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Abstract 

 

 

 Mammography is the current standard imaging method for detecting breast cancer by using 

x-rays to produce 2D images of the breast. However, with mammography alone there is 

difficulty determining whether a lesion is benign or malignant and reduced sensitivity to 

detecting lesions in dense breasts. Ultrasound imaging used in conjunction with mammography 

has shown valuable contributions for lesion characterization by differentiating between solid and 

cystic lesions. Conventional breast ultrasound has high false positive rates; however, it has 

shown improved abilities to detect lesions in dense breasts. Breast ultrasound is typically 

performed freehand to produce anterior-to-posterior 2D images in a different geometry (supine) 

than mammography (upright). This difference in geometries is likely responsible for the finding 

that at least 10% of the time lesions found in the ultrasound images do not correspond with 

lesions found in mammograms. To solve this problem additional imaging techniques must be 

investigated to aid a radiologist in identifying corresponding lesions in the two modalities to 

ensure early detection of a potential cancer.  

 This dissertation describes and validates automated deformable mapping methods to register 

and relate corresponding lesions between multi-modality images acquired using 3D 

mammography (Digital Breast Tomosynthesis (DBT) and dedicated breast Computed 

Tomography (bCT)) and 3D ultrasound (Automated Breast Ultrasound (ABUS)). The 

methodology involves the use of finite element modeling and analysis to simulate the differences 
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in compression and breast orientation to better align lesions acquired from images from these 

modalities. Preliminary studies were performed using several multimodality compressible breast 

phantoms to determine breast lesion registrations between: i) cranio-caudal (CC) and 

mediolateral oblique (MLO) DBT views and ABUS, ii) simulated bCT and DBT (CC and MLO 

views), and iii) simulated bCT and ABUS. Distances between the centers of masses, dCOM, of 

corresponding lesions were used to assess the deformable mapping method.  

 These phantom studies showed the potential to apply this technique for real breast lesions 

with mean dCOM registration values as low as 4.9 ± 2.4 mm for DBT (CC view) mapped to 

ABUS, 9.3 ± 2.8 mm for DBT (MLO view) mapped to ABUS, 4.8 ± 2.4 mm for bCT mapped to 

ABUS, 5.0 ± 2.2 mm for bCT mapped to DBT (CC view), and 4.7 ± 2.5 mm for bCT mapped to 

DBT (MLO view). All of the phantom studies showed that using external fiducial markers 

helped improve the registration capability of the deformable mapping algorithm. An IRB-

approved proof-of-concept study was performed with patient volunteers to validate the 

deformable registration method on 5 patient datasets with a total of up to 7 lesions for DBT (CC 

and MLO views) to ABUS registration. Resulting dCOM’s using the deformable method showed 

statistically significant improvements over rigid registration techniques with a mean dCOM of 11.6 

± 5.3 mm for DBT (CC view) mapped to ABUS and a mean dCOM of 12.3 ± 4.8 mm for DBT 

(MLO view) mapped to ABUS.  

 The present work demonstrates the potential for using deformable registration techniques to 

relate corresponding lesions in 3D x-ray and 3D ultrasound images. This methodology should 

improve a radiologists’ characterization of breast lesions which can reduce patient callbacks, 

misdiagnoses, additional patient dose and unnecessary biopsies. Additionally, this technique can 
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save a radiologist time in navigating 3D image volumes and the one-to-one lesion 

correspondence between modalities can aid in the early detection of breast malignancies.   
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Chapter 1  

Introduction 

 

 

1.1 Significance of Work  

 According to the most recent statistics, breast cancer accounts for 30% of all new cancer 

diagnoses in women and 1 in 8 women in the United States will develop breast cancer during 

their lifetime.1 Breast cancer incidence rose in the 1980s. This is largely attributed to the increase 

in breast cancers detected with the increase in mammography screening.1 A decline in breast 

cancer incidence was observed in the early 2000s. This is attributed to the reduction in the use of 

menopausal hormonal therapy, which was associated with an increase in breast cancer risks.2 

Breast cancer incidence has remained stable in the United States over the last decade.1 However, 

breast cancer has the second highest mortality rate behind lung cancer for women in the United 

States. Early detection and screening initiatives have been strongly encouraged in order to detect 

breast cancer while it is localized within the breast and therefore is the most treatable. Based on 

the National Cancer Institute’s Surveillance, Epidemiology and End Results (SEER) programs 

localized cancers that have not spread beyond the breast have a 99% 5-year relative breast cancer 

survival.3 This relative 5-year survival rate decreases to 85% if the cancer has spread to the 

neighboring lymph nodes. The 5-year relative survival rate decreases to 27% if the cancer cells 

have spread to other parts of the body by metastasis3. Therefore, in an effort to reduce breast
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 cancer mortality it is important to have effective medical diagnostic equipment available to aid 

in early diagnosis.  

 Mammography is the current standard imaging method for breast cancer screening and 

diagnosis. However, the benefits of screening mammography vary by age. Women between the 

ages of 50-69 have the greatest overall benefit of screening mammography for breast cancer 

detection and it was concluded by the U.S. Preventative Services Task Force (USPSTF) that 

mammography every 2 years has approximately the same benefit as mammography every year 

while reducing the associated risk.4 The USPSTF recommends mammography every two years 

for women between the ages of 50-69.5 For women between the ages of 40-49, the overall 

benefit is less than older women as various study findings vary.4,6 Women ages 40-49 have a 

lower overall risk for breast cancer and tend to have dense breast tissue which leads to a rise in 

false positive screening results in comparison to older women.7 For this reason, the USPSTF 

does not recommend routine mammography for women ages 40-49. 5 Instead, the USPSTF and 

the American College of Physicians recommend that women within this age group discuss the 

benefits and risks with their health care providers to make an informed decision regarding the 

start and frequency of mammography screening.5,8 For women over the age of 70, there are few 

studies and no randomized control trials to evaluate the benefits of mammography screening. 

The USPSTF recommends mammography for every 2 years for women between the ages of 70-

74. Currently, there isn’t enough evidence to recommend for or against routine mammography 

above the age of 75.5 Most major health organization, recommend that women over the age of 70 

continue to get screening mammograms on a regular basis as long as they are in good health.5,9 

 However, several studies have raised questions against the recommendations of the USPSTF 

as their recommendations neglect scientific evidence in regard to the mortality benefit of 
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mammography screening.10,11 A study by Hendricks and Helvie examined the evidence 

considered by the USPSTF and their results support mortality benefit to annual screening 

mammography for women over the age of 40, as the potential harms in screening are minor in 

comparison.10 Their study shows a 36.9% mortality reduction from using the annual screening of 

women between the ages of 40-84 which would save 71% more lives that the USPSTF 

recommendation which only had a 23.2% mortality reduction.10 A more recent study by 

Hendricks et al. further supports that screening mammography reduces the mortality rate by 

showing between 284,000-615,500 breast cancer deaths have been averted through the use of 

screening mammography since 1989.12 A study by Kopans also disagrees with the USPSTF 

guidelines and states there is no biological or scientific reason to delay mammography screening 

for women to the age of 50.11  

 Ultrasound imaging does not use ionizing radiation like mammography. Instead ultrasound 

imaging uses sound waves in order to produce images of the breast. Conventional ultrasound 

imaging is performed freehand in a different geometry (supine) than mammography (upright), 

which makes it difficult to relate corresponding images between the two modalities. False 

positive results are a problem when searching for secondary masses and the detection in high risk 

or screening populations with the use of conventional ultrasound. 13,14 A study by Conway found 

that at least 10% of the time, lesions found in ultrasound images do not correspond to those in 

mammography.15  

 Ultrasound imaging used in conjunction with mammography in diagnosis has improved the 

characterization of breast lesions because of its ability to differentiate between solid and cystic 

(fluid-filled) lesions. 16–18 A study by Wilczek et al. found that adding 3D automated breast 

ultrasound (ABUS) imaging as an adjunct to screening mammography has shown an increase in 
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cancer detection for women with extremely dense or heterogeneously dense breast tissue.19 A 

study by V. Giuliano and C. Giuliano found that mammography followed by ABUS in breast 

cancer screening resulted in increased sensitivity (76.0% to 97.7%) and increased specificity 

(98.2% to 99.7%) over screening using mammography alone.20 

 One solution to the problem of lesions found in ultrasound images not corresponding to 

those in mammograms is the development of a combined x-ray/ultrasound system that would 

image the breast in the same mammographic geometry using special modality compression 

paddles. A combined system addresses these problems by first taking a 3D digital x-ray image of 

the breast in the compressed mammography state and then to image using ultrasound by using 

the same compression with the use of high-frequency ultrasonic transducers (ranging from 9 – 15 

MHz) across a specialty dual- modality compression paddle. A dual x-ray/ultrasound system 

creates co-registered 3D x-ray and 3D ultrasound images in the same geometry and allows the 

potential for the use for advanced x-ray and ultrasound modes which provide additional 

information about breast tissues that are not currently available using conventional 

mammography and ultrasound.21–31  

 A study by Padilla et al. showed improved discrimination of malignant lesions when adding 

the 3D ultrasound to 3D x-ray images in an initial reader study using a dual system.26 However, 

there are challenges for automated ultrasound scanning in the mammographic geometry in a 

dual-modality breast imaging systems. These challenges include limited penetration depth and 

difficulty achieving good transducer coupling around the peripheral breast margins. A study by 

Sinha et al. found that an adhesive spray that preserves image quality worked best for coupling 

the breast to a solid TPX plastic compression paddle. This study also showed that this adhesive 

spray minimized motion and that a highly viscous ultrasound gel was most effective for 
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transducer coupling along the breast peripheral margins.21 A study by Li. et al., showed enhanced 

breast to paddle contact and a reduction in gaps along the breast peripheral margins using a gel 

detainment dam with the dual-modality breast imaging system.28 Lecarpentier et al. evaluated the 

ultrasound transmission properties of two dual modality mesh compression paddles.32 They 

found that by all measures, polyester mesh fabrics of 1 and 2 mm spacing outperformed the 

original solid TPX paddle. A study by Larson et al., compared the use of single-sided and dual-

sided ultrasound in the mammographic setup using a breast phantom and reported improvement 

using dual-sided ultrasound in image quality from a mean contrast-to-noise ratio of 57% (single-

sided ultrasound) to 79% (dual-sided ultrasound) and breast volume coverage from 59% (single-

sided ultrasound) to 89% (dual-sided ultrasound).33  

 The disadvantage to the previous methods described above is that all studies to date have not 

completely addressed issues of poor ultrasound transducer coupling along the breast periphery in 

the mammographic geometry. Additionally, a combined 3D x-ray/ultrasound system is not yet 

FDA approved or commercially available. An alternative to the combined system is to image the 

breast using a 3D x-ray modality (e.g. DBT or dedicated breast CT (bCT)) and then image the 

breast using an ABUS modality in their own respective geometries and then use a deformable 

mapping technique to relate corresponding lesions. This has the advantage of better acoustic 

coupling and improved breast coverage with ultrasound. However, this method has greater 

technical difficulty in relating corresponding lesions due to the differences in patient positioning 

and compression during image acquisition.   

 This thesis describes and validates novel automated deformable mapping methods to register 

lesions between 3D mammography (DBT and bCT) and 3D ultrasound (ABUS) breast image 

datasets. This method involves the use of finite element modeling and analysis to simulate the 
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differences in compression and breast orientation to better relate corresponding lesions between 

these modalities. This utilizes imaging equipment that is often already commercially available 

with small changes in current imaging protocols. Such a method should help simplify the time it 

takes a radiologist to review breast images and improve radiologist’s characterizations of breast 

lesions, which in turn should reduce patient callbacks, misdiagnoses, and negative biopsies. This 

method can also be especially beneficial for women with dense breasts or multiple breast lesions.  

1.2 Dissertation Outline 

 This dissertation serves as a detailed investigation of novel deformable mapping techniques 

to relate corresponding lesions between 3D x-ray (DBT, and simulated bCT) and 3D automated 

breast ultrasound images to address issues related to multimodality breast registration. These 

investigations have allowed the development of deformable mapping algorithms using breast test 

objects (phantoms) through extensive simulation using biomechanical modeling. Additionally, 

for DBT to ABUS registration, these algorithms are tested with clinical datasets. The body of 

this dissertational text is organized as follows:  

 Chapter 2: This chapter will provide background information of topics that provide a 

framework to this thesis. It will begin with a discussion of the breast anatomy and understanding 

the importance of breast density. Next, the imaging modalities that are used are further 

described, specifically looking at their differences in patient positioning and the use of 

compression during image acquisition. This chapter also looks at a preliminary study of an 

ultrasound camisole that was designed and tested to be used in ABUS imaging for the patient 

study discussed in Chapter 6. Lastly, this chapter will go over the fundamental principles of the 

FEM which is used as the primary tool for registration between lesions in modalities. 
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 Chapter 3: This chapter describes the development of a deformable mapping algorithm that 

uses the FEM to relate corresponding lesions between the DBT cranio-caudal (CC) view and a 

single ABUS view using two breast phantoms (test objects). This chapter provides the 

framework for all the deformable registration cases analyzed within this thesis. It compares the 

validity of this method using locational information from external fiducial markers to aid in the 

registration process. The results show up to 28% improvement in lesion registration with the use 

of external fiducial markers during registration analysis. 34 

 Chapter 4: This chapter extends upon the work in Chapter 3, by showing results of 

registering CC and medial lateral oblique (MLO) DBT views to an ABUS volume using the 

automated deformable registration algorithm. One compressible breast phantom with 20 

simulated lesions was used for this analysis. The results show improvements in registering 14 to 

17 corresponding lesions from the DBT (CC view) to ABUS and 9 to 17 registered lesions for 

the DBT (MLO view) to ABUS when external fiducial markers were employed in the analysis.35 

 Chapter 5: This chapter describes the development of an automated deformable mapping 

algorithm to register bCT images to DBT (CC and MLO views) and to register bCT images to 

ABUS images. This study uses the same compressible phantom from Chapter 4 that contains 20 

simulated lesions. The algorithm uses FEM to simulate plates that compress the bCT model to 

register to DBT (CC and MLO views) and ABUS views. Using external fiducial markers there 

was improvement up to 49% in the reduction in dCOM for bCT to ABUS registration, 57% 

improvement in the reduction in dCOM for bCT to DBT (CC) registration, and 40% improvement 

in the reduction in dCOM for bCT to DBT (MLO) registration.36 

 Chapter 6: This chapter describes an IRB-approved proof-of-concept validation study with 

patient image datasets containing known masses using the deformable registration techniques 
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described in Chapters 3 and 4. The deformable mapping algorithm is tested on 5 clinical data sets 

for DBT (CC and MLO) registration to ABUS. This study compares the deformable FEM-based 

registration using none or various external marker combinations (specific quantities and 

locations). The deformable results are compared to results from using a rigid registration. Results 

show up to 5 times improvement using the deformable method over rigid registration based on 5 

subjects with 13 total registrations. This study shows the superiority of the deformable 

registration technique to rigid registration and displays how the deformable registration 

algorithm can be translated for clinical use.   

 Chapter 7: This chapter summarizes the major findings, conclusions, and limitations of this 

dissertation. It discusses future works that include registration and stitching of multiple ABUS 

views for improvement in the deformable registration to ABUS images and the potential use of 

ultrasound tomography to DBT lesion registration.  
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Chapter 2  

Breast Imaging Acquisition and Finite Element Methodology 

 

 

 This chapter will give an overview of the breast imaging techniques and registration 

methods used within this thesis.  

2.1 Breast Anatomy and Density 

 

Figure 2.1 Schematic of adult female breast anatomy (figure used with permission from GE Healthcare37) 
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 Familiarity with breast anatomy is important to understand how the breasts’ various 

structural components (e.g. glands, skin, ligaments, fat and ducts) can affect the breasts’ shape 

during imaging positioning and while the breast is under compression. The breasts are located on 

the anterior portion of the chest (over the pectoralis major muscle) and are scientifically known 

as the mammary glands. The female breast is predominately composed of skin, lobules, ducts, 

adipose, and the connective tissue matrix. The glandular lobules and ducts used for milk 

secretion are surrounded by connective tissues. Each breast consists of 15-20 lobes that are 

separated by adipose (fatty) tissue. Each lobe constrains smaller compartments known as lobules. 

The lobules are composed of clusters of milk secretion glands known as alveoli within the 

connective tissue. Milk ducts attach to the glandular lobules. Milk ducts and the glandular 

lobules are typically referred to as fibroglandular tissue. Each breast has a nipple that is a 

pigmented projection on the exterior breast where milk is excreted from the body. The 

suspensory ligaments of the breasts (Cooper’s ligaments) run between the skin and breast fascia 

to add support for each breast. These ligaments tend to become looser as a woman ages. A 

schematic of the breast’s anatomy is shown in Figure 2.137. 
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Figure 2.2 BI-RADS breast density category examples from mammography (figure used with permission from GE 

Healthcare38) 

 Breast density is a measure of the amount of dense (glandular and fibrous) tissue volume to 

the total breast volume as seen on a mammogram.39 To have a higher concentration of 

fibroglandular tissues constitutes a dense breast. Currently, radiologists use the Breast Imaging 

Reporting and Data System, or BI-RADS40, to classify breast density into 4 major categories that 

go from breasts that are almost entirely comprised of fatty tissue to extremely dense breast tissue. 

Examples are shown in Figure 2.2. 38 For women with extremely dense breast the sensitivity of 

mammography is lowest for which an ultrasound examination provides higher sensitivity.  

  Breast density is one of the strongest predictors of breast cancer risk. Research now suggests 

that women with high breast density are 4-5 times more likely to develop breast cancer than 

women with low breast density.41,42 Although the sensitivity of mammography for detecting 

breast cancer is 85%, a study by Kolb et al. showed that for women with dense breast tissue 

mammography sensitivity is reduced to 47.8-64.6%.14 High breast density is very common and 

accounts for 40-50 percent of women in the U.S. population between ages 40-74.43 Dense breasts 
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are more common for younger women and higher breast density is higher among women of 

healthy weight than women who are obese.43 Additionally, cancer developed in women with 

dense breasts are typically associated with more aggressive tumor characteristics such as being 

larger in size, higher in grade, and estrogen receptor negative over breast masses found in fatty 

breasts. 42 

 Unfortunately, to date, there is not a consensus as to whether a specific modality or 

supplementary screening should be used for women with dense breasts. However, a medical 

provider may suggest additional types of breast imaging to be done from a suspicion in a 

screening mammogram. For women with dense breasts, supplementary screening can be 

beneficial for the diagnosis of breast cancer and usually involves using ultrasound. Therefore, a 

method would be needed to relate lesions between the x-ray and ultrasound modalities.  

2.2 Digital Breast Tomosynthesis  

 Digital breast tomosynthesis, DBT, is an advanced form of breast imaging and known as a 

3D form of digital mammography. In mammography, typically two 2D breast images, or 

mammograms, are taken of the breast during a screening exam. The breast is compressed 

between a plastic compression paddle and an imaging detector. There are several compression 

types, the two types that this thesis focuses on are known as the cranial-caudal (CC) and the 

medial lateral oblique (MLO) compressions. For CC compression, the detector and compression 

paddle are parallel to the floor and the compression paddle compresses the breast downward to 

the detector to produce a top-to-bottom view of the breast also known as the CC view. CC 

compression is shown in Figure 2.3(a). For MLO compression, the detector and compression 

paddle are angled to approximately 45º from the vertical and compresses the breast from the 
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medial to lateral breast margins. The MLO view incorporates imaging of the axillary and 

shoulder regions, and the pectoral muscle. MLO compression is shown in Figure 2.3(b).  

 

Figure 2.3 Examples of mammographic compression types of a breast mimicking test device for (a) cranio-caudal 

compression and (b) medial lateral oblique compression Note: The sheer fabric is typically not used on the detector 

plate during breast imaging 

 Breast compression is necessary to produce improved image quality and reduce the dose to 

the patient. However, since in mammography a single 2D image which can cause abnormal 

tissue to be hidden due to the superposition of tissues. In DBT imaging, the x-ray tube takes 

multiple projections while moving across a limited angled arc while the breast is compressed in 

the mammographic geometry. This allows multiple images of each breast to be taken at various 

angles as shown in Figure 2.444. These digital projections are reconstructed using computer 

algorithms to create quasi-3D images of the breast. These projections can help minimize tissue 

superposition and make it easier to distinguish lesions within images. Each reconstructed image 

slice shows a different depth within the breast which will show some breast structures in and out 

of focus. Due to the limited tomographic angle and the limited number of projections, structures 

that are out of focus typically generate artifacts in the axial direction in their neighboring 

reconstructed slices.   
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Figure 2.4 Schematic of image acquisition of a digital breast tomosynthesis imaging system (figure used with 

permission from Rodríguez-Ruiz et al.44) 

 DBT is able to locate cancers that are masked by the digital mammogram. Studies have 

shown a general decrease in recall rate and an increase in cancer detection with the addition of 

DBT to digital mammography.45–47 Additionally, DBT imaging has been shown to reduce recall 

rates and increase cancer detection rates over mammography in both screening and diagnostic 

uses for imaging women with dense breasts.48  

2.3  Dedicated Breast Computed Tomography  

     Dedicated breast computed tomography, bCT, is a new and emerging technology that unlike 

DBT provides complete 360º angle acquisition of the breast using cone-beam CT. In bCT, the 

patient lies prone (face-down on her stomach). One breast is placed through an opening of the 

table and the CT scanner and detector combination rotate 360 around the breast. Each breast is 

scanned separately in the pendant position without compression as shown in Figure 2.549. By 
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using a cone-beam CT, x-rays are taken for many angles and provide a true 3D image using the 

same amount of radiation as mammography.  

