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ABSTRACT

Navigation is the problem of going from one place to another. It is an important prob-
lem in the areas of autonomous driving, mobile robotics and robotic manipulation. When
navigation algorithms realize their potential, autonomous driving will lead to a new era of
mobility, enabling greater independence for the disabled and greater convenience for all. It
will reduce car ownership, increase fuel efficiency and reduce traffic jams.

The navigation problem needs to be solved efficiently. It is well understood that slow
reaction time in driving can be fatal. For self-driving cars to be safe, the navigation algo-
rithms have to be optimized without compromising accuracy. In this thesis, we focus on
optimizing algorithms in the navigation domain.

Navigation is often addressed in three parts: mapping, localization and planning. Map-
ping is the problem of building a representation (a map) of the environment from noisy
observations. Mapping is the slowest step in the navigation pipeline because the set of pos-
sible maps grows exponentially with the size of the map. This makes optimizing mapping
crucial for optimizing navigation. We focus on grid based mapping algorithms that divide
the space into grid cells. The state of the art (SOTA) grid based mapping algorithms have
either of two limitations. They either make a limiting assumption of each grid-cell being
independent of its neighboring cells or they use slow sampling based methods like Gibbs
sampling and Metropolis Hastings. Although the sampling based methods are guaranteed
to converge, they are slow in practice because they do not fully utilize the relationships
among random variables. We avoid the independent cell assumption and use modern infer-
ence methods like Belief Propagation and Dual Decomposition, instead of sampling based
methods. These modern methods not only converge up to two times faster but also lead to
more accurate maps.

Localization, another part of navigation, is the problem of finding the robot’s position

with respect to the environment or the map. It is usually carried out under two restrictive
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assumptions: (1) there is only one robot in the environment (2) the map (or its estimate)
is known. We relax the former assumption by recognizing the fact that robots can coop-
eratively map the environment faster. We propose a polynomial root-finding based mutual
localization algorithm that uses observations from two robots. Our algorithm depends upon
only a few fiducial markers instead of external landmarks, used by methods like Bundler,
which makes it faster.

The final step of navigation, called planning, is the problem of taking actions based
on the map, the robot’s position and desired destination. Reinforcement learning (RL)
is a popular algorithm for planning, when the effect of actions on the environment are
not easily modeled. A special class of RL algorithms, called Goal-conditioned RL, is
applied to cases when the goal location can change for every trial. The SOTA algorithms
in Goal-conditioned RL specify the goal location in multiple, redundant ways. Due to this
redundant information, algorithms like Hindsight Experience Replay re-samples rewards
which makes them slow. We propose a deep extension to Floyd-Warshall Reinforcement
Learning which removes of this redundant information thus avoiding rewards re-sampling.

The resultant algorithm requires only half the reward samples as required by the baselines.
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CHAPTER 1

Introduction

Self-driving technology has attracted USD 80 billion in investment from 2014 to 2017, with
over USD 2 billion going to start-ups [56]. With current growth rates, the gross revenue of
the autonomous car industry is predicted to exceed USD 10 trillion globally by the early
2030s [55]. An IHS report predicts that 21 million cars will be on the road globally by 2035
which is about 10% of the predicted global car sales [63]. Apart from financial incentives,
the adoption of self-driving cars is motivated by safety. According to ARK research, at
anticipated levels of self-driving car adoption, “nearly five million fatal accidents are likely
to be avoided by 2035” [55]. Furthermore, this technology can enable greater independence
for the disabled, reduce car ownership, increase in fuel efficiency and reduction in traffic
jams [63, 5]. All these potential benefits to society highlight the importance of improving
self-driving technology.

Deciding when to steer, brake or accelerate the car to take it from one place to another is
called navigation. Though the self-driving cars are currently getting attention, the naviga-
tion problem has been well-studied for decades in the fields of mobile robotics and robotic
manipulation. Many goal-oriented tasks can be modeled as navigation problems. Hence,
navigation is one of the core problems in the field of artificial intelligence. For example,
to make a sandwich, the robot has to locate the ingredients and plan an efficient strategy to
move them from their starting location into the desired configuration.

The navigation problem needs to be solved efficiently. It is well understood that slow
reaction time in driving is highly correlated to driving errors [1, 82] and is thus a matter
of life and death. For the self-driving cars to be safe, the navigation algorithms have to be
optimized without compromising accuracy. In the thesis, we focus on the optimization of
different algorithms in the navigation domain.

Navigation is often addressed in three parts: mapping, localization and planning. To
understand these parts, let us take an example of a rent-able home cleaning robot. In order

to fetch cleaning supplies, the robot has to not only find them but also remember their
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Figure 1.1: Navigation is the problem of taking action that move the agent from one place to another. It is often addressed in three parts:
mapping (building consistent representation of environment from noisy observations), localization (estimating the state of the agent in
the map) and planning (using the location and map to decide sequence of actions in order to accomplish the task)

location. This information that relates the locations of obstacles, objects and places with
the corresponding robot observations is called a map and the process is called mapping.
In this example, the relative location of the kitchen, the cleaning supplies and other rooms
along with their respective images form the map. This map can then be used to estimate the
robot’s location in the map, by comparing current robot observations with those in the map,
in a process called localization. Often mapping and localization are done simultaneously
because they depend upon each other. Increasing the accuracy or speed of one makes the
other more accurate.

The map and the robot’s location are used to plan a sequence of actions to be taken
to reach the desired goal location. This step is called planning. Planning needs to be fast
enough that the actions on the environment are taken before the environment changes. For

example, a cleaning robot should clean bits of papers on the ground before they move.

1.1 Formal definition

Let us define the navigation problem more concretely. Let x € X denote a map of the
static environment around a robot, where X is the set of possible maps selected for the
problem. When the robot observes the environment x from a pose (position and orienta-

tion) g, € G (usually SE(3)) at time ¢, its sensor reads the noisy observation z; € Z while



taking an action a; € .A. We assume the observation probability P,(z|g:, a;, x) is a station-
ary distribution, i.e. it does not change with time. This commonly used assumption [139]
is reasonable provided that the x and g; contain enough information to generate the ob-
servation z;. We also assume that the motion of the robot is constrained by a stationary
transition probability Pr(g;y1]g:, as, x). Transition probability is stationary when the fac-
tors affecting the robot motion are completely captured by the action a, and the map x. The
stationarity assumptions do not hold when the static x is unable to capture the parts of the
environment that affect robot observations and motion. This is especially true when large
parts of the environment are dynamic. In this thesis, we focus on static environments. The
problem of estimating the map x; as function of past observations z,; = [21, 29, ..., 2,

and poses g1.; = [g1, 92, - - - , g¢] is called mapping:

X, = arg I}(lea} P(X|Z1;t, g1:t, al:t)
s.t. ze ~ Po(2| g, ar, x) (.D

ge+1 ™~ PT(gt+1|gt7 G, X)'

The possible set of maps X is usually large. Consider occupancy grid mapping (ex-
plained in Chapter 2), in which the space is divided into grid cells and each cell models
the probability of the cell being occupied, as opposed to being free. The space of occu-
pancy grid maps X = {0, 1}**" grows exponentially with the number of grid-cells w x h
in the map. Hence, the efficiency of the mapping algorithms is critical to the feasibility
of solving the problem. In Chapter 2, we use factor graphs [64] and modern inference
algorithms [105, 60] to speed up mapping algorithms.

Recall that localization is the problem of estimating the pose of the robot g;:

g; = argmax P(g;|z1.4, a1, X)
gt€G
s.t. ze ~ Po(2¢|gt, at, X) (1.2

gi+1 PT(gt+1|gt7 Qg X)'

Furthermore, the mapping can be made faster by employing multiple robots working
cooperatively. To this end we address the problem of localization of two robots with respect
to each other, called mutual localization. We present a fast mutual-localization algorithm
in Chapter 3. The solution is based on a polynomial root-finding that works even with only
three fiducial markers distributed on the two robots. This approach is an order of magnitude
faster then external-landmark based approaches like Bundler [128].

Recall that navigation includes exploring the environment to build a map and using



the map to take actions a; € A that accomplish given tasks. The task is defined in terms
of a reward function R(s;,a;) € R that captures the desirability of a state-action pair,
where s; € S is the Markovian state such that P(s;1|a¢, Se, ..., 51) = P(Sey1]ar, St).
The state, in the context of mapping, is modeled as a combination of the map x and the
robot pose s; = [, ]. To find the right sequence of actions, we estimate a policy x(a;|s;)
that gives the probability of choosing an action for every state. With this terminology, we
can formalize the navigation problem as finding the policy that maximizes the expected

cumulative reward:

X" = argmaxE Zyk*tR(sk, ag)|21.4, gl;t]
X k=t
s.t. 2~ Po(zk;\gm @k,X)

(1.3)
k1 ~ Pr(gr+1lgx, ar, x)

sk = [ g

a ~ x(a|s)

This formulation shows that reward depends upon state s; = [ ; |, which is never fully
observed. To estimate this unobserved state, the navigation algorithm usually depends on
a mapping algorithm that maintains a running estimate of the map. However, the map only
needs to be estimated up to a precision proportional to the effect on the rewards. For exam-
ple, consider the cleaning robot carrying a bucket of water. Although estimating the state
of the environment precisely requires modeling computationally expensive fluid dynamics,
a reward driven approach can model the state of water to a precision just enough to avoid
causing a spillage thus making the algorithm faster. End-to-end navigation methods like
Deep Reinforcement Learning [89, 43] (DRL) are a promising step in this direction. In
Chapter 5, we investigate one such algorithm [89] to find the strengths and weaknesses of
the state-of-the-art in these approaches.

In Equation (1.3), the reward function fully defines the task which is assumed to be
static. However, the desired goal locations are often dynamic. To allow dynamic goals the
state is expanded to include desired goal location d;, s;, = [x',g/,d/]]". In Chapter 6,
we show that this extension leads to redundant information and unnecessary computations
which can be eliminated by formulating the problem as a type of Floyd-Warshall Rein-

forcement Learning [51].



1.2 Contributions

This dissertation makes four contributions under the broad problems of mapping, localiza-

tion and navigation.

1.2.1 Forward sensor models for accurate mapping

Recall that observation probability P,(z;|g;, x) models the sensor observation z; given the
map x and robot pose g;. Since observation probability is equivalent to simulating a sensor,
it is also called a forward sensor model. This is in contrast with inverse sensor models
Piy(x[2¢]]gt, 2¢) that estimate a part of the map x[z;] given the sensor observations. We
found that most of the state of the art mapping algorithms used inverse sensor models
despite them being less accurate and requiring a restrictive assumption. We proposed an al-
gorithm that instead uses forward sensor models and employs modern inference algorithms
such as Belief Propagation [105] and Dual decomposition [60] ( discussed in Chapter 2).
Our algorithms are faster than the sole existing precedent [83] that used forward sensor
models because [83] uses slower sampling based inference methods like Metropolis Hast-
ings [79].

1.2.2 Mutual observations for accurate localization

The robots can map more efficiently if they work in teams. Two or more robots can divide
and conquer the task of mapping an environment. This requires them to know each other’s
pose (position and orientation) with high accuracy to reliably merge their maps. We call
this problem mutual localization. Mathematically, if two robots have pose ¢; and h; and
the corresponding observations are z; and 1, the problem of jointly estimating g, hy =
finuttoe (2¢, Y¢) 18 called mutual localization where fiugoc is the estimator to be designed.
We proposed a solution to this problem that works with a minimal number of fiducial
markers visible to both the robots in our IROS 2013 paper [26]. We solve this problem by
formulating it as a generalized version of the Perspective-3-Points (P3P) problem where the
perspective image of points are observed in two different cameras. This work is discussed

in Chapter 3.

1.2.3 Continuous occlusion models for accurate localization

In unstructured environments it is more common for objects to obstruct views of other

objects. This is called occlusion and it makes the problem of mapping the environment



harder. Recognizing this as a problem in the pressing domain of autonomous driving, we
proposed a novel method of handling occlusions in a road scene. The occlusion model
is evaluated on the localization task. This work was published in CVPR 2016 [27]. The
core contribution of our work was a continuous occlusion model that represented cars as

translucent ellipsoid where transparency was used as a proxy for occlusion probability.

1.2.4 Goal-rewards free reinforcement learning for navigation

More recently, with the advances in Deep Reinforcement Learning (DRL) algorithms it
has become possible to approach navigation as a single optimization problem that in-
cludes mapping. The problem of navigation has been traditionally handled by breaking
it down into mapping and path-planning. However, more recently, work by Mirowski et al.
2017 [89], shows that their proposed DRL algorithm learns to navigate from just pixel in-
puts. To understand and test their algorithm, we performed an extended set of experiments
on their algorithm. We were able to replicate the result of Mirowski et al. 2017 [89] and
show that DRL algorithms do learn to find the shortest path to the goals when trained and
tested on the same map with the same goal location. However, when trained and tested on
different sets of maps, the DRL algorithms fail to perform better than random exploration
with wall-following. We also found that when the goal location is changed during training
and testing, the algorithm finds sub-optimal paths to reach the previously visited goal lo-
cations. We discuss these experiments in Chapter 5. From these experiments, we conclude
that the algorithm learns the training map but does not learns fo navigate on new maps or
new goal locations.

In order to improve the algorithm for the case when goal location is changed every
episode, we investigate Goal-Conditioned Reinforcement Learning (GCRL). We found that
the state-of-the-art GCRL algorithms model these problems such that the reward formula-
tion depends on the goals. We argue that this dependence of reward on goals is duplicate
information because the goal is specified at the start of every episode. Furthermore, this
dependence introduces additional reward resampling steps in algorithms like Hindsight Ex-
perience Replay (HER) that reuse trials in which the agent fails to reach the goal by recom-
puting rewards as if reached states were psuedo-desired goals. We propose a reformulation
of goal-conditioned value functions for GCRL that yields a similar algorithm, while re-
moving the dependence of reward functions on the goal. Our formulation thus obviates the
requirement of reward-recomputation that is needed by HER and its extensions. We also
extend a closely related algorithm, Floyd-Warshall Reinforcement Learning, from tabular

domains to deep neural networks for use as a baseline. Our results are competitive with



HER while substantially improving reward sample efficiency. We discuss this algorithm
in Chapter 6. We discuss related work corresponding to each chapter as a section of the

chapter.

1.3 Thesis statement

Mapping, localization and planning are optimized by the following observations:

1. Modern inference algorithms, like Belief Propagation and Dual Decomposition, lead

to faster mapping than sampling based methods.

2. Mutual observations using fiducial markers lead to a faster polynomial roots based

solution than iterative bundle adjustment.

3. Continuous occlusion models lead to more accurate localization than treating occlu-

sion as noise.

4. Not using goal-rewards in goal conditioned navigation leads to faster learning.

1.4 Relevant Publications

This thesis includes work from following publications

¢ V. Dhiman, A. Kundu, F. Dellaert, and J. J. Corso. Modern MAP inference methods for
accurate and faster occupancy grid mapping on higher order factor graphs. In Proceed-

ings of International Conference on Robotics and Automation, 2014

* V. Dhiman, J. Ryde, and J. J. Corso. Mutual localization: Two camera relative 6-dof
pose estimation from reciprocal fiducial observation. In Proceedings of International

Conference on Intelligent Robots and Systems, 2013

e V. Dhiman, Q. Tran, J. Corso, and M. Chandraker. A continuous occlusion model for
road scene understanding. In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, 2016

* V. Dhiman, S. Banerjee, B. Griffin, J. Mark Siskind, and J. J. Corso. A critical investi-
gation of deep reinforcement learning for navigation. CoRR, abs/1802.02274, 2018

* V. Dhiman, S. Banerjee, J. M. Siskind, and J. J. Corso. Learning goal-conditioned value

functions with one-step path rewards rather than goal-rewards. In Open Review, 2019



CHAPTER 2

Occupancy grid mapping'

2.1 Introduction

Problems in mobile robotics like navigation, path planning, localization and collision avoid-
ance require an estimate of the robot’s spatial environment; this underlying problem is
called robotic mapping [137]. Even in environments where maps are available, the prob-
lem remains challenging as the environment may change over time, necessitating a mapping
ability on the mobile robot. Furthermore, robotic mapping is an important problem in ap-
plication areas like indoor autonomous navigation, grasping, reconstruction and augmented
reality. Hence it remains an active field of research [85, 97, 84].

Although robot mapping can be performed in many ways—metric or topological; with
range sensors, like sonar [138], laser scanners [138] and RGBD [99], or bearing-only sen-
sors [20, 67]—metric mapping with range sensors is the most common. Bearing-only sen-
sors provide estimates up to scale; topological maps still require local metric estimates for
certain problems like navigation. We hence focus on metric mapping with range sensors,
specifically, laser scanners.

Occupancy grid mapping (OGM) is a popular and useful range-based mapping method
[29, 96]. It affords a simple implementation and avoids a need to explicitly seek and match
landmarks in the environment [133, 9]. In contrast, it discretizes the environment into
cells, squares (2D) or cubes (3D), and associates a random variable with each cell that
represents the probability of the cell being occupied or free. Also, unlike surface-based
approaches [121, 122], OGM makes it easier to query obstacles and therefore to predict
and avoid collisions, which is critical for applications like robot navigation.

OGM methods vary in how cell occupancy is estimated, but most methods make use

of an inverse sensor model that assumes the occupancy of each cell can be estimated in-

I'This material originally appeared as: V. Dhiman, A. Kundu, F. Dellaert, and J. J. Corso. Modern MAP
inference methods for accurate and faster occupancy grid mapping on higher order factor graphs. In Proceed-
ings of International Conference on Robotics and Automation, 2014



dependently of the other cells in the map [29, 96, 95, 99]. The main reason for using this
independence assumption is computational efficiency. However, the assumption is inaccu-
rate and can lead to overconfident estimates of occupancy in noisy observations [138, 84].

To overcome this limitation, Thrun [138] proposes the use of a forward sensor model
and expectation maximization to estimate occupancy. Following this line of work, more
recently, Merali et al. [84] defines a Gibbs sampling algorithm based on a conditional esti-
mate of cell occupancy given the rest of the map. However, it is widely known that Gibbs
sampling algorithm can get caught in local maxima [77]. Additionally, these methods re-
main computationally expensive which limits their application.

In this chapter, we explore the use of modern inference algorithms for more efficient
occupancy grid mapping with forward sensor models. Our contribution in this chapter
is twofold. Firstly, we introduce the factor graph approach to occupancy grid mapping,
which, to the best of our knowledge, has not been applied to this problem. This factor
graph formalism makes it plausible to apply modern fast inference algorithms, such as
loopy belief propagation [64] and dual decomposition [131].

Secondly, we introduce a class of higher order factors for our factor graph approach.
Factor graph inference is exponential in neighborhood size, which requires us to focus on
a certain sub-class of factors for tractability, such as the linear constraint-nodes [111] or
pattern-based factors [61]. We extend the pattern-based factors, which explicitly compute
the potential only for certain factors matching a given set of patterns and otherwise assign
a constant. Whereas the pattern-based factors in [61] define each pattern with a fixed value
for each node, we generalize these pattern-based factors by allowing for free nodes whose
value does not impact the computed marginal.

