Example III.5.1

(0,0)(0,0),b

(0,0),
b→ ℰ

b

(1,0),b

(2,0),b

(3,0),b

(3,4)

𝑏 c

b → ℰ
(3,0),
b→ ℰ

b

𝜀

b
(2,4)

b → ℰ

(0,4)

b → ℰ

(0,0),d
d 𝜀 (0,0)

,d (1,1)
d → ℰ

(1,1),a

(1,1)
,a

a → ℰ

(2,2)

(2,2),b(2,2),
b

a

b

(3,3)
b

(3,3),c

c
(3,3)
,c

c
b → ℰ

(3,3),
c→ ℰ

c → ℰ

c

(3,2)

(3,2),b

b

b → ℰ

(1,1),
a→ ℰ

(1,2)

a
(0,0),	
d→ ℰ

(0,1)ℰ
d

(2,2),	
b→ ℰ

(2,3)
b

b → ℰ (2,0),
b→ ℰ

(2,0)
,b

b

c

d

a

b

d

a

ℰ

ℰ

Figure III.2: AES pre in Example III.5.1 (without dashed states and transitions)

Then it is natural to ask when there exists an ND-PP-enforcing edit function in the given AES.

The key point is every unsafe string shares the same edited behavior with some safe string. How-

ever, the state information in the AES is insufficient to verify this condition as a Y-state may appear

in multiple runs and different strings may be edited to the same one by different edit decisions.

Therefore additional analysis is necessary, which is discussed in the next section.

49

(0,0)(0,0),b

(0,0),
b→ ℰ

b

(1,0),b

(2,0),b

(3,0),b

(3,4)

𝑏 c

b → ℰ
(3,0),
b→ ℰ

b

𝜀

b
(2,4) (0,4)

b → ℰ

(0,0),d
d 𝜀 (0,0)

,d (1,1)

(1,1),a

(1,1)
,a

(2,2)

(2,2),b(2,2),
b

a

b

(3,3)
b

(3,3),c

c
(3,3)
,c

c

(3,3),
c→ ℰ

c → ℰ

c

(3,2)

(3,2),b

b

ℰ

b → ℰ (2,0),
b→ ℰ

(2,0)
,b

b

c

d

a

b

d

a

ℰ

ℰ

Figure III.3: The AES in Example III.5.1

III.6 Synthesis of Nondeterministic Privately Safe and Publicly

Safe Edit Functions

In this section, we synthesize nondeterministic PP-enforcing edit functions. From Theorem III.5.1,

any edit function embedded in the AES is ND-privately safe so we only need to consider ND-public

safety. Unfortunately, we cannot only consider the state information in the AES for synthesis.

Thus, we introduce the reachability tree of the AES, which is the “unfolded” AES with respect to

unedited strings and edited strings. Then we have access to strings before/after edit and develop

a synthesis algorithm based on the tree. The terminology of reachability tree is from the Petri net

literature; it is employed here as it is well-suited to the construction procedure in this chapter.

III.6.1 Reachability Tree of the AES

The reachability tree of the AES is denoted by

AES t = (QAT
Y ,QAT

Z ,QAT
W ,Eo,Er

o,Θ, f AT
yz , f AT

zz , f AT
zw , f AT

wy ,y0)

and constructed in Algorithm III.4. It is built by unfolding the state space in a breadth-first search

manner in line 2. The AESt is an acyclic structure by construction, so all its runs are finite. The

50

transitions in the AESt are defined in a similar way as in the AES. Within DoDFS , if an examined

state is visited again, we stop searching on the current path and know there is a cycle in the AES.

Since the number of states in the AES is finite, DoBFS stops after a finite number of steps when

all states in the AES are examined. In line 3, we call Algorithm III.3 and achieve two goals: (1)

all leaf states in the AESt are Y-states; (2) no deadlocking states exist in the AESt. We denote by

QAT
Y−lea f the leaf states in the AESt. Since states are completely split in terms of state and string

components, there is a unique run from the root y0 to every state in the AESt. Finally, we label

each Y-state in the tree with both the edited string and the original string in line 6.

Algorithm III.4: Build labeled reachability tree of the AES
Input : AES
Output : AES t

1 QAT
Y = {y0}, QAT

Z = QAT
W = ∅;

2 AES pre
t = DoBFS (y0,AES);

3 call Algorithm III.3, Prune(AES pre
t);

4 for Y-state y in the remaining structure do
5 specify the run r from y0 to y in the remaining structure;
6 use (l(r),Pe(r)) to label y;
7 return AES t;

Procedure: DoBFS (q,AES)
8 while there exists state q in AES that has not been examined do
9 evaluate all transitions defined at q in AES ;

10 if no transition is defined at q in AES then
11 terminate searching on the current path from q;
12 else
13 for a transition defined at q in AES do
14 add state q′ reached by the transition as a new state in the tree AES pre

t ;
15 if q′ equals a state on the path from y0 to q then
16 stop searching from on the current path q′;

Edit functions embedded in the AESt only make finite insertion choices. However, this does

not compromise the performance of edit functions in opacity enforcement. We use Example III.5.1

to illustrate this point. If we build the reachability tree for this example, the cycle between Z-

states ((3,0),b) and ((2,0),b) is broken and the transition c is removed. Thus, if we consider edit

functions embedded in the AESt, then string b can only be mapped to dab. However, all strings

51

of the form da(bc)nb where n ≥ 1 reach state 2. It does not really matter whether b is edited to a

string containing a loop or not.

In the following discussion, we let the edit function make the same decisions every time a Z-

state in the AES is reached. Hence, if there exists a cycle in the AES, the edit function does not

change decisions whenever the cycle is visited. Therefore no information is lost if we consider

edit functions embedded in the AESt and repeat the same edit decisions when two states share the

same state components.

Remark III.6.1. We briefly analyze the space complexity of the AESt. First we have the notion

Q = max{|QAT
Y |, |Q

AT
Z |, |Q

AT
W |}. The number of nodes reached by the initial state in one step transition

in the AES is at most Q. Also each node may have at most Q succeeding nodes by one step

transition in the AES. Thus, the number of states reached by y0 by two transitions is at most Q2.

The same process goes on and we know that there may be at most |QAT
Y |+ |Q

AT
Z |+ |Q

AT
W | states

between the root y0 and any leaf state in the tree. Thus, the number of states in the AESt is at most

in the order of Q|Q
AT
Y |+|Q

AT
Z |+|Q

AT
W |+1. From last section’s discussion, we know that the complexities

of Q and |QAT
Y |+ |Q

AT
Z |+ |Q

AT
W | are both of the order (O(|Xobs|

3)). Therefore, the complexity of the

AESt does not exceed O(|Xobs|
3(|Xobs|

3+1)).

In the AESt, some Y-states are labeled by an unsafe string and a safe string while others by two

safe strings. We partition Y-states as:

QAT1
Y = {((xd, x f), (t, s)) ∈ QAT

Y : t ∈ Lsa f e, s ∈ Lunsa f e}

QAT2
Y = {((xd, x f), (t, s)) ∈ QAT

Y : t, s ∈ Lsa f e}

Next we define the last preserved QAT2
Y state as: QAT2

Y−lp = {y2
t ∈ QAT2

Y : ∃y1
t ∈ QAT1

Y ,∃θ1, · · ·θm ∈

Θ,∃eo ∈ Eo, s.t. f AT
wy (f AT

zw (f AT
zz · · · (f AT

zz (f AT
yz (y1

t ,eo), θ1), · · ·θm−1), θm),eo) = y2
t }, which serves as the

“boundary” between QAT1
Y and QAT2

Y states.

Define QAT1
Y−lea f = QAT

Y−lea f ∩QAT1
Y and QAT2

Y−lea f = QAT
Y−lea f ∩QAT2

Y as leaf states that contain and

52

do not contain unsafe string components. Besides, we define QAT2
Y−l = QAT2

Y−lea f ∪QAT2
Y−lp. Then we

define

Lu
lea f = {l ∈ Lunsa f e : ∃y1

lea f = ((xd, x f), (t, s)) ∈ QAT1
Y−lea f , s.t. s = l}

Ls
lea f = {l ∈ Lsa f e : ∃y2

lea f = ((xd, x f), (t, s)) ∈ QAT2
Y−lea f , s.t. s = l}

Ls
lp = {l ∈ Lsa f e : ∃y2

lp = ((xd, x f), (t, s)) ∈ QAT2
Y−lp, s.t. s = l}

as the set of unsafe strings appearing in QAT1
Y−lea f , the set of safe strings appearing in QAT2

Y−lea f and

QAT2
Y−lp, respectively. We further group some Y-states by their components of original strings (safe

or unsafe):

QAT1
Y−lea f (l) = {((xd, x f), (t, s)) ∈ QAT1

Y−lea f : s = l ∈ Lu
lea f }

QAT2
Y−lea f (l) = {((xd, x f), (t, s)) ∈ QAT2

Y−lea f : s = l ∈ Ls
lea f }

QAT2
Y−lp(l) = {((xd, x f), (t, s)) ∈ QAT2

Y−lp : s = l ∈ Ls
lp}

QAT2
Y−l (l) = {((xd, x f), (t, s)) ∈ QAT2

Y−l : s = l ∈ Ls
lp∪Ls

lea f }

In this chapter, we assume that events are inserted or erased one by one, so observed one at a

time. Also both the observer’s language and the safe language are prefix-closed. Therefore, if a

string s is mapped to string l, then all the prefixes of s are mapped to some prefixes of string l. This

result is formally stated as follows:

Lemma III.6.1. Consider a nondeterministic edit function fne, if s, t ∈ P[L(G)] satisfy fe(s)⊆ fe(t),

then ∀s′ � s, ∃t′ � t, s.t. fe(s′) ⊆ fe(t′).

This lemma has the implication that we can restrict attention to unsafe strings in Lu
lea f since all

the other unsafe strings in the AESt, being their prefixes, can be mapped to safe strings if strings in

Lu
lea f can be mapped to safe strings. Besides, we can focus on safe strings in Ls

lp∪Ls
lea f for opacity

enforcement as the other safe strings in the AESt are their prefixes. This result further justifies why

we build the reachability tree AESt: since the AESt explicitly contains unsafe strings in some of

53

its leaf states, we can evaluate those leaf states and determine how those unsafe strings are edited.

III.6.2 Synthesis Algorithm

We proceed to synthesize nondeterministic PP-enforcing edit functions based on the AESt. We will

give a condition for verifying the existence of nondeterministic PP-enforcing edit functions and

show that the verification problem is closely related with the synthesis problem. Then we will solve

these two problems together. To begin with, we derive the following result from Theorem III.5.1,

which shows that ND-private safety is always ensured by the AES.

Lemma III.6.2. If the AES is not empty, then there exists a privately safe nondeterministic edit

function.

The ND-public safety case is more challenging and we start by evaluating the unsafe strings

in the leaf states of the AESt. For each unsafe string li ∈ Lu
lea f , we define the set of PP-enforcing

candidate states as S pp(li) = {((xd, x f), (t, li)) ∈ QAT1
Y−lea f (li) : ∃y2 = ((x′d, x

′
f), (t′, l′)) ∈ QAT2

Y−l , s.t. t �

t′}. That is, we search through AESt to find ((x′d, x
′
f), (t′, l′)) where some prefix of the edited string

t′ is just t while the unedited unsafe string is also li. So if the edit function reaches those states, it

will be publicly safe by definition. On the other hand, if S pp(li) = ∅ for some li, then we know we

can not find a safe string that shares the same edited behavior with unsafe string li, in which case

no nondeterministic PP-enforcing edit function exists.

Besides, we call states in QAT1
Y−lea f (li)\S pp(li) bad candidate states since the edited behaviors of

li indicated in those states can not be matched with edited behaviors of any other safe string. Thus,

if those states are reached by the edit function, ND-public safety can not be achieved. Those states

are expected to be avoided when synthesizing nondeterministic PP-enforcing edit functions.

Based on those concepts, we propose Algorithm III.5 for synthesis. First we group the leaf

states by their unsafe string components li ∈ Lu
lea f in line 2. Each state in QAT1

Y−lea f (li) corresponds

to a potentially different edited behavior of li. Then we search through the AESt to find bad

candidate states and remove them from the AESt. As the removal of those states may bring in

54

Algorithm III.5: Synthesize PP-enforcing edit functions
Input : AES t
Output: Nondeterministic PP-enforcing edit function

1 for li ∈ Lu
lea f do

2 collect QAT1
Y−lea f (li), suppose QAT1

Y−lea f (li) has mi elements;
3 for j = 1 : mi do
4 consider y1

j(li) = ((xd, x f), (t, li)) ∈ QAT1
Y−lea f (li);

5 if @y2(l′) = ((x′d, x
′
f), (t′, l′)) ∈ QAT2

Y−l , s.t. t � t′ then
6 remove y1

j(li) from the AESt

7 AES r
t = Prune(AES t);

8 for li ∈ Lu
lea f do

9 denote by QAT1
Y−re (QAT2

Y−re) the Y-states in AES r
t with (without) unsafe string components,

then define S r
pp(li) = {((xd, x f), (t, li)) ∈ QAT1

Y−lea f (li)∩QAT1
Y−re : ∃y2 = ((x′d, x

′
f), (t′, l′)) ∈

QAT2
Y−l ∩QAT2

Y−re, s.t. t � t′};
10 if S r

pp(li) = ∅ then
11 nondeterministic PP-enforcing edit functions do not exist, terminate the algorithm;
12 return the nondeterministic edit function embedded in AES r

t ;

deadlocking states, we apply Algorithm III.3 to resolve deadlocking states in line 7 and denote the

remaining structure by AES r
t . In this process, some states in S pp(li) may also be removed. We use

QAT1
Y−re and QAT2

Y−re to denote the Y-states with and without unsafe string components in the AESr
t ,

respectively. For unsafe string li, we define S r
pp(li) in line 9 as the set of PP-enforcing candidate

states remaining in the AESr
t after pruning. We claim that if S r

pp(li) is not empty for each li, then

there exist nondeterministic PP-enforcing edit functions in the AESt. Finally we may extract the

edit function by following transitions in the AESr
t

Theorem III.6.1. Given the AESr
t , nondeterministic PP-enforcing edit functions exist if and only

if ∀li ∈ Lu
lea f , S r

pp(li) 6= ∅.

Proof. (⇒) By contradiction. Suppose ∃ fne ∈ AES r
t , fne � ϕndpp and ∃li ∈ Lu

lea f , s.t. S r
pp(li) = ∅.

Then we can find s ∈ fne(li), s.t. @t ∈ Lsa f e and s ∈ fne(t), which contradicts fne � ϕndpp.

(⇐) Given the AESt and the AESr
t , it is sufficient to consider unsafe strings in Lu

lea f and safe

strings in Ls
lea f ∪ Ls

lp for synthesis. Besides, we only need to check ND-public safety since the

AES is not empty. If ∀li ∈ Lu
lea f , S r

pp(li) 6= ∅, we know ∀y1(li) = ((xd, x f), (t, li)) ∈ S r
pp(li), ∃y2 =

55

((x′d, x
′
f), (t′, l′)) ∈ QAT2

Y−l ∩QAT2
Y−re, s.t. t � t′. Since fne ∈ AES r

t , fne ∈ AES also holds. We let all the

players make the same decisions specified at states in the AESr
t whenever a state is reached again

in the AES. So we can design an edit function fne such that fne(li) = {t : ∃y1(li) = ((xd, x f), (t, li)) ∈

S r
pp(li)} and t′ ∈ fne(l′). Since t � t′, we know fne(li) ⊆ Lsa f e, ∀li ∈ Lu

lea f . Therefore, fne is both

privately safe and publicly safe.

Theorem III.6.1 gives a necessary and sufficient condition for verifying the existence of non-

deterministic PP-enforcing edit functions. It also shows the completeness and soundness of Algo-

rithm III.5, so the synthesis of nondeterministic PP-enforcing edit functions is reduced to finding

S r
pp(li) for every li ∈ Lu

lea f in the AESr
t . When running Algorithm III.5, we collect all edited strings

appearing in states from S r
pp(li) and include them as the potential edited behavior of li ∈ Lu

lea f . In

that way, the synthesized nondeterministic edit function is “most permissive” in the sense that it

preserves all feasible edit decisions to achieve ND-private safety and ND-public safety.

Remark III.6.2. Compared with deterministic edit functions, nondeterministic edit functions per-

form better at enforcing public safety. The intuition is as follows. Consider the case when a

safe string is edited to multiple (safe) strings which may be the edited behaviors of several unsafe

strings. In the deterministic case, every string is mapped to a unique one so in the above case,

we are only able to guarantee that one unsafe string shares the same edited behavior with a safe

string, hence, public safety is violated. Thus, a deterministic PP-enforcing edit function may not

always exist. However, if nondeterminism is allowed, as long as we find an edited string whose

edited behaviors correspond to the edited behaviors of (potentially multiple) unsafe strings, then

nondeterministic public safety is satisfied. The above argument further justifies why we explore

nondeterministic edit functions, given that both deterministic and nondeterministic edit functions

may enforce private safety.

Example III.6.1. Let the observer in Figure III.4 be with Eo = {a,b,c,d}, states 7 and 8 are com-

posed of only secret states from the system. We omit the steps of building the AES and the AESt,

instead we directly show the AESt in Figure III.5. While we only label leaf states with strings here

56

and QAT1
Y−lea f states are marked in red (those states contain an unsafe string label). Due to the edit

constraints (not explicitly stated here), the edit function can only make decisions and reach states

as indicated in the AESt. We can see that ((6,8), (ab,b)) shares the first string component with

((6,4), (ab,dabc)), ((4,7), (dabc,abc)) shares the first string component with ((4,4), (dabc,dabc)).

Also unsafe string b is edited to ab, unsafe string abc is edited to dabc, safe string dabc is edited

to dabc or ab.

It is interesting to notice that if we let the edit function be deterministic, i.e., every string is

mapped to a unique one, then no PP-enforcing edit functions exist here since unsafe strings b and

abc can not share the same modified behavior with safe string dabc simultaneously. However, a

nondeterministic PP-enforcing edit function exists by Algorithm III.5. No states are removed from

the AESt and we have S r
pp(b) = {((6,4), (ab,dabc)}, S r

pp(abc) = {((4,4), (dabc,dabc)}. So the edit

function inserts a before event b occurs from state 0; inserts d before event a occurs from state 0;

inserts nothing before event d occurs from state 0 or just erases that d. This example reveals that

introducing nondeterminism to edit functions may contribute to opacity enforcement by allowing

more plausible denial for the intruder’s inference, compared with the deterministic counterpart.

0

2

8

a b

a c

1
d

3
c

4

5 b 6 7
b

Figure III.4: The observer in Example III.6.1

III.7 Conclusion

We discussed opacity enforcement by edit functions in nondeterministic settings. Based on the

knowledge of the adversary, we defined private safety and public safety of nondeterministic edit

functions and then investigated their enforcement. This chapter is the first to apply nondetermin-

istic edit functions to enforce opacity. The concept of edit constraint was introduced to restrict the

57

(0,0)

(0,0),b

(2,2),b

(3,3)(3,3),c

(2,2)

(4,4),(dabc,dabc)
b

d

a

b

(0,0),d

(2,5),b

(0,0),d

(1,1)
d

(1,1),a

(1,1),a
a

(2,2)
,b

bc

(3,3),
c

𝜀

𝜀

a

(5,0),a

(6,8),(ab,b)

b

(4,7),(dabc,abc)

b

c

(0,0),
d→ 𝜀

(0,1)
d

(5,2),b

(6,3) (6,3),c

(5,2)

(6,4),(ab,dabc)b

(0,1),a

(0,1),a
a

(5,2)
,𝑏

b c c → 𝜀

𝜀

a

(6,3),
c→ 𝜀

c

(0,0),a
d
(1,0),a
𝜀
(1,0),a

(2,5)
a

𝜀
(2,5),b

(3,6),(dab,ab)
c
(3,6),c (3,6),c

𝜀

(5,0),b

c

𝜀

a

b

𝜀𝜀

𝜀

d → 𝜀

Figure III.5: The AESt in Example III.6.1

choices of edit functions. Then we reformulated the problem as a three-player game and proposed

the All Edit Structure (AES), which embedded all privately safe edit functions satisfying edit con-

straints. Finally, an algorithm was presented for synthesizing nondeterministic PP-enforcing edit

functions based on the reachability tree of the AES.

58

CHAPTER IV

Enforcing Opacity by Insertion Functions

under Multiple Energy Constraints

IV.1 Introduction

In this chapter, we formulate the problem of opacity enforcement by insertion functions under mul-

tiple quantitative constraints. Notice that here the insertion function only has partial observation

of the system, i.e., it is only aware of the occurrence of observable events. The insertion functions

are should enforce opacity while ensure that each type of resource of the system never drops below

zero in the enforcement process, for all possible system behaviors (worst-case analysis). Then we

transfer this problem to a two-player game between the insertion function and the environment,

then solve it by constructing a discrete game structure called Energy Insertion Structure (EIS). The

insertion function plays by inserting events, which consumes resources, while the system plays by

executing events, which consumes or gains resources. Therefore,the system’s resource levels dy-

namically change. EIS includes winning strategies of the insertion function under both qualitative

and quantitative requirements.

Among the insertion strategies obtained from EIS , we are particularly interested in those that

work in an “economical” way. In other words, there exists a upper bound for the rate of insertion

cost so that only a reasonable amount of resource is consumed per step of insertion. Then we

slightly modify EIS and formulate the bounded insertion cost rate problem as a multidimensional

59

mean payoff game. This problem is solved by leveraging a novel approach called hyperplane

separation technique proposed in [34].

Our work in this chapter is inspired by some recent works on quantitative two-player games

in theoretical computer science, specially, energy game and mean payoff game. Those two games

are closely related and thoroughly discussed in the literature; see, e.g., [4, 43]. In some cases,

one player only has imperfect information about the game and thus is not informed of some

moves of its opponent. Under imperfect information, energy games are decidable and known

to be Ackermann-complete [87] with fixed amount of initial energy, while mean payoff games are

in general undecidable [40]. Another generalization is multidimensional game [33], where both

players have several quantitative objectives. The above works also inspired the work [90], which

studies supervisory control for DES using energy games with partial observation. We adapt some

methodology from [90] to the different problem of opacity enforcement by obfuscation. To the

best of our knowledge, this chapter is the first to investigate opacity enforcement under multiple

quantitative objectives.

This chapter is organized as follows. Section IV.2 describes our system model. Section IV.3

formulates the energy constrained opacity enforcement problem. Section IV.4 introduces the En-

ergy Insertion Structure (EIS). Section IV.5 applies EIS to solve the energy constrained opacity

enforcement problem. Section IV.6 formulates the bounded cost rate insertion strategy synthesis

problem and solves it by the hyperplane separation technique. Finally, Section IV.7 concludes the

chapter.

IV.2 System Model

We consider opacity and its enforcement in a quantitative DES modeled as a weighted finite-state

automaton:

G = (X,E, f , x0,ω)

60

where X is the finite set of states, E is the finite set of events, f : X × E → X is the partial state

transition function, and x0 ∈ X is the unique initial state. We denote by XS ⊂ X the set of secret

states that should remain opaque. The transition function is extended to domain X × E∗ in the

standard manner [23] and we still denote it by f . The language generated by G is defined as

L(G) = {s ∈ E∗ : f (x0, s)!} where ! means “is defined”. We write s ≤ u if string s is a prefix of

string u; also s < u if s ≤ u and s 6= u. We also denote by t ∈ s if string t is a substring of s. The

multidimensional function ω : E → Zk assigns a k-dimensional weight vector to each event in E

where k is a (fixed) positive integer and each entry reflects the gain or cost of a certain type of

resource associated with the occurrence of an event. We denote by ω(i)(e) the i-th component of

ω(e) for e ∈ E. In this work, we let
−→
0 be the k-dimensional vector of all 0s. The function ω is

additive, whose domain is extended to E∗ by letting ω(ε) =
−→
0 , ω(se) = ω(s) +ω(e) where s ∈ E∗,

e ∈ E.

Given an automaton G, for x1, x2 ∈ X and e ∈ E, we denote by x1
e
−→ x2 if f (x1,e) = x2. A run in

G is a sequence of alternating states and events: r = x1
e1
−−→ x2

e2
−−→ ·· ·

en−1
−−−→ xn and it may be infinitely

long. We denote the set of runs in G by Run(G) and x ∈ r if x is a state in r. We call a run initial if

its initial state is the initial state of the system. Besides, a run forms a cycle if x1 = xn and a cycle

is simple if ∀i, j ∈ {1,2, · · ·n−1}, i 6= j⇒ xi 6= x j. If r is a cyclic run, there is a corresponding loop

e1e2 · · ·en−1 starting from and ending in x1. We further call the loop simple if the cycle is simple.

We refer to the set of quantitative resources associated with the operation of the system as

energy. The system is granted with initial energy vector v0 ∈ Nk to support its operation. Given

s = e0e1 · · ·en−1 ∈ L(G), the energy level of the system after s is V(s) = v0 +

n−1∑
i=0

ω(ei). We also

denote by V (i)(s) the i-th component of the k-dimensional vector V(s). Then we make the following

important assumption that the energy level vector should always be nonnegative in every dimension

and we will explain it in the next section.

Assumption IV.2.1. ∀s ∈ L(G), V(s) ≥
−→
0 .

System G is partially observable, i.e., E = Eo∪Euo, where Eo is the set of observable events and

Euo is the set of unobservable events. Given t = t′e ∈ E∗, its natural projection under P : E∗→ E∗o

61

is recursively defined as P(t) = P(t′)P(e) where t′ ∈ E∗ and e ∈ E. The projection of an event is

P(e) = e if e ∈ Eo and P(e) = ε if e ∈ Euo∪{ε}, where ε is the empty string.

Given a set of states q ⊆ X, the unobservable reach, denoted by UR(q), is defined as: UR(q) =

{x′ ∈ X : ∃x ∈ q,∃s ∈ E∗uo, s.t. f (x, s) = x′}. Besides, the observable reach under observable event

eo, denoted by Nexteo(q), is defined as: Nexteo(q) = {x′ ∈ X : ∃x ∈ q,eo ∈ Eo, s.t. f (x,eo) = x′}.

Then the observer of G is: Obs(G) = (Xobs,Eo, δ, xobs,0,ωobs) where Xobs ⊆ 2X is the state space;

δ : Xobs × Eo → Xobs is the transition function and ∀xobs ∈ Xobs, δ(xobs,eo) = UR(Nexteo(xobs));

xobs,0 = UR(x0) is the initial state; ωobs : Eo → Zk is the same as ω over the restricted domain

Eo. An observer state can be viewed as a current state estimate (or state estimate in short) of the

system, which is a subset of X.

IV.3 Problem Formulation

In this section, we first review the notion of current-state opacity (Definition II.3.1) and the mech-

anism of insertion functions. Then we formulate the energy constrained opacity enforcement prob-

lem.

A system is current-state opaque if for every string reaching a secret state, there exists another

string reaching a non-secret state which shares the same projection, thereby providing deniability

of the secret. CSO can be verified by building the observer and checking whether an observer state

contains solely secret states. Based on CSO, we define the safe language, which is the prefix-

closure of the projected non-secret strings: Lsa f e = P[L(G)] \ {[P[L(G)] \P(LNS)] E∗o}. We also

define the unsafe language Lunsa f e = P[L(G)] \Lsa f e.