 
Figure 2.5 Schematic of image acquisition for dedicated breast CT imaging system (figure used with permission 

from Lindfors et al.49) 

     In comparison to mammography, bCT is only proposed to be utilized for diagnostic purposes 

unlike mammography which is used for screening and diagnostic breast imaging. bCT is superior 

to mammography in several ways. By providing 3D images, bCT eliminates image artifacts due 

to the superposition of tissue due to the overlaying of normal breast structures in comparison to 

2D mammographic images. By eliminating superposition this could potentially be helpful for 

women with dense breasts where breast tissue often masks suspicious lesions. Imaging with bCT 

also eliminates the need for compression with the use of cone-beam CT. In a study comparing 

the visualization of 180 lesions with non-contrast bCT vs. mammography, Lindfors et al. found 

that the conspicuity of masses was superior for bCT, but the conspicuity of calcifications was 

inferior.50 Similarly, in a study of 24 breast lesions, Kuzmiak et al. found that the reader 

visualization confidence scores for the shape and margins of masses were statistically 

significantly greater for bCT compared to digital mammography.51 Also, the reader visualization 

confidence scores for the morphology and distribution of microcalcifications were statistically 

significantly worse for bCT compared to digital mammography.51  
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     bCT has several advantages over DBT. bCT imaging has demonstrated an improved and 

constant slice sensitivity profile which for DBT imaging worsens with increasing object size and 

as a result of a limited tomographic angle.52 Additionally, bCT provides imaging of the breast at 

any desired plane with near isotropic resolution, whereas DBT imaging suffers from poor 

resolution in the axial plane. bCT is superior in the reduction of superposition by imaging with a 

higher number of projections over a complete 360º angle whereas DBT images have artifacts due 

to the limited acquisition angle and a lower number of projections.53 Lastly, bCT imaging does 

not use compression of the breast which increases patient comfort during image acquisition.   

2.4  Automated Breast Ultrasound  

 Conventional ultrasound imaging uses sound waves to produce real-time 2D images of the 

breasts’ internal structures. While a patient lies supine the patient is imaged by ultrasound with a 

transducer probe and ultrasound gel or lotion that is applied directly to the skin. Ultrasound gel 

or lotion is used as a coupling agent to ensure the high-frequency non-ionizing sound waves 

transmitted from the transducer into the breast. The sound signals are reflected and scattered 

back to the transducer and an algorithm uses the returning sound waves to generate a real-time 

2D image of the breast.   

 Ultrasound breast imaging used in complement with mammography has shown large 

improvement in the characterization of breast lesions,16–18 particularly in women with dense 

breasts54. Ultrasound imaging used in combination with mammography has been shown to 

improve the radiologists’ overall characterization of breast lesions by aiding in the determination 

of whether a lesion is solid or cystic.16–18 Ultrasound imaging has also aided in finding breast 

lesions that were not seen in mammography due to dense breast tissue.54 DBT imaging improves 

lesion detection in comparison to mammography alone. However, DBT imaging can still miss 
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cancers that ultrasound can identify based on lesion similarities located within dense tissue 

structures of the breast.55 A recent study by Chouldhery et al. concluded that 98% of DBT 

screen-detected masses can be properly assessed with a diagnostic ultrasound alone without the 

need for diagnostic mammography. This study indicates the potential for avoiding a diagnostic 

mammogram for the evaluation of majority of DBT screening-detected masses.56 A solid lesion 

may be a non-cancerous lesion (e.g. fibroadenomas) or a cancerous tumor. A fluid-filled lesion 

(e.g. cysts) are also non-cancerous and very common. 

 Conventional breast ultrasound imaging is performed freehand and therefore these 2D 

images are often difficult to reproduce due to high operator dependence. Automated breast 

ultrasound, ABUS, visualizes the breast as a 3D image volume by allowing automated 3D 

ultrasound imaging for the entire breast. ABUS technologies have advantages over conventional 

breast ultrasound in terms of reproducibility, operator independence, and acquisition speed.3–5 

Several studies have also shown the addition of ABUS imaging used in conjunction with 

mammography screening for women with dense breasts (ACR3 or ACR4) has significantly 

improved the breast cancer detection rate with an acceptable recall increase.19,57,58 

 However, ABUS has several disadvantages in comparison to conventional handheld 

ultrasound in relation to breast coverage and lesion diameter.59 A study by An et al. showed that 

conventional handheld ultrasound is superior for the conspicuity of lesions over ABUS for 

lesions in the peripheral breast margins, irregular in shape, non-circumscribed margins, and BI-

RADS category 4 or 5.60 Studies by Chang et al.61 and Jeh et al.62 show the mean diameter of a 

lesion is important for lesion detectability in ABUS, as smaller lesions are often missed and the 

rate of lesion detectability increases with size. Some potential rolls for ABUS are follow-up 

analysis for benign lesions, breast density assessment, and potentially molecular subtypes of 
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breast cancer.59 A study by Padilla et al. indicated increased reader confidence using DBT 

imaging for breast screening with automated breast ultrasound as a complement.63 A study by 

Choi et al., shows comparable diagnostic ability between ABUS and conventional ultrasound and 

reports diagnostic accuracies of 96.5% for conventional ultrasound and 97.7% using ABUS.64 A 

study by Kim et al. shows considerable agreement between masses classified using the BI-RADS 

categories 4 and 5 between ABUS and conventional handheld ultrasound.65  

 The work in this thesis uses the GE Invenia ABUS (GE Healthcare, Milwaukee, WI) system 

for all automated 3D ultrasound imaging. When imaged using ABUS, the patient is positioned 

supine and light anterior to posterior compression is applied by the ABUS transducer panel. This 

system is FDA approved and uses a curved 153 mm long motor-driven ultrasound transducer that 

scans the superior to inferior margins of the breast over a mesh compression paddle that is 

positioned over the breast as shown in Figure 2.666.  

 

Figure 2.6 Invenia ABUS imaging system a. shown from operator view b. shown imaging a patient  

(figure used with permission from GE Healthcare66) 

 

     There are three settings on the Invenia ABUS system (high, medium, and low) based on 

imaging depth, which changes the frequency setting of the transducer. Depending on breast size, 

three or more breast image volumes can be acquired to ensure adequate breast coverage during 
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ABUS imaging. The additional views vary the tilt of the transducer device by imaging the medial 

and lateral extents of the breast to ensure complete breast coverage as shown in Figure 2.766. It 

should be noted that additional views not shown in Figure 2.766 can be performed, however, this 

thesis will not consider those other views. The Invenia ABUS reverse curved transducer has a 

bandwidth of 6 to 15 MHZ and can image up to a 50 mm depth. The transducer travels up to 170 

mm across the mesh compression paddle for each scan or view.   

 

Figure 2.7 Illustration of the three different ABUS scans performed on the right breast for an ABUS exam  

(figure used with permission from GE Healthcare66) 

2.5 Breast Camisole for ABUS Imaging 

 An ultrasound camisole was designed (in collaboration with a local seamstress, see Chapter 

6 Section 6.8) and evaluated to ensure sufficient image quality, restriction in breast motion, and 

feasibility with external fiducial markers. Since the breast does not contain any muscles and is 

comprised of mostly adipose and glandular fascia, it moves relatively freely when various forces 

act on it. The extent of this can be magnified based on a woman’s breast density and age. Since 

ABUS scanning requires taking multiple projections/views of the breast (as shown in Figure 

2.766); a camisole that helps restricts breast motion would be helpful to better relate breast 

anatomy between ABUS views. This camisole material should not impede in ultrasound depth of 

penetration, DOP, and also should not obstruct the use of ultrasound coupling gel or lotion. We 

found that using an ultrasound camisole was helpful in the deformable registration for DBT and 
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ABUS images which will be further discussed in Chapter 6. A picture of this camisole is shown 

in Figure 2.8. The front of the camisole is made of a nylon stretchable mesh material and the 

back of the camisole is made of a cotton-based fabric.  

 

Figure 2.8 Camisole used for ABUS imaging 

 The camisole is sized based off a woman’s band size. A band measurement (underneath the 

breasts and around the woman’s torso to include her back) is taken to determine the adequate 

camisole size. An elastic band is used in the design in order to provide flexibility in fitting 

women with various chest diameters. The camisole should be fitted to the breast similar to a 

sports bra, additional binding clipsa can be used to improve the camisole fit. Other camisoles are 

currently being used in industry to reduce breast motion during breast imaging and radiation 

therapy treatments. The company SonoCine (Reno, NV)b uses an ultrasound camisole to reduce 

breast motion for 3D ultrasound imaging of the breast using their 3D whole breast ultrasound 

                                                 
a https://www.staples.com/Staples-Binder-Clips-Medium-1-1-4-Width-5-8-Capacity-

Black/product_103549?cid=PS:GooglePLAs:103549&ci_src=17588969&ci_sku=103549&KPID=103549&gclid=EAIaIQobChMI6c-

Ch8Pm3wIViANpCh0Zxg4LEAQYBCABEgIjSPD_BwE&akamai-feo=off  
b http://www.sonocine.com/how-it-works/  

https://www.staples.com/Staples-Binder-Clips-Medium-1-1-4-Width-5-8-Capacity-Black/product_103549?cid=PS:GooglePLAs:103549&ci_src=17588969&ci_sku=103549&KPID=103549&gclid=EAIaIQobChMI6c-Ch8Pm3wIViANpCh0Zxg4LEAQYBCABEgIjSPD_BwE&akamai-feo=off
https://www.staples.com/Staples-Binder-Clips-Medium-1-1-4-Width-5-8-Capacity-Black/product_103549?cid=PS:GooglePLAs:103549&ci_src=17588969&ci_sku=103549&KPID=103549&gclid=EAIaIQobChMI6c-Ch8Pm3wIViANpCh0Zxg4LEAQYBCABEgIjSPD_BwE&akamai-feo=off
https://www.staples.com/Staples-Binder-Clips-Medium-1-1-4-Width-5-8-Capacity-Black/product_103549?cid=PS:GooglePLAs:103549&ci_src=17588969&ci_sku=103549&KPID=103549&gclid=EAIaIQobChMI6c-Ch8Pm3wIViANpCh0Zxg4LEAQYBCABEgIjSPD_BwE&akamai-feo=off
http://www.sonocine.com/how-it-works/
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system. In breast radiation therapy treatments, the Chabner XRT Radiation brac is used to 

provide breast support and reproducibility during radiation therapy treatments. 

2.5.1 Depth of Penetration Measurements for Breast Camisole 

 Since this study involves the use of the Invenia ABUS system this camisole material has to 

be tested with the Invenia mesh panel material to ensure it can be effectively used in conjunction 

with the Invenia system. Systematic measurements of DOP are among the tests used for 

ultrasound scanners quality control and can be affected by many factors, including attenuation by 

materials/fabrics. In order to reduce operator dependence on these parameters automated 

methods have been used to determine DOP in ultrasound devices. A study by Gorny et al. 

concluded that measurements based on signal-to-noise (SNR) phantom-images is best suited for 

routine QC for the clinically important DOP and tested three automated methods for its 

measurement.67 

 Software developed by Sandra Larson, Ph.D. of the University of Michigan Department of 

Radiology was used to compute the DOP via minor adaptations of the IEC 61391-2.68 

Modifications used in this measurement include the setting of the transmit energy at the 

ultrasound systems highest setting, the positioning of transmit focal distance at the maximum 

relative to the DOP displayed on the screen, and lastly the setting of the overall system gain and 

time gain control (TGC) to a level high enough that electronic noise is easily displayed on the 

ultrasound imaging monitors. In order to calculate the DOP, the uniform section of a tissue-

mimicking ultrasound phantom was employed using the GE Logic ML6-15-D linear ultrasound 

transducer in a water medium. The Invenia ABUS transducer was not used since it is so large in 

comparison to the phantom; the GE Logic ML6-15-D transducer is often used for breast 

                                                 
c http://civcort.com/ro/breast-positioning/treatment-brassiere/Chabner-XRT-Radiation-Bra1.htm  

http://civcort.com/ro/breast-positioning/treatment-brassiere/Chabner-XRT-Radiation-Bra1.htm
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examinations and operates at a similar frequency range as the Invenia. The maximum DOP is 

determined from the image SNR ratio vs. depth. The phantom used for this study was the ATS 

Multipurpose Ultrasound Phantom Model 539d and is suitable over most clinical frequencies 

(between 2-20 MHz) for DOP measurements. It has a speed of sound of 1450 m/s and an 

attenuation coefficient of 0.5 dB/cm/MHz. 

 This method first requires collecting a cine loop of ultrasound noise, N. This acquisition is 

taken “in air” therefore showing the ultrasound systemic noise. The “in air” acquisition was 

taken using the same gain and processing settings described previously. Second, a cine loop of 

ultrasound images is acquired using the phantom in a water medium to determine baseline values 

for DOP using the same gain and processing settings. This is repeated several times. First by 

adding the Invenia mesh material wrapped against the transducer. Then with the Invenia Mesh 

material still in use, five commercially available fabrics (nylon or polyester based) were tested 

with the Invenia mesh in the water medium by performing a cine loop with the uniform phantom. 

A region of interest, ROI, which extends from the bottom of the image to transducer face is used 

to average the pixel values over the cine loop, S+N, as shown in Figure 2.9 for all acquired 

images.  

                                                 
d http://www.atslaboratories-phantoms.com/resources/Model-539-Data.pdf 

 

http://www.atslaboratories-phantoms.com/resources/Model-539-Data.pdf
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Figure 2.9 ROI of image profile used to average pixel values of full cine-loop independent images 

 The digitized pixel values from the image data formed in the rectangular ROI shows the 

mean value, S+N. The relative DOP at an imaging depth, d, which is the distance from the 

transducer face can be determined by plotting the mean pixel value vs the imaging depth. Figure 

2.10, illustrates the comparison of S+N and detector noise, N, for the acquired images using the 

Invenia mesh. The S+N and N are computed horizontally line by line within the ROI (Figure 2.9) 

progressing from the top to bottom of the image to determine the mean pixel value as shown in 

Figure 2.10. 
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Figure 2.10 Signal and Noise pixel profiles used to determine system sensitivity using the tissue-mimicking water 

phantom in a water medium measuring the Invenia mesh. S+N =Averaged Image Signal. N =Electronic Noise 

(acquired from air-only acquisition) 

 From the above plots the SNRIEC
68

 can be calculated from the graphs shown above for 

distance, d, values where the S+N values are greater than the N values in Eq.( 1. 

                                      

 𝑆𝑁𝑅𝐼𝐸𝐶(𝑑) = √
𝑆𝑁(𝑑)2

𝑁(𝑑)2
− 1 ( 1 ) 

 

     The corresponding SNRIEC (d) is shown in Figure 2.11.  
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Figure 2.11 Resulting SNRIEC values plotted as a function of imaging depth 

The maximum DOP resulting from the SNRIEC is calculated using Eq. 2.   

                                                  

 SNRIEC(𝐷𝑂𝑃) = 1 (2) 

 

 This is done by determining a line of best fit for the descending area after the peak in Figure 

2.11. The equation that determined the best fit is shown in Eq. 3; this equation is only useful for 

the specific transducer used in this study. The coefficients a, b, and c are determined by fitting 

the raw data from Figure 2.11. Once the fit coefficients are determined the substitutions of Eq. 2 

is used to solve for the DOP which is taken at the distance, d, to satisfy Eq. 3.   

                              

 SNRIEC(d)  =  a + b ∙ ln(d − c) (3) 
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 Several potential camisole materials were tested and two were superior. Material 1, Mat1, 

was the 108” Nylon Chiffon Tricot whitee and material 2, Mat2, is the 108” 40 Denier Tricot 

whitef. The DOP-values are recorded in Table 2.1. Other materials tested were Power Meshg and 

Telio Matte Chiffonh. All the tested materials were a nylon base similar to the Invenia mesh 

panel and had 10% or greater stretch across the grain in order to better conform to the mold of a 

woman’s breast.  

Table 2.1 Comparisons of DOP between various testing combinations. P= Phantom Only. Inv= Invenia 
Mesh fabric. Mat 1=108” Nylon Chiffon Tricot, Mat2= 108” 40 Denier Tricot, Mat3= Power Mesh, Mat 

4, Mat5= Telio Matte Chiffon 

Case ID Testing 

Combination 
R2 of fit DOP (mm) 

DOPCase ID/ 
DOPCase ID 2  

1 P only  0.997 58.6 99% 
2 P+Inv  0.996 59.4 100% 

3 P+Inv+Mat1 0.996 58.3 98% 

4 P+Inv+Mat2 0.997 58.9 99% 

5 P+Inv+Mat3 0.997 55.6 94% 

6 P+Inv+Mat4 0.996 54.3 91% 

 

 With the use of the phantom and Invenia mesh only, the DOP increases. This is likely due to 

uncertainty in measurements. It is also possible that the increased penetration with the Invenia 

paddle was due to an incidental reduction in air bubbles and improved impedance matching 

between the transducer and the phantom through the Invenia mesh fabric. Adding the Mat.1 the 

DOP was maintained by 99% and Mat. 2 maintained the DOP by 98%. Due to cost effectiveness, 

Mat1 was chosen as the fabric to use for the camisoles for ABUS imaging.  

                                                 
e https://www.fabric.com/buy/uf-737/nylon-chiffon-tricot-white 
f https://www.fabric.com/buy/uf-733/108-40-denier-tricot-white 
g https://www.fabric.com/buy/0450610/power-mesh-white 
h https://www.fabric.com/buy/0455281/telio-matte-chiffon-mesh-white 

https://www.fabric.com/buy/uf-737/nylon-chiffon-tricot-white
https://www.fabric.com/buy/uf-733/108-40-denier-tricot-white
https://www.fabric.com/buy/0450610/power-mesh-white
https://www.fabric.com/buy/0455281/telio-matte-chiffon-mesh-white
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2.5.2 Efficacy of Breast Camisole for ABUS imaging 

 The breast camisole is designed to include the nylon material in the front and a cotton based 

material in the back similar to a sports bra. The breast imaging camisole is shown in Figure 2.8. 

The camisoles are designed to fit women between dress sizes 0 - 26. An IRB-approved patient 

study was performed on 10 patient volunteers of different ages (25-51) and breast sizes (breast 

cup size B-DDD) to evaluate the efficacy of the breast camisole. The purpose of this study was 

to ensure that the designed camisole was sufficient in restricting breast motion between the 

multiple views acquired in ABUS imaging and ensure that external markers stayed in place 

during ABUS imaging. After ABUS imaging was completed the ultrasound technologist 

evaluated the camisole performance based on completing a check list shown in Figure 2.12. 

 The protocol for this study and the ABUS camisole form is listed in the Appendix. An 

overview of the results for all 10 patient volunteers based on the ABUS camisole evaluation 

form is shown in Figure 2.12. This form is also provided in the Appendix. 
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Figure 2.12 Tallied Evaluation for efficacy of ABUS Camisole 

 Based on these results, we can conclude that the ultrasound camisole is sufficient for 

reducing patient motion. We can also conclude that the external fiducial markers locations that 

are underneath the material are not compromised during ultrasound imaging. Clips can be used 

to further improve the fit of the camisole and were needed for one patient in order to ensure 

proper camisole fit. However, these results also indicate that marker positioning can be 

compromised when the patient initially puts on the ABUS camisole. This can be minimized by 

assisting the patient in putting on the camisole, ensuring that enough time (at least 5 minutes) has 

passed before putting on the camisole after markers are glued, and by marking breast locations 

(e.g. by using a washable marker) prior to attaching the external markers.  
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2.6 External Fiducial Markers 

 External fiducial markers are markers attached to the skin that can be easily recognizable in 

reconstructed image views. These markers should not obscure much, if any, of the breast tissue 

images if they are to be used clinically. This study investigates the use of external fiducial 

markers to help improve the registration between corresponding lesions between 3D x-ray and 

3D ultrasound breast images. Several studies have used external fiducial markers and have found 

improved registration results for MRI/PET breast registration69,70, compressed and uncompressed 

prone breast MRI71, and breast MRI to conventional ultrasound72. For ultrasound imaging, this 

marker cannot cause refraction or other distortion artifacts below the skin in ultrasound imaging 

and should not cause artifacts in 3D x-ray imaging. 

 A study by Cloutier et al., found that glass bead fiducial markers were useful when imaging 

a multimodality vascular phantom with digital subtraction angiography, CT angiography and 

ultrasound.73 We decided to investigate the use of small beads between 0.79 mm - 2 mm in size 

composed of different material (acrylic, polystyrene, nylon, Teflon, and glass). These are 

common materials used in x-ray and ultrasound quality control. A thermoplastic elastomer, TPE, 

gel was melted and degassed in a vacuum oven over each echogenic and x-ray absorbing bead in 

order to create the external fiducial marker. This clear degassed gel allows for the bead target to 

be clearly seen in ultrasound imaging in the absence of voids.  

 Of the bead target combinations, we found that a 1 mm diameter glass bead target within the 

TPE gel worked best in reducing ultrasound artifacts and not being too attenuating in x-ray 

imaging. A detailed procedure of how to make this marker is available in the Appendix.  
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Figure 2.13 Edge artifact of external fiducial marker in ABUS imaging 

 These markers are glued to the breast and ultrasound gel or lotion is placed over the marker 

when the breast is imaged. Although the glass bead combination is easily seen in reconstructed 

ABUS images, we found that edge artifacts are present with these external fiducial markers as 

shown in Figure 2.13. Depending on marker width and thickness these artifacts can be more 

pronounced. To reduce the effect of edge artifacts we recommend that the markers are ≤ 3 mm 

thick and about 3 mm – 5 mm radial diameter surrounding the bead. Adequate ultrasound lotion 

or coupling gel can also reduce these effects. However, these effects may not be eliminated 

entirely due to the impedance and speed of sound differences between the marker and the skin 

and subcutaneous fat.  

2.7 Finite Element Method and Analysis  

 Once images are acquired within this research, the finite element method (FEM) is used to 

model breast deformation from one image modality in order to register lesions to another breast 

imaging modality. FEM was used to simulate the difference in breast compression and shape as 

an effect of the various imaging schemes with this thesis. FEM is a numerical discretization 

method used to compute approximations for physics laws (e.g. law of conservation of energy, 
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law of conservation of mass and law of conservation of momentum) for space and time-

dependent problems that are typically expressed using partial differential equations (PDEs). For 

most geometries and engineering problems, these PDEs are complicated and cannot be solved 

analytically to compute relevant mechanical properties (e.g. stress and strain) to estimate the 

corresponding behavior (e.g. deformation) of a component under specified loading conditions. 