We implement these algorithms for effective occupancy grid mapping with a forward
sensor model and test our work on both simulated and real data. Our experiments demon-

strate the effectiveness of our novel OGM approach, especially dual decomposition.

2.2 Background and Related work

A main contribution of this chapter is the application of modern MAP algorithms to occu-
pancy grid mapping. Although there are many MAP inference algorithms [53] that work
well for various problems, in this chapter, we focus on belief propagation [64] and dual
decomposition [131] mainly because of their ability to handle higher order factors.

Belief propagation (BP) [105] was introduced as an algorithm to compute marginals
over trees. Surprisingly, it was found to work well on graphs with loops. Later it was

found that the convergent solution to belief propagation corresponds to the minima of the



so-called Bethe free energy [153], which not only provided a theoretical justification for
application of belief propagation to graphs with loops, but also solves the convergence
problem by providing an objective function which can be minimized directly. Later, Frac-
tional BP [146] was introduced. Inspired by the Bethe free energy formulation of BP, it
suggested using a better free energy approximation by scaling the terms appropriately in
the message update equation.

In an independent work, Wainwright et al. [144] introduce the Tree Re-Weighted (TRW)
message passing algorithm, which uses re-weighting of edges and messages similar to Frac-
tional BP. They also formulate the MAP estimation problem as a linear program over the
so-called marginal polytope. The Langrangian dual of this LP problem is convex and pro-
vides the upper bound to the original problem. The family of algorithms that optimize the
Lagrangian dual of the original combinatorial problem is called dual decomposition (DD).
The dual of the problem can be decomposed in different ways, for example, as a set of span-
ning trees in TRW [144] or one problem per factor [131]. More recently, accelerated dual
decomposition [50] was introduced that provably converges the upper bound faster than
earlier approaches by smoothing the Lagrangian dual of the problem. This is the algorithm
that we use for our experiments.

Another contribution of this chapter is the way we perform efficient inference with
higher order factors (or potentials). Many researchers approach this problem by consider-
ing a class of functions for which higher order factors can be used efficiently, for example,
Potetz et al. introduce a class of potentials called linear constraint nodes [111] and Ko-
modakis et al. approach pattern-based class of potentials [61]. Another approach to handle
higher order potentials [72] is to adaptively restrict the sample space of nodes by using
initial estimates. Our work proposes a generalization of the pattern-based potentials of [61]

allowing for free nodes to appear within a pattern.

2.3 Problem definition

Consider a robot—equipped with a laser scanner—moving in a static environment, and
assume that the position of the robot associated with each laser measurement is given. Our
task is to estimate occupied regions and free regions, so that the robot can avoid collisions
and plan its movement in free regions. We divide the area to be mapped into N discrete
cells. Let z; denote the state of cell ¢, which can take values from label set L; = {0, 1},
where 0 (resp. 1) denotes that the cell is free (resp. occupied). For convenience, we denote

the full map (the state for all N cells) as x = [%‘Hgg y taking values from sample space
Q= H1§z’§N L;.
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Let z; denote the f™ laser range measurement when captured from (known) pose g;.
The problem is to find the probability of all cells of in the map being occupied given all ¢

observations, z1,; = [2f]{< <, and g1 = [g7]{<

p(; = 1|z14, 81:0) = Z p(X|Z1:4, 81:t) VI<i< N . (2.1)

xex;=1

Alternatively, we can focus on the maximum posterior map:

x* = ar%(égaxp(xhl;t, g1.)- 2.2)
Problems (2.1) and (2.2) are related but yield different results. While (2.1) is useful to keep
track of uncertainty in an incremental fashion, (2.2) provides a more meaningful result in
the joint occupancy configuration by maximizing posterior probability. We use both the
equations (2.1) and (2.2) with their corresponding algorithms. Clearly, a naive solution to
either problem would have complexity that is exponential in the number of cells. We hence

focus on an approximate solution to this problem.

2.3.1 Mapping with an inverse sensor model

Commonly used occupancy grid mapping algorithms [29, 96, 99] make the simplifying
assumption that each grid cell is independent of all other map cells:

p(X|Z1:t,g1:t) = H p($i|Z1:t7g1:t) . (2.3)

1<i<N

The probability of each cell can be easily computed independent of each other, by a simple

Bayes formulation:

p(2t7 gt|$z’7 Zy:¢ 1, g1:t71)P($z‘|Z1;t717 glztfl)

2.4)
P(Zta gt’ZI:tfla glzt71>

p(mi‘zlzta gl:t) =

11



Assuming a static world, p(zy, g¢| %, Z1.4-1,81.0-1) = P(2¢, g¢|x:), as is commonly done, the

above equation (2.4) can be simplified [84] to:

p(%’ |Z1:t71> glztfl)

P(Ti| 214, 1:¢) = P2t, 9|75 (2.5)
( l b ”) ( ' gt‘ >P(Zt;9tlezt71;g1:t71)
p(xi|zt7gt)p<ztagt) p(xi|zlzt717g1:t71) (2.6)
p(zi) (2, 9elZ1:0 1, 1:41)
L p(wi|2t, g
7 —<p(|$i) t)p($i|zlzt71ag1:t71> 2.7)
= 7 (z) H p(@ilzr, 95) (2.8)
1<f<t

where Z' is a normalizing factor that is independent of z;, p(x;) is the prior probability for

cell ; and p(x;|z¢, gf) is called the inverse sensor model.

2.3.2 Mapping with a forward sensor model

The independent cell assumption is inaccurate and can lead to overconfident estimates of
occupancy in noisy observations [138, 84]. In the absence of the independent cell assump-
tion, we can still factorize the posterior probability in terms of a forward sensor model.

In this formulation, we make two assumptions, a) static world assumption, p(z;|x, g1.+) =
p(z|x, g;) and b) pose-map independence, p(g;|X, z1.+ 1,81.0-1) = P(9¢|Z1:¢-1, &1.4-1). With

these assumptions, the posterior evaluates [84] to

1
p(X|Z1.4, 81:4) = Ep(ztb@ 90)P(X|Z1:¢ 1, B1:0-1) (2.9)
1
= o(x) [] pelxa) (2.10)
1<f<t

where Z is a normalizing constant independent of x and p(x) is the prior. For the rest
of the chapter we assume no prior information about the maps is known, hence the prior
probability is a uniform distribution.

The problem of estimating the occupancy map is intractable with the above formulation,
as it still depends on the entire map, which has an exponential sample space. However, we
can make use of the fact that a laser measurement f depends only on a small portion of the

map xy C x, hence simplifying the formulation to:

1
p<X|Z1:t7g1:t) = E H p(zf|xf7gf) . (211)

1<f<t
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The term p(z¢|xy, py) is called the forward sensor model. With this formulation, we are in
a position to describe the problem as factor graph. The above simplification is necessary

to keep the factor graph sparsely connected and hence tractable.

2.3.3 Representation as a factor graph

The occupancy grid mapping problem can be ex-

pressed as energy minimization over a factor graph. _ <

Let all cells in the map be the variable nodes V' cuwcn —

and all the laser measurements be factor nodes F'.

There exists an undirected edge (7, f), if and only

if the laser range measurement p(zs|xy, g5) depends

on the cell occupancy x;. In this chapter, we assume

Factor Graph

that each laser range measurement depends on only

those cells that the laser passes through for given
Figure 2.1: Representation of occupancy grid mapping
pose g¢. Let £ be set of all such edges: as factor graph

E={(i,f):i €V, f e F,laser f passes through cell i} . (2.12)

The bipartite graph G = (V, F', E') represents the structure of factorization in (2.11) and is
hence called a factor graph [64]. Note that neighborhood 7 (i) of any variable node i only
consists of the factors nodes, n(i) C F'Vi € V and vice versa. Fig. 2.1 shows the factor
graph diagrammatically. Note that observed nodes form the part of factor and are not part
of the factor graph.

In terms of factor graph G the problems (2.1) and (2.2) along with factorization obtained

in (2.11) can be written as:

P(zi=1l)= > P VieV (2.13)
x€Q:x;=l;
x* = arg max P(x) (2.14)
x€Q
1
Px)=— [] Pr(x) . (2.15)
feF

where [; € L; denotes an element from the label set L; of node i € V. By representation

of occupancy grid mapping as factor graph the following equivalence holds true, P;(z; =

li) = P(xi = li‘let, gl:t)a P(X) = p(X’ZLt, gl:t) and Pf(Xf) = p(zf|xf,9f)-

13



2.4 Markov Chain Monte Carlo methods (Metropolis Hast-
ings)

We implement and evaluate a generaliza-

tion of Merali’s [84] Gibbs sampling al- ~ Algorithm 1: Metropolis Hastings
gorithm for estimating maps. Metropo- Data: Factor Graph G = (V, F, E);

Maximum number of iterations IV;

lis Hastings is another popular MCMC al-

Result: x"
gorithm used for sampling from complex Initialize the map x° randomly.;
o . . . . r=0;
probability distributions. Gibbs sampling while r < N do
can be shown to be a specialization of Randomly choose acell i : i € V;

. . Flip its state «; = -] in X" to get x';
MetrOpOhS Hastlngs [79] : Compute acceptance probability a by (2.18);

Metropolis Hastings requires a transi- Sample random number ¢ : 0 < ¢ < 1;
ifa > 1o0ra > qthen
L Accept proposed point, x” 1 = x’;

tion probability Q)(x'|x"), that depends on

current sample x” and guides the random else
walk in the high-dimensional space. We [ Reject proposed point, x™ ! = x7;
randomly sample a point x’ from from )(.) L rerth
and it is either accepted or rejected based
on the acceptance probability a:
P(x")Q(x"|x’

If a > 1, then the new point x" is accepted otherwise it is accepted with probability
a. Here acceptance means that the point in the next iteration is taken as the sampled point
otherwise the earlier point is retained. The interested reader is referred to [79, 77] for
further details about Metropolis Hastings.

For our experiments, we choose a symmetric uniform transition probability. We uni-
formly sample a cell from the map and flip the state of the sampled cell to get the proposal

point x’. This is equivalent to sampling from the probability density:

LoifIx — x|, =1
QX)) =" H I , (2.17)
0 otherwise

where N is the number of cells in the map and ||.||; is the L1-norm. The first case in (2.17)
enforces that only one cell (or dimension) in the map can change its state. Since this is a
symmetric transition probability, the acceptance ratio is just the ratio of target probabilities.

Also note that the ratio of probability distributions can be efficiently computed because of

14



the factorization obtained in (2.15):

P(x) _ yeni Pr(x5)
P(x") ern(i) Pf("}) 7

a= (2.18)
where i is the (sampled) cell whose state is different in x" and x", and n(.) denotes the
neighborhood of a vertex in graph GG. The above simplification uses the fact that only those
terms that depend on the state of i cell need to be computed. By definition of graph G,
only the neighboring factors f € n(i) depend on the state of cell 7.

It is in general difficult to detect when the sampling algorithm has converged. In prac-
tice, we often run the sampling algorithm for a fixed number of iterations. Alg. 1 lists the

pseudo code for Metropolis Hastings algorithm.

2.4.1 Heat map

As we uniformly sample cells from the map, we notice that not all cells are equally im-
portant in mapping. There are three kinds of regions in an occupancy map: occupied, free
and unexplored. Sampling and analyzing a cell in an unexplored region is not very helpful
as we do not have any evidence for the region. On the other hand, the central regions of
free areas are not very interesting as all factors usually agree on their state. The uncertainty
tends to lie along the boundaries of free and occupied regions. This is the region we want
to focus on.

We hence employ a heat map to bias our sampling along the boundaries of free and
occupied regions. We maintain a vector of cells x;, that form the “interesting” region of the
map. In our experiments, we take the last cell spanned by each laser measurement as an
“interesting” cell and add it to the heat map, x;,. We use a sampling bias of 1 : 4 for cells
outside the heat map to cells within the heat map. We compare both Metropolis Hastings

with and without the heat map in our experiments.

2.5 Modern inference algorithms

As discussed in Sec. 2.2, last decade gave rise to faster and more accurate MAP infer-
ence algorithms [53]. Because of their ability to handle higher order factors [111, 61],

we explore belief propagation and dual decomposition in the problem of occupancy grid

mapping.

15



2.5.1 Belief Propagation

The sum product algorithm over factor graphs [64] is a powerful yet simple algorithm to
compute marginals of expression, of the form (2.1), that can be decomposed into factors
of the form (2.11). The algorithm provides exact marginals in the case when the graphs
have no loops. For graphs with loops the algorithm has been shown to converge in most of
practical problems.

The sum product algorithm works by sending messages along the edges of the factor
graph. The messages can be understood as the beliefs of the source node about desti-
nation states. Mathematically, these beliefs are the probabilities of the destination states
marginalized over the neighbours of the source except the destination itself. These mes-
sages are defined on a directed edge, with a different message value for each state of the
variable node involved.

Let y1_,,(l;) represent the message from node ¢ € V to node f € F for state x; = [; at
any iteration r of the algorithm. With a similar convention we take p] f(l ) to denote an
update in the opposite direction. We use the following equations to update the messages
on an edge depending on whether the direction of the edge is from variable node to factor

node or vice versa:

Wit = Y Prxg) [ sgor() (2.19)
xp€Qswi=l; jen(f)\e

lu’::i‘ H :U’hez ) (220)
hen(i)\ f

where ()¢ = HiEn( #) Li denotes the sample space of the neighborhood of factor f in graph
G. On convergence, the belief of variable nodes can be computed by the product of incom-

ing messages:

= IT wmit) - 2.21)

fen(i)

This is called the sum product belief propagation (BP) algorithm.
One can compute the maximizing assignment instead of marginals by computing the

max product instead of sum product in (2.19) and finally choosing the maximizing assign-
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ment of incoming messages:

) = Jnax_ Pr(x) | J D) (2.22)
e jen(h)\i
x] = arg max H wri(li). (2.23)
x;€L; fen(i)

This form of the algorithm is called max product BP.

Belief propagation was initially designed to work on factor graphs without loops. In
such a case one can start message updates from the leaf nodes and a node can be “triggered”
to pass on the messages when messages from all but one neighbors are available. However,
for graphs with loops various update sequences have been suggested that vary from problem
to problem. For example, in vision problems, where the factor graph is a 2D grid, horizontal
and then vertical sweeps have been shown to produce good results. For our implementation,
we choose random update sequence, i.e., a random edge is selected from the graph for each

iteration of message update.

2.5.2 Subgradient Dual decomposition

The dual decomposition algorithm employs the theory of Lagrangian duals to find a convex
upper bound of the original combinatorial optimization problem. Here we explain the
implementation of the algorithm without going into mathematical proofs. The interested
reader is referred to [131, 50, 61] for proofs and more variations of the algorithm.

The underlying idea for dual decomposition is to split the maximization problem into
slave problems that can be efficiently maximized. In a factor graph formulation the natural

slave problem is one corresponding to each factor:

x/ —argmaXPf H exp( wif(x )) , (2.24)

ien(f)

where x/ = {x }ien(y) 1s the optimum assignment as determined by the corresponding
slave problem. And (] ) is the message (also the Lagrangian multiplier) from node 7 to
f about state a:f . The above slave problem is usually written in the form of negative log
likelihood:

x/ = arg min 0(x Z pir(xi) (2.25)

x/ ien(f

where ;(x7) = —log P(x') is the negative log likelihood corresponding to the factor.
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In each iteration of the algorithm all slave problems are allowed to choose their opti-
mum assignment independently. If all the factors agree on the assignments, then we have
reached the global optimum. Often this is not the case. In case of disagreement, we de-
crease the belief of all the disagreeing slave problems about their respective optimums by
sending appropriate messages. It can be shown that as long as we can increment the mes-
sages by decreasing step size in each iteration, the algorithm is guaranteed to converge to
an approximate solution of the original problem [131].

Pseudocode for dual decomposition

(DD) is provided in Alg. 2. Apart from in- 200 210" ‘ ‘

put factor graph G = (V, F, E) and label |

set {L;};cv introduced in Sec 2.3.3, dual 286 - :::g :52323 ]
Step size=500 | |

decomposition depends on a step size .

Total energy of the graph
o
%
r

We note that step size is an important at-

tribute and affects the speed of the algo- 2801

rithm. For illustration, we show the conver- 278 00 200 300 40 500 600

Time (clock seconds)
gence of dual decomposition with different

Figure 2.2: The rate of convergence in subgradient dual decomposi-

step sizes on cave dataset in Fig. 2.2. Note .
tion depends on step size

that erring on the higher side causes oscillations, while erring on the lower side can cause
convergence to be too slow.
Upon convergence or completing a

maximum number of iterations, we can  Algorithm 2: Subgradient Dual De-

compute the optimal assignment for vari-  composition

able nodes with disagreeing slaves from the Data:
. Factor Graph G = (V, F, E)

messages: ,
Step size a > 0

Maximum number of iterations /N

I; = argmax Z Hif (%z) (2.26) Result: Labels {x,{}(i,f)eE, Messages {5 ()}

€L, if (%4 0 Vi, f) € B,z € Ly
wi€li  fe pif (i) < (4, f) x
r<1

X . . while » < N do

Note that the above equation is only valid for f € F do
. . s
for disagreeing slaves. When the slaves e
. . arg min <9f(xf) + > ,ulf(a:{)>

agree, we can simply pick the agreed upon L xf ien(f)
value. // For disagreeing nodes

fori € V:3f, f' € n(i) Z${l #x{do
for f € n(i) do
algorithm; hence it only solves the MAP | mir@]) gl + 2

Dual decomposition is an optimization

problem (2.14), but not the marginal prob- | et

lem (2.13), which may be considered a lim-

itation.
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2.6 Higher order factors and efficiency

The message update equation (2.19) in the BP algorithm and the slave minimization (2.25)
in the DD algorithm are, in general, exponential in the size of neighborhood of factor
f, which is computationally expensive for higher order factor graphs. This motivates us
to seek a generic class of factors that can be efficiently applied to the belief propagation
(BP) and dual decomposition (DD) algorithms. We begin by introducing common forward
sensor models that need to fit our class of factors followed by their generalization and then

their application to the BP and DD algorithms.

2.6.1 Forward sensor models

Forward sensor models estimate the sensor reading given the environment. In this section,
we describe two commonly used sensor models a) Gaussian and b) piecewise constant

sensor models.

2.6.1.1 Gaussian sensor model (GSM)

Assuming Gaussian noise o, the range measurement by a laser sensor is given by:

1 5 _ 2
p(zslxys.95) = Ty P (—(Zf(xf’zgafg zy) > 2.27)

where Z(x, gf) is the distance of first occupied cell in x ¢ starting from pose g;.

