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4.18 The longitudinal (ẑ′-directed) electric field in the region over the radiator: (a)
simulation and (b) measurement results at 7.5 GHz, (c) simulation and mea-
surement results at 7.5 GHz at z′ = 170 mm, (d) simulation and (e) measure-
ment results at 10 GHz, (f) simulation and measurement results at 10 GHz at
z′ = 170 mm, (g) simulation and (h) measurement results at 12.5 GHz, (i)
simulation and measurement results at 12.5 GHz at z′ = 170 mm. . . . . . . . 70
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ABSTRACT

Although electromagnetics is a well-established field within physics and engineering, it

is also a rather dynamic one. Our ever increasing need for connectivity and the rise of

medical and military applications constantly create new challenges for researchers in elec-

tromagnetics. In this thesis, unconventional methods are proposed for tackling some of

these challenges by manipulating the electromagnetic fields in different regions: reactive

near field, radiative near field, and far field.

The first topic examined pertains to the development of antennas for Internet of Things

(IoT) nodes with extremely small form factors and low power consumption. As a result,

they require small and relatively efficient antennas that can be tightly integrated within the

node. The antennas should be able to operate with lossy and metallic components in their

near field, while maintaining adequate performance. A type of antenna, called a 3D loop,

is designed to fulfill these specifications, and is used in two compact IoT systems.

The second thrust aims at developing devices that generate Bessel beams and X waves

in their radiative near field. Bessel beams are a class of exotic beams with nondiffracting

and self-healing properties. Here, two radiator designs are presented, capable of generating

Bessel beams with minimal deviation of their parameters over a broad bandwidth. This

allows the generation of nondiffracting and nondispersive pulses (X waves) that remain

highly localized within the device’s radiative near field.

The final topic examined aims at analytically modeling the electromagnetic properties

of patterned metallic sheets. Such sheets are the building blocks of metasurfaces, which

are two dimensional devices that manipulate the properties of a propagating wavefront

(amplitude, phase, polarization). Having analytical models for sheets that realize arbitrary

xv



electromagnetic properties significantly expedites their design, as opposed to relying on

databases of simulated geometries.
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CHAPTER 1

Introduction

In this thesis, we present unconventional methods to solve modern problems in electromag-
netics. Our research efforts have focused on three topics, each requiring the manipulation
of electromagnetic fields in a different region (reactive near field, radiative near field, and
far field). To a large degree, the progress reported here is enabled by recent advancements
in electronics, materials, and fabrication techniques.

1.1 Electrically Small Antennas

1.1.1 Background

An Electrically Small Antenna (ESA) is any antenna that has a small size compared to the
wavelength of radiation. ESAs have been extensively studied in the past [1, 2]. Although
the advantages of using an antenna that occupies a small volume or area are obvious, it
is also known that their performance is fundamentally limited when their size becomes
a small fraction of the operating wavelength [3]. Significant attention has been given to
their quality factor, a quantity that is inversely proportional to the bandwidth of operation
[4]. This is known as the Chu limit [5]. For narrowband applications, however, a more
important parameter is the radiation efficiency of the antenna, which describes the ratio of
radiated power to the power accepted by the antenna.

The already limited performance of ESAs is further degraded due to their integration
within compact systems. The introduction of external components within the extreme near
field of the antenna has a significant impact on its radiation efficiency, especially when the
components are made either from lossy dielectrics or metals having high conductivity. The
combination of inherent limitations of ESAs with the loss in performance from external
components restricts the range over which these systems can operate. As a result, the
engineer needs to choose the most appropriate antenna and carefully examine its placement
in the system.

1



While developing compact systems requires us to overcome significant difficulties,
there is a growing demand for such systems [6]. The advancement of Internet of Things
(IoT) in recent years creates a need for small devices that are able to communicate wire-
lessly. Their use ranges from tags to sensors, and from location tracking devices to wear-
ables. These devices should be able to communicate with a centralized node (a gateway)
efficiently in order to exhibit adequate range and battery life.

1.1.2 Motivation

The work presented here is one part of a larger collaborative effort between research groups
at the University of Michigan to build ultra low power IoT nodes that are able to commu-
nicate with a gateway and transmit low data rate information to it [7, 8, 9] or for location
tracking [10, 11, 12]. The main challenge addressed here is designing efficient antennas
with extremely small form factors that can operate in an adverse near field environment (in
the presence of lossy or metallic components).

Two elementary antennas are examined first: an electric dipole (straight wire), and a
magnetic dipole (loop). Analytical and simulation results are compared for the two anten-
nas to deduce which one suits the application better. Once it is found that magnetic dipoles
have superior performance, a variation of them, the 3D loop, is developed. These loops can
be fabricated using standard Printed Circuit Board (PCB) techniques and can be assembled
with the other components of the system in a straightforward fashion. Their performance is
not degraded significantly by the presence of these components in their near field. The use
of these antennas is showcased in two applications: a Global Positioning System (GPS) re-
ceiver (1.575 GHz), and an Industrial, Scientific and Medical (ISM) band transceiver (915

MHz) for low bit rate communication in an indoor environment.

1.1.3 Goals

The goals of this work are:

• To determine which type of ESA (electric or magnetic dipole) performs better for
mm-scale and cm-scale IoT nodes.

• To develop a variation of magnetic dipoles (which are found to perform better in this
framework) that can be integrated within the IoT node with acceptable performance.

• To perform parametric studies to determine the tradeoffs between size and radiation
efficiency.
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• To design and experimentally validate an ESA for a GPS receiver with dimensions
10 × 10 × 6 mm3.

• To design and experimentally validate an ESA for an IoT node with dimensions 3.41

× 3.62 × 3.8 mm3, after determining which ISM band is the most suitable for this
specific application.

1.1.4 Publications

This work was presented in the following published or submitted articles:

1. N. Chiotellis, L.-X. Chuo, H. Kim, Y. Chen, H.-S. Kim, D. D. Wentzloff, D. Blaauw,
and A. Grbic, ”Electrically small loop antennas for compact IoT devices,” under

review.

2. H. Kim, N. Chiotellis, E. Ansari, M. Faisal, T. Jang, A. Grbic, H.-S. Kim, D.
Blaauw, and D. D. Wentzloff, ”A receiver/antenna co-design for a 1.5 mJ per fix
fully-integrated 10x10x6mm3 GPS logger,” in Custom Integrated Circuits Confer-

ence (CICC), 2018 IEEE. IEEE, 2018, pp. 1-4.

3. T. Jang, G. Kim, B. Kempke, M. B. Henry, N. Chiotellis, C. Pfeiffer, D. Kim, Y.
Kim, Z. Foo, H. Kim, A. Grbic, D. Sylvester, H.-S. Kim, D. D. Wentzloff, and D.
Blaauw, ”Circuit and system designs of ultra-low power sensor nodes with illustra-
tion in a miniaturized GNSS logger for position tracking: Part II - Data communica-
tion, energy harvesting, power management, and digital circuits,” IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp. 2250-2262, 2017.

4. T. Jang, G. Kim, B. Kempke, M. B. Henry, N. Chiotellis, C. Pfeiffer, D. Kim, Y. Kim,
Z. Foo, H. Kim, A. Grbic, D. Sylvester, H.-S. Kim, D. D. Wentzloff, and D. Blaauw,
”Circuit and system designs of ultra-low power sensor nodes with illustration in a
miniaturized GNSS logger for position tracking: Part I - Analog circuit techniques,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp.
2237-2249, 2017.

5. L.-X. Chuo, Y. Shi, Z. Luo, N. Chiotellis, Z. Foo, G. Kim, Y. Kim, A. Grbic, D. D.
Wentzloff, H.-S. Kim, and D. Blaauw, ”7.4 A 915MHz asymmetric radio using Q-
enhanced amplifier for a fully integrated 3x3x3mm3 wireless sensor node with 20m
non-line-of-sight communication,” in Solid-State Circuits Conference (ISSCC), 2017

IEEE International. IEEE, 2017, pp. 132-133.
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6. Y. Chen, N. Chiotellis, L.-X. Chuo, C. Pfeiffer, Y. Shi, R. G. Dreslinski, A. Grbic, T.
Mudge, D. D. Wentzloff, D. Blaauw, and H.-S. Kim, ”Energy-autonomous wireless
communication for millimeter-scale Internet-of-Things sensor nodes,” IEEE Journal

on Selected Areas in Communications, vol. 34, no. 12, pp. 3962-3977, 2016.

1.2 Nondiffracting Waves

1.2.1 Background

Nondiffracting waves get their name from their rather interesting nondiffracting property,
which means that their intensity does not diminish as they propagate [13]. Nondiffracting
waves produced by finite apertures are inherently a radiative near field effect. In other
words, they maintain their nondiffracting property within a specific distance, called the
nondiffracting range.

Researchers have theoretically predicted and experimentally realized multiple classes of
nondiffracting waves that will be reviewed in Chapter 3 [14, 15, 16, 17]. Our attention has
mostly focused on a class of nondiffracting waves called Bessel beams [18]. These beams
take their name from the Bessel functions that mathematically describe them. Bessel func-
tions are well-known solutions to differential equations, including the Helmholtz equation
in cylindrical coordinates. Bessel beams have also been shown to be self-healing, meaning
that they recover their field profile after encountering an obstacle [13].

Bessel beams have been extensively studied in terms of theory. Experimentally, how-
ever, there have only been a few demonstrations so far, and most of them were done at
optical frequencies [19, 20, 21, 22, 23, 24, 25, 26, 27]. Bessel beams are challenging to
generate at microwave frequencies because of the size of the equipment needed (often in-
volving separate antenna and lensing systems). At the same time, Bessel beams and their
time domain counterparts, Bessel pulses and X waves, have been shown to have numerous
applications, including medical ultrasonic imaging, tissue characterization, nondestructive
evaluation of materials [28], optical conveyors [29], electron microscopy [30], microfabri-
cation of dielectrics [31], exerting forces on biological cells [32], and optical communica-
tions [33].

1.2.2 Motivation

Nondiffracting waves are examined to demonstrate control of electromagnetic waves in the
radiative near field (Fresnel zone). We introduce two new methods of generating Bessel
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beams at microwave frequencies. The first Bessel beam radiator developed is based on re-
fractive optics, while the second one employs metamaterials to achieve a similar effect and
even allow paraxial Bessel beams [34, 35, 36, 37]. Both radiators exhibit a 50% fractional
bandwidth.

The main contribution of this work, however, is the devices’ ability to produce Bessel
beams over an appreciable bandwidth with little change in the beams’ characteristics. This
allows the generation of X waves, short localized microwave pulses that do not diffract and
do not disperse, meaning that they do not spread in time [38]. X waves are composed of a
spectrum of Bessel beams, which are nondiffracting. The nondispersive property is derived
from the fact that all the frequency components that make up the pulse propagate with very
similar characteristics [13]. Such pulses have obvious medical and military applications
among others.

1.2.3 Goals

Our efforts in the field of nondiffracting waves aim at developing and experimentally vali-
dating two devices. The goals of this work can be grouped into two sets, each set pertaining
to a distinct device.

1. Bessel beam and X wave radiator based on refractive optics [34, 35]:

• To design a coaxially-fed device that generates Bessel beams using refractive
optics to ensure its broad bandwidth.

• To validate the design through full-wave simulations.

• To fabricate the device using standard CNC machining.

• To experimentally validate the generation of Bessel beams over a broad band-
width.

• To experimentally validate the generation of X waves through frequency as well
as time domain measurements.

2. Bessel beam and X wave radiator based on metamaterials [36, 37]:

• To design a coaxially-fed device that transforms the radiation of a monopole
into a paraxial Bessel beam using an inhomogeneous, isotropic dielectric re-
gion.

• To implement the inhomogeneous region using metamaterials.

• To validate the device’s performance through full wave simulations.
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• To fabricate the design through 3D printing with low-loss filaments.

• To measure the device experimentally and compare the results with those ob-
tained through simulation.

1.2.4 Publications

This work was presented in the following published articles:

1. N. Chiotellis, V. Mendez, S. M. Rudolph, and A. Grbic, ”Experimental demonstra-
tion of highly localized pulses (X waves) at microwave frequencies,” Physical Review

B, vol. 97, no. 8, p. 085136, 2018.

2. N. Chiotellis and A. Grbic, ”Metamaterial-based Bessel beam launcher,” in Engi-
neered Materials Platforms for Novel Wave Phenomena (Metamaterials), 2017 11th

International Congress on. IEEE, 2017, pp. 55-57.

3. N. Chiotellis and A. Grbic, ”Metamaterial Bessel beam radiator,” in Antennas and

Propagation & USNC/URSI National Radio Science Meeting, 2017 IEEE Interna-

tional Symposium on. IEEE, 2017, pp. 1735-1736.

4. N. Chiotellis and A. Grbic, ”A broadband, Bessel beam radiator,” in Antennas and

Propagation & USNC/URSI National Radio Science Meeting, 2016 IEEE Interna-

tional Symposium on. IEEE, 2016, pp. 873-874.

1.3 Metasurfaces

1.3.1 Background

Metasurfaces, the 2D equivalent of metamaterials, are subwavelength-textured surfaces that
exhibit tailored electromagnetic properties. In recent years, they have found numerous ap-
plications that will be reviewed in an upcoming chapter [39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51]. Earlier work at the University of Michigan has investigated cascaded meta-
surfaces, consisting of metallic claddings separated by subwavelength dielectric spacers, to
implement tailored electric, magnetic, and bianisotropic responses [52, 53, 54]. Although
these devices have been used in the near field of radiating devices, they are most commonly
used in far field applications, meaning that the incident, reflected and transmitted waves are
assumed to be plane waves.
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The design of cascaded metasurfaces relies on numerically calculating the electromag-
netic properties (in this case, the sheet impedance) of the metallic claddings needed to
implement a specific response, e.g controlling the phase, amplitude or polarization of the
transmitted wave [53]. These properties are then realized through patterning of metallic
sheets. This is achieved by simulating various metallic patterns in commercial electromag-
netic software and choosing the appropriate one. A small section of the sheet, called a unit
cell, is simulated for each geometry, under the assumption that the sheet consists of infinite
such unit cells.

Choosing the right unit cell is not an easy task, especially for inhomogeneous metasur-
faces that comprise hundreds or thousands of unit cells per design [54]. The designer needs
to have experience in the range of sheet impedance values that can be achieved by each
unit cell geometry. When a specific geometry has been decided on, extensive parametric
studies need to be performed so that the dimensions of the unit cell realizing the required
sheet impedance are found. This is a laborious, time- and resource-consuming process.

1.3.1.1 Motivation

Our efforts in manipulating plane waves have focused on expediting the design process of
cascaded metasurfaces by developing analytical models for multiple unit cell geometries
[55]. Specifically, we have developed analytical models for the sheet impedance tensor of
various general-purpose geometries under arbitrary plane wave incidence in the long wave-
length (metamaterial) limit. These models accelerate the design of metasurfaces, eliminat-
ing the need for extensive databases of unit cells.

A variety of unit cells are studied. In some of the unit cells, lumped components have
been included, which broaden the range of sheet impedance values that can be achieved.
These lumped components can be implemented in a distributed fashion using meandered
lines for inductors and gaps for capacitors. Moreover, all geometries studied allow for non-
diagonal components in the sheet impedance tensor. These are required in order to realize
metasurfaces that exhibit cross polarizing effects. The models also take into account the
angle of incidence and polarization of the incident wave, which widens their scope. Using
these unit cells, arbitrary sheet impedance tensors can be realized.

The developed models are used to realize two metasurfaces for polarization control op-
erating at 10 GHz: an asymmetric linear polarizer and a polarization rotator. The systematic
approach for their implementation is presented, from ideal sheet impedances to patterned
metallic sheets separated by dielectric spacers. Using the analytical models, the design
process is rapid.
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1.3.1.2 Goals

The goals of this work are:

• To develop analytical models for the sheet impedance of various unit cells consisting
of metallic strips, and lumped components.

• To develop analytical models for complementary geometries through the use of Babi-
net’s principle in tensorial form.

• To confirm the validity of these models by comparing them to simulation results of
the same geometry.

• To use the developed models to design metasurfaces that manipulate the polarization
of plane waves.

1.3.2 Publications

This work was presented in the following published articles:

1. N. Chiotellis and A. Grbic, ”Analytical modeling of tensor metasurfaces,” JOSA B,
vol. 33, no. 2, pp. A51-A60, 2016.

2. N. Chiotellis and A. Grbic, ”Towards the analytical design of bianisotropic meta-
surfaces,” in 6th International Conference on Metamaterials, Photonic Crystals and

Plasmonics META 2015, pp. 1185-1186.

3. N. Chiotellis and A. Grbic, ”Towards the analytical design of tensor metasurfaces,”
in Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015

IEEE International Symposium on. IEEE, 2015, pp. 1094-1095.

1.3.3 Thesis Outline

This thesis is divided into 6 chapters. Chapter 1 serves as an introduction to the research
work outlined in this thesis.

Chapter 2 presents a class of ESAs for compact IoT nodes. Two elementary radia-
tors are examined in this framework, an electric dipole (linear wire) and a magnetic dipole
(loop). Analytical and simulation results on their radiation efficiency are given as a func-
tion of their size. It is found that magnetic dipoles perform better when the antenna size
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is extremely small and the losses of the required matching components are taken into ac-
count. Based on this knowledge, the 3D loop is developed, which is compatible with stan-
dard PCB techniques. Having two solid metal sides, the 3D loop can be easily integrated
with other system components, e.g. chips, batteries, or Photovoltaic (PV) cells, without a
significant loss in performance. As a result, it is suitable for use in compact IoT nodes.
Two such systems using 3D loops are outlined: a GPS receiver (1.575 GHz), and an ISM
band transceiver (915 MHz). Simulation and experimental results on these two systems are
compared.

Chapter 3 investigates the design of the Bessel beam radiator based on refractive optics.
After the principle of operation is explained, simulation results showing the validity of this
approach are presented. Experimental results from a fabricated prototype are also given,
showing close agreement to simulation results and confirming the generation of Bessel
beams at microwave frequencies. The device’s ability to generate X waves is explored
next, using experimental results in both the frequency and time domains.

Chapter 4 presents the Bessel beam radiator that employs metamaterials. The de-
sign process, based on Quasiconformal Transformation Optics (QCTO), is outlined first.
Through this process, we obtain the dielectric constant profile of an inhomogeneous, isotropic
dielectric region. This region is implemented using metamaterials, and, specifically, unit
cells that are rotationally symmetric. Simulations are performed to verify that the meta-
material implementation yields the same results as the dielectric constant profile obtained
through QCTO. The device is fabricated through 3D printing using multiple low-loss fila-
ments. The fabricated prototype is experimentally measured, verifying that its performance
agrees with simulation results, and validates the design procedure. Its ability to emit X
waves is also verified.

Chapter 5 investigates the analytical modeling of the sheet impedance tensor of pat-
terned metallic sheets used in cascaded metasurfaces. A simple unit cell, consisting of two
metallic strips that intersect at an arbitrary angle, is studied first. Once its sheet impedance
has been calculated, expressions are given for the sheet impedance of the same geometry
where the strips are loaded with lumped components. The complementary geometry, which
resembles a parallelogram patch, is also analyzed through the use of Babinet’s principle.
A unit cell consisting of three intersecting metallic strips and its loaded counterpart are
studied next. Using these models and interpolation, the sheet impedance tensor of a more
complicated unit cell, the sliced patch, is modeled. The derived expressions are compared
to results obtained through simulation, and close agreement is observed in the long wave-
length limit. Two cascaded metasurfaces that manipulate the polarization of plane waves at
10 GHz are designed using these models: an asymmetric linear polarizer, and a polarization
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rotator.
Finally, concluding remarks are presented in Chapter 6.
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CHAPTER 2

Electrically Small Antennas

In this chapter, the work performed on electrically small antennas is presented. The an-
tennas are designed to maximize radiation efficiency. They are also specifically designed
in such a way that other components placed on top or bottom (batteries, PV cells, chips,
etc.) do not limit the antennas’ ability to radiate. As a result, the antennas maintain their
performance when stacked vertically within a volume-constrained system.

2.1 Chapter Introduction and Outline

The Internet of Things (IoT) is a global infrastructure for the information society, enabling
advanced services by interconnecting physical and virtual objects based on existing and
evolving interoperable information and communication technologies [56]. It is expected
that by 2020, there will be 21 − 31 billion IoT devices worldwide [6]. In terms of hard-
ware, this translates into a need for smaller and more efficient devices that provide ubiqui-
tous information and/or connectivity in a non pervasive manner. Antennas are integral to
any wireless communication system while oftentimes being the single largest component
in a wireless device. As a result, there is a growing demand for small antennas, tightly
integrated within compact devices.

Depending on the size and frequency specifications of a system, the use of an ESA is
sometimes required. Such antennas exhibit ka values less than 0.5, where k is the free
space wavenumber and a is the smallest radius of a fictitious sphere enclosing the antenna
[57]. Due to their small size, ESAs face significant limitations in terms of bandwidth, input
impedance, and radiation efficiency among other characteristics [3].

Chu [5] developed expressions relating the minimum quality factor, Q, to the electrical
size of an antenna, ka [57]:

Q =
1

(ka)3
, ka� 1. (2.1)
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The quality factor is inversely proportional to the bandwidth of the antenna, ∆f :

Q =
f0

∆f
, (2.2)

where f0 is the center frequency. This limit stipulates the maximum bandwidth for a given
electrically-small size, or the smallest size for a given bandwidth.

The applications considered in this chapter are inherently narrowband, so bandwidth
(or, equivalently, the Q-factor of the antenna) is not a major concern. Here, focus is placed
on input impedance and efficiency, which can severely reduce the received/transmitted
power. Fundamental limits on the efficiency of metallic ESAs have recently been examined
[58].

Apart from these limitations that are intrinsic to ESAs, the overall performance of the
communication system may also be degraded by the placement of the antenna. A way to
minimize the volume of a system without sacrificing functionality is to vertically integrate
its components [59]. This concept, originally developed for integrated circuits, can be ap-
plied to entire communication systems, consisting of circuits, antennas, batteries as well as
other components. From an antenna perspective, this introduces the challenge of radiating
between components that contain metallic surfaces or lossy dielectrics.