Therefore, FEM is used to compute such approximations for various engineering applications 

such as thermomechanical, biomechanical, electromagnetics etc. Finite element analysis, FEA, is 

the simulation of any physical phenomenon using the FEM to predict how a structure behaves 

under specified conditions.  

 FEM approximates a continuous structure into a mesh of smaller finite elements using 

simple geometric shapes (e.g. triangles or quadrilaterals for surfaces and tetrahedrons or 

hexahedrons for volumes). Any point within the finite element structure can be expressed within 

an element through interpolation of the surrounding mesh nodes through the interpolation of 

shape functions. Any force/load applied to the structure can be approximated as a function on the 

interpolated finite mesh. This results in a finite system of equations based on nodal coordinates 

to approximate the result of the problem. For a more in-depth explanation of the application of 

continuum mechanics and the theory of FEM discretization involved for biomechanical models 

see the text from Maurel et al.74  

 FEA for medical application has become increasingly popular and universal for the 

advancement of biomedical engineering, biomechanics, and clinical research.75 There are many 

studies that have been proposed to model the female breast to simulate deformation for image 

registration. One of the pioneering efforts for using FEM in modeling and analysis for modeling 

breast deformations was performed by Samani et al.76 This group developed a biomechanical 
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model for the breast from MRI data.76 Shortly after, studies by Azar et al., used 3D hexahedral 

FE meshes to estimate the location of a tumor during mammographic compression for needle 

biopsies for three sampled patients.77,78 The FEA can be broken into three main sections:  

1. Description of the Physical Model. 2. FEA Preprocessing 3. FEA Solution and Post-

Processing. Each is described below. 

2.7.1 Description of the Physical Model 

 Before the FEA process can begin a description of the problem must be defined and 

simplified in order to be solved using FEMs. For this application, it requires that 3D image data 

must be acquired and segmented (i.e. a breast mass segmented from glandular and fatty tissue). 

Ensuring accurate geometry is key to successful modeling using FEM and should be defined 

with sufficient detail in spatial resolution in order to differentiate between the various tissue 

structures needed for FEA to simulate deformation.   

 Tissue composition directly contributes to the breast’s mechanical behavior and is important 

to have accurate biomechanical properties of the breast anatomy. As the breast contains a variety 

of anatomical structures (e.g. blood vessels, ducts, ligaments etc.) the segmentation must be 

simplified for FEA. Several experimental studies have measured the mechanical properties of 

breast tissues to determine elasticity, specifically with measurements of fibroglandular and 

adipose tissues.71,79–83 Therefore, biomechanical studies simplify the breast anatomical model to 

include the skin, fibroglandular, adipose, and lesion (if applicable) for FEA. 

 Segmentation of each tissue in the acquired image is the process of identifying tissues and 

differentiating their boundaries from other tissues. Studies have used manual71,76, semi-

automated84,85, and automated86–88 segmentation in FE-based breast deformation modeling 

techniques based on MRI data sets. Within this thesis, large 3D image sets (e.g. ABUS and bCT) 
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are used and can be laborious and time-consuming. Automated and semi-automated methods 

should be investigated in order to minimize the time associated with this task. The specific 

methods used in this text will be discussed in the subsequent chapters but deals with a 

combination of manual and semi-automated techniques. Once segmentation of all necessary 

tissues from the 3D imaging data is completed, the corresponding base FE model can be 

generated.  

2.7.2 Finite Element Analysis Preprocessing  

 Once the simplified physical anatomical structures have been identified and segmented from 

the acquired image data, the next step involves the discretization and mesh creation of the base 

FE model for the image data set. Within this text, each tissue is segmented into separate DICOM 

binary files from which a surface mesh is created of each segmentation. A mesh is a network 

model body that is formed by many elements (discretized smaller units) that are interconnected 

at nodes (FE XYZ-coordinate points that serve as boundaries of the mesh). This provides a 

simulated representation of the outline of the tissue structure in 3D. Surface meshes create up to 

millions of small elements and their corresponding nodes to generate the 3D shape of the tissue 

structure from the segmented DICOM files. There are many meshing schemes (e.g. quadrilateral, 

triangular, pentagonal etc.) that can be used to create the separate elements that discretize the 

surface mesh. These meshes only show the outline of the segmented DICOM files and are 

therefore hollow on the inside. Triangular meshing schemes are used within this thesis and 

examples of the surface meshes or different tissue types are shown in Figure 2.14.  
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Figure 2.14: Surface meshes of the skin (brown), inner gel (yellow), multiple lesions (pink, red, green and blue) 

from a breast phantom for (a) surface meshes created from segmented DICOM (Notice surface meshes are hollow 

on the interior and not filled or connected to one another) (b) tetrameshed model of breast fully connected 

 For breast FEA literature, there has been a plethora of mesh node density values and it is an 

ongoing area of research. No experimental study has concluded an optimal value.89 Breast plate 

compression studies have varied the number of elements by hundreds86,90 to thousands34, and 

even tens of thousands76,84,91. 

 After surface contours are meshed, volumetric meshing is needed to provide a fully 

connected breast FEA model. For volumetric meshing, tetrahedral and hexagonal meshes are 

typically used to mesh within a surface mesh volume and allow connectivity between surface 

components. Most breast studies using FEA have used tetrahedral meshes92, however hexahedral 

meshes have been used in studies by Lee et al.60, and Ruiter et al. 65 The majority of breast FEA 

has been used on tetrahedral meshes89, however there is not a consensus as to which (hexahedral 

or tetrahedral) meshing scheme is superior. These methods rely on a subdivision algorithm of the 

volume. A volumetric mesh is built by triangulating each of the cells of the volumes and may 

slightly change the coordinates of the vertices of the exterior nodes in order to improve mesh 

quality. Tetrahedral meshing schemes are used within this thesis and examples of the surface 

meshes or different tissue types are shown in Figure 2.14b.  
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 Material properties (e.g. Young’s Modulus, Poisson’s Ratio) are assigned to each meshed 

component in the model. The modulus of elasticity, Young’s Modulus (E), is a measure of a 

material’s stiffness and is often calculated from tensile stress (σ) /strain (ε) curves and formulates 

Eq. 4. 

 

 𝐸 =
𝜎

𝜀
 (4) 

 

 Stress can be defined as the force applied to a specific cross-sectional area of an object. 

Strain is a dimensionless parameter that is defined as the amount of deformation of a material 

along the applied force direction divided by the initial length of an object. The Poisson’s ratio (ν) 

is a dimensionless parameter that is defined as the ratio of the transverse strain to longitudinal 

strain in the direction of the stretching force as shown in Eq. 5. Breast tissues are modelled as 

incompressible materials having Poisson’s ratio nearly 0.50.  

 

 ν = −
𝜀𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒

𝜀𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑛𝑑𝑖𝑛𝑎𝑙
 (5) 

 

 For the phantom studies within this thesis, the manufacturer provided information for the 

material properties as described in Chapters 3-5. For real breasts, there is high variability in the 

moduli of elasticity, Young’s Modulus, as this is still a current area of research. Studies by Kruse 

et al.83, Sinkus et al.80,94, and McKnight et al.95 used in vivo magnetic resonance elastography in 

order to quantify the elastic modulus for adipose, glandular, and carcinoma breast tumors. A 

study by Gefen et al. showed the Young’s modulus for glandular tissue ranges from 7.5 kPa - 66 

kPa and adipose tissue ranges from 0.5 kPa – 25 kPa.82 A study by Athanasiou et al. used 

supersonic shear wave imaging on 46 women with 48 breast lesions where the mean elasticity 
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values was 146.6 ± 40.05 kPa for malignant lesions and a mean elasticity value of 45.3 ± 41.1 

kPa for benign breast lesions.96 A study by Kellner et al., determined the skin, fat and glandular 

elastic moduli for FEA simulations for bCT plate compressions based on a combination of 

published results.97  

 The physical constraints (or boundary conditions) are defined to approximate the loading of 

the model. These prescribed boundary conditions define the force or nodal displacement needed 

to determine the resulting stress-strain deformation on types of breast tissues based on set 

material characteristics. For example, for a bCT FE model that is compressed to the DBT (CC 

view) imaging model, this involves applying loading on compression plates to simulate CC plate 

compression on an uncompressed bCT breast. For DBT FE deformed to ABUS this involves 

nodal loading displacements that will be described in greater detail in Chapters 3, 4 and 6.  

 Once boundary conditions are defined, specifications of analysis types need to be 

determined as an indicator to the FEA solver as to which types of equations need to be used in 

order to approximate the result of the model. There are many analysis types that can be used 

within FEA (e.g. heat transfer, fatigue, linear buckling). For breast deformation static or quasi-

static (quasi-Newtonian) stress analysis is most commonly used. The difference between static 

and quasi-static is that static analysis neglects a time dependent material response. Both analysis 

types include linear elastic or nonlinear elastic analysis and neglects inertial effects. An elastic 

material is defined a material whose stress is dependent on the materials’ strain.  

 Studies by Tanner et al.84 and Alonzo-Proulx et al.98 used linear elastic models when 

modeling large breast deformation. However, non-linear model analysis is considered more 

accurate for large breast deformations.89 Work involved in this thesis also found non-linear 
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elastic quasi-static analysis yielded more precise results for the applications due to large 

deformation involved in the various modality registration. 

 For linear solutions the basic FEM equation to be solved is Eq. 699 

 

 [𝐾]{𝑢} = {𝐹} (6) 

 

 Where K is the elastic stiffness matrix, u is displacement vector and F is the vectors or loads 

applied to the structure. Eq. 6 is solved for the displacement vector. Thus, creating a set of 

simultaneous algebraic equations at each node within the FE model. Since all elements are 

interconnected through their nodes FEM uses piecewise polynomial interpolation to resolve a set 

of simultaneous equations at each node within the model. Linear solutions assume a homogenous 

deformation and neglect the interdependency of stress and strain.  

 For non-linear solutions Eq. 6 is modified to in Eq. 7.100  

 

 [𝐾(𝑢)]{𝑢} = {𝐹} (7) 

 

 Where, K(u) is the nonlinear stiffness response matrix of the nodal system reactions which is 

a function of, u, is the displacement vector, and F is the total force/loading vector. Non-linear 

solutions are generally history dependent as the solution is obtained in a series of small 

increments. Therefore, the model equilibrium equation is solved for each increment using 

Newton’s method.  

2.7.3 Finite Element Analysis Solutions & Post-Processing 

 Once all these considerations are performed an input file can be generated and a FEA solver 

is used in order to simulate the deformation of the input breast model using FEM. The FEA 

solver solves the set millions of differential equations which approximates the resulting stress, 
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strain, and nodal displacements of the models based off the loading scheme. Implicit FEA is used 

using non-linear quasi-Newton analysis and large displacement theory to determine the 

deformation of the breast within this dissertation.  

 Nonlinear analysis using quasi-Newtonian techniques, by satisfying the equilibrium 

equation at each step while ignoring inertial and momentum effects, allows a dynamic problem 

to be solved as a static problem by simplifying the problem into incremental load steps.101 After 

each increment, the FE breast model geometry changes and therefore the stiffness matrix needs 

to be updated for the sequential increment. For explicit analysis, the incremental procedure is 

done such that the increments are small enough for the results to be accurate. The problem with 

using explicit analysis is that many small increments are needed for accuracy and analysis 

convergence which is time consuming and this method does not enforce equilibrium.102 Implicit 

analysis uses the same incremental procedure however, equilibrium is enforced using Newton’s 

methods. Implicit analysis can handle more sophisticated problems. However, implicit analysis 

can be even more time consuming because the stiffness matrix must be updated and equilibrium 

is checked at the end of each increment.102 All studies in this dissertation used implicit analysis 

with quasi-Newtonian techniques for the non-linear analysis and large displacement theory.  

 The quasi-Newton method is then applied to enforce equilibrium of the internal structures of 

within the simulated breast model based on the external loads being applied to it.  

 Eq. 7 can be rewritten to show the application of the Newton method for a typical iteration, 

i, as follows100,102: 

 

 [𝐾𝑖(𝑢𝑖)]{∆𝑢} = {𝐹} − {𝐹𝑖} (8) 
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 Where, Ki(ui ), is the Jacobian nonlinear stiffness response matrix (the structural stiffness for 

computing element displacements within the model) for current iteration, ∆𝑢 is the change in the 

DOF displacement vector between the previous and current iteration, and Fi is the vector of 

internal force vector determined from elemental stresses in the current iteration. For each 

iteration Ki(ui ) and Fi is evaluated from ui. The next approximation is then made, ui+1, as shown 

in Eq. 9100. 

 

The process repeats until the right hand side of Eq. 8 converges or {𝐹} − {𝐹𝑖} = 0.100,102  

 Quasi-Newton analysis modifies the above equations when the regular Newton method is 

too difficult or time-consuming to evaluate for Ki(ui ). Instead of obtaining the Ki(ui ) at a single 

point, quasi-Newton methods gradually build up an approximate Ki(ui ) by using gradient 

information from the previous iterations of Ki(ui ). Various quasi-Newton techniques can be used 

depending on the FEA solver system. Quasi-Newton methods were first introduced by Charles 

Broyden103 and he extended upon this works to include a more detail analysis of minimization 

algorithm of the DFP (David- Fletcher- Powell formula) method104 and the Davidson formula in 

1970.105 The work in this thesis incorporates the use of commercial software packages for FEA 

specifically Optistruct (Altair Engineering, Troy, MI) and ABAQUS (Dassault Systèmes 

Americas Corp., Waltham, MA). ABAQUS implements the BFGS (Broyden-Fletcher-Goldfarb-

Shanno) stiffness update that was shown by Matthies and Strang to help simplify systems of 

equations in nonlinear applications where the Jacobian is symmetric and not highly variable from 

one iteration to the next.106 More information about the quasi-Newton methods can be found in 

 {𝑢𝑖+1 } = {∆𝑢} + {𝑢𝑖 } (9) 
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the ABAQUS documentation.i Similar information for Optistruct can be found in its 

documentation.j  

 Commercial, open-source, and in-house codes can be used to solve these systems of 

equations. Commercial FEA solvers typically provide complete tools for FEA through the pre-

processing, post-processing, and visualizations for the model generation and results. Studies by 

Hopp et al.88,107 and Samani et al.76 have used ABAQUS to simulate breast deformations. 

Likewise, studies by Tanner et al.71,84,108, Ruiter et al.90, Unlu et al.70 used the commercial FEM 

package ANSYS for simulating breast deformation. Once the FEA is completed, the deformation 

results can be applied to the base FE model for registration considerations.  

 This thesis shows the implementation of this software by using FEM for breast deformation 

for different registration schemes. Unlike in the previous studies mentioned, nodal displacement 

is used to relate breast lesions from DBT to ABUS views instead of solving for the plate 

compression and decompression between these modalities. The use of nodal displacement in 

FEA for the two compressed states allows for the method to be more transferrable for use in the 

clinic in comparison to modeling plate compression. Nodal displacement was used because 

without uncompressed image data of the breast (e.g. as done in MRI or bCT) there is no way to 

verify a breast in its uncompressed state after DBT compression in the upright geometry and 

before ABUS compression in the supine geometry. These specifics will be further discussed in 

Chapter 3, 4 and 6. For bCT to DBT and bCT to ABUS registration the use of plates was used to 

model the breast deformation and will be further discussed in Chapter 5.

                                                 
ihttps://www.sharcnet.ca/Software/Abaqus610/Documentation/docs/v6.10/books/stm/default.htm?startat=ch02s02at

h15.html  
jhttps://altairhyperworks.com/hwhelp/Altair/2017/help/os/topics/solvers/analysis_nonlinear_quasi_static_c.htm   

https://www.sharcnet.ca/Software/Abaqus610/Documentation/docs/v6.10/books/stm/default.htm?startat=ch02s02ath15.html
https://www.sharcnet.ca/Software/Abaqus610/Documentation/docs/v6.10/books/stm/default.htm?startat=ch02s02ath15.html
https://altairhyperworks.com/hwhelp/Altair/2017/help/os/topics/solvers/analysis_nonlinear_quasi_static_c.htm
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Chapter 3  

Deformable Mapping Technique to Correlate Lesions in Digital 

Breast Tomosynthesis and Automated Breast Ultrasound Imagesk  

 

 

3.1 Abstract 

Purpose: To develop a deformable mapping technique to match corresponding lesions between 

 digital breast tomosynthesis (DBT) and automated breast ultrasound (ABUS) images.  

Methods: External fiducial markers were attached to the surface of two CIRS multi-modality 

compressible breast phantoms (A and B) containing multiple simulated lesions. Both phantoms 

were imaged with DBT (upright positioning with cranial-caudal compression) and ABUS 

(supine positioning with anterior-to-chest wall compression). The lesions and markers were 

manually segmented by three different readers. Reader segmentation similarity and reader 

reproducibility were assessed using Dice similarity coefficients (DSC) and distances between 

centers of mass (dCOM). For deformable mapping between  the modalities each reader’s 

segmented dataset was processed with an automated deformable mapping algorithm as follows: 

First, Morfeus, a finite element (FE) based multi-organ deformable image registration platform, 

                                                 
k This work is published in the Medical Physics Journal: Green CA, Goodsitt MM, Brock KK, et al. Deformable 

mapping technique to correlate lesions in digital breast tomosynthesis and automated breast ultrasound images. Med 

Phys. 2018;45(10):4402-4417. doi:10.1002/mp.13113. Note: Italicized text in this chapter was not included in the 

original publication and is used to provide supplementary information.  
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converted segmentations into triangular surface meshes. Second, Altair HyperMesh, a FE pre-

processor, created base FE models for the ABUS and DBT data sets. All deformation is 

performed on the DBT image data; the ABUS image sets remain fixed throughout the process. 

Deformation  was performed on the external skin contour (DBT image set) to match the external 

skin contour on the ABUS set, and the locations of the external markers were used to morph the 

skin contours to be within a user-defined distance. Third, the base DBT-FE model was deformed 

with the FE analysis solver, Optistruct. Deformed DBT lesions were correlated to matching 

lesions in the base ABUS FE model. Performance (lesion  correlation) was assessed with dCOM 

for all corresponding lesions and lesion overlap. Analysis was performed to determine the 

minimum number of external fiducial markers needed to create the desired correlation and the 

improvement of correlation with the use of external markers.  

Results: Average DSC for reader similarity ranged from 0.88 to 0.91 (ABUS) and 0.57 to 0.83 

(DBT). Corresponding dCOM ranged from 0.20 to 0.36 mm (ABUS) and 0.11 to 1.16 mm  (DBT). 

Lesion correlation is maximized when all corresponding markers are within a maximum distance 

of 5 mm. For deformable mapping of phantom A, without the use of external markers, only 2 out 

of 6 correlated lesions showed overlap with an average lesion  dCOM of 6.8 ± 2.8 mm. With use 

of 3 external fiducial markers, 5 out of 6 lesions overlapped and average dCOM improved to 4.9 ± 

2.4 mm. For deformable mapping of Phantom B  without external markers analysis, 4 lesions 

were correlated out of 7 with overlap between only 1 of 7 lesions, and an average lesion dCOM of 

9.7 ± 3.5 mm. With 3 external markers, all 7 possible lesions were correlated with overlap 

between 4 out of 7 lesions. The average dCOM was 8.5 ± 4.0 mm. 

Conclusion: This work demonstrates the potential for a deformable mapping technique to relate 

corresponding lesions in DBT and ABUS images by showing improved lesion  correspondence 
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and reduced lesion registration errors with the use of external fiducial  markers. The technique 

should improve radiologists’ characterization of breast lesions  which can reduce patient 

callbacks, misdiagnoses and unnecessary biopsies.  

3.2 Introduction 

Ultrasound imaging used in conjunction with mammography has been shown to improve 

characterization of breast lesions.16–18 Conventional ultrasound imaging is performed freehand in 

a different geometry (supine) than mammography (upright). Since the acquisition is freehand, the 

2D ultrasound images are difficult to reproduce. Automated breast ultrasound, ABUS, visualizes 

the breast as a 3D image volume and has advantages in terms of reproducibility, acquisition 

speed and operator independence over conventional breast ultrasound.18,19,57 Likewise, studies 

have also shown the addition of ABUS imaging used in conjunction with mammography 

screening for women with dense breasts (ACR3 or ACR4) has significantly improved the breast 

cancer detection rate with an acceptable recall increase.19,57,58 Digital breast tomosynthesis, DBT, 

provides better detection and characterization of breast lesions over mammography through the 

reduction of tissue superposition. However, DBT has not completely eliminated the need for the 

use of ultrasound.109,110 One problem with the use of ultrasound in conjunction with 

mammography/DBT is that at least 10% of the time, the lesions found in the ultrasound images 

do not correspond to those found in mammograms/DBT.15 

One solution to this problem is to develop a combined x-ray/ultrasound system that images 

the breast in the same upright geometry using a special dual-modality compression 

paddles.21,22,24–30 However, the simpler single-sided combined systems are limited in ultrasound 

depth of penetration, and all studies to date have not completely addressed issues of poor 

ultrasound transducer coupling at the periphery of the breast in the mammographic geometry. 
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Some improvements such as dual sided ultrasound111 for better coverage and resolution have 

been explored but have not yet been implemented into a single combined system. An alternative 

to the combined system is to image the breast with the DBT and ABUS modalities in their own 

separate geometries and then use a deformable mapping technique to relate corresponding 

lesions. This has the advantage of better acoustic coupling and possibly better coverage of the 

breast with ultrasound. It utilizes DBT and ABUS systems that are already commercially 

available and does not require the extra expense of purchasing a special combined system. 

However, a deformable mapping method has the disadvantage of greater technical difficulty in 

relating corresponding lesions. 