2.6.1.2 Piecewise constant sensor model (PCSM)

It is common in graphical models to have simple factors that assign high probability to
expected configurations and low probability to all other states. Hence, we propose the

following factor, which we use in all our experiments,

1 if Xf = Rfl
1
p(zlxs,95) = 7 { exp(=900)  ifx; =Ry (2.28)
exp(—1000) otherwise

where Z is the normalization constant, Rf; = [0,0...0,1]" denotes the all-free-but-last-
occupied cell pattern and Ry, = [0,0...0,0]" denotes all free cells. The second case
indicates that we are more averse to estimating the reflecting cell closer to the robot as

compared to estimating it away from the robot.
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2.6.2 Generalization to pattern-based factors

We define a class of pattern-based higher order factors that are a generalization of those

discussed by Komodakis et al. [61]. These are factors of the form:

U ifx;~ Ry, VI<m <M
p(zflxs,97) = . , (2.29)
Ymin  Otherwise

where R, is one of the mutually exclusive M patterns and expression x; ~ R, denotes
that vector x; “matches” pattern R,,,. A pattern, R,,, = (n§*(f),r™), is defined by a non-
empty set of fixed nodes nJ'(f) C n(f) that are expected to have desired values ™, while
the state of remaining free nodes can take any value from the label set. A configuration
xs “matches” pattern R,, if the state of fixed nodes is the same as the desired values,
x; = r"Vi € ng'(f).

It is clear that PCSM (2.28) is an instance of pattern-based factors. It is also possible
to represent GSM (2.27) as a pattern-based factor. We use the fact that the term Z¢(xy, gy),
just depends on the first occupied cell. We define pattern R,,, such that the first occupied
cell is the m'™ cell in n(f):

ng' (f) = n(f)1m (2.30)
r'" = {r]" = 0}ien(f)1m and i) =1 (2.31)
R, = (ng',r™) (2.32)

where n(f); is the k™ cell that is traced by the laser. With this formulation, we will have
M = n(f) patterns to describe the GSM in the form (2.29) with ¢, given by

_ 1 (6(m) — 27)”

where §(m) is the distance of m™ cell from the robot starting point g;. Also note that in

this formulation the only case for otherwise is the one when all cells are O (or free).

2.6.3 Efficient sum product

To efficiently compute (2.19) for the pattern-based factors defined we need the messages
to be normalized. We assume that the messages 1i;_, ((I;) are normalized over the label set

L; to sum up to one, > LeL; Hios f(li) = 1. Using the messages as a probability measure for
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the state of source nodes, we can compute the probability of each pattern being true:

0 ifi € ng'(f) and [; # r"

[T #j,;(r}?) otherwise
jeng' ()i

p(xe ~ Ry |z, =1;) = (2.34)

The message update equation (2.19) can be written in terms of probability of patterns:

W1 =) Ymp(Xe ~ Rt = 1) + UninPothervise - (2.35)

m<M

where potherwise = 1 — < P(Xe ~ R |75 = 1;).

The message update can be computed in O(M |n(f)|) using (2.35), instead of O(Lln(f)l)
in the general case. Note that for GSM the number of patterns is same as the size of
neighborhood, while for PCSM the number is fixed. Hence, the message update step is
quadratic in neighborhood size for GSM and linear for PCSM.

2.6.4 Efficient dual decomposition

We note that slave function (2.25) is composed of two terms: the factor itself and the
messages. While minimizing for each pattern we can make use of the fact that the value of
8¢ is constant for a pattern and hence we need to focus only on minimizing the messages.
Minimizing the messages is trivial as each term can be minimized independently.

While minimizing the otherwise case of patterns, we must ensure the exclusivity from
explicit patterns. If the space for the otherwise case is small (like in the Gaussian sensor
model), we simply go over the entire space to find the minimum value. Otherwise, we
keep finding the n-best minimizations of messages until we get a minimization that does
not match any of the patterns already considered. For example, for the piecewise constant
sensor model, there are only two patterns that need to be checked for exclusion. Hence, the
otherwise term can be easily minimized by finding the three best assignments that minimize
the messages term. Note that message update for max product BP (2.22), can be done by

following exactly the same logic.

2.7 Experiments

We run experiments on simulated as well real data. The simulated data is generated using

Player/Stage [38] project. We use multiple map bitmaps bundled along with player/stage
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Figure 2.3: Comparison of convergence rate of different algorithms on occupancy grid mapping. From left to right, convergence rate
on three datasets is shown: 1) cave, 2) hospital section and 3) albert-b [48] dataset. While sampling methods like Metropolis hastings
converge quickly they stay far from optimum energy. On the other hand modern inference algorithms like belief propagation and dual
decomposition reach closer to an optimum value. The legends are listed only once for clarity.

library. The robot motion is generated using the wander driver. The robot is allowed to
wander in the map for 2 minutes aggregating approximately 270,000 laser measurements.

For real data, we have used the albert-b-laser dataset provided by C. Stachniss from
University of Freiburg. The dataset was captured by a B21r robot with a SICK PLS moving
through a lab at University of Freiburg. This data set was obtained from the Robotics Data
Set Repository (Radish) [48].

To evaluate the convergence rate of each algorithm, we plot total energy (negative log
likelihood) of the graph with respect to CPU ticks used by the algorithm. The plots of
energy convergence with respect to time for cave dataset is shown in Fig. 2.3. This data
clearly show the improvement from moving to belief propagation and dual decomposition,
which, in all cases, leads to lower energies faster than our baselines. DD outperforms BP
in typical cases.

In all our experiments we do not use any occupancy prior, although Merali et al. [84]
suggest using an occupancy prior of 0.3 for better convergence. We use a step size of 50 for
dual decomposition and piecewise constant sensor model. Also, we prefer piecewise con-
stant sensor model over Gaussian sensor model because of the former being faster which
is a consequence of having fewer patterns in the pattern-based factor formulation. We have

implemented the algorithms in C++ and the code is available at the authors’ websites.

2.7.1 Discussion

As is evident from the convergence comparison in Fig. 2.3, sampling algorithms (Metropo-
lis Hastings with/without heatmap) are liable to getting stuck in a local minima. This is
also an artifact of the simple transition probability where we flip only one cell at a time.
Even from the qualitative results for sampling algorithms (Fig. 2.4), we see that the walls
are thinner than the corresponding results in other algorithms which shows the inability of
sampling-based algorithms to form lower energy and thicker walls for the piecewise con-

stant sensor model. The downside of being biased towards thinner walls is evident in the
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Figure 2.4: Qualitative results on different datasets. Each row represents a different dataset while each column represents a different
algorithm. The columns correspond to the following algorithms (from left to right): 1) Ground truth with the trajectory of the robot
2) Inverse sensor model 3) Metropolis Hastings without heat map 4) Metropolis Hastings with heat map 5) Belief Propagation (BP) 6)
Dual decomposition (DD). The rows correspond to the following datasets (from top to bottom): 1) cave 2) hospital section 3) albert-b.
The grainy-ness in columns (3) and (4) is an artifact of sampling algorithms, when we sample over finite number of sample to compute
expected state of a cell. Also note the missing or ragged walls in first 3 algorithms, while BP and DD are able to converge to thick solid
walls. [48].

albert-b dataset (see Fig 2.4), as we get ragged walls for the sampling algorithms.

2.8 Conclusion and Future work

Dual decomposition is faster because it focuses on disagreeing nodes. However, step size is
a crucial parameter that affects the speed of convergence. On the other hand, sum product
belief propagation does not depend on any parameter, but has no preference for the dis-
agreeing nodes. This combination obviously hints towards an algorithm where we perform
belief propagation over disagreeing nodes only. The state of art variations of these algo-
rithms, like Sequential Tree Re-Weighted (TRW-S) belief propagation [59], accelerated
dual decomposition [50], are steps in this direction. Also, a recent comparative study [53]
points towards other candidate methods, e.g. polyhedra based methods, that outperform
than the dual decomposition class of methods. Even without using these more recent al-
gorithmic developments, we get stronger performance than methods used so far. This only
serves to prove our assertion that modern inference methods should be used for occupancy

grid mapping.
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CHAPTER 3

Mutual Localization!

3.1 Introduction

Cooperative localization is the problem of finding the relative 6-DOF pose between robots
using sensors from more than one robot. Various strategies involving different sensors
have been used to solve this problem. For example, Cognetti et al. [18, 34] use multiple
bearning-only observations with a motion detector to solve for cooperative localization
among multiple anonymous robots. Trawny et al. [140] and lately Zhou et al. [156,
155] provide a comprehensive mathematical analysis of solving cooperative localization
for different cases of sensor data availability. Section 3.2 covers related literature in more
detail.

To the best of our knowledge, all other cooperative localization works (see Section
3.2) require estimation of egomotion. However, a dependency on egomotion is a limita-
tion for systems that do not have gyroscopes or accelerometers, which can provide dis-
placement between two successive observations. Visual egomotion, like MonoSLAM [20],
using distinctive image features estimates requires high quality correspondences, which
remains a challenge in machine vision, especially in cases of non-textured environments.
Moreover, visual egomotion techniques are only correct up to a scale factor. Contem-
porary cooperative localization methods that use egomotion [156, 140, 81] yield best re-
sults only with motion perpendicular to the direction of mutual observation and fails to
produce results when either observer undergoes pure rotation or motion in the direction
of observation. Consequently, in simple robots like Turtlebot, this technique produces

poor results because of absence of sideways motion that require omni-directional wheels.

I'This material originally appeared as: V. Dhiman, J. Ryde, and J. J. Corso. Mutual localization: Two
camera relative 6-dof pose estimation from reciprocal fiducial observation. In Proceedings of International
Conference on Intelligent Robots and Systems, 2013
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P3/s3ds s1P1/91

To obviate the need for egomotion, we pa/sada sabalaz

propose a method for relative pose estima- c,

tion that leverages distance between fidu-

. Figure 3.1: Simplified diagram for the two-camera problem. Assum-
cial markers mounted on robots for resolv- ing the length of respective rays to be 71,72, 3,74 respectively,

. 1 . . h hich each marker coordinates can be written in both coordinate frames
Ing scale amblgultY' Our method, whic {p} and {q}. For example M is y1p1 in frame {p} and qi in

we call mutual localization, depends upon (7} Where P1 unit vector parallel o p.

the simultaneous mutual/reciprocal obser-

vation of bearing-only sensors. Each sensor is outfitted with fiducial markers (Fig. 3.1)
whose position within the host sensor coordinate system is known, in contrast to assump-
tions in earlier works that multiple world landmarks would be concurrently observable by
each sensor [162]. Since our method does not depend on egomotion, hence it is instan-
taneous, which means it is robust to false negatives and is not susceptible to the errors in
egomotion estimation.

The main contribution of our work is a generalization of Perspective-3-Points (P3P)
problem where the observer and the observed points are distributed in different reference
frames unlike conventional approaches where the observer’s reference frame does not con-
tain any observed points and vice versa. In this chapter we present an algebraic derivation to
solve for the relative camera pose (rotation and translation) of the two bearing-only sensors
in the case that each can observe two known fiducial points in the other sensor; essentially
giving an algebraic system to compute the relative pose from four correspondences (only
three are required in our algorithm but we show how the fourth correspondence can be
used to generate a set of hypothesis solutions from which best solution can be chosen).
Two fiducial points on each robot (providing four correspondences) are preferable to one
on one and two on the other, as it allows extension to multi-robot (> 2) systems ensuring
that any pair of similarly equipped robots can estimate their relative pose. In this chapter,
we focus on only the two robot case as an extension to the multi-robot case as pairwise
localization is straightforward yet practically effective.

Our derivation, although inspired by the linear pose estimation method of Quan and Lan
[113], is novel since all relevant past works we know on the P3P problem [44], assume all
observations are made in one coordinate frame and observed points in the other. In contrast,
our method makes no such assumption and concurrently solves the pose estimation problem
for landmarks sensed in camera-specific coordinate frames.

We demonstrate the effectiveness of our method, by analyzing its accuracy in both
synthetic, which affords quantitative absolute assessment, and real localization situations

by deployment on Turtlebots. We use 3D reconstruction experiments to show the accuracy
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of our algorithm. Our experiments demonstrate the effectiveness of the proposed approach.

3.2 Related Work

Cooperative localization has been extensively studied and applied to various applications.
One of the latest works in this area comes from Cognetti et al. [18], [34] where they focus
on the problem of cooperatively localizing multiple robots anonymously. They use multiple
bearing-only observations and a motion detector to localize the robots. The robot detector
is a simple feature extractor that detects vertical cardboard squares mounted atop each robot
in the shadow zone of the range finder. One of oldest works come from Karazume et. al.
[69] where they focus on using cooperative localization as a substitute to dead reckoning
by suggesting a “dance” in which robots act as mobile landmarks. Although they do not
use egomotion, but instead assume that position of two robots are known while localizing
the third robot. Table 3.1 summarizes a few closely related works with emphasis on how
our work is different from each of them. The rest of the section discusses those in detail.

Howard et al. [47] coined the CLAM (Cooperative Localization and Mapping) where
they concluded that as an observer robot observes the explorer robot, it improves the lo-
calization of robots by the new constraints of observer to explorer distance. Recognizing
that odometry errors can accumulate over time, they suggest using constraints based on
cooperative localization to refine the position estimates. Their approach, however, does not
use the merits of mutual observation as they propose that one robot explores the world and
whilst the other robot watches. We show in our experiments, by comparison to ARToolKit
[54] and Bundler [128], that mutual observations of robots can be up to 10 times more
accurate than observations by a single robot.

A number of groups have considered cooperative vision and laser based mapping in
outdoor environments [80, 123] and vision only [76, 119]. Localization and mapping using
heterogeneous robot teams with sonar sensors is examined extensively by [40, 57]. Using
more than one robot enables easier identification of previously mapped locations, simpli-
fying the loop-closing problem [62].

Fox et al. [33] propose a Monte-Carlo based cooperative localization technique. The
method uses odometry measurements for egomotion. Chang et al. [14] uses depth and
visual sensors to localize Nao robots in the 2D ground plane. Roumeliotis and Bekey
[120] focus on sharing sensor data across robots, employing as many sensors as possible
which include odometry and range sensors. Rekleitis et al. [117] provide a model of robots
moving in 2D equipped with both distance and bearing sensors.

Zou and Tan [162] proposed a cooperative simultaneous localization and mapping
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Related work \ Tags NoEM | BO | NoSLAM | MO

Mutual localization v v v v

Howard et al.[47] X v v v

Zou and Tan [162] v v X X

Cognetti et al.[18] X v v v

Trawny et al.[140] X v v v

Zhou and Roumeliotis [156, 155] X v v v

Roumeliotis et al.[120] X X X v

where

Tag meaning Tag | meaning

NoEM Without Ego-Motion.  All those | BO | Localization using bearing only
works that use egomotion are measurements. No depth measure-
marked as X. ments required. All those works

that require depth measurements are
marked with X.

NoSLAM | SLAM like tight coupling. Inaccu- | MO | Utilizes mutual observation, which
racy in mapping leads to cumulating is more accurate than one-sided ob-
interdependent errors in localization servations. All those works that do
and mapping. All those works that not use mutual observation, and de-
use SLAM like approach are marked pend on one-sided observations are
with a X. marked as X

Table 3.1: Comparison of related work with Mutual localization

method, CoSLAM, in which multiple robots concurrently observe the same scene. Cor-
respondences in time (for each robot) and across robots are fed into an extended Kalman
filter and used to simultaneously solve the localization and mapping problem. However,
this and other “co-slam” approaches such as [58] remain limited due to the interdependence
of localization and mapping variables: errors in the map are propagated to localization and
vice versa.

Recently Zhou and Roumeliotis [156, 155] have published a set of 14 minimal solutions
that cover a wide range of robot-to-robot measurements. However, they use egomotion for
their derivation and assume that observable fiducial markers coincide with the optical center

of the camera. Our work does not make any of these two assumptions.

3.3 Problem Formulation

We use the following notation in this chapter, see Fig. 3.1. (), and C, represent two
robots, each with a camera as a sensor. The corresponding coordinate frames are {p}
and {q} respectively with origin at the optical center of the camera. Fiducial markers

M, and M, are fixed on robot C,, and hence their positions are known in frame {q} as
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qi1, q2 € R3. Similarly, ps, ps € R? are the positions of markers M3 and M, in coordinate
frame {p}. Robots are positioned such that they can observe each others markers in their
respective camera sensors. The 2D image coordinates of the markers M; and M, in the
image captured by the camera {p} are measured as p;, p» € R? and that of M3 and M,
is 3, Qs € R? in camera {q}. Let K,,, K, € R**3 be the intrinsic camera matrices of the
respective camera sensors on robot C,,, C,. 2D image coordinates are denoted by a bar (p)
and unit vectors that provide bearing information are denoted by a caret (p).

Since the real life images are noisy, the measured image positions p; and q; will differ

from the actual positions p,y and g,y by Gaussian noise 7),;, 7i-

Pi =D+ Vie{l,2} 3.1
qi = Qi +1ny Vie {34} (3.2)

The problem is to determine the rotation R € R**® and translation t € R? from frame {p}
to frame {¢} such that any point p; in frame {p} is related to its corresponding point q; in

frame {q} by the following equation.
q; = Rp; +t (3.3)

The actual projections of markers M into the camera image frames of the other robot are

governed by following equations,

po =n(K,R'q—t)) Vie{l,2} (3.4)
Ao =7m(K, (Rp;+t)) Vie{3,4} 3.5

where 7 is the projection function defined over a vector

-
vV = [vm,vy,vz] € R3as

vy Uz

(v) = [_ _} ! (3.6)

To minimize the effect of noise we must compute the optimal transformation, R* and t*.

(Rt =argmin [ Y [Ipi = (KR (q = t)> + Y lldi — (Kq(Rpi + t))[1°

(Rt) \ 4
ie{1,2} i€{3,4}

To solve this system of equations we start with exact equations that lead to a large
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number of polynomial roots. To choose the best root among the set of roots we use the
above minimization criteria.

Let p;, q; € R3 be the unit vectors drawn from the camera’s optical center to the image
projection of the markers. The unit vectors can be computed from the position of markers

in camera images p;, q; by the following equations.

T T
Kl o EMaa |
P = — Vi€ {1,2}, qQ = — Vi€ {3,4} (3.9)
HKpl bl.1] Hqu a1

Further let 1, v5 be the distances of markers My, M, from the optical center of the
camera sensor in robot C),. And 73, 74 be the distances of markers Ms, M, from the
camera optical center in robot C,. Then the points qi, q2, 343, 7494 in coordinate frame

{q} correspond to the points v, P1, 72P2, P3, P4 in coordinate frame {p},

q =t + 7 Rp, q2 = t + 12 Rp2, (3.9)
v3q3 = t + Rps, YaQs =t + Rpy . (3.10)

These four vector equations provide us 12 constraints (three for each coordinate in 3D) for
our 10 unknowns (3 for rotation R, 3 for translation t, and 4 for ;). We first consider only
the first three equations, which allows an exact algebraic solution of the nine unknowns
from the nine constraints.

Our approach to solving the system is inspired by the well studied problem of Perspective-
3-points [44], also known as space resection [113]. However, note that the method cannot
be directly applied to our problem as known points are distributed in both coordinate frames
as opposed to the space resection problem where all the known points are in the one coor-
dinate frame.