Using electrically-small electric and magnetic dipoles as the starting point, it will be
shown how magnetic dipoles (loops) can provide superior performance once the losses
inherent to impedance matching components are factored in (Sec. 2.2). A method for in-
corporating small 3D loops into compact cm- and mm-scale vertically integrated systems
will be presented in Sec. 2.3. This method is compatible with PCB manufacturing tech-
niques, making the antenna fabrication affordable and reliable. Based on this approach, the
design of a differentially-fed, linearly polarized antenna for a cm-scale GPS receiver will
be outlined in Sec. 2.4. The design of an extremely small 3D loop antenna will be shown
in Sec. 2.5, intended for a mm-scale IoT device. In both cases, details of the system are
also given. Finally, concluding remarks will be made in Sec. 2.6.

2.2 Electric vs Magnetic Dipoles

A comparison between mm-scale electric and magnetic dipoles will be presented in this
section. The two antenna types will be compared in terms of their efficiency when they are
non-resonant, as well as when a lumped component is used to achieve resonance (cancel
out the imaginary part of their input impedance). It will be shown that magnetic dipoles
perform better than electric ones, once the losses of lumped components needed for reso-
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nance are taken into account.

2.2.1 Radiation efficiency of non-resonant dipoles

The radiation resistance of a small electric dipole (linear wire) with length l and wire with
radius b� l [57, 3] is

Re,R ≈ 5 (kl)2 , (2.3)

where k is the wavenumber. Its ohmic resistance is

Re,L ≈
l

4πbδσ
, (2.4)

where σ is the conductivity of the material in the wire and δ =
√

2
σωµ

is the skin depth (ω
denotes the angular frequency and µ denotes the permeability of the material). For copper,
σ = 5.8× 107 S/m, and µ = µ0 = 4π × 10−7 H/m.

The radiation efficiency of the electric dipole is

ηe =
Re,R

Re,R +Re,L

. (2.5)

The corresponding quantities for a small magnetic dipole (loop) of radius r using wire
with radius b� r are:

Rm,R ≈ 20π2 (kr)4 , (2.6)

Rm,L ≈
r

bδσ
, (2.7)

ηm =
Rm,R

Rm,R +Rm,L

. (2.8)

Values for ηe and ηm are presented in Fig. 2.1(a) and (b), respectively. The frequency
range is chosen to be between 0.5 and 6 GHz and the wire radius is b = 0.2 mm. The length
of the electric dipole assumes values between 1.5 and 10 mm. The radius of the magnetic
dipole assumes values between 0.75 and 5 mm, so that the antennas have the same a values.
The black curve signifies the electrically small limit (ka < 0.5). The radiation efficiency of
electric dipoles, ηe, is significantly higher than that of magnetic dipoles, ηm, of comparable
size.

The two dipole configurations are also simulated in ANSYS Electronics Desktop (for-
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Figure 2.1: (a-b) Radiation efficiency of electric and magnetic dipoles as a function of size
and frequency using the analytical formulation. The black curve corresponds to the elec-
trically small limit: ka < 0.5. (c-d) Radiation efficiency of electric and magnetic dipoles
using simulation results. (e-f) Radiation efficiency of resonant (zero input reactance) elec-
tric and magnetic dipoles using the analytical formulation. (g-h) Radiation efficiency of
resonant electric and magnetic dipoles using simulation results. The red curve corresponds
to the radius-frequency limit above which the loops are self-resonant.
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merly HFSS). A gap of 0.2 mm is made in the wire to place the lumped port that excites the
dipoles. The resulting values for ηe and ηm are presented in Fig. 2.1(c) and (d), respectively.
Quite good agreement is observed between the analytical and simulation results.

2.2.2 Radiation efficiency of resonant dipoles

The input reactance of a small electric dipole is [57]

Xe ≈ −120
ln
(
l

2b

)
− 1

tan
(
kl
2

) . (2.9)

In order to make the small electric dipole resonant, an inductor is required to cancel out
its negative reactance. Specifically, the inductance, L, needed satisfies:

ωL+Xe = 0⇒ L = −Xe

ω
. (2.10)

It is assumed that the inductor does not have any other parasitics except for a series
resistance, Re,I , which is related to its Q-factor, QI , through:

Re,I =
ωL

QI

. (2.11)

Assuming a series connection of the inductor with the electric dipole, the dipole’s radi-
ation efficiency when it is resonant (zero input reactance) is

η′e =
Re,R

Re,R +Re,L +Re,I

. (2.12)

The input reactance of a small circular loop is

Xm = ωµ0r

[
ln
(

8r

b

)
− 2

]
+

r

bδσ
. (2.13)

In order to make the small magnetic dipole resonant, a capacitor is required to cancel
out its positive reactance. Specifically, the capacitance, C, needed satisfies:

− 1

ωC
+Xm = 0⇒ C =

1

ωXm

. (2.14)

It is assumed that the capacitor does not have any other parasitics except for a series
resistance, Rm,C , which is related to its Q-factor, QC , through:

Rm,C =
1

ωCQC

. (2.15)
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Assuming a series connection of the capacitor with the magnetic dipole, the dipole’s
radiation efficiency when it is resonant (zero input reactance) is

η′m =
Rm,R

Rm,R +Rm,L +Rm,C

. (2.16)

Values for η′e and η′m are presented in Fig. 2.1(e) and (f), respectively. In the analysis,
it was assumed that the Q-factor of the inductors is

QI = 50, (2.17)

while the Q-factor for the capacitors is

QC = 250. (2.18)

These are typical values encountered in components designed for use in the examined fre-
quency range. In all cases, the radiation efficiency of resonant magnetic dipoles, η′m, is
higher than that of resonant electric dipoles, η′e, of comparable size.

In simulations, the efficiency of the two dipoles when resonant is also calculated. They
are presented in Fig. 2.1(g) and (h), respectively. Similar to the analytical results, the
radiation efficiency of resonant magnetic dipoles, η′m, is found to be higher than that of
resonant electric dipoles, η′e in all examined cases. The red curve in Fig. 2.1(h) denotes the
radius-frequency limit above which the loop is self-resonant. Over this limit, the magnetic
dipole has a negative reactance, and an inductor is needed to cancel out its reactance and
make it resonant.

2.3 2D vs 3D Loops

A conventional square loop antenna is shown in Fig. 2.2(a) [60]. This antenna geometry
will be referred to as the 2D loop since the loop lies on a plane. The edge of the loop
has length L and the width of the metallic strip (shown in orange) is W . The 2D loop
antenna is printed on a substrate with thickness H (shown in light blue) and is excited by
a lumped port in the gap G (shown in black). Without loss of generality, the edge length is
set to L = 10 mm and the substrate material is chosen as Rogers RT/duroid® 5880, with
dielectric constant εr = 2.2 and loss tangent tanδ = 0.0009. The gap is chosen as G = 0.2

mm, and the width of the strip is set to W = 1.5 mm.
For the chosen parallelepiped geometry used here, the radius of the enclosing sphere, a

is
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a =

√
L2

2
+
H2

4
. (2.19)

The 2D loop antenna is simulated in Ansys Electronics Desktop. The height of the
substrate,H , varies from 0.127 to 6.35 mm. The radiation efficiency of the 2D loop antenna
is shown in Fig. 2.2(c). The height of the substrate appears to have an insignificant effect
on the antenna’s radiation efficiency, as expected. The loop is primarily magnetic in its near
field, and, as a result, it is not affected by the presence of the substrate. In line with intuition,
the efficiency increases with increasing frequency since the loop appears electrically larger.
The black curve in Fig. 2.2(c) denotes the electrically small limit.

The proposed 3D loop antenna geometry is shown in Fig. 2.2(b). A dielectric substrate
in the shape of a parallelepiped with a square base of edge length L and heightH is covered
by copper cladding on both sides. A small gap, G, on one side is used to excite the antenna
with a lumped port (shown in black). Two vias of diameter D are placed close to two
corners of the antenna, as shown in the drawing. They connect the top and bottom copper
layers. The 3D antenna occupies the same volume as the 2D antenna, so the two designs
are comparable in terms of electrical size.

The 3D loop antenna is also simulated in ANSYS Electronics Desktop. Similar to the
2D loop, the height, H , varies from 0.127 to 6.35 mm. The gap, G and the material of the
substrate are the same as for the 2D loop, while the via diameter is D = 1.5 mm. The
radiation efficiency of the 3D loop is shown in Fig. 2.2(d). It can be easily seen that in this
case, height significantly affects the radiation efficiency. Specifically, efficiency increases
monotonically with height, since the area of the loop, or, equivalently, its dipole moment,
increases.

The main advantage of the proposed 3D loop antenna geometry is the significant in-
crease in radiation efficiency in systems where the substrate height can be used to optimize
the antenna’s performance. The dashed purple curve in Fig. 2.2(d) denotes the height-
frequency limit where the 3D antenna performs better than the 2D one. The exact position
of this curve depends on the antenna parameters L, D and R and the substrate material.
However, it constitutes a general trend that holds for different sets of such parameters. For
example, when the height is H = 4.89 mm and the frequency is 2 GHz, the radiation ef-
ficiency of the 2D loop is −3.41 dB, whereas that of the 3D loop is −1.54 dB. In general,
when the height of the antenna can be 2.9 mm or more, the 3D loop is more efficient than
the 2D loop for the chosen set of parameters.

In Fig. 2.2(e-f), the radiation efficiencies of the two loops are presented when a lumped
component is used to make them resonant. The red curve in Fig. 2.2(f) corresponds to the
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Figure 2.2: (a-b) 2D and 3D loop antenna geometries, and (c-d) their radiation efficiencies,
η2D and η3D, as a function of frequency and height, H . The black curve corresponds to the
electrically small limit: ka < 0.5. The dashed purple curve denotes the height-frequency
limit above which the 3D loop is more efficient that the 2D loop. (e-f) Radiation efficiency
of resonant 2D and 3D loops. The red curve corresponds to the height-frequency limit
above which the 3D loop is self-resonant. The dashed purple curve denotes the height-
frequency limit above which the resonant 3D loop becomes more efficient that the resonant
2D loop.
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height-frequency limit above which the 3D loop is self-resonant, requiring an inductor to
achieve resonance. The dashed purple curve in Fig. 2.2(f) denotes the height-frequency
limit where the resonant 3D loop performs better than the resonant 2D loop. In general,
when the height of the antenna can be 3.2 mm or more, the resonant 3D loop is more
efficient than the resonant 2D loop.

The improvement in efficiency results from the fact the current can flow through a larger
area in the 3D loop case, which reduces the resistive losses in the antenna. Moreover, the 3D
loop antenna can prove to be beneficial in systems where components are stacked vertically
instead of horizontally because the copper sheets act as a shield between the antenna and
the rest of the circuit components. Finally, when placed on a horizontal ground plane, the
3D loop’s far field performance benefits from the image current generated due to the current
in the loop [57]. On the contrary, the 2D loop would exhibit a significant drop in radiation
efficiency.

Although this geometry should be avoided in practice, the case where the 2D loop is
placed between two conducting sheets is briefly investigated. This would occur when the
antenna is placed between PCBs that either have continuous ground planes or appear as
such due to highly dense traces on the horizontal layers facing the antenna. Specifically,
the configuration in Fig. 2.3(a) is simulated, which occupies the same volume as the 2D
and 3D loops (Fig. 2.2(a-b)).

Keeping all parameters the same as before, its radiation efficiency when resonant is
presented in Fig. 2.3(b). Its efficiency for H = 4.89 mm at 2 GHz is −11.64 dB. The
3D loop (Fig. 2.2(b)), which also has metal on both sides, performs significantly better.
Its efficiency, presented in Fig. 2.2(d), is higher in all examined cases. As a result, not
only can the 3D loop outperform the 2D one when its height exceeds a certain threshold,
but it can also address the challenge of efficiently radiating between conducting sheets, a
situation typically encountered in vertically stacked systems.

2.4 GPS Antenna

The findings of Sec. 2.2 and 2.3 are used to design 3D loops for two practical systems.
The first one, presented in this section, is a cm-scale GPS receiver [12]. Its size is limited
to 10 × 10 × 6 mm3, including the antenna. It is more than four times smaller than the
one presented in [10, 11] in terms of volume. Earlier GPS loggers [61] and commercially
available ones [62] are significantly larger: 40 × 68 × 18 mm3 and 72 × 45 × 20 mm3,
respectively.

The antenna design, having a ka value of 0.241, is shown in Fig. 2.4 with its dimensions
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(a) 2D loop between ground planes

Figure 2.3: (a) 2D loop between two conducting sheets (ground planes), and (b) its radiation
efficiency when resonant. The black curve corresponds to the electrically small limit: ka <
0.5. The red curve corresponds to the height-frequency limit above which this loop is
self-resonant.
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Figure 2.4: The proposed 3D loop GPS antenna with its dimensions in mm. It consists
of two boards (0.25 and 3.18 mm thick), made of Rogers RT/duroid® 5880. The two 0.99
mm vias in the front are connected to the differential feed of the AFE. The top and bottom
metal layers of the 3.18 mm thick board and the 1.78 mm vias form the radiating loop.
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in mm. It exhibits mirror symmetry across the middle. It consists of two PCBs, one with
a thickness of 0.25 mm and the other with a thickness of 3.18 mm. Both boards are made
using Rogers RT/duroid® 5880 substrates.

The top layer of the 0.25 mm thick board contains a metallic cladding from which a
region with radius 2.24 mm centered at the front corner is removed. The two sides of this
board are connected through two metallic castellated (half) vias (0.99 mm via diameter,
1.24 mm pad diameter). The bottom layer of this board does not contain any additional
metal, other than that needed for the via pads.

The top layer of the 3.18 mm thick board contains a metallic cladding from which a
diagonal strip that is 0.69 mm wide is removed. The two sides of this board are connected
through two metallic vias (1.78 mm via diameter), placed 0.1 mm away from the board
edge. The bottom layer of this board is a solid metal layer.

A set of four vias can be seen in the back that go through both boards and provide
connectivity between components that may be placed on top and bottom of the antenna.
They do not affect its RF performance. The antenna is linearly polarized, has a ka value of
0.176, and exhibits the well-known radiation pattern of a magnetic dipole.

The two boards are electrically connected by soldering the castellated vias of the thin
board to the top layer of the thick board. These vias act as the feed, and are connected to
the differential output of the Analog Front-end (AFE). Fig. 2.5 shows the current on the
GPS antenna when it is excited differentially. The current flows down the left 0.99 mm via,
to the left of the antenna, then down the left 1.78 mm via. It crosses the bottom metal plane
to the right side of the antenna, and goes up the 1.78 mm via. It then travels towards the
right 0.99 mm via and reaches the other terminal of the feed.

From Fig. 2.2(d), the efficiency of a 3D loop occupying the same volume is −4.57 dB.
The efficiency of the antenna presented in Fig. 2.4 is −5.11 dB according to simulation. A
small trade off in terms of efficiency is made in order to make the design symmetric across
a plane (to accommodate for a differential feed) and to shield the diagonal gap from any
boards placed on top of the antenna (which will introduce parasitic capacitance).

Fig. 2.6(a) and (b) present the top and bottom views of the fabricated antenna proto-
type, respectively. The radiation efficiency of the fabricated anntenna was measured using
the modified Wheeler cap method [63] when its terminals were connected to a semi-rigid
coaxial cable with a bazooka balun. The measured radiation efficiency is −4.8 dB, which
is slightly higher than what was expected from simulation. The discrepancy is attributed
to the connector used (open ended coaxial cable with a bazooka balun), which will also
radiate a small amount of the input power.

The input impedance of the GPS antenna is shown in Fig. 2.7. The blue solid lines
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Figure 2.5: The current that flows through the GPS antenna when excited differentially.
The current flows down the left 0.99 mm via, to the left of the antenna, then down the left
1.78 mm via. From there, it crosses the bottom metal plane to the right side of the antenna,
and goes up the 1.78 mm via. It then travels towards the right 0.99 mm via and reaches the
other terminal of the feed. The top metal layer of the 0.25 mm thick board is not depicted.

(a) Top view (b) Bottom view (c) Antenna with AFE

(d) Block diagram
1st Mixer

2nd Mixer
 Bandpass

filter

I

Q

Antenna
Low Noise 
Amplifier

 Variable Gain 
Amplifier  ADC

  Cs IF (I path)

IF (Q path)  Cs

  Cp

Figure 2.6: (a) Top, and (b) bottom view of the fabricated GPS antenna. (c) The GPS
antenna with the PCB containing the AFE, on a US quarter. (d) Block diagram of the
antenna, matching capacitors and the AFE.
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Figure 2.7: The input impedance of the GPS antenna and the AFE. The antenna is inductive
and can be conjugately matched to the AFE using only lumped capacitors.

correspond to the measured resistance and reactance of the GPS antenna, while the red
dashed lines correspond to simulation values. The impedance of the AFE (the design of
which was presented in [12]) is shown using the yellow dot-dashed lines. Using the se-
lected measurement setup, it was difficult to accurately measure low resistance values of
the antenna.

Fig. 2.6(c) shows the antenna when it is connected to the PCB containing the AFE.
A US quarter is also shown for comparison. The block diagram of the system is shown
in Fig. 2.6(d). It includes the antenna, three matching capacitors, a low noise amplifier
(LNA), an active Gilbert cell double balanced mixer for down-conversion to 200.7 MHz,
two I/Q passive mixers for down-conversion to 4.3 MHz, two intermediate frequency (IF)
bandpass filters, a variable gain amplifier (VGA), and two 2 bit analog-to-digital converters
(ADC) with 10.74 MHz sampling rate.

Instead of matching both the antenna and the AFE to 50 Ω, the antenna is conjugately
matched to the AFE using capacitors. Two lumped capacitors are placed in series with
the antenna, each with capacitance Cs = 2.6 pF. A lumped capacitor with capacitance
Cp = 0.4 pF is then placed in parallel. The losses in these matching components lower the
antenna’s radiation efficiency to −5.25 dB. The system also contains a low-noise amplifier
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(LNA), three mixers, two bandpass filters, two variable-gain amplifiers (VGA), and two
analog-to-digital converters (ADC).

2.5 Medium Range Radio Antenna

In this section, the antenna for a second communication system is presented. The specifi-
cations set by the funding agency required that this system should be able operate across 20

m in an indoor environment, including a layer of wall. Eventually, a mesh of such systems
would be deployed in an indoor environment to monitor a quantity such as temperature,
pressure, humidity, etc.

The primary goal is to achieve such operation using a mm-scale device with volume
3.41 × 3.62 × 3.8 mm3, which includes the antenna, batteries, photovoltaic (PV) cell,
and integrated circuits. Since this system has limited range, the name MRR is chosen for
it. Aspects of this system, namely the modulation scheme and the implementation of the
circuits, have been presented in [7] and [8], respectively. The antenna for this system will
be shown to be a multi-turn 3D loop.

2.5.1 Carrier Frequency Selection

As opposed to GPS, where the carrier frequency is set, the frequency of operation of a
communication system can be chosen to optimize a system’s performance. Three ISM
frequency bands serve as candidates for the MRR system: 915 MHz, 2.4 GHz, and 5.8 GHz.
The path loss between the transmitting and receiving antennas as a function of frequency,
f , is calculated in dB:

PL(f) = −20log10

(
λ

4π

)
+N log (d)− ηR(f)−DR +WL(f), (2.20)

where:

• λ is the wavelength in meters,

• N is the loss coefficient,

• d is the distance in meters,

• ηR is the radiation efficiency of the receiving antenna in dB,

• DR is the directivity of the receiving antenna in dB, and

• WL is the loss introduced by one layer of wall in dB.
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Table 2.1: Radiation efficiency and directivity of receiving 3D loop antenna
915 MHz 2.4 GHz 5.8 GHz

ηR (dB) −30.73 −16.86 −4.18
DR (dB) 2.19 2.06 1.86

The loss coefficient, N , is assumed to be 30 to model any additional losses that are
specific to an indoor environment such as shadowing or multipath [64, 7]. The distance is
set to d = 20 m to comply with the specifications of the problem. The receiving antenna
will be assumed to be a resonant 3D loop (Fig. 2.2(b) with L = 3.5 mm, H = 1.58 mm,
D = 0.4 mm, G = 0.2 mm). The radiation efficiency, ηR, and directivity, DR, values
for this antenna at the three possible frequencies (obtained through simulation in ANSYS
Electronics Desktop) are summarized in Tab. 2.1. The angular or polarization dependence
is not taken into account in this treatise.

The loss from a layer of wall depends on the wall material [65, 66, 67]. Using the
results in Fig. 6 of [66], the following linear models for the loss resulting from a 12 in.
wall (expressed in dB) are extracted (f in GHz):

Adobe brick: WL(f) = 4.48f − 0.57,

Cinderblock brick: WL(f) = 5f + 5,

Reinforced concrete: WL(f) = 10.65f − 1.95,

0.5 GHz ≤ f ≤ 6 GHz.

(2.21)

Fig. 2.8 shows the path loss for the line-of-sight (LOS) case, as well as for the three
wall materials, as a function of frequency. When operating within LOS, selecting a higher
carrier frequency ensures a smaller overall path loss. The increased radiation efficiency of
the antenna at higher frequencies compensates for the increased free space path loss. On the
other hand, when communicating through a wall, lower frequencies result in a lower overall
path loss. In those cases, the increased loss introduced by the wall at higher frequencies
prevails over the increased radiation efficiency. As a result, the 915 MHz ISM band is
chosen for the MRR.

2.5.2 Antenna Design and System Integration

The antenna for the MRR is presented in Fig. 2.9. Similar to the GPS antenna (Fig. 2.4), it
consists of two boards made using RT/duroid® 5880 material. The thicker board measures
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Figure 2.8: The path loss (in dB) at 20 m, in an indoor environment, using a 3.5x3.5x1.58
mm3 3D loop antenna in LOS and non-LOS (12 in. walls of different materials) scenarios.

3.62 × 3.41 × 1.58 mm3, while the thiner one measures 3.31 × 3.41 × 0.38 mm3. The
antenna is extremely small, exhibiting a ka value of only 0.051. Its radiation efficiency,
obtained through simulation, is −26.86 dB before matching.

The two boards are connected through the castellated vias of diameter 0.32 mm (pad
diameter of 0.52 mm) that serve as the feed for the RF signal. The two boards also have
a set of five full vias (with 0.25 mm diameter and 0.46 mm pad diameter), which provide
connectivity between PCBs placed on the top and bottom of the antenna. Such PCBs
contain the rest of the components in the system: integrated circuits, batteries, and a PV
cell.