To date, there are no deformable registration techniques for detecting corresponding lesions 

between ABUS and DBT breast images. The purpose of the present study is to investigate the 

viability of a deformable mapping method to relate corresponding lesions between DBT and 

ABUS breast images. Such a method should simplify and improve radiologist’s characterizations 

of breast lesions which can reduce patient callbacks, misdiagnoses, and negative biopsies. Using 

finite element analysis, FEA, a biomechanical algorithm can be used to relate regions of interest 

between modalities, so a radiologist can directly verify that a lesion seen in a DBT view is solid 

or cystic as determined from the ABUS image set. 

To produce FE based biomechanical models, segmentation of the entire breast volume is 

required for creation of surface and volumetric meshes. Defining the boundary between breast 

tissue and the pectoral muscle and distinguishing between glandular, connective, and adipose 

tissues poses difficulty for segmentation of breast images. Studies have used manual71,76, semi-

automated84,85, and automated86–88 segmentation in FE-based breast deformation modeling. For 
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large deformations due to breast compressions non-linear models have proven to be more 

effective than linear elastic models.92 

Relating breast images across modalities is a challenging task since the breast is a highly 

deformable entity. Patient positioning in various modalities can change from upright 

(mammography/DBT), prone (MRI, transmission US, and dedicated breast CT), and supine 

(ultrasound/ABUS). Immobilization of the breast with compression plates and paddles adds an 

additional challenge when relating areas of the breast between modalities. A recent study has 

proposed FE based non-linear biomechanical models for correlating breast structures between 

two compressed states for cranio-caudal, CC, to medial lateral oblique, MLO, mammography 

views.112 Several studies, have found favorable results in using FE modeling between MRI to x-

ray registration for CC and/or MLO mammograms.85,86,88,90. A recent study has found favorable 

results in relating lesions in supine breast ultrasound to prone MRI.113 Another correlation study 

showed favorable agreement between ultrasound computed tomography and mammography 

registration. That research group also used ultrasound to determine the distribution in the breast 

of Young’s Modulus from the speed of sound. This distribution was directly used in FE 

deformation modeling.107 

Due to high deformation fields of the breast between modalities and even over time in a 

single modality114 the use of external fiducial markers could provide an added benefit for lesion 

correlation. Several studies have used external fiducial markers and found improved registration 

results. In 2 studies of MRI/PET breast registration, ink was used to mark locations on the breast 

(up to nine in total). MRI visible markers were placed at those locations prior to MR imaging, 

and PET-visible markers were placed at the same locations prior to PET imaging.69,70 In a study 

of registration between compressed and uncompressed prone MRI, four external markers were 
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placed around the breast and on the nipple .71 Finally, using a volume navigation technique a 

study of breast MRI and ultrasound registration, 3 external markers (soft-gel capsules contain 

vitamin E in lipid solution) were used. 72. In the present study, we investigate the use of external 

fiducial markers to improve the registration of breast lesions in upright DBT to supine 

ABUS images.  

3.3 Materials and Methods  

3.3.1 Phantoms 

 Two CIRS Multi-Modality Breast Biopsy and Sonographic phantomsl were used in this 

study. The first, Phantom A, contains a total of 7 lesions: 3 cystic masses and 4 dense masses. 

This phantom also contains 3 calcifications. The lesions were randomly positioned in a Zerdine-

based background gel emulsion and wrapped by a Z-skin membrane material. Z-skin is a 

proprietary self-healing skin-like membrane that reduces phantom desiccation and simulates the 

texture and properties of skin during imaging and biopsy. Zerdine is a patented solid elastic 

water based polyacrylamide tissue mimicking material that’s formulation can be adjusted to 

correspond to a variety of soft-tissue acoustic properties for ultrasound imaging.115 For some 

time, similar polyacrylamides have been described for ultrasound imaging and therapy 

phantoms.116,117 Since it is a water-based material and the density can be controlled it can be used 

for CT and MR imaging as well.115,118 

 The second phantom, Phantom B, contains a total of 12 lesions: 6 cystic masses and 6 dense 

masses. These lesions were randomly positioned in a Zerdine-based background gel, without the 

Z-skin outer membrane. CT images of both phantoms were acquired with a GE Discovery 

                                                 
l Computerized Imaging Reference Systems, Inc., 2428 Almeda Ave, Suite 316 Norfolk, Virginia 23513, 

http://www.cirsinc.com/file/Products/073/073%20DS%20032316.pdf 

http://www.cirsinc.com/file/Products/073/073%20DS%20032316.pdf
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CT750 CT scanner. These images were used solely to identify lesion type and quantity; the CT 

scans have no bearing on the deformation algorithm. Material properties for the phantoms were 

provided by the manufacturer. (See Table 3.1.)  

Table 3.1 Phantom material properties 

 Young’s Modulus (E) Poisson’s Ratio (ν) 

Z-skin Membrane  10 kPa 0.50 

Zerdine background gel  10 kPa 0.50 

Dense lesions  60 kPa 0.50 

Cystic lesions 0 kPa 0.50 

 

 HyperMesh, the finite element pre-processor, cannot utilize the Poisson’s Ratio of 0.50 for 

the materials in Table 3.1 therefore, a Poisson’s ratio of 0.49 was assumed for all materials. For 

this study, based on visual inspection of the phantom before and after DBT and ABUS imaging 

there were no external indications that the phantoms did not fully recover to their original states. 

To better quantify the differences in phantom deformations, measured load-strain curves are 

shown in Figure 3.1. Based on these curves, the elasticities of the phantoms are linear, and 

phantom A is a factor of 1.9 times stiffer than phantom B.  
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Figure 3.1: Load-strain curve comparing elastic properties of Phantom A and Phantom B. Note: Phantom B a 

similar phantom made of same material properties were used for these points as the Phantom had ruptured due to 

the amount of time that had passed as these measurements took place 

3.3.2 External Fiducial Markers  

The present application requires an external marker that does not cause refraction or other 

distortion below the skin in ultrasound imaging and does not cause artifacts in 

mammography/DBT imaging. In previous work, Cloutier et al, found glass bead fiducial markers 

were useful when imaging a multimodality vascular phantom with DSA, CTA, MRA and 

ultrasound.73 We investigated various targets within different background materials as candidates 

for external fiducial markers. The fiducial marker that we found worked best for both DBT and 

ABUS was a 1 mm diameter glass bead target within a clear bubble-free thermoplastic elastomer 

(TPE) gel. To make this marker, thin samples of TPE were placed on top of the 1 mm glass 

beads on a cupcake baking sheet and melted at 130˚ C in a vacuum oven. The vacuum was 



 49 

applied to the TPE as it cooled to eliminate air pockets/bubbles, which can be mistaken for the 

markers in ultrasound images. The fiducial markers have a thickness of approximately 3 mm.  

The markers were placed around the breast, using Nu-Hope Liquid Waterproof Adhesivem. A 

waterproof adhesive is recommended to ensure maintenance of fiducial marker placement with 

use of ultrasound coupling gel or lotion. Six external markers were applied to phantom A as 

show in in Figure 3.2. Results were obtained using all 6 markers as well as using 5 markers 

(positions F, A, B, C, and E), 4 markers (positions F, E, B, and C), 3 markers (position F, A, B), 

and two markers (positions F and B). Results for Phantom A, indicated no statistical difference 

in lesion correlation when using 6 markers and when using a maximum of three markers at 

locations F, A, and B. Therefore, for Phantom B, only 3 markers at those approximate locations 

were used when imaged. 

 

 
Figure 3.2 Phantom A with external fiducial marker locations indicated by A-F 

3.3.3 Data Collection  

     A GE-SenoClaire DBT system (GE Healthcare, Milwaukee, WI) was used to image Phantom 

A in the CC view with a compressive force of 6 daN and compressed breast thickness of 48 mm. 

The maximum uncompressed breast phantom thickness measured 98 mm from reconstructed CT 

                                                 
m (Nu-Hope Laboratories, Inc., P.O. Box 331150 Pacoima, CA 91333-1150, http://nu-hope.com/products.php ). 

http://nu-hope.com/products.php
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images. Thus, phantom A was compressed 51% for this study. 6 out of the 7 lesions in this 

phantom were identified in the reconstructed DBT images. A GE Senographe Pristina DBT 

system (GE Healthcare, Milwaukee, WI) was used to image Phantom B in the CC view with a 

compressive force of 3 daN and compressed breast thickness of 31 mm. For Phantom B, 7 of the 

12 lesions were identified in the reconstructed DBT images. The maximum uncompressed breast 

phantom thickness measured 97 mm from reconstructed CT images. Thus, phantom B was 

compressed 68% for this study. The reason 1 lesion in Phantom A and 5 lesions in Phantom B 

were not seen in the reconstructed DBT images is that the plastic backing on both phantoms 

restricted the ability to image close to the “chest wall” where those lesions were located.  

Figure 3.3 (a) and Figure 3.3 (b), show DBT images of both phantoms including some of the 

lesions and an external fiducial marker (red arrow).  

 
Figure 3.3 DBT and ABUS acquired images. The red arrows indicate the locations of external fiducial markers 

in:(a) DBT image of Phantom A, (b) DBT image of Phantom B, (c) ABUS image of Phantom A, and (d) ABUS image 

of Phantom B 

     Both phantoms were imaged with a GE Invenia ABUS system119 (GE Healthcare, Milwaukee, 

WI) immediately after DBT imaging. Light AP compression is applied to the phantoms when 
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they are imaged with the Invenia ABUS system. There are three settings on the system (high, 

medium, and low) based on imaging depth. The high setting was used for imaging Phantom A 

and the medium setting was used for imaging Phantom B. The system has a safety stop at 20lbs 

(8 daN) which is lower than the compression used in most mammography exams today. The 

Invenia ABUS reverse curve transducer has a bandwidth of 6 to 15 MHz and can image up to 50 

mm in depth. The transducer has a width of 153 mm and automatically travels approximately 

170 mm across a mesh compression paddle. The breast/phantom was positioned supine with 

anterior-posterior compression applied by the mesh paddle. One ultrasound volume of each 

phantom was taken in the anterior posterior view. Clinical procedures typically include 

acquisitions of three separate volumes per breast to ensure full coverage of the breast and 

axillary region. Raw data from the Invenia ABUS system does not include correction for the 

curved transducer. Therefore, an algorithm was developed and used to correct for transducer 

curvature in ABUS images. Figure 3.3 (c) and Figure 3.3 (d), indicate marker positioning under 

the ABUS imaging for Phantoms A and B with the correction for the transducer curvature. In 

Phantom A, the 3 calcifications were not seen in the reconstructed ABUS images. A 

disadvantage of ultrasound imaging is that microcalificatons are often not seen and even larger 

calcium macrocalcifications deposits can be missed.120 All 12 lesions were seen in the ABUS 

scans of Phantom B.  

3.3.4 Manual segmentation 

All lesions and external markers from the acquired image sets from both modalities were 

manually segmented using a free-hand drawing tool within 3D Slicer121 by three readers (CAG, 

MMG and JHL) using the same window-level settings on the same work station. Readers viewed 

the images together and agreed upon a window-level setting to be used for each image set in 



 52 

order to eliminate window-leveling as a variable in inter-reader concordance of lesion 

segmentation. Since DBT images have poor axial resolution, the lesions were segmented until 

the superior and inferior extents of the lesions exhibited significant blur along the edges. These 

decision points are very subjective so the axial extents of the lesion segmentations in DBT can 

vary significantly between readers.  

 

Figure 3.4 Reader 1’s manual segmentation of a slice in (a) Phantom A – DBT, (b) Phantom B- DBT, (c) Phantom A 

- ABUS (d) Phantom B - ABUS 

Figure 3.4, shows examples of lesion segmentation for Phantom A and B in both DBT and 

ABUS image sets. Dice similarity coefficients (DSC) (twice the overlap of corresponding 

segmented volumes/sum of those volumes) were used to evaluate similarities between lesion and 

marker contours between readers.122 For the DBT and ABUS data sets, one reader manually 

segmented the outer skin layer from the air and the body of breast phantom A and segmented the 

body of breast phantom B from the air. For the ABUS images, that same reader performed these 

same segmentations manually. There was no correction in the segmentations for DBT 

reconstruction artifacts. After segmentations were completed, resampling was used to decrease 
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runtime when converting segmentations into triangular surface meshes. The DBT images were 

resampled from a native voxel size of 0.1 mm width, 0.1 mm length, and 1.0 mm depth to 0.2 

mm width, 0.2 mm length, and 1.0 mm depth. The ABUS images were resampled from a native 

voxel size of 0.082 mm width, 0.2 mm depth, and 0.506 mm length (distance between adjacent 

slices), to 0.2 mm width, 0.2 mm depth, and 0.506 mm length. Image resampling is done using 

the MATLAB imresizen command.  

3.3.5 Deformable mapping algorithm  

 The deformable mapping algorithm is an automated process that integrates the use of 

Morfeus, a commercial FE pre-processor (HyperMesh 2017, Altair Engineering, Troy, MI) and a 

finite element analysis (FEA) solver processor (Optistruct 2017, Altair Engineering, Troy, MI). 

An overview of the process is shown in Figure 3.5. 

                                                 
n https://www.mathworks.com/help/images/ref/imresize.html  

https://www.mathworks.com/help/images/ref/imresize.html
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Figure 3.5 The automated deformable mapping process. Software’s used shown in red.  

 The entire deformable mapping algorithm takes up to approximately 40 minutes to complete 

from start to finish on a Windows 7 Intel® Core™ i7 CPU with a speed of 2500 MHz and 4GB 

RAM. In ABUS imaging, poor acoustic contact with the transducer often occurs around the 

periphery of the breast causing artifacts as shown on the right and left sides of Figure 3.3 © and 

Figure 3.3 (d). These artifacts cause the actual breast size and shape in ABUS imaging to be not 

as well defined in comparison to DBT. An example of the segmentation of the skin layer for both 

phantoms is shown in Figure 3.6.  
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Figure 3.6: Periphery uncertainty from skin segmentation for a slice in ABUS for (a) Phantom A (b) Phantom B. 

 Reader bias can affect the segmentation in the periphery boundary. The use of external 

markers for registration should help to reduce and correct for these differences in lesion 

registration. On the other hand, the breast shape and size are better defined in the DBT images as 

shown in Figure 3.3 (a) and Figure 3.3 (b). Therefore, we chose to have the deformable mapping 

algorithm perform deformation only to the DBT FE model and register the resulting deformation 

to the ABUS image set. The external fiducial markers allow for adjustments to be made since all 

markers observed in the ABUS images had potentially corresponding points in the DBT images. 

More sophisticated registration rules are required if that is not the case. 
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3.3.5.1 Conversion of DICOM segmented images to triangular surface mesh 

 Morfeus, a FE based multi-organ deformable image registration platform, converts all 

DICOM segmented contours into individual triangular surface mesh for use in the FE model pre-

processor.47 Morfeus converts the DICOM image data into mask files for image analysis using 

Interactive Data Language (IDL, Research Systems Inc.). Each mask file is then converted into a 

triangular surface mesh file. Within HyperMesh, the shrinkwrap function is used on the Morfeus 

generated triangular surface element mesh in order to create a triangular “trias” surface mesh for 

further processing and FEA. Prior to FEA, an element quality check is performed to ensure all 

elements in the model are within various specifications (e.g., aspect ratio, Jacobian, warpage 

etc.) in order for the analysis to commence. Therefore, Morfeus uses Laplacian smoothing and a 

decimate function to better ensure the triangular mesh is within element quality specifications by 

smoothing rough or sharp elements to ensure viable mesh integrity while maintain a reasonable 

mesh size to maintain structural features. 

3.3.5.2 Finite element model generation 

 The algorithm uses the FE model pre-processing software, HyperMesh, to build the base FE 

model for the DBT and ABUS image set from the individual mesh triangular surface contours. 

3D four-point tetrahedral FE models are created using the trias surface meshing algorithm within 

HyperMesh from all 3D-triangular surface mesh contours for each modality model which results 

in fully connected tetrameshed base FE ABUS and DBT models. The algorithm takes into 

account the shape of the triangular surface being meshed and uses a defined library of element 

patterns to map them to triangular surfaces for tetrahedral mesh generation. Each reader’s 

segmented dataset includes the resulting base DBT and ABUS models for both phantoms. The 

material properties that were assigned to the 3D tetrahedral model volumes are as noted in Table 
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3.1. Surface interfaces are defined, and boundary conditions are determined using a mesh 

morphing module named HyperMorph. The base DBT model is deformed to match the ABUS 

model since there is higher certainty in the overall breast shape in the DBT model. Since the 

simulated dense and cystic lesions cannot be distinguished in the DBT images, all lesions are 

assumed to have the material property of the dense lesions from Table 3.1. For Phantom A, the 

average number of elements/nodes are 366,000/65,800 for the base DBT model and 

102,000/20,300 for the base ABUS model. For Phantom B the average number of 

nodes/elements are 192,000/35,600 for the base DBT model and 137,000/24,200 for the base 

ABUS model. The DBT model has a larger number of elements/nodes due to smaller element 

size since it is used for FEA and the ABUS model is used as the reference model. 

3.3.5.3  Skin surface transformation of DBT model to match ABUS skin surface 

 The base DBT FE model (Figure 3.7 (a), blue) is translated and rotated to the center of mass, 

COM, of the base ABUS FE model (Figure 3.7 (b), brown). Nodal locations, (x, y, z-coordinate 

locations that define elements in FE model) from the skin surface of the base DBT-FE model are 

automatically moved to best match the outer surface of ABUS FE model along the axial and 

coronal planes by morphing the original mesh, which results in Figure 3.7 (c). This 

transformation reshapes the skin surface mesh and does not use any breast phantom material 

properties. For this transformation, the entire skin surface as the volume is encased in a six-sided 

hexahedron to encompass the entire skin volume. The handles, (68 in total, yellow and red 

spheres shown around the DBT skin mesh in Figure 3.7) are created and encompass the outer 

contour of the DBT skin model at seven equidistant locations along each planar axis. The red 

spheres indicate global handles, which are 8 in total and are generated at the eight corners of the 

hexahedron box surround the skin mesh. Global handles are used for making large scale changes 
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to the mesh. The yellow spheres indicate local handles which make smaller scale changes to 

localized areas of the. There are 60 yellow spheres in total and are used to manipulate a small 

region of the skin mesh by influencing external nodal locations. Influence functions, using the 

HyperMorph feature within the HyperMesh software, relate the movement of the handles to the 

nodes within. There are a number of non-linear algorithms used depending on the size and shape 

of the domains and the number of nodes within. The algorithm enforces symmetry or constrain 

nodal movements in many different patterns to modify the relationship between handle 

movement and node manipulation. The external nodes of the DBT skin model are then related 

along the axial and coronal anatomical planes to the nearest node in the ABUS model based on 

the axes of interest. The external nodes of the DBT skin model are then related along the axial 

and coronal anatomical planes to the nearest node in the ABUS model based on the axes of 

interest.  

   

 

Figure 3.7: Mesh transformation for external DBT breast surface mesh to match shape of ABUS surface mesh. 

Brown: ABUS (unchanged) Yellow:Blue (deformed): (a) COM translation and rotation of DBT to ABUS COM (b) 

Coronal handle manipulation of DBT breast surface mesh (along y axis) (c) Axial handle manipulation of DBT 

breast surface mesh (along z axis)   

 The algorithm computes the differences and manipulates the handles so the DBT volume 

can match the external ABUS shape. Manipulating handles along the coronal plane (Figure 3.7 

(b)) simulates the decompression of the DBT surface mesh. Manipulating handles along the axial 
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plane (Figure 3.7 (c)), simulates AP compression of the DBT surface mesh to match the ABUS 

surface mesh. In other words, the original DBT surface mesh is morphed by changing nodal 

locations to better align with the overall shape of the ABUS surface mesh. The sagittal plane (the 

plane the ultrasound transducer is scanned) is not considered due to poor coupling along the right 

and left sides of the breast during ABUS image acquisition. 

3.3.5.4 External Marker Correlation 

After surface deformation is completed using the outer skin contours between models, the 

algorithm computes COM positions of the external fiducial markers from the morphed DBT 

model and reference ABUS model. The DBT surface mesh is further deformed based off 

external marker correlation as follows: External fiducial markers in the DBT model are matched 

with the base ABUS external fiducial markers by determining the minimum distance between 

the COMs of corresponding markers. This distance will be used to align markers closer together 

and allows for mesh corrections along all anatomical planes (includes correction along the 

scanning plane of the ultrasound transducer).  

Once external markers are matched between the two sets and the resulting distances between 

COMs is determined, the algorithm determines which local handle (yellow spheres shown in 

Figure 3.7 (c)) is needed to adjust nodes within the mesh domain. This handle is determined by 

proximity to handle locations along the x-axis. Once the local handle is determined, the local 

handle is manipulated by half the distances between the COMs of correlated markers for each 

planar axis. This is repeated for all corresponding markers. After all handle manipulation is 

completed the algorithm recalculates the COM distances between markers. If all markers are 

within a user-defined distance, dM (between 1 and 10 mm), the algorithm will begin FEA. If not, 

the algorithm identifies which markers are not within dM and iterates again to manipulate the 
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handles for markers that are not satisfying the dM boundary condition. The algorithm will iterate 

until all markers satisfy the dM boundary condition. Each iteration will only perform handle 

corrections based off the total number of matched markers (i.e. 6 matched markers corresponds 

to a maximum of 6 handle corrections for that iteration).  

To maintain mesh integrity, the DBT FE model is deformed by half the distance between 

correlated markers to ensure that mesh quality is not compromised due to large changes to the 

skin mesh which can halt processing by the FEA solver. Skin deformation per iteration occurs 

only for corresponding markers that are greater than dM. For those markers, deformation by 

further manipulation of the handles, as described in Sec. 3.3.5.3 is performed in that area of the 

DBT model of the breast. A lower bound of 1 mm is used as it is approximately equal to the 

ultrasound point spread function expected for the fiducial markers. If there are no markers 

inferior to the nipple, mesh deformation is assumed symmetric superior and inferior to the 

nipple. The displacement for each node from the surface mesh of the DBT translated model 

(Figure 3.7 (a)) and the deformed DBT surface mesh (Figure 3.7 (c) with the addition of 

external marker corrections) are stored and applied as boundary conditions for FEA deformation 

to begin on the base DBT model. Skin surface deformation is used for the sole purpose of 

creating the boundary conditions needed to begin the FEA.  