Given system G and its observer Obs(G), the desired observer Obsd(G) = (Xd,Eo, δd, xd,0)

is obtained by removing all observer states composed of only secret states and then taking the

accessible part, see [119]. Here Xd ⊆ Xobs is the state space, Eo is the set observable events,

δd : Xd ×Eo → Xd is the same transition function as δ with restricted domain Xd ×Eo, xd,0 is the

initial state and we omit the weight function in Obsd(G). It is easy to see that Obsd(G) generates

62

exactly Lsa f e.

Opacity may not always hold and an insertion function may be used to enforce opacity. The

insertion function is an interface between the output of the system and the external environment in-

cluding the intruder. It may insert fictitious events into the output stream of the system to obfuscate

the intruder; see [54, 119] for more details of this concept.

Definition IV.3.1 (Insertion Function). An insertion function is defined as: fi : E∗o × Eo → E∗oEo

such that for l ∈ E∗o and eo ∈ Eo, fi(l,eo) = sIeo where sI ∈ E∗o.

By definition, the insertion function inserts sI before the next observable event eo given that

l has been observed, then it outputs sIeo to the outside environment. Besides, sI may be ε when

nothing is inserted. We also define a string-based version of fi and with a slight abuse of notation,

denote it by fi as well (it will be clear from the argument which form of fi is being considered):

fi(ε, ε) = ε and fi(ε, leo) = fi(ε, l) fi(l,eo).

An insertion function inserts strings based on the observable behavior of the system. However,

unobservable events do occur between two observable events. As a convention, when we need to

discuss unprojected strings with insertion, we assume without loss of generality that the inserted

string is placed right before the next observable event in an unprojected string.

Convention IV.3.1. Given s = ξ0e0 · · ·ξn−1en−1ξn ∈ L(G) where ∀ j ≤ n, ξ j ∈ E∗uo and e j ∈ Eo, if

fi(e0e1 · · ·e j−1,e j) = θ je j where ∀ j ≤ n, θ j ∈ E∗o, then s is mapped to s′ = ξ0θ0e0 · · ·ξ jθie j · · ·ξnθnen

where P(s′) ∈ P[L(G)].

It is possible that s′ /∈ L(G), but what matters is that P(s′) ∈ P[L(G)], since the intruder only

observes strings in P[L(G)] for its inference of secrets.

An insertion function fi may be encoded as an input/output (I/O) automaton IA = (Xia,Eo,E+
o , δia, fia, xia,0).

Here Xia is the state space; Eo is the set of input events; E+
o = E∗oEo is the set of output strings;

δia : Xia ×Eo→ Xia is the transition function; fia : Xia ×Eo→ E+
o is the output function such that

fia(xia,eo) = sIeo where δia(xia,eo)! and δia(xia,0, s) = xia, if fI(s,eo) = sIeo; xia,0 ∈ Xia is the initial

state.

63

Next, we present the notion of private safety from [119], which indicates that every string in

P[L(G)] is mapped to a safe string under certain insertion choices.

Definition IV.3.2 (Private Safety). Given system G with projection P and safe language Lsa f e,

insertion function fi is privately safe if ∀s ∈ P[L(G)], fi(s) ∈ Lsa f e.

We assume that event insertion always costs energy and define the insertion weight function

ωin : Eo → (Z \N+)k, which assigns a k-dimensional weight vector to each inserted event, where

all components are non positive. Function ωin is additive and its domain is extended to E∗o by

letting ωin(ε) =
−→
0 and ωin(seo) = ωin(s) +ωin(eo) for s ∈ E∗o, eo ∈ Eo. Equivalently, we may use

−ωin to stand for insertion costs. Without loss of generality, we assume that ωin(eo) 6=
−→
0 for all

eo ∈ Eo, i.e., insertion of an observable event always costs energy. The i-th component of ωin(eo)

for eo ∈ Eo is denoted by ω(i)
in (eo).

Next, we define the system’s energy level after insertion as Vm : L(G) × E∗ → Zk. Given

s = ξ0e0ξ1e1 · · ·ξn−1en−1ξn ∈ L(G) where ∀ j ≤ n, ξ j ∈ E∗uo and e j ∈ Eo, suppose s is mapped to

s′ = ξ0θ0e0ξ1θ1e1 · · ·ξn−1θn−1en−1ξn by Convention IV.3.1 by some insertion function; then we let

Vm(s, s′) = V(s) +

n−1∑
j=0

ωin(θ j). We will denote s′ by s fi if s is mapped to s′ by fi. Hence, Vm(s, s fi)

is the energy level of the system after string s is modified by insertion function fi.

Given a non-opaque system G with initial energy vector v0, we aim to design an insertion

function fi which enforces opacity but never forces the system’s energy level to drop below zero

in the component-wise sense. That is, the insertion function is constrained by the energy level

of the system, i.e., ∀s ∈ P[L(G)], Vm(s, s fi) ≥
−→
0 . Since insertion always costs energy, we made

Assumption IV.2.1 earlier to ensure some energy margins for the insertion function. We now

formally formulate the energy constrained opacity enforcement problem.

Problem IV.3.1. Given system G with initial energy vector v0, the energy constrained opacity

enforcement problem is to find an insertion function fi such that: (1) fi is privately safe; (2)

∀s ∈ L(G), Vm(s, s fi) ≥
−→
0 .

Due to partial observation of the system, we need to estimate both current states and energy

64

levels of the system so that insertion functions may make proper decisions to enforce opacity.

This issue will be discussed in the following sections. Also notice that if there exists an insertion

function solving Problem IV.3.1 with initial energy vector v0, then the same insertion function

also solves the problem with any initial energy vector v′0 ≥ v0. We will see later that this simple

monotonicity property allows us to define a finite structure to embed solutions to Problem IV.3.1.

IV.4 Energy Insertion Structure

In this section we define energy information states and a bipartite game structure Energy Insertion

Structure (EIS). By introducing these concepts, we transform Problem IV.3.1 into a reachability

game with perfect information between the insertion functions and environment. Then we solve

Problem IV.3.1 on EIS .

IV.4.1 Building the Verifier

We first review the concept of verifier proposed in [54]. It serves as an intermediate structure for

constructing EIS here and encodes potentially feasible insertion choices for opacity enforcement

without considering the energy constraints.

Given system G, in order to build the verifier, we first introduce the feasible observer [54].

The feasible observer is obtained by adding self-loops for all observable events at each state in

observer Obs(G). Formally, it is defined as Obs f (G) = (X f ,Eo, δ,δsl, x
f
0) where X f = Xobs is the

state space; Eo is the set of observable events; δ is the same transition function as in the observer;

δsl : X f ×Eo→ X f is the self-loop transition function such that ∀x f ∈ X f , ∀eo ∈ Eo, δsl(x f ,eo) = x f ;

x f
0 = xobs,0 is the initial state. Thus at a state x f , there may be two transitions labeled by eo defined:

(i) the normal transition δ representing the occurrence of an observable event and (ii) transition δsl

representing potential event insertion.

Then we synchronize desired observer Obsd(G) and feasible observer Obs f (G) by the veri-

fier parallel composition [54] to obtain the verifier, defined as Gv = (Xv,Eo, δvd, δvs, xv0). Here

65

Xv ⊆ Xd ×X f is the state space, Eo is the set of observable events; δvs : Xv×Eo→ Xv is the transi-

tion function corresponding to normal transitions in both Obsd(G) and Obs f (G); δvd : Xv×Eo→ Xv

is the transition function corresponding to normal transitions in Obsd(G) and added self-loop tran-

sitions in Obs f (G); xv0 = (xobs,0, xobs,0) is the initial state. A state xv = (xd, x f) ∈ Xv has two compo-

nents: the left one is the intruder’s estimate and the right one is the (true) system’s estimate. They

are usually different as insertion functions obfuscate the intruder by manipulating its observation.

Definition IV.4.1 (Verifier parallel composition). The verifier parallel composition ‖v is a special

parallel composition between Obsd(G) and Obs f (G): Gv = Obsd(G)‖vObs f (G) where transition

functions δvs and δvd are defined for synchronization: δvs((xd, x f),e) := (δd(xd,e), δ(x f ,e)) and

δvd((xd, x f),e) := (δd(xd,e), δsl(x f ,e)) = (δd(xd,e), x f).

The transition function δvs captures actual event occurrences, thus both the intruder’s and the

system’s estimates change with such transitions; while δvd captures event insertions, thus only

the intruder’s estimate is updated. This is consistent with the mechanism of the insertion function,

which is an interface between the output of the system and the outside environment. It only changes

the intruder’s observations but not the system’s behavior. Here xd ∈ Xd and xd /∈ 2XS by definition,

so what the intruder observes does not reveal the system’s secrets. For completeness, we define

δvd(xv, ε) = xv for all xv ∈ Xv.

IV.4.2 Energy Information States

We aim to synthesize an insertion function which enforces opacity and maintains nonnegative en-

ergy level in all dimensions. To achieve these goals, we integrate the information of state estimates

and energy levels into properly defined Energy Information States. Here we let |·| be the cardinality

of a set.

Definition IV.4.2 (Energy Information State). Given system G, an energy information state is:

qe = ((xd, x f), [v(1), · · ·v(|x f |)]) ∈ Xv×Zk×|X|

66

Let Ests(qe) and Leve(qe) denote the state estimate and energy level components, respectively;

hence, qe = (Ests(qe),Leve(qe)).

We denote by QE the set of energy information states, which track the system’s estimate xd ,

the intruder’s estimate x f and the energy levels of the system at each state in x f . Besides, each

qe ∈ QE induces a belief function hqe : Ests(qe)→ Zk. Specifically, for qe ∈ QE where Ests(qe) =

(xd, x f) ∈ Xv, we have Leve(qe) = {hqe(x) : x ∈ x f }. We usually put Leve(qe) in a column vector’s

form: [hqe(x1), · · ·hqe(x|x f |)]. By convention, elements in Leve(qe) are placed in an increasing order

w.r.t. state names in x f . Our definition is inspired by the belief function in [40] and the observation

function in [90]. In the following discussion, we use h(i)
qe (x) to denote the i-th element in hqe(x).

To compare energy level vectors, we extend the measure ≤ from scalars to vectors as follows:

given two vectors v1 = [v1(1),v1(2), · · · ,v1(k)], v2 = [v2(1),v2(2), · · · ,v2(k)] ∈ Zk, we denote by v1 ≤

v2 (respectively v1 ≥ v2) if ∀1 ≤ i ≤ k,v1(i) ≤ v2(i) (respectively v1(i) ≥ v2(i)). Then we further

extend it to a measure on matrices: given two matrices m1 = [v1,v2, · · · ,vn],m2 = [v′1,v
′
2, · · · ,v

′
n] ∈

Zk×n, we denote by m1 ≤ m2 if vi ≤ v′i for all 1 ≤ i ≤ n.

An energy information state qe ∈ QE is energy safe (or simply safe) if ∀x ∈ x f where Ests(qe) =

(xd, x f), hqe(x)≥
−→
0 . We define an order4 over the set of energy information states: for qe

1,q
e
2 ∈QE ,

qe
14 qe

2 if Estes(qe
1) = Ests(qe

2) and Leve(qe
1)≤ Leve(qe

2). We also say that qe
2 subsumes qe

1 if qe
14 qe

2,

i.e., qe
1 and qe

2 share the same verifier state component but the energy level vector of qe
2 is no less

than that of qe
1 at every possible current state in Ests(qe

2). By Dickson’s lemma (see [69]), the

order ≤ on Nm is a well-quasi-ordering for any m ∈ N. Besides, the Cartesian product of two

well-quasi-ordered sets S ⊆ Nm and T ⊆ Nm by using ≤ is also a well-quasi ordered set [80], i.e.,

(s, t) ≤ (s′, t′)⇔ [s ≤ s′]∧ [t ≤ t′] for s, s′ ∈ S , t, t′ ∈ T . Thus we can further argue that 4 on safe

energy information states is also a well-quasi ordering, i.e., for any infinite sequence of states

qe
1,q

e
2 · · · ∈ QE , ∃i, j ∈ N, s.t. i < j and qe

i 4 qe
j.

We call qae ∈ QE×Eo an augmented energy information state, i.e., qae is an energy information

state augmented with an observable event. Let IE(qae), E(qae) denote the energy information state

and observable event components of qae, respectively. So we have qae = (IE(qae),E(qae)). With a

67

slight abuse of notation, we use hqae to stand for hqe where qe = IE(qae). Besides, qae is (energy)

safe if ∀x ∈ x f where Ests(IE(qae)) = (xd, x f), hqae(x) ≥
−→
0 . Then we define the following two

concepts to characterize the update of energy and augmented energy information states with event

insertion and execution.

For eo ∈ Eo, we say that qae ∈ QE ×Eo is an eo-execution successor of qe ∈ QE if IE(qae) = qe

and qae = (qe,eo). In other words, we simply combine an energy information state qe with an

observable event eo to create an augmented energy information state qae.

For θ ∈ E∗o, eo ∈ Eo, we say qe ∈ QE is a (θ,eo)-insertion successor of qae = (IE(qae),eo) ∈

QE × Eo if: (i) Ests(qe) = (x′d, x′ f) = δvs(δvd((xd, x f), θ),eo) where Ests(IE(qae)) = (xd, x f); (ii)

∀x′ ∈ x′ f , ∀1 ≤ i ≤ k, h(i)
qe (x′) = min

ξ∈E∗uo
{h(i)

qae(x)+ω(i)(eo)+ω(i)(ξ)+ω(i)
in (θ) : ∃x ∈ x f , s.t. f (x,eoξ) = x′}.

Intuitively, a (θ,eo)-insertion successor indicates the update of state estimates and energy levels

after string θ is inserted before observable event eo. Since event insertion does not change the

system’s estimate, the system’s estimate gets updated after eo occurs. While the intruder’s estimate

is updated with both θ and eo. For a current state x′ in the system’s estimate x′ f , it may be

reached through strings starting from some state(s) x in x f and those strings may have different

unobservable strings as suffixes. In this case, hqe(x′) indicates the minimum energy level at every

dimension at x′ with the occurrence of eo and unobservable string ξ from some x ∈ x f s.t. x′ =

f (x,eoξ). We also take into account of the cost of inserted string θ (potentially ε). Intuitively, if the

worst case energy level is nonnegative, then the system’s energy level is always nonnegative.

An insertion-execution sequence is a sequence of alternating states, inserted strings and exe-

cuted observable events of the form: ρ = ye
1

e1
−−→ ze

1
θ1
−−→ ye

2
e2
−−→ ze

2 · · ·
en−1
−−−→ ze

n−1
θn−1
−−−→ ye

n where ∀i ≤ n,

θi ∈ E∗o, ei ∈ Eo, ye
i ∈ QE , ze

i ∈ QE × Eo, ze
i is an ei-execution successor of ye

i and ye
i+1 is a (θi,ei)-

insertion successor of ze
i . Such a sequence may be finite or infinite.

Lemma IV.4.1. Given an insertion-execution sequence ρ = ye
1

e1
−−→ ze

1
θ1
−−→ ye

2
e2
−−→ ze

2 · · ·
en−1
−−−→ ze

n−1
θn−1
−−−→

ye
n, let Ests(ye

i) = (xd
i , x

f
i) for all 1 ≤ i < n and let l = e1e2 · · ·en−1 and l′ = θ1e1 · · ·θn−1en−1, then

δd(xd
1, l
′) = xd

n in Obsd(G) and δ(x f
1 , l) = x f

n in Obs f (G).

Proof. By induction. First, consider ye
1

e1
−−→ ze

1
θ1
−−→ ye

2. Since ze
1 is an e1-execution successor of ye

1 and

68

ye
2 is an (θ1,e1)-insertion successor of ze

1, then (xd
2, x

f
2) = δvs(δvd((xd

1, x
f
2), θ1),e1). So δd(xd

1, θ1e1) =

xd
2 and δ(x f

1 ,e1) = x f
2 by definitions of δvd and δvs in the verifier parallel composition.

Then suppose the result holds for ye
1

e1
−−→ ze

1
θ1
−−→ ye

2
e2
−−→ ze

2 · · ·
ek−1
−−−→ ze

k−1
θk−1
−−−→ ye

k. When n = k + 1,

by a similar argument, we can show that δd(xd
k , θkek) = xd

k+1 and δ(x f
k ,ek) = x f

k+1. Combining the

inductive hypothesis, we know δd(xd
1, θ1e1 · · ·θkek) = xd

k+1 and δ(x f
1 ,e1 · · ·ek) = x f

k+1, so the result

also holds at k + 1, which completes the whole proof.

Lemma IV.4.1 illustrates that in an insertion-execution sequence, the “original string” e1e2 · · ·en−1

before insertion is defined in the feasible observer and the string θ1e1 · · ·θn−1en−1 after insertion is

defined in the desired observer. This result further implies that the string after insertion is always a

safe one, so private safety is not violated following the insertion choices in any insertion-execution

sequence.

The following theorem shows that the belief function always returns the minimum energy level

at every dimension by strings that have the same observation and reach some state in the estimate,

under certain insertion choices. By convention, we denote by ρ j = ye
1

e1
−−→ ze

1
θ1
−−→ ye

2
e2
−−→ ze

2 · · ·
e j−1
−−−→

ze
j−1

θ j−1
−−−→ ye

j for 1 ≤ j ≤ n the j-th prefix of ρ. Also we let V (i)
m (s, s′) denote the i-th component of

the k-dimensional vector Vm(s, s′).

Theorem IV.4.1. Given an insertion-execution sequence ρ= ye
1

e1
−−→ ze

1
θ1
−−→ ye

2
e2
−−→ ze

2 · · ·
en−1
−−−→ ze

n−1
θn−1
−−−→

ye
n, let Ests(ye

i) = (xd
i , x

f
i) for all 1 ≤ i ≤ n and let l = e1 · · ·en−1, then ∀x ∈ x f

n , ∀1 ≤ i ≤ k, h(i)
ye

n
(x) =

min
s
{V (i)

m (s, s′) : ∃x′ ∈ x f
1 , s ∈ P−1(l), s.t. f (x′, s) = x, δd(xd

1,P(s′)) = xd
n} where string s is mapped to

s′ following Convention IV.3.1 under insertions indicated by ρ.

Proof. Proof by induction on the length of l. Suppose s = ξ1e1 · · ·ξn−1en−1ξn, P(s) = l = e1 · · ·en

and s is mapped to s′ = ξ1θ1e1 · · ·ξnθnenξn+1 where θ j ∈ E∗o and P(s′) = θ1e1 · · ·θnen = l′. Let

l j = e1 · · ·e j and l′j = θ1e1 · · ·θ je j be the j-th prefix of l and l′, respectively. Let l0 = ε and s j =

ξ1e1 · · ·ξ j−1e jξ j+1, with s0 = ε. We also suppose δvd(δvs(· · ·δvs(δvd((xd
1, x

f
1), θ1),e1) · · · ,e j−1), θ j) =

(x′dj , x
′ f
j) and δvs((x′dj , x

′ f
j),e j) = (xd

j+1, x
f
j+1) in Gv.

Induction Basis: When n = 0, nothing is inserted and the result holds immediately.

69

Inductive Hypothesis: Assume that the result holds when n = j−1, i.e., for ρ j.

Induction Step: Consider n = j.

First, δvd((xd
j , x

f
j), θ j) = (x′dj+1, x

′ f
j+1) and δvs(δvd((x′dj+1, x

′ f
j+1), θ j),e j) = (xd

j+1, x
f
j+1) hold by the

definition of the verifier.

Then in ρ j+1, ze
j is an e j-execution successor of ye

j and ye
j+1 is a (θ j,e j)-insertion successor

of ze
j. So by definition, ∀x′ ∈ x f

j+1, ∀1 ≤ i ≤ j, h(i)
ye

j+1
(x′) = min

ξ j+1∈E∗uo
{h(i)

ye
j
(x) +ω(i)(e j) +ω(i)(ξ j+1) +

ω(i)
in (θ j) : ∃x ∈ x f

j , s.t. f (x,e jξ j+1) = x′}. From the inductive hypothesis, we have h(i)
ye

j+1
(x′) =

min
s j−1

min
ξ j+1∈E∗uo

{V (i)
m (s j−1, s′j−1) +ω(i)(e j) +ω(i)(ξ j+1) +ω(i)

in (θ j) : ∃x′′ ∈ x f
1 , x ∈ x f

j , s.t. f (x′′, s j−1) = x,

δd(xd
1,P(s′j−1)) = xd

j , f (x,e jξ j+1) = x′}. That is, h(i)
ye

j+1
(x′) = min

s j
{V (i)

m (s j, s′j) :∃x′′ ∈ x f
1 , s j ∈ P−1(l j), s.t.

f (x′′, s j) = x′, δd(xd
1,P(s′j)) = xd

j+1}. Thus the result holds when n = j, completing the proof.

Given an energy information state ye ∈ QE , for every x ∈ x f where Ests(ye) = (xd, x f), each

component of hye(x) may be due to different strings with the same projection but different un-

observable substrings. This can be interpreted as follows: since the insertion function does not

know the occurrence of unobservable strings, it should be “conservative” and take into account the

system’s worst case energy level in every dimension.

IV.4.3 Building the Energy Insertion Structure

We now define the Energy Insertion Structure (EIS) by construction in Algorithm IV.1. EIS just

reflects the update of energy and augmented energy information states with event insertion and

execution. It is a bipartite structure of the form: (QE
Y ,Q

E
Z ,Eo, f E

yz , f E
zy ,y

e
0,v0,QE

l) where QE
Y ⊆ QE

is the set of energy information states; QE
Z ⊆ QE ×Eo is the set of augmented energy information

states; f E
yz : QE

Y ×Eo→QE
Z is the transition function from QE

Y states to QE
Z states; f E

zy : QE
Z ×E∗o→QE

Y

is the transition function from QE
Z states to QE

Y states; Eo is the set of observable events; ye
0 ∈ QE

Y

is the initial state; v0 ∈ Nk is the initial energy vector; and QE
l is the set of leaf states. We call a

QE
Y state as Y-state and a QE

Z state as Z-state. A Z-state ze is deadlocking if @θ ∈ E∗o, s.t. f E
zy(ze, θ)!.

Deadlocking Z-states are undesirable and will be pruned away in constructing EIS .

70

Algorithm IV.1: Construction of EIS
Input : Obs(G), Gv, v0
Output : EIS = (QE

Y ,Q
E
Z ,E, f E

yz , f E
zy ,Eo,ye

0,v0,QE
l)

1 QE
Y = {ye

0} where Ests(ye
0) = (xobs,0, xobs,0), ∀x ∈ xobs,0, ∀i ≤ k,

h(i)
ye

0
(x) = min

ξ∈E∗uo
{V (i)(ξ) : f (x0, ξ) = x}, and QF

Z = ∅, QE
l = ∅;

2 EIS pre = DoDFS (ye
0,Obs(G),Gv);

3 EIS = Prune(EIS pre);
Procedure: DoDFS (ye,Obs(G),Gv)

4 for eo ∈ Eo, s.t. δ(x f ,eo)! in Obs(G), where Ests(ye) = xv = (xd, x f) do
5 let ze be an eo-execution successor of ye;

6 add transition ye eo
−−→ ze to f E

yz;
7 if ze /∈ ZE then
8 QE

Z = QE
Z ∪{z

e};
9 for θ ∈ E∗o, s.t. ∃x̃v = δvd(xv, θ), δvs(x̃v,eo)! do

10 let y′e be an (θ,eo)-insertion successor of ze;

11 add transition ze θ
−→ y′e to f E

zy;
12 if y′e /∈ QE

Y then
13 if y′e is energy safe then
14 QE

Y = QE
Y ∪{y

′e};

15 if there exists a run from ye
0: re = ye

0
e0
−−→ ze

0
θ0
−−→ ye

1 · · ·
en−1
−−−→ ze

n−1
θn−1
−−−→ y′e

and ∃ j ≤ n, s.t. ye
j 4 y′e then

16 let S ub(y′e) = ye
j, stop searching from y′e, QE

l = QE
l ∪{y

′e};

17 else
18 DoDFS (y′e,Obs(G),Gv);
19 if y′e is not energy safe then
20 QE

Y = QE
Y ∪{y

′e}, QE
l = QE

l ∪{y
′e}, stop searching from y′e, ignore all

θ′ s.t. θ < θ′;

Procedure: Prune(EIS pre)
21 for ze ∈ QE

Z that is deadlocking do
22 remove ze and all ye ∈ QE

Y , s.t. f E
yz(ye,eo) = ze for some eo ∈ Eo;

23 take the accessible part of the structure;

Algorithm IV.1 builds the state space of EIS recursively by adding (θ,eo)-insertion successors

and eo-execution successors into the structure. In general, EIS represents a game with full obser-

vation between the insertion function and the environment. The environment plays at Y-states and

the insertion function plays at Z-states. The procedure DoDFS builds the state space of the EIS

in a depth-first search like process. The game is initiated from ye
0 where the system plays first by

71

executing observable events. The state estimate component of ye
0 contains the initial state of the

observer and the initial state of the desired observer. For the energy level matrix Leve(ye
0), we track

the minimum energy level of the system by unobservable strings. In Line 4, the environment plays

by executing eo if eo is defined from the system’s estimate x f in observer Obs(G). Then we create

an eo-execution successor ze and define a f E
yz transition out of ye. Note that no string has been

inserted yet and we create ze simply to indicate that some string may be inserted before observable

event eo.

After that, the games goes on and it is the insertion function’s turn to play by inserting stings.

In Line 9, θ is a logically feasible insertion choice if a δvd transition labeled with θ is defined

in the verifier and the δvd transition is followed by a δvs transition labeled by some observable

event eo. That means θ can be inserted before eo in the logical sense, without considering the

energy constraint. So we create a (θ,eo)-insertion successor y′e and define a f E
zy transition out of ze,

indicating that θ has been inserted before eo. Since the initial energy vector is fixed and insertion

is costly, there may only be a finite set of finite-length inserted strings that lead to nonnegative

energy levels. When y′e is safe, i.e., θ is inserted before eo without violating the energy constraint,

we proceed to check the condition in Line 16. If there exists an initial run re ending in y′e and

ye
j ∈ re for some j < n, s.t. y′e subsumes ye

j, then we know the state estimate Ests(ye
j) is reached

again, i.e., Ests(ye
j) = Ests(y′e). Let Ests(ye

j) = (xd
j , x

f
j), then we know there exists a simple cycle

x f
j

e j
−→ x f

j+1 · · ·
en−1
−−−→ x f

j in the feasible observer Obs f (G) (also in the observer Obs(G)). There

also exists a cycle starting from and ending in xd
j in the desired observer, whose corresponding

loop is l = θ je j · · ·θn−1en−1. It is also the case that ∀x ∈ xd
j , ∀s ∈ P−1(l), s.t. f (x, s) = x, we have

V(s)+

n−1∑
i= j

θi ≥
−→
0 . In words, even after considering the cost of inserting θ j, · · · , θn−1 into the original

string, the system’s energy level vector is still nondecreasing in every dimension.