The 1.58 mm thick board forms a 4-turn loop that is responsible for radiation. The
higher number of turns leads to a higher inductance, meaning that a smaller capacitance
is needed to achieve resonance. Given the finite tunability of (absolute) capacitance that
can be achieved on chip, this increases the range over which the resonant frequency can
be tuned. The 0.38 mm thick board connects the integrated circuits to the terminals of this
loop.

Photos of the fabricated antenna are shown in Fig. 2.10(a-b). The system, including the
antenna, integrated circuits (chips), batteries, and PV cell, is shown in Fig. 2.10(c-d). The
details of this system, as well as the experimental results obtained from it, were presented
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Figure 2.9: A 3D loop antenna for the MRR system. Dimensions are given in mm. It
consists of two boards (0.25 and 1.58 mm thick), made using Rogers RT/duroid® 5880.
The two short vias in the front are connected to the PCB containing the circuits.
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Figure 2.10: (a) Top, and (b) bottom view of the fabricated MRR antenna. (c) Top, and
(d) bottom view of the MRR system, including the antenna, integrated circuits (chips),
batteries and the PV cell.
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Figure 2.11: The schematic of the tranceiver’s circuit, used in the MRR system.

in [8]. An audio sensor node using the proposed antenna has also been developed [9].
The transceiver circuit, shown in Fig. 2.11, is co-designed with the 3D loop antenna

to ensure an overall efficient operation [8]. In transmit (TX) mode, instead of using a
traditional power amplifier and phase-locked loop, a cross-coupled driver delivers power
directly to the antenna. The antenna forms the inductor in the tank circuit of the oscillator.
A combination of fixed and variable capacitors is utilized to ensure that the antenna res-
onates at 915 MHz. By modulating the tail current of the cross-coupled transistors (turning
it on or off), the RF carrier and on-off keying signal are simultaneously generated [68]. The
low losses in the antenna (compared to a commercially available surface-mount inductor)
lower the power consumption of the oscillator, making it energy-efficient.

In receive (RX) mode, the TX transistors are reused together with the low-loss 3D loop
antenna to obtain a passive voltage gain (Q times boosting) and filtering [69], thereby re-
placing a power-hungry low-noise amplifier and bulky off-chip filters. The antenna forms
the inductor in the LC resonant network resulting in a high-swing voltage signal at the
terminals of this LC network [70]. Due to the mechanism of voltage amplification (res-
onance), the architecture of the system differs from the conventional super-regenerative
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receiver [68].
Due to the extremely small size of the antenna, it is impractical to measure its input

impedance by connecting it to a semi-rigid coaxial cable and a bazooka balun, as was done
for the GPS antenna. Instead, a simple FR4 PCB was designed to connect the antenna ter-
minals to the VNA using a U.Fl connector and U.Fl to SMA coaxial cable. The schematic
of this simple PCB, shown in Fig. 2.12(a), contains:

• two lumped components in series, denoted by Zs,

• a lumped component in parallel, denoted by Zp, and

• the antenna, denoted by ZA.

In the first configuration examined, the series component, Zs, was a short, while the
parallel component, Zp, was an open. This can be verified in Fig. 2.12(b), where solder
bridges are used in place of the series component, and the parallel component is absent.
This configuration allows the measurement of the antenna impedance as seen by the cir-
cuit. The simulated and measured values of resistance and reactance are presented in Fig.
2.12(c). The experimental results show reasonable agreement with those from simulation.

In the second configuration, the antenna is matched to 50 Ω using lumped capacitors to
show how it can be used in conventional 50 Ω systems. Specifically, the series components
were chosen to be 0.3 pF capacitors, while the parallel component was 0.8 pF. A photo
of the PCB with these components is shown in Fig. 2.12(d). The values of the compo-
nents were chosen such that a match is achieved at 913 MHz according to simulation. The
simulated and measured input reflection coefficient, S11, is shown in Fig. 2.12(e). The
minimum value of measured S11 is observed at 942.5 MHz, 3.23% higher than simulation.
This deviation is expected given that the reactance of the fabricated antenna prototype was
measured to be slightly different from the simulated valued (Fig. 2.12(c)) as a result of the
antenna fabrication tolerances.

The simulated radiation efficiency of the antenna in the second configuration is −28.66

dB at 913 MHz. Using the modified Wheeler cap method [63], the measured radiation
efficiency of the antenna in the second configuration is −28.84 dB at 942.5 MHz.

2.5.3 Radiation Pattern

The radiation patterns of the MRR antenna are investigated using the second configuration,
which is the only one that is matched to 50 Ω. The placement of the antenna together with
the coordinate system is shown in Fig. 2.13.
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Figure 2.12: (a) The schematic of the PCB that is used to measure the input impedance of
the antenna for the MRR system. (b) Photo of the PCB in the first configuration: Zs = 0,
and Zp = ∞. (c) Input impedance measured using the first configuration. (d) Photo of
the PCB in the second configuration: Zs = 1

jω0.3pF
, and Zp = 1

jω0.8pF
. (e) Input reflection

coefficient measured using the second configuration.
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Figure 2.13: The MRR antenna in the second configuration with its coordinate system for
radiation pattern simulations and measurements.

Fig. 2.14 presents the radiation pattern of the antenna along the xy-plane as a function
of φ. The antenna constitutes a magnetic dipole along the x̂-axis. As a result, a donut
shaped radiation pattern is expected on this plane. The blue line corresponds to the θ̂-
polarized field from simulation, while the red line corresponds to the φ̂-polarized field. The
presence of the additional PCB containing the U.Fl connector and matching components
causes the peak to shift away from φ = 90◦. The measured radiation patterns are shown in
yellow and purple dots.

Fig. 2.15 presents the radiation pattern of the antenna along the yz-plane as a function
of θ. A uniform radiation pattern is expected on this plane. Again, the blue line corresponds
to the θ̂-polarized field from simulation, while the red line corresponds to the φ̂-polarized
field. The measured radiation patterns are shown in yellow and purple dots.

2.6 Chapter Summary

Using well-known equivalent circuits for electric and magnetic dipole antennas that are
electrically small, it was shown that magnetic dipoles exhibit higher radiation efficiency
when losses associated with matching components are taken into account. The design
concept of 3D loops was introduced, which exhibit higher radiation efficiency than 2D
(planar) loops when their height exceeds a certain threshold and are easier to integrate in
volume-constrained, vertically stacked systems that may include PCBs with ground planes.
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Figure 2.14: The radiation pattern of the MRR antenna in the second configuration on the
xy-plane (see Fig. 2.13 for antenna placement).

Figure 2.15: The radiation pattern of the MRR antenna in the second configuration on the
yz-plane (see Fig. 2.13 for antenna placement).
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Two examples were presented where 3D loops were used in practical, extremely com-
pact communication systems. The first example was a single-turn 3D loop antenna for a
10 × 10 × 6 mm3 GPS receiver. The antenna with ka = 0.176 was conjugately matched
to the input of the analog frontend using lumped capacitors. The second example was a
multi-turn 3D loop antenna (ka = 0.051) for a 3.41×3.62×3.8 mm3 transceiver operating
at 915 MHz. The frequency of operation was chosen to ensure the smallest path loss for a
signal propagating 20 m in an indoor environment through a wall. The antenna was tightly
integrated with the circuits of the transceiver to ensure an acceptable overall performance.

The ESAs presented here, combined with ultra-low power transceiver circuits, pave
the way for IoT devices that provide ubiquitous and seamless connectivity in extremely
compact form factors and in complex propagation environments.
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CHAPTER 3

Nondiffracting Waves: Refractive Optics Bessel
Beam Radiator

In the previous chapter, we investigated electrically small antennas operating in a con-
strained reactive near field environment. Multiple components were placed in close prox-
imity to the antennas, requiring a design that is able to radiate as part of a compact, verti-
cally stacked system.

In this chapter as well as the following one, we shift our attention from the reactive
near field to the radiative near field. Specifically, we study nondiffracting waves and pulses,
which can only exist in the radiative near field (Fresnel zone). Two radiators are introduced,
which manipulate the fields created by monopoles and convert them into localized waves
and pulses.

3.1 Chapter Introduction and Outline

Since the seminal work of Brittingham [14], numerous advancements have been made in
the area of localized waves [13]. Such waves resist diffraction and, as a result, maintain
their field profile as they propagate. Brittingham introduced focus wave modes as packet-
like solutions to Maxwell’s equations that remain focused as they propagate. Ziolkowski
addressed the issue of infinite energy possessed by these solutions by superimposing them
to construct electromagnetic directed-energy pulse trains of finite energy [15].

In his work on electromagnetic missiles, Wu manipulated the rise time of a radiat-
ing aperture to generate fields that decay slower than 1/r [16]. He did so by effectively
extending the radiative near field (where such phenomena can occur) to larger distances.
Electromagnetic bullets, introduced by Moses and Prosser, are solutions to the wave equa-
tion that are confined to a cone [17]. These energy packets have the classical 1/r field
decay, but remain localized along a ray path.
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Durnin revolutionized the field of localized waves by introducing Bessel beams, which
are superluminal, monochromatic solutions to the wave equation that do not diffract [18].
Although ideal Bessel beams cannot be generated, since they require infinite energy, their
truncated counterparts are realizable and resist diffraction over a specified distance called
the nondiffracting range. In Appendix A, truncated Bessel beams are compared to con-
ventional Gaussian beams to demonstrate the practical significance of this nondiffracting
property. A Bessel beam propagating along an axis results from the interference of all the
plane waves that form a specific angle, called the cone angle, with the axis. This angle
determines the phase and group velocity of the wave, and, together with the size of the
aperture, determine the nondiffracting range.

The electric and magnetic fields of a Transverse Magnetic (TM), radially polarized
Bessel beam in cylindrical coordinates are [20]:

Eρ = j
kz
kρ
J1(kρρ)e−jkzz,Eφ = 0, Ez = J0(kρρ)e−jkzz,

Hρ = 0, Hφ = j
k0

η0kρ
J1(kρρ)e−jkzz, Hz = 0.

(3.1)

For a TE, azimuthally polarized Bessel beam

Eρ = 0, Eφ = −j k0

kρ
J1(kρρ)e−jkzz, Ez = 0,

Hρ = j
kz
η0kρ

J1(kρρ)e−jkzz,Hφ = 0, Hz =
1

η0

J0(kρρ)e−jkzz.

(3.2)

Since their discovery, Bessel beams have been used in many practical applications.
Originally, researchers envisioned using them for medical ultrasonic imaging, tissue char-
acterization and nondestructive evaluation of materials [28]. More recent applications in-
clude optical conveyors [29], electron microscopy [30], microfabrication of dielectrics [31],
exerting forces on biological cells [32], and optical communications [33].

Bessel beams can be generated through a range of techniques. At microwave fre-
quencies, axicons [19], leaky wave antennas [20, 21], cascaded metasurfaces [22], and
GRIN lenses [23] have been used, among other techniques. At optical frequencies, re-
searchers have employed axicons [24], plasmonic metasurfaces [25], localized modes [26],
and holography [27].

A superposition of Bessel beams with a common cone angle over a range of frequencies
yields localized pulses known as X waves, first introduced by Lu and Greenleaf [38]. All
frequency components of an X wave travel at the same velocity. As a result, these pulses
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resist both diffraction (spatial spreading) and dispersion (temporal spreading), and remain
confined as they propagate.

Although multiple techniques/structures have been suggested for the generation of Bessel
beams, little progress has been made on the generation of X waves outside of optical fre-
quencies [71, 72]. At microwave frequencies, a radial line slot antenna was proposed in
[73], whose bandwidth is limited by the frequency dispersion of the radial waveguide. In
general, the minimum cone angle that can be achieved with leaky wave structures is also
limited by their high attenuation rate for radiation near broadside. A microwave system
using a circular slit and a parabolic mirror was used in [74] to verify the superluminal be-
havior of X waves. The mirror acts as a lens, applying a Fourier transform to the field of
the slit, resulting in the generation of a Bessel beam profile.

In order to generate X waves at microwave frequencies, a device must exhibit a large
bandwidth and minimal dispersion within that bandwidth. Designing a directly fed radiator
would be advantageous since it would occupy less space than an illuminated transmissive
or reflective device. Finally, the device should operate efficiently.

Ultrawideband systems such as those used in radars, medical imaging, or digital com-
munications, employ broadband antennas designed to operate in the far field [75]. In gen-
eral, the radiating elements of these systems have low directivity. On the contrary, antennas
operating in the radiative near field (Fresnel zone) have been developed for narrowband ap-
plications, e.g. radiometry [76], RFID [77] and focusing systems [78]. Here, a radiator with
50% fractional bandwidth is developed to generate spatially confined fields in the Fresnel
zone. Unlike the earlier works [72, 71, 74], the radiated beam exhibits a well-defined TM
polarization and the modal purity of a single dominant Bessel beam mode, as described in
(3.1). When fed with a broadband pulse, the radiator emits nondispersive, nondiffracting X
waves.

To the best of the authors’ knowledge, this is the first device capable of generating X
waves where the fields have been experimentally measured. The generated X waves exhibit
polarization purity: a well-defined TMz polarization. The radiator exhibits 2◦ of cone angle
dispersion over a 50% fractional bandwidth. The radiator presented in [79] exhibits 24◦ of
cone angle dispersion over a 21% fractional bandwidth.

This chapter is organized as follows. The design of the radiator is outlined in Sec. 3.2.
The device’s ability to generate Bessel beams over a broad bandwidth is presented in Sec.
3.3. Simulation as well as experimental results are given. In Sec. 3.4, the device’s ability
to generate X waves is shown, using both frequency and time domain experimental results.
Finally, Sec. 3.5, summarizes the findings.
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Figure 3.1: (a) Cross-sectional view of the Bessel beam radiator with ray tracing diagram,
(b) 3D view of device, and (c) picture of the fabricated prototype. A U.S. quarter is also
shown for comparison.

3.2 Design of Bessel Beam Radiator

The design of the proposed Bessel beam radiator is depicted in Fig. 3.1(a). The radiator
generates TM-polarized ϕ-invariant Bessel beams. As a result, its design is rotationally
symmetric about the z-axis. The device is fed by a coaxial cable with inner and outer radii
equal to rin and rout, respectively, as shown in the inset of Fig. 3.1(a). The green region
corresponds to the insulator within the coaxial cable. The inner conductor of the coaxial
cable is extended by a length p to form an electrically small monopole. The outer conductor
of the coaxial cable is flared outwards, forming an angle ϕ1 with respect to the z-axis. The
blue region, into which the monopole radiates, is filled with a material of dielectric constant
εr. At every point along the curved air-dielectric interface, the tangent line forms an angle
ϕ2 with respect to the z-axis. The height of the device is h. A cutaway three-dimensional
view of the design is shown in Fig. 3.1(b). An earlier version of this device having a straight
interface was presented in [34]. The radiator presented here exhibits higher spectral purity
in the spatial domain.
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Figure 3.2: (a) Curvature angle ϕ2 as a function of ray angle θ1 that maintains a constant
cone angle θ2 = 20◦, and (b) the curved interface resulting from the changing ϕ2 angle.

Consider a ray emanated by the radiating monopole at an angle θ1 with respect to the z-
axis (shown in red in Fig. 3.1(a)). The ray is totally internally reflected at the air-dielectric
interface by appropriately selecting the dielectric constant εr. It is then directed toward
the copper cladding of the device and reflected back toward the interface. When it reaches
the interface for a second time, the ray forms a much smaller angle with the air-dielectric
interface, and exits at an angle θ2 with respect to the z-axis. Assuming that a unique
curvature angle ϕ2 corresponds to each ray angle θ1 (an assumption that can be shown to
hold when the range of ϕ2 is small), the cone angle, θ2, can be written as:

θ2(θ1) = 90◦ − ϕ2(θ1)− sin−1 (
√
εrcos(3ϕ2(θ1)− 2ϕ1 − θ1)) . (3.3)

The dielectric constant of the material is chosen to be εr = 2.53, which corresponds to
Rexolite®: a low-loss polymer (tanδ = 0.00066 at 10 GHz). The cone half-angle is set to
ϕ1 = 32.5◦ for impedance matching purposes. Eq. (3.3) is then numerically solved for ray
angles ranging from θ1 = 0◦ to θ1 = ϕ1 = 32.5◦ to find the curved interface that yields a
constant cone angle of θ2 = 20◦. Using this approach, the curvature angle ϕ2 was found to
change linearly with ray angle θ1, as shown in Fig. 3.2(a). Using this curvature angle, the
shape of the interface was calculated, and is presented in Fig. 3.2(b).

The resulting near field radiator is shown in Fig. 3.1(a). The device is fed with an
RG402 coaxial cable (rin = 0.455 mm, rout = 1.485 mm), the center conductor of which
has been extended by p = 5.6 mm, as shown in the inset of Fig. 3.1(a). The height of the
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overall structure is h = 157.15 mm.
The dielectric structure was fabricated using standard CNC machining (milling/lathing).

The outer cladding was realized by applying a copper foil (3MTM 1126) to the dielectric
structure and electrically connecting it to the outer conductor of the coaxial cable. A picture
of the fabricated device is shown in Fig. 3.1(c).

3.3 Bessel Beam Generation

The ability of the device presented in the previous section to generate TM Bessel beams is
demonstrated next. The radiated electric field has both longitudinal (z directed) and radial
(ρ directed) components, as outlined in (3.1).

The longitudinal electric field of a nonapodized TM Bessel beam is a zeroth-order (ϕ-
invariant) Bessel distribution

Ez(ρ, z) = J0(k0sinθ2ρ)ej(ωt−k0cosθ2z), (3.4)

where k0 is the free space wavenumber and θ2 is the cone angle. A dependence of θ2 on
frequency results in beam dispersion. The geometrical optics design of the curved air-
dielectric interface helps minimize dispersion (approximately 2◦ between 19 and 29 GHz),
a phenomenon that results in degraded X waves [73].

In Fig. 3.3, the magnitude of the fields generated by the radiator are presented at four
frequencies: 19, 22, 25 and 29 GHz. Each row corresponds to one of these frequencies
in increasing order from top to bottm. The simulated field components shown are the
radial electric field (Eρ) in the first column, and the longitudinal electric field (Ez) in the
second column. COMSOL Multiphysics®, a commercial finite element solver, was used to
simulate the axially symmetric device. The measuredEz is plotted in the third column. The
fields were measured using a coaxially fed electric monopole acting as a probe, attached
to a three-dimensional translation unit and a vector network analyzer (see Fig. 3.4). The
simulated azimuthal magnetic field (Hφ) is plotted in the fourth column.

The radial electric field exhibits the same spatial distribution as the azimuthal magnetic
field having a null along the z-axis, as shown in (3.1) and expected from theory [20]. Ez
possesses an apodized version of the profile given by (3.4), within the nondiffracting range
of the device. The dielectric region preserves the polarization of the wave emitted by the
coaxial cable. That is, the radial electric field in the coaxial cable excites a TMz polarized
Bessel beam. It is important to note that the radiated fields do not change significantly with
frequency, meaning the device exhibits minimal dispersion.
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Figure 3.3: Magnitude of the fields generated by the Bessel beam radiator at 19, 22, 25 and
29 GHz along the y = 0 plane: (a-d) simulated |Eρ|, (e-h) simulated |Ez|, (i-l) measured
|Ez|, and (m-p) simulated |Hφ.
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Figure 3.4: Measurement setup used to scan the ẑ-directed electric field emitted by the ra-
diator. The fields were measured using a coaxially fed electric monopole acting as a probe,
attached to a three-dimensional translation unit. The probe and radiator were connected to
the two ports of the vector network analyzer.

In Fig. 3.5, the magnitude of the simulated Eρ (first column) and simulated and mea-
sured Ez (second and third columns, respectively) along the z = 0.325 m plane are shown
at the same four frequencies. In Fig. 3.6(a-d), the Ez quantities are plotted along the y = 0

line of the same plane, for a clearer comparison. Finally, Figs. 3.6(e-h) presents the angular
distribution of the fields generated by the radiator, obtained by performing a spatial Fourier
transform ofEz along the z = 0.325 m plane. All quantities have been normalized between
0 and 1.

From the angular distribution plot, it is evident that the radiator exhibits high purity in
its spatial spectrum. By squaring the angular distribution of simulated Eρ and integrating
between the two local minima surrounding the peak, it is found that over 89% of the ra-
diated power contributes to the Bessel beam with the prescribed cone angle. Moreover,
this angle does not change significantly with frequency (approximately 2◦ over the entire
bandwidth of operation) meaning that all frequency components of a pulse emanated by
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Figure 3.5: Magnitude of the fields generated by the Bessel beam radiator at 19, 22, 25 and
29 GHz along the z = 0.325 m plane: (a-d) simulated |Eρ|, (e-h) simulated |Ez|, and (i-l)
measured |Ez|.
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Figure 3.6: Fields generated by the Bessel beam radiator at 19, 22, 25 and 29 GHz along
the z = 0.325 m plane: (a-d) simulated and measured |Ez| at y = 0, and (e-h) simulated
and measured angular distribution of Ez.
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Figure 3.7: Simulated (blue) and measured (yellow) reflection coefficient of the radiator
(left axis), as well as radiation efficiency (red—right axis), as a function of frequency.

the radiator possess approximately the same phase and group velocity: v = c/cosθ2, where
c is the speed of light. As a result, the pulse stays confined as it propagates.

In Fig. 3.7, the simulated and measured input reflection coefficients (S11) of the struc-
ture are plotted as a function of frequency (left vertical axis). The conical flare acts as a
wideband impedance matching mechanism, resulting in low reflections. The measured re-
flection coefficient is lower than the simulated one, due to the losses in the Rexolite region
(the loss tangent is higher in this frequency range compared to its value at 10 GHz), and the
slightly smoother transition from the coaxial cable to the Bessel beam radiator compared to
simulation. The radiation efficiency of the structure is calculated in COMSOL as the ratio
of power exiting the structure over the power that is input into it (right vertical axis). It can
be seen that the radiator is highly efficient.