3.3.5.5 Finite Element Analysis 

 The constraints or boundary conditions for each external DBT surface mesh are applied to 

the translated base DBT FE model. These boundary conditions are used as input to the FEA 

solver program, Optistruct, to generate and solve the differential equations to describe the model 

deformation based off the defined constraints. The FEA uses the material properties and 

boundary conditions to find the resultant stress and strain of the deformation of the entire breast 
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volume. Due to the high deformation that is needed to match the DBT and ABUS volumes, the 

FEA is performed as a non-linear quasi-static analysis in a single step. Linear static deformation 

would compromise mesh integrity and result in faulty output or inability of FEA to run. 

Therefore, this study does not recommend the use of linear static deformation analysis between 

DBT and ABUS compressions. The FEA was performed on a Windows 7 Intel® Core™ i7 CPU 

speed of 2500 MHz with 4GB RAM with analysis complete in approximately twenty minutes. 

The analysis time will be longer for models with greater complexity. 

3.3.5.6 Lesion correlation  

After FEA is performed, the COM of all lesions from the FEA-DBT model and the base FE 

ABUS model are determined. A correlation algorithm determines which lesions correspond to 

lesions in the other set with the constraint that the difference in COM is within 15 mm. Previous 

studies, for deformable registration from breast MR to mammography CC views have shown 

mean registration errors of 10 - 20 mm.92 Therefore, since those studies were based on real breast 

data these bounds were used loosely as correlation criteria for registration measurement. All 

external nodal locations of each lesion are analyzed to determine overlap of correlated lesions. 

Corresponding lesions from DBT and ABUS sets that have a minimum distance between the 

COMs, dCOM are considered to match. For two lesions in DBT that have the same dCOM with a 

lesion in ABUS, the code checks the dCOM of those two DBT lesions with other ABUS lesions to 

minimize all dCOM and thereby determines the correct lesion matches. The matching process is 

described in pseudo-code in Figure 3.8.  
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Figure 3.8 Pseudo-code for lesion correlation used within deformable mapping algorithm 

 

All corresponding lesions are considered matched between the two modality sets based on 

the criteria in Table 3.2. Since our studies use uniform background phantoms with large numbers 

of lesions, stricter lesion correlation guidelines were employed to reduce the likelihood of 

mismatch. 

Table 3.2 Criteria for lesion correlation between ABUS and DBT model 

 dCOM dO 

Overlapping Lesions dCOM ≤ 10 mm n/a 

Non-overlapping Lesions dCOM ≤ 15 mm dO ≤ 7.5 mm 

 

Therefore, if two corresponding lesions overlap, they are considered a match if dCOM is 

within 10 mm. If lesions correspond but do not overlap the minimum distance to overlap, dO, is 

calculated as shown in Figure 3.9. If the two corresponding lesions are within a dCOM of 15 mm 

and dO is within 7.5 mm, the lesions are matched. The dO is restricted to 7.5 mm to ensure a 

match discrepancy is not made. The results are output into a table and can be used to relate 
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positions from the original ABUS and DBT DICOM data. Calcifications from Phantom A are 

not considered during lesion matching. 

 

Figure 3.9 Lesion correlation metrics for COM distance (dCOM) and minimum distance to overlap (dO) for (a) 

non-overlapping lesions and (b) overlapping lesions. (Blue = ABUS, Yellow = DBT) 

3.3.5.7 Studies performed  

The following studies were performed: 

• Inter-reader concordance of segmented lesions: Inter-reader concordance of all 

segmented lesions was evaluated using DSC and distances between the COM’s of 

corresponding lesions.  

• Inter-reader concordance of locations of fiducial markers: Inter-reader concordance of 

the locations of the fiducial markers was evaluated by measuring the distances between 

the COM’s of each segmented marker for each image set. 

• Reader reproducibility: After segmentation was performed for all lesions, three lesions 

were selected from each image set of each phantom for a study of reader segmentation 

reproducibility. Each reader segmented those three lesions in the DBT and ABUS images 

several days after completing their original segmentations.  

• Accuracy of deformable mapping technique: For Phantom A, results were compared for 
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cases when sufficient iterations were performed to achieve corresponding marker 

separations of ≤ 1 mm vs. ≤ 5 mm This comparison included results when different 

numbers of markers were used. In addition, results were compared with and without the 

use of the markers. For all comparisons, the statistical significance of any differences 

between the average dCOM values for corresponding lesions were determined with paired 

t-tests. The numbers of lesions that overlapped and dO were also compared.  

3.4 Results  

3.4.1 Analysis of inter-reader concordance of segmented lesions in both phantoms 

     Table 3.3 compares the segmentation results between readers for all lesions in both phantoms. 

The DSC for the ABUS data for both phantoms is approximately 0.90. For DBT data for both 

phantoms DSC results are lower, likely due to differences in reader determination of the vertical 

extents of the lesions. The smallest DSC is 0.57 for R2 to R3 for Phantom 2. For this same reader 

correlation, the average distance between COM (dCOM) is 0.81 mm thus illustrating that even 

though the DSC values are low, the central positions of the lesions segmented by the different 

readers are still very close to one another. 

Table 3.3 Average DSC and average COM distance (dCOM) results between readers for corresponding lesions in all 

DBT and ABUS data sets for Phantoms A and B. 

Reader 

correlation 

Phantom A Phantom B 

ABUS DBT ABUS DBT 

DSC dCOM 

(mm) 

DSC dCOM 

(mm) 

DSC dCOM 

(mm) 

DSC dCOM 

(mm) 

R1 to R2 0.89 ± 

0.07 

0.20 ± 

0.03 

0.70 ± 

0.19 

1.06 ± 

0.27 

0.90 ± 

0.05 

0.31 ± 

0.06 

0.62 ± 

0.24 

0.78 ± 

0.08 

R2 to R3 0.88 ± 

0.08 

0.29 ± 

0.01 

0.73 ± 

0.11 

0.59 ± 

0.12 

0.88 ± 

0.09 

0.30 ± 

0.05 

0.57 ± 

0.25 

0.81 ± 

0.17 

R3 to R1  0.89 ± 

0.03 

0.36 ± 

0.01 

0.72 ± 

0.21 

1.16 ± 

0.23 

0.91 ± 

0.04 

0.21 ± 

0.03 

0.83 ± 

0.04 

0.11 ± 

0.02 
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3.4.2 Analysis of inter-reader concordance of fiducial markers locations 

Table 3.4 illustrates the average distances between the COM’s of the fiducial markers segmented 

by the three readers. The largest differences between the COM’s for both DBT and ABUS are 

approximately 2 mm.   

Table 3.4 Average COM distance (dCOM) between external markers among readers in DBT and ABUS data sets for 

Phantoms A and B 

 
dCOM (mm) 

Phantom A Phantom B 

ABUS DBT ABUS DBT 

R1 to R2 1.31 ± 0.37 1.37 ± 0.26 0.45 ± 0.27 1.18 ± 0.26 

R2 to R3 1.33 ± 0.40 0.69 ± 0.08 0.74 ± 0.23 1.38 ± 0.34 

R3 to R1 1.77 ± 0.61 0.97 ± 0.32 0.48 ± 0.27 2.24± 0.72 

 

3.4.3 Reader reproducibility analysis 

     Table 3.5 illustrates the reproducibility of the segmentation results for each individual reader 

for three lesions in Phantom A and Phantom B. The reproducibilities of the DSC for the 

individual readers are in general higher for the lesions in the ABUS images and lower in the 

DBT images. The latter is likely due to differences in reader determination of the vertical extents 

of the lesions in DBT images when the readers repeat the segmentations themselves. However, 

the dCOM values in Table 3.5 are less than 2 mm for both modality images indicating good 

reproducibility of the positions of the lesions. 

Table 3.5 Reproducibility for each reader’s lesion segmentations in DBT and ABUS data sets for Phantoms A and B 

using DSC coefficients and average COM distance (dCOM). 

Reader 

 ID 

Phantom A Phantom B 

ABUS DBT ABUS DBT 

DSC dCOM (mm) DSC dCOM (mm) DSC dCOM (mm) DSC dCOM (mm) 

R1 0.85 ± 0.04 0.50 ± 0.27 0.78 ± 0.09 1.88 ± 1.34 0.89 ± 0.02 0.19 ± 0.03 0.68 ± 0.19 0.59 ± 0.05 

R2 0.86 ± 0.03 0.47 ± 0.34 0.85 ± 0.05 0.60 ± 0.45 0.86 ± 0.01 0.23 ± 0.13 0.66 ± 0.16 0.69 ± 0.05 

R3 0.86 ± 0.01 0.29 ± 0.26 0.78 ± 0.07 1.19 ± 0.92 0.87 ± 0.05 0.16 ± 0.04 0.69 ± 0.07 0.42  0.38 

 

For segmentations by each reader, deformation was successfully performed on the base DBT 
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FE model and correlated to the corresponding ABUS datasets between reader segmented data. In 

every iteration of the algorithm, the average distances between the COMs between the readers of 

the correlated markers decreased as shown in Figure 3.10. After 6 iterations, the average 

correlated difference between all markers is 3.0 mm which corresponds to a dM ≤ 5 mm.  

3.4.4 Accuracy of deformable mapping for different numbers of fiducial markers for 

Phantom A 

Phantom A has 7 lesions, all of which were viewed with ABUS. However, only 6 of the 

lesions were viewed in the DBT images because 1 lesion was too close to the chest wall and 

moved outside the image field of view when the phantom was compressed. Figure 3.10 (a), 

illustrates the resulting lesion dCOM, dO, and overall lesion overlap where no marker analysis was 

used and compares it to various marker combinations described in Sec. 3.3.1 when markers 

within a 1-mm distance (dM ≤ 1 mm). Figure 3.10 (b), illustrates the resulting lesion dCOM, dO, 

and overall lesion overlap fraction that were obtained when no fiducial marker analysis was used 

and compares it to various marker combinations described in Sec. 3.3.1 when all corresponding 

markers were within a 5-mm distance (dM ≤ 5 mm). 

For the 6 marker case, 6 iterations were needed for all of the corresponding external markers 

to be within a 5-mm distance of each other. For all corresponding external markers to be within a 

1-mm distance of each other required 17 iterations. Each iteration can have runtimes of up to 3 

minutes depending on the number of markers used in the analysis. Therefore, a difference of 10 

iterations can increase runtime by about 30 minutes. Although as shown in Figure 3.10, the dCOM 

are slightly greater for markers being within 1 mm vs. 5 mm (likely due to the greater number of 

iterations and corrections made to get all of the markers within the 1 mm distance), the p-value 

for a paired t-test was 0.12. Thus, there was no statistical difference in dCOM when markers were 
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within 1-mm versus a 5-mm distance. Hence a dM of 5 mm is regarded as an acceptable distance 

between correlated markers to ensure acceptable algorithm run time, with the employed, simple 

processor, while maintaining desired lesion correlation. Without the use of markers only 2 out of 

6 lesions overlapped. For both dM cases analyzed, overlap improved to 6 out of 6 lesions with 4 - 

6 marker analysis combinations and improved to 5 out of 6 lesions overlapped for 2 and 3 

marker analyses. The largest improvement in dCOM is shown for 2 and 3 markers vs. 0 markers.  

 

Figure 3.10 Average distances between COMs of corresponding lesions in ABUS and DBT images (dCOM) for all 3 

readers, as well as minimum distance to overlap (dO), and overall lesion overlap ratio (the number of lesions that 

overlapped between DBT and ABUS sets divided by the total number of lesions that were imaged) for Phantom A 

with various number of external fiducial markers. (a) All marker distances were within a distance (dM ≤ 1 mm) 

between readers’ data sets. (b) All marker distances were within a distance (dM ≤ 5 mm) between readers’ data sets. 

Marker combinations from Figure 3.2:6 markers (A-F), 5 Markers (A, B, C, E, and F), 4 markers (F, B, E, and C), 3 

markers (A, B, and F) and two markers (F and B). 

 Figure 3.11 displays the improvement from no marker analysis to that with three marker 

analyses in Phantom A for all correlated lesions for Reader 1 segmented datasets. 
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Figure 3.11 Phantom A lesion correlation for Reader 1 (a) without marker analysis coronal view (b) with marker 

analysis coronal view (c) without marker analysis axial view (d) with marker analysis axial view. All numeric values 

correspond with Lesion ID’s in Table 3.6. (Blue = ABUS, Yellow = DBT) 

 Table 3.6, compares the average distances between the COMs of corresponding individual 

lesions ± the standard deviations of those distances in the deformed DBT and base ABUS images 

for the combined data for all 3 readers for phantom A, without the use of markers and with the 

use of three external markers for lesion correlation. The mean difference in lesion dCOM was 1.9 

mm with 3 marker analyses vs. without. A paired t-test of the mean dCOM values was performed 

and resulted with an overall p-value of 0.01 for the averaged dataset. Therefore, the use of 3 

external markers showed statistically significant improvements in lesion dCOM in comparison to 

the use of no external markers.
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Table 3.6 Lesion correlation for Phantom A when no external markers are used for the deformation (left) vs. three 

external markers used for the deformation (right). 

Without Marker Analysis With 3 Marker Analysis (dM ≤ 0.5 mm) 

Lesion ID dCOM (mm) dO (mm) Overlap Lesion ID dCOM (mm) dO (mm) Overlap 

1 8.2 ± 0.3 3.4 ± 0.4 no 1 4.5 ± 0.2 n/a yes 

2 10.2 ± 0.7 3.6 ± 0.3 no 2 7.1 ± 1.1 n/a yes 

3 5.0 ± 0.3 n/a yes 3 3.9 ± 0.5 n/a yes 

4 8.5 ± 0.1 1.9 ± 0.1 no 4 8.4 ± 0.5 1.1 ± 0.0 no 

5 4.7 ± 0.5 n/a yes 5 2.0 ± 0.5 n/a yes 

6 4.5 ± 0.1 1.5 ± 0.6 no 6 3.6 ± 1.4 n/a yes 

Average 6.8 2.6 Overlap Average 4.9 1.1 Overlap 

σ 2.4 1.1 2/6 σ 2.4 0.0 5/6 

 

3.4.5 Accuracy of deformable mapping technique for phantom B 

Based on the results for Phantom A, Phantom B was only imaged with three markers in the 

positions F, A, and B as illustrated in Figure 3.2. Phantom B has 12 lesions, all of which were 

viewed with ABUS. However, only 7 of the lesions were viewed in the DBT images because 5 

lesions were too close to the chest wall and moved outside the image field of view when the 

phantom was compressed. Without the use of markers analysis, 4 lesions were correlated (within 

15 mm of each other) with only 1 overlapped. As shown in Table 3.7, the average dCOM between 

corresponding ABUS and DBT lesions for the 3 readers was 9.7 ± 3.5 mm and the average lesion 

dO was 2.9 ± 1.8 mm. For the segmented data without marker analysis only one lesion showed 

overlap. These results are tabulated in Table 3.7.  

 Table 3.7, also includes a comparison between the deformable mapping method without 

marker analysis with that for 2 and 3 external markers. Using 2 and 3 marker analyses, the 

average dCOM between corresponding lesions improved by 18% and 27%, respectively, relative 

to the no markers case. For the 4 lesions correlated without marker analysis a paired t-test of the 
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mean dCOM values was performed with the results for 2 and 3 marker analysis combinations and 

both resulted in p-values of 0.01 respectively. Therefore, these 4 lesions on average show 

statistically significant improvement in lesion dCOM with the use of external markers. Figure 3.12 

displays the improvement from no marker analysis to that with three marker analyses in Phantom 

B for all correlated lesions for Reader 1 segmented datasets. 

 

Figure 3.12 Phantom B lesion correlation for Reader 1 (a) without marker analysis in the coronial view (b) with 

three marker analyses in the coronial view (c) without marker analysis in the axial view (d) with three marker 

analyses in the axial view. All numeric values correspond with Lesion ID’s in Table 3.7. Note that for the without 

marker analysis lesions 5, 6, and 7 did not meet the correlation criteria of being within 15 mm of each other (See 

Table 3.7). (Blue = ABUS, Yellow = DBT) 

Table 3.7, shows a comparison between the deformable mapping method without marker 

analysis and with 2 and 3 external markers. The mean dCOM values for 2 and 3 marker analyses 

are 7.6 ± 3.6 mm and 8.5 ± 4.0 mm, respectively. A paired two-sample t-test for means was 

performed on the average dCOM values. The p-value was 0.053 and supports that the difference 

between using 2 markers and 3 markers is not statistically significant. Lesion ID=7 values were 

calculated for only two readers, as that specific lesion was not within bounds for correlation for 

one of the readers as defined in Table 3.2.  
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Table 3.7 Lesion correlation for Phantom B when no external markers are used for the deformation and with the use 

of 3 and 2 marker analysis. Note: Lesion Overlap is defined by the resultant of at least 2 out of 3 readers’ data 

showing overlap for that specific lesion between ABUS and DBT set. +Indicates that lesion 3 in no marker analysis 

showed overlap for 2 out of 3 readers’ datasets. * Indicates that lesion 7 was out of correlation bounds for one 

reader set and therefore the values are averaged based for two readers’ data and not all three. 

Without Marker Analysis With 2 Marker Analysis (d
M

 ≤ 0.5 mm) With 3 Marker Analysis (d
M

 ≤ 0.5 mm) 

Lesion ID d
COM 

(mm) 
d

O
 

(mm) 
Overlap Lesion ID d

COM 
(mm) d

O
 (mm) Overlap Lesion ID d

COM 
(mm) d

O
 (mm) Overlap 

1 13.8 ± 0.4 2.7 ± 0.2 No 1 5.8 ± 2.0 n/a Yes 1 9.1 ± 0.9 n/a Yes 

2 8.1 ± 0.5 2.9 ± 0.4 No 2 3.4 ± 0.9 n/a Yes 2 2.9 ± 1.5 n/a Yes 

3+ 5.8 ± 2.4 0.8 ± 0.0 Yes 3 3.4 ± 0.7 n/a Yes 3 3.3 ± 2.0 n/a Yes 

4 11.1 ± 2.0 5.2 ± 1.3 No 4 6.7 ± 1.5 n/a Yes 4 8.3 ± 1.6 1.1 ± 1.3 No 

5 n/a n/a n/a 5 10.1 ± 1.2 1.0 ± 0.9 No 5 11.5 ± 0.8 1.6 ± 0.5 No 

6 n/a n/a n/a 6 11.1 ± 2.7 4.0 ± 0.4 No 6 11.8 ± 3.7 5.1 ± 1.6 No 

7 n/a n/a n/a 7* 12.7 ± 0.7 5.8 ± 0.1 No 7* 12.8 ± 0.2 6.6 ± 0.8 No 

Average 9.7 2.9 Overlap Average 7.6 3.6 Overlap Average 8.5 3.6 Overlap 

σ 3.5 1.8 1/4 σ 3.6 2.5 4/7 σ 4 2.6 3/7 

3.5 Discussion  

A novel automated deformable mapping algorithm has been described and assessed between 

upright DBT and supine ABUS images. Although this method uses commercially-available 

biomechanical modeling and FEA software, the techniques described can be applied to other 

commercially available software or research algorithms. This study demonstrates that with the 

use of 2-3 external fiducial markers for the deformation results in up to 28% improvement in 

lesion correlation (dCOM) in comparison with not using external markers. An expansion of this 

work will incorporate an interface on a radiologist work station for displaying corresponding 

lesions in the original ABUS and DBT slices as shown Figure 3.13.  
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Figure 3.13 Relating corresponding lesion in DBT and ABUS original datasets for Phantom A based on use of 

deformable mapping algorithm results 

Figure 3.10 demonstrates that for Phantom A, as the number of external fiducial markers that 

are used for deformable mapping increase from 4 to 6, the overlap fraction remains the same and 

the average dCOM remains approximately the same. This effect is probably a result of Phantom A 

being a stiff phantom. It should be noted that although, in this study, two different compression 

forces were used, and the phantoms represented two different breast densities, the automated 

deformable mapping algorithm was successful in identifying the majority of the corresponding 

lesions within the two phantom data sets. This supports translation of the deformable mapping 

method to actual patient data where there will be a wide range of compressions used as well as 

differences in breast density and size.  

For Phantom B, without marker analysis only 4 lesions were correlated. Comparative t-tests 

of the means of the dCOM of those lesions without marker analysis to those with 2 and 3 marker 

combinations indicated statistical significance. With the use of 2 and 3 markers all 7 lesions 

came within correlation parameters. However, a statistically insignificant t-test of dCOM between 

the use of 2 and 3 markers indicates no greater improvement in correlation with the use of 3 

markers over 2 in the indicated geometry. Nevertheless, additional markers in the axillary region, 
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which was not simulated in the phantoms for this study could potentially allow better registration 

in patient imaging. This will be investigated in future studies. 

It is difficult to directly compare the results between Phantom A and Phantom B for the 

following reasons: Phantom A used more external markers than Phantom B. Phantom B did not 

contain the Z-skin membrane and all lesions were near the chest wall. Phantom B was easily 

compressed simulating a fatty breast and Phantom A represented a breast with higher glandular 

tissue content. Using only 3 external markers for Phantom B vs. 6 markers for phantom A may 

have biased the results. Using the same number of external markers for both phantoms would 

have allowed for a better direct comparison between the two data sets.  

Overall, the phantoms were easily segmented by readers. The largest differences between 

readers and variance in reader reproducibly were evident in the DBT data sets. Due to poor axial 

resolution in DBT imaging, determining where lesions were blurred or out of focus at the 

superior and inferior extents of the lesions was difficult. Therefore, the use of an automated 

segmentation method would be useful and will be investigated for future work. Drawing the top 

and bottom of the lesions at a distance from the central plane equal to the mean circumference in 

the central plane might prove most effective. After lesions are correlated, their borders in DBT 

might be drawn better based on the ABUS contours.  