Even though the structure may be further expanded, we terminate searching from y′e and define

S ub(y′e) to store the state subsumed by y′e. Note that y′e and ye
j share the same state estimate while

the energy level at y′e is no less than that of ye
j in component-wise sense. No matter what decision is

made by the environment at y′e, if the insertion function makes the same decision at the succeeding

72

state of y′e as it does at the succeeding state of ye
j, then all the new succeeding states created in this

manner are energy safe as well. This is consistent with the monotonicity property discussed at the

end of Section V.3. Later on, we will see this observation ensures finiteness of EIS .

If no cycle is detected, we call DoDFS again in Line 18 to continue searching until no more

states are added to the structure. On the other hand, if y′e is not energy safe, system’s energy level

is below 0 at some dimension. Then we stop searching from y′e in Line 20 and discard longer

string θ′ where θ < θ′. Since ωin(θ′) < ωin(θ) ≤ 0, insertion of θ′ would inevitably drop the energy

level vector below 0 at certain dimension.

DoDFS may result in some deadlocking Z-states where no insertion can be made. We denote

by EIS pre the intermediate structure obtained after DoDFS , then remove deadlocking Z-states and

their preceding Y-states recursively in Procedure Prune since the observable events from Y-states

can not be blocked from happening. More reasoning can be found in [119], where a similar prun-

ing process is conducted. Prune works like calculating supremal controllable sublanguage [23]

by viewing the environment’s winning states as undesirable, f E
yz transitions as uncontrollable, f E

zy

transitions as controllable, and Y-states as marked. Next, we show Algorithm IV.1 stops after a

finite number of steps and returns a finite structure, namely, EIS .

Theorem IV.4.2. The state space of EIS is finite.

Proof. By contradiction. Suppose that EIS is infinite. The number of outgoing transitions at each

state is finite since Eo is finite and there are only a finite number of insertion choices defined at a

Z-state due to energy constraints. Then by König’s lemma (see, e.g., [69]), there exists an infinite

run ye
1

e1
−−→ ze

1
θ1
−−→ ye

2
e2
−−→ ze

2
θ2
−−→ ye

3 · · · in EIS . From Algorithm IV.1, every state in the run is energy

safe and it is never the case that ∃i < j, s.t. ye
i 4 ye

j. However, this contradicts the well-quasi

ordering 4 on safe energy information states.

The size of EIS is bounded by Ackermann function [92] following a similar augment as in [40],

which also presented a procedure of “unfolding” the game graph until some simple cycles are

formed or the energy level drops below 0. Since Ackermann functions are not primitive recur-

73

sive, the complexity of EIS exceedsits counterpart without energy constraint, i.e., All Insertion

Structure in [54].

In EIS , we call a leaf state ye ∈ QE
l as a good leaf state if ye is energy safe, otherwise, we call

it a bad leaf state. We denote the sets of good and bad leaf states by QE
lg and QE

lb, respectively.

In order to win the game and solve Problem IV.3.1, the insertion function should make decisions

such that only good leaf states are reached. The environment just does the opposite to prevent

the insertion function from winning, thus the game on EIS is a zero sum reachability game. We

elaborate the reasoning and discuss both players’ strategies in the next section.

Example IV.4.1. Let the automaton G in Figure IV.1 be with observable events Eo = {a,b,c,d},

unobservable events Euo = {u1,u2,u3,u4,u5,u6,u7}, and secret states XS = {x7, x8, x10}. The system

is granted with initial energy v0 = [9,9]T where T stands for the transpose of a matrix. The

weight function in this example is 2-dimensional and the weight vector of each event is show

in Figure IV.1. Besides, the insertion weight function ωin is defined as follows: ωin(a) = [−3,−6]T ,

ωin(b) = [−1,−3]T , ωin(c) = [−2,−2]T , ωin(d) = [−3,−1]T .

The observer is shown in Figure IV.2 with states: A = {x0, x3, x4, x9}, B = {x1}, C = {x2}, D =

{x5, x6}, E = {x7, x8} and F = {x10}. The system is not current state opaque due to states E and F,

thus we apply insertion functions to enforce opacity. The desired observer Obsd(G) is obtained

by removing E and F from Obs(G) and taking the accessible part, while the feasible observer

Obs f (G) is obtained by adding self-loops for every event in Eo at every state in Obs(G); their

figures are omitted here due to space limitations. Next we build the verifier Gv in Figure IV.3

following Definition IV.4.1, where dashed lines indicate δvd transitions and solid lines indicate δvs

transitions. Gv contains all potentially feasible insertion choices.

Then we follow Algorithm IV.1 to build EIS in Figure IV.4, where square states stand for Y-

states while oval states stand for Z-states. In DoDFS , the game is initiated from ye
0 where the envi-

ronment plays first: it can execute events a, b or c. For example, if b is executed, then b-execution

successor ze
0 = (ye

0,b) is reached where it is the insertion function’s turn to play; while if a is in-

serted, then a-insertion successor ye
1 is reached. We have Ests(ye

1) = (C,D) as δvd((A,A),a) = (B,A)

74

and δvs((B,A),b) = (C,D) in Gv. We also have h(1)
ye

1
(x5) = min{h(1)

ye
0

(x3) +ω(1)(b) +ω(1)
in (a),h(1)

ye
0

(x4) +

ω(1)(b) +ω(1)
in (a)} = 5, h(2)

ye
1

(x5) = min{h(2)
ye

0
(x3) +ω(2)(b) +ω(2)

in (a),h(2)
ye

0
(x4) +ω(2)(b) +ω(2)

in (a)} = 3,

h(1)
ye

1
(x6) = min{h(1)

ye
1

(x5) + ω(1)(u4),h(1)
ye

1
(x5) + ω(1)(u5)} = 0 and h(2)

ye
1

(x6) = min{h(2)
ye

1
(x5) + ω(2)(u4),

h(2)
ye

1
(x5) +ω(2)(u5)} = 0. Hence we have ye

1 = {(C,D),

5, 0

3, 0

}. The other states are calculated

similarly.

The first component of h(2)
ye

1
(x5) = [5,3]T comes from string u2u3b and insertion of a, while the

second component comes from string u1u3b and insertion of a. Since the insertion function does

not know whether u2u3b or u1u3b occurs when it observes b, it has to estimate the worst case

energy level, which is consistent with Theorem V.4.1. We list the energy and augmented energy

information states obtained from DoDFS in Table IV.1.

After DoDFS , we find ye
2 4 ye

4, ye
21 4 ye

19 and ye
23 4 ye

19, so we stop searching from ye
4, ye

21 and

ye
23. Besides, ye

5, ye
7, ye

8, ye
9, ye

10, ye
11, ye

12, ye
16, ye

17, ye
18, ye

24 are not energy safe so they are the bad

leaf states. Furthermore, Z-state ze
5 is deadlocking since no transition is defined out of it. Then we

prune away ze
5 and its preceding Y-state ye

13 in process Prune of Algorithm IV.1. The final EIS is

shown in Figure IV.4, where the dashed lines represent deleted states in the pruning process from

EIS pre to EIS .

0

1 2 3

4

d
a b

c

b

Figure IV.1: System G with secret states x7, x8, x10

75

ye
0 = {{A,A},

[
9, 10, 7, 7
9, 10, 9, 8

]
} ze

0 = {{A,A},
[
9, 10, 7, 7
9, 10, 9, 8

]
,b}

ye
1 = {(C,D),

[
5, 0
3, 0

]
} ze

1 = {(C,D),
[
5, 0
3, 0

]
,c}

ye
2 = {(B,E),

[
2, 1
2, 1

]
} ze

2 = {(B,E),
[
2, 1
2, 1

]
,c}

ye
3 = {(B,E),

[
3, 2
1, 0

]
} ze

3 = {(B,E),
[
1, 0
3, 2

]
,c}

ye
4 = {(B,E),

[
2, 1
2, 1

]
} ye

5 = {(B,E),
[
4, 3
0, −1

]
}

ye
6 = {(B,E),

[
1, 0
3, 2

]
} ze

4 = {(B,E),
[
3, 2
1, 0

]
,c}

ye
7 = {(B,E),

[
0, −1
4, 3

]
} ye

8 = {(B,E),
[
−4, −5
0, −1

]
}

ye
9 = {(B,E),

[
−2, −3
−2, −3

]
} ye

10 = {(B,E),
[
−3, −4
−1, −2

]
}

ye
11 = {(B,E),

[
−1, −2
−3, −4

]
} ye

12 = {(C,D),
[

2, −3
−2, −5

]
}

ye
13 = {(D,D),

[
8, 9
3, 6

]
} ze

5 = {(D,D),
[
8, 9
3, 6

]
,c}

ze
6 = {(A,A),

[
9, 10, 7, 7
9, 10, 9, 8

]
,c} ye

14 = {(B,F),
[
5
1

]
}

ye
15 = {(B,F),

[
3
3

]
} ye

16 = {(B,F),
[

2
−4

]
}

ye
17 = {(B,F),

[
0
−2

]
} ye

18 = {(B,F),
[
−2
0

]
}

ze
7 = {(A,A),

[
9, 10, 7, 7
9, 10, 9, 8

]
,a} ye

19 = {(B,B),
[
1
1

]
}

ze
8 = {(B,B),

[
1
1

]
,b} ye

20 = {(C,C),
[
2
1

]
}

ze
9 = {(C,C),

[
2
1

]
,c} ye

21 = {(B,B),
[
4
3

]
}

ze
10 = {(B,B),

[
1
1

]
,d} ye

22 = {(C,C),
[
1
2

]
}

ze
11 = {(C,C),

[
1
2

]
,c} ye

23 = {(B,B),
[
3
4

]
}

ye
24 = {(B,E),

[
0, −1
−4, −5

]
}

Table IV.1: Energy and augmented energy information states

IV.5 Solve the Constrained Opacity Enforcement Problem

In this section, we discuss the strategies for both players to win the game on the Energy Insertion

Structure. We also show that the insertion function’s winning strategies in EIS lead to sound

76

A

B C

D E

F

𝑣" =
9
9

a, %&
%&

b, '
"

c, (
(

d, "
'

b, '
" c, (

(c, (
(

c, (
(

Figure IV.2: The observer Obs(G)

(A,A)

(B,F)

(C,A)

(B,A)

(C,D)

a

(B,E)

(B,B)

(C,C) (C,B)b,d

(C,F)

c

(C,E)

c
b,d

b,d

c

a

b

c c

c b,d

b
(D,D)

(B,C)

c b,d

b
(D,A)

c
(B,D)

b,d

c
b

d

c

Figure IV.3: The verifier Gv where dashed transitions are δvd transitions and solid transitions are
δvs transitions

{ab} {𝜖}

{𝜖}

{a}

c
b

b

a

c

{𝜖}

{b}

c

c

{𝜖}

{𝜖}

𝑦$%

𝑧$%𝑧'%

{cd}

{ad}
𝑦(%

𝑧(%

{d}
c c

c

{d} {b}
z*+

c

{𝜖}{𝜖}

{adcd}

{abcd},
{adcb}

{abcb}

𝑦,%

𝑦-%

𝑧-%

𝑦'%
𝑧,%

d
𝑦(,% 𝑦(-%

𝑧.%

𝑦(.%𝑦(*%

𝑦('% 𝑦(/% 𝑦(0%

𝑧/%

𝑦(1%

𝑧0%

𝑦,$%

𝑧1%

𝑦,(%

𝑧($%

𝑦,,%

𝑧((%

𝑦,-%

{abc}

{cb}

{bcb}
{dcb}, {bcd}

𝑦.%
{b} {d}

𝑦*% 𝑦/%

𝑦0% 𝑦1%

𝑦($% 𝑦((%

{dcd}

𝑦,*%

Figure IV.4: Energy Insertion Structure (without dashed states)

77

solutions to Problem IV.3.1.

By definition and Theorem IV.4.2, the runs in EIS are finite insertion-execution sequences

discussed in last section; we denote the set of runs in EIS by Run(EIS). Given re ∈ Run(EIS),

we denote by ye ∈ re and ze ∈ re if ye (respectively ze) is a Y-state (respectively Z-state) in re. Let

LastY(re) and LastZ(re) be the last Y-state and Z-state of re, respectively, and denote by Runy(EIS)

(respectively Runz(EIS)) the set of runs whose last states are Y-states (respectively Z-states).

Given an initial run re = ye
0

e0
−−→ ze

0
θ0
−−→ ye

1
e1
−−→ ·· ·ye

n−1
en−1
−−−→ ze

n−1
θn−1
−−−→ ye

n, the edit projection Pe :

Run(EIS)→ P[L(G)] is defined such that Pe(re) = e0e1 · · ·en−1. So Pe just returns the original

string before any insertion takes place. For re ∈ Run(EIS), we denote it by re(l) if Pe(re) = l.

Besides, we call θ0e0θ1e1 · · ·θn−1en−1 as the generated string of re and denote it by lg(re). In other

words, lg(re) is the string after insertion. By Lemma IV.4.1, we know that δd(xobs,0, lg(re)) is

defined in Obsd(G), so lg(re) ∈ L(Obsd(G)) = Lsa f e, i.e., l is mapped to a safe string by insertion

decisions in EIS .

Then we define strategies for both players in EIS . The insertion function’s strategy (insertion

strategy) is defined as πin : Runz(EIS)→ E∗o and the environment’s strategy as πen : Runy(EIS)→

Eo. When it is a player’s turn to play, it selects a transition according to its strategies. Since the

insertion function does not know the occurrence of unobservable events and makes decisions from

its observations, its strategy is called observation based. Denote the set of all insertion strategies

by Πin and the set of all environment’s strategies by Πen. From an insertion strategy, we know

exactly the decisions of an insertion function, so from now on, we use “insertion strategy” and

“insertion function” interchangeably.

A strategy πi ∈Πi for player i ∈ {in,en} in EIS is called information state based if the decisions

only depend on the current energy (augmented energy) information state. In other words, πi ∈ Πi

is information state based if πi(r f) = πi(r′f) for all r f ,r′f ∈ Run(EIS) such that Last(r f) = Last(r′f).

Therefore, information state based strategies for the insertion function and the environment can be

represented as πin : QE
Z → E∗o and πen : QE

Y → Eo, respectively. We also call such strategies as or

positional. From results in [4,43], positional strategies are sufficient to win a reachability game so

78

we assume both players’ strategies are positional in the rest of this section.

If the insertion function plays πin while the environment plays πen from the initial state ye
0, then

a unique initial run, denoted by re(πin,πen), is generated. We also define Run(πin,ye) = {ye e1
−−→ ze

1
θ1
−−→

ye
2 · · ·

en−1
−−−→ ze

n−1
θn−1
−−−→ ye

n : ∀i < n, θi = πin(ye e1
−−→ ze

1
θ1
−−→ ye

2 · · ·y
e
i

ei
−→ ze

i)} as the set of runs starting from

ye and consistent with insertion strategy πin, i.e., insertion decisions in the run are specified by

πin. The set of runs consistent with an environment’s strategy πen are defined analogously and we

denote it by Run(ye,πen).

In EIS , we say that the insertion function wins the game if only good leaf states are reached

while the environment wins if bad leaf states are reached. Thus they play a finite-duration zero

sum reachability game. By defining the energy information states, we have constructed a game

under full observation on EIS . Therefore, either the supervisor or the environment has a winning

strategy [4]. Formally speaking, πin ∈ Πin is winning from ye if ∀re ∈ Run(πin,ye), LastY(re) ∈

QE
l ⇒ LastY(re) ∈ QE

lg, i.e., πin is a winning strategy for the insertion function if all runs consistent

with it end in a good leaf state. In other words, the insertion function wins if private safety is

satisfied and the energy level of the system is never below 0 in every dimension.

We define the insertion function’s winning region Winin in EIS as the set of states where it

has a strategy to reach a good leaf state no matter what strategy the environment plays. This is a

commonly used concept in graph game theory, see., e.g. [4]. Then we present Algorithm IV.2 to

compute Winin.

Algorithm IV.2: Compute the insertion function’s winning region
Input : EIS
Output: Winin

1 Remove all bad leaf states from EIS ;
2 while ∃ze ∈ QF

Z , s.t. ze is deadlocking do
3 Remove ze and all ye ∈ QE

Y , s.t. f E
yz(ye,eo) = ze for some eo ∈ Eo;

4 Take the accessible part of the structure;
5 Denote the remaining structure by EIS w;
6 if EIS w is not empty then
7 Return all states in EIS w;
8 else
9 Return ∅;

79

In Algorithm IV.2, we prune away bad leaf states and calculate the winning region for the

insertion function in an iterative manner. We first remove all bad leaf states from EIS . If the

removal of bad leaf states results in some deadlocking Z-states, then we know all transitions from

such Z-states lead to bad leaf states, where the insertion function loses the game for sure. Thus

we further remove those Z-states and their preceding Y-states where the environment has a way

to reach the deadlocking Z-states. This process continues until no more states are removed and

we denote the resulting structure by EIS w. The pruning process works in a fixed-point iteration

manner.

By definition, a privately safe insertion function (strategy) maps every string in P[L(G)] to

a safe one. However, state pruning may remove all potentially feasible insertion choices for a

particular string if they all violate energy constraints. Thus we need to guarantee that all strings in

P[L(G)] are still preserved in the EIS w after the pruning. Before proving that assertion, we present

the following result from Algorithm 13.

Lemma IV.5.1. If Winin 6= ∅, then @l ∈ P[L(G)], s.t. ∀πin ∈ Πin, ∀re ∈ Run(πin,ye
0) with Pe(re) = l,

LastY(re) ∈ QE
lb in EIS .

Proof. By contradiction. We assume ∃l ∈ P[L(G)], s.t. ∀πin ∈Πin, ∀re ∈Run(πin,ye
0) with Pe(re) = l

in EIS , LastY(re) ∈ QE
lb. Suppose l = e0 · · ·en−1 and re = ye

0
e1
−−→ ze

1
θ1
−−→ ye

2 · · ·
en−1
−−−→ ze

n−1
θn−1
−−−→ ye

n ∈

Run(πin,ye
0). Since LastY(re) ∈ QE

lb for all re ∈ Run(πin,ye
0) with Pe(re) = l and for all πin ∈ Πin,

the last Y-state of every run in Run(πin,ye
0) with Pe(re) = l is pruned in Algorithm 13. Then we

know the last Z-state of each run in Run(πin,ye
0) with Pe(re) = l becomes deadlocking so those ze

n−1

are pruned away as well. Furthermore, we also prune away all preceding Y-states ye
n−1 such that

f E
yz(ye

n−1,en−1) = ze
n−1 by Algorithm 13. This process continues until the initial state ye

0 is pruned,

so EIS w is empty.

Next we slightly modify EIS w: merge ye with S ub(ye) by letting all transitions going to ye

reach S ub(ye) instead, if S ub(ye) is defined in Algorithm IV.1. Intuitively, we assume that the

game continues at the leaf states of EIS w, which share the same state estimate with the state

80

subsumed by them. We denote the resulting structure by EIS m and extend concepts of runs and

both players’ strategies to EIS m. Besides, the energy level vector at each leaf state is no less than

that at the state subsumed by the same leaf state. Thus if every leaf state is energy safe, the system’s

energy level vector never contains a negative element when their state estimates are reached again.

In this way the game is extend to be infinite-duration without loss of generality since we assume

that the insertion functions in EIS w always make the same decisions at each leaf state and the state

subsumed by it. Therefore, if the insertion function plays according to strategies in EIS m, it will

always maintain the system’s energy level above 0 in each dimension. This is an implication of the

monotonicity of energy game discussed at the end of Section V.3 : if the insertion function wins

the game from some state with energy level vector v ∈ Nk, it also wins the game from the same

state with any energy level vector v′ ≥ v.

In EIS m, we define the unmodified language Lu(EIS m) = {l ∈ P[L(G)] :∃re ∈Run(EIS m), s.t. Pe(re) =

l}, where Run(EIS m) denotes the set of runs in EIS m. Lu(EIS m) just “retrieves” the original lan-

guage before any insertion takes place. Then we prove a property of Lu(EIS m) in Lemma IV.5.2.

Lemma IV.5.2. If Winin 6= ∅, then Lu(EIS m) = P[L(G)].

Proof. By the definition of Lu(EIS m), Lu(EIS m) ⊆ P[L(G)] holds immediately. Thus we only

need to show P[L(G)] ⊆ Lu(EIS m) and we proceed by contradiction. Assume that Lu(EIS m) *

P[L(G)] and ∃l ∈ P[L(G)] but l /∈ Lu(EIS m). Then by construction of EIS and EIS m, there exists

a finite prefix l′ < l, s.t. ∀πin ∈ Πin, ∀re ∈ Run(πin,ye
0) with Pe(re) = l′, LastY(re) ∈ QE

lb. That is,

there exists a finite string in P[L(G)] such that no insertion strategy in EIS m can map it to a safe

string without reaching a bad leaf state. However, that means Winin = ∅ by Lemma IV.5.1, which

contradicts the assumption.

We are now ready to state one of the main results in this chapter. Given a winning insertion

strategy in EIS , we can always construct an insertion function solving Problem IV.3.1. Conversely,

if there exists an insertion function solving Problem IV.3.1, we can always find a winning insertion

strategy in EIS .

81

Theorem IV.5.1. There exists an insertion function solving Problem IV.3.1 if and only if there

exists a winning strategy for the insertion function in EIS .

Proof. The “only if” part. We show by contrapositive, i.e., if no winning insertion strategy exists

in EIS , then there does not exist an insertion function solving Problem IV.3.1. If no strategy exists

for the insertion function to reach good leaf states in EIS , then we know the winning set Winin is

empty, i.e., Algorithm 13 returns an empty set. So by Lemma IV.5.1, ∃s ∈ L(G) with P(s) = l =

e0 · · ·en−1, s.t. for all initial re(l) ∈ Run(EIS), LastY(re(l)) ∈ QE
l ⇒ LastY(re(l)) ∈ QE

lb, i.e., all runs

with original string l end in bad leaf states. Then by the pruning process in Algorithm 13, every

initial run re(l) would be removed, thus the initial state of EIS is also removed and EIS w becomes

empty. From the construction in Algorithm IV.1, for all feasible insertion choices θ0, · · · , θn−1 s.t. s

is mapped to s′ by Convention IV.3.1 and θ0e0 · · ·θn−1en−1 ∈ Lsa f e, we have that Vm(s, s′) <
−→
0 . In

other words, no matter what string is inserted into l, the system’s energy level would drop below 0

at some dimension. Thus no insertion function solves Problem IV.3.1.

The “if” part. Suppose that πin is a winning insertion strategy in EIS . Since we follow

Algorithm 13 to obtain Winin and EIS w, then πin is also in EIS w. Then we extend EIS w to

EIS m by merging states. By definition of EIS , the state estimate component of each state is in

Xv ⊆ Xobsd×Xobs so the intruder’s estimate is always in Xobsd. Since by the definition of the desired

observer, ∀xobsd ∈ Xobsd, xobsd /∈ 2XS , we know πin maps every string in P[L(G)] into a safe string.

Besides, ∀s ∈ L(G) with P(s) = l = e0e1 · · ·en−1, suppose that there exists a run re(l) = ye
0

e0
−−→

ze
0

θ0
−−→ ye

1
e1
−−→ ·· ·ye

n−1
en−1
−−−→ ze

n−1
θn−1
−−−→ ye

n consistent with πin in EIS m, denoted by rπin(l). Every

ye ∈ rπin(l) is energy safe and the belief function in each energy information state returns the

minimum energy level of the system at every dimension under certain insertion choices. Then

from Theorem V.4.1, we know that ∀s ∈ P−1(l)∩L(G), Vm(s, sπin) ≥
−→
0 , therefore πin solves Prob-

lem IV.3.1.

The above theorem shows the completeness and soundness of Algorithms IV.1 and 13. There-

fore, Problem IV.3.1 can be solved by first building EIS and then finding the insertion function’s

winning strategies if they exist. As was shown in last section, the state space of EIS is bounded by

82

Ackermann function [87]. Besides, both the winning set and strategies for a reachability game can

be computed in linear time with respect to the size of EIS [4]. Therefore we have the complexity

bound for solving Problem IV.3.1. We end this section by revisiting our running example.

Example IV.5.1. We revisit Example IV.4.1 and synthesize insertion functions to solve Prob-

lem IV.3.1. We follow Algorithm 13 and build EIS w in Figure V.4. In Algorithm 13, all bad

leaf states are removed and the winning region Winin is the set of states in EIS w. Here we use

dashed lines to connect each good leaf state with the state subsumed by it. Observe that condi-

tion Lu(EIS m) = P[L(G)] holds for EIS m in Figure V.4 so that every string in P[L(G)] may be

mapped to some safe strings. From EIS w, we find one winning insertion strategy, which solves

Problem IV.3.1 and is indicated by blue lines in Figure V.4. Finally, we encode this selected in-

sertion function as an I/O automaton in Figure IV.6, where the insertion decisions are explicitly

shown.

{ab} {𝜖}

{𝜖}

{a}

c
b

b

a

c

{𝜖}

{b} c

{𝜖}

𝑦$%

𝑧$%𝑧'%
{ad}

𝑦(%

𝑧(%

{d}

c c

c

{d} {b}
z*+

c

{𝜖}{𝜖}

𝑦,%

𝑦-%

𝑧-%

𝑦'%
𝑧,%

d
𝑦(*% 𝑦(.%

𝑧/%

𝑦(0%

𝑧1%

𝑦,$%

𝑧0%

𝑦,(%

𝑧($%

𝑦,,%

𝑧((%

𝑦,-%

𝑦*%

Figure IV.5: EIS w with a winning insertion strategy indicated by blue lines

83

(A,A)

(B,B) (C,C)
a/a

b/b

d/d

c/c

(C,D)
b/ab

(B,E)
c/c

(B,E)!
c/bc

c/dc

(B,F)

c/adc

Figure IV.6: An insertion function that solves Problem IV.3.1

IV.6 Bounded Cost Rate Insertion Strategies

In the last section, we have solved the opacity enforcement problem so that the system’s energy

level at every dimension never drops below 0. Since event insertion always costs energy, it is

beneficial to explore an economical way of insertion for practical purposes. Motivated by this

requirement, we propose the concept of bounded cost rate insertion strategies and investigate their

synthesis in this section.

IV.6.1 Motivation and Problem Formulation

The structure EIS w obtained in the last section usually contains more that one insertion strategies

that solve Problem IV.3.1. Generally, there exist cycles in the original system thus insertion func-

tions may need to insert fictitious events infinitely often to enforce opacity, in which case event

insertion consumes an infinite amount of energy. From a practical point of view, it is desirable to

require that the insertion function’s long run rate of energy consumption be bounded so that the

designer may control the energy consumed per insertion step.

To facilitate our discussion, we proceed as before and merge each leaf state of EIS w with the

state subsumed by it, resulting in EIS m. As was discussed earlier, the same decision is made at the

leaf state and at the state subsumed by it; also, the same game starts from the leaf states as from

the subsumed states. Thus we are able to discuss infinite-duration games on EIS m.