3.4 X Wave Generation

An X wave is a pulse consisting of different frequency Bessel beams with the same cone
angle. The wave function describing an X wave (Ez for a TMz Bessel beam) is [73]:

Ez(ρ, z, t) =

ˆ ∞
−∞

F (k0)J0 (k0sinθ2ρ) ejk0(ct−cosθ2z)dk0, (3.5)

where F (k0) are the spectral coefficients. For simplicity, assume that the frequency spec-
trum of the excitation signal applied to the input of the radiator is uniform from 22 to 29

GHz (widest bandwidth that can be obtained from the arbitrary waveform generator avail-
able to the authors). This leads to the input waveform pulse shown in Fig. 3.8(a).

Using the experimentally measured Ez along the y = 0 plane (captured at Nf = 935
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Figure 3.8: (a) Uniform spectrum waveform (22-29 GHz) that is used to observe an X
wave, and (b) position of maximum intensity along the z-axis as a function of time for both
frequency domain and time domain results.

frequency points between 22 and 29 GHz), the field generated under the pulse excitation
of Fig. 3.8(a) is calculated. Specifically, for every point along the y = 0 plane, Ez can be
calculated for any time t as

Ez(x, z, t) =

Nf∑
i=1

Ez(x, z, ωi)e
jωit, (3.6)

where Ez(x, z, ωi) denotes the measured field at each angular frequency ωi at (x, z) [73].
The intensity ofEz (normalized between 0 and 1) is plotted in Fig. 3.9(a-d) at four different
times (t = 8.07, 8.30, 8.52, and 8.75 ns). A detailed treatment of the effects of finite
bandwidth, frequency dispersion and aperture on the shape of the emitted pulses can be
found in Appendix B. The real part of Ez (normalized between −1 and 1) is plotted in
Fig. 3.9(e-h). The generated fields are rotationally symmetric about the z-axis, meaning
that a bulletlike pulse is emitted. The X wave is highly confined in the transverse plane
and propagates with little dispersion and diffraction in the longitudinal direction within the
nondiffracting range of the radiator: z = 0.16 to 0.44 m. Once the pulse has passed this
range (see last row of Fig. 3.9), the effects of dispersion begin to appear.

To further showcase the radiator’s ability to produce X waves, measurements were also
taken in the time domain. These experiments were performed at the U.S. Naval Reseach
Laboratory (NRL) by Scott Rudolph and Victor Mendez. The longitudinal electric field
was again observed in the region above the radiator when excited with the waveform shown
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Figure 3.9: (a-d) Instantaneous intensity of Ez in the region above the radiator based on
frequency domain measurement results. The evolution of the X wave can be seen at four
different time steps. (e-h) Real part of Ez. (i-l) Ez in the region above the radiator based
on time domain measurement results.
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in Fig. 3.8(a). The details of the experimental procedure and the post-processing opera-
tions are given in Appendix C. The X wave emitted by the radiator as a result of this
sub-nanosecond input signal is presented at four time steps in Fig. 3.9(i-l).

The superluminal behavior of the X wave [13] is verified in Fig. 3.8(b), which shows
the position of maximum intensity along the z-axis as a function of time. From the linear
regression of the frequency domain results, the velocity of the wave is found to be vFD =

c/cos(17.85◦) = 1.05c, which is slightly lower than that from the linear regression of the
time domain results: vTD = c/cos(19.29◦) = 1.06c. Both results are in line with the
expected velocity from the COMSOL simulation: c/cos(18.70◦) = 1.06c.

To the best of the authors’ knowledge, this is the first device capable of generating X
waves where the vectorial nature of the fields has been thoroughly examined in experiment.
The generated X waves exhibit polarization purity: a well-defined TMz polarization. The
radiator exhibits 2◦ of cone angle dispersion over a 50% fractional bandwidth. The radiator
presented in [79] exhibits 24◦ of cone angle dispersion over a 21% fractional bandwidth.

3.5 Chapter Summary

The Bessel beam radiator, a device capable of generating TM polarized Bessel beams over
a broad bandwidth, was reported. A geometrical optics design process was used to ensure
that the Bessel beams emerge at a specified angle over a wide range of frequencies. First,
the radiator’s operation was verified in simulation. The device was then fabricated and
tested, with measurements in close agreement with simulations. Through these measure-
ments, it was shown that the radiator emits X waves under a broadband excitation, the first
such demonstration at microwave frequencies. This device could find application in high
resolution near field imaging, wideband near field communication, or ground penetrating
radar.
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CHAPTER 4

Nondiffracting Waves: Metamaterial Bessel
Beam Radiator

In the previous chapter, we introduced a Bessel beam and X wave radiator with a 20◦

cone angle operating between 18 and 30 GHz. It was the first fully characterized X wave
launcher in literature.

In this chapter, a second Bessel beam and X wave radiator is developed. The primary
goal of this work is to design a paraxial radiator that possesses an extended nondiffracting
range. As a result, the Bessel beams and X waves emanated by it can be observed at greater
distances relative to the aperture size.

4.1 Chapter Introduction and Outline

Localized waves have received significant attention by researchers in recent years, espe-
cially since the introduction of Bessel beams [13, 18]. These beams are exact, superlumi-
nal solutions to the Helmholtz equation that do not diffract as they propagate. They can be
seen as the result of the interference of all plane waves forming a common angle, called the
cone angle, with the propagation axis. Although ideal Bessel beams require infinite energy,
truncated Bessel beams are practically realizable. Such beams maintain their nondiffractive
properties within a finite range of distances.

X waves are one class of Bessel pulses [38]. They are formed by the superposition
of a spectrum of Bessel beams possessing a common cone angle. X waves are appealing
because they propagate without suffering from diffraction (spatial spreading) or dispersion
(temporal spreading) within their nondiffracting range. These properties make X waves
prime candidates for use in imaging [80], tissue characterization [81], communications
[33], nondestructive evaluation of materials [82], and focusing [83].

X waves are difficult to generate at microwave frequencies, which partially explains the
lack of relevant practical demonstrations in literature. A device generating X waves should
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exhibit little or no dispersion (dependence of cone angle on frequency) over an appreciable
bandwidth. The cost of broadband sources is also an impeding factor. Should these hurdles
be overcome, there is high potential for microwave X waves in heating [84], medicine
[85], microscopy [86], high power electromagnetic pulses [87], or ground penetrating radar
applications [88].

A device capable of generating X waves at microwave frequencies was presented in the
previous chapter. Based on geometrical optics, it converts the radiation from an electrically
small monopole into Bessel beams with nearly constant cone angle between 18 and 30
GHz. In earlier research, a parabolic dish was used to verify the superluminality of X Waves
[74]. A radial waveguide loaded with radiating slots [73] as well as leaky wave antennas
[89, 79] have also been suggested as potential ways to excite X Waves at microwave and
millimeter wave frequencies. However, these devices exhibit more pronounced dispersion.
Here, a new device is presented, able to emit paraxial Bessel beams and X waves between
7.5 and 12.5 GHz. It is designed using quasiconformal transformation optics (QCTO),
implemented with metamaterials, and fabricated through 3D printing. Preliminary results
on the design methodology were reported in [36, 37].

Transformation electromagnetics provides arbitrary control of electromagnetic fields
through control of constitutive material parameters (permittivity and permeability) as func-
tions of space (inhomogeneity) and direction (anisotropy) [90]. QCTO is a 2D method of
manipulating fields that only requires control of permittivity as a function of space [91].
Permeability, which is more difficult to control, is constant, while both permittivity and
permeability are isotropic. This technique is used here to design a 3D device that possesses
rotational symmetry about the ẑ-axis, and as a result can be reduced to a 2D problem [92].

An exponentially tapered Impedance Matching Layer (IML) is added to the permittiv-
ity profile obtained from QCTO to reduce reflections at the interface with air [23]. The
combined permittivity profile is implemented using rotationally symmetric metamaterial
unit cells which are homogenized and modeled with effective permittivities [93]. The re-
sulting device is fabricated through 3D printing, an additive manufacturing technique that
is suitable for electromagnetic metamaterials [94]. In this work, three filaments of differ-
ent permittivity values are used and the parts are later combined. Metamaterial structures
requiring multiple filaments can be potentially fabricated in a single run [95].

The design of the tranformation region based on QCTO, together with the design of
the IML, is presented in Sec. 4.2. The validity of the design is verified by comparing the
electric field generated by this structure to that of an ideal Bessel aperture, computed using
a full wave solver. The metamaterial implementation of the radiator using rotationally sym-
metric unit cells is outlined in Sec. 4.3, along with the corresponding simulation results.
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In Sec. 4.4, the fabrication procedure and the challenges associated with it are explained.
Measurement results from a fabricated prototype are also given, showing good agreement
to those expected from simulation. Sec. 4.5 showcases the device’s ability to generate X
waves in its radiative near field when excited with a uniform spectrum pulse between 7.5

and 12.5 GHz. Finally, Sec. 4.6 presents concluding remarks.

4.2 Design of X Wave Radiator

Consider an electrically small monopole radiating in a conical region with apex angle θ1

and relative permittivity εr1, as shown in Fig. 3.1(a). The monopole is situated at the apex
of the cone, which is bounded by perfect electric conductor (PEC) shown in orange. The
monopole is formed by extending the inner conductor of the coaxial cable feeding it by
length p, which, together with θ1 and εr1, controls the input impedance of the device. The
coaxial cable has inner radius ρin and outer radius ρout, as shown in the inset of Fig. 3.1(a).
The generated electric field has a ρ̂ and ẑ components, whereas the magnetic field only has
a φ̂ component. This field will be converted into a TM Bessel beam.

The equiphase surfaces of the fields emitted by the monopole will be approximately
spheres centered at the origin. Two such surfaces are chosen for the analysis that follows,
one having radius rin and one having radius rout. The region between the two spheres
constitutes the original region and is expressed in terms of (ρ, φ, z) cylindrical coordinates.

The region using (ρ′, φ′, z′) coordinates in Fig. 4.1(b) is also investigated. The pa-
rameters for the coaxial cable and monopole comprising the feed are kept the same. This
region possesses a flat surface at z′ = rout, and is truncated to a maximum radius of ρmax.
The truncation ensures that the permittivity profile obtained from QCTO at a later step will
not contain unrealizably small permittivity values. The apex angle is still θ1, but the re-
gion in Fig. 4.1(b) has an inhomogeneous relative permittivity εr2(ρ′, z′). It constitutes the
transformed region.

It is desired that the two regions presented in Fig. 4.1(a) and (b) behave similarly,
meaning that the flat surface in the transformed region should also constitute an equiphase
surface. Because of the problem’s cylindrical symmetry about the ẑ-axis, this results in
the generation of a paraxial Bessel beam. Moreover, this symmetry means that these 3D
regions can be treated as 2D surfaces, and analyzed using QCTO [92].

Fig. 4.2(a) and (b) show the original and transformed regions in 2D, respectively. In
these figures, the mesh for the two regions is also shown. The mesh is obtained by solving
Laplace’s equation in each region, subject to appropriate boundary conditions [92]. First,
Neumann boundary conditions are applied on edges 1 and 3, and Dirichlet boundary con-
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Figure 4.1: (a) The original region, comprising a coaxially fed monopole radiating in a
conical region of homogeneous permittivity εr1, and bounded by a spherical surface at
r = rout. (b) The transformed region, utilizing the same feeding mechanism, having an
inhomogeneous permittivity εr2(ρ′, z′) and bounded by a flat surface at z′ = rout.

ditions on edges 2 and 4. The edge numbers are shown in red. After solving Laplace’s
equation, a contour plot of the solution’s amplitude yields the isocentric curves in Fig.
4.2(a). Then the straight, spokes-like curves in Fig. 4.2(a) are obtained by applying Dirich-
let boundary condition on edges 1 and 3, and Neumann boundary conditions on edges 2

and 4. Similar boundary conditions are applied on the transformed region.
Once the two regions are meshed, for each point in the mesh

• we store the ρ values of the 3× 3 grid surrounding the point in a matrix, ρ ,

• we store the z values of the 3× 3 grid surrounding the point in a matrix, z ,

• we store the ρ′ values of the 3× 3 grid surrounding the point in a matrix, ρ′ ,

• we store the z′ values of the 3× 3 grid surrounding the point in a matrix, z′ ,

• we find the fitting coefficients, C0, C1, and C2 such that ρ′≈ C0 + C1ρ+C2z , and

• we find the fitting coefficients, D0, D1, and D2 such that z′≈ D0 +D1ρ+D2z .
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Figure 4.2: (a) Original, and (b) transformed regions in 2D, used in QCTO.

From this process, the coefficients C0, C1, C2, D0, D1, and D2 are calculated for each
point in the mesh. These coefficients will be used to calculate the Jacobian matrix of
the transformation. This technique can be better illustrated through an example. A point
(denoted by a star) together with the surrounding 3× 3 grid (denoted by dots) is shown in
Fig. 4.3(a) in the original region, and in Fig. 4.3(b) in the transformed region.

For this point, the following matrices are constructed:
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Figure 4.3: The 3 × 3 grid (denoted by dots) around a point (denoted by a star) in (a) the
original region and (b) the transformed region. This point is used to illustrate the procedure
followed in order to calculate the Jacobian of the transformation.

ρ =

0.011402 0.012652 0.013895

0.012602 0.013984 0.015357

0.013928 0.015453 0.016972

 ,

z =

0.057064 0.056813 0.056537

0.063396 0.06312 0.062816

0.070388 0.070083 0.069747

 ,

ρ′ =

0.011639 0.012917 0.014188

0.012861 0.014275 0.015685

0.014187 0.015752 0.017312

 ,

z′ =

0.058408 0.058156 0.057878

0.064989 0.064713 0.064409

0.072261 0.071965 0.071636

 .

(4.1)

Using MATLAB’s fitting function, the primed matrices are fitted to the unprimed ones:
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Table 4.1: Values of design variables
Design variable Value

ρin 0.455 mm
ρout 1.485 mm
p 11.3 mm
θ1 25◦

rin 12 mm
rout 120 mm
ρmax 49.5 mm
t 9 mm
εr1 5.4
εr2 2.90− 7.36

εr,IML 1.00− 6.77

ρ′ ≈ 0.00010666 + 1.0245ρ− 0.0026006z,

z′ ≈ −0.00097243 + 0.0097066ρ+ 1.0386z.
(4.2)

As a result, for this example, the fitting coefficients are:

C0 = 0.00010666, C1 = 1.0245, C2 = −0.0026006,

D0 = −0.00097243, D1 = 0.0097066, D2 = 1.0386.
(4.3)

Using the design equations originally presented in [91] and in a more compact way in
[92], the relative permittivity profile of the transformed region is calculated as

εr2(ρ′, z′) =
εr1

|det(J(ρ′, z′))|
, (4.4)

where

J(ρ′, z′) =

[
∂ρ′

∂ρ
∂ρ′

∂z
∂z′

∂ρ
∂z′

∂z

]
=

[
C1 C2

D1 D2

]
(4.5)

is the Jacobian matrix of the transformation at each point of the transformed region. The
determinant of the Jacobian matrix is shown in Fig. 4.4.

The resulting permittivity profile, shown in Fig. 4.5(a), is smooth, and agrees with
intuition from gradient index optics, where rays bend towards regions of higher permit-
tivity. The relative permittivity of the original region, εr1, was chosen so that the relative
permittivity of the transformed region falls within a range that can be realized through 3D
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Figure 4.4: The determinant of the Jacobian matrix, calculated using (4.5).

printing. The overall dimensions were also decided on based on fabrication capabilities
and constraints. Table 4.1 summarizes the design variables and their values.

The next step in the design process is to apply an IML of thickness t to the transformed
region to minimize reflections caused by the high contrast of refractive indices at the flat
interface (assuming the device is surrounded by air). An exponential taper was selected for
the IML instead of a quarter wavelength transformer [96]. As a result, the IML is thicker,
but it also provides an impedance match over a broader bandwidth. Its dielectric constant
is

εr,IML(ρ′, z′) = εr2(ρ′, rout)e
−ln(εr2(ρ′,rout))(z′−rout)/t, (4.6)

where εr2(ρ′, rout) is the dielectric constant at the interface, as calculated from QCTO.
The final dielectric constant profile, comprising the transformed region and the IML, is

shown in 2D in Fig. 4.5(b). The radiator possessing this permittivity profile was simulated
at three frequencies, 7.5, 10, and 12.5 GHz, in the axially symmetric solver of COMSOL
Multiplhysics. The amplitude of the longitudinal (ẑ′-directed) electric fields in the region
over the radiator are shown in Fig. 4.6(a-c) when a voltage of 1 V excites the coaxial
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Figure 4.5: The relative permittivity profile of the transformed region (a) before, and (b)
after the application of the IML.

cable. The real part (time snapshot) and phase of the fields is shown in Fig. 4.7(a-c)
and Fig. 4.8(a-c), respectively. The cone angles of the emitted beams are θ = 18◦, 14◦,
and 11◦, respectively. The nondiffracting range of the beams, calculated as ρmaxcotθ, is
152, 199, and 255 mm from the aperture, respectively. In order to achieve a smaller cone
angle, which would result in a larger nondiffracting range, an electrically larger aperture
is required. A larger aperture can produce a beam with narrower beamwidth, allowing the
peak to approach broadside.

For comparison, the field generated from ideal Bessel apertures with these cone angles
is investigated. The aperture has tangential electric field profile at z′ = rout + t given by

Eρ(ρ
′) ∝ J1(k0sinθρ′), ρ′ ≤ ρmax, (4.7)

where k0 is the free space wavenumber. The resulting ẑ′-directed electric field amplitudes
are shown in Fig. 4.6(d-f) at the same three frequencies. Fig. 4.7(d-f) show the real part
(time snapshot) of the fields, while Fig. 4.6(d-f) shows the phase. Although not identical,
the field profiles appear quite similar, and agree in terms of range.

The reflection coefficient of the radiator including the IML is shown in Fig. 4.9 in blue.
The shape of this curve is dictated largely by the reflection coefficient of the monopole,
while the rest of the radiator contributes the small scale ripple. A broadband match is
observed.

57



Figure 4.6: (a-c) |Ez| (in V/m) emitted by the permittivity profile of Fig. 4.5(b) at 7.5, 10,
and 12.5 GHz, respectively. (d-f) |Ez| emitted by an ideal Bessel aperture at the same three
frequencies for comparison.
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Figure 4.7: (a-c) <{Ez} (in V/m) emitted by the permittivity profile of Fig. 4.5(b) at 7.5,
10, and 12.5 GHz, respectively. (d-f) <{Ez} emitted by an ideal Bessel aperture at the
same three frequencies for comparison.
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Figure 4.8: (a-c) ∠Ez (in V/m) emitted by the permittivity profile of Fig. 4.5(b) at 7.5,
10, and 12.5 GHz, respectively. (d-f) ∠Ez emitted by an ideal Bessel aperture at the same
three frequencies for comparison.
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Figure 4.9: The reflection coefficient of the radiator having the permittivity profile of Fig.
4.5(b) (blue), the reflection coefficient of the radiator implemented with metamaterial unit
cells (orange), and the reflection coefficient of the fabricated prototype (Fig. 4.16) (yellow).

4.3 Metamaterial implementation

The permittivity profile of Fig. 4.5(a) is implemented using the 2D metamaterial unit cell
shown in Fig. 4.10(a). Choosing a 2D unit cell permits the rapid design of the implemented
radiator. It consists of a square of side d made from a material with dielectric constant
εr,FIL, from which a square of side a has been removed. When swept about the ẑ′-axis, it
results in circular channels with square cross sections. Other inclusions shapes (circular,
diamond) were examined, but this one was found to be the most appropriate for 3D printing.
By changing the dielectric constant of the material, εr,FIL, and parameter a, a large range
of effective dielectric constants can be achieved with dimensions suitable for 3D printing.

The materials used should exhibit good electromagnetic properties (namely, be low-
loss) and possess a controlled dielectric constant. PREPERM filaments offered by PRE-
MIX [97] fulfill these criteria and are used here, specifically the ones with εr,FIL = 4.4,
6.4, and 10. Their loss tangent is tanδ = 0.004.

The effective dielectric constant is found by simulating the unit cell of Fig. 4.10(a)
in COMSOL. Its reflection and transmission coefficients are used to homogenize it into a
dielectric slab filled with a material exhibiting the effective dielectric constant. The unit
cell size is set to d = 1.5 mm. The effective dielectric constant of the unit cell as a function

61



→

→

εr,FIL

d

d

a

k

E

(a) Unit cell

z’

ρ’

Figure 4.10: (a) Unit cell used to implement the permittivity profile obtained from QCTO.
(b) The effective dielectric constant of this unit cell as a function of parameter a for different
values of εr,FIL. (c) The model developed to determine which filament should be used to
implement a required effective dielectric constant.

of parameter a is plotted in Fig. 4.10(b) for the three filaments.
This unit cell has a uniaxial permittivity tensor with equal values in the ρ̂′- and ẑ′-

directions and a different one in the φ̂′-direction. Since the fields emitted by the monopole
are always polarized in plane with the unit cell, only the ρ̂′ and ẑ′-directed permittivity is
relevant.

The model of Fig. 4.10(c) is used to decide which filament should be used depending
on the effective dielectric constant needed. It is based on fabrication constraints imposed
by 3D printing on the value of parameter a. This parameter must be kept between 0.2 and
0.7 mm. For example, to achieve εr2 = 5 at a specific point of the radiator, the εr,FIL = 6.4

filament should be used according to Fig. 4.10(c). From the homogenization curves of Fig.
4.10(b), a = 0.46 mm is the appropriate value to achieve εr2 = 5 with the εr,FIL = 6.4

filament. This way the filament permittivity, εr,FIL, and parameter a can be determined for
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Figure 4.11: (a) Using the permittivity profile of Fig. 4.2(a) and the model of Fig. 4.10(c),
the filament to be used at each point of the radiator is determined. (b) Knowing which
filament will be used, the value of parameter a is determined using the appropriate homog-
enization curve in Fig. 4.10(b).

the entire device. Their values are given in Fig. 4.11(a) and (b), respectively.
Applying the same procedure for the IML would result in very large values for a (close

to d, even if a filament with εr,FIL = 3 were to be used), which would be impossible to
fabricate through 3D printing. As a result, a different approach is developed to implement
the IML.