The essential flow of our approach is to first solve for the three range factors, 71, 72 and
v3 (Section 3.3.1). Then we set up a classical absolute orientation system on the rotation
and translation (Section 3.3.2), which is solved using established methods such as Arun et
al. [4] or Horn [46]; finally, since our algebraic solution will give rise to many candidate

roots, we develop a root-filtering approach to determine the best solution (Section 3.3.4).
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3.3.1 Solving for v, v and 3

The first step is to solve the system for ~y;, 72 and 3. We eliminate R and t by considering

the inter-point distances in both coordinate frames.

[71P1 — 2Pzl = |la1 — az||
[72b2 — P3| = [|a2 — y3as]| (3.11)
HP3 - ’Ylfh” = H’Y:s(is - C11”

Squaring both sides and representing the vector norm as the dot product gives the following

system of polynomial equations.

Vi 495 — 27172D1 P2 — |l — @2||* =0 (3.12a)
Y5 — 73 — 272Dy Ps + 273q; a3 + [|ps||* — [la2|* =0 (3.12b)
=73 = 2Py Ps + 27341 Gs + [ps)* — [laull* =0 (3.12¢)

This system has three quadratic equations implying a Bezout bound of eight (23) solu-
tions. Using the Sylvester resultant we sequentially eliminate variables from each equation.

Rewriting (3.12a) and (3.12b) as quadratics in terms of vy, gives

%+ (=2nD{P2) e + (1 — a1 — @of*) =0 (3.13)
a1 a
% + (=2Dy Ps) 12 — (73 — 27345 G — [Pl + lla]?) = 0 (3.14)
b b0

The Sylvester determinant [12, p. 123] of (3.13) and (3.14) is given by the determinant of

the matrix formed by the coefficients of 7.

1 a; Qo 0
0 1 a; Qo
SD(71, v3) = 3.15
(71,73) L b by 0 (3.15)
0 1 b b

This determinant is a quartic function in 7, 3. By definition, the resultant is zero if and
only if the parent equations have at least a common root[12]. Thus we have eliminated

variable v, from (3.12a) and (3.12b). We can repeat the process for eliminating -3 by
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rewriting SD(~v1,y3) and (3.12c) as:

SD(v,73) = C47§ + 037:3? + 0273? +ciy3+cg=0

2 + (2] @3) 75 + 72 — 27D1 ps + Ipsl® — ] =0 (3.16)
T N Er P
1 0

The Sylvester determinant of (3.16) would be

Cq4 C3 Cg C1 Cp 0

0 Cy4 C3 C2 C1 (O
1 di do 0 0 0
SDy (1) = . ! do PR —0. (3.17)
1 0
0 dl do 0
0

0 0 1 di dy

Solving (3.17) gives an 8 degree polynomial in ;. By Abel-Ruffini theorem [6, p. 131], a
closed-form solution of the above polynomial does not exist.

The numeric solution to (3.17) gives eight roots for 3. We compute v, and 7, using
(3.12¢) and (3.12b) respectively. Because the camera cannot see objects behind it, only real

positive roots are maintained from the resultant solution set.

3.3.2 Solving for R and ¢

With the solutions for the scale factors, {71, 72,73} we can compute the absolute location
of the markers { My, Mo, M3} in both the frames {p} and {q}.

pi =7ipi Vi€ {1,2}, qa =7q Vie{3}

These exact correspondences give rise to the classical problem of absolute orientation i.e.
given three points in two coordinate frames find the relative rotation and translation be-
tween the frames. For each positive root of 71, 72, 773 we use the method in Arun et. al
[4] method (similar to Horn’s method [46]) to compute the corresponding rotation R and

translation value t.
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3.3.3 Absolute orientation [4]

We provide a short summary of the Arun et al.’s algorithm. The algorithm computes R and

t by the following optimization function,

3
= i ; — ; 1

(R, tx) = arg min Zl la: — (Rpi + t)]] (3.18)

where q;, p; are absolute positions of the markers in respective coordinate frames. We can

eliminate the translation t by moving the origin to the centroids of all the points in both the

coordinate frames. Let us call the new points q’ and p’.

3
qdi=ai— Y q (3.19)
j=1
3
pi=pi— > q (3.20)
j=1

Eliminating the translation variable t,

3
R — | ' Rrp'. 321
argRgbgg);llqz o (3.21)

It can be proved that minimizing the above error function is the same as the maximizing

the function

R* = Tr (RH 3.22
arg  max r(RH), (3.22)

where H = 7 | p/;,q/; is known as the covariance matrix and Tr(M) is the Trace of

matrix M. The optimal R is obtained by
R =VU' (3.23)

where U,V are the left-singular vectors and right-singular vectors of [ such that H =
UAVT.
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3.3.4 Choosing the optimal root

Completing squares in (3.12) yields important information about redundant roots.

(71 +72)* — 2s172(1 + f)1Tf>2) —lar —aqe||* =0 (3.24a)
(V2 —PaP3)® — (13— a3 a3)> + (P3 — P2) 'P3 — s (q2 — d3) =0 (3.24b)
(m—DPiPs)* — (3—a;as)*+ (Ps—P1) ' Ps—a] (a1 —4s) =0 (3.24¢)

Equations (3.24) do not put any constraints on positivity of terms (72 — Py P3), (73 —
ds 4s), (71 — P; p3) or (13 — qf qs3). However, all these terms are positive as long as the
markers of the observed robot are farther from the camera than the markers of the observing
robot. Also, the distances 7; are assumed to be positive. Assuming the above, we filter the

real roots by the following criteria:

" 2 [|psl; 72 2 |Ipsl], 73 = max({lau ], f[az|) (3.25)

These criteria not only reduce the number of roots significantly, but also filter out certain
degenerate cases.
For all the filtered roots of (3.17), we compute the corresponding values of R and t,

choosing the best root that minimizes the error function, (3.7).

3.3.5 Extension to four markers

Even though the system is solvable by only three markers, we choose to use four markers
for symmetry. We can fall back to the three marker solution in situations when one of the
markers is occluded. Once we extend this system to 4 marker points, we obtain 6 bivariate
quadratic equations instead of the three in (3.12) that can be reduced to three 8-degree
univariate polynomials. The approach to finding the root with the least error is the same as

described above.
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3.3.6 Extension to more than four markers

Assume that the five markers are distributed on two robots such that the equations are

formulated as:

q: =t + 71 Rp, q2 =t + 72 Rpo, 7343 = t + Rps (3.26)
V494 = t + Rpy, Y595 =t + Rps (3.27)

Compare this system of equations to the system when two cameras observe an unknown
set of corresponding points i.e. in both the coordinate frames we only know the projection

of the points.

mai =t + 2 Rp1, v3Q2 = t + Y4 Rpo, Y5q3 =t +6Rps  (3.28)
Y74 = t + 13 RP4, Y945 = t + Y10 2Ps (3.29)

Clearly, our problem under consideration (3.27) is easier than solving (3.29) as we already
know five of the ten unknown scale factors. Fortunately, this problem of finding relative
camera pose as they observe unknown set of five or more corresponding points has been
well studied [132, 101, 108, 78]. However, these methods result in a solution that is correct
up to a scale factor. By additionally using the distance relations from (3.11) we can solve
for the relative camera pose along with scale factor.

Assuming the unknown essential matrix to be £, the system of equations (3.27) can be

rewritten in the following form:
q, Fp;=0 Vic{l1,2}, @ Epi=0 Vic{34,5} (3.30)

With this notation, it is easy to follow the solution outlined in [101] for five or six points
(markers). For even more points refer to [45] for the widely known 7-point and linear

8-point algorithms.

3.4 Implementation

We implement our algorithm on two Turtlebots with fiducial markers. One of the Turtlebots
with markers is shown in Fig. 3.2. We have implemented the algorithm in Python using
the Sympy [13], OpenCV [10] and Numpy [21] libraries. As the implementing software
formulates and solves polynomials symbolically, it is generic enough to handle any reason-

able number of points in two camera coordinate frames. We have tested the solver for the
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Figure 3.3: Diagram of the two camera setup for mutual localization 3D metric reconstruction, along with images from each camera for
two poses of the mobile camera. Cameras have distinctive cylindrical barcode-like markers to aid detection in each others image frames.
Also depicted is the triangulation to two example feature points.

following combination of points: 0-3, 1-2, 2-2, where 1-2 means that 1 point is known in
the first coordinate frame and 2 points are known in the second.

We use blinking lights as fiducial markers on the robots
and barcode-like cylindrical markers as for the 3D reconstruc-
tion experiment.

The detection of blinking lights follows a simple thresh-
olding strategy on the time differential of images. This ap-

proach coupled with decaying confidence tracking produces

satisfactory results for simple motion of robots and relatively

Figure 3.2: The deployment of markers
on the Turtlebot used for experiments

static backgrounds. Fig. 3.3 shows the cameras mounted with
blinking lights as fiducial markers. The robots shown in Fig.

3.3 are also mounted with ARToolKit[54] fiducial markers for the comparison experiments.

3.5 Experiments

To assess the accuracy of our method we

perform a localization experiment in which Median Trans. err. | Median Rot. err.
ARToolIKit[54] 0.57m 9.2°

we measure how accurately our method can | g gier125) 0.20m 0.016°

determine the pose of the other camera. We | Mutual Localization 0.016m 0.33°

compare our localization results with the Table 3.2: Table showing mean translation and rotation error for
. . A . .ARToolKit, Bundler and Mutual Localization .
widely used fiducial-based pose estimation in ARToolKit [54] and visual egomotion and

SfM framework Bundler [128]. We also generate a semi-dense reconstruction to compare
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Figure 3.4: Translation error comparison between the ARToolKit and our mutual localization. The translation error is plotted to ground

truth X and Z axis positions to show how error varies with depth (Z) and lateral (X) movements. We get better results in localization by
a factor of ten. Also note how the translation error increases with Z-axis (inter-camera separation).

the mapping accuracy of our method to that of Bundler. The reconstruction quality is a

measure of the mutual localization accuracy of the two cameras used in the reconstruction.

3.5.1 Localization Experiment

Setup Two turtlebots were set up to face each other. One of the turtlebot was kept station-
ary and the other moved in 1 ft increments in an X-Z plane (Y-axis is down, Z-axis is along
the optical axis of the static camera and the X-axis is towards the right of the static camera).
We calculate the rotation error by extracting the rotation angle from the differential rotation

Ry, Rey as follows:

180 Tr(R R.st) — 1
Ey = — arccos (P 5 2
T

(3.31)

where Ry is the ground truth rotation matrix, R, is the estimated rotation matrix and
Tr is the matrix trace. The translation error is simply the norm difference between two

translation vectors.

Results in comparison with ARToolKit [54] The ARToolKit is an open source library
for detecting and determining the pose of fiducial markers from video. We use a ROS[114]
wrapper — ar_pose — over ARToolKit for our experiments. We repeat the relative camera
localization experiment with the ARToolKit library and Bundler[128] and compare to our
results. The corresponding results are shown in Table 3.2. The results show a tenfold

improvement in translation error over Bundler.

3.5.2 Simulation experiments with noise

A simple scene was constructed in Blender to verify the mathematical correctness of the

method. Two cameras were set up in the blender scene along with a target object 1m from
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Figure 3.5: Rotation error comparison between the ARToolKit and Mutual localization. Rotation error decreases with Z-axis (ground
truth inter-camera separation). See (3.31) for computation of rotation error.
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Figure 3.6: Rotation and translation error as noise is incrementally added to the detection of markers.

the static camera. Camera images were rendered at a resolution of 960 x 540. The markers
were simulated as colored balls that were detected by simple hue based thresholding. The
two cameras in the simulated scene were rotated and translated to cover maximum range
of motion. After detection of the center of the colored balls, zero mean Gaussian noise
was added to the detected positions to investigate the noise sensitivity of our method. The
experiment was repeated with different values of noise covariance. Fig. 3.6 shows the
translation and rotation error in the experiment with variation in noise. It can be seen that
our method is robust to noise as it deviates only by Scm and 2.5° when tested with noise of

up to 10 pixels.

3.5.3 3D Reconstruction experiment

The position and orientation obtained from our method is inputted into the patch based
multi-view stereo (PMVS-2) library [35] to obtain a semi-dense reconstruction of an indoor
environment. Our reconstruction is less noisy when compared to that obtained by Bundler
[128]. Fig. 3.7 shows a side-by-side snapshot of the semi-dense map from Bundler-PMVS
and, our method, Mutual Localization-PMVS. To compare the reconstruction accuracy, we
captured the scene as a point cloud with an RGB-D camera (Asus-Xtion). The Bundler and
Mutual Localization output point clouds were manually aligned (and scaled) to the Asus-
Xtion point cloud. We then computed the nearest neighbor distance from each point in the
Bundler/Mutual localization point clouds discarding points with nearest neighbors further

than 1m as outliers. With this metric the mean nearest neighbor distance for our method
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(a) Bundler-PMVS (b) Mutual Localization-PMVS (c) Actual scene

Figure 3.7: The semi-dense reconstruction produced by our method, Mutual Localization, is less noisy (0.18m) when compared to that
produced by Bundler (0.33m).

was 0.176m while that for Bundler was 0.331m.

3.6 Conclusion

We have developed a method to cooperatively localize two cameras using fiducial markers
on the cameras in sensor-specific coordinate frames, obviating the common assumption of
sensor egomotion. We have compared our results with the ARToolKit showing that our
method can localize significantly more accurately, with a tenfold error reduction observed
in our experiments. We have also demonstrated how the cooperative localization can be
used as an input for 3D reconstruction of unknown environments, and find better accuracy
(0.18m versus 0.33m) than the visual egomotion-based Bundler method. We plan to build
on this work and apply it to multiple robots for cooperative mapping. Though we achieve
reasonable accuracy, we believe we can improve the accuracy of our method by improving
camera calibration and measurement of the fiducial marker locations with respect to the
camera optical center. We will release the source code (open-source) for our method upon

publication.
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CHAPTER 4

Occlusion-aware localization'

4.1 Introduction

As a two-dimensional (2D) projection of the three-dimensional (3D) world, image forma-
tion is associated with a loss of information. This is especially significant when objects in
3D space occlude each other with respect to the camera viewpoint. In recent years, we have
seen remarkable progress in various aspects of scene understanding, such as structure from
motion (SFM) and object detection. However, occlusions still present a challenge, with the
difficulty of physically modeling them being a major bottleneck.

Our main contribution is a novel theoretical model for occlusion handling that is contin-
uous and fully 3D. Our model is motivated by insights from computer graphics, whereby we
represent objects as translucent 3D ellipsoids. In Section 4.3, we develop novel continuous
models for representing transmission and reflection probabilities for each ray emanating
from the camera. This allows assigning probabilities for each point in space belonging to an
object, which can explicitly explain image observations and reason about occlusions. This
is in contrast to prior works that consider occlusions in 2D, or through discrete occluder
patterns or models that are not physically interpretable [107, 106, 150, 161, 160, 159].

A key advantage afforded by our occlusion model is unification. While previous ap-
proaches to handling occlusions are application-dependent, ours is physically-inspired,
thus, flexible enough to be used in a variety of scenarios. In this chapter, we show that
our theory can be used for uniformly modeling the association of SFM point tracks with
static or dynamic objects (Section 4.4.1), as well as modeling object detection scores in
applications like 3D localization (Section 4.4.2). We demonstrate the application of our

formulations for road scenes from the KITTI raw dataset [37].

I'This material originally appeared as: V. Dhiman, Q. Tran, J. Corso, and M. Chandraker. A continuous
occlusion model for road scene understanding. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2016
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In particular, assigning 2D point tracks
to independent, but potentially occluding,
objects is a fundamental challenge in com-
puter vision problems such as multibody
SFM [103]. Recent works use motion seg-
mentation [11, 115] as a precursor to local-
izing objects, which often suffices for mov-
ing objects [141] and has also been consid-
ered for multibody SFM [68]. However,
motion-based segmentation is not always
applicable in road scenes, due to static
parked cars, or dynamic cars that move
with similar velocities. Occlusions make
the problem more severe since point tracks
get clustered together for static objects and

may frequently appear to change associa-

4 z f S
Object detection and SFM inputs

" Continuous Occlusion Model
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Probabilistic association and occlusion-aware 3D localization

Figure 4.1: We propose an occlusion model in 3D that is physically-
inspired and continuous. Given object detection and SFM point
tracks, our unified model probabilistically assigns point tracks to ob-
jects and reasons about object detection scores and bounding boxes.
It uniformly handles static and dynamic objects, thus, outperforms
motion segmentation for association problems. We also demonstrate
occlusion-aware 3D localization in road scenes.

tion among dynamic objects in 2D. Indeed, we show in Section 4.5 that our point track

association outperforms state-of-the-art motion segmentation methods, as well as a base-

line that uses detection bounding boxes but does not consider occlusions.

Another potential application of our proposed model is towards 3D localization in road

scenes. Prior works such as [130] combine information from point tracks and detection

bounding boxes, but do not consider occlusions for either. In contrast, our unified occlu-

sion model allows a probabilistic soft assignment of point tracks to objects, as well as an

occlusion-aware interpretation of object detection outputs. Our model is continuous, so it

remains amenable to the use of continuous optimization tools.

To summarize, our main contributions are:

3D.

scores in object detection.

A novel theoretical model for handling occlusions that is continuous and formulated in

Unified occlusion handling for point tracks in SFM and bounding boxes and detection

Application of our model to association of point tracks with both static and moving ob-

jects, improving over motion segmentation and occlusion-unaware baselines.

scenes.

Application of our unified formulation to 3D localization of traffic participants in road
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4.2 Related Work

Occlusion handling in detection Several works in object detection consider occlusion
by training a detector on visible parts of the object [36]. Occlusion reasoning based on 2D
image silhouettes is used to improve detection performance in [49]. On the other hand, our
occlusion reasoning is based on 3D entities. In recent years, object detectors have also con-
sidered occlusion reasoning using 3D cues, often learned from a dataset of CAD models
[107, 106, 150]. By necessity, such frameworks are often a discrete representation of oc-
clusion behavior, for example, in the form of a collection of occlusion masks derived from
object configurations discretized over viewpoint. In contrast to these works, our occlusion
modeling is also fully 3D, but allows for a continuous representation. Further, to derive
3D information, we do not use CAD models, rather we derive a probabilistic formulation

based on physical insights.

Occlusion handling in tracking Occlusions have also been handled in tracking-by-detection
frameworks by considering occluder patterns in the image [70, 149]. A notable exception is
the work of Milan et al. [86] that explicitly models occlusions in the continuous domain to
determine a visibility ratio for each object in multi-target tracking. However, the occlusion
model in [86] is essentially the overlap of image projections of a Gaussian representation of
the object. Our occlusion modeling, on the other hand, is fully 3D, based on physical mod-
eling of object-ray intersections and much more general in determining the probability of a
point in space as belonging to an object. While our model can also be used to determine a
visibility ratio similar to [86], it has far more general applications and can be quantitatively

evaluated, as shown by our experiments on point track associations.