To explore the rate of insertion cost, we first define Vc : Run(EIS m)→ (Z \N)k as the accu-

84

mulative insertion cost function for runs in EIS m. Given rm = ye
0

e1
−−→ ze

1
θ1
−−→ ye

2 · · ·
en−1
−−−→ ze

n−1
θn−1
−−−→

ye
n, Vc(rm) =

n∑
i=1

ωin(θi). We also define Vmc : Runin f (EIS m) → Rk as the limit mean insertion

weight function for infinite runs in EIS m. Given rm = ye
1

e1
−−→ ze

1
θ1
−−→ ye

2
e2
−−→ ze

2
θ2
−−→ ·· · , Vmc(rm) =

liminf
n→∞

1
n

n∑
i=1

ωin(θi). Then we propose the bounded cost rate insertion strategy synthesis problem.

Problem IV.6.1. Synthesize a bounded cost rate insertion strategy πin such that for any infinite

initial run rm ∈ Runin f (πin, ye
0), −Vmc(rm) ≤ vb for some threshold vector vb ∈ Nk.

Intuitively, we require the long run average of insertion cost be below a threshold under bounded

rate cost insertion strategies, so that the rate of insertion cost does not blow up. This problem is

discussed on EIS m and is meaningful when the original system G is cyclic, i.e., there are infi-

nite runs in G and the EIS m. Problem IV.6.1 can be viewed as a multidimensional mean payoff

game [33] between the insertion function and the environment. Specifically, the insertion function

tries to maintain multidimensional mean payoff vectors bounded by a given threshold vb while the

antagonistic environment tires to spoil the goal. Furthermore, this game is with complete infor-

mation as inserted events and insertion cost are known to both players. Due to this fact, we may

ignore the state information but only focus on weights associated with fzy transitions in EIS m.

We add a minus sign on both sides of the inequality in Problem IV.6.1 and obtain liminf
n→∞

1
n

n∑
i=1

ωin(θi)≥

−vb. Equivalently, we may show whether liminf
n→∞

1
n

n∑
i=1

(ωin(θi) + vb) ≥
−→
0 holds. Hence, we can

add vb to each insertion weight vector in EIS m and discuss the equivalent mean payoff objec-

tive. For simplicity, we still denote the structure by EIS m and will determine whether the limit

mean insertion cost is above 0 in the game graph. We further let W = max{−ω(i)
in (θ) : ∃ze ∈ QE

Z , θ ∈

E∗o, s.t. f E
zy(ze, θ)!,1≤ i≤ k} be the maximal absolute value of elements in insertion weight functions

defined in EIS m. Obviously, W is a positive integer.

85

IV.6.2 Hyperplane Separation Technique

A multidimensional mean payoff game is more challenging to solve than a one-dimensional game

since the objectives in different dimensions may be in conflict. In this section, we apply a recently-

proposed method called hyperplane separation technique from [34] to solve Problem IV.6.1. Orig-

inally, this technique was developed for general multidimensional mean payoff games. The main

idea is to reduce the multidimensional mean payoff game in Problem IV.6.1 to a one-dimensional

mean payoff game on the same graph and then solve it. It can be further shown that there is close

relation between winning regions of both players in the original game and the induced game.

Since the algebraic mean of a set of vectors can always be expressed as a convex combination of

those vectors, we have the following observation: if there exists a convex combination of the cost

vectors such that some dimensions remain negative, then there exists a strategy for the environment

to spoil the goal of the insertion function in Problem IV.6.1. Intuitively, we are going to “separate”

the convex combinations leading to each player to win the game. From results in geometry, a

hyperplane may also be used to separate vectors in a linear space.

In a linear space, a vector v lies above a hyperplane H with normal vector λ if vT ·λ ≥ 0; other-

wise, it lies below H; see, e.g., [13]. Furthermore, if the mean payoff vector resulted from a game

lies below a hyperplane containing the origin, then it has at least one negative element. Therefore,

if such a hyperplane exists, then the insertion function fails to enforce its multidimensional mean

payoff objective and loses the game. On the other hand, if the insertion function is able to achieve

mean payoff vectors that lie above all possible hyperplanes, then it can ensure its objective and win

the game.

Given a k-dimensional insertion weight vector ωin(θ) for some insertion decision θ and a vector

λ ∈ Rk, we denote by ωin(θ)T · λ the inner product between ωin(θ) and λ. With a slight abuse of

notation, we also use ωT
in ·λ when there is no need to specify the insertion decision θ.

Then we assign ωT
in · λ to the edge labeled with insertion weight function ωin in EIS m and

transfer a game with multidimensional objective to one with one-dimensional objective. From the

above discussion, the insertion function achieves a mean payoff vector that lies above H or a mean

86

payoff vector with all nonnegative elements if and only if it ensures that the one-dimensional mean

payoff objective remains nonnegative, with weight function ωT
in ·λ in EIS m. Therefore, our goal is

to search for such hyperplanes, which transfers the problem of solving a multidimensional mean

payoff game to one of finding a proper normal vector in the k-dimensional integer space.

IV.6.3 Synthesize Bounded Cost Rate Insertion Strategies

In this section, we present several results to establish the relation between the original multidimen-

sional mean payoff game and the induced one-dimensional mean payoff game after applying the

hyperplane separation technique. Based on them, we then derive solutions to Problem IV.6.1.

Denote by Winem (respectively Winim) the winning region of the environment (respectively the

insertion function) in the multidimensional mean payoff game with weight function ωin; further

denote by Winλem (respectively Winλim) the winning region of the environment (respectively the

insertion function) in the one-dimensional mean payoff game with weight function ωT
in ·λ. From

now on, we focus on the environment’s winning strategies. Since a mean payoff game under

complete information is determined [43], i.e., from any vertex in the game graph, exactly one

player has a winning strategy, we may directly obtain the insertion function’s winning strategies

afterwards.

Given a vector λ ∈ Rk, we do the inner product between λ and each insertion weight vector

in EIS m to obtain a game with scalar insertion weights, while we do not consider the weights

associated with event occurrence anymore. In the new game, we hope to achieve a nonnegative

mean payoff objective. We repeat Lemma 1 and Lemma 2 in work [34] here, which establish the

relation between the winning regions for both players in the original game and the new game.

• For every λ ∈ Rk, we have that Winλem ⊆Winem; also if Winλem 6= ∅, then Winem 6= ∅.

• If for all λ ∈ Rk we have that Winλem = ∅, then Winem = ∅

These results illustrate a potential way to determine whether the environment player has a non-

empty winning region in the multidimensional mean payoff game: we just need to check all λ ∈Rk

87

to determine whether the environment wins the one-dimensional mean payoff game with weight

function ωT
in ·λ. The readers are referred to [34] for detailed proofs.

Therefore, the key point is to search for a hyperplane and then determine the winner of the

induced one-dimensional mean payoff game. However, it seems that we need to check infinitely

many vectors in Rk, which is not feasible in practice. Fortunately, by Lemma 3 in [34], we only

need to check a finite number of vectors in a k-dimensional space. Let M = (k · n ·W)k+1, where

W is the maximal absolute value in insertion weight functions defined in EIS m, n is the number

of states in EIS m, and k is the number of dimensions. For a positive integer i, we denote by

Z±i = { j ∈ Z : −i ≤ j ≤ i} (resp. Z+
i = { j ∈ N : 1 ≤ j ≤ i}) the set of integers (positive integers) from

−i to i (resp. from 1 to i). The lemma is stated here while its proof is omitted, which can be found

in [34].

• There exists λ ∈Rk such that Winλem 6= ∅ if and only if there exists λ′ ∈ (Z±M)k such that Winλ
′

em 6= ∅.

To summarize and strengthen the above results, we repeat Lemma 4 in [34] as a theorem here

to show the key argument for solving Problem IV.6.1.

Theorem IV.6.1. Given the multidimensional mean-payoff game on EIS m, we have that: (1)⋃
λ∈(Z+

M)k Winλem ⊆Winem; (2) if
⋃
λ∈(Z+

M)k Winλem = ∅, then Winem = ∅.

This theorem illustrates that if the environment wins the one-dimensional mean payoff game

with weight vector ωT
in ·λ at a certain state in EIS m for some λ ∈ (Z+

M)k, then it also has a way to

beat the insertion function and win the multidimensional mean payoff game from the same state;

conversely, if the insertion function wins any one-dimensional mean payoff game with weight

vector ωT
in ·λ where λ ∈ (Z+

M)k at a state in EIS m, then the insertion function also wins the original

multidimensional game from that state. This theorem suggests that we can restrict attention to

vectors in (Z+
M)k and determine which player wins the transformed one-dimensional game. More

details concerning the proof of the theorem can be found in [34].

Based on the above results, we present Algorithm IV.3 to solve Problem IV.6.1. In the algo-

rithm, we assume that each state in EIS m is numbered from 1 to n. At each state in EIS m, we

88

sequentially iterate over vector λ ∈ (Z+
M)k to see if there exists a winning strategy for the environ-

ment with weight function ωT
in ·λ by the pseudo-polynomial algorithm proposed in [17] for mean

payoff games. Then we define the attractor for each player in EIS m. Let Q be a set of states

in EIS m, then for the environment (“em” for short), Attrem(Q) is defined recursively as follows:

Q0 = Q, Q j+1 = Q j∪{ye ∈ QE
Y : ∃ze ∈ Q j,eo ∈ Eo s.t. f E

yz(ye,eo) = ze}∪ {ze ∈ QE
Z : ∀ye ∈ QE

Y : [∃θ ∈

E∗o, s.t. f E
zy(ze, θ) = ye]⇒ [ye ∈ Q j]} and Attrem(Q) =

⋃
j≥0 Q j. Similarly, we define the attractor

for the insertion function. Intuitively, the environment ensures to reach Qi from Qi+1 within one

transition regardless of the insertion function’s strategies. Therefore, the environment may reach

states in Q from states in Attrem(Q) within a finite number of transitions regardless of the insertion

function’s strategies. On the other hand, the environment may avoid reaching Q if it is at states

outside of Attrem(Q).

Algorithm IV.3: Find solutions to Problem IV.6.1
Input : EIS m
Output: Insertion strategies solving Problem IV.6.1

1 for j = 1 : n do
2 if q j is still in the remaining structure then
3 Consider q j ∈ QE

Y ∪QE
Z in EIS m;

4 for λ ∈ (Z+
M)k do

5 if there exists an environment’s winning strategy from q j to achieve a negative
mean payoff in the transformed one-dimensional game with weight function
ωT

in ·λ by the method in Section 5 of [17] then
6 Remove Attrem({q j}) from EIS m;

7 if the remaining structure is not empty then
8 Return insertion strategies in the structure;
9 else

10 No solution exists for Problem IV.6.1.

In Algorithm IV.3, we apply the method in [17] to solve the induced one-dimensional mean

payoff game and this method outperforms any other known method in terms of complexity. If at the

current state in EIS m, there exists a winning strategy for the environment for the one-dimensional

mean-payoff objective with weight function ωT
in ·λ, then we remove the attractor of the current state

and proceed to the next iteration. The reason is that if the environment wins the mean payoff game

89

from a vertex in the game graph, it also wins the game from the attractor of the current vertex.1

Thus the game graph may be shrinking when the algorithm is running. However, if the environment

is unable to win the one-dimensional game for any λ ∈ (Z+
M)k at the current state, i.e., the insertion

function has a winning strategy to enforce a nonnegative mean payoff from the current state for

all λ ∈ (Z+
M)k, then the insertion function may enforce a mean payoff vector with all nonnegative

elements. Thus this state should be included in the winning region of the insertion function for

the multidimensional mean payoff game. Therefore, after all states in EIS m are checked, the

insertion function has winning strategies for Problem IV.6.1 against all environment’s strategies if

the remaining structure is not empty. Otherwise, no solution exists for Problem IV.6.1 if all states

of EIS m are removed. Besides, as positional strategies suffice to win a mean payoff game with

perfect information [43], we simply let strategies returned by Algorithm IV.3 be positional so that a

finite number of strategies are returned. The correctness of Algorithm IV.3 is from Theorem IV.6.1

and more details concerning solving a one-dimensional mean payoff game are available in [17].

Finally, we briefly discuss the complexity of Algorithm IV.3 following a similar argument as

in [34]. When running the algorithm, we need n iterations under the worst case and in each iteration

we solve at most Mk one-dimensional mean payoff games. Thus the iterative algorithm needs to

solve O(n ·Mk) one-dimensional mean payoff games with m edges, n vertexes, and the maximal

weight being at most k ·W ·M (as the maximum element in all λ ∈ (Z+
M)k is M, the maximum weight

in every dimension of ωin is W, and we sum k dimensions). Since one-dimensional mean payoff

games with n vertexes, m edges and maximal weight W can be solved in time O(n ·m ·W) by the

method proposed in [17], the overall complexity of the algorithm is O(n2 ·m ·k ·W ·(k ·n ·W)k2+2k+1),

which is polynomial in terms of the number of vertexes when k is fixed.

Example IV.6.1. We revisit Example IV.5.1 and further discuss Problem IV.6.1 based on the so-

lutions of Problem IV.3.1. We show EIS m in Figure IV.7 after merging the leaf states with states

subsumed by them in EIS w. Then we investigate the bound of insertion cost rate by starting with

1The pruning here is similar to calculating the supremal controllable sublanguage [23] by viewing the environ-
ment’s winning states as undesirable, f E

yz transitions as uncontrollable, f E
zy transitions as controllable, and Y-states as

marked.

90

threshold vb = [3,3]T and see if Problem IV.6.1 has a solution. It is seen that EIS m contains cyclic

runs and this problem is discussed on them. We add vb to each each insertion cost vector in EIS m

to obtain the new weight vectors ωin(b) + vb = [2,0]T , ωin(d) + vb = [0,2]T , ωin(ε) + vb = [3,3]T

and those events are inserted in cyclic runs. After running Algorithm IV.3, we find that there exist

insertion strategies solving Problem IV.6.1. The detailed process is tedious and is omitted here.

For example, one feasible insertion strategy is to choose to insert b at Z-state ze
2. Then it is easy to

see that this strategy achieves a positive mean payoff value.

However, if we change the threshold vector to v′b = [1,1]T , then Problem IV.6.1 has no solution.

From Figure IV.7, we see that two simple cycles ye
2

c
−→ ze

2
{b}
−−→ ye

3
c
−→ ze

3
{d}
−−→ ye

2 and ye
2

c
−→ ze

2
{d}
−−→ ye

6
c
−→

ze
4
{b}
−−→ ye

2 both have weight vector ωin(b)+ωin(d) = [−4,−4]T . Since −ωin(b)−ωin(d)
2 = [2,2]T > vb, no

insertion strategy is able to enforce the mean payoff threshold [1,1]T .

{ab} {𝜖}

{𝜖}

{a}

c
b

b

a

c

{𝜖}

{b} c

{𝜖}

𝑦$%

𝑧$%𝑧'%
{ad}

𝑦(%

𝑧(%

{d}

c c

c

{d} {b}
z*+

c

{𝜖}{𝜖}
𝑦,%

𝑦-%

𝑧-%

𝑦'%
𝑧,%

d
𝑦(*% 𝑦(.%

𝑧/%

𝑦(0%

𝑧1%

𝑦,$%

𝑧0%

𝑧($%

𝑦,,%

𝑧((%

Figure IV.7: EIS m after merging states

IV.7 Conclusion

This chapter investigated opacity enforcement by insertion functions under multiple energy con-

straints. To the best of our knowledge, it is the first to investigate opacity enforcement under such

91

quantitative constraints. The system is initialized with certain types of energy and the energy lev-

els change dynamically with event insertion and execution. Our goal is to synthesize an insertion

function that enforces opacity as well as ensures that the system’s energy level in every dimension

is never below zero. A bipartite information structure called Energy Insertion Structure (EIS) was

defined to characterize the game between the insertion function and the environment. The inser-

tion function’s winning strategies in EIS provably solve the opacity enforcement problem while

if no winning insertion strategy exists in EIS , no solution to the problem exists. Thus EIS pro-

vides a sound and complete characterization of the solution space. Based on these solutions, we

subsequently consider the rate of insertion cost and proposed the bounded cost rate insertion strat-

egy synthesis problem, which is formulated as a multidimensional mean payoff game. A method

called hyperplane separation technique was applied to reduce the multidimensional game to a one-

dimensional game on the same graph. Additional analysis showed that by solving the induced

games, we obtain valid solutions for the original problem.

92

CHAPTER V

Optimal Mean Payoff Supervisory Control

under Partial Observation

V.1 Introduction

In this chapter, we formulate two types of optimal mean payoff supervisory control problems

under partial observation and solve them in sequence. The first goal for the supervisor under both

scenarios is to ensure that the energy level of the system is never below 0 or that the limit rate of

energy level change is above a certain threshold. Then the concept of energy information states is

proposed, which incorporate necessary information about the current states and the energy level of

the system. After that we transfer each of the above problems into a two-player safety game [4]

between the supervisor and the “environment” (aka system) on a finite information structure. The

structure is called First Cycle Energy Inclusive Controller (FCEIC). By construction, we show

that the winning strategies of the supervisor in the FCEIC correspond to potential solutions of the

proposed problems: they ensure that the nonnegative energy level or the mean payoff threshold

condition is satisfied. It turns out that the corresponding FCEICs only bear slight differences under

the two problems, which is why we treat them concurrently. In the second phase, starting from the

preceding respective solutions, we find optimal control strategies for the long run operation of the

system, by searching over the winning regions in the FCEICs.

Our solution methodology is also inspired by graph games in quantitative reactive synthesis,

93

especially mean payoff games [43]. A mean payoff game is an infinite-duration turn based two-

player game on a weighted graph. The two players take turns to play by selecting an outgoing

edge at their positions, resulting in an infinite path. The goal of the first player is to maximize the

average payoffs (weights) of traversed edges while the goal of the second player is to minimize

them, thus the game is zero sum. Well structured solutions were proposed for mean payoff games

with perfect information [43,135], where both players know the complete history of the game up to

their current positions. What is more challenging is the case of mean payoff game with imperfect

information where one player is absent from the complete history of its opponent. Such games are

in general undecidable [40] while some decidable classes were presented in [50], which motivated

our assumptions on the system in this chapter. From the results in [2], the winning strategies

for both players in mean payoff games may be derived by focusing on the first simple cycle that

appears infinitely often. This inspired us to propose the concept of FCEIC.

In contrast with reactive synthesis, there is usually a plant, i.e., a system to be controlled, in

supervisory control theory. Besides, the supervised system is closed-loop in the sense that the

“input” to the supervisor is the set of strings generated by the system so far and the “output” of

the supervisor is a control decision to inform the system what events are allowed to occur. Fur-

thermore, the supervisor may allow multiple events to occur simultaneously, in which case it is

the system that decides what event to execute next. This mechanism is similar to the so-called

multi-strategy in game theory [4], under which one player may choose more than one outgoing

edges at a position. In general, the supervisor may only have limited control and observation ca-

pabilities, i.e., some events of the system can never be disabled and some events are not observed

by the supervisor. Those limitations are usually not characterized in games for reactive synthesis.

Besides, the designed supervisor in this chapter should satisfy logical and quantitative require-

ments simultaneously. The above mentioned differences impose additional difficulties on directly

applying existing results of quantitative graph games to solve a supervisory control problem. Thus

special analysis is necessary to “bridge the gap” [42] and the established methods in two-player

games may also need to be adjusted for our specific problem.

94

The structure FCEIC is proposed so that the analysis of two-player quantitative games may be

performed in the presence of a plant to fit in the framework of supervisory control. The FCEIC is

similar to the concept of Kripke structure in [5]. Notice that our work is not the first one to solve

supervisory control problems by leveraging results from graph games in reactive synthesis, see,

e.g., [90, 91, 125, 126]. However, both [125] and [126] focused on qualitative synthesis problems

by control while [91] solved a mean payoff optimization problem with full observation supervisors.

In contrast to the problem studied in this chapter as well, [90] discussed supervisory control under

another game framework, namely fixed-initial-credit energy games under partial observation. Our

work is also inspired by the work in Chapter IV which solved opacity enforcement by insertion

functions under quantitative constraints and transformed the problem to a game with some different

quantitative objective.

The following sections are organized as follows. Section V.2 describes the system model. In

Section V.3, we formulate two types of optimal mean payoff supervisory control problems under

partial observation. Section V.4 introduces energy information states and the First Cycle Energy

Inclusive Controller (FCEIC) for each problem. Section V.5 analyzes relevant properties of the

FCEIC, then partially solves the two proposed problems. Winning control strategies in the FCEIC

ensure that the energy level of the system is always nonnegative or that the mean payoff is always

above some threshold, corresponding to the two formulated problems. Section V.6 completely

solves the two problems by finding the optimal solution from the partial solutions obtained in

Section V.5. Finally, Section V.7 concludes the chapter and raises directions for future work.

V.2 System model

We consider supervisory control in the same system model by weighted finite-state automata as in

Chapter IV:

G = (X,E, f , x0,ω)

95

where X is the finite state space, E is the finite set of events, f : X×E→ X is the partial transition

function, x0 ∈ X is the initial state, ω : E → Z is the weight function that assigns an integer to

each event. We view the event’s weight as its energy payoff in this chapter. A positive number

stands for energy gain while a negative number stands for energy cost. The transition function is

extended to X × E∗ in the standard manner and we still denote the extended function by f . The

language generated by G is defined as L(G) = {s ∈ E∗ : f (x0, s)!} where ! means “is defined”. We

denote by s ≤ u if string s is a prefix of u, and s < u if s ≤ u, s 6= u. The function ω is additive and

its domain can be extended to E∗ by letting ω(ε) = 0, ω(seo) = ω(s) +ω(eo) for s ∈ E∗ and e ∈ E.

Given s ∈ L(G), the (accumulative) payoff of s is the sum of each event’s weight in s, i.e. ω(s).

The system also has v0 ∈ N as its initial energy.

In this chapter, we assume that the safety property is already satisfied and we do not consider

the non-blockingness property either, thus no marked states are included in the system model.

Instead, we discuss the (weak) liveness property: a system G is live if its generated language L(G)

is live, i.e., ∀s ∈ L(G), ∃u ∈ E, s.t. su ∈ L(G). That is, there is a transition defined at each state

in G, which thus never terminates. The liveness requirement on G is without loss of generality

since it can be relaxed by adding observable self-loops at terminal states where no active events

are defined, as was done in [103]. Overall, we can think of the given G as a controlled system that

satisfies the original safety and non-blockingness requirements.

Given an automaton G, for x1, x2 ∈ X and e ∈ E, we denote by x1
e
−→ x2 if f (x1,e) = x2. A run

in G is a sequence of states and events: r = x1
e1
−−→ x2

e2
−−→ ·· ·

en−1
−−−→ xn and it may be infinitely long.

We denote the set of runs in G by Run(G). A run is initial if its initial state is the initial state of

the system. We say that a run forms a cycle if x1 = xn and a cycle is simple if ∀i, j ∈ {1,2, · · ·n−1},

i 6= j⇒ xi 6= x j. If r is a cycle, there is a corresponding (string) loop e1e2 · · ·en−1 starting from and

ending in x1. The loop is called simple if the cycle is simple.

For a run r = x1
e1
−−→ x2

e2
−−→ ·· ·

en
−−→ xn+1, its (accumulative) payoff is

n∑
i=1

ω(ei) and its mean

payoff is
1
n

n∑
i=1

ω(ei). We also define the system’s energy level for a run as V : Run(G)→ Z where

96

V(r) = v0 +

n∑
i=1

ω(ei). So the energy level changes dynamically with the occurrence of events.

Furthermore, we let Runin f (G) be the set of infinite runs in automaton G. Then we define

Vlim : Runin f (G)→ R as the limit mean payoff of an infinite run. For a run r = x1
e1
−−→ x2

e2
−−→ ·· · ,

Vlim(r) = liminf
n→∞

1
n

n∑
i=1

ω(ei)

Here we take the infimum of the sequence {
1
n

n∑
i=1

ω(ei)} so that its limit always exists. Notice

that the limit mean payoff of a run only depends on the mean payoff of cycles that are traversed

infinitely often in the run. For example, if xi
ei
−→ xi+1

ei+1
−−−→ ·· ·

e j
−→ x j+1 is the only cycle that appears

infinitely often in the run r, then

Vlim(r) =
1

j− i + 1

j∑
l=i

ω(el)

In other words, the limit mean payoff is independent of finite prefixes of a run.

The system is controlled by a supervisor [23] that dynamically enables/disables events of the

system so that some specification is achieved. The event set E is partitioned as E = Ec∪Euc, where

Ec is the set of controllable events and Euc is the set of uncontrollable events. A control decision

γ ∈ 2E by the supervisor is admissible if Euc ⊆ γ, i.e., the supervisor never disables uncontrollable

events. We define Γ = {γ ∈ 2E : Euc ⊆ γ} as the set of admissible control decisions. The system is

also partially observable and E is partitioned as E = Eo ∪ Euo, where Eo is the set of observable

events and Euo is the set of unobservable events. Given a string t = t′e ∈ E∗, its natural projection

P : E∗ → E∗o is recursively defined as P(t) = P(t′e) = P(t′)P(e) where t′ ∈ E∗ and e ∈ E. The

projection of an event is P(e) = e if e ∈ Eo and P(e) = ε if e ∈ Euo∪{ε}, where ε is the empty string.

A supervisor is a function S : P[L(G)]→ Γ and we denote by S the set of supervisors. A

partial observation supervisor makes decisions only based on the projected behavior of the system.

We use S/G to represent the controlled system under S . Accordingly, we denote by L(S/G) the

language generated in S/G and Run(S/G) the set of runs in S/G, respectively.

97

Next, we define some operators in G. Given a set of states q ⊆ X, the unobservable reach,

denoted by UR(q), is defined as: UR(q) = {x′ ∈ X : ∃x ∈ q, s ∈ E∗uo, s.t. f (x, s) = x′}. Specifically,

the unobservable reach under a set of events γ ⊆ E, denoted by URγ(q), is defined as: URγ(q) =

{x′ ∈ X : ∃x ∈ q, s ∈ (Euo∩γ)∗, s.t. f (x, s) = x′}. Besides, the observable reach under event eo ∈ Eo,

denoted by Nexteo(q), is defined as: Nexteo(q) = {x′ ∈ X : ∃x ∈ q s.t. f (x,eo) = x′}.

The observer of G is defined as: Obs(G) = (Xobs,Eo, δ, xobs,0) where Xobs ⊆ 2X is the state space;

xobs,0 = UR({x0}) is the initial state and δ is the transition function where ∀xobs ∈ Xobs, ∀eo ∈ Eo:

δ(xobs,eo) = UR(Nexteo(xobs)). The weight function is omitted here in the definition. An observer

state is termed a (current) state estimate of the system.

V.3 Problem Formulations

In this section, we formulate two optimal mean payoff supervisory control problems, i.e., with and

without the constraint of nonnegative energy level. Before stating them, we first assume that there

are no unobservable loops in L(G) and we keep this assumption in the following discussion.

Assumption V.3.1. Given an automaton G, ∀x ∈ X, ∀s ∈ E∗ \ {ε}, [f (x, s) = x]⇒ [P(s) 6= ε].