Specifically, the unit cell of Fig. 4.12(a) is used to implement the IML. It consists of a
rectangle with dimensions b × d, made of filament with dielectric constant εr,IML = 6.4.
The unit cell size is 3d × d. By changing parameter b, the effective permittivity of the
unit cell can be tuned, as shown in Fig. 4.12(b). Implementing the IML portion of the
permittivity profile (Fig. 4.5(b)) using the curve in Fig. 4.12(b) results in the distribution
for parameter b shown in Fig. 4.12(c).

The design resulting from the metamaterial implementation of the QCTO and IML
regions is presented in Fig. 4.13. Each filament is represented by a different color: dark
blue - εr,FIL = 4.4, light blue - εr,FIL = 6.4, yellow - εr,FIL = 10. This radiator design
is simulated in the axially symmetric solver of COMSOL at the same three frequencies:
7.5, 10, and 12.5 GHz. The results, shown in Fig. 4.14, agree with the ones obtained using
the inhomogeneous permittivity profile (Fig. 4.6(a-c)), justifying the metamaterial design
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Figure 4.12: (a) Unit cell used to implement the IML portion of Fig. 4.5(b). (b) Effective
dielectric constant of this unit cell (using εr,FIL = 6.4) as a function of parameter b through
simulation in COMSOL. (c) Distribution of parameter b in the IML, based on this model
and Fig. 4.5(b).
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Figure 4.13: The rotationally symmetric metamaterial implementation of the QCTO and
IML regions of the radiator. Dark blue: εr,FIL = 4.4, light blue: εr,FIL = εr,IML = 6.4,
yellow: εr,FIL = 10.
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procedure. The reflection coefficient of the metamaterial implementation is also obtained
through COMSOL simulations, and is presented in Fig. 4.9 in orange.

Figure 4.14: |Ez| (in V/m) obtained by simulating the radiator that is implemented with
metamaterial unit cells at (a) 7.5, (b) 10, and (c) 12.5 GHz, respectively.

In simulation, the cone angle of the Bessel beam generated by the radiator is also inves-
tigated. Specifically, Fig. 4.15 presents the cone angle as a function of frequency between
7.5 and 12.5 GHz. Any practical device will have a dependence of cone angle on frequency.
The radiator presented in this chapter exhibits a variation of 7◦ between 7.5 and 12.5 GHz,
or 0.14◦/% bandwidth. Bulkier radiators exhibit a smaller variation (2◦ between 18 and 30

GHz or 0.04◦/% bandwidth [35]), while planar ones exhibit larger variation (12◦ between
18 and 20 GHz, or 1.14◦/% bandwidth [79]). A larger cone angle dispersion degrades
the confinement of the X wave pulse emitted by the radiator, since the different frequency
components will be traveling at different velocities (v ∝ 1/cosθ) [73].

66



Figure 4.15: Cone angle of the radiator implemented using metamaterial unit cells as a
function of frequency.

4.4 Measurement results

The metamaterial radiator was fabricated through 3D printing, using PREPERM filaments,
by Dr. Shiyu Zhang at Loughborough University. Each part of the transformed region was
manufactured using the appropriate filament (Fig. 4.11(a)) and distribution of parameter a
(Fig. 4.11(b)). The IML was also 3D printed using εr,FIL = 6.4, and the distribution of
parameter b shown in Fig. 4.12(c). The cross section of the design is shown in Fig. 4.13.
All parts were then glued together using acetone by the author. The monopole feeding the
device was made from RG402 coaxial cable, and copper foil (3M®1126) was applied to
form the conductive cladding. The fabricated prototype is shown in Fig. 4.16.

The fabrication of the parts, as well as their assembly into one structure proved quite
challenging:

• Due to the complexity and size of the εr,FIL = 6.4 part, its printing had to be further
subdivided into three smaller printing jobs.

• Some of the parts exhibited a bow due to the variation of the temperature within the
3D printing chamber. A combination of treating with sandpaper (performed by the
author) and lathing (performed by David Carter at the University of Michigan LSA
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Figure 4.16: Fabricated prototype of the metamaterial implementation of the radiator, ob-
tained through 3D printing.

Instrument Shop) on the affected surfaces was necessary to flatten the parts so that
they would be flushed against each other upon assembly.

• Great care was taken to minimize the air gaps between the parts. However, due to
the tight fit between some of the parts and the hardness of the material, some air gaps
between parts could not be avoided.

• Inserting the electrically small monopole into the 3D printed region completely ver-
tically was also challenging.

The longitudinal (ẑ′-directed) electric field was measured in the region over the radiator
(1601 points between 5 and 15 GHz). An electrically-small monopole surrounded by ab-
sorber was used as a probe, attached to a 3D translation stage. An open-ended coaxial cable
made of RG402 (inner radius of 0.455 mm, outer radius of 1.485 mm). Both the radiator
and the probe were connected to a vector network analyzer that was used to measure the
signal transmitted between the two. A picture of the measurement setup is shown in Fig.
4.17.

The normalized fields along the (x̂′ − ẑ′) plane, obtained through COMSOL simula-
tions, are shown at 7.5, 10, and 12.5 GHz in Fig. 4.18(a), (d), and (g), respectively. The
experimentally measured fields along this plane at the same three frequencies are shown in
Fig. 4.18(b), (e), and (h). The measurement results agree well with those from simulation.
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Figure 4.17: Measurement setup used to scan the ẑ′-directed electric field emitted by the
radiator.
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Figure 4.18: The longitudinal (ẑ′-directed) electric field in the region over the radiator:
(a) simulation and (b) measurement results at 7.5 GHz, (c) simulation and measurement
results at 7.5 GHz at z′ = 170 mm, (d) simulation and (e) measurement results at 10 GHz,
(f) simulation and measurement results at 10 GHz at z′ = 170 mm, (g) simulation and (h)
measurement results at 12.5 GHz, (i) simulation and measurement results at 12.5 GHz at
z′ = 170 mm.
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Small discrepancies start to appear at higher frequencies, where the unintenional features
of the 3D printing process outlined earlier begin to degrade the radiator’s performance. Fig.
4.18(c), (f), and (i) present the simulated and measured fields along the z′ = 170 mm at
those three frequencies for ease of comparison.

The input reflection coefficient of the fabricated prototype is shown in Fig. 4.9 in
yellow. The discrepancy between the measured reflection coefficient and the one expected
from simulation is attributed to the assembly process of the prototype. Significant effort
was placed in minimizing the air gaps between parts, which can cause reflections. However,
it was not possible to completely eliminate them.

4.5 Generation of X waves

X waves are pulses consisting of a spectrum of monochromatic Bessel beams exhibiting
the same cone angle, θ. Assuming a uniform spectrum, the waveform (longitudinal electric
field in this case) of an ideal X wave is given as a function of time, t, and cylindrical
coordinates, (ρ, z), by [13]

ez(ρ, z, t) =

ˆ ωmax

ωmin

J0(ωsinθρ/c0)ejω(t−cosθz/c0)dω, (4.8)

where J0 is the zeroth order Bessel function of the first kind, ω is the angular frequency,
and c0 is the speed of light.

The time domain response of the radiator to a uniform spectrum pulse can be calculated
as

ez(x
′, z′, t) =

2π12.5GHz∑
ωi=2π7.5GHz

Ez(x
′, z′, ωi)e

jωit, (4.9)

where Ez(x′, z′, ωi) is the simulated or measured value of Ez, which depends on spatial
coordinates and frequency. The longitudinal electric field produced by the radiator, Ez, is
that of an apodized Bessel beam.

Fig. 4.19(a), (c), (e), and (g) present the intensity of the X wave produced by the
radiator in simulation. Fig. 4.19(b), (d), (f), and (h) present the intensity of the measured
X wave produced by the radiator. Each plot has been normalized between 0 and 1 for
ease of comparison. Close agreement is observed between the X wave based on simulation
data and the one based on measured data. The measured X wave exhibits more prominent
secondary lobes and tail. However, the shapes of the two pulses largely agree with each
other.
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Figure 4.19: The intensity of the longitudinal (ẑ′-directed) electric field in the region over
the radiator as a function of space and time when excited with a uniform spectrum pulse
(7.5− 12.5 GHz): using (a) simulation and (b) measurement results at 4 ns, (c) simulation
and (d) measurement results at 4.15 ns, (e) simulation and (f) measurement results at 4.3
ns, (g) simulation and (h) measurement results at 4.45 ns.
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4.6 Chapter Summary

In this chapter, a paraxial X wave radiator was presented. It was first shown through sim-
ulation that the permittivity profile of the transformation region, based on QCTO, and the
IML can generate paraxial Bessel beams over a broad bandwidth. This profile was realized
using rotationally symmetric metamaterial unit cells. A prototype of the implemented de-
sign was fabricated through 3D printing by Dr. Shiyu Zhang at Loughborough University,
using three low-loss filaments. The device was printed in parts, which were later combined
to form the radiator. The experimental results from this prototype were found to be in good
agreement with those expected from simulation. Based on these results, the device’s abil-
ity to generate paraxial X waves in its radiative near field was demonstrated. A uniform
spectrum pulse between 7.5 and 12.5 GHz was used as the excitation.

The progress reported here, combined with other recent advancements in the field of
X waves, pave the way for many exciting applications. From imaging to communications,
and from heating to high power electromagnetic pulses, X waves are prime candidates for
any application that requires highly localized mircrowave pulses.

Finally, 3D printing has already been established as a manufacturing technique for
lenses over the past decade. This work demonstrates how 3D printing can also be em-
ployed to fabricate interesting near field devices that are directly fed. The incorporation of
the feed in the printed part contributes to the reduction of the size of the device. Future
advancements in the selection of available filament materials and in the capabilities of 3D
printers will solidify the ubiquitousness of 3D printing in electromagnetic design.
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CHAPTER 5

Metasurfaces

In the two previous chapters, the work on two novel radiators that generate highly localized
waves and pulses was presented. The two designs, based on refractive optics and meta-
materials, manipulated the fields of a coaxially fed monopole and converted them into TM
Bessel beams in the radiative near field.

In this chapter, we investigate metasurfaces, which manipulate plane waves that exist in
the far field. Metasurfaces offer great control over the amplitude, phase, and polarization
of propagating waves.

5.1 Chapter Introduction and Outline

Metasurfaces are subwavelength-textured surfaces that exhibit tailored electromagnetic
properties. In recent years, they have found numerous applications in flat quasi-optical/optical
devices [39, 40], holography [41, 42], plasmonics [43], biosensing [44], THz technology
[45], cloaking [46], phase and polarization control [52, 47, 48], antennas [49, 50], and ab-
sorbers [51]. Metasurfaces can consist of a single sheet of polarizable particles, such as
a patterned metallic cladding, or a cascade of such sheets. Cascaded anisotropic, metallic
claddings have been recently used to implement metasurfaces with tailored electric, mag-
netic, and bianisotropic responses [52].

The present work focuses on the analysis of patterned metallic claddings consisting of a
periodic, two dimensional array of subwavelength unit cells. In particular, the unit cells are
characterized by an equivalent electric sheet impedance, which can be scalar, anisotropic,
or full tensorial. The design of metallic claddings can be traced back to the mature field
of frequency selective surfaces [98]. However, only a limited range of geometries, exhibit-
ing scalar or anisotropic sheet impedances, has been analytically modeled to date. These
have included rectangular arrays of strips or patches [99], grids of crossed dipoles [100]
or Jerusalem crosses [101], and arrays of circular patches [102]. When full tensorial sheet
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impedances are required, researchers rely on databases of simulated geometries [42] or op-
timization schemes [48] for the appropriate unit cell. This is a time-consuming, resource
intensive process that can be alleviated by the analytical modeling of some general-purpose
geometries.

The proposed analytical models provide expressions for the sheet impedance of unit
cells as a function of their physical parameters, frequency, angle of incidence, and po-
larization of the impinging wave. Inversion of these expressions allows one to find the
geometrical parameters needed to realize a specific sheet impedance, under particular inci-
dence angles. Slight tuning of these parameters with a full-wave electromagnetic simulator
allows the exact sheet impedance to be synthesized. Moreover, analytical models provide
intuition on how a geometry should be modified in order to produce a specific change in its
sheet impedance.

The present chapter analytically characterizes general-purpose geometries that exhibit
full tensorial sheet impedances under arbitrary plane-wave incidence. Due to the subwave-
length size of the unit cells considered, their sheet impedance is given by simple expres-
sions. Sheets consisting of periodic grids of strips are analyzed first. Under normal in-
cidence, their equivalent sheet impedance can be calculated using circuit analysis, where
the strips are treated as lumped components. However, under oblique incidence, the sheet
impedance calculation requires a field solution. A Method of Moments (MoM) deriva-
tion serves as the starting point. Explicit expressions for the sheet impedance are derived
in the long wavelength regime from the MoM formulation. The employed technique is
demonstrated for two unit cell topologies: a skewed unit cell where two strips intersect at
an arbitrary angle (Fig. 5.1(b)), and a three-branch unit cell where three strips intersect
at specified angles (Fig. 5.4(b)). Variations of these cell topologies are also examined.
Two metasurfaces that control the polarization of incident waves are designed to demon-
strate the usefulness of the developed models: an asymmetric linear polrizer at oblique
incidence, and a polarization rotator for normally incident plane waves, both operating at
10 GHz.

This chapter is organized as follows. In Sec. 5.2, the sheet impedance of a skewed grid
of strips (Fig. 5.1(b)) for normal incidence is calculated using circuit analysis. In Sec. 5.3,
a field solution is employed to determine the sheet impedance of the same geometry under
oblique incidence. In Sec. 5.4, the sheet impedance of a three-branch unit cell (Fig. 5.4(b))
under normal incidence is determined via circuit analysis. In Sec. 5.5, the sheet impedance
of the three-branch unit cell under oblique incidence is derived. In Sec. 5.6, an interpolation
procedure is employed to model the sheet impedance of a sliced rectangle unit cell (Fig.
5.6(a)). In Sec. 5.7, the analytical results for the examined unit cells are compared to
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full-wave simulation results obtained with a commercial electromagnetic solver. Sec. 5.8
presents the design of a metasurface operating as an asymmetric linear polarizer under
oblique incidence at 10 GHz. Sec. 5.9 presents the design of a metasurface operating as a
polarization rotator under normal incidence at 10 GHz. Finally, Sec. 5.10 summarizes the
findings.

5.2 Skewed Unit Cell under Normal Incidence
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Figure 5.1: Skewed unit cells comprising (a) lumped components (colored blue), and (b)
PEC strips (colored orange)

Unit cells with non-orthogonal (skewed) axes can exhibit full tensorial sheet impedances.
Rotated orthogonal unit cells can be considered as a subset of skewed unit cells. Skewed
unit cells have recently received attention for their ability to produce off-diagonal elements
in the effective permeability tensor of transmission-line metamaterials. As a result, they
have been used to realize transformation electromagnetics devices [103, 104]. A skewed,
crossed wire mesh has also been utilized to implement a metamaterial lens exhibiting neg-
ative refraction [105]. Earlier work has examined the scattering properties of skewed grids
of wires under arbitrary incidence [106]. Although the results derived therein are accurate,
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the employed method is complex and cannot be readily applied to more complicated ge-
ometries, such as the three-branch unit cell, shown in Fig. 5.4(b). Here, a simpler method
is used to analyze a variety of general-purpose geometries.

To begin, consider the skewed unit cell shown in Fig. 5.1(a). It consists of two branches
in arbitrary, in-plane directions (denoted by unit vectors q̂1 and q̂2), loaded with lumped
impedances Z1 and Z2, and having lengths l and d. In the figure, dashed lines denote the
boundaries of the unit cell. Perfect short connections are assumed between the nodes of
the circuit. In addition, a time dependence of the form e−jωt is assumed throughout the
chapter. The spatially averaged electric fields, Eq1 and Eq2, along q̂1 and q̂2 are related to
the spatially averaged electric fields, Ex and Ey, along x̂ and ŷ as[

Eq1

Eq2

]
= A

[
Ex

Ey

]
, A =

[
cosφ1 sinφ1

cosφ2 sinφ2

]
(5.1)

where φ1 is the angle between q̂1 and x̂, and φ2 is the angle between q̂2 and x̂. The electric
fields can be expressed in terms of the currents, Iq1 and Iq2, flowing through Z1 and Z2. The
currents can also be spatially averaged to find the corresponding surface current densities,
Jq1 and Jq2, [

Eq1

Eq2

]
=

[
Z1

l
0

0 Z2

d

][
Iq1

Iq2

]
=

[
Z1

d′

l
0

0 Z2
l′

d

][
Jq1

Jq2

]
(5.2)

where d′ = dsin∆φ and l′ = lsin∆φ are the distances between adjacent q̂1- and q̂2-directed
branches, respectively, and ∆φ = φ2−φ1. Surface current densities Jq1 and Jq2 are related
to the total surface current densities, Jt,x and Jt,y, along x̂ and ŷ as follows[

Jt,x

Jt,y

]
= A

T
[
Jq1

Jq2

]
(5.3)

The sheet impedance tensor, η, relates the average electric field tangential to a sheet, ~Etan,
to the surface current density, ~J . For a sheet in the (x− y)-plane, it is defined as

~Etan = η ~J ⇒

[
Ex

Ey

]
= η

[
Jt,x

Jt,y

]
=

[
ηxx ηxy

ηyx ηyy

][
Jt,x

Jt,y

]
(5.4)

Using (5.1)-(5.4), the sheet impedance of a skewed unit cell comprising lumped compo-
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nents (Fig. 5.1(a)) is

ηskewed lumped = A
−1

[
Z1

d′

l
0

0 Z2
l′

d

](
A

T
)−1

(5.5)

which yields a full tensor when at least one of the unit vectors q̂1 and q̂2 is not aligned with
x̂ or ŷ.

Similarly, the sheet impedance of a skewed grid of PEC strips (Fig. 5.1(b)) can be
calculated under normal incidence, i.e. when the tangential wave vector, ~ktan = kxx̂+kyŷ,
is zero. The grid consists of strips having widths w1 and w2 along q̂1 and q̂2. It has been
shown that the sheet impedance of an infinite grid of parallel PEC strips when illuminated
by a normally incident plane-wave polarized along the strips is [107, Eq. (4.58)]

ηs(b, w) ≈ j
η0k0b

2π
ln
(

csc
πw

2b

)
(5.6)

where η0 and k0 are the wave impedance and wavenumber of the surrounding medium (free
space in this case), and b and w are the separation and width of the strips, respectively. In
the above expression, it is assumed that w � b� λ, where λ is the wavelength. The sheet
impedance of a skewed grid of strips (Fig. 5.1(b)) under normal incidence is calculated
using (5.5) with the following substitutions

Z1 → ηs (d′, w1)
l

d′
, Z2 → ηs (l′, w2)

d

l′
(5.7)

resulting in

ηskewed strips

(
~ktan = ~0

)
=

=A
−1

[
ηs (d′, w1) 0

0 ηs (l′, w2)

](
A

T
)−1 (5.8)

5.3 Skewed Unit Cell under Oblique Incidence

Although the previous method provides accurate sheet impedance values for skewed grids
of strips, it is limited to normally incident plane waves. When the wave vector of the
impinging wave has a component that is tangential to the grid

(
~ktan 6= ~0

)
, currents Iq1 and

Iq2 are spatially dispersive. Progressively phased currents flowing on the strips, due to an
obliquely incident plane wave, produce electric fields that are both along and normal to the
strips [108, Eq. (48)], causing strips to interact. Hence, the expressions for electric field
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given by (5.2) do not hold in the case of oblique incidence. They neglect the electric fields
normal to the strips.

To calculate the impedance of skewed grids under oblique incidence, an electromag-
netic field analysis is required. Similar to [109], where orthogonal grids of wires were
studied, an MoM formulation is employed here to determine the currents on a skewed grid
of wires that is illuminated by a plane wave. For simplicity, wires are studied in lieu of
strips. Subsequently, a well-known equivalence will be used to extend the results to grids
of strips [107]. Assuming thin wires of radii r1 and r2 along q̂1 and q̂2 (see Fig. 5.1(b)),
the currents on the wires are expressed as infinite sets of spatial harmonics with complex
amplitudes Am and Bu

Iq1,u(q1) =
∑
m

Ame
j(k1,mq1+k′1ud

′), k1,m = k1 +
2πm

l

Iq2,m(q2) =
∑
u

Bue
j(k2,uq2+k′2ml

′), k2,u = k2 +
2πu

d

(5.9)

The integer indices u and m in Iq1 and Iq2 above identify a q̂1- or q̂2-directed wire,
respectively. For example, q̂1-directed wires cross the ŷ-axis at yu = ud′/cosφ1, and q̂2-
directed wires cross the x̂-axis at xm = ml′/sinφ2. Wavenumbers k1 and k2 are the scalar
projections of the wave vector onto q̂1 and q̂2. Wavenumbers k′1 and k′2 are the scalar
projections of the wave vector on unit vectors that are perpendicular to q̂1 and q̂2. These
wavenumbers are expressed in terms of the Cartesian components of the wave vector ~k =

kxx̂+ kyŷ + kz ẑ as

k1 = kxcosφ1 + kysinφ1, k′1 = −kxsinφ1 + kycosφ1

k2 = kxcosφ2 + kysinφ2, k′2 = kxsinφ2 − kycosφ2

(5.10)

In order to derive the MoM equations for a skewed grid of wires, the following proce-
dure is used:

• The total magnetic vector potential due to all q̂1- and q̂2-directed currents is calcu-
lated. The potential is then expressed in terms of the spectral representation of the
2D-periodic Green’s function.

• The scattered electric field associated with the total vector potential is computed.

• The sum of the scattered and incident tangential electric fields is set to zero along
a line on the surface of the q̂1- and q̂2-directed wires, yielding two equations that
involve all complex amplitudes Am and Bu.
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• The two equations are then multiplied by a complex exponential testing function, and
are integrated within the limits of one unit cell. The orthogonality between harmonics
is invoked.