When deforming the DBT model to the base ABUS model this study assumes that all lesions 

are homogenous and have the material properties of dense lesions. After correlation has taken 

place, for lesions that correlated to cystic lesions in the ABUS set the algorithm could be rerun 

with the correct cystic material properties. In actual patient data, there will be heterogeneity in 

breast tissue. An expansion of this study could investigate the significance of this heterogeneity 

in the FEA-based registration.  
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The use of 2 or 3 markers for deformable mapping with Phantom A showed improvements 

for dCOM results over the use of 4-6 markers. Based on marker placement in this study, markers 

located inferior to the nipple have direct contact with the breast support plate during DBT 

compression. The inferior part of the phantom flattens initially when the phantom is placed in 

contact with the breast support plate. It is believed that this contact restricts the movement of the 

markers resulting in small displacements of the markers in this region. The contact could also 

cause the markers to stick to the breast support plate during compression and fall off the breast 

eliminating their use in the subsequent ABUS scans and therefore in the deformable registration. 

Conversely, markers located superior to the nipple (Figure 3.2 Positions A, B, and F) did not 

have initial contact with the DBT compression paddle and the marker displacements were not as 

easily compromised between DBT and ABUS imaging. Results from both phantoms indicate that 

a minimum of two or three external markers at the indicated positions provide significant 

improvement in lesion registration. However, we intend to directly quantify the number of 

markers and their respective locations that are the most helpful in an IRB approved proof-of-

concept study with patients. Likewise, an MRI to US breast study also used three external 

markers at those approximate locations and found improvement in lesion registration.72  

Intuitively, one would suspect that more external markers would allow for better correlation. 

However, this study indicates that when modeling large breast compressions, external 

deformation may not be completely indicative of internal breast deformation. The degree to 

which this holds true for real breasts is yet to be determined. We believe that determination of 

optimal external marker positions on the breast could yield better results in lesion correlation, 

which could allow the use of fewer markers. A recent study using external fiducial markers to 

register MR breast images with microwave images found that fewer better placed fiducial 
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markers reduced the effect of skin translation that is associated with movement of internal 

structures in the breast.123 

The multimodality phantoms used in this work have limitations with respect to simulating 

real breasts. Some of these limitations include: 1) they are made of materials that follow a linear 

elastic behavior while under compression; whereas, real breast tissue follows hyperelastic 

behavior20,38,39, 2) they have a homogeneous background; whereas, real breasts have a 

heterogeneous background and 3) they do not simulate attachment to the pectoral structure which 

could also contribute to the linear elastic behavior. Our planned human subject study will 

determine the degree to which these limitations affect the results in patients. To reduce these 

effects, we will use automatic segmentation of the DBT images into glandular and adipose 

tissues and include the elasticity properties of those tissues in our model. Further developments 

are needed to produce physical breast phantoms with materials that better model patient specific 

breast tissue properties and can model the axillary region of the breast. Other deformable breast 

registration studies have proposed the use of patient-specific in vivo parameters to determine 

biomechanical properties.71,85 

During ABUS imaging, up to 3 scans are rendered to image the breast in its entirety. The 

Invenia system scans from the superior to inferior margins of the breast producing axial images. 

The scans are performed in an AP view. For different views of the breast, this process can be 

repeated with parasagittal imaging planes. Multiple ABUS scans allow the ability to estimate the 

patient-specific distribution of elastic properties in the breast. Inclusion of ABUS-based 

elastography or pulse echo segmentation124 could offer great benefits for the deformable 

mapping algorithm and other biomechanical techniques for use in FEA. With more ABUS scans, 

the need for an additional marker near the axilla region of the breast could be helpful in relating 
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ABUS projections. The present study only considers one ABUS volume; whereas, up to three 

volumes can be taken during an ABUS exam of a patient. Stitching or overlaying ABUS views 

into one volume would be helpful and provide better coverage for deformation of the DBT FE 

base algorithm. ABUS stitching or overlay could also allow this technique to deform the base 

ABUS model into the DBT base model. This would allow the correct cystic and dense lesion 

material properties to be assigned before FEA to their respective lesions. A future goal is to 

include correlation between DBT and ABUS sets in the axilla region of the breast.  

     When translating this technique to patients, we intend to use more external markers placed at 

better breast locations and have the patient wear a special camisole for the ABUS acquisitions. 

Currently, this study shows satisfactory results with the use of just three external markers for 

both phantoms. The use of more external markers will allow for full coverage of the breast 

including the axillary region and we can better determine what number of markers and their 

locations render the best results. As shown for the results of Phantom B, it would be better to 

directly determine which marker locations are best for all patient data by using the same number 

of markers at the same locations and then using the algorithm to determine the minimum needed 

for a desired registration result. 

     We expect that with the use of a breast ultrasound camisole, breast movement between 

various scans can be restricted. This restriction should reduce the effect of varying the 

compression between ABUS views. The use of the camisole can also address an additional 

potential problem with the external markers becoming attached to the ultrasound mesh paddle 

between multiple ABUS compressions. This camisole would need to be made of sheer material 

similar to the Invenia mesh membrane that does not affect the ultrasound depth of penetration 

and also does not interfere with coupling to the ultrasound transducer. Ultrasound penetration 
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and coupling of the Invenia mesh material is well understood and in some cases the use of this 

material improves coupling as it holds ultrasound gel in place. The SonoCiné AWBUS system 

(SonoCiné, Inc., Reno, NV)125 is a commercially available system that uses an ultrasound 

camisole that fits similar to a sports bra to reduce breast movement during scanning. By 

restricting breast motion, a breast camisole should allow for improvement in lesion registration 

for the deformable mapping algorithm.  

     Specifically, even if some markers become detached there will still be a sufficient number 

remaining that can be used for registration. This study uses a tight 15 mm bound when 

determining a match between corresponding lesions since the phantoms have a uniform 

background. When translated to real breasts, this bound will likely increase due to breast 

heterogeneity and breast structures (i.e. Cooper’s ligaments) that will not be modeled in the FE 

process. Additionally, we expect to segment glandular tissue from the background adipose tissue 

in the breast of the ABUS43 and DBT images. Several studies, have found successful results in 

determining breast density from DBT breast images.44–46 Although, the poor spatial resolution of 

DBT in the z (depth) direction reduces the accuracy of the dense tissue segmentation in that 

direction, the overall coarse volumetric segmentation should still be of value in providing 

information about the spatial distribution of the glandular and adipose tissues within the breast 

for the deformable mapping. This should assist with the lesion correlation when the method is 

translated to patient images.  

     The process that took the most time in this study was the manual segmentation. In order for 

this technique to be effective in a clinical platform semi-automated and automated segmentation 

techniques will be needed and explored. Once all images are segmented the automated 

deformable mapping algorithm takes about 40 minutes to run on a Windows 7 Intel® Core™ i7 
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CPU with a speed of 2500 MHz and 4GB RAM. The runtime could be improved greatly with a 

computer with more memory and a capable GPU. 

3.6 Conclusions 

This work demonstrates the potential use of deformable mapping techniques to relate lesions 

between DBT and ABUS breast images. The utilization of external fiducial markers has been 

shown to improve the accuracy of this approach. The resulting one-to-one correlation between 

lesions in DBT and ABUS could help improve radiologists’ characterization of breast lesions, 

which can reduce patient callbacks, negative biopsies and false negative biopsies. Future work 

will expand this platform to include an IRB approved study for patient volunteers, and an 

expansion of the deformable mapping technique for use in relating lesions in other breast 

modalities such as MRI, dedicated breast CT and transmission US. 
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Chapter 4  

Deformable Mapping Technique for lesion registration for Multiple 

Digital Breast Tomosynthesis views to Automated Breast 

Ultrasound Imageso 

 

 

4.1 Abstract 

Purpose: To test an automated deformable mapping method for registering corresponding lesions 

in the craniocaudal (CC) and mediolateral oblique (MLO) digital breast tomosynthesis (DBT)  

views to automated breast ultrasound (ABUS) images with and without the use of external 

fiducial markers. 

Methods: A Computerized Imaging Reference Systems Inc. (CIRS) multi-modality breast 

phantom containing 20 lesions was employed and imaged with DBT (upright positioning with 

CC compression and MLO compression), and ABUS (supine positioning with anterior-to-chest 

wall compression). Eight external fiducial markers (gel pads containing 1-mm glass beads) were 

attached to the surface of the breast phantom prior to the imaging. The reconstructed images 

were segmented using manual (ABUS) and semi-automated (DBT) techniques. An automated 

                                                 
o This chapter is published in the Radiological society of North America 2018 Scientific Assembly and Annual 

Meeting: Green CA, Goodsitt MM, Lau JH, Brock KK, Davis CL, Carson PL. Evaluation of an Automated 

Deformable Mapping Technique with and Without External Fiducial Markers to Relate Corresponding Lesions in 

Digital Breast Tomosynthesis and Automated Breast Ultrasound Images.itle. In: Radiological Society of North 

America 2018 Scientific Assembly and Annual Meeting, November 25 - November 30, 2018, Chicago IL. ; 2018. 

archive.rsna.org/2018/18005292.html.  
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mapping method generates, deforms, and relates the resulting models of the breast for 

registration of lesions between the DBT (CC or MLO) and ABUS image sets. Performance was 

assessed by the number of matched paired lesions and measures of the distances between the 

centers of mass (dCOM) of corresponding lesions. 

Results: The maximum number of lesions that could be matched was 18 because 2 of the 20 

lesions were too close to the chest wall to be visible in the reconstructed DBT images. For 

mapping of DBT (CC) to ABUS without markers, 14 of the 18 lesions were matched and the 

mean dCOM was 13.6 ± 6.3 mm. With markers, 17 of the 18 lesions were matched and the mean 

dCOM was 12.8 ± 6.0 mm. For mapping of DBT (MLO) to ABUS without markers, 8 of the 18 

lesions were matched and the mean dCOM was 9.3 ± 2.8 mm. With markers, 17 of the 18 lesions 

were matched and the mean dCOM was 12.3 ± 5.8 mm.  

Conclusion: This work demonstrates the potential for using this deformable mapping technique 

to identify related lesions between two DBT views and ABUS images. This method shows 

improved lesion correlation with the use of external fiducial markers and extends upon our 

previous work by incorporating registration from the DBT MLO to the ABUS view. This method 

should improve radiologists’ characterization of breast lesions which should reduce patient 

callbacks and unnecessary biopsies. Future work will include an IRB-approved proof of concept 

study with patient data for registration between DBT and ABUS images.  

4.2 Introduction 

 Ultrasound imaging used in adjunct with mammography has been shown to improve the 

characterization of breast lesions.16–18 However, at least 10% of the time lesions found in 

ultrasound images do not correspond to those in mammograms.15 This discrepancy is due to 

several factors. Mammography images the entire breast as a 2D projection which results in the 
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superposition of breast structures. Conventional ultrasound uses sound reflection imaging, 

typically from linear or convex linear arrays, that creates 2D planar images of the specified 

breast area in depth and along the length of the array. Most ultrasound imaging is controlled and 

operated by hand and therefore has high operator dependence. This can cause difficulty in 

reproducing ultrasound images. There is also a difference in patient positioning and a major 

difference in compression applied to the breast between the two modalities. Conventional 

ultrasound imaging is performed in the supine geometry where typically anterior-to-posterior 

(AP) compression is applied by a sonographer using an ultrasound transducer. Mammography 

imaging is performed with the woman upright and with typically, CC or MLO compression 

being applied to the breast between a compression plate and detector panel.  

 Three dimensional forms for ultrasound and mammographic technologies ultrasound exist 

and could be beneficial in relating lesions between these 3D imaging modalities. A 2D 

mammogram only allows localization of a mass to a line through the thickness of the breast. 

Automated breast ultrasound, ABUS, has advantages over conventional breast ultrasound in 

terms of reproducibility and operator independence by visualizing the breast as a 3D image 

volume. Studies have shown the addition of ABUS images with mammography screening have 

significantly improved breast cancer detection rate for women with dense breasts. 19,57,58 Digital 

breast tomosynthesis, DBT, is a quasi-3D form of mammography that provides better detection 

and characterization of breast lesions over mammography through the reduction of tissue 

superposition. However, even with these improvements, DBT has not completely eliminated the 

need for the use of ultrasound as a complement to DBT/mammography.109,110 

 In our previous work34, a deformable mapping method was developed to relate 

corresponding lesions between the DBT (CC view) to ABUS where a significant improvement 
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(p=0.01) was shown using external fiducial markers to aid in the methodology. The purpose of 

the present study is to extend upon this work by evaluating the deformable mapping technique 

using both the CC and MLO DBT views to relate corresponding masses to ABUS. This is 

significant as the MLO view is important for imaging close to the axillary regions of the breast 

which encompasses the upper outer breast quadrant where most cancers are located.126 A study 

by Duffy et al. suggests that using breast density as an indicator of breast cancer risk is enhanced 

by interactive software that uses the CC and MLO view vs a single view.58 Additionally, this 

work also incorporates the use of semi-automated segmentation of the lesions in the DBT 

images; whereas only manual segmentation was used for all modalities in our previous work34. 

4.3 Materials and Methods 

4.3.1 Phantom 

 A CIRS Multi-Modality Breast Biopsy and Sonographic phantom (Computerized Imaging 

Reference Systems, Inc., Norfolk, Virginia)p was used in this study. The phantom contains a total 

of 20 lesions: 10 spherical cystic lesions, 5 spherical dense lesions, and 5 spiculated dense 

lesions. The lesions are randomly located in a background gel, Zerdine, and wrapped in a Z-skin 

membrane material. The lesions are made of the similar Zerdine-based materials; however, the 

cystic lesions have anechoic properties and the dense lesions have hyperechoic properties under 

ultrasound. Material properties phantom components were provided by the manufacturer in 

Table 4.1. For use in the finite element analysis (FEA) solver, a Poisson’s ratio of 0.49 was used 

for convergence stability since the FEA solver cannot run using a Poisson’s ratio of 0.50.  

 

                                                 
p http://www.cirsinc.com/file/Products/073/073%20DS%20110617(3).pdf   

http://www.cirsinc.com/file/Products/073/073%20DS%20110617(3).pdf
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Table 4.1 Material Properties of CIRS phantom 

 Young’s Modulus (E) Poisson’s Ratio (ν) 

Z-skin Membrane  10 kPa 0.50 

Zerdine background gel  10 kPa 0.50 

Lesions  60 kPa 0.50 

 

4.3.2 External Fiducial Markers 

 The breast phantom was marked with a magic marker to differentiate marker locations. 

Eight external fiducial markers were attached using Jobst “It-Stays” Roll-On Adhesive (BSN 

Medical, Charlotte, NC)q to the breast phantom at the indicated locations as shown in Figure 4.1. 

Each marker contains a solid 1 mm diameter glass bead within a thermoplastic elastomer gel. 

The 1 mm glass bead within the gel can be clearly seen in the reconstructed images and are used 

to aid in the deformable mapping process. A detailed explanation of how these markers are 

created can be found in our previous study34 and in the Appendix. 

 

Figure 4.1 CIRS Multi-modality phantom with 8 external markers attached 

                                                 
q  http://www.jobst-usa.com/product/it-stays-roll-on-adhesive/ 

http://www.jobst-usa.com/product/it-stays-roll-on-adhesive/
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 This phantom was imaged using DBT and ABUS techniques, the external fiducial markers 

can be clearly seen in reconstructed DBT and ABUS images as shown by the red arrow in Figure 

4.2.  

 

Figure 4.2: Reconstructed slice indicating external fiducial marker (red arrow) for a slice of (a) DBT 

(CC view) (b) DBT (MLO view) (c) ABUS transverse view (d) ABUS coronal view 

4.3.3 Image Acquisition 

 The GE Senographe Pristina DBT system (GE Healthcare, Milwaukee, WI) was used to 

image the phantom in CC and MLO view. For the CC view, a compressive force of 3 daN 

(decanewton) was used and the phantom was compressed to a thickness of 44.2 mm. For the 

MLO view, a compressive force of 2.5 daN was used and the phantom was compressed to a 

thickness of 48.5 mm. For both image views, only 18 lesions were shown in reconstructed DBT 

images. Two lesions were not seen because they are close to the phantom “chest wall”. The 

phantom backing restricts the ability to image close to that area.  

      Lastly, the phantom was imaged with the GE Invenia ABUS system (GE Healthcare, 

Milwaukee, WI). Light anterior-to-posterior (AP) compression is applied when imaged with the 

Invenia and the medium imaging setting was used. The Invenia ABUS operates between 6-15 
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MHz and can image up to a 50 mm depth. The system contains three settings based on imaging 

depth (high, medium and low). For this study, the medium setting was used which images up to 

40 mm. Clinical procedures can include up to three image sweeps of the breast depending on 

breast size to ensure coverage of the breast and axillary region in its entirety. Due to the absence 

of the axillary region, only one image sweep using ABUS was acquired. All 20 lesions were 

shown in reconstructed ABUS images.  

4.3.4 Segmentation Techniques 

 Lesions in the DBT acquired images were segmented using a semi-automated segmentation 

program called MiViewer.127 For the ABUS images, all dense lesions were segmented using the 

MiViewer program. The 10 cystic lesions in ABUS images were segmented using automated 

nonlinear filtering and segmentation approach by Elawady et al.128 Figure 4.3 shows a 

representation of segmentations of the phantoms.  

 

Figure 4.3: Segmentation of lesions within an image slice of (a) DBT CC (b) DBT MLO (c) ABUS 
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4.3.5 Automated deformable mapping algorithm 

 The deformable mapping algorithm is an automated process that integrates the use of 

Morfeus, a commercial FE pre-processor (HyperMesh 2017, Altair Engineering, Troy, MI) and a 

finite element analysis (FEA) solver processor (Optistruct 2017, Altair Engineering, Troy, MI). 

An overview of the process is shown in Figure 4.4. The entire algorithm takes up to 

approximately 60 minutes to complete from start to finish on a Windows 7 Intel® Core™ i7 

CPU with a speed of 2500 MHz and 4GB RAM. 

 

Figure 4.4 The automated deformable mapping process for DBT to ABUS registration. Software’s used 

are shown in red.  

 In ABUS imaging, poor acoustic contact with the transducer often occurs around the 

periphery of the breast causing artifacts as shown on the right and left sides of Figure 4.2 (c). 

These artifacts cause the actual breast size and shape in ABUS imaging to be unknown. In 

comparison, the breast shape and size are better defined in the DBT (CC or MLO) images as 

shown in Figure 4.2 (a) and Figure 4.2 (b). Therefore, the deformable mapping algorithm 
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performs deformation only to the DBT FE model and registers the resulting deformation to the 

reference ABUS image set.  

 The algorithm begins with a conversion of DICOM segmented images to a triangular surface 

mesh using Morfeus, a finite element based multi-organ deformable image registration platform. 

Morfeus converts the DICOM image data into mask files for image analysis using Interactive 

Data Language (IDL, Research Systems Inc.). A surface mesh is created for each individual 

contour. Morfeus uses Laplacian smoothing and a decimater function in order to maintain a 

reasonable mesh size while maintaining structure features for each mesh.  

 Next, the algorithm uses the FE pre-processing software, HyperMesh, to build the base FE 

models for the DBT (CC and MLO) image sets from the associated mesh surface contours. From 

these contours, 3D four-point tetrahedral FE models are generated for each modality which 

results in fully connected meshed FE base DBT and ABUS models. Material properties are 

assigned to the different models as noted in Table 4.1. The number of elements/nodes is 

577,295/99,684 for the base DBT (MLO) model, 547,426/94,408 for the base DBT (CC) model 

and 231,990/38,021 for the base ABUS model. 

 Skin deformation for the DBT (CC) model to ABUS is explained in Sec. 3.3.5.3. Skin 

deformation for the DBT (MLO) model is slightly different and will be described as follows. For 

the base DBT-MLO model the ABUS, the ABUS model is rotated -45 (Figure 4.5, brown) for 

the left breast and 45 for the right breast. Then the DBT-MLO base model (Figure 4.5 (a), blue) 

is translated and rotated to the COM of the rotated ABUS model as shown in Figure 4.5 (a). Skin 

deformation then performs exactly as described in Sec. 3.3.5.3 by manipulating the handles (red 

and yellow spheres shown in Figure 4.5). First corrections along the axial plane of the breast are 

                                                 
r A decimate function is used to decrease the sampling rate of a signal sequence or continuous function by an integer 

factor 
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made along the y-axis as shown in Figure 4.5 (b) and then corrections along the coronal plane as 

shown in Figure 4.5 (c). Again, there are no corrections along the sagittal axis (x-plane) due to 

poor transducer coupling on the right and left sides of the breasts as shown in Figure 4.2 (c). 

 

Figure 4.5 Skin Mesh transformation for base DBT-MLO model (blue) to ABUS model (brown) (a) 

translation and rotation of DBT-MLO model to COM of ABUS model (b) decompression of skin model 

along the y-axis to match ABUS shape (c) compression in the z direction of the DBT-MLO model 

 Once skin surface deformation is completed, the algorithm computes the COM positions of 

the external marker locations between the two models as described in Chapter 3 Sec. 3.3.5.4. 

Once the marker locations are matched the handles shown in Figure 4.5 are manipulated again so 

that the DBT-MLO model is more aligned with the external markers of the reference ABUS 

model within a user-defined distance, dM. The resulting changes in the displacement of each node 

of the original surface mesh (Figure 4.5 (a)) are applied as boundary conditions for FEA 

deformation. The boundary conditions are applied to the translated base DBT model (Figure 4.5 

(a) for MLO case) that incorporates changes for skin deformation and external marker 

correlation. These boundary conditions are used as input for the FEA solver, Optistruct. 