We first formulate the constrained optimal mean payoff supervisory control problem by consid-

ering both qualitative and quantitative objectives. The supervised system should be live, thus never

terminates. Besides, the limit rate of energy generation is optimized even if the system operates in

the most adversarial condition, provided that the energy level of the system never drops below 0.

Problem V.3.1 (Constrained Optimal Mean Payoff Supervisory Control Problem). Given system

G with initial energy v0 ∈ N, design a supervisor S ∗ ∈ S such that: (i) L(S ∗/G) is live; (ii) ∀r ∈

Run(S ∗/G): V(r) ≥ 0; (iii) inf
r∈Runin f (S ∗/G)

Vlim(r) = sup
S∈S

inf
r∈Runin f (S/G)

Vlim(r).

The problem statement says that the supervised system satisfies the following conditions: (i)

it is live; (ii) its energy level for any run is nonnegative; (iii) its worst case limit mean payoff is

maximized.

98

As a slight variant of the above problem, we also formulate the unconstrained optimal mean

payoff supervisory control problem, which ignores the nonnegative energy level constraint in Prob-

lem V.3.1. We make an extra assumption to restrict the system in the unconstrained optimal control

problem.

In the observer of the system, given a state xobs ∈ Xobs, let Loop(xobs) = {l ∈ E∗o \{ε} : δ(xobs, l) =

xobs and ∀l′ < l s.t. l′ 6= ε,δ(xobs, l′) 6= xobs} be the set of simple loops starting from xobs. Also, given

string l ∈ Loop(xobs), we let S imLp(xobs, l) = {t ∈ E∗ \{ε} : ∃x ∈ Xobs s.t. f (x, t) = x,P(t) = l and ∀t′ <

t, f (x, t′) 6= x} be the set of non-ε simple loops with the same projection l and starting from some

state in xobs.

Assumption V.3.2. Given automaton G and its observer Obs(G), ∀xobs ∈ Xobs, ∀l ∈ Loop(xobs),

and ∀s, s′ ∈ S imLp(xobs, l), we have either ω(s) < 0⇒ ω(s′) < 0 or ω(s) ≥ 0⇒ ω(s′) ≥ 0.

That is to say, for two simple loops with the same projection, their payoffs should have the

same sign. This assumption is inspired by the decidable classes of mean payoff games with partial

observation in [50]. Later on, we will see how this assumption helps us solve the unconstrained

optimal mean payoff supervisory control problem. We say that a system is with unambiguous cycle

payoffs if it satisfies Assumption V.3.2.

Example V.3.1. Let the system G in Figure V.1 be with Euo = {u1,u2} and Eo = {o1,o2,o3}. The

weight of each event is shown in the figure. There are 4 simple cycles: x0
u1
−−→ x1

o1
−−→ x3

o2
−−→ x0

with payoff 2, x0
u2
−−→ x2

o1
−−→ x4

o2
−−→ x0 with payoff 1, x0

u1
−−→ x1

o1
−−→ x3

o3
−−→ x0 with payoff −1 and

x0
u2
−−→ x2

o1
−−→ x4

o3
−−→ x0 with payoff −2. So G is with unambiguous cycle payoffs.

Problem V.3.2 (Unconstrained Optimal Mean Payoff Supervisory Control Problem). Given

system G with unambiguous cycle payoffs, initial energy v0 ∈ N and threshold v ∈ N, design

a supervisor S ∗ ∈ S such that: (i) L(S ∗/G) is live; (ii) ∀r ∈ Runin f (S ∗/G): Vlim(r) ≥ v; (iii)

inf
r∈Runin f (S ∗/G)

Vlim(r) = sup
S∈S

inf
r∈Runin f (S/G)

Vlim(r).

Compared with Problem V.3.1, we also require that the supervised system be live and the worst

case limit mean payoff be optimized. However, we omit the requirement of nonnegative energy

99

𝑥"
𝑢$, -4

𝑜$, 2

𝑜$, 2

𝑜&, 4

𝑜&, 4

𝑜', 1

𝑜', 1

𝑥&

𝑥$

𝑥(

𝑥'

Figure V.1: An automaton with unambiguous cycle payoffs

level, instead, we are to achieve that the limit mean payoff (rate of energy gain) of any infinite run

is above a given threshold v. Actually, given v, we may subtract v from the weight of each event

and equivalently evaluate whether the limit mean payoff is above 0. Hence we will assume v = 0

in the following discussion without loss of generality.

Specifically, we call the first two conditions in Problem V.3.1 (respectively Problem V.3.2) as

its mean payoff decision problem. In both Problem V.3.1 and Problem V.3.2, the optimal supervisor

should maximize the worst case limit mean payoff. We may imagine that the supervisor is “playing

a game” against an antagonistic opponent, where the supervisor is to maximize its mean payoff

while its opponent is to prevent the supervisor. However, the two sides may have asymmetric

information since the supervisor only has partial observation of the system. Thus it is essential to

construct proper estimates for current states and the energy level of the system so that the supervisor

may make decisions. In the following discussion, we solve Problem V.3.1 and Problem V.3.2

sequentially: we first find solutions to their corresponding mean payoff decision problems, then

completely solve them by resolving the optimization issues.

V.4 First Cycle Energy Inclusive Controller

In this section, we define Energy Information States and then transfer both Problem V.3.1 and

Problem V.3.2 to two-player games between the supervisor and the environment. We further pro-

pose the First Cycle Energy Inclusive Controller (FCEIC) as the game structure, which records the

100

update of both current state estimates and the energy level of the system under control. The FCEIC

is inspired by the Bipartite Transition System and All Enforcement Structure in [126] and [125],

which include supervisors enforcing several logical properties.

V.4.1 Energy Information States

We define some orders for vectors. Given two vectors v1 = [v1(1),v1(2), · · · ,v1(n)], v2 = [v2(1),v2(2), · · · ,v2(n)] ∈

Zn, we denote by v1 ≤ v2 (respectively v1 ≥ v2) if ∀1 ≤ i ≤ n,v1(i) ≤ v2(i) (respectively v1(i) ≥ v2(i)).

We also denote by v1 < v2 if ∀1 ≤ i ≤ n,v1(i) ≤ v2(i) and ∃1 ≤ j ≤ n, v1(j) < v2(j) (respectively

∀1 ≤ i ≤ n, v1(i) ≥ v2(i) and ∃1 ≤ j ≤ n, v1(j) > v2(j)), i.e., at least one element in v1 is strictly

smaller (larger) than the element at the same position in v2.

The partial observation of supervisors adds special difficulty to Problem V.3.1 and Problem V.3.2.

We hope to transfer each problem into another problem, which is under full observation. Then our

goal is to solve the transformed problems and show that by solving the new problems, we obtain

solutions to the original problems. In order to track the unobservable reaches between states and

the their payoffs, we define energy information states as follows. Here we let |·| be the cardinality

of a set.

Definition V.4.1 (Energy Information States). Given system G, an energy information state is:

qe = (q, [v(1), · · ·v(|q|)]) ∈ 2X × (∪|X|k=1Z
k). Let Est(qe) and Lev(qe) denote the state estimate and

energy level components of qe, respectively, hence, qe = (Est(qe),Lev(qe)).

Denote by QE the set of energy information states. Each qe ∈ QE induces a belief function

hqe : Est(qe)→ Z. Specifically, for qe ∈ QE where Est(qe) = q ∈ 2X, Lev(qe) = {hqe(x) : x ∈ q}. We

usually put Lev(qe) in a vector form: [hqe(x1), · · ·hqe(x|q|)] and by convention in this work, elements

in Lev(qe) are placed in an increasing order w.r.t. state names in Est(qe). An energy information

state qe is energy safe if ∀x ∈ Est(qe), hqe(x) ≥ 0.

We define an order 4 over QE: for qe
1,q

e
2 ∈ QE , qe

1 4 qe
2 if Est(qe

1) = Est(qe
2) and Lev(qe

1) ≤

Lev(qe
2). We also say that qe

2 subsumes qe
1 if qe

1 4 qe
2. In other words, qe

2 shares the same state

101

estimate with qe
1 and the energy level vector of qe

2 is no less than that of qe
1 in a point-wise sense.

We define another order ≺ over QE: for qe
1,q

e
2 ∈QE , qe

1 ≺ qe
2 if Est(qe

1) = Est(qe
2), Lev(qe

1)< Lev(qe
2).

That is to say, qe
1 and qe

2 have the same state estimate and there exists Lev(qe
1)(i) < Lev(qe

2)(i) at

some state Est(qe
1)(i) for some i ≥ 1.

By Dickson’s lemma (see, e.g., [69]), “≤” on k-dimensional nonnegative integer space Nk is a

well-quasi ordering for any k ∈ N+. We further argue that 4 on energy safe energy information

states is also a well-quasi ordering, i.e., for any infinite sequence of energy safe energy information

states qe
1,q

e
2 · · · ∈ QE , there exist two indexes i < j, such that qe

i 4 qe
j.

We call qae ∈ QE ×Γ an augmented energy information state, which augments an energy in-

formation state with a control decision. Let IE(qae), Γ(qae) denote the energy information state

component and control decision component of qae, respectively, so qae = (IE(qae),Γ(qae)). With a

slight abuse of notation, we also use hqae to stand for hqe where qe = IE(qae). An augmented energy

information state qae is also called energy safe if ∀x ∈ Est(IE(qae)), hqae(x) ≥ 0. Then we give the

following two concepts.

For γ ∈ Γ, qae ∈ QE × Γ is a γ-successor of qe ∈ QE if: (i) Est(IE(qae)) = URγ(Est(qe)); (ii)

∀x′ ∈ Est(qae), hqae(x′) = min
ξ
{hqe(x) +ω(ξ) : ∃x ∈ Est(qe), ξ ∈ (Euo∩γ)∗ s.t. f (x, ξ) = x′}. Overall,

qae = (IE(qae),γ). Its state estimate component is the unobservable reach of Est(qe) under γ. We

also use the belief function to track the minimum energy level by some unobservable string ξ

reaching a possible state in Est(IE(qae)).

For eo ∈ Eo, qe ∈ QE is an eo-successor of qae ∈ QE ×Γ if: (i) eo ∈ Γ(qae) = γ and Est(qe) =

Nexteo(Est(IE(qae))); (ii) ∀x ∈ Est(qe), hqe(x) = min
x′
{hqae(x′)+ω(eo) :∃x′ ∈ Est(IE(qae)) s.t. f (x′,eo)

= x}. So the state estimate component of qe is the observable reach of Est(IE(qae)) under eo. Mean-

while, we use the belief function to track the minimum energy level by observable event eo reaching

a possible state in Est(qae).

A control-observation sequence is a sequence of states, events and control decisions in the form

of ρ = ye
1
γ1
−−→ ze

1
e1
−−→ ye

2
γ2
−−→ ze

2 · · ·
γn−1
−−−→ ze

n−1
en−1
−−−→ ye

n or ρ′ = ye
1
γ1
−−→ ze

1
e1
−−→ ye

2
γ2
−−→ ze

2 · · ·
γn−1
−−−→ ze

n−1
en−1
−−−→

ye
n
γn
−−→ ze

n where ∀i ≤ n, γi ∈ Γ, ei ∈ Eo, ye
i ∈ QE , ze

i ∈ QE ×Γ, ze
i is a γi-successor of ye

i and ye
i+1 is

102

an ei-successor of ze
i . Such a sequence characterizes the update of state estimate and energy level

under control decisions. By convention, we let ρk = ye
1
γ1
−−→ ze

1
e1
−−→ ye

2
γ2
−−→ ze

2 · · ·
γk−1
−−−→ ze

k−1
ek−1
−−−→ ye

k and

ρ′k = ye
1
γ1
−−→ ze

1
e1
−−→ ye

2
γ2
−−→ ze

2 · · ·
γk−1
−−−→ ze

k−1
ek−1
−−−→ ye

k
γk
−−→ ze

k, for 1 ≤ k ≤ n. With the supervisor making

decisions, strings are generated in the supervised system.

Definition V.4.2 (Strings generated by Control-Observation Sequence). Given a control-observation

sequence ρ or ρ′, the set of strings generated by ρ is defined recursively as: ∀1 ≤ k ≤ n, let

S tr(ρ1) = {ε}, S tr(ρ′1) = {ξ1 ∈ E∗uo : ∃x ∈ Est(ye
1), x′ ∈ Est(IE(ze

1)), ξ1 ∈ (γ1∩Euo)∗ s.t. f (x, ξ1) = x′},

then S tr(ρk+1) = {s′kek : ∃x ∈ Est(ye
1), x′ ∈ Est(IE(ze

k)), x′′ ∈ Est(ye
k+1), s′k ∈ S tr(ρ′k), s.t. f (x, s′k) =

x′, f (x′,ek) = x′′} and S tr(ρ′k+1) = {sk+1ξk+1 : ∃x ∈ Est(ye
1), x′ ∈ Est(ye

k+1), x′′ ∈ Est(IE(ze
k+1)), sk+1 ∈

S tr(ρk+1), ξk+1 ∈ (γk+1∩Euo)∗, s.t. f (x, sk+1) = x′, f (x′, ξk+1) = x′′}.

Then we show that in an energy or augmented energy information state, belief functions always

return the minimum payoff of strings reaching a state in the state estimate.

Theorem V.4.1. For a control-observation sequence ρ or ρ′, we have that ∀x ∈ Est(ye
n), hye

n(x) =

min
s∈S tr(ρ)

{ω(s) : ∃x̃ ∈ Est(ye
1), s.t. f (x̃, s) = x} and ∀x′ ∈ Est(IE(ze

n)), hze
n(x′) = min

s∈S tr(ρ′)
{ω(s) : ∃x̃ ∈

Est(ye
1), s.t. f (x̃, s) = x′}.

Proof. Prove by induction on the length of observable string t = e1 · · ·en−1 (n ∈N+) where |t|= n−1.

The length of t reflects the length of the sequence. We also use the notations ρk and ρ′k in the

following discussion.

Induction Basis: n = 1 and consider ye
1 or ye

1
γ1
−−→ ze

1. The result obviously holds for single state

ye
0 and also holds for ye

1
γ1
−−→ ze

1 by Definition V.4.2 and the definition of γ-successor.

Inductive Hypothesis: we assume the lemma holds when n = k, i.e., for ρk and ρ′k.

Induction Step: when n = k + 1, consider ρk+1 and ρ′k+1. First, ye
k+1 is an ek-successor or ze

k.

Let Est(IE(ze
k)) = q′k and Est(ye

k+1) = qk+1, then ∀x ∈ qk+1, hye
k+1

(x) = min
x′
{hze

k
(x′) +ω(ek) : ∃x′ ∈

q′k, s.t. f (x′,ek) = x}. By the inductive hypothesis and Definition V.4.2, hye
k+1

(x) = min
x′

min
s′k
{ω(s′k) +

ω(ek) : ∃x̃ ∈ Est(ye
1), s′k ∈ S tr(ρ′k) s.t. f (x̃, s′k) = x′}= min

sk+1
{ω(sk+1) : ∃x̃ ∈ Est(ye

1), sk+1 ∈ S tr(ρk+1) s.t.

sk+1 = s′kek, f (x̃, sk+1) = x}.

103

Then ze
k+1 is a γk+1-successor of ye

k+1. Let Est(ye
k+1) = qk+1 and Est(IE(ze

k+1)) = q′k+1, so ∀x′ ∈

q′k+1, hze
k+1

(x′) = min
ξk+1
{hye

k+1
(x) +ω(ξk+1) : ∃x ∈ qk+1, ξk+1 ∈ (Euo ∩γk+1)∗ s.t. f (x, ξk+1) = x′}. From

what we just proved, hze
k+1

(x′) = min
ξk+1

min
sk+1
{ω(sk+1) +ω(ξk+1) : ∃x̃ ∈ Est(ye

1), sk+1 ∈ S tr(ρk+1) s.t.

f (x̃, sk+1) = x, f (x, ξk+1) = x′} = min
s′k+1

{ω(s′k+1) : ∃x̃ ∈ Est(ye
1), s′k+1 ∈ S tr(ρ′k+1) s.t. s′k+1 = sk+1ξk+1,

f (x̃, s′k+1) = x′}. Thus the result holds at k + 1, completing the proof.

Since we always count the minimum string payoff when creating a new eo-successor or γ-

successor, Theorem V.4.1 establishes that the belief function returns the minimum payoff among

strings reaching the current state. Since all strings generated by a control-observation sequence

have the same observation with the same payoffs, the minimum payoff is due to the unobservable

substrings.

V.4.2 Build the First Cycle Energy Inclusive Controller

We consider both energy flow and information flow under control and define a discrete structure

called the first cycle energy inclusive controller (FCEIC) for Problem V.3.1 and Problem V.3.2. The

two variants of FCEICs are formally defined by construction, i.e., by adding feasible eo-successors

and γ-successors to the state space recursively in Algorithm 11 and Algorithm 12, respectively.

The FCEICs with respect to system G for both problems are constructed in a similar way and of

the same generic form (QF
Y ,Q

F
Z ,E, f F

yz , f F
zy ,Γ,y

e
0,Q

F
l ,v0) where:

• QF
Y ⊆ QE is the set of energy information states;

• QF
Z ⊆QE×Γ is the set of augmented energy information states and for ze ∈QF

Z , ze = (IE(ze),Γ(ze));

• f F
yz : QF

Y ×Γ→ QF
Z is the transition function from QF

Y states to QF
Z states, where for all ye ∈ QF

Y ,

γ ∈ Γ and ze ∈ QF
Z , [f F

yz(ye,γ) = ze]⇒ [ze is a γ-successor of ye];

• f F
zy : QF

Z ×Eo→ QF
Y is the transition function from QF

Z states to QF
Y states, where for all ze ∈ QF

Z ,

eo ∈ Eo and ye ∈ QF
Y , [f F

zy(ze,eo) = ye]⇔[ye is an eo-successor of ze];

• Γ is the set of admissible control decisions;

104

• ye
0 ∈ QF

Y is the initial energy information state where Est(ye
0) = x0 and Lev(ye

0) = v0;

• QF
l is the set of leaf QF

Y states;

• v0 ∈ N is the initial energy of the system.

Algorithm V.1: Construction of the FCEIC for Problem V.3.1
Input : G, v0
Output : FCPEC = (QF

Y ,Q
F
Z ,E, f F

yz , f F
zy ,Γ,y

e
0,Q

F
l ,v0)

1 QF
Y = {ye

0}, QF
Z = ∅, QF

l = ∅;
2 FirstCycle1(ye

0,FCPEC);
3 Return FCEIC;

Procedure: FirstCycle1(ye,FCPEC)
4 for γ ∈ Γ do
5 Let ze be a γ-successor of ye;
6 if ze is deadlock free and energy safe then
7 Add transition ye γ

−→ ze to f F
yz ;

8 if ze /∈ QF
Z then

9 QF
Z = QF

Z ∪{z
e};

10 for eo ∈ γ∩Eo do
11 Let ỹe be an eo-successor of ze;

12 Add transition ze eo
−−→ ỹe to f F

zy ;
13 if ỹe /∈ QA

Y then
14 QF

Y = QF
Y ∪{ỹ

e};
15 if ỹe is energy safe then
16 if there exists a run from ye

0: ye
0
γ0
−−→ ze

0
e0
−−→ ye

1 · · ·
γn−1
−−−→ ze

n−1
e
−→ ỹe and

∃ j < n, s.t. ye
j 4 ỹe then

17 Stop searching from ỹe, S ub(ỹe) = ye
j, QF

l = QF
l ∪{ỹ

e},
QF

lg = QF
lg∪{ỹ

e};
18 else
19 FirstCycle1(ỹe,FCPEC);
20 else
21 Stop searching from ỹe, QF

l = QF
l ∪{ỹ

e}, QF
lb = QF

lb∪{ỹ
e};

We call a QF
Y state as Y-state and a QF

Z state as Z-state. A Z-state ze is deadlock free if

∀x ∈ Est(IE(ze)), ∃e ∈ Γ(ze), s.t. f (x,e)!, i.e., there is an enabled event at every state in the state

estimate of ze. Otherwise, ze is a deadlocking state. Since there are no unobservable loops in G by

Assumption V.3.1, a deadlock free Z-state always has f F
zy transitions defined out of it.

105

Algorithm V.2: Construction of the FCEIC for Problem V.3.2
Input : G, v0
Output : FCEIC = (QF

Y ,Q
F
Z ,E, f F

yz , f F
zy ,Γ,y

e
0,Q

F
l ,v0)

1 QF
Y = {ye

0}, QF
Z = ∅, QF

l = ∅;
2 FirstCycle2(ye

0,FCEIC);
3 Return FCEIC;

Procedure: FirstCycle2(ye,FCEIC)
4 for γ ∈ Γ do
5 Let ze be a γ-successor of ye;
6 if ze is deadlock free then
7 Add transition ye γ

−→ ze to f F
yz ;

8 if ze /∈ QF
Z then

9 QF
Z = QF

Z ∪{z
e};

10 for eo ∈ γ∩Eo do
11 Let ỹe be an eo-successor of ze;

12 Add transition ze eo
−−→ ỹe to f F

zy ;
13 if ỹe /∈ QA

Y then
14 QF

Y = QF
Y ∪{ỹ

e};

15 if there exists a run from ye
0: ye

0
γ0
−−→ ze

0
e0
−−→ ye

1 · · ·
γn−1
−−−→ ze

n−1
e
−→ ỹe and

∃ j < n, s.t. ye
j 4 ỹe then

16 Stop searching from ỹe, S ub(ỹe) = ye
j, QF

l = QF
l ∪{ỹ

e},
QF

lg = QF
lg∪{ỹ

e};

17 if There exists a run from ye
0: ye

0
γ0
−−→ ze

0
e0
−−→ ye

1
γ1
−−→ ze

1 · · ·
γn−1
−−−→ ze

n−1
e
−→ ỹe

and ∃ j < n, s.t. ỹe ≺ ye
j then

18 Stop searching from ỹe, QF
l = QF

l ∪{ỹ
e}, QF

lb = QF
lb∪{ỹ

e};
19 else
20 FirstCycle2(ỹe,FCEIC);

106

The FCEIC in general describes a game between the supervisor and the environment. A Y-

state is an energy information state where the supervisor issues control decisions. If the supervisor

issues an admissible control decision γ, a f F
yz transition is defined out of a Y-state, which follows

the definition of γ-successor. While a Z-state is an augmented energy information state, where

the environment plays by selecting observable events to occur from the events enabled by the

supervisor. When a particular observable event eo is selected to occur by the environment, a f F
zy

transition is defined out of a Z-state, which follows the definition of eo-successor. Then it is again

the supervisor’s turn to make the next control decision. This is in consistent with the mechanism

of supervisory control under partial observation where the supervisor’s decision gets updated with

occurrence of observable events. In this manner, the two players take turns to play and a game is

formed.

The procedure FirstCyclei where i ∈ {1,2} in either algorithm builds the state space of the

FCEIC by a depth-first search like process. We first discuss FirstCycle1 in Algorithm 11. In

this process, we only add deadlock free Z-states to the structure and ensure that there are events

enabled at every state in the state estimate of any Z-state. In lines 15, 16 and 17 of Algorithm 11,

if the newly added energy safe state ỹe subsumes a non-leaf state ye
j on the run starting from the

initial state, then we know that the two energy information states share the same state estimate but

the new state ỹe has a nondecreasing energy level vector compared with ye
j. We also know that

some simple cycles with nonnegative payoffs are formed in the system for the first time. Then we

terminate searching and add the new state as a leaf state of the FCEIC. That is why we call this

structure first cycle energy inclusive controller. In the following sections, we will explain in more

detail why it is sufficient to consider simple cycles to solve Problem V.3.1. On the other hand, if a

new Z-state or Y-state is not energy safe, we stop searching since the system’s energy level drops

below 0 at some state, thus the second requirement in Problem V.3.1 is violated.

Similarly for FirstCycle2 of Algorithm 12, in lines 15 and 17, if the newly added state ỹe

subsumes or is subsumed by an existing state on the run from initial state ye
0, we know that the

two energy information states share the same state estimate but ỹe may have a nondecreasing or

107

decreasing energy level vector compared with the existing state. We also know that some simple

cycles with nonnegative or negative payoffs are formed in the system for the first time. Then we

terminate searching and add the new state as a leaf state. Since Problem V.3.2 does not require

nonnegative energy level, the states created by FirstCycle2 are not necessarily energy safe.

Next, we partition leaf Y-states as: QF
l = QF

lg∪QF
lb where QF

lg represents good leaf states and

QF
lb represents bad leaf states. In the FCEIC for Problem V.3.1, a good leaf state is energy safe and

subsumes a non-leaf state, while a bad leaf state is energy unsafe. If a good leaf state is reached,

there are simple cycles with nonnegative payoffs in the system and the system’s energy level would

be nonnegative forever if those cycles are traversed indefinitely. However, if a bad leaf state is

reached, the energy level of the system drops below 0 by some strings. Similarly, in the FCEIC for

Problem V.3.2, a good leaf state subsumes a non-leaf state while a bad leaf state is subsumed by a

non-leaf state. If a good leaf state is reached, we know there exist simple cycles with nonnegative

payoffs in the system; while if a bad leaf state is reached, there exist simple cycles with negative

payoffs. In both algorithms, we use S ub(ye) to store the preceding state subsumed by good leaf

state ye. Actually, the goal of the supervisors in both Problem V.3.1 and Problem V.3.2 is to reach

good leaf states but to avoid bad ones, which is explained in more detail later on. Finally, if no

state subsumes another, we call FirstCycle recursively in both algorithms until no more new states

are added to the structure.

We now show that Algorithm 11 and Algorithm 12 converge in finite steps and return a finite

and acyclic structure.

Theorem V.4.2. Algorithm 11 returns a finite structure.

Proof. By contradiction, assume that the FCEIC is infinite. Since E, Γ ⊆ 2E and Eo are finite, the

number of transitions defined at each state in the structure is finite. Then by König’s lemma (see,

e.g., [69]) and Algorithm 11, there exists an infinite run ye
0
γ0
−−→ ze

0
e0
−−→ ye

1
γ1
−−→ ze

1 · · · in the FCEIC

such that it is never the case that ∃ye
i ,y

e
j, i < j, s.t. ye

i 4 ye
j. However, this contradicts with the fact

that 4 is a well-quasi ordering on energy safe energy information sates.

108

Theorem V.4.3. Algorithm 12 returns a finite structure.

Proof. Prove by contradiction. Assume that the FCEIC is infinite. Since E, Γ ⊆ 2E and Eo are

finite, the number of transitions defined at each state in the structure is finite. Then by König’s

lemma (see, e.g., [69]), there exists an infinite run ye
0
γ0
−−→ ze

0
e0
−−→ ye

1
γ1
−−→ ze

1 · · · in the FCEIC such that

it is neither the case that ∃ye
i ,y

e
j, i < j, s.t. ye

i 4 ye
j nor the case that ye

j ≺ ye
i . That means there

exist ye
i , ye

j (i < j) and integers k 6= l s.t. Est(ye
i) = Est(ye

j), Lev(ye
i)(k) ≤ Lev(ye

j)(k) and Lev(ye
i)(l) >

Lev(ye
j)(l) for elements in Lev(ye

i) and Lev(ye
j). Hence there exist two simple cycles in G: x1

e1
−−→

x2 · · ·
en
−−→ x1 and x′1

e′1
−−→ x′2 · · ·

e′n
−−→ x′1 s.t. x1, x′1 ∈ Est(ye

i), P(e1 · · ·en) = P(e′1 · · ·e
′
n), ω(e1 · · ·en) ≥ 0

and ω(e′1 · · ·e
′
n) < 0. However, this contradicts with Assumption V.3.2 that G is with unambiguous

cycle payoffs.