Using this procedure, the MoM equations of (5.12) are derived for a skewed grid of
wires:

∑
u

∑
m

[(
k2

0 − k2
2,u

)
cot∆φ− k2,u

(
2πm

l′
+ k′2

)]
e−r1(Γ′mu+jkz)

lΓ′mu
sinc

(
u l
d
cos∆φ+m− n

)
Bu+

+
(
k2

0 − k2
1,n

)∑
u

e−r1(Γnu+jkz)

d′ Γnu
An = 2k0

jη0
Ei
q1δn0 (5.12a)

∑
m

∑
u

[(
k2

0 − k2
1,m

)
cot∆φ− k1,m

(
2π u

d′
+ k′1

)]
e−r2(Γmu+jkz)

dΓmu
sinc

(
md

l
cos∆φ+ u− g

)
Am+

+
(
k2

0 − k2
2,g

)∑
m

e
−r2(Γ′mg+jkz)

l′ Γ′mg
Bg = 2k0

jη0
Ei
q2δg0 (5.12b)

Γmu =
√
k2

1,m + (2πu/d′ + k′1)2 − k2
0, Γ′mu =

√
k2

2,u + (2πm/l′ + k′2)2 − k2
0

sinc(x) = sin(πx)
πx

(5.12c)

These expressions can be rewritten in abbreviated form as

∑
u

RnuBu + PnAn = Ei
q1δn0 (5.13a)

∑
m

TgmAm + SgBg = Ei
q2δg0 (5.13b)
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where

Rnu =
jη0

2k0

∑
m

[(
k2

0 − k2
2,u

)
cot∆φ− k2,u

(
2π
m

l′
+ k′2

)]
e−r1(Γ′mu+jkz)

l Γ′mu
sinc

(
u
l

d
cos∆φ+m− n

)
Pn =

jη0

2k0

(
k2

0 − k2
1,n

)∑
u

e−r1(Γnu+jkz)

d′ Γnu

Tgm =
jη0

2k0

∑
u

[(
k2

0 − k2
1,m

)
cot∆φ− k1,m

(
2π

u

d′
+ k′1

)]
e−r2(Γmu+jkz)

dΓmu
sinc

(
m
d

l
cos∆φ+ u− g

)
Sg =

jη0

2k0

(
k2

0 − k2
2,g

)∑
m

e−r2(Γ′mg+jkz)

l′ Γ′mg

(5.13c)

In (5.12)-(5.13), δij is the Kronecker delta, and Ei
q1, E

i
q2 are the components of the

incident electric field along q̂1, q̂2. In (5.12a) and (5.13a), each harmonic of Iq1 is related
to all harmonics of Iq2. Similarly in (5.12b) and (5.13b), each harmonic of Iq2 is related to
all harmonics of Iq1. The incident fields only appear in the equations for the fundamental
harmonics (n = 0 and g = 0). The MoM equations form an infinite set of equations
(n, g ∈ Z) which must be truncated in order to be solved numerically.

Solving the system of equations given in (5.12)-(5.13) yields the complex amplitudes
of the current harmonics, Am and Bu. The currents on the wires can then be calculated
using (5.9). However, a large number of harmonics is required for the method to converge
because currents Iq1 and Iq2 are discontinuous at the junctions (q1 = q2 = 0 in Fig. 5.1(b)).
As a result, analytic expressions for the sheet impedance cannot be derived. In order to
improve the convergence, sawtooth functions are incorporated into the expressions for Iq1
and Iq2 to model this discontinuity at the wire junctions [110]. Let us assume the following
sawtooth functions within a unit cell (|q1| < l/2 and |q2| < d/2)

f1(q1) = ∆

[
u(q1)− q1

l
− 1

2

]
= ∆

∑
m

′ e
j2πmq1/l

2πjm

f2(q2) = ∆

[
u(q2)− q2

d
− 1

2

]
= ∆

∑
u

′ e
j2πuq2/d

2πju

(5.14)

where u(x) is the unit step function and ∆ is the unknown complex amplitude of the
sawtooth functions. The prime in the sums denotes that the zeroth terms are excluded
from the summations. For clarity, the sawtooth functions f1 (q1) and f2 (q2) are plotted
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Figure 5.2: Sawtooth functions f1 (q1) and f2 (q2) superimposed on the skewed unit cell
geometry

on the skewed unit cell geometry in Fig. 5.2. Note that ∆ is a complex quantity. This
specific discontinuous function was chosen because it has a simple spectral representation,
as evidenced by (5.14). As a result, it leads to simple analytical expressions. Moreover,
it models well the discontinuity in the currents [110]. Currents Iq1 and Iq2 can then be
expressed as

Iq1,u(q1) = ej(k1q1+k′1ud
′)

[∑
m

A′me
j2πmq1/l + f1(q1)

]

Iq2,m(q2) = ej(k2q2+k′2ml
′)

[∑
u

B′ue
j2πuq2/d − f2(q2)

] (5.15)

where the new complex amplitudes, A′m and B′u, are given by

Am = A′m +
∆(1− δm0)

2πjm
, Bu = B′u −

∆(1− δu0)

2πju
(5.16)

The jumps in the currents Iq1 and Iq2 in (5.15) have opposite signs. This ensures that
Kirchhoff’s current law is satisfied at the junction. The new MoM equations, exhibiting
improved convergence, are found by using (5.16) in (5.13). Since the unknown ∆ has been
introduced, one more linearly independent equation is required. To ensure that the electric
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fields are continuous at the junction, the linear charge densities, λq, on the four conductors
at the junction (q1 = 0+, 0− and q2 = 0+, 0−) must be equal [111, Eq. (5)]

λq(q1 = 0+) = λq(q1 = 0−) = λq(q2 = 0+) = λq(q2 = 0−) (5.17)

From the conservation of charge, it follows that [110, Eq. (21)]

∂Iq1,0
∂q1

∣∣∣∣
q1=0+

=
∂Iq1,0
∂q1

∣∣∣∣
q1=0−

=
∂Iq2,0
∂q2

∣∣∣∣
q2=0+

=
∂Iq2,0
∂q2

∣∣∣∣
q2=0−

(5.18)

From (5.18), the following condition on the currents can be derived [110, Eq. (26)]

∂Iq1,0
∂q1

∣∣∣∣
q1=0+

+
∂Iq1,0
∂q1

∣∣∣∣
q1=0−

=
∂Iq2,0
∂q2

∣∣∣∣
q2=0+

+
∂Iq2,0
∂q2

∣∣∣∣
q2=0−

(5.19)

By applying this condition to the current expressions given in (5.15), the following addi-
tional equation is derived

∑
m

k1,mA
′
m −

∑
u

k2,uB
′
u + j∆

(
1

l
+

1

d

)
= 0 (5.20)

The new system of equations forA′m andB′u, formed by (5.13), (5.16) and (5.20), converges
rapidly because the current discontinuity has been taken into account. For subwavelength
unit cells, higher order terms (m,u 6= 0) will be negligible. Therefore, it is sufficient to
retain only the fundamental current harmonics, with complex amplitudes A′0 and B′0. In
this case, the system reduces to

P0A
′
0 +R00B

′
0 + j∆

∑
u

′R0u

2πu
= Ei

q1 (5.21a)

S0B
′
0 + T00A

′
0 − j∆

∑
m

′ T0m

2πm
= Ei

q2 (5.21b)

k1A
′
0 − k2B

′
0 + j∆

(
1

l
+

1

d

)
= 0 (5.21c)

Again, A′0 and B′0 are the complex amplitudes of the fundamental harmonics of currents
Iq1 and Iq2 in (5.15), and ∆ represents the jump in the currents at the junction. By solving
(5.21c) for ∆, and substituting the result into (5.21a) and (5.21b), the incident electric
fields, Ei

q1 and Ei
q2, can be expressed in terms of the surface current densities Jq1 = A′0/d

′
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and Jq2 = B′0/l
′

[
Ei
q1

Ei
q2

]
=

 d′P0 − d′dlk1

d+l

∑
u

′R0u

2πu
l′R00 + dl′lk2

d+l

∑
u

′R0u

2πu

d′T00 + d′dlk1

d+l

∑
m

′ T0m

2πm
l′S0 − dl′lk2

d+l

∑
m

′ T0m

2πm

[Jq1
Jq2

]
(5.22)

If the wire radii r1 and r2 are small compared to the wavelength, the following approx-
imate formula can be used in the calculation of P0 and S0 [109, Eq. (10)]

∑
u

e−r1Γ0u

Γ0u

≈ d′

π
ln

d′

2πr1

+
1

Γ00

=
d′

π
ln

d′

2πr1

+
1

jkz
(5.23)

Using (5.13c) and (5.23)

P0 ≈
jη0

2k0d′
(
k2

0 − k2
1

)(d′
π

ln
d′

2πr1

+
1

jkz

)
S0 ≈

jη0

2k0l′
(
k2

0 − k2
2

)( l′
π

ln
l′

2πr2

+
1

jkz

) (5.24)

The sums that appear in (5.22) can be approximated as

∑
u

′R0u

2πu
≈ η0

j2πl

k1

k0

ln
d′

2πr1∑
m

′ T0m

2πm
≈ η0

j2πd

k2

k0

ln
l′

2πr2

(5.25)

The scattered electric fields, Es
q1 and Es

q2, along q̂1 and q̂2 are related to the surface
current densities through [109, Eq. (4)][

Es
q1

Es
q2

]
=

η0

2kzk0

[
k2

1 − k2
0 k1k2 − k2

0cos∆φ
k1k2 − k2

0cos∆φ k2
2 − k2

0

][
Jq1

Jq2

]
(5.26)

The total electric fields, Eq1 and Eq2, along q̂1 and q̂2 are the sums of the incident and
scattered electric fields[

Eq1

Eq2

]
=

[
Ei
q1

Ei
q2

]
+

[
Es
q1

Es
q2

]
=

= j
η0k0

2π

(d′ − d′l
d+l

k2
1

k2
0

)
ln d′

2πr1
− d′l
d+l

k1k2

k2
0

ln d′

2πr1

− l′d
d+l

k1k2

k2
0

ln l′

2πr2

(
l′ − l′d

d+l

k2
2

k2
0

)
ln l′

2πr2

[Jq1
Jq2

] (5.27)
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Using (5.5), the sheet impedance of a skewed grid of wires can then be found. The
result can be extended to a skewed grid of strips having widths w1 and w2 (Fig. 5.1(b)) by
invoking the following well-known substitution [107, Eq. (4.56)]

r1 →
d′

2π
sin
πw1

2d′
, r2 →

l′

2π
sin
πw2

2l′
(5.28)

Under oblique incidence, the sheet impedance of a skewed grid of strips possessing sub-
wavelength periodicity becomes

ηskewed strips

(
~ktan

)
=

A
−1

η1

(
1− l

d+l

k2
1

k2
0

)
−η1

l
d+l

k1k2

k2
0

−η2
d
d+l

k1k2

k2
0

η2

(
1− d

d+l

k2
2

k2
0

)(AT
)−1

η1 = j
η0k0d

′

2π
ln
(

csc
πw1

2d′

)
, η2 = j

η0k0l
′

2π
ln
(

csc
πw2

2l′

)
(5.29)

The loaded, skewed unit cell (shown in Fig. 5.3(a)) can be considered as the series
connection of the unloaded, skewed unit cell (Fig. 5.1(b)) and lumped components Z1 and
Z2 (Fig. 5.1(a)). As a result, its sheet impedance under oblique incidence is

ηloaded, skewed strips

(
~ktan

)
=

ηskewed strips

(
~ktan

)
+ ηskewed lumped

(5.30)

It should be noted that the loaded, skewed unit cell is capable of exhibiting an arbitrary
sheet impedance for a given wave vector.

The skewed patch, shown in Fig. 5.3(b), is complementary to the unloaded, skewed unit
cell (Fig. 5.1(b)). As a result, its sheet impedance under oblique incidence, ηskewed patch

(
~ktan

)
,

can be found using Babinet’s principle in tensorial form [112, Eq. (40)]

ηskewed patch

(
~ktan

)
=
η2

0

4

(
R

T
ηskewed strips

(
~ktan

)
R

)−1

(5.31)

where R =

[
0 −1

1 0

]
is the π/2 rotation matrix.
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Figure 5.3: (a) A loaded, skewed unit cell comprising PEC strips and lumped components,
and (b) a skewed patch

5.4 Three-Branch Unit Cell under Normal Incidence

The loaded, skewed unit cell (Fig. 5.3(a)) may present an arbitrary sheet impedance through
control of its physical geometry and lumped components. However, in applications that re-
quire inhomogeneous claddings, the physical parameters d, l, φ1, φ2 cannot vary arbitrarily
from cell to cell as this creates an ”inter-cell connectivity problem” [103, Fig. 9]. The ge-
ometrical parameters must be chosen such that the strips of neighboring unit cells remain
connected. Although the loading elements, Z1 and Z2, may vary between unit cells, they
only provide two degrees of freedom, whereas the realization of an arbitrary, reciprocal
impedance tensor requires three.

In order to overcome this limitation, the three-branch unit cell of Fig. 5.4(a) is studied.
Its topology is inspired by previous work on tensor transmission-line metamaterials [113,
Fig. 4]. It consists of three branches: one along x̂ of length l and loaded with impedance
Zx, another along ŷ of length d and loaded with Zy, and a third branch along q̂3 = cosψx̂+

sinψŷ (ψ = tan−1(d/l)) of length h =
√
d2 + l2 and loaded with Z3. Neighboring q̂3-

directed branches are separated by t = lsinψ. The electric fields, Ex, Ey, and Eq3, along x̂,
ŷ, and q̂3, satisfy
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Figure 5.4: Three-branch unit cells comprising (a) lumped components, and (b) PEC strips

ExEy
Eq3

 = B

[
Ex

Ey

]
, B =

 1 0

0 1

cosψ sinψ

 (5.32)

The electric fields can be expressed in terms of the currents on the three branches, Ix, Iy,
and Iq3, and the corresponding spatially averaged surface current densities, Jx, Jy, and Jq3,
as ExEy

Eq3

 =

Zx/l 0 0

0 Zy/d 0

0 0 Z3/h


 IxIy
Iq3

 = C

JxJy
Jq3



C =

dZx/l 0 0

0 lZy/d 0

0 0 tZ3/h


(5.33)

Both Jx and Jq3 contribute to the total x̂-directed surface current density, Jt,x. Similarly,
both Jy and Jq3 contribute to the total ŷ-directed surface current density, Jt,y. The total
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surface current densities can then be expressed as

[
Jt,x

Jt,y

]
= B

T

JxJy
Jq3

 = B
T
C
−1

ExEy
Eq3

 = B
T
C
−1
B

[
Ex

Ey

]
(5.34)

Consequently, the sheet impedance of a three-branch unit cell of lumped components (Fig.
5.4(a)) is

η3-branch lumped =

(
B

T
C
−1
B

)−1

(5.35)

In Fig. 5.4(b), the lumped components of Fig. 5.4(a) are replaced by PEC strips of
widths wx, wy, and w3 along x̂, ŷ, and q̂3. The sheet impedance of this unit cell under
normal incidence is given by (5.35) with the following substitutions

Zx → ηs(d, wx)
l

d
, Zy → ηs(l, wy)

d

l
, Z3 → ηs(t, w3)

h

t
(5.36)

where ηs(b, w) is defined in (5.6). This results in

η3-branch strips

(
~ktan = 0

)
=

=

BT

ηs(d, wx) 0 0

0 ηs(l, wy) 0

0 0 ηs(t, w3)


−1

B


−1

(5.37)

5.5 Three-Branch Unit Cell under Oblique Incidence

The calculation of the sheet impedance of the three-branch unit cell under oblique incidence
again requires an electromagnetic field solution. The method presented in Sec. 5.3 is
applied to the case of three intersecting wires placed in the three-branch geometry (Fig.
5.4(b)). The radii along x̂, ŷ, and q̂3 are rx, ry, and r3. The currents on the wires are
expressed as infinite sets of spatial harmonics with complex amplitudes As, Bs, and Cs

Ix,u(x) =
∑
s

Ase
j(kx,sx+kyud), kx,s = kx +

2πs

l

Iy,u(y) =
∑
s

Bse
j(ky,sy+kxul), ky,s = ky +

2πs

d

Iq3,u(q3) =
∑
s

Cse
j(k3,sq3+k′3ut), k3,s = k3 +

2πs

h

(5.38)
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where wavenumbers k3 = kxcosψ + kysinψ and k′3 = kxsinψ − kycosψ are the scalar
projections of the wave vector onto q̂3 and a unit vector perpendicular to q̂3, respectively.
The integer index u is used to identify a specific wire in each of the three directions. The
derived MoM equations for this geometry are

DI
nAn −

∑
u

DII
nuBu +

∑
s

DIII
nsCs = Ei

xδn0

DIV
g Bg −

∑
s

DV
gsAs +

∑
u

DVI
guCu = Ei

yδg0

DVII
b Cb +

∑
s

DVIII
bs As +

∑
u

DIX
buBu = Ei

q3δb0

(5.39)

where the D quantities are given in Appendix D and Ei
x, Ei

y, E
i
q3 are the incident electric

fields at the plane of the grid along x̂, ŷ, q̂3. As before, the convergence is significantly
improved by incorporating the following sawtooth functions

fx(x) = Υ

[
u(x)− x

l
− 1

2

]
, |x| < l

2

fy(y) = Λ

[
u(y)− y

d
− 1

2

]
, |y| < d

2

f3(q3) = −(Υ + Λ)

[
u(q3)− q3

h
− 1

2

]
, |q3| <

h

2

(5.40)

into the expressions for the currents in (5.38), where Υ and Λ are the two unknown complex
amplitudes of the sawtooth functions. The currents can then be expressed as

Ix,u(x) = ej(kxx+kyud)

[∑
s

A′se
j2πsx/l + fx(x)

]

Iy,u(y) = ej(kyy+kxul)

[∑
s

B′se
j2πsy/d + fy(y)

]

Iq3,u(q3) = ej(k3q3+k′3ut)

[∑
s

C ′se
j2πsq3/h + f3(q3)

] (5.41)

where the new complex amplitudes, A′s, B
′
s, and C ′s, are given by

As = A′s +
Υ(1− δs0)

2πjs
, Bs = B′s +

Λ(1− δs0)

2πjs
,

Cs = C ′s −
(Υ + Λ)(1− δs0)

2πjs

(5.42)
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The first three MoM equations of the new set that exhibits improved convergence are
found by substituting (5.42) into (5.39). Two extra equations are needed, due to the intro-
duction of the two unknowns Υ and Λ. They are derived from the continuity of charge at
the junction

∂Ix,0
∂x

∣∣∣∣
x=0+

+
∂Ix,0
∂x

∣∣∣∣
x=0−

=
∂Iy,0
∂y

∣∣∣∣
y=0+

+
∂Iy,0
∂y

∣∣∣∣
y=0−

∂Ix,0
∂x

∣∣∣∣
x=0+

+
∂Ix,0
∂x

∣∣∣∣
x=0−

=
∂Iq3,0
∂q3

∣∣∣∣
q3=0+

+
∂Iq3,0
∂q3

∣∣∣∣
q3=0−

(5.43)

which results in

j
∑
s

kx,sA
′
s − j

∑
s

ky,sB
′
s −

Υ

l
+

Λ

d
= 0

j
∑
s

kx,sA
′
s − j

∑
s

k3,sC
′
s −Υ

(
1

l
+

1

h

)
− Λ

h
= 0

(5.44)

The new set of equations for A′s, B
′
s and C ′s, formed by (5.39), (5.42) and (5.44), con-

verges rapidly and a single current harmonic is sufficient to model subwavelength grids.
The incident electric fields can then be expressed in terms of the average surface current
densities Jx = A′0/d, Jy = B′0/l, Jq3 = C ′0/t by eliminating Υ and Λ in the following
equations

DI
0A
′
0 −DII

00B
′
0 +DIII

00C
′
0+

+j(Υ + Λ)
∑
s

′D
III
0s

2πs
+ jΛ

∑
u

′D
II
0u

2πu
= Ei

x

DIV
0 B

′
0 −DV

00A
′
0 +DVI

00C
′
0+

+j(Υ + Λ)
∑
u

′D
VI
0u

2πu
+ jΥ

∑
s

′D
V
0s

2πs
= Ei

y

DVII
0 C ′0 +DVIII

00 A′0 +DIX
00B

′
0−

−jΥ
∑
s

′D
VIII
0s

2πs
− jΛ

∑
u

′D
IX
0u

2πu
= Ei

q3

jkxA
′
0 − jkyB′0 −

Υ

l
+

Λ

d
= 0

jkxA
′
0 − jk3C

′
0 −Υ

(
1

l
+

1

h

)
− Λ

h
= 0

(5.45)

Using the approximate formulas given in (5.23)-(5.25), the incident electric fields can be
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expressed as E
i
x

Ei
y

Ei
q3

 =
η0

2k0kz

L11 L12 L13

L21 L22 L23

L31 L32 L33


JxJy
Jq3


L11 = k2

0 − k2
x + j

dkz
π

(
k2

0 −
lk2
x

d+ h+ l

)
ln

d

2πrx

L12 = −kxky
(

1 + j
dlkz

(d+ h+ l)π
ln

d

2πrx

)
L13 = −j dlkxk3kz

(d+ h+ l)π
ln

d

2πrx
− kxk3 + k2

0cosψ

L21 = −kxky
(

1 + j
dlkz

(d+ h+ l)π
ln

l

2πry

)
L22 = k2

0 − k2
y + j

lkz
π

(
k2

0 −
dk2

y

d+ h+ l

)
ln

l

2πry

L23 = k2
0sinψ − kyk3 − j

dlkyk3kz
(d+ h+ l)π

ln
l

2πry

L31 = k2
0cosψ − kxk3 − j

dlkxk3kz
(d+ h+ l)π

ln
t

2πr3

L32 = k2
0sinψ − kyk3 − j

dlkyk3kz
(d+ h+ l)π

ln
t

2πr3

L33 = k2
0 − k2

3 + j
tkz
π

(
k2

0 −
hk2

3

d+ h+ l

)
ln

t

2πr3

(5.46)

The scattered electric fields Es
x, Es

y , and Es
q3 at the plane of the grid along x̂, ŷ, and q̂3 can

be written as E
s
x

Es
y

Es
q3

 =
η0

2kzk0

Q11 Q12 Q13

Q12 Q22 Q23

Q13 Q23 Q33


JxJy
Jq3


Q11 = k2

x − k2
0, Q12 = kxky, Q13 = k3kx − k2

0cosψ

Q22 = k2
y − k2

0, Q23 = k3ky − k2
0sinψ, Q33 = k2

3 − k2
0

(5.47)

The same steps presented in Sec. 5.3 are then followed. Specifically, the total electric
fields are found as the sum of the incident ((5.46)) and scattered ((5.47)) electric fields.
The equivalence between wires and strips ((5.28)) is then used. Finally, from (5.35) the
sheet impedance of a three-branch unit cell of strips (Fig. 5.4(b)) under oblique incidence
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Figure 5.5: A loaded, three-branch unit cell comprising PEC strips and lumped components

is obtained

η3-branch strips

(
~ktan

)
=

(
B

T
V
−1 (

~ktan

)
B

)−1

V
(
~ktan

)
= − 1

(d+ h+ l)k2
0

V11 V12 V13

V21 V22 V23

V31 V32 V33


V11 =

(
lk2
x − (d+ h+ l)k2

0

)
ηs(d, wx), V12 = lkxkyηs(d, wx)

V13 = lkxk3ηs(d, wx), V21 = dkxkyηs(l, wy),

V22 =
(
dk2

y − (d+ h+ l)k2
0

)
ηs(l, wy), V23 = dkyk3ηs(l, wy)

V31 = hkxk3ηs(t, w3), V32 = hkyk3ηs(t, w3),

V33 = (hk2
3 − (d+ h+ l)k2

0)ηs(t, w3)

(5.48)

Note that B is defined in (5.32), ηs(b, w) is defined in (5.6) and k3 = kxcosψ + kysinψ.
The sheet impedance of the loaded, three-branch unit cell of Fig. 5.5 is obtained using

(5.35) and (5.48)

ηloaded, 3-branch strips

(
~ktan

)
=

(
B

T (
V
(
~ktan

)
+ C

)−1

B

)−1

(5.49)

92



It should be noted that the loaded, three-branch unit cell may exhibit an arbitrary sheet
impedance for a given wave vector, by simply changing the loading elements. The physical
geometry need not be changed.