Optistruct generates and solves the differential equations that describe the model deformation 

and returns the resulting stress and strain due to the deformation of the entire breast volume. The 

FEA was performed on a Windows 10 Intel® Core™ i7 CPU speed of 2500 MHz with 4GB 

RAM with analysis complete in approximately twenty minutes. 
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After FEA is performed the COM of all lesions between the resultant DBT model and the 

reference ABUS model are calculated. The COM of each lesion is computed by exporting the 

nodal (x, y, and z coordinates) from HyperMesh of the lesion exterior surface mesh and taking an 

average of those coordinate values. The algorithm then determines which lesions correspond by 

determining the minimum distance between COMs and ensuring the lesions are within 

correlation guidelines as described in Table 4.2. The dCOM value for this study increased due to 

the softness of this phantom in comparison to the previous study in Chapter 3 Sec. 3.3.5.6. The 

minimum distance to overlap, dO, for non-overlapping lesions is restricted by half of tolerable 

dCOM distance in order to reduce the likelihood of a match discrepancy. The results are exported 

as a table and are used to relate the original position from the ABUS and DBT DICOM data.  

Table 4.2: Lesion correlation criteria between DBT (CC or MLO) and ABUS models 

 dCOM dO 

Overlapping Lesions dCOM ≤ 25 mm n/a 

Non-overlapping Lesions  dCOM ≤ 25 mm dO ≤ 12.5 mm 

 

4.3.6 Studies Performed 

 Studies were undertaken to evaluate the performance of the deformable mapping technique 

for DBT (CC view) to ABUS and DBT (MLO view) to ABUS and are described as follows: 

• Accuracy of the deformable mapping technique for DBT (CC) to ABUS registration: 

Results (dCOM) are compared between using the deformable mapping algorithm (with and 

without marker analysis). T-test and signed Wilcoxon rank tests are used to provide the 

null hypothesis, that there is no improvement using the deformable method with using 

external marker locations in comparison to using the deformable method without external 

marker analysis included. Based off dCOM results further analysis is performed to 
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determine how the dCOM results vary based off lesion locations within the breast (e.g. 

quadrants and depths) and the effect lesion proximity to external markers.  

• Validation of deformable registration of DBT (MLO view) mapped to ABUS images: This 

study was performed just as described previously for the DBT (CC view).  

4.4 Results 

4.4.1 Accuracy of deformable mapping technique for DBT (CC) to ABUS registration 

      An overview of results for lesion registration of the DBT (CC) model to ABUS is illustrated 

in Table 4.3. A maximum of 18 lesions can be related in the reconstructed DBT (CC) images 

since 2 lesions were located too close to the phantom “chest wall” and pushed outside of the 

detector field of view. Without the use of marker analysis (Step 4 is skipped in Figure 4.3), 14 

lesions were matched with an average dCOM of 13.6 ± 6.3 mm. With the use of external markers 

this improves to 17 matched lesions with a mean dCOM was 12.8 ± 6.0 mm. With the use of 

external markers, the total number of matched lesions improved to 17 out of 18. When all 

external markers were within 1-mm distances (dM ≤ 1 mm) the average dCOM was 12.93 ± 6.28 

mm. When the external markers were within 5-mm (dM ≤ 5 mm) the average dCOM was 12.83 ± 

6.03 mm. The mean difference in lesion dCOM was 0.10 mm. A paired t-test was performed on the 

mean dCOM values when markers are within a 1 mm distance (dM ≤ 1 mm) and a 5 mm distance 

(dM ≤ 5 mm) and resulted in a p-value of 0.64. Using a Wilcoxon signed-rank test the p-value 

was calculated to be 0.49. Thus, both statistical tests show that the null hypothesis cannot be 

rejected. 
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Table 4.3: Lesion correlation summary for DBT (CC) registered to ABUS. A maximum of 18 lesions could be 

matched between image sets. 

 

Without Marker 

Analysis 

With Marker Analysis  

(dM ≤ 1 mm) 

With Marker Analysis  

(dM ≤ 5 mm) 

Total Matched Lesions 14 17 17 

Mean dCOM (mm) 13.6 ± 6.3 12.9 ± 6.3 12.8 ± 6.0 

Mean dO (mm) 5.3 ± 3.6 5.4 ± 3.3 4.9 ± 3.3 

Total Overlapping Lesions 4 6 6 

 

 To assess the effect of deformable mapping with external fiducial marker vs. without 

external fiducial marker analysis, a paired t-test of the dCOM's was performed for the 14 lesions 

that were matched without marker analysis to the same 14 lesions that were matched with marker 

analysis with dM ≤ 1 mm and dM ≤ 5 mm. A summary of the values used for this calculation is 

shown in Table 4.4. Using a paired t-test the resulting p-value for dM ≤ 1 mm and dM ≤ 5 mm was 

0.19 and 0.04. Thus, for those 14 lesions using a dM ≤ 5 mm for the deformable registration 

indicates significant improvement in lesion dCOM with the use of external fiducial markers. Using 

a Wilcoxon signed-rank test the resulting p-value for dM ≤ 1 mm and dM ≤ 5 mm was 0.21 and 

0.06. Thus, both statistical tests show that the null hypothesis cannot be rejected. 

 There were 4 lesions whose correlated dCOM’s worsened using marker analysis (Lesion ID’s 

4, 8, 9, and 10 in Table 4.6) and three of those lesions were in the superior lateral breast margins. 

There were 3 lesions that were not within correlation bounds without using marker analysis but 

became within correlation bounds using marker analysis (Lesion ID’s 6, 11, and 12 in Table 4.6) 

which two of these are in the central lateral breast margin, one is located in central medial breast 

margins and all lesions were posterior in depth. Lesions that showed the greatest improvements  

(dCOM (without markers analysis)- dCOM (with markers analysis) ≥1.12 mm based on the 95% 

confidence interval) are along the medial breast margins (Lesion ID’s 2,3,14 and 17 in Table 4.6) 

and inferior breast margins (Lesion ID’s 3, 5, and 13 in Table 4.6).  
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Table 4.4: Lesion correlation summary for 8 matched lesions between without marker analysis and with marker 

analysis cases for DBT (CC) registered to ABUS. 

 

Without Marker 

Analysis 

With Marker Analysis  

(dM ≤ 1 mm) 

With Marker Analysis  

(dM ≤ 5 mm) 

Total Matched Lesions 14 14 14 

Mean dCOM (mm) 13.6 ± 6.3 12.7 ± 5.9 12.5 ± 5.8 

Total Overlapping Lesions 4 5 5 

 

 Figure 4.6 visually displays the improvement in lesion correlation between the DBT (CC) to 

ABUS models for several lesions.   

 

 
Figure 4.6 Lesion correlation for DBT-CC (blue) registered to ABUS (yellow) for selected lesions in the coronal 

plane (a) without marker analysis (b) with marker analysis. Note: All lesions could not be shown due to 

superposition. 

 A study was performed to show how dCOM results varied with the distance of the lesions to 

the nearest matched external fiducial marker. This study also was performed to quantify the 

amount of improvement in dCOM when a lesion is closer to the nearest ABUS external marker. 

The distance between the lesion COM and the nearest ABUS external marker is denoted as the 

dCOM-M. Results for this study are shown in Table 4.5. From this table we see that markers that had 

most improvements (negative difference in dCOM using marker analysis vs. no markers used) 

were Lesion ID’s 3, 5 and 13. These lesions were at least 26 mm away from the nearest external 

marker (dCOM-M). The lesions that were closest to an external marker (dCOM-M ≤ 10 mm) were Lesion 
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ID’s 1 and 4. From these two lesions one shows improvement in dCOM while the other does not. Lesion ID 

8 was the furthest away from the nearest marker and had a corresponding dCOM of 6.2 mm using marker 

analysis. Visually, as shown in Figure 4.7, we see that lesions proximity to external markers is 

independent of corresponding dCOM. 

Table 4.5: Effect of dCOM based on lesion COM distance to nearest external marker (dCOM-M.) 

Lesion ID 
Without Marker Analysis With Marker Analysis (dM ≤ 5 mm) Difference in 

dCOM (mm) dCOM (mm) dCOM (mm) dCOM-M  (mm) 

1 12.5 11.5 8.8 -1.0 

2 4.6 3.2 23.0 -1.4 

3 8.0 3.5 33.1 -4.5 

4 8.0 9.3 6.4 1.3 

5 23.3 19.5 26.5 -3.8 

6 n/a 23.9 27.0 n/a 

7 11.3 10.9 29.6 -0.4 

8 5.0 6.2 37.0 1.2 

9 21.2 21.6 23.5 0.4 

10 14.4 15.0 21.2 0.6 

11 n/a 9.5 15.7 n/a 

12 n/a 10.1 18.8 n/a 

13 23.6 19.2 25.5 -4.4 

14 11.1 8.9 21.6 -2.1 

15 14.3 14.1 23.8 -0.2 

16 16.5 15.9 16.7 -0.6 

17 17.3 15.7 32.4 -1.6 

18 n/a n/a 22.8 n/a 

Average 13.6 12.8 23.0 -1.2 

 6.3 6.0 7.9 2.0 
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Figure 4.7: Plot of dCOM (COM distance between corresponding lesions) vs dCOM-M (distance between COM of lesion 

to nearest external marker) for DBT (CC view) to ABUS 

 Figure 4.8 shows a GUI-Viewer for a marked corresponding lesion in the DBT (CC view) to 

ABUS original DICOM image sets. From the view in the ABUS image the suspicious mass can 

be interpreted as a dense spiculated solid lesion. Detailed lesion correlation values are shown in 

Table 4.6. Further information on the GUI viewer can be found in the Appendix. 
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Figure 4.8: GUI representation for marked corresponding lesion (Lesion ID=1 see Table 4.5) in the DBT (CC) to 

ABUS original DICOM image views. From the view in the ABUS image the suspicious mass can be interpreted as a 

dense solid lesion. Detailed corresponding lesion values are shown in Table 4.6. 
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Table 4.6: Lesion correlation results for each lesion with and without marker analysis for DBT (CC) registered to 

ABUS. Location for breast margins abbreviations include I=Inferior S=Superior C=Central A=Anterior 

P=Posterior M=Medial L=Lateral 

Lesion ID 
Lesion Type & 

(Location) 

Without Marker Analysis 
With Marker Analysis 

 (dM ≤ 5 mm) 

dCOM 

(mm) 

dO 

(mm) 
Overlap dCOM (mm) dO (mm) Overlap 

1 Dense (UOQ-A)  12.5 1.2 no 11.5 0.0 yes 

2 Dense (LIQ-A) 4.6 0.0 yes 3.2 0.0 yes 

3 Dense (UIQ-P) 8.0 0.0 yes 3.5 0.0 yes 

4 Dense (UIQ-A) 8.0 1.3 no 9.3 0.0 yes 

5 Dense (UIQ-P) 23.3 10.4 no 19.5 5.8 no 

6 Dense (UOQ-P) n/a n/a n/a 23.9 10.7 no 

7 Cystic (LOQ-P) 11.3 0.0 yes 10.9 0.0 yes 

8 Dense (LOQ-A) 5.0 0.0 yes 6.2 0.3 no 

9 Dense (LOQ-P) 21.2 8.2 no 21.6 8.1 no 

10 Dense (LOQ-P) 14.4 3.2 no 15.0 3.3 no 

11 Cystic (UOQ-P) n/a n/a n/a 9.5 0.0 yes 

12 Cystic (UOQ-P) n/a n/a n/a 10.1 0.7 no 

13 Cystic (UOQ-P) 23.6 11.6 no 19.2 7.4 no 

14 Cystic (UIQ-P) 11.1 4.0 no 8.9 2.7 no 

15 Cystic (LIQ-A) 14.3 2.6 no 14.1 3.8 no 

16 Cystic (LIQ-A) 16.5 5.4 no 15.9 6.2 no 

17 Cystic (LIQ-A) 17.3 5.1 no 15.7 5.4 no 

18 Dense (UIQ-P) n/a n/a n/a n/a n/a n/a 

Mean 13.6 5.3 Overlap 12.8 4.9 Overlap 

 6.3 3.6 4/14 6.0 3.3 6/17 

4.4.2 Accuracy of deformable mapping technique for DBT (MLO) to ABUS registration 

 An overview of results for lesion registration of the DBT (MLO) model to ABUS is 

illustrated in Table 4.7. A maximum of 18 lesions can be related in the reconstructed DBT 

(MLO) images since 2 lesions were located too close to the phantom “chest wall” and pushed 

outside of the detector field of view. Without the use of marker analysis, only 8 out of 18 lesions 

were matched with an average dCOM of 9.3 ± 2.8 mm. When all external markers were within 1-

mm distances (dM ≤ 1 mm) the number of matched lesions improved to 16 and the average dCOM 

was 12.7 ± 6.4 mm. When the external markers were within 5-mm (dM ≤ 5 mm) the number of 
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matched lesions improved to 17 and the average dCOM was 12.3 ± 5.8 mm. A paired t-test was 

performed on the mean dCOM values of the 16 shared lesions when markers are within a 1 mm 

distance (dM ≤ 1 mm) and a 5 mm distance (dM ≤ 5 mm) and resulted in a p-value of 0.30. Using 

the Wilcoxon-signed rank test for when markers are within a 1 mm distance (dM ≤ 1 mm) and a 5 

mm distance (dM ≤ 5 mm) both resulted in a p-value of 0.60. Thus, both statistical tests show that 

the hypothesis claim cannot be rejected. 

Table 4.7: Lesion correlation summary for DBT (MLO) registered to ABUS. A maximum of 18 lesions could be 

matched between image sets. 

 

Without Marker 

Analysis 

With Marker Analysis  

(dM ≤ 1 mm) 

With Marker Analysis  

(dM ≤ 5 mm) 

Total Matched Lesions 8 16 17 

Mean dCOM (mm) 9.3 ± 2.8 12.7 ± 6.4 12.3 ± 5.8 

Mean dO (mm) 1.9 ± 1.3 6.0 ± 3.7 5.3 ± 3.8 

Total Overlapping 

Lesions 3 6 8 

 

 To assess the effect of deformable mapping with external fiducial marker vs. without 

external fiducial marker analysis, a paired t-test of the dCOM’s was performed for the 8 lesions 

that were matched without marker analysis to the same 8 lesions that were matched with marker 

analysis with dM ≤ 1 mm and dM ≤ 5 mm. A summary of the values used for this calculation is 

shown in Table 4.8. The resulting p-value was 0.65 using a paired t-test and the p-value was 0.95 

using a Wilcoxon signed-rank test. This indicates that the hypothesis claim cannot be rejected. 

However, with the use of markers the number of matching lesions increased from 8 to 17, 

therefore showing improvement in lesion correlation.   

 There were 9 lesions that were not within correlation bounds without using marker analysis 

but became within correlation bounds using marker analysis (Lesion ID’s 2, 5, 6, 7, 9, 10, 12, 13, 

and 15 in Table 4.10). These lesions are within various breast locations and depth of the breast. 

However, there were 4 lesions whose correlated dCOM’s worsened using marker analysis (Lesion 
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ID’s 4, 8, 11, and 18 in Table 4.10) and two of those lesions were within the upper outer 

quadrants (Lesion ID 8) and central lateral breast region (Lesion ID 11 see Table 4.10) The other 

two lesions were along the lower inner breast quadrants (Lesion ID 4 and 18 see Table 4.10). All 

of these lesions are posterior in depth and were either the most medial or most lateral lesions 

within the breast. Lesions that showed an improvement in registration using marker analysis 

were located in the upper inner quadrants (Lesion ID’s 14, 16 and 17 see Table 4.10) and one 

lesions was in the lower central breast region (Lesion ID 1 see Table 4.10).  

Table 4.8: Lesion correlation summary of 8 matched lesions between without marker analysis and with marker 

analysis cases for DBT (MLO) registered to ABUS 

 

Without Marker 

Analysis 

With Marker Analysis  

(dM ≤ 1 mm) 

With Marker Analysis  

(dM ≤ 5 mm) 

Total Matched Lesions 8 8 8 

Mean dCOM (mm) 9.3 ± 2.8 9.8 ± 4.2 9.8 ± 3.6 

Total Overlapping 

Lesions 3 4 4 

 

 Figure 4.9 visually displays the improvement in lesion correlation between the DBT (CC) to 

ABUS models for several lesions.   

 

Figure 4.9: Lesion correlation for DBT (MLO view) (red) registered to ABUS (yellow) for selected lesions in the 

coronal plane (a) without marker analysis (b) with marker analysis. Note: All lesions could not be shown due to 

superposition. 

 A study was performed to show how dCOM results varied with the distance of the lesions to 

the nearest matched external fiducial markers. This study also was performed to quantify the 
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amount of improvement in dCOM when a lesion is closer to an external marker. Results for this 

study are shown in Table 4.9. The markers observed to have the most improvements (negative 

difference in dCOM using marker analysis vs. no markers used) were Lesion ID’s 1, 16 and 17. 

These lesions were at least 14 mm away from the nearest external marker (dCOM-M). The lesions 

that were closest to an external marker (dCOM-M ≤ 15 mm) were Lesion ID’s 11, 12 and 16. From these 

two lesions two showed improvement in dCOM while the other does not. Lesion ID 8 was the furthest away 

from the nearest marker and had a corresponding dCOM of 10.3 mm using marker analysis and without 

marker analysis was not within correlation bounds. Visually as shown in Figure 4.10, we see that 

lesions proximity to external markers is independent of corresponding dCOM. 

Table 4.9: Effect of dCOM based on lesion COM distance to nearest external marker (dCOM-M.) 

Lesion ID 
Without Marker Analysis With Marker Analysis (dM ≤ 5 mm) Difference 

 in dCOM (mm) dCOM (mm) dCOM (mm) dCOM-M (mm) 

1 11.3 8.9 20.2 -2.4 

2 n/a 7.9 17.1 n/a 

3 n/a n/a 22.7 n/a 

4 5.9 6.1 17.7 0.2 

5 n/a 11.4 22.4 n/a 

6 n/a 19.5 26.8 n/a 

7 n/a 21.9 23.2 n/a 

8 11.1 16.9 28.1 5.8 

9 n/a 21.9 14.8 n/a 

10 n/a 21.3 22.8 n/a 

11 7.9 9.9 14.4 2 

12 n/a 9.9 11.7 n/a 

13 n/a 10.3 30.9 n/a 

14 6.4 5.9 16.2 -0.5 

15 n/a 6.1 19.5 n/a 

16 13.9 12.5 14.0 -1.4 

17 10.5 8.6 27.0 -1.9 

18 7.5 9.2 25.9 1.7 

Average 9.3 12.3 20.9 0.4 

 2.8 8.9 5.6 2.7 
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Figure 4.10: Plot of dCOM (COM distance between corresponding lesions) vs dCOM-M (distance between COM of 

lesion to nearest external marker) for DBT (MLO view) to ABUS 

 Figure 4.11 shows a GUI-Viewer for a marked corresponding lesion in the DBT (MLO 

view) to ABUS original DICOM image sets. From the view in the ABUS image, the suspicious 

mass can be interpreted as a dense spiculated solid lesion. Detailed lesion correlation values are 

shown in Table 4.11. Further information on the GUI viewer can be found in the Appendix.  

 

Figure 4.11: GUI representation from original DICOM images for a lesion (Lesion ID=11 see ) left shows a slice 

from DBT (MLO) data, upper right shows the ABUS coronal view, and lower right shows the ABUS transverse view
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Table 4.10: Lesion correlation results for each lesion with and without marker analysis for DBT (MLO) registered 

to ABUS. Location for breast margins abbreviations include I=Inferior S=Superior C=Central A=Anterior 

P=Posterior M=Medial L=Lateral 

Lesion ID 
Lesion Type & 

(Location) 

Without Marker Analysis 
With Marker Analysis 

 (dM ≤ 5 mm) 

dCOM 

(mm) 
dO (mm) Overlap dCOM (mm) dO (mm) Overlap 

1 Dense (UOQ-A)  11.3 0.00 yes 8.9 0.0 yes 

2 Dense (LIQ-A) n/a n/a n/a 7.9 0.0 yes 

3 Dense (UIQ-P) n/a n/a n/a n/a n/a n/a 

4 Dense (UIQ-A) 5.9 0.00 yes 6.1 0.0 yes 

5 Dense (UIQ-P) n/a n/a n/a 11.4 1.5 no 

6 Dense (UOQ-P) n/a n/a n/a 19.5 7.2 no 

7 Cystic (LOQ-P) n/a n/a n/a 21.9 11.6 no 

8 Dense (LOQ-A) 11.1 3.3 no 16.9 7.3 no 

9 Dense (LOQ-P) n/a n/a n/a 21.9 0.0 yes 

10 Dense (LOQ-P) n/a n/a n/a 21.3 10.0 no 

11 Cystic (UOQ-P) 7.9 1.2 no 9.9 0.0 yes 

12 Cystic (UOQ-P) n/a n/a n/a 9.9 2.3 no 

13 Cystic (UOQ-P) n/a n/a n/a 10.3 0.0 yes 

14 Cystic (UIQ-P) 6.4 1.6 no 5.9 1.9 no 

15 Cystic (LIQ-A) n/a n/a n/a 6.1 0.0 yes 

16 Cystic (LIQ-A) 13.9 3.1 no 12.5 2.2 no 

17 Cystic (LIQ-A) 10.5 0.4 no 8.6 0.0 yes 

18 Dense (UIQ-P) 7.5 0.00 yes 9.2 3.3 no 

Mean 9.3 1.9 Overlap 12.3 5.3 Overlap 

 2.8 1.3 3/8 5.8 3.8 8/17 

4.5 Discussion  

 A novel deformable registration method has been described and assessed for identifying 

corresponding lesions between two common DBT views (CC and MLO) to ABUS images. For 

both analyzed cases there was improvement in the number of matched lesions with the use of 

external fiducial markers. This study extends upon previous work by expanding this technique to 

relate corresponding lesions in the DBT-MLO view and ABUS and by the use of semi-

automated segmentation techniques for the lesions in DBT and ABUS images. The use of 

automated segmentation techniques will allow this technique to quickly translate to the clinic.  
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 Similar to our previous work, this study also showed improvement in lesion correlation 

when all corresponding markers for ABUS registration are within a 5-mm vs 1-mm distance. 