As for the space complexity of the FCEIC, the size of its state space is bounded by Ackermann

function [92] following a similar argument as in [87], which solved energy games by “unfolding”

the game graph until a simple cycle is formed.

Example V.4.1. In this example, we construct a first cycle energy inclusive controller following Al-

gorithm 11. Let the system G in Figure V.2 be with Eo = {o1,o2,o3,o4}, Euo = {a1,a2,a3,a4,b1,b2,c1,c2,c3,c4.c5},

Ec = {c1,c2,c3,c4,c5}, Euc = {a1,a2,a3,a4,b1,b2,o1,o2,o3,o4}. The weight of each event is shown

in the figure and the system has initial energy v0 = 3. Then all admissible control decisions are:

γ0 = Euc, γ1 = {c1,c2} ∪ Euc, γ2 = {c3} ∪ Euc, γ′2 = {c3,c5} ∪ Euc, γ3 = {c4} ∪ Euc, γ4 = {c1} ∪ Euc,

γ5 = {c2}∪Euc.

Then we follow Algorithm 11 to build the FCEIC in Figure V.3. For simplicity of the graph, we

do not put the energy level vectors in the figure but show them in Table V.4.1. The elements in each

energy level vector are placed in the same order as the order of states in the state estimate.

In the FCEIC, the game is initiated from ye
0 where the only feasible control decision is γ0. If

the supervisor plays γ0, a Z-state ze
0 is reached where the environment selects observable event o1

to occur. Then the supervisor takes the turn to play at ye
1 and the rest of the structure is interpreted

in a similar way. Notice that at ye
2, the supervisor should not issue control decision γ2 to enable

109

state name state components
ye

0 {{x0},3}
ze

0 {{x0, x1, x2}, [3,1,0],γ0}

ye
1 {{x3, x4}, [2,1]}

ze
1 {{x3, x4, x5, x6, x7, x8, x9, x10}, [2,1,5,2,7,2,6,5],γ1}

ye
2 {{x12},4}

ze
2 {{x12},4,γ0}

ye
2−2 {{x12},6}
ze

8 {{x9, x12, x14}, [0,4,3],γ′2}
ye

2−3 {{x12},−2}
ye

2−4 {{x12},6}
ye

3 {{x13},2}
ze

3 {{x13},2,γ0}

ye
3−2 {{x13},4}
ze

9 {{x10, x13, x15}, [1,2,1],γ3}

ye
3−3 {{x13},−2}

ye
3−4 {{x13},4}
ze

4 {{x3, x4, x5, x7}, [2,1,5,7],γ4}

ye
1−2 {{x3, x4}, [3,2]}
ze

5 {{x3, x4, x6, x8}, [2,1,2,2],γ5}

ye
1−3 {{x3, x4}, [3,2]}
ze

6 {{x3, x4}, [2,1],γ0}

ye
1−4 ye

1−4 = {{x3, x4}, [3,2]}
ye

1−5 ye
1−5 = {{x3, x4}, [3,2]}

Table V.1: Energy and augmented energy information states in Figure V.3

𝑥"

𝑥#
𝑏%,2

𝑜',-2

𝑜%,1𝑜%,1
𝑥% 𝑥'

𝑎%,𝑎), [-1,-2] 𝑎',𝑎*, [-1,-3]

𝑥) 𝑥*𝑜%,1 𝑜%,1𝑜%,1

𝑥+

𝑐%,3

𝑥-

𝑥.
𝑜%,1

𝑐',1
𝑏', 0

𝑥/ 𝑥%"

𝑐',1 𝑐%,3
𝑜),-3𝑥%'

𝑐),-1

𝑥%)

𝑐*,-1

𝑜*,2

𝑥%* 𝑥%+

𝑏', 0

𝑜*,2

𝑐+,-3

Figure V.2: The automaton G in Example V.4.1

c3 but to disable c5. Otherwise, a deadlocking Z-state ze
7 is reached since no event can occur

at x14 if c5 is disabled. Here ze
7 is not included in the FCEIC by Algorithm 11. Meanwhile, we

110

𝑥"

{𝑥",	𝑥#,𝑥%}, 𝛾"

{𝑥', 𝑥(}

{𝑥',	𝑥(},	𝛾"

𝛾)

𝛾"

𝑜#

𝑜%

𝑜#{𝑥',	𝑥(,	𝑥),	
𝑥+}, 𝛾(

𝛾({𝑥', 𝑥(, 𝑥,,
𝑥-},	𝛾)

{𝑥',	𝑥(,	𝑥),	𝑥,, 𝑥+, 𝑥-,
𝑥.,	𝑥#"},	𝛾#

𝛾# 𝑜#
𝑜'𝑥#% 𝑥#'

𝛾%

{𝑥#%},	𝛾"

{𝑥.,	𝑥#%,	𝑥#(},	
𝛾%

{𝑥#'},	𝛾"

{𝑥#",𝑥#',	𝑥#),	},
𝛾'

𝛾'

𝑜(𝑜(

𝑜#{𝑥',	𝑥(}%% {𝑥',	𝑥(}'%

{𝑥#%}% {𝑥#'}%

𝑦#3%4 𝑦#3'4𝑧)4

{𝑥',	𝑥(}#%

𝑧"4
𝑧(4

𝑦#4

𝑦"4

𝑧,4

𝑦%4 𝑦'4

𝑧%4 𝑧'4

𝑜#{𝑥',	𝑥(}(%
𝑦#3(4

{𝑥#'}' {𝑥#'}(
𝑜(𝑜'

𝑧#4

𝑦%3%4

𝑦'3'4 𝑦'3(4
𝑦'3%4

𝑦#3)4

{𝑥.,	𝑥#%,	𝑥#(},
𝛾′2

𝛾′%

{𝑥#%}'

𝑜%
{𝑥#%}(

𝑜(

𝑦%3'4 𝑦%3(4

𝑧+4 𝑧-4 𝑧.4

𝛾" 𝛾"

𝛾"

Figure V.3: The First Cycle Positive Energy Controller in Example V.4.1(without ze
7)

calculate the energy level vector of each state. For example, Est(ye
0) = {x0}, Lev(ye

0) = v0 = 3;

since ze
0 is the γ0-successor of ye

0, we have that Est(IE(ze
0)) = URγ0(Est(ye

0)) = {x0, x1, x2}, hze
0
(x1) =

min{ω(a1),ω(a3)} = 1, hze
0
(x2) = min{ω(a2),ω(a4)} = 0 and ze

0 = {{x0, x1, x2}, [3,1,0],γ0}; since ye
1

is the o1-successor of ze
1, we have that Est(ye

1) = Nexto1({{x0, x1, x2}) = {x3, x4}, hye
1
(x3) = hze

0
(x1) +

ω(o1) = 2, hye
1
(x4) = hze

0
(x2) +ω(o1) = 1 and ye

1 = {{x3, x4}, [2,1]}.

From the table, we find that ye
1 4 ye

1−2, ye
1 4 ye

1−3, ye
1 4 ye

1−4, ye
1 4 ye

1−5, ye
2 4 ye

2−2, ye
2 4 ye

2−4,

ye
3 4 ye

3−2 and ye
3 4 ye

3−4 by evaluating their energy level vectors. We also find two energy unsafe

states ye
2−3 and ye

3−3 since Lev(ye
2−3) = −2 and Lev(ye

3−3) = −2. We stop searching from the leaf

states in Figure V.3, then have good leaf states QF
lg = {ye

1−2,y
e
1−3,y

e
1−4,y

e
1−5,y

e
2−2,y

e
2−4,y

e
3−2,y

e
3−4}

and bad leaf states QF
lb = {ye

2−3,y
e
3−3}. For example, when ye

1−2 is reached, we locate three simple

cycles with nonnegative payoffs in automaton G: x3
c1
−−→ x5

b1
−−→ x7

o1
−−→ x3 with payoff 6, x3

o1
−−→ x3 with

payoff 1 and x4
o1
−−→ x4 with payoff 1. The bad leaf states actually come from the two simple cycles

with negative payoffs in G: x9
o2
−−→ x12

c3
−−→ x14

c5
−−→ x9 with payoff −6 and x10

o3
−−→ x13

c4
−−→ x15

b2
−−→ x10

with payoff −4. Those two cycles should be avoided if we want to solve Problem V.3.1.

Example V.4.2. The system G is the same as the one in Example V.4.1 and we construct a first

111

cycle energy inclusive controller following Algorithm 12. It happens that the FCEIC is the same

as the one in Figure V.3. Specifically, ye
2−3 ≺ ye

2 and ye
3−3 ≺ ye

3, so ye
2−3 and ye

3−3 are also bad leaf

states in this example. They are due to the two simple cycles with negative payoffs mentioned at the

end of Example V.4.1. Again, those two cycles should be avoided if we want to solve Problem V.3.2.

V.5 Mean Payoff Decision Problems

In this section, we first discuss some properties of the first cycle energy inclusive controller

(FCEIC), then partially solve Problem V.3.1 and Problem V.3.2 by synthesizing a supervisor that

satisfies the first two requirements in each problem. As was mentioned earlier, the first two con-

ditions in both problems constitute the so-called mean payoff decision problems. The last require-

ment in both problems, i.e., the optimization issue, will be discussed and addressed in the next

section. Since the following analysis apply to both FCEICs returned by Algorithm 11 and Algo-

rithm 12, we will not distinguish them but just use the term “FCEIC” when there is no confusion.

By definition, the runs in the FCEIC (defined by both Algorithms 11 and 12 are the finite

control-observation sequences discussed in the last section. We denote by Run(F) the set of runs

in the FCEIC. Given r f ∈ Run(F), we denote by ye ∈ r f and ze ∈ r f if ye (respectively ze) is a Y-state

(respectively Z-state) in r f . We also let LastY(r f) and LastZ(r f) be the last Y-state and Z-state of

r f , respectively. Besides, we denote by Runy(F) (respectively Runz(F)) the set of runs whose last

states are Y-states (respectively Z-states).

Then we discuss strategies of both players in the FCEIC. Define the supervisor’s strategy (con-

trol strategy) as πs : Runy(F)→ Γ and environment’s strategy as πe : Runz(F)→ Eo. Both players

select a transition according to their strategies when it is their turn to play. Since the supervisor only

has partial observation of the system and makes decisions from state estimates, we call its strategy

observation based. Denote the set of all supervisor’s strategies by Πs and the set of all environ-

ment’s strategies by Πe. If the supervisor plays πs while the environment plays πe from the initial

state ye
0, then a unique initial run, denoted by r f (πs,πe), is generated. We also let Run(ye,πs) =

112

{ye γ1
−−→ ze

1
e1
−−→ ye

2 · · ·
γn−1
−−−→ ze

n−1
en−1
−−−→ ye

n : ∀i < n,γi = πs(ye γ1
−−→ ze

1
e1
−−→ ye

2 · · ·
γi−1
−−−→ ze

i−1
ei−1
−−−→ ye

i)} be the

set of runs starting from ye and consistent with control strategy πs, i.e., the control decisions in the

run are specified by πs.

In the FCEIC, we say the supervisor wins the game if only good leaf states are reached, other-

wise, the environment wins the game if bad leaf states are reached. So the game on the FCEIC is a

zero sum safety game. The game on the FCEIC is of full observation after introducing the energy

information states and either the supervisor or the environment has a winning strategy from any

state in the FCEIC, since safety games are determined [4].

A strategy πi ∈ Πi for player i ∈ {s,e} in the FCEIC is information state based if the decisions

only depend on the current energy or augmented energy information state. In other words, πi ∈ Πi

is information state based if πi(r f) = πi(r′f) for all r f ,r′f ∈ Run(F) such that Last(r f) = Last(r′f).

Therefore, information state based strategies for the supervisor and the environment can be rep-

resented by πs : QF
Y → Γ and πe : QF

Z → Eo, respectively. We also call an information state based

strategy positional. From existing results, see, e.g. [4, 43], positional strategies are sufficient to

win a finite safety game so in the following discussion, we assume that both players’ strategies are

positional.

Following the transitions in the FCEIC, we can specify control decisions from Y-states and

the control decisions are updated after observable events occur from Z-states. Thus the control

strategies in the FCEIC work in the same way as standard partial observation supervisors. In

the following discussion, we will use the words “supervisor” and “supervisor’s strategy (control

strategy)” interchangeably.

We define the supervisor’s winning region Wins as the set of states from which the supervisor

has a strategy to reach good leaf states for sure regardless of the environment’s strategies. To solve

Problem V.3.1 or Problem V.3.2, the supervisor should only reach good leaf states. Actually, the

procedures to obtain Wins for both problems are the same after the FCEIC is given. Hence we

present one unified algorithm, i.e., Algorithm 13, to compute Wins for Problem V.3.1 or Prob-

lem V.3.2.

113

Algorithm V.3: Compute the winning region of the FCEIC
Input : FCEIC returned by Algorithm 11 or Algorithm 12
Output : Wins for Problem V.3.1 or Problem V.3.2

1 while ∃ye ∈ QF
Y \QF

lg, s.t. ye has no successor do
2 Remove ye and all ze ∈ QF

Z , s.t. f F
zy(ze,eo) = ye for some eo ∈ Eo;

3 Take the accessible part of the structure;
4 Denote the remaining structure by FCEICw and return the states in it;

In Algorithm 13, all bad leaf states are removed first as well as their preceding Z-states. Then

we further prune away Y-states that have no successor states and their preceding Z-states in an

iterative manner until no more states are removed. Notice that when we prune away a Y-state, we

also need to remove all its preceding Z-states, otherwise the already enabled observable events are

blocked from happening. However, when a Z-state is removed, we only remove its preceding Y-

state if the Y-state has no successors, since the supervisor is still able to avoid the removed Z-state

when it has other successors.

Algorithm 13 is similar to the standard procedure of calculating attractors and winning regions

of graph games in a fixed point calculation manner [4]. Besides, it is also similar to calculating

the supremal controllable sublanguage in nonblocking supervisory control problem under full ob-

servation [23]: the bad leaf states are viewed as undesirable marked states while the good leaf

states are viewed as desirable ones; besides, f F
yz transitions are viewed as controllable while f F

zy

transitions are viewed as uncontrollable. In this way, we make sure that only good leaf states are

reached under certain control strategies. In other words, any control strategy in the FCEICw is a

winning control strategy in the FCEIC, and vice versa. It is possible that Algorithm 13 returns an

empty set thus the environment always wins the game regardless of the supervisor’s strategies.

Then we argue that if there exists a winning control strategy in the FCEIC, i.e., Wins is not

empty, then there always exists a supervisor solving the mean payoff decision problem of Prob-

lem V.3.1 or Problem V.3.2. The idea is straightforward. If only good leaf states are reached under

a wining control strategy πs in the FCEIC, then only simple cycles with nonnegative payoff are

formed in the supervised system. Since a belief function in an energy information state returns the

114

minimum string payoff by Theorem V.4.1, the payoffs of all strings with the same observation and

reaching the same state are nonnegative if the minimum string payoff is nonnegative.

We let the supervisor make the same decision whenever the state estimate of a good leaf state is

reached again. Intuitively speaking, the supervisor “ignores” the actual energy level of the system

and just views the game starting from a good leaf state ye as the same game that starts from the

state subsumed by ye. We can imagine that ye is “merged” with S ub(ye) by letting all transitions

going to ye lead to S ub(ye) instead. In this way, the supervisor perpetually completes cycles with

nonnegative payoffs since every simple cycle has a nonnegative payoff. So the limit mean payoff

of every infinite run in the supervised system is also nonnegative.

Since there are no deadlocking Z-states and every Y-state has successors in the FCEICw, we

may show that the supervised system by any control strategy in the FCEICw is live, following a

similar argument as in Section V of [126]. Overall, any control strategy in the FCEICw solves the

mean payoff decision problem of Problem V.3.1 or Problem V.3.2. Conversely, we claim that if

the mean payoff decision problem has solutions, then we can find winning control strategies in

the FCEIC returned by either Algorithm 11 or 12. Formally speaking, the following two theorems

hold.

Theorem V.5.1. There exists a supervisor solving the mean payoff decision problem of Prob-

lem V.3.1 if and only if the supervisor has a winning strategy in the FCEIC defined by Algorithm 11.

Proof. The “only if” part. We show by contrapositive, i.e., if there does not exist a winning control

strategy in the FCEIC, then there does not exist a supervisor solving the mean payoff decision

problem. If no winning control strategy exists, then Wins is empty by Algorithm 11. So ∀πs ∈ Πs,

∃πe ∈Πe, s.t. LastY(r f (πs,πe)) ∈ QF
l ⇒ LastY(r f (πs,πe)) ∈ QF

lb, i.e, no matter what decisions made

by the supervisor, there always exist runs ending in bad leaf states. Therefore for πs, there always

exists a run r consistent with πs in the supervised system such that V(r) < 0, i.e., the supervised

system’s energy level becomes negative under πs for some string. That is to say, no supervisor

solves the mean payoff decision problem.

The “if” part. Suppose that πs is a winning control strategy in the FCEIC. We follow Algo-

115

rithm 13 and obtain Wins and FCEICw, so πs is also in the FCEICw. In the following discussion,

we imagine that all transitions leading to a leaf state ye in the FCEICw lead to S ub(ye) so that the

game on the FCEICw becomes infinite-duration. That is, ∀r f = ye
0
γ0
−−→ ze

0
e0
−−→ ye

i · · ·
γn−1
−−−→ ze

n−1
en−1
−−−→

ye
n ∈ Run(ye

0,πs) where ye
0 is the initial state of the FCEIC, if ye

n ∈ QF
lg, then we extend the domain

of πs by letting πs(r f) = πs(ye
0
γ0
−−→ ze

0
e0
−−→ ye

i · · ·
em−1
−−−→ ye

m) for some m < n and ye
m � ye

n. Whenever

Est(ye
n) is reached again, the control strategy (supervisor) makes the same decision as if Est(ye

n) is

reached for the first time. By perpetually making the same decision whenever a state estimate is

reached, the supervisor guarantees that the energy level in the supervised system never becomes

negative since all states in the FCEICw are energy safe and only cycles with nonnegative payoffs

are formed and traversed infinitely often.

Finally, the system under the constructed supervisor is live following a similar argument as in

Section V of [126]. Thus πs solves the decision problem of Problem V.3.1.

Theorem V.5.2. There exists a supervisor solving the mean payoff decision problem of Prob-

lem V.3.2 if and only if the supervisor has a winning strategy in the FCEIC defined by Algorithm 12.

Proof. The proof is similar to that of Theorem V.5.1. We just substitute the argument of limit mean

payoff for the argument of the total payoff to show this result.

Therefore, we have shown that we can transform the mean payoff decision problem for Prob-

lem V.3.1 (Problem V.3.2) into a safety game under perfect information on the FCEIC and solve

it by finding winning control strategies. We have also shown the soundness and completeness of

Algorithms 11 and 12.

Example V.5.1. We revisit Example V.4.1 (Example V.4.2) to find the winning regions of the FCEIC

following Algorithm 13. Since the good (bad) leaf states in both examples coincide, the winning

regions for both examples remain the same. The FCEICw is shown in Figure V.4, where green

dashed lines connect each good leaf state with the state subsumed by it, indicating that the super-

visor always makes the same decision from the two connected states. So the game is extended to

be infinite-duration. In building the FCEICw, red states ye
2−3 and ye

3−3 in Figure V.3 are bad leaf

116

states, thus are pruned by Algorithm 13. Meanwhile, good leaf states ye
2−4 and ye

3−4 are also re-

moved as they become no longer accessible from the initial state ye
0 after their preceding Z-states

ze
8 and ze

9 are removed. That means that the supervisor should not choose γ′2 at ye
2 or γ3 at ye

3,

otherwise, the environment can choose o2 at ze
8 or o3 at ze

9 to reach some bad leaf states and win

the game.

Then we locate a winning control strategy, which is indicated by blue lines in Figure V.4. As is

seen, the supervisor S issues γ0 at ye
0, γ1 at ye

1, γ0 at ye
2 and γ0 at ye

3. If the supervisor makes those

decisions infinitely often, then only cycles with nonnegative payoffs are formed in the supervised

system. Finally we show the supervised system under this strategy in Figure V.5. Compared with

the original system in Figure V.2, the cycles with a negative payoff have been broken. Then it is

easy to verify that the supervised system is live and all infinite runs have a positive limit mean

payoff. So S solves the mean payoff decision problem of Problem V.3.1 (Problem V.3.2).

𝑥"

{𝑥",	𝑥#, 𝑥%},	𝛾"

{𝑥', 𝑥(}

{𝑥',	𝑥(}, 𝛾"

𝑜#

𝑜%

𝑜#{𝑥',	𝑥(,	𝑥*,	
𝑥+}, 𝛾(

{𝑥', 𝑥(, 𝑥,,
𝑥-}, 𝛾*

{𝑥',	𝑥(,	𝑥*,	𝑥,, 𝑥+, 𝑥-,
𝑥.,	𝑥#"},	𝛾#

𝑜#

𝑜'
𝑥#% 𝑥#'

{𝑥#%}, 𝛾" {𝑥#'},	𝛾"
𝑜(𝑜(

𝑜#
{𝑥',	𝑥(}%% {𝑥',	𝑥(}'%

{𝑥#%}% {𝑥#'}%

𝑧*2

{𝑥',	𝑥(}#%

𝑧"2

𝑧(2

𝑦#2

𝑦"2

𝑧,2

𝑦%2 𝑦'2

𝑧'2

𝑜#{𝑥',	𝑥(}(%

𝑧%2
𝑧#2

𝑦#4%2 𝑦#4'2

𝑦#4(2

𝑦%4%2 𝑦'4%2
𝑦#4*2

𝛾*

𝛾"

𝛾(

𝛾#

𝛾" 𝛾"

𝛾"

Figure V.4: The FCEICw with dashed green lines connecting good leaf states with their subsumed
states; Wins is the set of all states

117

𝑥"

𝑥#
𝑏%,2

𝑜',3

𝑜%,1𝑜%,1
𝑥% 𝑥'

𝑎%,𝑎), [-1,-2] 𝑎',𝑎*, [-1,-3]

𝑥) 𝑥*𝑜%,1 𝑜%,1𝑜%,1

𝑥+

𝑐%,3

𝑥-

𝑥.
𝑜%,1

𝑐',1
𝑏', 0

𝑥/ 𝑥%"

𝑐',1 𝑐%,3
𝑜),-1𝑥%' 𝑥%)

𝑜*,2 𝑜*,2

Figure V.5: A supervisor solving the mean payoff decision problem

V.6 Mean Payoff Optimization Problems

In the preceding section, we investigated the mean payoff decision problems of both Problem V.3.1

and Problem 12. Among the potentially multiple control strategies in the FCEICw, we find an opti-

mal one and completely solve both problems in this section. As there is no difference between the

procedures of obtaining the optimal control strategies for the two problems, we present a uniform

optimization approach in this section.

In the FCEICw, we denote by Run(Fw) the set of runs and Runlea f (Fw) the set of runs ending

in a good leaf state, respectively. Given a run r f = ye
0
γ0
−−→ ze

0
e0
−−→ ye

1 · · ·
γn−1
−−−→ ze

n−1
en−1
−−−→ ye

n ∈ Run(Fw)

with ye
j 4 ye

n for some j < n where ye
n is a leaf state, we know that simple loops with nonnegative

payoffs are generated from each state in state estimate I(ye
j).

In order to determine the mean payoffs of strings generated by runs in the FCEICw, we need

to know exactly what observable and unobservable events are in the string. However, we only

know the occurrence of observable events from transitions in the FCEICw since the unobservable

transitions are within each state. In order to explicitly show the inner connections between states by

unobservable strings inside each Y-state or Z-state in the FCEICw, we introduce a new automaton

called the Energy Inter Connected System (EICS), which is inspired by the Inter Connected System

proposed in [125].

Definition V.6.1 (Energy Inter Connected System (EICS)). Given the FCEICw w.r.t. system G, its

118

corresponding Energy Inter Connected System (EICS) is defined as:

EICS = (QEICS ,EEICS , f EICS ,qEICS
0 ,QEICS

l)

where:

• QEICS ⊆ (QF
Y ×X)∪ (QF

Z ×X) is the state space such that:

- (ye, x) ∈ QEICS if ye ∈ QF
Y and x ∈ I(ye);

- (ze, x) ∈ QEICS if ze ∈ QF
Z and x ∈ I(IE((ze));

• EEICS = E∪Γ is the set of events in the EICS;

• f EICS : QEICS ×EEICS → QEICS is the partial transition function defined as: ∀γ ∈ Γ, ∀e ∈ E:

- f EICS ((ye, x1),γ) = (ze, x2) if x1 = x2 in G and f F
yz(ye,γ) = ze in the FCEICw;

- f EICS ((ze, x1),e) = (ze, x2) if f (x1,e) = x2 in G and e ∈ Γ(ze)∩Euo;

- f EICS ((ze, x1),e) = (ye, x2) if f (x1,e) = x2 in G, e ∈ Γ(ze)∩ Eo and f F
zy(ze,e) = ye in the

FCEICw;

• qEICS
0 = {ye

0, x0} is the initial state;

• QEICS
l = {(ye, x) ∈ QEICS : ye ∈ QF

lg in the FCEICw} is the set of leaf states.

Intuitively, the EICS is similar to the structure obtained from parallel composition between the

FCEICw and the system G. It explicitly shows both observable and unobservable reaches between

and within states of the FCEICw. The state components in the EICS are from the FCEICw and

G. There are three types of f EICS transitions defined in the EICS. The first type indicates the

supervisor’s decisions from certain states of the system, so the first component of an EICS state

changes from a Y-state to its succeeding Z-state in the FCEICw while the second component stays

the same. The second type indicates the unobservable reaches within Z-states in the FCEICw, so the

first state component of (ze, x1) stays the same while the second component becomes x2 = f (x1,e)

119

under e ∈ Γ(ze)∩ Euo. The third type indicates observable reaches between Y-states and Z-states

in the FCEICw, so the first component gets updated from a Z-state to its succeeding Y-state in the

FCEICw and the second component also gets updated by the enabled observable event. With the

EICS built, we are able to explicitly see how simple cycles are formed under control decisions in

the FCEICw.

By definition, the EICS is an acyclic structure whose leaf states contain leaf states of the

FCEICw. Those states also indicate simple cycles in the FCEICw. For a leaf state (ye, x) ∈ QEICS
l ,

we are able to track simple loops starting from x ∈ Est(ye) by following transitions between (ỹe, x)

and (ye, x), where ỹe � ye. We define Lpsim(ye, x) = {t ∈ E∗ : ∃r f = ye
0
γ0
−−→ ze

0
e0
−−→ ye

1 · · ·
γn−1
−−−→ ze

n−1
en−1
−−−→

ye ∈ Run(Fw),s.t. ∃ j < n,ye
j � ye, t ∈ S tr(ye

j

γ j
−−→ ze

j

e j
−→ ·· ·

γn−1
−−−→ ze

n−1
en−1
−−−→ ye), f (x, t) = x} as the set of

such simple loops. For a simple loop t ∈ Lpsim(ye, x), we denote by Vsl(t) =
ω(t)
|t| its mean payoff.