Motion segmentation and multibody SFM An application for our occlusion model-
ing is to determine point track associations in scenes with multiple objects. For moving
objects, this is within the purview of motion segmentation, which has been approached
through algebraic factorization methods [19, 143, 142], statistical methods [52, 41, 116]
and clustering methods [151, 39]. Some recent efforts include robust algebraic segmen-
tation with hybrid perspective constraints [115] and spectral clustering with point track
spatial affinities [11]. Unlike our work, such methods cannot handle static objects, or dy-
namic objects with little relative motion. Closer to our application, motion segmentation is
also used within multibody SFM frameworks [68, 98, 103]. In contrast to these works, our
formulation does not distinguish between moving and static objects and also explicitly rea-
sons about occlusions due to 3D object geometries for associating point tracks to individual

objects.
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3D localization One of the vital goals of 3D scene understanding is to localize 3D objects
in complex scenes. Monocular frameworks like ours have also reasoned about occlusions,
for instance, partial object detectors are considered in [148]. A detailed part-based repre-
sentation of objects based on annotated CAD models is used for monocular scene under-
standing in [161, 160, 159], which also allows reasoning about mutual occlusions between
objects. In contrast to these works, our monocular framework uses a physical modeling of
occlusion in continuous space and derives unified representations for SFM points and object
detection bounding boxes. This makes our model more general, extensible and amenable

for continuous optimization.

4.3 Continuous Occlusion Model

A common parametric modeling for objects, especially traffic participants in road scene
understanding, is as opaque cuboids.”> However, such models introduce discontinuities
in the problem formulation and do not adequately account for uncertainties in pose and
dimensions. With this motivation, we introduce our representation of 3D objects and our
modeling of object-object relationships, which lead to a continuous occlusion model that
correctly accounts for uncertainties in position and dimensions. We refer the reader to

Figure 4.2 for an illustration of the proposed concepts.

Occupancy model for traffic participants
Intuitively, we consider traffic participants
to be regions of 3D space with a high prob-

Probability

ability of occupancy. We model the uncer-

tainty in occupancy as a translucency func- Depth from camera()
Preflection Pyransmission

tion, with regions more hkely to be occu- Figure 4.2: We represent objects as translucent ellipsoids, which

leads to the formulation of transmission and reflection probabilities.
This figure shows the reflection probability for the first object (in
violet), which has high values around the camera-facing side of the
object. Also, note that the transmission probability is inversely pro-

pied by an object considered more opaque
and regions more likely to be free space
considered more transparent. Based on this Portional to occupancy.

intuition, we model objects as translucent 3D ellipsoids whose opacity is maximum at the
center and falls off towards the edges. In particular, we model the occupancy at 3D location

p corresponding to an object C; centered at m; as

focc(p) - ‘C(p’ miazi)7 (41)

ZNotable exceptions exist, such as [160, 159], but we note that such models are expensive, application-
specific and still discontinuous.
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where L(-) is the logistic function given by

1

L(p;m,X) = 1 4+ e—k(1—¢(pm))”

4.2)

with {((p,m) = (p — m)"X"!(p — m) being the Mahalanobis distance. We set k =
101n(49) as the value that allows the logistic function £ to drop to 0.98 at a distance
d = 0.9 from the object center. The spread of the ellipsoid, determined by 3J;, depends on
the dimensions of the object. Please refer to the supplementary material for the computation

of ¥; from object dimensions.

Image formation Given the above occupancy representation of the scene, a point on an
object is observed in the camera when precisely two conditions are satisfied. First, the
backprojected ray from the observed image pixel is transmitted through free space until
it reaches the object. Second, the ray encounters an opaque enough object surface and is
reflected. More formally, the probability of observation of a point p; on object C; is given
by

P (jt])servation = Pr?ﬂectionptjransmission (43)
The reflection probability ensures the presence of an object to constitute the observation,

while the transmission probability allows us to model occlusions. The forms of these two

functions are described next.

Reflection probability Consider a 3D point p; observed in the image at pixel p;. Let
K'p;

, . 1K~ ,

along the backprojected ray from the camera center passing through p;. Then, the probabil-

K be the intrinsic calibration matrix for the camera and p; = be the unit vector

ity of reflection at depth ~ along the ray p;, by an object Cj, is determined by the gradient

of the object’s occupancy function f.. as

7] 1 3 ~
Prejﬂection<)\> = E(max{(x vfocc(pj>ij})2' (44)

The gradient V f’..(p;) encourages the reflection probability to be high near object bound-
aries, the max ensures that negative probability due to the gradient in the direction opposite
to the ray is clipped off and squaring allows the function to be smooth near zero. Here, Z
denotes the normalization factor. We note that in the extreme case of an object being fully
opaque (that is, Vf% _(p;) € {0,1}), the above model reverts to a (squared) Lambertian
reflection. Figure 4.2 shows an example of the reflection probability.
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Transmission probability Since we are modeling occupancy as transparency, we derive
inspiration from optics for the modeling of translucent objects. A model for transmission
of light across a distance «, through a medium of density p and opacity (3 is given by the

Beer-Lambert law as
I(a) = Iye PP, (4.5)

In our formulation of scene occupancy, both opacity and density at a scene point p; are
encapsulated within the total occupancy function summed over all objects, foc(p;) =
> fie(p;). Further, the domain of our occupancy function fo..(p;) is [0, 1] instead of
[0, 00) for opacity 3. Thus, we replace e#” by the transparency function 1 — fo..(p;) and

consequently, the transmission probability over a small distance d+y is given by

Ptzansmission (’Y + d’.)/) = ]Dt]i;ansmission (7) (1 - fOCC (pj ) )d’y . (46)

Thus, for an image point p; to correspond to a 3D point p; at depth ~ along the backpro-
jected ray p;, the ray must be transmitted through space with the probability

N
Pt]ransmission (ry> = H(l - fOCC(’ylﬁj»d’y' (47)

C

Here, HZ represents a product integral from c to -y, where c is the position of camera screen,
considered here to be equivalent to the focal length of the camera .3

In practice, the integral for transmission probability (4.7) is difficult to compute even
numerically. So we choose a parameterization in the form of a product of sigmoid func-
tions, which is a reasonable approximation to the behaviour of the transmission probability,

as follows:

Ptjr.ansmission«y) - H(l - Eu(ﬁ? i, Fl)ﬁ’y(’% Vi))? (48)

7

where L£,(.) is sigmoid in the image domain, with p; and T'; representing the elliptical

projection of object C; in the image and £, (.) is sigmoid in the depth domain, with v;

3 A product integral is a simple integral in the log domain
v

[T~ focelypy)) ™ = el 20 FeecoRa

c
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Figure 4.3: Comparisons between the approximate and exact formulations of Rﬁansmission()\)' The drop in the approximate version is

delayed because we assume drop at the object center rather than the camera-facing face of the object.

being the mean depth of object C;. That is,

1
L,(p; i, T) = = , 4.9
(3 i, T) 1+ e kel (ppa) T, (p—pas) 49

1
Luvivi) = T

(4.10)

In Figure 4.3, we compare the exact and approximate formulations of transmission prob-
ability given by (4.7) and (4.8), respectively. Note that the choice of mean depth of the
object causes some deviation from the exact transmission probability. However, the shift
of transmission probability anywhere through the object is still a reasonable approximation
as occluded points can only lie outside the object. On the other hand, it yields significant
computational savings since ray intersections with an ellipsoid are expensive to evaluate
densely.

Thus, we have modeled the transmission probability to effectively capture the effect of
occlusion due to all traffic participants in a scene that lie along a particular ray. We reiterate
that our reflection and transmission probabilities are continuous functions, which allows us

to keep the problem formulation in the continuous domain.

4.4 Unified Occlusion Models

In this section, we highlight the versatility of our occlusion modeling by demonstrating its
unified application to two different problems: associating point tracks with objects and 3D
object localization using objects and point tracks. Table 4.1 summarizes inputs and outputs

for these problems.

4.4.1 Object-Point Association

Given 2D image points {p,} that are tracked between consecutive frames and a set of
objects {C;} appearing in the frames, we aim to associate p; with C;. Based on our contin-

uous occlusion model in Section 4.3, the association probability a*/ (\) between point track
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p; and object C; at depth A can be defined as

a’(\) = PY

reflection

(VP

transmission ()‘) ’

4.11)

where Pr?ﬁection(A) and Pj

transmission

(\) are from (4.4) and (4.8) respectively. Note that the
fraction ' ()), although called association probability, does not capture the entire infor-
mation that we have available for computing the association of point tracks to objects.
Rather, to compute the association probability between point track p; and object C},
we should also use the reprojection error. When the association of point track p; and
object C} is correct and the point of reflection is at depth A, the corresponding reprojection

error Y

reproj (A) Must be zero, otherwise the error becomes a measure of distance from the

true solution. The error £

reproj(/\) can be used for associating point tracks and objects by

converting it to the probability domain as

1 y
(A) = —; exp(—EiZ (V) (4.12)

P Z

reproj

where 7’ is the normalization coefficient.

Using both of the evidence terms in

(4.11) and (4.12), we can define the new as- ’ ‘ Symbol ‘ Description
sociation probability P, as follows: E p,(t) | 2D feature track j at time ¢
= Bi(t) | 2D detection bounding box of ob-
) 1 [ y ject C; at time ¢
B j ject C; at time

Pals]soc - ﬁ / a (A) eXp<_Ereproj<)‘))d)‘7 . -

¢ pe(t) Position of camera at time ¢

(4.13) w(t) | Orientation of camera at time ¢

m} () | Initial position of object C; at time

Initialization
with [129]

where Z” is the new normalization coeffi- t
cient. wi(t) Initial orientation of object C; at
Once we have computed the associa- , time ¢

. . . . . B Initial 3D dimensions of object C;
tion probability P/ . for every pair of point = — —

. ; . Pidoe Probability of assigning feature
tracks and objects, we can assign each point El track j to object C
track to the object with the highest associ- | & mi(t) | Position of object C; at time ¢
ation probability. The point tracks having w'(t) | Orientation of object C; at time ¢

B® 3D dimensions of object C;

very small association probabilities are as-

Table 4.1: Notation of inputs and outputs for object-point associ-
ation and 3D object localization. Note that object dimensions are
independent of time.

signed to the background.

In contrast to the principled approach
above, a heuristic baseline may simply assign a point track to the detection bounding box
enclosing it (and the background if outside all bounding boxes). For regions where bound-

ing boxes overlap, it may assign point tracks to the object that has the smallest mean depth
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among the competing bounding boxes. As we demonstrate in our experiments, such heuris-

tics are sub-optimal compared to using (4.13) from our occlusion model.

4.4.2 3D Object Localization

In this section, we exploit our continu-
ous occlusion model for another applica-
tion, namely, 3D object localization in road
scenes, which further demonstrates its ver-
satility. Given a set of 2D tracked feature
points {p;(¢)} and 2D detection bounding
boxes {Bi(t)} at frame ¢, the goal is to lo-
calize 3D traffic participants. In particu-

lar, for each traffic participant, we wish to
estimate its position m’(¢) and orientation :ﬂ
w'(t) on the ground plane and its 3D di-

it
. Egotect @
gtrack

mensions B'(¢). Please refer to Table 4.1
for a summary of inputs and outputs.

We construct a graphlcal model for rep- Figure 4.4: (Top) A sample road scene with occlusions, where the

unknowns of each object are modeled as random variables. (Bottom)
The graphical model corresponding to the above frame. In particu-
lar, the numbered nodes denote the unknown state variables of each
object (position, orientation, and dimensions), the shaded nodes are

Figure 4.4 illustrates an example of the observed variables (detection bounding boxes and point tracks), and
the colored squares represent various energies that capture object-

graph and energies. The negative log like- object interactions.

resenting relationships among objects, as

well as between objects and point tracks.

lihood is decomposed as follows:

—log P({m'(t),w'(t), B'(t) }{p; ()}, {B'(t)}) =

- Z + Z Atrackgéif;k+

t=s;
€e; N
Z Z it it it
(AdeteCtgdetect + Adyngdyn + )‘Silegsize) ’
t=s; i=1
Pt ; . . .

where &7, and £, reason about image observations such as point tracks and bound-
. . it it . . . . .
ing boxes, while £, and £, impose smoothness constraints and size priors respectively.

Here, Agacks Adetect> Adyns Asize are energy weights, IV is the number of objects in the se-
quence, s; and ¢; are respectively the starting and ending frames of object C;, and Z is

the normalization coefficient. Next, we present our unified continuous occlusion modeling

47



for both point track and bounding box energies. Due to space constraints, we present the

details of other energies in the supplementary material.

Continuous point track energy with occlusion Let g'(¢) be the pose of object C; at time
t in world coordinates, which is computed using the camera pose at time ¢ and the relative
pose of object C;j with respect to the camera at time ¢. We denote 7, (.) and 7 ; t y ()
as the forward and inverse projection functions that project a 3D point to the 2D image and
vice versa. Then, the reprojection error for 2D point p;(¢) with hypothesized depth A, is
given by

B = |

reproj

(1) — 7 (myty) (31 = DY) @14

Note that the inverse projection Wg_i}t) (.) depends on both the 2D point p;(¢) and the un-
known depth \. Also note that the inverse projection relies on the object pose at time ¢ — 1
while the forward projection relies on the object pose at time ¢, which can be different.
For an object C;, let {g(t)}; be the poses of all occluding objects at time ¢ (inclusive of
object C;) and {B}; be their corresponding 3D dimensions. Then, we model the continuous
point track energy with explicit occlusion reasoning as the expected reprojection error over

the association probability

£ (o)) {alt — Do (BR) =33 / NED (VA 415)

i=1 j=1

where N and M are, respectively, the number of objects and points and a*/ () is the asso-

ciation probability of point p;(¢) with object C; at depth )\, given by (4.11).

Continuous bounding box energy with occlusion Object detection is usually followed
by non-maximal suppression that results in discarding similar bounding boxes. When we
are jointly optimizing detections with other cues, it is usually not desirable to use a single
bounding box. To retain the entire detection output while maintaining the continuous form
of our energies, we approximate the distribution of detection scores with a multi-modal sum
of Gaussian-like logistic functions. In particular, let 2D bounding box B(¢) be parameter-
ized as a 4D vector [Zmin, Ymin, Tmax, ymaX]T. We fit a parametric function to the detection

scores, of the form

ZAk exp (—e€, (1) " A €l(t)) (4.16)

where Ay, is an amplitude and € () = B*(#) — puy,, with g, the mean and A, the covariance.

We use a non-linear solver to minimize the above, with initialization from non-maximal
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suppressed outputs. The optimization is constrained by the symmetry and positive definite-

ness of Aka Lmax 2 Lmin and Ymax Z Ymin-

Detection scores with occlusion reasoning With our model of P’

transmission

(M) described
in Section 4.3, we compute the probability of a point p in the image to be occluded, assum-

ing the point is on object C; with mean depth v;, as

@z(pa Vi) =1- Ptiansmlsslon(yia 1:_)) (417)

If a portion of the proposed detection bounding box is known to be occluded, one would
like to decrease the confidence in the detection score about the localization of that end
of the object. Assuming that occlusions are more likely on the boundaries of the detection
bounding box, we wish to decrease the confidence on the mean detection boundaries around
the occluded boundaries. To re-model detection scores scaled by continuous occlusion,
we sample O,(p, v;) at the hypothesized detection boundaries from the Gaussian mixture
model (GMM) S(.) in (4.16) and augment the detection boundary covariance matrix by
P = pipZT , where p; = ©;(u,1;). The new covariance matrix for the detection scores is
given by A, = P; + Ay for all k. The detection score GMM S’(.) with explicit occlusion

reasoning is given by replacing the covariance matrix, as follows:
ZAk exp< () A e (t )) (4.18)

The energy of detection scores is simply taken to be the inverse of the above detection

score, that is,

€100} 1BY) = gy @.19)

Inference on graphical model We apply the Metropolis-Hastings method [79] to per-
form inference on the graphical model. Since we optimize over continuous variables, we
use the Gaussian distribution as the proposal function. We choose this over alternatives

such as block-coordinate descent since they are slower in our experiments.

4.5 Experiments
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Figure 4.5: Association errors on different sets of input point tracks. Numbers on the x-axis represent sequence numbers in the KITTI
raw dataset. Errors are in terms of average fractions of foreground points incorrectly associated to objects per sequence.

In this section, we benchmark our continu- Point tracks Ours BBox BM  RAS

ous occlusion model for point-to-object as- Dymamic & occladed 132 213 309 30.

sociation against the baseline method us- Occluded 157 198 395 378
Dynamic 6.6 114 153 17.7

ing detection bounding boxes and state-of- Al 86 126 219 215

the-art methods for motion segmentation

Table 4.2: Mean association errors on different sets of input point
[11, 115]. We then show how the proposed tracks over all sequences. Errors are in terms of average fractions of

. . foreground points incorrectly associated to objects per sequence.
model may be applied for 3D object local-

ization in road scenes. For our experiments,
we use 35 sequences of the KITTI raw dataset [37], which are recorded under a variety of

driving conditions and include 10,088 frames and 634 object tracks in total.

4.5.1 Association Experiments

Setup We first perform the association experiment that compares the accuracy of point-
to-object association using our proposed model against a heuristic baseline and state-of-the-
art motion segmentation methods. The detection bounding box baseline method (BBox) is
as described at the end of Section 4.4.1. For motion segmentation, we use robust algebraic
segmentation with hybrid perspective constraints (RAS) [115] and spectral clustering with
point track spatial affinities (BM) [11].

For each sequence, the methods of [31] and [16] are used for computing detection

bounding boxes and object tracklets, respectively. We then apply [154] to extract point
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BBox BM RAS

Ours

Figure 4.6: Qualitative results of the association experiment. The “Associations” columns show the point track assignments to appro-
priate objects. Each color represents a different object to which point tracks can be associated to. The “Errors” columns show the
probabilistic errors in association: low error points are in blue while high error points are in red. Note that our method changes smoothly
at the object boundaries with intermediate probabilities, while the baseline method has merely O and 1 errors.

tracks. Note that our method can handle occlusions in both static and dynamic scenes, but
motion segmentation focuses on dynamic scenes. For a complete evaluation, we organize
the point tracks into four sets: all point tracks, occluded point tracks, dynamic point tracks
and dynamic as well as occluded point tracks. The parameters (position, orientation, and
dimensions) of all objects (cars) estimated by the method of [129] are provided to our
method (for computing association probability) and the baseline BBox method (for depth
ordering). The number of objects is known a priori in our model (from object tracking [16])

and is also provided to other methods such as BBox and RAS.