5.6 Sliced Rectangle Unit Cell
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Figure 5.6: (a) Sliced rectangle, and (b) sliced patch unit cells

A geometry that is more general than the unloaded, three-branch unit cell is the sliced
rectangle, shown in Fig. 5.6(a). It differs from the three-branch unit cell in that the central
strip can form an arbitrary angle φm with x̂ (0 ≤ φm ≤ π). The complement of this unit
cell is the sliced patch (Fig. 5.6(b)), which has been previously used to realize devices with
tensorial surface properties [42, 114].

Eq. (5.48) provides the sheet impedance of the sliced rectangle (Fig. 5.6(a)) when
φm = ψ. In addition, its sheet impedance is known when φm = 0 or π/2, where it reduces
to an orthogonal grid [107, Eq. (4.54), (4.55)]. The sheet impedance of the sliced rectangle
for arbitrary φm must change smoothly between these values. As a result, the following
procedure is proposed to model the sheet impedance of the sliced rectangle:

• Calculate the diagonal elements of the sheet impedance when the central strip is
aligned with the x̂-axis (φm = 0):
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ηxx(~ktan, φm = 0) = ηs

(
d

2
, wx

)(
1− l

d/2 + l

k2
x

k2
0

)
ηyy(~ktan, φm = 0) = ηs (l, wy)

(
1− d/2

d/2 + l

k2
y

k2
0

) (5.50)

• Calculate the diagonal elements of the sheet impedance when the central strip is
aligned with the ŷ-axis (φm = π/2):

ηxx

(
~ktan, φm =

π

2

)
= ηs (d, wx)

(
1− l/2

d+ l/2

k2
x

k2
0

)
ηyy

(
~ktan, φm =

π

2

)
= ηs

(
l

2
, wy

)(
1− d

d+ l/2

k2
y

k2
0

) (5.51)

• It is evident that the separation between adjacent central strips changes with φm,
namely t(φm) = d

2
|cosφm| + l

2
sinφm. Similarly, the wavenumber along the middle

strip, k3, becomes k3(φm) = kxcosφm + kysinφm. Using these expressions in (5.48)
allows V

(
~ktan, φm

)
to be calculated.

• Calculate the 2x2 tensor F
(
~ktan, φm

)
, defined as:

F
(
~ktan, φm

)
=

(
B

T

1 V
−1 (

~ktan, φm

)
B2

)−1

B1 =

 1 0

0 1

cosφm sinφm

 , B2 =

 1 0

0 1

sgn(cosφm) t(φm)
d

t(φm)
l

 (5.52)

where sgn(x) is the signum function. Note that when φm = ψ, F is equal to
η3-branch strips

(
~ktan

)
.

• Finally, the sheet impedance of the sliced rectangle under oblique incidence is

ηsliced rect.

(
~ktan, φm

)
=

[
ηxx ηxy

ηyx ηyy

]
(5.53a)

For angles 0 ≤ φm ≤ ψ or π − ψ ≤ φm ≤ π:

ηxx = ηxx(~ktan, 0) +
(
F [1, 1]− ηxx(~ktan, 0)

) sinφm
sinψ

ηxy = ηyx = F [2, 1]

ηyy = ηyy(~ktan, 0) +
(
F [2, 2]− ηyy(~ktan, 0)

) sin2φm

sin2ψ

(5.53b)
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where ηxx(~ktan, 0) and ηyy(~ktan, 0) are given in (5.50) and F is given in (5.52). The square
brackets denote the element of the tensor F .
For angles ψ ≤ φm ≤ π − ψ:

ηxx = ηxx

(
~ktan,

π

2

)
+
(
F [1, 1]− ηxx

(
~ktan,

π

2

)) cos2φm
cos2ψ

ηxy = ηyx = F [1, 2]

ηyy = ηyy

(
~ktan,

π

2

)
+
(
F [2, 2]− ηyy

(
~ktan,

π

2

)) |cosφm|
cosψ

(5.53c)

where ηxx(~ktan, π/2) and ηyy(~ktan, π/2) are given in (5.51) and F is given in (5.52).
Quantity F in (5.52) and the sinusoidal interpolation functions in (5.53b) and (5.53c)

were judiciously chosen. Parametric sweeps of the sliced rectangle unit cell were per-
formed using a full-wave solver, which verified the model in (5.53). In the expressions
for φm = 0 and φm = π/2 in (5.50) and (5.51), it has been assumed that wx ≈ w3 and
wy ≈ w3, respectively.

The sheet impedance of the sliced patch (Fig. 5.6(b)) is obtained using the tensorial
form of Babinet’s principle ((5.31))

ηsliced patch

(
~ktan, φm

)
=
η2

0

4

(
R

T
ηsliced rect.

(
~ktan, φm

)
R

)−1

(5.54)

5.7 Full-Wave Verification

In this Section, full-wave simulations of the examined geometries are presented and com-
pared to results from the analytical models. Simulations were performed using Ansys Elec-
tronics Desktop, a commercial full-wave electromagnetic solver. The direction of the wave
vector is given in terms of the polar angle, θ, and the azimuthal angle, φ, in the spherical
coordinate system [107, Eq. (4.20)]

kx = k0sinθcosφ, ky = k0sinθsinφ (5.55)

The procedure presented in [53] is used to simulate the metallic claddings in ANSYS
Electronics Desktop and extract their sheet impedance. The claddings are simulated in free
space.

First, results are considered for the sheet impedance of the unloaded, skewed unit cell
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Figure 5.7: Numerical results for (a) an unloaded, skewed unit cell of strips, (b) a loaded,
skewed unit cell of strips, (c) a skewed patch, (d) a loaded, three-branch unit cell of strips,
and (e) a sliced patch. The lines correspond to analytical data, while the dots correspond to
simulation results.
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(Fig. 5.1(b)) at a frequency of 10 GHz (λ = 3 cm). The following physical parameters
are assumed: d = λ/10, l = λ/10, w1 = w2 = λ/300, φ1 = π/12, φ2 = 5π/12.
The azimuthal angle of incidence is φ = 0. The analytical results from (5.29) and the
corresponding simulation data for the elements of the reciprocal impedance tensor, ηxx,
ηxy = ηyx, and ηyy, are shown in Fig. 5.7(a) when the polar angle of incidence, θ, ranges
from 0 to almost π/2 (grazing incidence). The red dots denote ANSYS Electronics Desktop
results.

Then, the sheet impedance of the loaded, skewed unit cell (Fig. 5.3(a)) is examined.
The following physical parameters and lumped component values are assumed: d = λ/7.5,
l = λ/10, w1 = w2 = λ/300, φ1 = π/6, Z1 = jωL1, L1 = 2 nH, Z2 = 1

jωC2
, C2 = 0.1

pF. The angle of incidence is [θ, φ] = [π/4, π/3]. The analytical results from (5.30) and the
corresponding simulation data are shown in Fig. 5.7(b) when φ2 ranges from π/6 to π.

Next, results for the skewed patch (Fig. 5.3(b)) with the following parameters are cal-
culated at 10 GHz: d = λ/10, l = λ/7.5, w1 = λ/250, w2 = λ/200, φ1 = −π/18. The
angle of incidence is [θ, φ] = [π/3, π/6]. Analytical results from (5.31) and simulation data
are presented in Fig. 5.7(c) when φ2 ranges from π/9 to 7π/9.

Numerical results are also presented for the loaded, three-branch unit cell (Fig. 5.5).
The following physical parameters and lumped component values are assumed (λ = 3 cm):
d = λ/7.5, l = λ/10, wx = wy = w3 = λ/300, Zx = 1

jωCx
, Cx = 0.15 pF, Zy = 1

jωCy
,

Cy = 0.2 pF, Z3 = jωL3, L3 = 6 nH. The angle of incidence is [θ, φ] = [π/6,−π/6].
Analytical results from (5.49) and simulation data are reported in Fig. 5.7(d) when the
frequency of the impinging wave ranges from 6 to 14 GHz.

Finally, the sliced patch (Fig. 5.6(b)) is examined at a frequency of 10 GHz with the
following parameters: d = λ/10, l = λ/8, wx = wy = λ/300, w3 = λ/250. The angle
of incidence is [θ, φ] = [π/6, π/3]. Fig. 5.7(e) shows the analytical results from (5.54) and
the corresponding simulation data when the sliced angle φm ranges from 0 to π.

In all the examined cases, close agreement between analytical results and simulation
data is observed. This confirms the validity of the analysis of the skewed and three-branch
geometries, as well as the interpolation procedure used to model the sheet impedance of
the sliced rectangle. As can be seen from Fig. 5.7, the examined unit cells can achieve a
wide range of impedances, making them suitable for a variety of applications.

Cascaded metasurfaces consist of multiple metallic claddings, separated by thin dielec-
tric substrates [52]. In this case, the technique presented in [99] can be used to find the
approximate sheet impedance of a cladding in the presence of a dielectric substrate.

The models presented in this chapter are limited to claddings consisting of subwave-
length unit cells formed by PEC strips or patches. Fig. 5.8(a) investigates the agree-
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Figure 5.8: Numerical results for (a) a sliced rectangle under normal incidence and (b) a
sliced rectangle under oblique incidence. The lines correspond to analytical data, while the
dots correspond to simulation results.

ment between analytical and simulation data when the unit cell size becomes an appre-
ciable fraction of the wavelength. Specifically, a sliced rectangle with d = l = 3 mm,
wx = wy = w3 = 0.15 mm, φm = π/6 under normal incidence ([θ, φ] = [0, 0]) is ex-
amined. When the unit cell size exceeds half the wavelength, the discrepancy between
analytical and simulation data becomes observable. The same unit cell is simulated under
oblique incidence: [θ, φ] = [π/4, 0]. The results are shown in Fig. 5.8(b). In this case, the
discrepancy between analytical and simulation data becomes observable when the unit cell
size exceeds 0.35λ. The sheet impedance of larger unit cells can be found using the MoM
procedure presented in Sec. 5.3 and 5.5. If the conductors have finite conductivity, a sheet
resistance can be included into the MoM formulation.

5.8 Asymmetric linear polarizer

The analytical models developed previously are used to design an asymmetric linear
polarizer under oblique incidence. As shown in Fig. 5.9, an asymmetric linear polarizer
has the following functionalities [53]:

• transmits TM-polarized plane waves from side 1 and converts them to TE-polarized
plane waves on side 2, and
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Figure 5.9: The asymmetric linear polarizer: (a) transmits x̂-polarized plane waves from
side 1 and converts them to ŷ-polarized plane waves in side 2, and (b) reflects ŷ-polarized
plane waves from side 1.

• reflects TE-polarized plane waves from side 1.

Using the technique presented in [53], an asymmetric linear polarizer was designed
using three sheets for an angle of incidence (θ, φ) = (45◦, 0) at 10 GHz. With reference to
Fig. 5.10, the required sheet impedances are:

η1 =

[
−256.61 0

0 0

]
jΩ, η2 =

[
44.52 −50.28

−50.28 44.52

]
jΩ, η3 =

[
0 0

0 −256.61

]
jΩ. (5.56)

The sheets are separated by substrates with thicknesses:

t1 = t2 = 1.47 mm, (5.57)

and dielectric constants:

εr1 = εr2 = 9.8. (5.58)

Rogers TMM® 10, with a dielectric constant of 9.8, is a suitable choice to realize the
two spacers. This set of parameters leads to the S-parameters of the cascaded metasurface
to be:
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Figure 5.10: A three-layer metasurface consisting of three cascaded sheets and two dielec-
tric slabs implements an asymmetric linear polarizer under oblique incidence.

S11 = ej0

[
0 0

0 −1

]
, S21 = ej0

[
0 0

j 0

]
, S22 = ej0

[
−1 0

0 0

]
. (5.59)

Port 1 is placed to the left of Fig. 5.10, while port 2 is to the right. Each port supports
both x̂ and ŷ polarizations.

The design process is verified through simulation in ANSYS Electronics Desktop.
Specifically, the sheet impedance, permittivity and thickness values are used to implement
an asymmetric linear polarizer under oblique incidence at 10 GHz. The sheet impedances
are modeled as ideal anisotropic impedance boundary conditions, while the dielectric slabs
are modeled as lossless dielectric blocks. The electric field when the metasurface is illumi-
nated with an obliquely incident TM plane wave is shown in Fig. 5.11(a). Full transmission
and conversion from TM to TE are observed. The electric field when the metasurface is
illuminated with a TE plane wave is shown in Fig. 5.11(b). Full reflection is observed. The
S-parameters from simulation are:

S =


Sxx11 Sxy11 Sxx12 Sxy12

Syx11 Syy11 Syx12 Syy12

Sxx21 Sxy21 Sxx22 Sxy22

Syx21 Syy21 Syx22 Syy22

 = ej0


0 0 0 j

0 −1 0 0

0 0 −1 0

j 0 0 0

 . (5.60)

The metasurface is implemented using patterned metallic claddings with 4 × 4 mm2

unit cells. Sheets 1 and 3 are simply rotated (by 90◦) versions of each other. Sheet 1 is
capacitive in x̂ and presents a short in ŷ. A simple way to achieve this is by using a unit
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(a) (b)

Figure 5.11: The asymmetric linear polarizer simulated in ANSYS Electronics Desktop
using ideal anisotropic impedance boundary conditions and lossless dielectric blocks: (a)
TM-polarized plane waves from the top are transmitted and converted to TE-polarized
plane waves on the bottom side, and (b) TE-polarized plane waves incident from the top
side are reflected.
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(a) (b)

Figure 5.12: Sheets (a) 1, and (b) 3 of the asymmetric linear polarizer implemented with
patterned metallic sheets. The unit cell measures 4×4 mm2, and the strip is 2.45 mm wide.

cell that contains a metallic strip of appropriate width, as shown in Fig. 5.12(a). According
to the equations presented in [99], a strip with width 2.36 mm is needed. From full-wave
simulations, a width of 2.45 mm yields optimal performance. Sheet 3 is shown in Fig.
5.12(b).

Sheet 2 should exhibit a full tensorial sheet impedance. The three-branch unit cell is
chosen to implement sheet 2. With reference to Fig. 5.5, the following parameters are used:

wx = 0.34 mm, wy = 0.4 mm, w3 = 0.28 mm, l = d = 4 mm,

Zx = 0, Zy = 0, Z3 = 1/(jωC3), C3 = 0.11 pF.
(5.61)

The capacitor along the diagonal strip is implemented using two gaps, as shown in Fig.
5.13(a). The implementation of all three sheets of the metasurface is shown in Fig. 5.13(b).
Fig. 5.14(a) presents the reflection and transmission coefficients of the metasurface as a
function of frequency. Its bandwidth is from 8 to 10.4 GHz. As prescribed, incident TM
plane waves are converted to TE plane waves, while incident TE plane waves are reflected.
Fig. 5.14(b) shows the transmission and reflection coefficients as a function of the angle of
incidence, θ. The dependence of the metasurface’s performance on the angle of incidence
is negligible up to an angle of 80◦.
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(a) (b)

Figure 5.13: (a) Sheet 2 of the asymmetric linear polarizer implemented with a patterned
metallic sheet. A three-branch unit cell with the parameters in (5.61) is used. (b) The
complete asymmetric linear polarizer metasurface.

8 8.5 9 9.5 10 10.5 11 11.5 12

Frequency (GHz)

-30

-25

-20

-15

-10

-5

0
Reflection/Transmission Coefficients @ =45° (dB)

Reflected TM

Transmitted TM  TE

Reflected TE

(a)

0 10 20 30 40 50 60 70 80

Polar angle,  (°)

-30

-25

-20

-15

-10

-5

0
Reflection/Transmission Coefficients @ f=10 GHz (dB)

Reflected TM

Transmitted TM  TE

Reflected TE

(b)

Figure 5.14: The transmission and reflection coefficients of the asymmetric linear polarizer
obtained through simulation in ANSYS Electronics Desktop as a function of (a) frequency,
and (b) angle of incidence.
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Figure 5.15: (a) The polarization rotator changes the direction of the electric field of a
normally incident plane wave by 90◦ upon transmission. (b) A four-layer metasurface con-
sisting of four cascaded sheets and three dielectric slabs implements a polarization rotator
under normal incidence.

5.9 Polarization rotator

The second metasurface synthesis example pertains to the design of a polarization rotator,
operating under normal incidence at 10 GHz. Its function is shown in Fig. 5.15(a). The
polarization of the incident wave on side 1 is rotated by 90◦ upon transmission to side 2.

Using the technique presented in [53], a polarization rotator can be realized with four
sheets for angles of incidence (θ, φ) = (0, 0) at 10 GHz. With reference to Fig. 5.15(b),
the required sheet impedances are:

η1 =

[
−80.00 −40.00

−40.00 −80.00

]
jΩ, η2 =

[
−100.04 −49.99

−49.99 −100.04

]
jΩ,

η3 =

[
−100.04 −44.64

−44.64 −329.52

]
jΩ, η4 =

[
−34.41 0

0 50.17

]
jΩ.

(5.62)

The sheets are separated by substrates with thicknesses:

t1 = 1.39 mm, t2 = 4.28 mm, t3 = 1.63 mm, (5.63)

and dielectric constants:
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(a) (b)

Figure 5.16: The polarization rotator simulated in ANSYS Electronics Desktop using ideal
anisotropic impedance boundary conditions and lossless dielectric blocks: (a) x̂-polarized
plane waves are transmitted and converted to ŷ-polarized plane waves, and (b) ŷ-polarized
plane waves are transmitted and converted to x̂-polarized plane waves.

εr1 = 5.24, εr2 = 2, εr3 = 10. (5.64)

This set of parameters results in the following S-parameters for the cascaded metasur-
face:

S11 =

[
0 0

0 0

]
,S21 = ejπ

[
0 −1

1 0

]
,S22 =

[
0 0

0 0

]
. (5.65)

The electric field resulting from the metasurface being illuminated with a normally
incident, x̂-polarized plane wave is shown in Fig. 5.16(a). Full transmission and conversion
from x̂ to ŷ-polarization are observed. The electric field resulting from a ŷ-polarized plane
wave illumination is shown in Fig. 5.16(b). Full transmission and conversion from ŷ to
x̂-polarization are observed.

Sheets 1 and 2 of the polarization rotator possess a capacitive sheet impedance with
equal diagonal components. As a result, the complementary of the three-branch unit cell (a
sliced patch unit cell with φm = ψ) is the most suitable geometry to implement these two
sheets. The 6× 6 mm2 unit cells for Sheets 1 and 2 are shown in Fig. 5.17(a) and 5.17(b),
respectively.

The parameters for Sheet 1 are:

wx = wy = 0.19 mm, w3 = 0.25 mm, φm = ψ. (5.66)
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The parameters for Sheet 2 are:

wx = wy = 0.48 mm, w3 = 0.33 mm, φm = ψ. (5.67)

Sheet 3 of the polarization rotator possesses a capacitive sheet impedance with unequal
diagonal components. As a result, a sliced patch unit cell is the most suitable geometry to
implement this sheet. It is shown in Fig. 5.17(c). The parameters for Sheet 3 are:

wx = 0.78 mm, wy = 2.07 mm, w3 = 1.35 mm, φm = 2.91 rad. (5.68)

Sheet 4 possesses a sheet impedance with zero off-diagonal values. An orthogonal grid
loaded with a capacitor (gap) in the x̂-direction is the most suitable geometry to implement
this sheet. It is shown in Fig. 5.17(d). The parameters for Sheet 4 are:

wx = 1.26 mm, wy = 2.10 mm. (5.69)

The implementation of all four sheets of the metasurface is shown in Fig. 5.18. Fig.
5.19(a) presents the reflection and transmission coefficients of the metasurface as a function
of frequency. The metasurface is illuminated with a normally incident x̂-polarized plane
wave (ϕ = 0 with reference to Fig. 5.15(a)). As a result, co-pol refers to x̂-polarization,
while x-pol (cross polarization) refers to ŷ-polarization. It can be seen that the incident
wave gets entirely transmitted and converted to x-pol, while the co- and x-pol reflections,
as well as the co-pol transmission, are negligible.

Fig. 5.19(b) presents the reflection and transmission coefficients of the metasurface as
a function of azimuthal angle, ϕ, at 10 GHz. The polarization of the incident plane wave
is rotated to verify that the metasurface operates as a polarization rotator, as intended. The
transmitted co-pol is always close to 0 dB, while the co- and x-pol reflections, as well as
the co-pol transmission, are below −15 dB.