Furthermore, we define Vlea f : Runlea f (Fw)→R to characterize the (limit) mean payoff of runs

ending in a leaf state of the FCEICw. For a run r f ending in a leaf state ye, we have Vlea f (r f) =

min
x∈Est(ye)

min
t∈Lpsim(ye,x)

Vsl(t), i.e., the minimum possible mean payoff of all simple loops formed from

states in Est(ye). We take the minimum mean payoff among simple loops to characterize the (limit)

mean payoff of the run, since only the cyclic part of a run contributes to the limit mean payoff and

the supervisor needs to maximize the worst case limit mean payoff. With a slight abuse of notation,

we also use Vlea f (Last(r f)) to stand for Vlea f (r f).

Given a pair of strategies πs ∈ Πs and πe ∈ Πe in the FCEICw, we let r f (πs,πe) be the unique

initial run generated under (πs,πe) and its last state Last(r f (πs,πe)) ∈ QF
lg. Then we define the

optimal control strategy in the FCEICw.

Definition V.6.2 (Optimal Control Strategy in the FCEICw). Suppose that π∗s is a winning control

strategy in the FCEICw, it is optimal if min
πe∈Πe

Vlea f (r f (π∗s,πe)) = max
πs∈Πs

min
πe∈Πe

Vlea f (r f (πs,πe)).

Since both Πs and Πe are finite sets in the FCEICw, an optimal control strategy always exists

by enumeration. We may compute the mean payoffs of strings from the leaf states in the EICS and

those strings are generated under certain control strategies. Since we assume that the supervisor

always plays positional strategies, whenever a simple cycle with positive payoff is formed, the

120

supervisor would perpetually form the same cycle in the rest of the game. Furthermore, since the

limit mean payoff of a run only depends on the mean payoff of the simple cycle traversed infinitely

often, it is possible to calculate Vlea f (r f (πs,πe)) from the FCEICw.

From Definition V.6.2, the optimal supervisor is to maximize its mean payoff against the en-

vironment’s strategies, which are to minimize the supervisor’s mean payoff. So the optimization

problem can be viewed as a min-max game [83] on the FCEICw. Next, we leverage the standard

technique of backward induction [83] to determine the optimal control strategy in the FCEICw. In

this iterative procedure, the supervisor and the environment make decisions by maximization or

minimization. Here we present Algorithm 14 to find the information state based optimal control

strategy from the FCEICw to completely solve Problem V.3.1 or Problem V.3.2.

As was mentioned before, the supervisor and the environment are playing a min-max game

on the FCEICw. Algorithm 14 returns an optimal control strategy that maximizes the minimum

mean payoff against the antagonistic environment’s strategies. In Algorithm 14, the EICS is used

to determine the mean payoffs of simple loops from the leaf states of the FCEICw in line 5. For

a leaf state (ye, x) ∈ QEICS
l , we can always find another state (ỹe, x) ∈ QEICS such that ỹe � ye in

the FCIECw. Then we track f EICS transitions to find both observable and unobservable events

between (ỹe, x) and (ye, x) ∈ QEICS
l . Afterwards, we determine Lpsim(ye, x) and calculate Vsl(t) for

each t ∈ Lpsim(ye, x). There may be multiple simple loops formed from x ∈ Est(ye), with different

mean payoffs. Then we calculate Vlea f (ye), the minimum mean payoff of all possible simple loops

formed from all states in Est(ye). Vlea f (ye) is also the minimum possible mean payoff the supervi-

sor may achieve when state estimate Est(ye) is reached. Since the FCEICw is finite, Algorithm 14

always terminates.

Then we run Procedure Optimal to assign a value VF(qe) to each state qe in the FCEICw. In

this procedure, we first assign values to each leaf state, then propagate the values backwards to

determine the values of other states until the root state is assigned a value. Specifically, if the

current state is a leaf state, we just assign Vlea f to it in line 13. If the current state is a Z-state,

we assign the minimum value of its successor states to it in line 17. This corresponds to the fact

121

Algorithm V.4: Find an optimal control strategy in FCEICw

Input : FCEICw and EICS for Problem V.3.1 or V.3.2
Output : An optimal strategy πs for Problem V.3.1 or V.3.2

1 for leaf state ye in FCEICw do
2 for leaf state (ye, x) in EICS do
3 Get Lpsim(ye, x) following transitions in EICS ;
4 for t ∈ Lpsim(ye, x) do
5 Calculate Vsl(t);
6 Get Vlea f (ye) = min

x∈Est(ye)
min

t∈Lpsim(ye,x)
Vsl(t);

7 for qe ∈ QF
Y ∪QF

Z do
8 VF(qe) = Optimal(qe);
9 for ye ∈ QF

Y \QF
l do

10 Find one γ ∈ Γ, s.t. ∃ze ∈ QF
Z , f F

yz(ye,γ) = ze and VF(ye) = VF(ze);
11 Return π∗s(y

e) = γ;
Procedure: Optimal(qe)

12 for qe ∈ QF
l do

13 VF(qe) = Vlea f (qe);
14 Return VF(qe);
15 for qe ∈ (QF

Y ∪QF
Z) \QF

l do
16 if qe ∈ QF

Z then
17 VF(qe) = min

q̃e∈QF
Y

{Optimal(q̃e) : ∃eo ∈ Eo, s.t. f F
zy(qe,eo) = q̃e};

18 Return VF(qe);
19 if qe ∈ QF

Y then
20 VF(qe) = max

q̃e∈QF
Z

{Optimal(q̃e) : ∃γ ∈ Γ, s.t. f F
yz(qe,γ) = q̃e};

21 Return VF(qe);

122

that the environment is to minimize the mean payoff of the supervisor. If the current state is a

Y-state (not a leaf state), we assign the maximum value of its successor states to it in line 20. This

comes from the fact that the supervisor is to maximize its mean payoff. This procedure goes on

until a value is assigned to the initial state ye
0 of the FCEICw. When Optimal is implemented,

we can assign orders to states in the FCEICw so that a state is evaluated after all its successors

are evaluated. This is similar to the standard process of backward induction in solving min-max

games [83]. After obtaining VF values, we specify the optimal control decisions at Y-states of the

FCEICw, which constitute the optimal control strategy. When there are multiple optimal control

decisions at the current Y-state, which occurs if some of its successors have the same VF value, we

randomly choose a control decision.

After obtaining an optimal energy information state based control strategy in the FCEICw, we

can follow a similar procedure as in the last section by letting the supervisor make the same deci-

sion at the current Y-state as from the state subsumed by it. In this way, the game is extended to

infinite-duration and we obtain a supervisor that issues control decisions perpetually and generates

a live system. Besides, an energy information state based strategy is sufficient to be an optimal so-

lution to Problem V.3.1 (Problem V.3.2). Intuitively, the supervisor should always traverse a simple

cycle with highest mean payoff, while alternating between cycles with different mean payoffs does

not contribute to a higher mean payoff. We formally present this result as follows.

Theorem V.6.1. If π∗s is an energy information state based control strategy returned by Algo-

rithm 14, then we can extend π∗s to a supervisor S ∗ that solves Problem V.3.1 (Problem V.3.2).

Proof. By Algorithm 14, for every leaf state ye ∈ QF
lg, Vlea f (ye) = min

x∈Est(ye)
min

t∈Lpsim(ye,x)
Vsl(t). Let

string t∗(ye) be such that Vsl(t∗(ye)) = min
x∈Est(ye)

min
t∈Lpsim(ye,x)

Vsl(t) = Vlea f (ye). Suppose that a Z-state

ze can reach k leaf states ye
1,y

e
2, · · · ,y

e
k ∈ QF

lg, i.e., ∀i ≤ k, ∃ei ∈ Eo, s.t. f F
zy(ze,ei) = ye

i . Thus we know

that VF(ze) = min{VF(ye
1), · · ·VF(ye

k)} = min{Vsl(t(ye
1)), · · · ,Vsl(t(ye

k))}. Let string t∗(ze) be such that

Vsl(t∗(ze)) = min{Vsl(t(ye
1)), · · · ,Vsl(t(ye

k))} thus t∗(ze) is the string with the minimum loop mean

payoff. Therefore, the environment still locates the string minimum mean whose simple loop has

the minimum mean payoff, by evaluating Vlea f (ye). Also with the EICS built, we can explicitly see

123

which cyclic string has the minimum loop mean payoff.

Suppose that one preceding Y-state of ze is ỹe and ỹe has succeeding Z-states ze
1, · · · ,z

e
m (ze is

one of them). Then the supervisor chooses to maximize, i.e., VF(ỹe) = max
ze

i

VF(ze
i) where i ≤ m.

Since VF(ze
i) is the minimum mean payoff of some simple loop, then VF(ỹe) still maximizes the

minimum mean payoffs of simple loops obtained from some leaf states in the FCEICw. Thus the

supervisor loses no information when making decisions by evaluating VF(ze). By Algorithm 14,

the supervisor just chooses the control decision that maximizes VF(ze
i). Then we can repeat the

same argument and work backwards to the root state to show that by evaluating the VF values

for Y-states or Z-states, the supervisor correctly performs maximization among VF values from its

successors while the environment correctly performs minimization.

Finally, we are able to conclude that VF(ye
0) = max

πs∈Πs
min
πe∈Πe

Vlea f (r f (πs,πe)). Then we can transfer

πs to a supervisor S ∗ by the same argument as in the proof of Theorem V.5.1, i.e., imagine that each

leaf state in the FCEICw is “merged” with the state subsumed by it and let the supervisor make the

same decision whenever a state estimate is reached. By checking the transitions in the EICS, we

are also able to find a run in the supervised system S ∗/G leading to VF(ye
0) = inf

r∈Runin f (S ∗/G)
Vlim(r) =

sup
S∈S

inf
r∈Runin f (S/G)

Vlim(r) Therefore, S ∗ solves Problem V.3.1 (Problem V.3.2).

From results in [98], the time complexity of the minimax search is O(bn) and the space com-

plexity is O(bn), where b is the maximum number of choices at each point in the search tree and n

is the depth of the tree. For Algorithm 14, b = max{2|Ec|, |Eo|} and n = 2 ·2|X|+ 1 in the worst case,

where 2|Ec| is the maximum number of control decisions at a state and 2 ·2|X| + 1 is the maximum

number of states on a brunch in the FCEICw. Thus we get the complexity bound for Algorithm 14.

Given a pair of strategies (πs,πe) ∈ Πs ×Πe and an initial run r′f ∈ Run(Fw), let r f (r′f ;πs,πe)

be the run whose “prefix” is r′f and continues under πs and πe, until it ends in a leaf state of

the FCEICw. Formally, r f (r′f ;πs,πe) = r′f
γ1
−−→ ze

1
e1
−−→ ye

2
γ2
−−→ ·· ·

en
−−→ ye

n where ye
n ∈ QF

lg γ1 = πs(r′f),

e1 = πe(r′f
γ1
−−→ ze

1) and γi = πs(r′f
γ1
−−→ ze

1
e1
−−→ ye

2
γ2
−−→ ·· ·

ei
−→ ye

i), ei = πe(r′f
γ1
−−→ ze

1
e1
−−→ ye

2
γ2
−−→ ·· ·

γi
−→ ze

i)

for all 2 ≤ i ≤ n. We also write r f (r′f ;πs,πe) as r f (Last(r′f);πs,πe) since both players’ decisions

only depend on their current positions. Since the FCEICw is finite, r f (r′f ;πs,πe) is also finite. The

124

following proposition shows that the optimal control strategy returned by Algorithm 14 also enjoys

a structural property similar to subgame perfect equilibrium in game theory [83] and Bellman’s

optimality principle in dynamic programming [9].

Proposition V.6.1. Let π∗s be an energy information state based control strategy returned by

Algorithm 14, then for any initial run r′f ∈ Run(Fw), we have that min
πe∈Πe

Vlea f (r f (r′f ;π∗s,πe)) =

max
πs∈Πs

min
πe∈Πe

Vlea f (r f (r′f ;πs,πe)).

Proof. By definition, the FCEICw is an acyclic structure and the depth of its runs is thus bounded.

So there exists a positive integer m such that from its initial state, every leaf state can be reached

within m steps. Then we prove this proposition by induction on the number of steps for an initial

run to reach a leaf state of the FCPECw, i.e., we show that VF(Last(r′f)) = min
πe∈Πe

Vlea f (r f (r′f ;π∗s,πe)) =

max
πs∈Πs

min
πe∈Πe

Vlea f (r f (r′f ;πs,πe)).

Induction Basis: Consider the case when the last state of r′f is a leaf states in the FCPECw.

Then this proposition becomes Theorem V.6.1, thus it holds naturally.

Inductive Hypothesis: Suppose that the result holds for any r′f that reaches leaf states within

at most k steps, where k ≤ m− 2 for some integer m > 2. In addition, the function Optimal in the

algorithm assigns VF(Last(r′f)) = min
πe∈Πe

Vlea f (r f (r′f ;π∗s,πe)) = max
πs∈Πs

min
πe∈Πe

Vlea f (r f (r′f ;πs,πe)) to the

last state of r′f .

Induction Step: Consider r′f that reaches leaf states within at most k + 2 steps. Suppose that

Last(r′f) = LastY(r′f) = y′e. We know that there exists ze = f F
yz(y′e,γ) for some γ ∈ Γ and specifically,

z̃e = f F
yz(y′e,γ∗) for γ∗ = π∗s(y

′e,γ∗). Thus succeeding Z-state ze = f F
yz(y′e,γ) of y′e reaches a leaf state

within at most k + 1 steps. By Algorithm 14, VF(y′e) = VF(z̃e) = max
ze

VF(ze). Also some f F
zy transi-

tions are defined from ze and lead to succeeding Y-state ye which reaches the leaf states within at

most k steps. By the inductive hypothesis, min
πe∈Πe

Vlea f (r f (ye;π∗s,πe)) = max
πs∈Πs

min
πe∈Πe

Vlea f (r f (ye;πs,πe))

for any r′f with Last(r′f) = ye. Again from Algorithm 14, we know that VF(ze) = min
ye

VF(ye) =

min
ye

min
πe∈Πe

Vlea f (r f (ye;π∗s,πe)) = min
πe∈Πe

Vlea f (r f (ze;π∗s,πe)) = max
πs∈Πs

min
πe∈Πe

Vlea f (r f (ze;πs,πe)), thus the re-

sult holds for runs whose last states reach the leaf states of the FCEICw within k +1 steps. Further-

125

more, VF(y′e) = max
ze

VF(ze) = max
ze

min
πe∈Πe

Vlea f (r f (ze;π∗,πe)) = min
πe∈Πe

Vlea f (r f (y′e;π∗,πe)) = max
πs∈Πs

min
πe∈Πe

Vlea f (r f (y′e;πs,πe). Therefore the result holds for k + 2, completing the proof.

This proposition further illustrates the structure of the optimal control strategy obtained from

Algorithm 14. If the supervisor follows the strategy indicated by Algorithm 14 from its current

position, then its onward decisions still constitute an optimal strategy in the remaining game, which

can be viewed as a “subgame”. In other words, the supervisor has no incentive to deviate from its

optimal strategy given that the environment does its best to minimize the supervisor’s mean payoff.

As is seen from the proof, this result is due to the backward induction process of maximization and

minimization in Algorithm 14. Finally, we end this section with an example.

Example V.6.1. We revisit Example V.5.1 and find an optimal control strategy to solve Prob-

lem V.3.1 and Problem V.3.2 completely. First we obtain the EICS w.r.t. the FCEICw in Figure V.6.

For simplicity of the graph, we still preserve the state names from G and use dashed rectangles to

indicate the Y-states or Z-states of the FCEICw. For example, the top green dashed rectangle cor-

responds to three states in the EICS, i.e. (ze
0, x0), (ze

0, x1) and (ze
0, x2) where Est(IE(ze

0)) = {x0, x1, x2}.

Specifically, blue and green dashed rectangles correspond to the Y-states and Z-states of the

FCEICw respectively. As is seen, the EICS is a tree-like structure whose leaf states (ye
1−2, x3),

(ye
1−2, x4), (ye

1−3, x3), (ye
1−3, x4), (ye

1−4, x3), (ye
1−4, x4), (ye

1−5, x3), (ye
1−5, x4), (ye

2−2, x12) and (ye
3−2, x13)

are marked in double dark blue lines.

With the EICS built, we proceed to find the optimal control strategy by Algorithm 14. We

start by calculating the values of Vlea f for each leaf state of the FCEICw. For example, in the

EICS, there are two simple cycles between Y-states ye
1 and ye

1−2, i.e., x3
o1
−−→ x3 and x3

c1
−−→ x5

b1
−−→

x7
o1
−−→ x3. Then we obtain Vsl(o1) = 1 (for x3), Vsl(c1b2o1) = 2, Vsl(o1) = 1 (for x4). Therefore,

VF(ye
1−2) = min{1,2} = 1. Similarly, we obtain the VT values for other leaf states in the FCEICw,

which are shown in Figure V.7. Next, we apply backward induction from the leaf states until the

root state to determine an optimal control strategy. In this process, we always choose to minimize

at Z-states and maximize at Y-states. By Algorithm 14, we know VF(ze
1) = min{2, 2

3 } = 2
3 and

VF(ze
4) = VF(ze

6) = 1. Thus we have the supervisor’s decisions at each Y-state, which are indicated

126

by solid red lines in Figure V.7. An optimal supervisor enables c1 upon observing o1, as shown

in Figure V.8. Actually, it is also optimal to disable both c1 and c2 at ye
1, which yields the same

maximum worst case mean payoff.

Notice that choosing γ4 or γ6 at ye
1 is optimal in the sense that the environment also follows its

“optimal strategy” to minimize the supervisor’s limit mean payoff. If the supervisor deviates from

γ4 or γ0 and chooses γ1 at ye
1, then the environment may choose o1 at ze

1, which leads to leaf state

ye
1−5 and a potentially lower limit mean payoff 2

3 . Interestingly, if the environment also deviates

from choosing o1 from ze
1, i.e., if it chooses o2 or o3, then the supervisor should choose γ0 at ye

2 and

ye
3, which yields a better limit mean payoff for the supervisor compared with the case of choosing

γ4 at ye
1. Those two decisions are optimal in the following “subgame” given that ye

2 or ye
3 is reached

and viewed as starting points of the “subgame”. This result is consistent with Proposition V.6.1.

V.7 Conclusion

We presented an approach for synthesizing partial observation supervisors that optimize the limit

mean payoff of the system. The system is initialized with a certain amount of energy and its

energy level dynamically changes with the occurrence of events. We considered two scenarios, i.e.,

optimization of the worst case mean payoff with and without the constraint of nonnegative energy

level, then formulated two problems correspondingly. This chapter is the first to investigate such

problems. To this end, we defined energy information states and a novel bipartite structure called

First Cycle Energy Inclusive Controller (FCEIC) for each problem. Based on the FCEIC, each

problem was transformed into a finite safety game with perfect information. Then both problems

were solved sequentially. We first showed that winning strategies for the supervisor in the FCEIC

lead to partial solutions to both problems, i.e., solutions to the so-called mean payoff decision

problems. Finally we completely solved both problems by finding the optimal control strategy

among partial solutions, by leveraging results from min-max games. In the future, it would be of

interest to leverage the notion of the FCEIC and the solution methodology in this chapter to other

127

𝑥"

𝑥#

𝑜%,3

𝑥& 𝑥%
𝑎&,𝑎(, [-1,-2] 𝑎%,𝑎), [-1,-3]

𝑥(𝑥)

𝑜&,1

𝑥* 𝑥+

𝑥,
𝑐%,1

𝑥&% 𝑥&(

𝑥"

𝑥(𝑥)

𝑜&,1 𝑜&,1

𝑥(𝑥)

𝑥*

𝑥#

𝑐&,3

𝑏&,2

𝑥(𝑥)

𝑜&,1

𝑜&,1

𝑜&,1 𝑥(𝑥)

𝑥/

𝑥&"

𝑐&,3
𝑏&,2 𝑐%,1 𝑏%, 0

𝑐&,3

𝑜&,1

𝑜&,1 𝑜&,1

𝑜(,-1

𝑥&% 𝑥&(

𝑥&% 𝑥&(

𝑜),2 𝑜),2

𝑥(𝑥)

𝑜&,1 𝑜&,1

𝑥(𝑥)

𝑥*

𝑥#

𝑥(𝑥)

𝑐%,1

𝑏%, 0

𝑜&,1

𝑜&,1

𝑜&,1

𝑧"1

𝑦"1

𝑦&1

𝑧/1

𝑦(1

𝑧%1

𝑦%1

𝑧(1𝑧%1

𝑧*1𝑧)1

𝑦&3%1 𝑦&3(1

𝑦%3%1 𝑦(3%1

𝑦&3*1

𝑥(𝑥)𝑦&3)1

𝛾"

𝛾" 𝛾"

𝛾) 𝛾) 𝛾*𝛾*

𝛾&𝛾&

𝛾" 𝛾"

Figure V.6: The energy inter-connected system w.r.t. the FCEICw in Example V.5.1. The blue and
green dashed rectangles correspond to the Y-states and Z-states in the FCEICw, respectively. The
leaf states are marked in dark blue.

quantitative performance objectives. It would also be of interest to consider other assumptions that

retain decidability of the quantitative games under partial information.

128

𝑥"

{𝑥",	𝑥#, 𝑥%}, 𝛾"

{𝑥', 𝑥(}

{𝑥',	𝑥(},	{𝑢𝑐}%

𝑜#

𝑜%

𝑜#{𝑥',	𝑥(,	𝑥.,	
𝑥/}, 𝛾(

{𝑥', 𝑥(, 𝑥0,
𝑥1}, 𝛾.

{𝑥',	𝑥(,	𝑥.,	𝑥0, 𝑥/,
𝑥1, 𝑥2,	𝑥#"},	𝛾#

𝑜#

𝑜'𝑥#% 𝑥#'

{𝑥#%},	𝛾" {𝑥#'},	𝛾"
𝑜(𝑜(

𝑜#{𝑥',	𝑥(}%% {𝑥',	𝑥(}'%

{𝑥#%}% {𝑥#'}%

𝑧.4

{𝑥',	𝑥(}#%

𝑧"4𝑧(4

𝑦#4

𝑦"4

𝑧04

𝑦%4
𝑦'4

𝑧'4

𝑜#
{𝑥',	𝑥(}(%

For 𝑥': 𝑉89 𝑜# = 1
For 𝑥(: 𝑉89 𝑜# = 1

𝑉< = 1

For 𝑥': 𝑉89 𝑜# = 1
For 𝑥(: 𝑉89 𝑐%𝑏%𝑜# = %

'
𝑉< = 2/3

For 𝑥': 𝑉89 𝑜# = 1
For 𝑥(: 𝑉89 𝑜# = 1

𝑉< = 1

𝑉89 𝑜(= 2
𝑉< = 2 𝑉89 𝑜(= 2

𝑉< = 2

For 𝑥': 𝑉89 𝑜# = 1
For 𝑥(: 𝑉89 𝑐%𝑏%𝑜# = %

'
𝑉< = 2/3

𝑧%4
𝑧#4

𝑉< = 2

𝑉< = 2 𝑉< = 2

𝑉< = 2

𝑉< = 2/3

𝑉< = 1

𝑉< = 1

𝑉< = 2/3
𝑉< = 1

𝑉< = 1
𝑉< = 1𝑦#A%4 𝑦#A'4

𝑦#A(4

𝑦%A%4 𝑦'A%4

𝑦#A.4

𝛾.

𝛾"

𝛾(

𝛾#

𝛾" 𝛾"

𝛾"

Figure V.7: Optimal decisions of the supervisor at each Y-state (indicated in red) and the VF values
for each state of the FCEICw

𝑥"

𝑥#
𝑏%,2

𝑜%,1𝑜%,1
𝑥% 𝑥'

𝑎%,𝑎), [-1,-2] 𝑎',𝑎*, [-1,-3]

𝑥) 𝑥*𝑜%,1 𝑜%,1𝑜%,1

𝑥+

𝑐%,3

Figure V.8: An optimal supervisor solving Problem V.3.1 and Problem V.3.2

129

CHAPTER VI

Conclusion and Future Work

VI.1 Conclusion

In this dissertation, we solved two important problems in discrete event systems: opacity enforce-

ment and optimal supervisory control under partial observation.

For the opacity enforcement problem, we inherited and further extended the method of in-

sertion/edit functions originally proposed in [119, 122]. For both insertion functions and edit

functions, we considered two enforcement scenarios where the intruder may or may not know

the implementation of insertion/edit functions. Correspondingly, we discussed private safety and

public safety for insertion/edit functions. By transforming the opacity enforcement problem to a

two-player game between the insertion function and the environment, we showed that privately

and publicly safe insertion functions always exist if privately safe insertion functions exist. Then

we proposed the greedy-maximal criterion and developed an algorithm for synthesizing privately

safe insertion functions based on the game structure called All Insertion Structure, following this

criterion. As an extension, the problem of opacity enforcement by edit functions under constraints

was also discussed. We defined a three-player game structure called All Edit Structure to em-

bed all privately safe edit functions satisfying the generic edit constraints. It was also shown that

nondeterministic edit functions may outperform deterministic ones in enforcing public safety.

On the other hand, we also extended the method of insertion functions to quantitative settings

and discussed opacity enforcement under multiple constraints termed as energy constraints. We

130

leveraged some results from energy games and transformed the problem into a two-player game

between the supervisor and the environment. The game structure Energy Insertion Structure was

defined and we synthesized insertion functions based on it. We also investigated the problem of

synthesizing bounded cost rate insertion strategies. A special geometric technique called hyper-

plane separation was applied to solve this problem.

For optimal supervisory control, we designed supervisors to optimize the limit mean payoff

of weighted discrete event systems under partial observation. These weights capture variations of

a given resource, i.e., energy, consumed or replenished during the operation of the system. Two

cases were considered under this framework. In the first scenario, we assumed that the system

has a fixed amount of initial energy to support its operation. The goal was to design a supervisor

such that the energy never gets depleted while the worst-case limit average weight of infinite event

sequences is optimized. In the second scenario, we synthesized a supervisor to ensure that all

limit average weights are above a certain threshold, with the worst-case value optimized. The two

cases are closely related and both may be viewed as a two-player quantitative game between the

supervisor and the environment, with asymmetric information and quantitative objectives. To cope

with partial observation of the system, we introduced energy information states which incorporate

both state information and energy information for the decision making of the supervisor. Based on

this concept, we transformed the two supervisory control problems into two-player safety games

with complete information and proposed a finite bipartite structure called the First Cycle Energy

Inclusive Controller (FCEIC) for each problem. The supervisor synthesis algorithms in both cases

were performed in a backward induction manner on the corresponding FCEIC.