Results Figure 4.5 shows the association

errors — the percentages of point tracks in- Method t  dim
correctly assigned to objects — for all meth- Point cloud fitting 6.87  4.02
. . Initializati 129 61 32

ods on the four sets of input point tracks, mitialization by [129] Lo e em
gtyqikNoOcc + gd_etecanOcc_ + gsize_—‘r den 3.95 172

for each sequence. The mean results over 5;%“00& + Efl ey + EiL + EXL 481 2.16

. . 9 it it it

all sequences are summarized in Table 4.2. Eusek + Eueccanooee  Euie + Edyn 405159
Ed o+ EL o ER FEL 324 216

track detect size dyn

From Figure 4.5, our method is usually the
Table 4.3: Localization experiment results with different combina-
tions of energies. We report translation error (t) and dimension error

to the best mean error on all sets of input (dim) in meters per car. Yaw angles for static objects are not op-
timized by our model. These experiments use the set of occluded

point tracks in Table 4.2. which is followed tracks to demonstrate the effect of our modeling.
=

most accurate among all methods, leading

by the bounding box baseline method. This
clearly shows the advantage of our continuous occlusion model over the simple baseline
method for resolving occlusions. RAS and BM often have the highest errors in Figure 4.5,

thus, the highest mean errors on all sets of input point tracks in Table 4.2.
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More importantly, both RAS and BM rely on motions of objects for clustering point
tracks, therefore they cannot work well with static point tracks (for example, point tracks
that belong to parked cars). This fact can be observed in Table 4.2, where there are large
differences in the mean errors of both methods on data containing static point tracks (rows
2 and 4) and data consisting of dynamic point tracks only (rows 1 and 3). In contrast, our
method and the baseline method are relatively independent of object motions, resulting in
smaller performance gaps. Further, our method also outperforms motion segmentation on
dynamic objects (row 3), which shows the effect of detection bounding boxes and by a
more significant margin when occlusions are present (row 1), which shows the effect of our
occlusion modeling.

Qualitative comparisons of point track associations from various methods are shown in
Figure 4.6. We note the low errors using our occlusion model and the smooth transition of

assignment across object boundaries.

4.5.2 Localization Experiments

We report errors in translation and dimension estimates, measured in meters per car, in
Table 4.3. The average depth of cars in the dataset is approximately 20 meters. We compare
four combinations of energies against the initialization using [129] and a simple baseline
which fits a 3D cuboid on the 3D point cloud reconstructed using SFM within detection
bounding boxes in consecutive frames (for unobservable dimensions, such as when only
the back of a car is visible, we rely on 3D size priors). The energy EtiﬂikNoocC represents the
point track energy without accounting for occlusions, that is, we model £7°, in the absence
of a”(\). Similarly, Eif..inoocc 1S the bounding box energy without the modification of Ay
that accounts for occlusion. We use Ayack = 1, Adetect = 1, Adgyn = 10, Asize = 7. Please refer
to the supplementary material for a detailed list of parameter settings.

From Table 4.3, the baseline method has the highest errors, which is likely due to lack
of point tracks and incorrect point-to-object associations (using detection bounding boxes).
Moreover, minimizing different combinations of energies yields lower errors than the ini-
tialization with [129], which shows the advantage of our energy minimization. Finally,
we observe that the use of the continuous occlusion model improves the localization accu-
racy in terms of the translation error, which is the most significant metric affected by all
cues. Occlusion modeling for detection increases dimension error since we explicitly allow
greater uncertainty in occluded edges of the bounding box. Note that none of our energies
optimize yaw angles for static objects, which can be handled in practice through either the

detector orientation or external information such as lane geometry.
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4.6 Conclusions and Future Work

We have presented a theoretically novel continuous model for occlusion reasoning in 3D. A
key advantage is its physical inspiration that lends flexibility towards occlusion reasoning
for varied elements of scene understanding, such as point tracks, object detection bounding
boxes and detection scores. We demonstrate unified modeling for different applications
such as object-point track associations and 3D localization. Our occlusion model can uni-
formly handle static and dynamic objects, which is an advantage over motion segmentation
methods for object-point association. A challenge is that inference for 3D localization is
currently slow, requiring a few minutes per window of frames, which prevents exhaustive
cross-validation for tuning of weights. Our future work will explore speeding up the infer-
ence, for example, by approximating the graph with a tree using the Chow-Liu method [17],
which will allow belief propagation for fast inference. Another direction for future work
is to replace a single ellipsoid by a set of spheres for modelling a translucent object [118],
which will better capture object boundary and appearance while remaining a continuous

model.
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CHAPTER 5

Deep reinforcement learning for navigation'

5.1 Introduction

Navigation remains a fundamental problem in mobile robotics and artificial intelligence
([127, 30]). The problem is classically addressed by separating the task of navigation
into two steps, exploration and exploitation. In the exploration stage, the environment
is represented as some kind of map. In the exploitation stage, the map is used to plan a
path to a given destination based on some optimality criterion. This classical approach
has been quite successful in navigation using a variety of sensors. However, navigation
in general unstructured environments, especially with texture-less [152], transparent and
reflective surfaces [71], remains a challenge.

Recently, end-to-end navigation methods—which attempt to solve the navigation prob-
lem without breaking it down into separate parts of mapping and path-planning—have
gained traction. With the recent advances in Deep Reinforcement Learning (DRL), these
end-to-end navigation methods, such as [90, 126, 73, 89, 102], forego decisions about the
details that are required in the intermediate step of mapping. The potential for simpler yet
more capable methods is rich; for example, the resulting trained agents can potentially op-
timize the amount of map information required for navigation tasks. One such algorithm
by [89] has shown promise in exploring and finding the goal efficiently within complex
environments. Notably, this is done using only monocular first-person views.

Despite such potential advances, DRL-based navigation remains a relatively unexplored
field with its own limitations. The black-box nature of these methods make them difficult
to study, and the patterns captured by the methods are not well understood. Recent work
analyzing neural networks has shown that deep learning-based object detection methods

can be easily fooled by introducing noise that is imperceptible to humans ([100]); this level

IThis material originally appeared as: V. Dhiman, S. Banerjee, B. Griffin, J. Mark Siskind, and J. J. Corso.
A critical investigation of deep reinforcement learning for navigation. CoRR, abs/1802.02274, 2018
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Figure 5.1: Snapshots of the path taken by the agent while evaluating the model trained on the same random map with random goal and
random spawn. The first row shows the top view of the robot moving through the maze with the goal location marked orange, the agent
marked black and the agent’s orientation marked red. The second row shows the first person view, which, besides reward, is the only
input available to the agent and the top view is available only for human analysis.

of sensitivity motivates why it is particularly important to analyze DRL methods across a
wide variety of experiments: we need to understand their strengths and limitations.

In this work, we develop a better understanding of recent DRL-based methods. In
particular, we thoroughly explore and analyze the state-of-the-art [89] methods across hun-
dreds of maps with increasing difficulty levels. We set up the environment as a randomly
generated map, as shown in Fig 5.1, with an agent and a goal. The agent is provided only
with the first-person view and is tasked to find the goal as many times as possible within a
fixed amount of time, re-spawning its location each time it reaches the goal. We train and
evaluate the algorithms with increasing difficulty. In the easiest stage, we keep the goal
location, spawn location and map constant over the training and testing. We call this set up
static goal, static spawn, and static map. To increase the difficulty, we incrementally ran-
domize the spawn locations, goal locations and map structures until all three are random.
We discuss the design of experiments in Section 5.4.1 in more detail.

[89] do train and test their algorithms with randomized goals and spawns and show
that their algorithm is able to exploit the knowledge of the goal location at evaluation time
to maximize reward. However, following training and testing on constant map structures,
this state-of-the-art result is shown to be successful on only one map, which brings into
question the repeatability of the results. It is also unclear whether these results generalize
to unseen maps.

Although disjoint training and testing sets are standard practice in machine learning, to
the best of our knowledge, we are the first to evaluate any DRL-based navigation method on
maps with unseen structures. We expand on the analysis in [89] to address its limitations
and ask whether DRL-based algorithms such as NavA3C+D;D,L perform any mapping
followed by shortest path planning. Our experiments show no evidence of mapping in
cases where algorithms are evaluated on unseen maps and no evidence of optimal path
planning, even when the map is constant and only the goal is randomized.

To better understand navigation, we compute attention-maps for models to show which
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portions of the input image are being used. We find that the models discard most of the
image information, focusing attention on a small band in the middle of the image except
around junctions, in which case the attention is distributed evenly throughout the image.
These findings result from training and testing on multiple maps that were randomly
selected from a set of 1100 randomly generated maps. We provide experimental results
on ten randomly selected maps and a testing set of 100 unseen maps to ensure results are

independent of map choice. We will make our code and data available online 2.

5.2 Related Work

Localization and mapping Localization and mapping for navigation is a classic problem
in mobile robotics and sensing. [127] introduced the idea of propagating spatial uncertainty
for robot localization while mapping, and [30] popularized Occupancy Grids. In the three
decades since these seminal works, the field has exploded with hundreds of algorithms for
many types of sensors (e.g., cameras, laser scanners, sonars and depth sensors). These
algorithms vary by how much detail is captured in their respective maps. For example,
topological maps, like [65], aim to capture as little information as possible while occupancy
grid maps, [30], aim to capture metrically accurate maps in resolutions dependent upon the
navigation task.

All these approaches require significant hand-tuning for the environment, sensor types
and navigation constraints of the hardware. In contrast, end-to-end navigation algorithms
optimize the detail of map storage based on the navigation task at hand, which makes them

worth exploring.

Deep reinforcement learning DRL gained prominence recently when used by [91, 93]
to train agents that outperform humans on Atari games; agents that trained using only the
games’ visual output. More recently, DRL has been applied to end-to-end navigation ([ 102,
89, 15]). It is common for agents to be trained and tested on the same maps with the only
variation being the agent’s initial spawn point and the map’s goal location ([89, 157, 66]).
In contrast, [102] test their algorithm on random unseen maps, but their agents are
trained to choose between multiple potential goal locations based on past observations. The
episodes end when the agent collects the goal, so there is no requirement for the algorithm
to store map information during their exploration. Thus, their agents decide to avoid a goal
of a particular color while seeking other colors rather than remembering the path to the

goal. [15] test their method on unseen maps in the VizDoom environment, but only vary

2github.com/umrobotslang/does-drl-learn-to-navigate
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the maps with unseen textures. Thus, their agents are texture invariant, but train and test on
maps with the same geometric structure.

In this work, we extend the study of these methods in a more comprehensive set of
experiments to address the question of whether DRL-based agents remember enough infor-
mation to obviate mapping algorithms or may in fact need to be augmented with mapping

for further progress.

5.3 Background

Our problem formulation is based on the work of [89]. For completeness, we summarize
the technical setup here. For additional details regarding the setup, we refer the reader to
[90, 89].

The problem of navigation is formulated as an interaction between an environment and
an agent. At time ¢ the agent takes an action a; € A and observes observation z; € O
along with a reward r, € R. We assume the environment to be a Partially Observable
Markov Decision Process (POMDP). In a POMDP, the future state of the environment,
sir1 € S, is conditionally independent of all the past states, s;.;_1, given the current state
s¢. It is further assumed that 2; and r, are independent of previous states given current state
s, and last action a; ;. Formally, a POMDP is defined as a six tuple (O,C,S, A, T, R)
that is composed of an observation space O, an observation function C'(s;,a;) — 2, a
state space S, an action space A, a transition function 7'(s;,a;) — $;41 and a reward
function R(s;,a;) — 7;11. For our problem setup, the observation space O is the space
of an encoded feature vector that is generated from input image along with previous action
and reward. Action space A contains four actions: rotate left, rotate right, move forward
and move backward and reward function R is defined for each experiment so that reaching
the goal location leads to high reward with auxiliary rewards to encourage certain kinds of
behavior.

For DRL algorithms, the state space S is not hand tuned, but it is modeled as a vec-
tor of floats. Additionally, instead of modeling observation function C'(s;, a;) — z; and
T'(s¢, a;) — Si+1, a combined transition function 7, (sy, 2, ag, r; 07) — Si41 is modeled to
estimate the next state s;;1 and directly take previous observation and reward into account.
For policy-based DRL a policy function 7(a;y1|S¢, 2¢, ag, 745 0) — m(a11;6,) and a value
function V'(s¢, 24, ag, 745 0v) — Vi(0y) are also modeled. All three functions 7., m; and V;
share most of the parameters such that 7 C 6, N 6y

The DRL objective is to estimate unknown weights 6 = 6, U 0, U 0y that maximizes

the expected future reward R; = Z‘Zf_t 7*=tr;, (where v is the discount factor) and is
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Figure 5.2: Modified NavA3C+DD,L ([89]) architecture. The architecture is has three inputs the current image I+ and previous action
at—1 and previous reward r¢_1. As shown by [89], the architecture improves upon vanilla A3C architecture by using auxiliary outputs
of loop-closure signal L and predicted depth D1 and D>. Since we use a smaller action space than [89] and our agent moves with
constant velocity, we do not use velocity at previous time step as input signal.

expressed as
0 = arg m;xxE[Rt] , (5.1
where E[.] denotes the expected value.

Asynchronous Advantage Actor-Critic In this work, we use the policy-based method
called Asynchronous Advantage Actor-Critic (A3C) ([90]), which allows weight updates
to happen asynchronously in a multi-threaded environment. It works by keeping a ‘““shared
and slowly changing copy of target network™ that is updated every few iterations by ac-
cumulated gradients in each of the threads. The gradients are never applied to the local
copy of the weights; instead, a local copy of weights is periodically synced from the shared
copy of target weights. The gradient for the weight update is proportional to the product
of advantage, R, — V;(6y ), and characteristic eligibility, Vy_Inm(a;11;6,) ([147]), which
update the weights as

O(R; — Vi(Ov))*
a0y '

(5.2)

97r — eﬂ + Z CYWV@T lnwt(Rt — ‘/t(ev)) and 9\/ — 9\/ + Z ay

t€episode tcepisode

For additional details of the A3C algorithm, we refer the reader to [90].

NavA3C+D;D,L In this work, we use the NavA3C+D;D,L architecture as proposed by
[89], which builds modifying the network architecture to have two LSTMs and with auxil-
iary outputs of depth predictions along with loop-closure predictions. The schematic of the
architecture is shown in Fig 5.2. The architecture has three inputs: the current image I,

previous action a;_; and previous reward 7;_;. As shown by [89], the architecture improves
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Figure 5.3: The ten randomly chosen mazes for evaluation. We generate 1100 random mazes and choose ten to evaluate our experiments
that require testing and training on the same maps.

upon vanilla A3C architecture by optimizing predictions for the auxiliary outputs of loop
closure signal L and predicted depth D and D,. Since we use a smaller action space than
[89] and our agent moves with constant velocity, we do not use velocity at the previous

time step as an input signal.

5.4 The DRL Navigation Challenge

Since deep reinforcement learning algorithms need millions of iterations to train, in the
absence of thousands of robotic replicas like [73], we evaluate the algorithms on a simulated
environment. We use the same game engine as [89], called Deepmind Lab ([7]). The game
is setup such that an agent is placed within a randomly generated maze containing a goal at
a particular location. On reaching the goal, the agent re-spawns within the same maze while
the goal location remains unchanged. Following [89], we scatter the maze with randomly
placed smaller apple rewards (+1) to encourage initial explorations and assign the goal a
reward of +10. The agent is tasked to find the goal as many times as possible within a
fixed amount of time (1200 steps for our experiments), re-spawning within the maze, either
statically or randomly, each time it reaches the goal.

Unlike [89], we include a small wall penalty (-0.2) that pushes the agent away from the
wall. The wall penalty is useful to prevent agents from moving along the walls, thereby
discarding vision input for exploration. We also use a discrete 4-action space (move for-
ward/backward, rotate left/right)which is different from the 8-action space one used by
[89]. A smaller action space helps the algorithm train faster while achieving similar reward
values.

We generate 1100 random maps using depth-first search based maze generation meth-
ods. More information on maze generation can be found in the appendix. Of the first 1000
maps, 10 are randomly selected for our static-map experiments (Fig. 5.3). For our unseen
map experiments, agents are trained on increasing subsets of the first 1000 maps and tested
on the remaining 100. Unlike [89] and similar to [15], we use randomly textured walls in

our mazes so that the policies learned are texture-independent.
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5.4.1 Experiments

We evaluate the NavA3C+D;D,L algorithm on maps with 5 stages of difficulty. While
the algorithm works smoothly on the easier stages, it does not perform better than wall-
following methods on the hardest stage. We propose these experiments as a 5-stage bench-

mark for all end-to-end navigation algorithms.

1. Static goal, static spawn, and static map To perform optimally on this experiment, the
agent needs to find and learn the shortest path at training time and repeat it during

testing.

2. Static goal, random spawn and static map This is a textbook version of the reinforce-
ment learning problem, especially in grid-world [134], with the only difference being
that the environment is partially observable instead of fully observable. This problem
is more difficult than Problem 1 because the agent must find an optimal policy to the

goal from each possible starting point in the maze.

3. Random goal, static spawn, and static map In this setup, we keep the spawn location
and the map fixed during both training and testing but choose a random goal location
for each episode. Note that the goal location stays constant throughout an episode.
The agent can perform well on this experiment by remembering the goal location

after it has been discovered and exploiting the information to revisit the goal faster.

4. Random goal, random spawn, and static map In this version of the experiment both
the spawn point and the goal location is randomized. To perform optimally, the
agent must localize itself within the map in addition to being able to exploit map-

information.

This is the problem that is addressed by [89] with limited success. They evaluate this
case on two maps and report Latency 1 :> 1 to be greater than 1 in one of the two

maps. We evaluate the same metric on ten other maps.

5. Random goal, random spawn, and random map We believe that any proposed algo-
rithms on end-to-end navigation problems, should be evaluated on unseen maps. To
our knowledge, this is the first paper to do so in the case of deep reinforcement learn-
ing based navigation methods. We train agents to simultaneously learn to explore
1, 10, 100, 500 and 1000 maps and test them on the same 100 unseen maps. The
relevant results can be found in Fig 5.5 and discussed in Section 5.5.

The comparative evaluation of the different the stages of this benchmark are shown in

Fig 5.4 and expanded upon in the Section 5.5.
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5.4.2 Evaluation Metrics

We evaluate the algorithms in terms of three metrics: rewards, Latency 1 :> 1 and Distance-
inefficiency. Following [89], we report Latency 1 :> 1, a ratio of the time taken to hit the
goal for the first time (exploration time) versus the average amount of time taken to hit
goal subsequently (exploitation time). The metric is a measure of how efficiently the agent
exploits map information to find a shorter path once the goal location is known. If this
ratio is greater than 1, the agent is doing better than random exploration and the higher the
value, the better its map-exploitation ability. Note that the metric is meaningful only when
the goal location is unknown at evaluation time.

Distance-inefficiency is defined to be the ratio of the total distance traveled by the agent
versus the sum of approximate shortest distances to the goal from each spawn point. The
metric also disregards goals found during exploitation time as the agent must first find the
goal before it can traverse the shortest path to it. Note that the shortest distance between the
spawn and goal locations is computed in the top-down block world perspective and hence
is only an approximation.

While the Latency 1 :> 1 measures the factor by which planned path to the goal is
shorter than the exploration path, the Distance-inefficiency measures the length of this path

with respect to the shortest possible path.