5.10 Chapter Summary

In this chapter, the sheet impedances of general-purpose tensor metasurface geometries
were found analytically. The subwavelength size of the examined unit cells allowed for
simple, yet accurate expressions for the sheet impedance. Specifically, three unit cells were
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(a) (b)

(c) (d)

Figure 5.17: Sheets (a) 1, (b) 2, (c) 3, and (d) 4 of the polarization rotator metasurface
implemented with patterned metallic sheets using 6× 6 mm2 unit cells.
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Figure 5.18: The complete polarization rotator metasurface.
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Figure 5.19: The transmission and reflection coefficients of the polarization rotator ob-
tained through simulation in ANSYS Electronics Desktop as a function of (a) frequency,
and (b) azimuthal angle, ϕ (see Fig. 5.15(a)).
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examined under arbitrary incidence. These included the skewed unit cell, the three-branch
unit cell and the sliced rectangle. Expressions for variations of these unit cells, namely
loaded and complementary ones, were also reported. The derived models were compared
to full-wave simulations and close agreement was observed. Two metasurfaces, an asym-
metric linear polarizer and a polarization rotator, operating at 10 GHz were designed to
showcase the usefulness of the geometries analyzed.

The present work is expected to expedite the design of metasurfaces, where researchers
are constantly tasked with relating electrical properties to realizable geometries. Claddings
with homogeneous or inhomogeneous full tensorial impedances can now be designed an-
alytically for arbitrary incidence, reducing the needed number of full-wave simulations.
The proposed geometries can achieve a wide range of impedances and provide flexibility
when fabrication or bandwidth issues need to be addressed. Although the primary motiva-
tion behind this work was the implementation of claddings for metasurfaces, the analyzed
geometries can be used in any application that requires patterned metallic claddings, such
as printed-circuit tensor impedance surfaces, leaky wave antennas, frequency selective sur-
faces and high-impedance surfaces.
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CHAPTER 6

Conclusion

6.1 Summary of Contributions and Future Work

In this thesis, various methods for manipulating electromagnetic fields were presented. The
techniques outlined here covered a wide spectrum of applications, ranging from the reactive
near field to the far field. A summary of the contributions is given in this chapter for each
topic discussed. Potential future directions that are relevant to this work are also given.

6.1.1 Electrically Small Antennas

In Chapter 2, ESAs for compact IoT nodes were presented. These antennas must be care-
fully designed in order to maintain their performance in an adverse near-field environment.
Two elementary radiators were examined at the mm- and cm-scale: an electric dipole (lin-
ear wire), and a magnetic dipole (loop). It was found that although electric dipoles are
more efficient than magnetic dipoles standalone. However, when the losses in the required
matching components are taken into account, magnetic dipoles are overall more efficient.

Knowing that magnetic dipoles are better suited for compact IoT nodes, we developed
a new class of magnetic dipoles, called 3D loops. By taking advantage of the height of the
antenna, we were able to produce a design that has two solid metal planes that can be used
by other components of the system as ground planes. The presence of the metal planes
isolates the antenna from those components, and helps maintain its efficiency. These 3D
loops were used in two practical systems that were developed in collaboration with other
groups at the University of Michigan: an ISM band transceiver, and a GPS receiver.

These antennas, together with the integrated chips driving them, are slated to be used
in upcoming systems that transmit images or audio. A potential direction for future work
includes the fabrication of the antennas with the rest of the PCBs in the system in a sin-
gle, multilayer design. This would improve their connection, both electrically as well as
mechanically.
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The applications that this antenna was designed for are inherently narrowband, so the
antenna bandwidth was not a concern. It would be interesting to investigate whether any
modifications could be made to the antenna in order to improve its bandwidth. This could
potentially make it a good candidate for applications that require more bandwidth, such as
the transmission of video.

6.1.2 Nondiffracting Waves

Significant advancements were presented in the field of nondiffracting waves, which exist
in the radiative near field.

In Chapter 3, a broadband Bessel beam radiator based on refractive optics was outlined.
The principle of operation, based on the refraction and reflection of rays within a homo-
geneous dielectric region, was explained. The device’s ability to generate Bessel beams
over a broad bandwidth was verified in simulation. Measurements on a fabricated proto-
type confirmed the simulation results. Using both frequency and time domain experimental
data, it was shown that the device can generate X waves. These are short localized pulses
that do not diffract or disperse as they propagate in the radiative near field. This was the
first demonstration of X waves in the microwave region where the fields and pulses were
thoroughly measured.

In Chapter 4, a Bessel beam radiator using a metamaterial region to bend the rays of
an electric monopole was presented. The design procedure, based on QCTO, was out-
lined, and verified through simulation results. A design procedure based on metamaterial
synthesis was employed to implement the device using rotationally symmetric unit cells.
Simulation results confirmed the validity of this approach. Experimental results from a
fabricated prototype were presented, showing good agreement with those obtained through
simulation. Using simulation and experimental data, it was shown that the device is capable
of generating X waves in its radiative near field.

The are multiple future directions that could be explored based on this research. One
could investigate other techniques of generating Bessel beams, including flat radiators that
would occupy less space. Techniques to enhance the bandwidth could also be studied, such
as the incorporation of a feed with broader bandwidth, or by changing the materials used.
As a result, the device would be able to radiate even shorter pulses. The advancement of
novel fabrication techniques, e.g. ceramic stereolithography, could provide an alternate
path of realizing devices like the ones presented here.

The work in this thesis filled a void in the experimental demonstration of exotic beams
and pulses that until recently were treated in a theoretical framework. This opens up a new
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range of possibilities in the experimental demonstration of other interesting phenomena,
such as Y waves or Frozen waves.

6.1.3 Metasurfaces

Chapter 5 presented analytical models for the sheet impedance tensor of various unit cells
used in metasurfaces. An MoM procedure served as the starting point for the analysis of
unit cells consisting of intersecting metallic strips. By increasing the convergence of the
method, a single harmonic was shown to be sufficient. As a result, analytical expressions
were obtained for the skewed unit cell and the three-branch unit cell under arbitrary inci-
dence. The effect of loading these unit cells with lumped components was also studied.
Complementary structures were treated through the use of Babinet’s principle in tensorial
form. A related geometry, the sliced patch, was modeled through interpolation. The ana-
lytical results were compared to those obtained from simulation and excellent agreement
was observed in the long wavelength limit.

To show the utility of the analytical expressions, the developed models were then used
to design two metasurfaces at 10 GHz: an asymmetric linear polarizer, and a polarization
rotator. The asymmetric linear polarizer converts TM waves to TE ones, while it reflects TE
waves. It was implemented using three sheets. The outer sheets were identical apart from a
90◦ rotation between them. The middle sheet was implemented using a capacitvely-loaded
three-branch unit cell. The polarization rotator was realized using four sheets. Three of the
sheets were implemented using the sliced patch unit cell, while the fourth sheet consisted
of a capacitvely-loaded orthogonal grid. Simulation results verified the performance of the
designs.

A large range of metasurfaces can be designed using the models introduced in this
work. Even though the design examples were both at 10 GHz, the models can be used
to realize an arbitrary sheet impedance and are valid as long as one operates in the long
wavelength limit. Additional geometries could be investigated analytically to provide even
more options for designers. One could also incorporate techniques that take into account
the plasmonic nature of metals at higher frequencies, to make them suitable for use even at
optical frequencies.

The patterned metallic sheets modeled here could also be used in applications outside
of metasurfaces. Leaky wave antennas, high impedance surfaces, absorbers or reflectarrays
that often use inhomogeneous patterned sheets would serve as prime candidates. The an-
alytical models can describe the frequency or angular response of these devices, reducing
the need for time- and resource consuming simulations.
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APPENDIX A

Comparison between Bessel and Gaussian beams

In this Appendix, Bessel and Gaussian beams are compared in terms of how effectively
they can transfer power from a transmitting (radiating) aperture to a receiving one. This is
a rather complex problem when treated thoroughly [115, 116]. Here, the aim is to demon-
strate that Bessel beams can outperform Gaussian beams under certain circumstances, mak-
ing their study worthwhile.

The following assumptions are made in this comparison of Bessel and Gaussian beams

• The operating frequency is 10 GHz.

• The transmitting and receiving apertures are ρmax = 0.05 m in radius, centered along
the ẑ-axis. The transmitting aperture is placed at z = 0 and the field outside of it is
assumed to be 0. The two apertures are identical in terms of the fields they support.

• The Bessel beam has cone angle θ = 13.27◦, with a linearly polarized tangential
electric field that follows a J0(k0sinθρ) distribution, where k0 is the wavenumber in
free space. The cone angle has been chosen so that the first zero of the Bessel beam
coincides with ρ = ρmax. The nondiffracting range extends to zmax = 0.212 m.

• The Gaussian beam is focused (exhibits smallest waist) at the transmitting aperture.
The waist radius is set to w0 = 0.425ρmax, so that the field at the edge of the aperture
is almost 0 (−48 dB).

The electric field (Ex) profiles of the two beams are plotted in Fig. A.1(a).
To assess the coupling between the identical transmitting and receiving apertures, the

following reaction integral is calculated [57, 115]:

< aRb >=
|
˜
S
~H21(z) · ~M2dS|2

16P 2
1

, (A.1)
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(a) (b)

Figure A.1: (a) The electric field (Ex) profiles for the two beams on the radiating aperture
as a function of ρ. (b) The reaction integral in (A.1) for the two beams as a function of z.

where ~H21 is the magnetic field generated by the transmitting aperture at the receiving
aperture, ~M2, is the magnetic current distribution on the receiving aperture, and P1 is the
transmitted power.

The magnetic field generated by the transmitting aperture at the receiving one, ~H21(z) =

H21x(z)x̂+H21y(z)ŷ, is calculated using the Fourier transform method [57].
The magnetic current distribution, ~M2, is calculated as

~M2 = −2 n̂× ~E2
n̂=−ẑ

= 2 ẑ × ~E2 = 2 ẑ × (E2xx̂+ E2yŷ) = 2(E2xŷ − E2yx̂), (A.2)

where E2x and E2y are the cartesian components of the electric field of the receiving aper-
ture.

The transmitted power is found by integrating the Poynting vector on the transmitting
aperture

P1 =

¨
S

1

2
<{E1xH

∗
1y − E1yH

∗
1x}dS. (A.3)

The result of the reaction integral in (A.1) as a function of z is plotted in Fig. A.1(b).
It can be seen that the Bessel beam performs better than the Gaussian beam in this case,
given that it can deliver more power to the receiving aperture.
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The evolution of a uniform spectrum pulse between 5 and 15 GHz emitted by the Bessel
aperture at t = 10 ns is shown in Fig. A.2(a-d) at t = 10.1, 10.3, 10.5, and 10.7 ns,
respectively. The evolution of an identical pulse emitted by the Gaussian aperture is shown
in Fig. A.2(e-h) at the same four times. The maximum value of the two pulses is plotted in
Fig. A.3 as a function of time. The pulse emitted by the Bessel aperture has approximately
twice the amplitude of the pulse emitted by the Gaussian aperture at t = 10.7 ns, when the
pulses reach the nondiffracting range of the Bessel aperture (zmax = 0.212 m).

The pulse size as a function of time is calculated for each pulse as

∆A(t) =

´
z

´
ρ
|Ex(ρ, z, t)|2dρdz
|Ex,max(t)|2

. (A.4)

A smaller pulse size corresponds to a higher spatial confinement of the pulse. The pulse
size is plotted in Fig. A.4 for the Bessel and Guassian pulses. The Bessel pulse exhibits a
smaller pulse size for t > 10.15 ns.
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Figure A.2: (a-d) The evolution of the pulse emitted by the Bessel aperture observed at
t = 10.1, 10.3, 10.5, and 10.7 ns, respectively. (e-h) The evolution of the pulse emitted by
the Gaussian aperture observed at t = 10.1, 10.3, 10.5, and 10.7 ns, respectively.
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Figure A.3: The maximum value of the electric field amplitude of the two pulses emitted
by Bessel and Gaussian apertures as a function of time.

Figure A.4: The size of the two pulses emitted by Bessel and Gaussian apertures as a
function of time.
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APPENDIX B

Shape of Emitted Pulse

The wave function describing the longitudinal electric field (Ez) of the X wave is [13]

χ(ρ, z, t) =

ˆ ∞
−∞

F (k0)J0 (k0sinθ2ρ) ejk0(ct−cosθ2z)dk0. (B.1)

If the spectrumF (k0) is assumed to be uniform for wavenumbers in the interval (k0,min, k0,max)

and zero otherwise, the wave function of the ideal X wave at t = 0 becomes

χid(ρ, z) =

ˆ k0,max

k0,min

J0 (k0sinθ2ρ) e−jk0cosθ2zdk0. (B.2)

The intensity of the ideal X wave |χid(ρ, z)|2 for (k0,min, k0,max) = (0, 2π 29GHz/c) is
plotted along the y = 0 plane in Fig. B.1(a). The X wave is centered around z = 0.35 m
and has θ2 = 23◦ to be comparable to the measured X wave which is presented later. The
ideal X wave exhibits the expected X shape.

In Fig. B.1(b), the intensity of an X wave limited to the

(k0,min, k0,max) = (2π 19GHz/c, 2π 29GHz/c) (B.3)

range is shown. This range corresponds to the experimentally measured bandwidth of the
Bessel beam radiator. Simply by limiting the lower frequency of the X wave, a significantly
different shape is observed. The longitudinal extent of the X wave has broadened due to
the limited bandwidth, and the characteristic X signature is no longer visible.

As shown in [73], dispersion degrades the confinement of X waves. In the current
framework, dispersion describes the dependence of the axicon angle, θ2, on frequency. The
axicon angle of the Bessel beam radiator, based on measured data along the z = 0.325

m plane (Fig. 4(e-h) of main text), is presented in Fig. B.1(c). Only a ∼ 2◦ variation in
the axicon angle is observed within the bandwidth of operation. As a result, the radiator
exhibits very little dispersion. Incorporating dispersion into the expression for the X wave
yields the wave function
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Figure B.1: (a) Ideal X wave with θ2 = 23◦ (0 - 29 GHz), (b) X wave with limited band-
width (19 - 29 GHz), (c) axicon angle of Bessel beam radiator as a function of frequency,
(d) X wave produced by an an aperture exhibiting the dispersion of the Bessel beam ra-
diator, (e) X wave produced by a Gaussian aperture with ∆ρ = 33 mm, and (f) X wave
calculated using the experimentally captured data. All X waves are plotted along the y = 0
plane.
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χdis(ρ, z) =

ˆ k0,max

k0,min

J0 (k0sinθ2(k0)ρ) e−jk0cosθ2(k0)zdk0. (B.4)

Using the dispersion function in Fig. B.1(c), the intensity of a dispersive, bandwidth
limited X wave is plotted in Fig. B.1(d). Due to the minimal dispersion exhibited by the
Bessel beam radiator, the difference between the dispersionless (Fig. B.1(b)) and dispersive
(Fig. B.1(d)) X waves is insignificant.

So far in (B.1)-(B.4), only X waves produced by infinite apertures have been examined.
In reality, the radiating aperture is finite. Such an aperture produces Bessel beams over a
finite region, which reduces the transversal extent of the X wave. This can be approximated
mathematically by assuming a Gaussian apodization function

χfin(ρ, z) =

ˆ k0,max

k0,min

J0 (k0sinθ2(k0)ρ) e−ρ
2/(2∆ρ2)e−jk0cosθ2(k0)zdk0. (B.5)

The intensity of the X wave produced by a finite aperture with ∆ρ = 33 mm is depicted
in Fig. B.1(e). The transversal extent has been significantly reduced compared to the
X wave of Fig. B.1(d). However, the region of higher intensity close to the z-axis is
unaffected, resulting in a more bulletlike pulse.

The evolution of the X wave using the experimentally measured Ez along the y = 0

plane is calculated as

Ez(ρ, z, t) =

Nf∑
i=1

Ez(ρ, z, ωi)e
jωit, (B.6)

where ω1 = 2π 19 GHz and ωNf
= 2π 29 GHz. The intensity of the X wave (computed

using the experimental data) is shown in Fig. B.1(f). The similarity between the dispersive,
bandwidth limited X wave emitted from a finite aperture in Fig. B.1(e) and the one based
on measured data in Fig. B.1(f) is evident.
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APPENDIX C

Time Domain Measurements

Time domain measurements of the Bessel beam radiator based on refractive optics were
performed at the U.S. Naval Research Laboratory (NRL) by Scott Rudolph and Victor
Mendez.

A block diagram of the experimental setup that is used for these measurements is pre-
sented in Fig. C.1(a). An arbitrary waveform generator (AWG) creates a sub-nanosecond
pulse with a 7 GHz bandwidth, centered around 5.5 GHz. The output of the AWG is fed
into the intermediate frequency (IF) port of a triple balanced mixer. A signal generator is
used at the local oscillator (LO) port of the mixer, providing it with a 20 GHz LO frequency.
The signal generator’s sync signal serves as the trigger for the AWG. The mixer’s output
goes through a section of WR28 waveguide which acts as a bandpass filter (21.081-42.154

GHz). The output of the waveguide goes through a 10 dB directional coupler and a low
noise amplifier (LNA). The signal at output of the LNA excites the Bessel beam radiator.

The signal generated by the Bessel beam radiator is received by a coaxial probe mounted
on a 3D positioner, as shown in Fig. C.1(b). The probe is moved within a 0.25 x 0.25 x 0.35

m3 volume in increments of 2.5 mm in the x- and y-directions and in increments of 5 mm
in the z-direction. Absorbing material covers the base of the probe to reduce the scattering
it causes.

The signal that serves as the input to the LNA and the signal received on the probe are
captured on the oscilloscope at multiple points along the y = 0 plane. The transfer function
at each of these points is calculated by dividing the Fourier transform of the output signal
at that point with the Fourier transform of the corresponding input signal. The frequency
spectrum of the sub-nanosecond pulse presented in the main text is then multiplied with the
transfer function of each point. This yields the frequency domain spectrum at each point
when the radiator is excited by a uniform spectrum pulse. An inverse Fourier transform
is applied to this spectrum, resulting in the time domain response at each point along the
y = 0 plane.
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Figure C.1: Measurement setup used to obtain the time domain results presented in the
main text: (a) the block diagram, and (b) a picture of the radiator and the coaxial probe
mounted on the translation stage.
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APPENDIX D

Mathematical Quantities

The D quantities in (5.39) are

DI
n =

jη0

2k0

(
k2

0 − k2
x,n

)∑
u

e−(Gnu+jkz)rx

dGnu

DII
nu =

jη0

2k0

kx,nky,u
e−(Gnu+jkz)rx

l Gnu

DIII
ns =

jη0

2k0

∑
u

[
lk2

0 − lk2
3,s − dk3,s

(
2π
u

t
+ k′3

)]
e−(G′su+jkz)rx

t hG′su
sinc

(
s
l2

h2
+ u− n

)
DIV
g =

jη0

2k0

(
k2

0 − k2
y,g

)∑
s

e−(Gsp+jkz)ry

l Gsg

DV
gs =

jη0

2k0

ky,gkx,s
e−(Gsg+jkz)ry

dGsg

DVI
gu =

jη0

2k0

∑
s

[
dk2

0 − dk2
3,u + lk3,u

(
2π
s

t
+ k′3

)]
e−(G′us+jkz)ry

t hG′us
sinc

(
u
d2

h2
− s− g

)

DVII
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jη0

2k0

(
k2

0 − k2
3,b
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u
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tG′bu

DVIII
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jη0
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)
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DIX
bu =

jη0

2k0

∑
s

(
dk2

0 − dk2
y,u − lkx,sky,u

)
e−(Gsu+jkz)r3

l hGsu
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and H.-P. Lipp, “A GPS logger and software for analysis of homing in pigeons and
small mammals,” Physiology & Behavior, vol. 71, no. 5, pp. 589–596, 2000.

[62] i-Blue 747 GPS data logger. [Online]. Available: http://www.gvglobaltech.com/
747spec.html

[63] W. McKinzie, “A modified Wheeler cap method for measuring antenna efficiency,”
in 1997 IEEE Antennas and Propagation Society International Symposium, 1997
Digest, vol. 1. IEEE, 1997, pp. 542–545.

[64] Propagation data and prediction methods for the planning of indoor radiocommu-
nication systems and radio local area networks in the frequency range 300 MHz to
100 GHz, ITU-R Std. P.1238-9, 2015.

[65] D. Micheli, A. Delfini, F. Santoni, F. Volpini, and M. Marchetti, “Measurement of
electromagnetic field attenuation by building walls in the mobile phone and satel-
lite navigation frequency bands,” IEEE Antennas and Wireless Propagation Letters,
vol. 14, pp. 698–702, 2015.

131

http://www.gvglobaltech.com/747spec.html
http://www.gvglobaltech.com/747spec.html


[66] M. Farwell, J. Ross, R. Luttrell, D. Cohen, W. Chin, and T. Dogaru, “Sense through
the wall system development and design considerations,” Journal of the Franklin
Institute, vol. 345, no. 6, pp. 570–591, 2008.

[67] C. D. Taylor, S. J. Gutierrez, S. L. Langdon, K. L. Murphy, and W. A. Walton,
“Measurement of RF propagation into concrete structures over the frequency range
100 MHz to 3 GHz,” in Wireless Personal Communications. Springer, 1997, pp.
131–144.

[68] J. L. Bohorquez, A. P. Chandrakasan, and J. L. Dawson, “A 350µW CMOS MSK
transmitter and 400µW OOK super-regenerative receiver for medical implant com-
munications,” IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1248–1259,
2009.

[69] K. R. Sadagopan, J. Kang, S. Jain, Y. Ramadass, and A. Natarajan, “A 365nW -
61.5 dBm sensitivity, 1.875 cm2 2.4 GHz wake-up receiver with rectifier-antenna
co-design for passive gain,” in 2017 IEEE Radio Frequency Integrated Circuits Sym-
posium (RFIC). IEEE, 2017, pp. 180–183.

[70] H. Jiang, P.-H. P. Wang, L. Gao, P. Sen, Y.-H. Kim, G. M. Rebeiz, D. A. Hall, and
P. P. Mercier, “24.5 A 4.5 nW wake-up radio with -69dBm sensitivity,” in 2017 IEEE
International Solid-State Circuits Conference (ISSCC). IEEE, 2017, pp. 416–417.

[71] P. Saari and K. Reivelt, “Evidence of X-shaped propagation-invariant localized light
waves,” Physical Review Letters, vol. 79, no. 21, p. 4135, 1997.
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