VI.2 Future Work

There are several potential directions for the future work. First, we only consider enforcement of

current-state opacity in Chapter II and Chapter III. It would be interesting to consider enforcement

of other types of opacity, like initial-state opacity, K-step opacity and infinite-step opacity by inser-

131

tion and edit functions. From the results in Chapter III, synthesizing privately and publicly safe edit

functions requires building the reachability tree of the All Edit Structure, which is computationally

intensive . Therefore, it would be meaningful to study alternative formulations of this problem

that mitigate this issue by, e.g., relaxing the notion of public safety or by solving the problem on a

reduced solution space. Also, we may extend the methodology developed in Chapters II and III to

the setting of timed opacity.

Second, we may extend the secrecy obfuscation problems discussed from Chapters II to Chap-

ter IV to the setting of active intruders. The intruder in those chapters is passive as it only observes

the system’s output while does not interfere with the system’s operation. Suppose the system’s

operation is governed by some supervisor while the intruder has certain capacity to override the

decisions made by the supervisor, then the obfuscation problem would become even more compli-

cated. How to properly model such a problem and find appropriate solutions, maybe by exploring

other frameworks of games, would be challenging and interesting.

Third, regarding the materials in Chapter V, investigating optimal non-blocking supervisory

control under the framework of mean payoff parity games is an interesting avenue for future re-

search. The marked states and unmarked states would be assigned with different priorities and the

quantitative objective may be in terms of the mean payoff function or the total sum function. In this

context, there would be a priority-based liveness criterion on the marked states together with the

quantitative objective. Extending our results to stochastic settings to study the supervisory control

problem under the framework of stochastic games is also of considerable interest.

Finally, it would be worthwhile to develop abstraction and compositional methods for opacity

verification and enforcement, as a way to achieve more scalability in the context of modular models

of discrete event systems. Some preliminary results on this problem have been reported in [77,78];

this area has great potential for future development.

132

BIBLIOGRAPHY

[1] M. V. S. Alves, J. C. Basilio, A. E. C. da Cunha, L. K. Carvalho, and M. V. Moreira. Robust
supervisory control against intermittent loss of observations. In Proceedings of the 12th
IFAC International Workshop on Discrete Event Systems, pages 294–299, 2014.

[2] B. Aminof and S. Rubin. First-cycle games. Information and Computation, 254:195–216,
2017.

[3] D. Angluin. Learning regular sets from queries and counterexamples. Information and
computation, 75(2):87–106, 1987.

[4] K. R. Apt and E. Grädel. Lectures in game theory for computer scientists. Cambridge
University Press, 2011.

[5] C. Baier and J.-P. Katoen. Principles of model checking. MIT press, 2008.

[6] B. Bérard, K. Chatterjee, and N. Sznajder. Probabilistic opacity for Markov decision pro-
cesses. Information Processing Letters, 115(1):52–59, 2015.

[7] B. Bérard, O. Kouchnarenko, J. Mullins, and M. Sassolas. Opacity for linear constraint
markov chains. Journal of Discrete Event Dynamic Systems: Theory and Applications,
28(1):83–108, 2018.

[8] B. Bérard, J. Mullins, and M. Sassolas. Quantifying opacity. Mathematical Structures in
Computer Science, 25(Special issue 2):361–403, 2015.

[9] D. P. Bertsekas. Dynamic programming and optimal control. Athena Scientific, 2012.

[10] D. Berwanger and L. Doyen. On the power of imperfect information. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 2. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2008.

[11] H. Björklund, S. Sandberg, and S. Vorobyov. Memoryless determinacy of parity and mean
payoff games: a simple proof. Theoretical Computer Science, 310(1-3):365–378, 2004.

[12] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. Infinite runs in weighted
timed automata with energy constraints. In International Conference on Formal Modeling
and Analysis of Timed Systems, volume 5215, pages 33–47, 2008.

[13] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

133

[14] B. A. Brandin and W. M. Wonham. Supervisory control of timed discrete-event systems.
IEEE Transactions on Automatic Control, 39(2):329–342, 1994.

[15] Y. Brave and M. Heymann. On optimal attraction in discrete-event processes. Information
sciences, 67(3):245–276, 1993.

[16] T. Brázdil, P. Jančar, and A. Kučera. Reachability games on extended vector addition sys-
tems with states. In International Colloquium on Automata, Languages, and Programming,
pages 478–489. Springer, 2010.

[17] L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin. Faster algorithms for
mean-payoff games. Formal methods in system design, 38(2):97–118, 2011.

[18] Véronique Bruyere, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Meet
your expectations with guarantees: Beyond worst-case synthesis in quantitative games. In-
formation and Computation, 254:259–295, 2017.

[19] J. W. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan. Opacity generalised to transition
systems. International Journal of Information Security, 7(6):421–435, 2008.

[20] J. W. Bryans, M. Koutny, and P. Y.A. Ryan. Modelling opacity using petri nets. Electronic
Notes in Theoretical Computer Science, 121:101–115, 2005.

[21] K. Cai, R. Zhang, and W. M. Wonham. Relative observability of discrete-event systems and
its supremal sublanguages. IEEE Transactions on Automatic Control, 60(3):659–670, 2015.

[22] L. K. Carvalho, Y.-C. Wu, R. Kwong, and S. Lafortune. Detection and mitigation of classes
of attacks in supervisory control systems. Automatica, 97:121–133, 2018.

[23] C. G. Cassandras and S. Lafortune. Introduction to discrete event systems – 2nd Edition.
Springer, 2008.

[24] F. Cassez. The dark side of timed opacity. In International Conference on Information
Security and Assurance, pages 21–30. Springer, 2009.

[25] F. Cassez, J. Dubreil, and H. Marchand. Synthesis of opaque systems with static and dy-
namic masks. Formal Methods in System Design, 40(1):88–115, 2012.

[26] A. Chakrabarti, L. De Alfaro, T.A. Henzinger, and M. Stoelinga. Resource interfaces. In
International Workshop on Embedded Software, pages 117–133. Springer, 2003.

[27] K. Chatterjee. Concurrent games with tail objectives. Theoretical Computer Science, 388(1-
3):181–198, 2007.

[28] K. Chatterjee, L. de Alfaro, and T. A. Henzinger. Strategy improvement for concurrent
reachability and turn-based stochastic safety games. Journal of computer and system sci-
ences, 79(5):640–657, 2013.

[29] K. Chatterjee and L. Doyen. Energy parity games. Theoretical Computer Science, 458:49–
60, 2012.

134

[30] K. Chatterjee, L. Doyen, and T. Henzinger. Quantitative languages. In Computer Science
Logic, pages 385–400. Springer, 2008.

[31] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for omega-regular
games with imperfect information. In International Workshop on Computer Science Logic,
volume 6, pages 287–302. Springer, 2006.

[32] K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Mean-payoff parity games. In Logic in
Computer Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE Symposium on, pages
178–187. IEEE, 2005.

[33] K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for multi-dimensional quan-
titative objectives. In International Conference on Concurrency Theory, pages 115–131.
Springer, 2012.

[34] K. Chatterjee and Y. Velner. Hyperplane separation technique for multidimensional mean-
payoff games. Journal of Computer and System Sciences, 88:236–259, 2017.

[35] S. Chédor, C. Morvan, S. Pinchinat, and H. Marchand. Diagnosis and opacity problems for
infinite state systems modeled by recursive tile systems. Discrete Event Dynamic Systems:
Theory and Application, 25(1-2):271–294, 2015.

[36] J. Chen, M. Ibrahim, and R. Kumar. Quantification of secrecy in partially observed stochas-
tic discrete event systems. IEEE Transactions on Automation Science and Engineering,
14(1):185–195, 2017.

[37] H. Cho and S.I. Marcus. On supremal languages of classes of sublanguages that arise in
supervisor synthesis problems with partial observation. Mathematics of Control, Signals
and Systems, 2(1):47–69, 1989.

[38] P. Darondeau, H. Marchand, and L. Ricker. Enforcing opacity of regular predicates on
modal transition systems. Discrete Event Dynamic Systems: Theory and Applications, 25(1-
2):251–270, 2015.

[39] L. de Alfaro, T. A. Henzinger, and O. Kupferman. Concurrent reachability games. Theoret-
ical Computer Science, 386(3):188–217, 2007.

[40] A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Toruńczyk. Energy and mean-payoff
games with imperfect information. In Computer Science Logic, pages 260–274. Springer,
2010.

[41] J. Dubreil, P. Darondeau, and H. Marchand. Supervisory control for opacity. IEEE Trans-
actions on Automatic Control, 55(5):1089–1100, 2010.

[42] R. Ehlers, S. Lafortune, S. Tripakis, and M. Y. Vardi. Supervisory control and reactive
synthesis: a comparative introduction. Discrete Event Dynamic Systems: Theory and Appli-
cations, 27(2):209–260, 2017.

135

[43] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. International
Journal of Game Theory, 8(2):109–113, 1979.

[44] U. Fahrenberg, L. Juhl, K. G. Larsen, and J. Srba. Energy games in multiweighted automata.
In Theoretical Aspects of Computing-ICTAC, volume 6916, pages 95–115. Springer, 2011.

[45] Y. Falcone and H. Marchand. Enforcement and validation (at runtime) of various notions of
opacity. Discrete Event Dynamic Systems: Theory and Applications, 25(4):531–570, 2015.

[46] J. Filar and K. Vrieze. Competitive Markov decision processes. Springer, 2012.

[47] V. K. Garg, R. Kumar, and S. I. Marcus. A probabilistic language formalism for stochastic
discrete-event systems. IEEE Transactions on Automatic Control, 44(2):280–293, 1999.

[48] A. Giua and C. Seatzu. A systems theory view of Petri nets. In Advances in Control Theory
and Application. Springer, 2007.

[49] C. Gu, X. Wang, Z. Li, and N. Wu. Supervisory control of state-tree structures with partial
observation. Info. Sciences, 465:523–544, 2018.

[50] P. Hunter, A. Pauly, G. A. Pérez, and J.-F. Raskin. Mean-payoff games with partial obser-
vation. Theoretical Computer Science, 735:82–110, 2018.

[51] Paul Hunter, Arno Pauly, Guillermo A Pérez, and Jean-François Raskin. Mean-payoff
games with partial observation. Theoretical Computer Science, 2017.

[52] R. Jacob, J.-J. Lesage, and J.-M. Faure. Overview of discrete event systems opacity: Models,
validation, and quantification. Annual Reviews in Control, 2016.

[53] Y. Ji and S. Lafortune. Enforcing opacity by publicly known edit functions. In Proceedings
of the 56th IEEE Conference on Decision and Control, pages 4866–4871, 2017.

[54] Y. Ji, Y.-C. Wu, and S. Lafortune. Enforcement of opacity by public and private insertion
functions. Automatica, 93:369–378, 2018.

[55] Y. Ji, X. Yin, and S. Lafortune. Mean payoff supervisory control under partial observation.
In Proceedings of the 57th IEEE Conference on Decision and Control, pages 3981–3987,
2018.

[56] Y. Ji, X. Yin, and S. Lafortune. Opacity enforcement by insertion functions under energy
constraints. In Proceedings of the 14th International Workshop on Discrete Event Systems,
pages 302–308, 2018.

[57] Y. Ji, X. Yin, and S. Lafortune. Enforcing opacity by insertion functions under multiple
energy constraints. Automatica, accepted, 2018.

[58] Y. Ji, X. Yin, and S. Lafortune. Opacity enforcement using nondeterministic publicly-known
edit functions. IEEE Transactions on Automatic Control, to appear, 2019.

136

[59] Y. Ji, X. Yin, and S. Lafortune. Optimal supervisory control with quantitative objectives and
under partial observation. IEEE Transactions on Automatic Control, under review, 2018.

[60] M. Jurdziński, R. Lazić, and S. Schmitz. Fixed-dimensional energy games are in pseudo-
polynomial time. In International Colloquium on Automata, Languages, and Programming,
pages 260–272, 2015.

[61] C. Keroglou and C. N. Hadjicostis. Probabilistic system opacity in discrete event systems.
Discrete Event Dynamic Systems: Theory and Applications, 28(2):289–314, 2018.

[62] J. Komenda and T. Masopust. Computation of controllable and coobservable sublanguages
in decentralized supervisory control via communication. Discrete Event Dynamic Systems:
Theory and Applications, 27(4):585–608, 2017.

[63] J. Komenda, T. Masopust, and J. H van Schuppen. Coordination control of discrete-event
systems revisited. Discrete Event Dynamic Systems: Theory and Applications, 25(1-2):65–
94, 2015.

[64] R. Kumar and V. K. Garg. Control of stochastic discrete event systems modeled by proba-
bilistic languages. IEEE Transactions on Automatic Control, 46(4):593–606, 2001.

[65] R. Kumar and V.K. Garg. Optimal supervisory control of discrete event dynamical systems.
SIAM Journal on Control and Optimization, 33(2):419–439, 1995.

[66] R. Kumar and V.K. Garg. Modeling and control of logical discrete event systems, volume
300. Springer Science & Business Media, 2012.

[67] S. Lafortune, F. Lin, and C.N. Hadjicostis. On the history of diagnosability and opacity in
discrete event systems. Annual Reviews in Control, 45:257–266, 2018.

[68] B. Lennartson and M. Noori-Hosseini. Visible bisimulation equivalencea unified abstraction
for temporal logic verification. In Proceedings of the 14th IFAC International Workshop on
Discrete Event Systems, pages 400–407, 2018.

[69] A. Levy. Basic set theory, volume 13. Courier Corporation, 2002.

[70] F. Lin. Opacity of discrete event systems and its applications. Automatica, 47(3):496–503,
2011.

[71] F. Lin and W. M. Wonham. Decentralized supervisory control of discrete-event systems.
Information sciences, 44(3):199–224, 1988.

[72] F. Lin and W. M. Wonham. On observability of discrete-event systems. Information Sci-
ences, 44(3):173–198, 1988.

[73] H. Marchand, O. Boivineau, and S. Lafortune. On optimal control of a class of partially
observed discrete event systems. Automatica, 38(11):1935–1943, 2002.

[74] T. Masopust and X. Yin. Complexity of detectability, opacity and A-diagnosability for
modular discrete event systems. Automatica, 101:290–295, 2019.

137

[75] L. Mazaré. Using unification for opacity properties. Proceedings of the 4th IFIP WG1,
7:165–176, 2004.

[76] R. Milner. Communication and Concurrency, volume 84. Prentice Hall New York, 1989.

[77] S. Mohajerani, Y. Ji, and S. Lafortune. Efficient synthesis of edit functions for opacity
enforcement using bisimulation-based abstractions. In 2018 IEEE Conference on Decision
and Control, pages 4849–4854, 2018.

[78] S. Mohajerani, Y. Ji, and S. Lafortune. Compositional and abstraction-based approach for
synthesis of edit functions for opacity enforcement. IEEE Transactions on Automatic Con-
trol, under review, 2019.

[79] J. Mullins and M. Yeddes. Opacity with orwellian observers and intransitive non-
interference. In Proceedings of the 12th International Workshop on Discrete Event Systems,
pages 344–349, 2014.

[80] C. St. J. A. Nash-Williams. On well-quasi-ordering finite trees. In Mathematical Proceed-
ings of the Cambridge Philosophy Society, volume 59, pages 833–835. Cambridge Univer-
sity Press, 1963.

[81] M. Noori-Hosseini, B. Lennartson, and C. Hadjicostis. Compositional visible bisimulation
abstraction applied to opacity verification. In Proceedings of the 14th IFAC International
Workshop on Discrete Event Systems, pages 434–441, 2018.

[82] M. Noori-Hosseini, B. Lennartson, and C. Hadjicostis. Incremental observer reduction ap-
plied to opacity verification and synthesis. arXiv preprint arXiv:1812.08083, 2018.

[83] M.J. Osborne and A. Rubinstein. A course in game theory. Massachusetts Institute of
Technology press, 1994.

[84] V. Pantelic and M. Lawford. Optimal supervisory control of probabilistic discrete event
systems. IEEE Transactions on Automatic Control, 57(5):1110–1124, 2012.

[85] Kevin M Passino and Panos J Antsaklis. Optimal stabilization of discrete event systems. In
29th IEEE Conference on Decision and Control, pages 670–671. IEEE, 1990.

[86] K.M. Passino and P.J. Antsaklis. On the optimal control of discrete event systems. In Pro-
ceedings of the 28th IEEE Conference on Decision and Control, pages 2713–2718. IEEE,
1989.

[87] G. A Pérez. The fixed initial credit problem for partial-observation energy games is ack-
complete. Information Processing Letters, 118:91–99, 2017.

[88] S. Pruekprasert and T. Ushio. Optimal stabilizing controller for the region of weak attrac-
tion under the influence of disturbances. IEICE Transactions on Information and Systems,
99(6):1428–1435, 2016.

138

[89] S. Pruekprasert and T. Ushio. Optimal stabilizing supervisor of quantitative discrete event
systems under partial observation. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 99(2):475–482, 2016.

[90] S. Pruekprasert and T. Ushio. Supervisory control of partially observed quantitative discrete
event systems for fixed-initial-credit energy problem. IEICE Transactions on Information
and Systems, 100(6):1166–1171, 2017.

[91] S. Pruekprasert, T. Ushio, and T. Kanazawa. Quantitative supervisory control game for
discrete event systems. IEEE Transactions on Automatic Control, 61(10):2987–3000, 2016.

[92] C. Rackoff. The covering and boundedness problems for vector addition systems. Theoret-
ical Computer Science, 6(2):223–231, 1978.

[93] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event pro-
cesses. SIAM journal on control and optimization, 25(1):206–230, 1987.

[94] A. Ray, J. Fu, and C. Lagoa. Optimal supervisory control of finite state automata. Interna-
tional Journal of Control, 77(12):1083–1100, 2004.

[95] J. H. Reif. The complexity of two-player games of incomplete information. Journal of
Computer and System Sciences, 29(2):274–301, 1984.

[96] S. L. Ricker, T.F. Lidbetter, and H. Marchand. Inferencing and beyond: further adventures
with parity-based architectures for decentralized discrete-event systems. In Proceedings of
20th IFAC World Congress, pages 13447–13452, 2017.

[97] K. Rudie and W. M. Wonham. Think globally, act locally: Decentralized supervisory con-
trol. IEEE transactions on automatic control, 37(11):1692–1708, 1992.

[98] S. J. Russell and P. Norvig. Artificial Intelligence: a modern approach– 3nd Edition. Pren-
tice Hall, 2009.

[99] A. Saboori and C. N. Hadjicostis. Verification of infinite-step opacity and complexity con-
siderations. IEEE Transactions on Automatic Control, 57(5):1265–1269, 2012.

[100] A. Saboori and C. N. Hadjicostis. Current-state opacity formulations in probabilistic finite
automata. IEEE Transactions on Automatic Control, 59(1):120–133, 2014.

[101] A. Saboori and C.N. Hadjicostis. Opacity-enforcing supervisory strategies via state estima-
tor constructions. IEEE Transactions on Automatic Control, 57(5):1155–1165, 2012.

[102] A. Saboori and C.N. Hadjicostis. Verification of initial-state opacity in security applications
of discrete event systems. Information Sciences, 246:115–132, 2013.

[103] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosabil-
ity of discrete-event systems. IEEE Transactions on Automatic Control, 40(9):1555–1575,
1995.

139

[104] K. W. Schmidt. Optimal supervisory control of discrete event systems: Cyclicity and inter-
leaving of tasks. SIAM Journal on Control and Optimization, 53(3):1425–1439, 2015.

[105] C. Seatzu, J. H. van Schuppen, and M. Silva. Control of discrete-event systems-Automata
and Petri Net perspectives. Springer, 2013.

[106] R. Sengupta and S. Lafortune. An optimal control theory for discrete event systems. SIAM
Journal on Control and Optimization, 36(2):488–541, 1998.

[107] S. Shu and F. Lin. Supervisor synthesis for networked discrete event systems with commu-
nication delays. IEEE Transactions on Automatic Control, 60(8):2183–2188, 2015.

[108] R. Su. Supervisor synthesis to thwart cyber attack with bounded sensor reading alterations.
Automatica, 94:35–44, 2018.

[109] R. Su, J. H. Van Schuppen, and J. E. Rooda. The synthesis of time optimal supervisors by
using heaps-of-pieces. IEEE Transactions on Automatic Control, 57(1):105–118, 2012.

[110] S. Takai and Y. Oka. A formula for the supremal controllable and opaque sublanguage aris-
ing in supervisory control. SICE Journal of Control, Measurement, and System Integration,
1(4):307–311, 2008.

[111] S. Takai and T. Ushio. Effective computation of an Lm (G)-closed, controllable, and observ-
able sublanguage arising in supervisory control. Systems & Control Letters, 49(3):191–200,
2003.

[112] Y. Tong, Z. Li, C. Seatzu, and A. Giua. Decidability of opacity verification problems in
labeled petri net systems. Automatica, 80:48–53, 2017.

[113] Y. Tong, Z. Li, C. Seatzu, and A. Giua. Verification of state-based opacity using Petri nets.
IEEE Transactions on Automatic Control, 62(6):2823–2837, 2017.

[114] Y. Tong, Z. Li, C. Seatzu, and A. Giua. Current-state opacity enforcement in discrete event
systems under incomparable observations. Discrete Event Dynamic Systems: Theory and
Applications, 28(2):161–182, 2018.

[115] T. Ushio and S. Takai. Nonblocking supervisory control of discrete event systems modeled
by mealy automata with nondeterministic output functions. IEEE Trans. on Auto. Control,
61(3):799–804, 2016.

[116] Y. Velner, K. Chatterjee, L. Doyen, T. A. Henzinger, A. Rabinovich, and J.-F. Raskin. The
complexity of multi-mean-payoff and multi-energy games. Information and Computation,
241:177–196, 2015.

[117] L. Wang, N. Zhan, and J. An. The opacity of real-time automata. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(11):2845–2856, 2018.

[118] W. M. Wonham and K. Cai. Supervisory control of discrete-event systems. Springer, 2018.

140

[119] Y.-C. Wu and S. Lafortune. Synthesis of insertion functions for enforcement of opacity
security properties. Automatica, 50(5):1336–1348, 2014.

[120] Y.-C. Wu and S. Lafortune. Synthesis of opacity-enforcing insertion functions that can be
publicly known. In Proceedings of the 54th IEEE Conference on Decision and Control,
pages 3506–3513, 2015.

[121] Y.-C. Wu and S. Lafortune. Synthesis of optimal insertion functions for opacity enforce-
ment. IEEE Transactions on Automatic Control, 61(3):571–584, 2016.

[122] Y.-C. Wu, V. Raman, B. C. Rawlings, S. Lafortune, and S. A. Seshia. Synthesis of obfus-
cation policies to ensure privacy and utility. Journal of Automated Reasoning, (1):107–131,
2018.

[123] X. Yin. Supervisor synthesis for mealy automata with output functions: A model transfor-
mation approach. IEEE Transactions on Automatic Control, 62(5):2576–2581, 2017.

[124] X. Yin and S. Lafortune. A general approach for solving dynamic sensor activation problems
for a class of properties. In Proceedings of the 54th IEEE Conference on Decision and
Control, pages 3610–3615, 2015.

[125] X. Yin and S. Lafortune. Synthesis of maximally permissive supervisors for partially-
observed discrete-event systems. IEEE Transactions on Automatic Control, 61(5):1239–
1254, 2016.

[126] X. Yin and S. Lafortune. A uniform approach for synthesizing property-enforcing supervi-
sors for partially-observed discrete-event systems. IEEE Transactions on Automatic Con-
trol, 61(8):2140–2154, 2016.

[127] X. Yin and S. Lafortune. A new approach for the verification of infinite-step and K-step
opacity using two-way observers. Automatica, 80:162–171, 2017.

[128] X. Yin and S. Lafortune. Synthesis of maximally-permissive supervisors for the range con-
trol problem. IEEE Transactions on Automatic Control, 62(8):3914–3929, 2017.

[129] X. Yin and S. Lafortune. Synthesis of maximally permissive nonblocking supervisors for the
lower bound containment problem. IEEE Transactions on Automatic Control, 63(12):4435–
4441, 2018.

[130] X. Yin and S. Lafortune. A general approach for optimizing dynamic sensor activations for
discrete event systems. Automatica, to appear, 2019.

[131] X. Yin and S. Li. Verification of opacity in networked supervisory control systems with in-
secure control channels. In Proceedings of 2018 IEEE Conference on Decision and Control
(CDC), pages 4851–4856, 2018.

[132] X. Yin, Z. Li, W. Wang, and S. Li. Infinite-step opacity and K-step opacity of stochastic
discrete-event systems. Automatica, 99:266–274, 2019.

141

[133] B. Zhang, S. Shu, and F. Lin. Maximum information release while ensuring opacity
in discrete event systems. IEEE Transactions on Automation Science and Engineering,
12(3):1067–1079, 2015.

[134] K. Zhang, X. Yin, and M. Zamani. Opacity of nondeterministic transition systems: A (bi)
simulation relation approach. IEEE Transactions on Automatic Control, to appear, 2019.

[135] U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theoretical
Computer Science, 158(1-2):343–359, 1996.

142

	DEDICATION
	ACKNOWLEDGEMENTS
	Table of Contents
	LIST OF FIGURES
	ABSTRACT
	 Introduction
	Background and Motivation
	Literature Review
	Opacity Notions and Enforcement Methods
	Graph Games with Quantitative Objectives

	Qualitative and Quantitative Supervisory Control
	Organization and Contributions of the Dissertation
	Organization
	Main Contributions

	Enforcement of Opacity by Public and Private Insertion Functions
	Introduction
	System Model
	Insertion Mechanism and Opacity Notions
	Private Enforceability
	Private and Public Enforceability

	All Insertion Structure and Analysis
	Construction of the AIS
	Analysis of AIS

	PP-Enforcing Insertion Functions
	A Sufficient condition for PP-enforcing Insertion Functions
	Greedy PP-enforcing Insertion Functions

	The INPRIVALIC-G Algorithm
	Conclusion

	Opacity Enforcement using Nondeterministic Publicly-Known Edit Functions
	Introduction
	System Model
	Edit Functions and Opacity Notions
	Edit Mechanism
	Private Safety and Public Safety

	Three-Player Observer
	All Edit Structure
	Synthesis of Nondeterministic Privately Safe and Publicly Safe Edit Functions
	Reachability Tree of the AES
	Synthesis Algorithm

	Conclusion

	Enforcing Opacity by Insertion Functions under Multiple Energy Constraints
	Introduction
	System Model
	Problem Formulation
	Energy Insertion Structure
	Building the Verifier
	Energy Information States
	Building the Energy Insertion Structure

	Solve the Constrained Opacity Enforcement Problem
	Bounded Cost Rate Insertion Strategies
	Motivation and Problem Formulation
	Hyperplane Separation Technique
	Synthesize Bounded Cost Rate Insertion Strategies

	Conclusion

	Optimal Mean Payoff Supervisory Control under Partial Observation
	Introduction
	System model
	Problem Formulations
	First Cycle Energy Inclusive Controller
	Energy Information States
	Build the First Cycle Energy Inclusive Controller

	Mean Payoff Decision Problems
	Mean Payoff Optimization Problems
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	BIBLIOGRAPHY