5.5 Results and Analysis

In this section we discuss the results for experiments as discussed in Section 5.4.1 over ten
randomly chosen maps shown in Fig 5.3. The results are shown in Fig 5.4 and are discussed

for each case below.

1. Static goal, static spawn, static maze For this case, the reward is consistently high,
and Distance-inefficiency is close to 1 with small standard deviations implying the
path chosen is the shortest available. Please note that Latency 1 :> 1 should be close

to 1 for the static goal case because the goal location is known at training time.

2. Static goal, random spawn, static map Again, note that Distance-inefficiency is close
to 1 implying that when the goal is found, the shortest path is traversed. This is
because the agent can learn the optimal policy for the shortest path to the goal at

training time.

3. Random goal, static spawn, static map In this case, the mean of the Latency 1 :> 1

is more than 1 show that in general the agent is able to exploit map information.
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Figure 5.4: We evaluate the NavA3C+D ;DL [89] algorithm on ten randomly chosen maps, shown in Fig. 5.3, with increasing difficulty
as described in Sec. 5.4.1. The figure is best viewed in color. Vertical axis is one of the ten map ID’s on which the agent was trained
(except for Rnd. Maze) and evaluated. Horizontal axis are different evaluation metrics. We note that when the goal is static then rewards
are consistently higher as compared to random goal. With static goals, the metric Distance-inefficiency is close to 1, indicating that the
algorithms are able to find shortest path. However, with random goals, the agents struggle to find the shortest path. From the Latency
1 :> 1 results we note that the algorithm do well when trained and tested on the same map but fail to generalize to new maps when
evaluated on ability to exploit the information about goal location. Also note that Latency 1 :> 1 metric for cases of static goals is
expected to be close to one because the location of goal is learned at train time.

However the large standard deviations in this metric and the reward values show that
this exploitation is not consistent through episodes. For most of the experiments,
the Distance-inefficiency is close to one within error metrics, again implying that the

shortest path is taken when the goal is found.

4. Random goal, Random spawn, static map Similar to the previous experiment, the La-
tency 1 :> 1 is more than 1 but with a large standard deviation implying inconsistent
performance from episode to episode. The Distance-inefficiency is larger than 1

showcasing the paths traversed to the goal are not necessarily the shortest.

5. Random goal, Random spawn, Random map For this experiment, agents trained on
a 1000 maps are tested individually on the 10 chosen maps that are a subset of the
1000 maps. The Latency 1 :> 1 is close to 1 implying that map-exploitation is not
taking place. The large Distance-inefficiency numbers seem to confirm this state-
ment. We present, qualitative results in Sec. 5.5.1 on very simple maps to show that
the agents trained on 1000 maps are only randomly exploring the maze rather than

utilizing any form of shortest path planning.
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Figure 5.5: Plots showing the effect of number of training maps with random texture (Rnd Texture) and presence of apples (With
apples), when evaluated on unseen maps. We note that although the difference between mean metrics is negligible as compared to
standard deviation of the metrics. Hence we say that the effect of apples or textures can be ignored. The only clear trend is apparent
Latency 1 :> 1 metric which suggest that random texture along without apples is advantageous in exploiting goal location while finding
the goal second time on-wards.

Evaluation on unseen maps The results for training on N maps, where N € {10,100, 500, 1000},
and testing on 100 unseen maps are shown in Fig 5.5. We observe that there is a signif-
icant jump of average reward and average goal hits when the number of training maps is
increased from 10 to 100 but no significant increase when the number of training maps are
increased from 100 to 500 to 1000. This is due to the fact that the wall-following strategy
learned by the algorithm, is learned with enough variation in 100 maps and training on

additional maps does not add to the learned strategy.

Effect of apples and texture We evaluate the effect of apples and texture during evalua-
tion time in Fig 5.5. We train the algorithm on randomly chosen training maps with random
texture and evaluate them no maps with and without random texture and also on maps with
and without apples. When the apples are present, we place the apples with probability 0.25
in each block of the map. We find that the algorithm, being trained on random textures and

random placement of apples, is robust to presence or absence of textures and apples.

5.5.1 Qualitative evaluation on simple maps

To evaluate what strategies the algorithm is employing to reach the goal we evaluate the
algorithm on very simple maps where there are only two paths to reach the goal. The

qualitative results for the evaluation are shown in Fig 5.6.

Square map A Square map (Fig 5.6) is the simplest possible map with two paths to the
goal. We evaluate the algorithm trained on 1000 random maps on this map. We observe
that the agent greedily moves in the direction of initialization. This may be because of the
initial learning which is motivated by small rewards of getting apples. We compute the
percentage of times the agent takes the shortest path over a trial of 100 episodes. We find
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the agent takes the shortest path only 50.4% (+12.8%) of the times which is no better than

random.

Wrench map To eliminate the dependency on initial orientation, we evaluate the algo-
rithm on Wrench map as shown in Fig 5.6. We fix in the spawn point at the bottom of the
tail so that shortest path is independent of the spawn orientation. The decision about the
shortest path is made at the junction where the agent can either chose to go left or right.
We find that the agent takes the shortest path only 32.9% (£25.1%) of the times which is

in fact worse than random.

Goal map Similar to the wrench map, the goal map (Fig 5.6) provides a decision point
independent of the initial orientation but penalizes the wrong decision more than the wrench
map. The shortest path is chosen 42.6% (435.1%) of the times which is again no better
than random.

These experiments show that NavA3C+D;D,L algorithm, even when trained on 1000
maps, do not generalize to these very simple maps. Again note that even in cases when
there are only two possible paths to the goal, the agent is unable to chose the shorter path

with more than 50% probability. This shows that the models trained on 1000 maps have

learned only a wall-following strategy rather than a learning to plan-path based one.

Wrench map

L L L L L L L L

Figure 5.6: Snapshots of path taken by the agent to reach the goal in a single episode when model trained on 1000 maps is evaluated
Square, Wrench and Goal map. The top row shows an evaluation example on Square map, the agent takes the shortest path 6/10 times
but when averaged over 100 episodes, the percentage of shortest path taken is not better than random 50.4% (£12.8%). Although for
the example of Wrench map the agent takes the shortest path 8/10 times but when averaged over 100 episodes, the percentage of shortest
path taken is reduced to 32.9% (£25.1%). For the Goal map, the example chosen here shows that the shortest path is only taken 1/6
times, on an average over 100 episodes, the shortest path is taken 42.6% (£35.1%) times.
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Figure 5.7: Visualizing attention for a sequence. The second row shows the corresponding attention mask of the algorithm, when the
model is trained on 1000 maps and evaluated on map ID 127. We observe that the attention is uniformly distributed on the image when
the agent spawns. The attention narrows down few pixels in the center when the agent is navigating through the corridor. It spreads to
the entire image around turns and junctions. The algorithm also pays close attention to important objects like goal, apples and unique
decals.

5.5.2 Attention heat maps

We use the normalized sum of absolute gradient of the loss with respect to the input image
as a proxy for attention in the image. The gradients are normalized for each image so that
the maximum gradient is one. The attention values are then used as a soft mask on the
image to create the visualization as shown in Fig 5.7

We observe that the attention is uniformly distributed on the image when the agent
spawns. The attention narrows down to a few pixels in the center when the agent is navi-
gating through the corridor. It spreads to the entire image around turns and junctions. The

attention also pays close attention to important objects like goal, apples and unique decals.

5.6 Conclusion

In this work, we comprehensively evaluate NavA3C+D;D,L ([89]), a DRL-based navi-
gation algorithms, through systematic set of experiments that are repeated over multiple
randomly chosen maps. Our experiments show that DRL-based navigation models are
able to perform some degree of path-planning and mapping when trained and tested on the
same map even when spawn locations and goal locations are randomized. However the
large variation in the evaluation metrics show that how such behaviour is not consistent
across episodes. We also train and test these methods on disjoint set of maps and show
that such trained models fail to perform any form of path-planning or mapping in unseen
environments.

In this work, we begin by asking: do DRL-based navigation algorithms really “learn to
navigate”? Our results answer this question negatively. At best, we can say that DRL-based
algorithms learn to navigate in the exact same environment, rather than general technique
of navigation which is what classical mapping and path planning provide. We hope that
the systematic approach to the experiments in this work serve as a benchmark for future

DRL-based navigation methods.

65



CHAPTER 6

Goal-conditioned RL without goal-rewards'

6.1 Introduction

Many tasks in robotics require the specification of a goal for every trial. For example, a
robotic arm can be tasked to move an object to an arbitrary goal position on a table [42]; a
mobile robot can be tasked to navigate to an arbitrary goal landmark on a map [158]. The
adaptation of reinforcement learning to such goal-conditioned tasks where goal locations
can change is called Multi-Goal Reinforcement Learning (MGRL) [109]. State-of-the-art
MGRL algorithms [3, 110] work by estimating goal-conditioned value functions (GCVF)
which are defined as expected cumulative rewards from start states with specified goals.
GCVFs, in turn, are used to compute policies that determine the actions to take at every
state.

To learn GCVFs, MGRL algorithms use goal-reward, defined as the relatively higher
reward recieved on reaching the desired goal state. This makes the reward function depen-
dent on the desired goal. For example, in the Fetch-Push task [109] of moving a block to a
given location on a table, every movement incurs a “-1” reward while reaching the desired
goal returns a “0” goal-reward. This dependence introduces additional reward resampling
steps in algorithms like Hindsight Experience Replay (HER) [3], where trials in which the
agent failed to reach the goal are reused by recomputing rewards as if the reached states
were pseudo-desired goals. Due to the dependence of the reward function on the goal,
the relabelling of every pseudo-goal requires an independent reward-recomputation step,
which can be expensive.

In this chapter, we demonstrate that goal-rewards are not needed to learn GCVFs. For
the Fetch-Push example, the “0” goal-reward does not need to be achieved to learn its

GCVF. Specifically, the agent continues to receive “-1” reward even when the block is in

This material originally appeared as: V. Dhiman, S. Banerjee, J. M. Siskind, and J. J. Corso. Learning
goal-conditioned value functions with one-step path rewards rather than goal-rewards. In Open Review, 2019

66



the given goal location. This reward formulation is atypical in conventional RL because
high reward is used to specify the desired goal location. However, this goal-reward is not
necessary in goal-conditioned RL because the goal is already specified at the start of every
episode. We use this idea, to propose a goal-conditioned RL algorithm which learns to
reach goals without goal-rewards. This is a counter-intuitive result which is important for
understanding goal-conditioned RL.

Let us consider another example to motivate the redundancy of goal-rewards. Consider
a student who has moved to a new campus. To learn about the campus, the student explores
it randomly with no specific goal in mind. The key intuition here is that the student is not
incentivized to find specific goal locations (i.e. no goal-rewards) but is aware of the effort
required to travel between points around the university. When tasked with finding a goal
classroom, the student can chain together these path efforts to find the least-effort path to
the classroom. Based on this intuition of least-effort paths, we redefine GCVFs to be the ex-
pected path-reward that is learned for all possible start-goal pairs. We introduce a one-step
loss that assumes one-step paths to be the paths of maximum reward between pairs wherein
the state and goal are adjacent. Under this interpretation, the Bellman equation chooses and
chains together one-step paths to find longer maximum reward paths. Experimentally, we
show how this simple reinterpretation, which does not use goal rewards, performs as well
as HER while outperforming it in terms of reward computation.

We also extend a closely related algorithm, Floyd-Warshall Reinforcement Learning
(FWRL) [51] (also called Dynamic Goal Reinforcement learning) to use parametric func-
tion approximators instead of tabular functions. Similar to our re-definition of GCVFs,
FWRL learns a goal-conditioned Floyd-Warshall function that represents path-rewards in-
stead of future-rewards. We translate FWRL’s compositionality constraints in the space of
GCVFs to introduce additional loss terms to the objective. However, these additional loss
terms do not show improvement over the baseline. We conjecture that the compositionality
constraints are already captured by other loss terms.

In summary, the contributions of this work are twofold. Firstly, we reinterpret goal-
conditioned value functions as expected path-rewards and introduce one-step loss, thereby
removing the dependency of GCVFs on goal-rewards and reward resampling. We show-
case our algorithm’s improved sample efficiency (in terms of reward computation). We
thus extend algorithms like HER to domains where reward recomputation is expensive or
infeasible. Secondly, we extend the tabular Floyd-Warshal Reinforcement Learning to use

deep neural networks.
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Figure 6.1: [109] introduce challenging tasks on the Fetch robot and the Shadow Dextrous hand. We use these tasks for our experiments.
Images are taken from the technical report. (Images from [109])

6.2 Related Work

Goal-conditioned tasks in reinforcement learning have been approached in two ways, de-
pending upon whether the algorithm explicitly separates state and goal representations.
The first approach is to use vanilla reinforcement learning algorithms that do not explicitly
make this separation [88, 28, 43, 104, 87]. These algorithms depend upon neural network
architectures to carry the burden of learning the separated representations.

The second approach makes this separation explicit via the use of goal-conditioned
value functions [32, 136]. Universal Value Function Appoximators [125] propose a net-
work architecture and a factorization technique that separately encodes states and goals,
taking advantage of correlations in their representations. Temporal Difference Models com-
bine model-free and model-based RL to gain advantages from both realms by defining and
learning a horizon-dependent GCVF. All these works require the use of goal-dependent
reward functions and define GCVFs as future-rewards instead of path-rewards, contrasting
them from our contribution.

Unlike our approach, [3] propose Hindsight Experience Replay, a technique for resam-
pling state-goal pairs from failed experiences; which leads to faster learning in the presence
of sparse rewards. In addition to depending on goal rewards, HER also requires the repeated
recomputation of the reward function. In contrast, we show how removing goal-rewards
removes the need for such recomputations. We utilize HER as a baseline in our work.

[51] also use the structure of the space of GCVFs to learn. This work employs com-
positionality constraints in the space of these functions to accelerate learning in a tabular
domain. While their definition of GCVFs is similar to ours, the terminal condition is dif-

ferent. We describe this difference in Section 6.4. We also extend their tabular formulation
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to deep neural networks and evaluate it against the baselines.

6.3 Background

A reinforcement learning (RL) problem is formalized as a Markov Decision Process (MDP)
[135]. A MDP is defined by a five tuple (S, A, T, R, ), that governs a sequence of state-
action-reward triples [(so, ao,70), ..., (sr,ar,r7)]. S is the state space, A is the action
space, T'(s,a) : S x A — § is the system dynamics, R(s,a) : S x A — R is the reward
function and + is the discount factor. In a typical RL problem the transition function 7 is
not given but is known to be static. In RL, the objective is to find a policy x(s) : S — A
that maximizes the expected cumulative reward over time, R, = Y .-, v*7'ry, called the
return. The discount factor, v < 1, forces the return to be finite for infinite horizons.
Reinforcement learning is typically formulated in single-goal contexts. More recently there

has been interest in multi-goal problems [3, 110, 109], which is the focus of this work.

6.3.1 Deep Reinforcement learning

A number of reinforcement learning algorithms use parametric function approximators to

estimate the return in the form of an action-value function, (s, a):

T
QX(S> a) = IEX Z 'yk_tR(sk’v ak)

k=t

St = 8,a4 = a] , (6.1)

where 7' is the episode length. When the policy y is optimal, the ()-function satisfies the

Bellman equation [8].

R(sy, ap) + ymaxges Qu(Si41,a) ift <T
R(sr,ar) ift=T

Q- (St, at) = (6.2)

The Q. () function can be learned using Q-learning algorithm [145]. The optimal policy
can be computed from @, greedily, x.(s;) = argmax,e4 Q«(S¢, a). In Deep Q-Networks
(DQN), [92] formulate a loss function based on the Bellman equation to approximate the

optimal Q),-function using a deep neural network, ),,,:

E(eQm) = ]Eatfvx(st;GXm) [(Qm(sta Qg eQm) - yt)2:| ) (63)
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where y; = R(s, a;) + max, Qg (5111, a; 0, ) » is the target and Q) is the target net-
work [93]. The target network is a slower-changing copy of the main network that stabilizes
learning. [93] also employ replay buffers [75] that store transitions from episodes. During
training, these transitions are sampled out of order to train the networks in an off-policy
manner, avoiding correlation in the samples and thus leading to faster learning.

In this work, we use an extension of DQN to continuous action spaces called deep
deterministic policy-gradients (DDPG) [74]. DDPG approximates the policy with a policy
network i (s; 6, ) that replaces the max operator in y;. The target thus becomes y, =

R(s¢, a¢) + vQugi(St41, Xigt(St41; 0y ); 0, ) and the loss function changes accordingly:
£(0Q> Qx) = Eath(St;Gx)[(Qm(sh Qg QQ) - yt)ZL (6.4)

6.3.2 Multi-goal Reinforcement learning

Multi-Goal Reinforcement Learning [109] focuses on problems where the desired goal
state can change for every episode. State-of-the-art MGRL algorithms learn a goal-conditioned
value function (GCVF), Q (s, a, g), which is defined similar to the @)-function (6.1), but

with an additional dependence on the desired goal specification g € G :

QX (S7aag) - IE’X

T
ZVk_tR@k, ak, 9)
k=t

St = S,a; = a] i (6.5)

The structure of the goal specification, g € G, can be arbitrary. For example, in a robotic
arm experiment, possible goal specifications include the desired position of the end-effector
and the desired joint angles of the robot. The states and achieved goals are assumed to
be an observable part of the Goal-MDP to enable the agent to learn the correspondences
between them, [(so, ao, 90,70); - - - , (ST, ar, gr, r7)]. Consequently, this Goal-MDP is fully
governed by the six tuple (S, A, G, T, R, ). The reward, R(s,a,g) : S x Ax G — R, and

policy x(s,g) : S x G — A are also in turn conditioned on goal information.

Hindsight Experience Replay HER [3] builds upon this definition of GCVFs (6.5). The
main insight of HER is that there is no valuable feedback from the environment when the
agent does not reach the goal. This is further exacerbated when goals are sparse in the
state-space. HER solves this problem by reusing these failed experiences for learning. It
recomputes a reward for each reached state by relabeling them as pseudo-goals.

In our experiments, we employ HER’s future strategy for pseudo-goal sampling. More

specifically, two transitions from the same episode in the replay buffer for times ¢ and ¢ + f
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are sampled. The achieved goal g; s is then assumed to be the pseudo-goal. The algorithm
generates a new transition for the time step ¢ with the reward re-computed as if g, was

the desired goal, (s, as, Se11, R(St, at, g+ ¢)). HER uses this new transition as a sample.

6.4 Path Reward-Based GCVFs

In our definition of the GCVF, instead of making the reward function depend upon the goal,
we count accumulated rewards over a path, path-rewards, only if the goal is reached. This
makes the dependence on the goal explicit instead of implicit to the reward formulation.

Mathematically,

-1
Z ’}/kitRP(Sk, ak)
k=t

—00 otherwise, (6.6b)

Ey

. s,a,q;=g" if 31 such that g; = (@:6a
QL (s,0.97) = g 9] o=

where [ is the time step when the agent reaches the goal. If the agent does not reach the
goal, the GCVF is defined to be negative infinity. This first term (6.6a) is the expected cu-
mulative reward over paths from a given start state to the goal. This imposes the constraint
that cyclical paths in the state space must have negative cumulative reward for (6.6a) to
yield finite values. For most practical physical problems, this constraints naturally holds if
reward is taken to be some measure of negative energy expenditure. For example, in the
robot arm experiment, moving the arm must expend energy (negative reward). Achieving a
positive reward cycle would translate to generating infinite energy . In all our experiments
with this formulation, we use a constant reward of -1 for all states, R (s,a) = —1Vs,a.
For the cases when the agent does reach the goal at time step [ (6.6a), the Bellman

equation takes the following form:

RP (sy,a;) + 7 max QF (5441,a,9%) ift<l—1 (6.7a)
ac

Q*P (s¢,a1,97) = {

RP(s1_1,a1_1) ift=101—1. (6.7b)
Notice that terminal step in this equation is the step to reach the goal. This differs from
Equation (6.3), where the terminal step is the step at which the episode ends. This formu-
lation is equivalent to the end of episode occuring immediately when the goal is reached.
This reformulation does not require goal-rewards, which in turn obviates the requirement

for pseudo-goals and reward recomputation.
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One-Step Loss To enable algorithms like HER to work under this reformulation we need
to recognize when the goal is reached (6.7b). This recognition is usually done by the
reception of high goal reward. Instead, we use (6.7b) as a one-step loss that serves this

purpose which is one of our main contributions:

Laep(00) = (QF (s1-1, 1.1, 91;00) — R(si_1,a11))*. (6.8)

This loss is based on the assumption that one-step reward is the highest reward between
adjacent start-goal states and allows us to estimate the one-step reward between them. Once
learned, it serves as a proxy for the reward to the last step to the goal (6.7b). The Bellman
equation (6.7), serves as a one-step rollout to combine rewards to find maximum reward
paths to the goal.

One-step loss is different from the terminal step of Q-Learning because one-step loss
is applicable to every transition unlike the terminal step. However, one-step loss can be
thought of as Q-Learning where every transition is a one-step episode where the achieved
goal is the pseudo goal.

One-step loss also different from the terminal condition in [51]. [51] defines Q% (., ., .)
similar to Eq (6.7) except the terminal condition is defined as QF (s;, a, gx) = 0 when
g = g*. Under the stated assumptions, the two definitions are equivalent but one-step loss
is advantageous as it can be applied to every transition unlike the [51] terminal condition
which can be only applied when ¢, = g*.

We modify an implementation of HER to include the step-loss term and disable goal
rewards for our experiments. As in HER, we use the DDPG loss Lgqp, While using the “fu-
ture” goal sampling strategy described in the chapter. The details of the resulting algorithm

are shown as pseudo-code in Algorithm 3 in the Appendix.

6.4.1 Deep Floyd-Warshall Reinforcement Learning

The GCVF redefinition and one step-loss introduced in this chapter are inspired by the
tabular formulation of Floyd-Warshall Reinforcement Learning (FWRL) [51]. We extend
this algorithm for use with deep neural networks. Unfortunately, the algorithm itself does
not show significant improvement over the baselines. However, the intuitions gained in its
implementation led to the contributions of this chapter.

The core contribution of FWRL is a compositionality constraint in the space of GCVFs.

This constraint states that the optimal (), value from any state s, to any goal g., ¢ is greater
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than or equal to the sum of optimal (), values via any intermediate state-goal pair (., gy ):

Q. (St7 at, gw) + Q, (Swa X*(Sun Gi+f5 0)()7 gt+f) > Q, (St, ag, gt+f) . (6.9)

We translate these constraints into loss terms and add them to the DDPG loss Lgqp, and
one-step loss Lyep. Taking cue from [94], we do not repeat the the main online network @),,,
in the loss term. We use a target network ()i and split the constraint into two loss terms.

One loss term acts as a lower bound L, and the other acts as an upper bound L,:

Lo = ReLU[Qy, (51, a1, gu) + Qi (Sws Xt (S G4 13 03), Gef) — Qu (81, ts Gy 5))°
(6.10)

£up - ReLU[Qm (5t7 Ay, gw) + tht (Swy Xt(sun gt+f; 9)()7 gt+f) - tht <8t7 Ay, gt+f)]2~
6.11)

Note that the above terms differ only by choice of the target and main network.

FWRL Sampling We augment HER sampling to additionally get the intermediate state-
goal pair (S, g,,). Once a transition (s, a;, r¢, S¢+1) and a future goal ¢, ; have been sam-
pled from the same episode, we sample another intermediate state and goal pair (., gu)
suchthatt < w <t+ f.

6.5 Experiments

We use the environments introduced in [109] for our experiments. Broadly the environ-
ments fall in two categories, Fetch and Hand tasks. Our results show that learning is pos-
sible across all environments without the requirement of goal-reward. More specifically,
the learning happens even when reward given to our algorithm is agent is always “-1” as
opposed to the HER formulation where a special goal-reward of “0” is needed for learning
to happen.

The Fetch tasks involve a simulation of the Fetch robot’s 7-DOF robotic arm. The four
tasks are Reach, Push, Slide and PickAndPlace. In the Reach task the arm’s end-effector
is tasked to reach the a particular 3D coordinate. In the Push task a block on a table needs
to be pushed to a given point on it. In the Slide task a puck must be slid to a desired
location. In the PickAndPlace task a block on a table must be picked up and moved to a
3D coordinate.

The Hand tasks use a simulation of the Shadow’s Dexterous Hand to manipulate ob-

jects of different shapes and sizes. These tasks are HandReach, HandManipulateBlock-
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Figure 6.2: For the Fetch tasks, we compare our method (red) against HER (blue) [2] and FWRL (green) [51] on the distance-from-
goal and success rate metrics. Both metrics are plotted against two progress measures: the number of training epochs and the number
of reward computations. Except for the Fetch Slide task, we achieve comparable or better performance across the metrics and progress
measures.

RotateXYZ, HandManipulateEggFull and HandManipulatePenRotate. In HandReach the
hand’s fingertips need to reach a given configuration. In the HandManipulateBlockRota-
teXYZ, the hand needs to rotate a cubic block to a desired orientation. In HandManipula-
teEggFull, the hand repeats this orientation task with an egg, and in HandManipulatePen-
Rotate, it does so with a pen.

Snapshots of all these tasks can be found in Figure 6.1. Note that these tasks use joint

angles, not visual input.

6.5.1 Metrics

Similar to prior work, we evaluate all experiments on two metrics: the success rate and
the average distance to the goal. The success rate is defined as the fraction of episodes in
which the agent is able to reach the goal within a pre-defined threshold region. The metric
distance of the goal is the euclidean distance between the achieved goal and the desired
goal in meters. These metrics are plotted against a standard progress measure, the number
of training epochs, showing comparable results of our method to the baselines.

To emphasize that our method does not require goal-reward and reward re-computation,

we plot these metrics against another progress measure, the number of reward computations
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used during training. This includes both the episode rollouts and the reward recomputations

during HER sampling.

6.5.2 Hyper-parameters choices

Unless specified, all our hyper-parameters are identical to the ones used in the HER im-
plementation [22]. We note two main changes to HER to make the comparison more fair.
Firstly, we use a smaller distance-threshold. The environment used for HER and FWRL
returns the goal-reward when the achieved goal is within this threshold of the desired goal.
Because of the absence of goal-rewards, the distance-threshold information is not used by
our method. We reduce the threshold to 1cm which is reduction by a factor of 5 compared
to HER.

Secondly, we run all experiments on 6 cores each, while HER uses 19. The batch size
used is a function of the number of cores and hence this parameter has a significant effect
on learning.

To ensure fair comparison, all experiments are run with the same hyper-parameters
and random seeds to ensure that variations in performance are purely due to differences

between the algorithms.

6.5.3 Results

All our experimental results are described below, highlighting the strengths and weaknesses
of our algorithm. Across all our experiments, the distance-to-the-goal metric achieves com-

parable performance to HER without requiring goal-rewards.

Fetch Tasks The experimental results for Fetch tasks are shown in Figure 6.2. For the
Fetch Reach and Push tasks, our method achieves comparable performance to the base-
lines across both metrics in terms of training epochs and outperforms them in terms of
reward recomputations. Notably, the Fetch Pick and Place task trains in significantly fewer
epochs. For the Fetch Slide task the opposite is true. We conjecture that Fetch Slide is

more sensitive to the distance threshold information, which our method is unable to use.

Hand Tasks For the Hand tasks, the distance to the goal and the success rate show differ-
ent trends. We show the results in Figure 6.3. When the distance metric is plotted against
epochs, we get comparable performance for all tasks; when plotted against reward compu-
tations, we outperform all baselines on all tasks except Hand Reach. The baselines perform

well enough on this task, leaving less scope for significant improvement. These trends do
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Figure 6.3: For the hand tasks, we compare our method (red) against HER (blue) [2] and FWRL (green) [51] for the distance-from-goal
and success rate metrics. Furthermore, both metrics are plotted against two progress measures, the number of training epochs and the
number of reward computations. Measured by distance from the goal, our method performs comparable to or better than the baselines
for both progress measurements. For the success rate, our method underperforms against the baselines.
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Figure 6.4: (a) Effects of removing the step-loss from our methods. Results show that it is a critical component to learning in the absence
of goal-rewards. (b) Adding goal-rewards to our algorithm that does have an effect further displaying how they are avoidable.

not hold for the success rate metric, on which our method consistently under-performs com-
pared to the baselines across tasks. This is surprising, as all algorithms average equally on
the distance-from-goal metric. We conjecture that this might be the result of high-distance
failure cases of the baselines, i.e. when the baselines fail, they do so at larger distances
from the goal. In contrast, we assume our method’s success and failure cases are closer

together.

6.6 Analysis

To gain a deeper understanding of the method we perform three additional experiments on
different tasks. We ask the following questions: (a) How important is the step loss? (b)
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What happens when the goal-reward is also available to our method? (c) How sensitive is
HER and our method to the distance-threshold?

How important is the step loss? We choose the Fetch-Push task for this experiment. We
run our algorithm with no goal reward and without the step loss on this task. Results show
that our algorithm fails to reach the goal when the step-loss is removed (Fig. 6.4a) showing

its necessity.

What happens when the goal-reward is also available to our method? We run this
experiment on the Fetch PickAndPlace task. We find that goal-rewards do not affect the
performance of our algorithm further solidifying the avoidability of goal-reward (Fig 6.4b).

How sensitive is HER and our method to the distance-threshold? In the absence of
goal-rewards, our algorithm is not to able capture distance threshold information that de-
cides whether the agent has reached the goal or not. This information is available to HER.
To understand the sensitivity of our algorithm and HER on this parameter, we vary it over
0.05 (the original HER value), 0.01 and 0.001 meters (Fig. 6.5). Results show that for the
success-rate metric, which is itself a function of this parameter, both algorithms are affected
equally (Fig. 6.5a). For the distance-from-goal, only HER is affected (Fig. 6.5b). This fits

our expectations as set up in section 6.5.2.

6.7 Conclusion

In this work we pose a reinterpretation of goal-conditioned value functions and show that
under this paradigm learning is possible in the absence of goal reward. This is a surprising
result that runs counter to intuitions that underlie most reinforcement learning algorithms.
In future work, we will augment our method to incorporate the distance-threshold infor-
mation to make the task easier to learn when the threshold is high. We hope that the
experiments and results presented in this chapter lead to a broader discussion about the

assumptions actually required for learning multi-goal tasks.
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CHAPTER 7

Conclusion and Future work

I present different ways to improve mapping and navigation. Mapping and navigation
problem is so fundamental to artificial intelligence that even after years of progress in the
field we do not have a set of adaptive algorithm that works in all kinds of environment with
different sensor types.

In Chapters 2-4, I show that the algorithms can be improved by identifying the structure
in the environment and explicitly modeling that structure like mutual observations, occlu-
sion modeling and forward sensor models. Our work has added the knowledge of building
mapping algorithms that are more accurate, robust to occlusions and can deploy on multiple
robots by including mutual observations.

In Chapters 5-6, I investigate where Deep Reinforcement Learning based navigation al-
gorithms stand and how they can be improved. However, as we saw in Chapter 5, we do not
have a navigation driven DRL algorithm that learns to build a map in novel environments.

Lately, a few works have focused on this prob- . :
Classical Mapping

and Path planning

lem [124, 43]. But these works leave enough to

Coarse level actions,

be desired. Gupta et al. 2017 [43] build a occu- odometry\depth estimates Rewards on following

actions correctly

pancy grid map as a part of the pipeline which is

Deep reinforcement
Learning

not scalable to high dimensional use cases of nav-

igation algorithms. Savinov et al. 2018 [124] use  image\reward e step

a topological memory for navigation that works on .

topological memory for navigation. An ideal naviga- e

tion algorithm that includes mapping will seamlessly Figure 7.1: Hierarchical hybrid scheme to augment
DRL algorithms with classical mapping and path-

transition between the topological memory and the planning.

learned mapping from observation to action. More recent works on instance specific con-

trol [112] show one possible direction to approach this problem. One can first use the

learned mapping from observation to action and depending upon accuracy of prediction,

switch to topological memory when the prediction accuracy falls below a threshold.
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Alternatively, we can combine DRL algorithms and classical navigation in a hierarchi-
cal hybrid setup where the long term coarse-level mapping and path-planning is handled by
a classical approach and fine grained low level control is left to DRL algorithm (Fig. 7.1).
We hypothesize that the DRL-based navigation algorithms are good at learning decisions
that correspond based on few (may be distant) past observations but are not able to learn
mapping and shortest path-planning algorithms. In hindsight, to expect generic Recurrent
Neural Networks (RNNs) to learn complex algorithms like mapping and path-planning
seems like wishful thinking. In future, the classical approach level in the hierarchy can
be replaced by a trainable neural network model that learns the tune-able aspects of the

algorithm from data.
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APPENDIX A

Deep Reinforcement Learning

A.1 Hyperparameters

We use the Deepmind Lab environment to train our experiments. As mentioned previously,
apple rewards are scattered throughout the maze and constitute a +1 reward. Goals consti-
tute a +10 reward. An included wall penalty linearly penalizes the agent as it moves closer
to the wall with the penalty being capped off at -.2 per frame. Our episodes are of fixed
time length ending at 40 seconds each. The agent interacts with the environment at a rate
of 30 frames per second. Each episode thus consists of 1200 frames of data coupled with
the corresponding reward signals. Our mazes constitute an area of 900units x 900units
though we provide the tools to generate mazes to arbitrary dimensions.

Our A3C implementation is a modified version of OpenAls open-sourced universe-
starter-agent. RGB images are fed in to the network of dimensions 84 x 84 x 3. 16
threaded agents are used for all experiments. We use a learning rate of 10~* along with the
AdamOptimizer to train our network. Our models train for a maximum of 10°® iterations
though we end them early if maximum reward saturates.

A.2 Benchmarking code

To motivate more comprehensive experimental evaluations of DRL-based navigation meth-
ods, we will be releasing all our trained models coupled with corresponding reward curves
and videos of performance online. This will include completely reproducible evaluation
sets wherein we display metric scores for all the trained models on the follow environ-
ments:

* the original training conditions

* the training conditions in the absence of apples and textures
* the 100 unseen testing maps

* the planning maps i.e. the square, wrench and goal map

We hope our work can also be utilized as a stepping stone for the creation of better gener-
alized DRL navigation methods bypassing the needless amounts of time spent engineering
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the infrastructure necessary for these experiments. All our work will be available on github
after the blind-review process is over.

A.3 Reward curves with different number of training maps

Mean reward per episode P(Goals >=1) P(Goals >= 2)
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Figure A.1: Mean reward while tested on 100 unseen maps, while being trained on different number of training maps. Note that while
training on 1000 maps eventually achieves high reward, it is only higher mean reward (44.2), training on 1 map hits the maximum (31)
much faster.
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APPENDIX B

Goal-conditioned Reinforcement Learning

Our algorithm 3 is different from HER [3] because it contains additional step-loss term
Lyiep at line number 17 which allows the algorithm to learn even when the rewards received
are independent of desired goal. Also in HER sampling (line 13), the algorithm recomputes
the rewards because the goal is replaced with a pseudo-goal. Our algorithm does not need
reward recomputation because the reward formulation does not depend on the goal and is
not affected by choice of pseudo-goal.

Our algorithm is also different from Floyd-Warshall Reinforcement learning because it
does not contain £, and £;, terms and contains the additional L.

Algorithm 3: Path-reward reinforcement learning

/* By default all states are unreachable x/
Initialize networks Q,,, (si7 ai, 95; 9@) and x(si, S¢;0) ;
Copy the main network to target network Qg (si, ai, gj; GQ) —Qn (si, ai, 9j; 9@) ;
Initialize replay memory M ;
fore + 1to E do
Sample g € G ;
Sett «+ 0;
Observe state s¢ and achieved goal g; ;
/* Episode rollout */
fort < 1to 7T do
Take action a¢ < e-greedy(xm (s, 9;0x)) ;
Observe s¢4+1, gt+1,7t 5
Store (¢, gt, Gt, St+1, gt+1,Tt; ge) in memory Me] ;
/* Train */
fort < 1to 7T do
HER sample batch B = [(si, gi, @i, Si41, Git1,Ti5 Jit fi)s - - » (5> Gbs @by Sb15 Jb115Tb5 Gbot g, )] from M ;
L(...)=0;
for b € 1to|B| do
(Sb, 9b> Qb Sb41, Gb+1, Ty Got-£, ) = BIb] 3

/* Step loss x/
‘C( . )+ = (Qm (Sb7abvgb+1) - Tb)2 5
/+ DDPG loss %/

L)+ = (Qu, (5506, oy 1) — T — YQu (55415 Xtar(Sb115 Gb4 1,3 0x)> Gt £, )% 5
Update gradients for @, and X using loss £(...);

Result: Q. , Xm
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APPENDIX C

Notation

Probabilities P(a|b,c) Weuse P(al|b, c) as acompact notation of the form P(A = a|B =
b,C' = c¢), which is the conditional probability of the random variable A taking value a
given random variable B has value b and random variable C' has value c. We assume an
implicit definition of the random variable unless specified otherwise. If a € A, then the
random variable A is defined define as (A, o(A), P4), with o(.A) is trivial sigma algebra
over A such as a power set for discrete random variable and Borel set for a continuous
random variable.

Sampling z; ~ P,(z;) is used to denote that z; has been sampled from P,(z;).

Stationary process and distributions A stochastic process generating a sequence of ran-
dom variables X; is called stationary if the joint probability distribution of a particular se-
quence is independence of the shift in time index i.e. P(X;, = 21, Xy, = 29,..., Xy, =
xn) = P(Xoq4, = 21, Xoyt, = x2,..., Xy, = x,) forall 7,¢y,1s,...,t, and n. The
probability distributions that govern the stationary stochastic process are also stationary.
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