This is likely because larger mesh corrections take place to get all markers closer in distance and 

can also indicate that external deformation is not entirely indicative of internal deformation. For 

the deformable mapping of DBT (CC view) to ABUS, for the 14 lesions that were within the 

defined correlation bounds with and without using marker analysis cases there was a statistical 

improvement in lesion dCOM using a paired t-test. For the deformable mapping of DBT (MLO 

view) to ABUS, for the 8 lesions that were within the defined correlation bounds with and 

without using marker analysis there was no statistical improvement in lesion dCOM. However, in 

the MLO view the number of matched lesions increased from 8 to 17 as set by our correlation 

bounds. The correlation criteria described in this chapter is larger range than shown in our 

previous work in Chapter 3. This may be an effect of using automated segmentation where the 

method segments to higher and lower extents of a lesion that may be viewed out-of-focus due to 

DBT’s limited angle acquisition and poor axial resolution.  

 Lesion location was also analyzed in regard to its effect on improvement in dCOM when 

using external markers vs. not using external markers in the deformable registration algorithm. 

For DBT (CC) to ABUS registration we see the largest improvement for lesions along the medial 

and inferior breast margins. Lesion registration seems to worsen for lesions in the upper outer 

breast quadrant using marker analysis. However, the resulting dCOM correlation is still within the 

specified correlation bounds. However, since this phantom does not have a pectoral/axillary 

attachment the deformable registration algorithm cannot thoroughly assess improvements in 

lesion registration for lesions in the superior lateral breast margins. Additionally, in Table 4.5 

and Table 4.9 we see that resulting improvement dCOM is independent of lesion proximity to 
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external markers. In one case we actually see that using marker analysis causes the dCOM to 

worsen (Lesion ID 4) for a lesion that is very close in proximity to an external fiducial marker. 

Therefore, a proof-of-concept study will need to be performed with patient volunteers to better 

quantify if there are improvements using the technique with markers. 

 For DBT (MLO view) to ABUS registration we see a decrease in lesion registration using 

marker analysis for those lesions that are on the lateral or medial most margins of the breast 

which is likely a direct result of the MLO compression. However, using marker analysis for 

lesions in all areas of the breast there seems to be a significant improvement as the number of 

matched markers improved from 8 to 17. This will also have to be further analyzed with a patient 

study since there is no axillary attachment on the breast phantom.  

 Lesions in this study are given the material property of dense lesion during FEA since in all 

x-ray based breast imaging solid and cystic lesions are not differentiable. This study also 

assumes that all lesions are homogenous in material. In actual patient data, there will be 

heterogeneity in breast tissue and a study could be performed to determine the differences in 

registration that makes in FE-based techniques. Unlike our previous study, this phantom contains 

simulated dense and cystic lesions that use the same Zerdine- based material. This material 

exhibits different ultrasound properties (anechoic for cystic lesions and if dense have 

hyperechoic). Therefore, when applied to patients, it is expected to see a larger difference in 

dCOM for cystic masses. After correlation has taken place, for lesions that correlated to cystic 

lesions in the ABUS set the algorithm could be rerun with the correct cystic material properties. 

However, this could lead to an increase in algorithm runtime. 

 A large limitation to this study is the fact that this is a phantom study that uses very 

homogenous materials. In a real breast there will be much heterogeneity within tissues and a real 
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breast will contain structures that will not be modeled during FEA. Breast studies that using FE-

based registration techniques typically only segment the breast skin, adipose, glandular tissue, 

and breast mass for modeling breast deformation.89 When translating this technique to patients 

segmentation of these structures will be given. However, due to DBT poor axial resolution there 

will still be high variability in determining the slices for these structures and high variability in 

the elastic properties to be used. 

4.6 Conclusions 

This work demonstrates the potential to use this deformable mapping technique to relate 

lesions between DBT (CC and MLO views) and ABUS breast images. This study extended upon 

previous works by incorporating the MLO view for relating corresponding lesions between DBT 

and ABUS modalities. This is significant as the MLO view is important for imaging close to the 

axillary regions of the breast where most cancers are located. The utilization of external fiducial 

markers has been shown to improve the accuracy of this approach. The resulting one-to-one 

correlation between lesions in DBT and ABUS could help improve radiologists’ characterization 

of breast lesions, which can reduce patient callbacks, negative biopsies, and false negative 

biopsies. Future work will expand this platform to include an IRB approved study for patient 

volunteers to test the viability of this technique with real breast lesions. 
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Chapter 5  

Deformable Mapping Method to Relate Lesions in Dedicated Breast 

CT Images to those in Automated Breast Ultrasound and Digital 

Breast Tomosynthesiss 

 

 

5.1 Abstract 

 This work demonstrates potential for using a deformable mapping method to register lesions 

between dedicated breast CT (bCT) and both automated breast ultrasound (ABUS) and digital 

breast tomosynthesis (DBT craniocaudal, CC, and mediolateral oblique, MLO, views) images. A 

multi-modality breast phantom with external fiducial markers attached was imaged by the three 

modalities. Then the automated deformable mapping algorithm uses biomechanical modeling to 

determine corresponding lesions based on distances between their centers of mass (dCOM) in the 

deformed bCT model and the reference model (DBT or ABUS). For bCT to ABUS, the mean 

dCOM was 4.8 ± 2.4 mm. For bCT to DBT (CC), the mean dCOM was 5.0 ± 2.2 mm. For bCT to 

DBT (MLO), the mean dCOM was 4.7 ± 2.5 mm. This application could help improve a 

radiologist’s efficiency and accuracy in characterization of breast lesions when imaged with 

multiple modalities.

                                                 
s This chapter has been submitted to a journal for publication 
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5.2 Introduction 

     Mammography is currently the gold standard for early breast cancer detection during 

screenings. One limitation of mammography is reduced sensitivity and increased false-negative 

examinations for women with dense breasts due to reduced lesion conspicuity as a result of 

superposition of breast tissue. Digital breast tomosynthesis, DBT, which uses limited angle 

tomography with breast compression in the mammographic geometry is one approach used to 

improve performance due to the reduction of tissue superposition. The addition of DBT for 

screenings and diagnostic purposes has shown increased cancer detection rate and reduction in 

the recall rate in comparison to digital mammography 48.These gains are largely seen for women 

with heterogeneously dense breasts 129. Mammography and DBT have the advantage of superior 

resolution in the x-y dimensions compared to dedicated breast CT (bCT). However, DBT 

imaging has poor axial resolution, which is due to the limited angle of the tomographic 

acquisition.  

     Breast CT is an emerging technology that, unlike DBT, provides complete 360º angle 

acquisition of the breast using cone-beam CT. In bCT, the patient lies prone and each breast is 

scanned separately in the pendant position without compression. Currently, the Koning breast CT 

(KBCT) system is the only FDA approved and commercially available system in the United 

States 130. In a study comparing visualization of 180 lesions with non-contrast bCT vs. 

mammography, Lindfors et al.50 found that the conspicuity of masses was superior for bCT, but 

the conspicuity of calcifications was inferior. Similarly, in a study of 24 breast lesions, Kuzmiak 

et al. (2016) found that the reader visualization confidence scores for the shape and margins of 

masses were statistically significantly greater for bCT compared to digital mammography. 

However, the reader visualization confidence scores for the morphology and distribution of 
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microcalcifications were statistically significantly worse for bCT compared to digital 

mammography. 

     Breast CT has major advantages over DBT. For angular acquisitions of 180o and above in 

bCT, the slice sensitivity profile (SSP) axial line spread function approaches an ideal delta 

function. On the other hand for DBT with its limited angle acquisition the SSP is considerably 

worse than that of bCT and it worsens with increasing lateral object size, which is not observed 

with bCT for 180o and above acquisitions 52. As a result of the wider acquisition angle and 

greater number of projection views, the resolution of bCT is nearly isotropic. This reduces  

superposition artifacts and volume averaging compared to DBT 53. Lastly, bCT imaging does not 

use compression of the breast which increases patient comfort. This last advantage, however, 

requires a longer path length through the breast for bCT. The maximum path length in a breast is 

typically approximately 10-18 cm in bCT and 2-8 cm in DBT. Thus, higher x-ray energies are 

required for bCT, with reduced differences in tissue attenuation coefficients. For 

microcalcifications, this loss in contrast is probably not compensated by the increase resulting 

from fully-sampled projections over 360º.   

     Similar to mammography and DBT, there is still difficulty in differentiating between 

malignant and benign lesions in bCT images 49,53. Ultrasound imaging used in combination with 

mammography has been shown to improve the radiologists’ overall characterization of breast 

lesions by aiding in the determination of whether a lesion is solid or cystic 16–18. Therefore, bCT 

imaging in conjunction with ultrasound would likely improve lesion characterization and this 

may especially be significant for women with dense breasts. 2D ultrasound images are often 

difficult to reproduce due to freehand acquisition and operator dependence. Automated breast 

ultrasound systems (ABUS) images the breast as a 3D volume and has advantages in terms of 
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reproducibility and operator independence over conventional breast ultrasound. Studies have also 

shown a significant improvement in breast cancer detection rate with an accompanying 

acceptable recall increase for ABUS imaging used in conjunction with mammography for 

women with dense breasts 19,57,58. 

     With the promise shown by bCT as an imaging modality it will become important to relate 

lesions found with bCT to those in other widely used breast imaging modalities. Several studies 

have used finite element modeling, FEM, modeling on bCT data to measure breast density 98, 

peripheral breast thickness 131, and simulate the effect of gravity and compression (craniocaudal, 

CC, or mediolateral oblique, MLO) to generate simulated mammograms for multi-modality 

applications 132. A non-rigid registration technique was used to relate bCT and PET/CT images 

that does not involve FEM 133. FEM or biomechanical modeling has also been used to validate 

conventional registration methods as shown by Tanner et al. (2007) and Hill et al. (2009) for 

dynamic contrast-enhanced MR breast images however these studies do not involve high 

deformation. FEM has proven to be useful for lesion registration when modeling large 

deformations that can occur due to the changes of the direction of gravity and compression plate 

deformation in comparison to conventional registration method (i.e. intensity-based, with B-

splines) 92. A study by Dmitriev et al. (2013) used a conventional B-splines method for 

registration of MRI and PET-CT tumor registration and indicated that the lack of biomechanical 

modeling was a limitation to their approach. To date there has not been a study dedicated to 

registering lesions from bCT to other breast imaging modalities and this study will help address 

that using FEM techniques.  

     Breast MR and transmission US tomography (Delphinus Medical Technologies, Inc., 

Plymouth, MI and QT Ultrasound, Novato, CA) images are acquired in the same prone geometry 
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as bCT, with the modest exception that the breast is suspended in water, rather than air, for 

transmission US tomography. While registration of bCT to breast MR, or even transmission US 

tomography, will be much simpler, there will remain considerable need for registration between 

imaging modes without and with various compressions. Several studies have used FE models of 

breast MRI to simulate breast compression 137 and register breast MRI to CC and/or MLO 

mammograms 81,85,86,88,90. Likewise, other breast MR studies have shown external fiducial 

markers could be beneficial for registration and lesion correlation in breast MRI and PET 69,70, 

compressed and uncompressed prone breast MRI 71, and breast MRI and ultrasound 72.  

     In our previous work, we developed a novel deformable mapping method to relate 

corresponding lesions in DBT (CC-view only) and ABUS with and without the use of external 

fiducial markers 34. This method did not simulate the compression plates involved in DBT and 

ABUS imaging. Instead it used a mesh morphing feature to morph the DBT model to match the 

ABUS and used nodal displacement for the finite element analysis, FEA. Here, we extend this 

work to the problems of relating lesions in bCT to ABUS and DBT. To distort the bCT image 

volume of the freely-dependent breast into the shape predicted for a DBT or ABUS view, 

compression plates were added to the bCT biomechanical model to simulate DBT plate 

compression (CC and MLO with compression paddle and breast support plate) and ABUS mesh 

plate compression (supine anterior to posterior). The resulting bCT biomechanical models were 

then registered to the DBT or ABUS image volumes, respectively. We also used semi-automatic 

segmentation of all lesions in all modalities for this work; whereas, only manual segmentation 

was used for all modalities in our previous work.  

 This study incorporates the use of commercial FE-processing and FEA packages to match 

lesions between bCT to DBT and bCT to ABUS modalities. This is done by using semi-
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automated software in order to segment all phantom components. A commercial FE pre-

processor is used to create base FE models for the bCT and reference modalities (i.e. ABUS or 

DBT). Plate deformation is performed on the bCT FE model to simulate DBT or ABUS 

compression using a commercial FEA solver. Next, the deformed bCT data is registered to the 

center of mass (COM) of the reference modality data set (DBT or ABUS) and modifies the 

resulting deformed data mesh set to align external markers between the bCT and the reference 

modality model (DBT or ABUS). Lastly, the algorithm determines corresponding matching 

lesions between the image sets using measures of distances between COMs (dCOM) and lesion 

overlap. Although commercial software is incorporated into this work, the automated algorithm 

shows a novel use of the commercial technology by relating corresponding lesions between 

breast imaging modalities with very different geometries and degrees of breast compression. 

 Identifying corresponding lesions between modalities does not pose as large a difficulty for 

lesions that are easily identifiable. A benefit to this technique is that for women with dense 

breasts, a radiologist could indicate a region of interest, ROI, within the bCT image set and this 

technique can help a radiologist determine with higher confidence if that is the same region 

within the corresponding ABUS or DBT data set. This can directly influence lesion 

characterization and reduce negative biopsies. Using a deformable registration algorithm can 

decrease review time so that a radiologist can quickly determine corresponding regions 

especially for large datasets in these 3D modalities.  

5.3 Materials and Methods 

5.3.1 Phantom Information 

     A CIRS Multi-Modality Breast Biopsy and Sonographic phantom 138 was used in this study. 

The phantom contains a total of 20 lesions: 10 spherical cystic lesions, 5 spherical dense lesions, 
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and 5 spiculated dense lesions. The lesions are randomly located in a background gel, Zerdine, 

and wrapped in a Z-skin membrane material. The self-healing Z-skin membrane simulates the 

texture and properties of skin during imaging and biopsy. Zerdine is a patented solid elastic 

water based polyacrylamide tissue mimicking material the formulation of which can be adjusted 

to correspond to a variety of soft-tissue acoustic properties for ultrasound imaging 115. Since it is 

a water-based material and the density can be controlled it can be used for CT and MR imaging 

as well 115,118. All lesions in the phantom are made of Zerdine formulations and are 5-10 mm in 

diameter. They have average CT numbers at 80 kVp ranging from 337-430 HU on a GE 

Discovery CT750 HD CT scanner (GE Healthcare, Milwaukee, WI); however, the cystic lesions 

have anechoic properties and the dense lesions have hyperechoic properties in ultrasound 

images. Elastic material properties of the substances in our phantoms provided by the 

manufacturer are listed in Table 5.1.  

Table 5.1: Phantom Material Properties 

 Young’s Modulus (E) Poisson’s Ratio (ν) 

Z-skin Membrane  10 kPa 0.50 

Zerdine background gel  10 kPa 0.50 

Dense lesions  60 kPa 0.50 

 

 For use in the finite element analysis solver, a Poisson’s ratio of 0.49 was used since a ratio 

of 0.50 will not allow the FEA solver to converge. Measurements of the phantom uncompressed 

thickness were taken before and after compression to ensure that the phantoms recovered to their 

original state before imaging with a different modality. A measured load-strain curve for this 

phantom is shown in Figure 5.1. Based on this curve, the elastic modulus of the phantom appears 

to be linear.  
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Figure 5.1: Load Strain curve showing elastic nature of breast phantom. 

5.3.2 External fiducial markers 

     In our previous work, we found that the use of external markers were helpful in relating 

corresponding lesions between DBT and ABUS modalities and the manufacturing method is 

discussed in our previous paper 34. The same markers were created and used in this study. Each 

marker contains a 1 mm diameter solid glass bead within a thermoplastic elastomer (TPE) gel 

and is about 3 mm thick.  
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Figure 5.2: (a) CIRS Multi-modality breast phantom with external fiducial markers attached. Segmented lesion 

Images acquired with (b) DBT (c) simulated bCT, and (d) ABUS. Red arrow shows external fiducial marker 

locations 

     The multi-modality breast phantom was marked with a magic marker with an ‘x’ at eight 

locations. Eight external markers were attached to the phantom, using Jobst “It-Stays” Roll-On 

Adhesive (BSN Medical, Charlotte, NC). (See Figure 5.2). The red arrows in Figure 5.2 show 

the location of a fiducial marker in simulated bCT, DBT, and ABUS reconstructed images.  

5.3.3 Imaging Methods 

     Conventional CT images of the phantom were acquired with a GE Discovery CT750 HD 

scanner (GE Healthcare, Milwaukee, WI). The phantom placed supine within the scanner. Due to 

the softness of the phantom material and the weight of the phantom backing we found we could 

not support the phantom in the upright position to simulate the coronal slice acquisition that is 

performed with dedicated breast CT scanners. The CT settings were 80 kVp, 200 mA, 1 second, 

helical acquisition, 0.969:1 pitch, 20 cm field of view, 30% ASiR, 0.625 mm slice, 0.625 mm 
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slice increment. The voxel dimensions were 0.39 mm x 0.39 mm x 0.625 mm. All 20 lesions 

were seen in the reconstructed simulated bCT images. The maximum uncompressed breast 

phantom thickness (superior to inferior breast margins) measured 106 mm from reconstructed 

simulated bCT images. 

     DBT images were acquired in both CC and MLO views with a GE Senographe Pristina DBT 

system (GE Healthcare, Milwaukee, WI). For the CC view, a compressive force of 3 daN was 

used and the phantom was compressed to a thickness of 44.2 mm. Thus, the phantom was 

compressed by 58%. For the MLO view, a compressive force of 2.5 daN was used and the 

phantom was compressed 54% to a thickness of 48.5 mm. The standard automatic optimization 

parameter (AOP) mode was used in each case and the resulting technique factors were CC: Rh 

target, Ag filter, 34 kVp, 29.7 mAs with a displayed summed average glandular dose of 1.11 

mGy; and MLO: Rh target, Ag filter, 34 kVp, 36.9 mAs, with a displayed average glandular dose 

of 1.29 mGy. The (x, y, depth) voxel dimensions were 0.1 mm x 0.1 mm x 1 mm. Forward 

pressure on the back detector plate was maintained by tightly taping the phantom casing to the 

detector plate while under compression. However, for both image views only 18 lesions were 

shown in reconstructed DBT images. Two lesions were not imaged because they were close to 
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the phantom “chest wall” and moved back outside the imaging field-of-view when the phantom 

was compressed.  

 

 

Figure 5.3: ABUS image acquisition setup on uncompressed phantom 

     Lastly, the phantom was imaged with the GE Invenia ABUS system (GE Healthcare, 

Milwaukee, WI). This system consists of a curved 153 mm long ultrasound transducer that scans 

over a mesh compression paddle that is positioned over the breast. The breast is covered with an 

acoustic coupling lotion or gel prior to application of the paddle to the breast. A picture of the 

uncompressed phantom ABUS setup is shown in Figure 5.3. The paddle is lightly pressed down 

for good contact between the paddle/transducer and the breast, and the transducer scans across 

the breast to generate the 3D ABUS image volume. The Invenia ABUS reversed-curve 

transducer operates between 6-15 MHz and can image up to a 50 mm depth. When imaged the 

phantom is placed supine and the transducer travels approximately 170 mm across a mesh 

compression paddle from the superior to inferior margins of the breast. The system contains 
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three settings based on desired imaging depth (high, medium and low). The medium setting was 

used which images acquired to a depth of 40 mm. Clinical procedures typically include several 

transducer sweeps of the breast depending on breast size to ensure coverage of the breast and 

axillary region. Due to the absence of an axillary area of the phantom only one image sweep was 

acquired. Correction for the reverse-curve of the transducer is not included in the raw DICOM 

images, therefore an algorithm was used to correct for transducer curvature. The ABUS images 

were resampled from a native voxel size of 0.082 mm width, 0.2 mm depth, and 0.506 mm 

length (distance between adjacent slices), to 0.2 mm width, 0.2 mm depth, and 0.506 mm length. 

Image resampling is done using the MATLAB imresizet command. Resampling is needed to 

increase speed in surface mesh creation since ABUS images contain 330 image slices with small 

voxel size for the skin and body phantom layers. All 20 lesions were seen in reconstructed 

ABUS images.  

5.3.4 Segmentation Methods 

     Lesions in the DBT acquired images were segmented using a semi-automatic segmentation 

program MiViewer. MiViewer is an in-house interface used for computer aided diagnosis for the 

detection and segmentation of breast masses in breast tomosynthesis 139–141. For the ABUS 

images, all dense lesions were segmented using the MiViewer program. The 10 cystic lesions in 

ABUS images were segmented using automated nonlinear filtering and segmentation approach 

by Elawady et al.128. The external fiducial markers were manually segmented using 3D Slicer for 

ABUS and DBT images. Thresholding techniques were used within 3D Slicer to segment the 

lesions, external markers, background gel material, and skin layer for the bCT image set 142. 

                                                 
t https://www.mathworks.com/help/images/ref/imresize.html  

https://www.mathworks.com/help/images/ref/imresize.html
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Examples of the segmentations of the lesions in the images of each modality are shown in Figure 

5.2.  

5.3.5 Automated deformable mapping algorithm  

 

Figure 5.4: The automated deformable mapping process. Software’s used shown in red.  

     The deformable mapping algorithm leverages the model creation capabilities in Morfeus, a 

FE based multi-organ deformable image registration platform 143, which utilizes a commercial 

pre-processor (HyperMesh version 2017.2, Altair Engineering, Troy, MI) with a commercial 

finite element analysis (FEA) solver (ABAQUS version 2017x, Dassault Systèmes Americas 

Corp., Waltham, MA). In this process the base bCT model is deformed to register the lesions in 

bCT to those in each of the two views in DBT and to the lesions in ultrasound. For registration 

the voxel sizing of the reference model data set (either DBT or ABUS) is used for lesion 
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correlation. An overview of the process is shown in Figure 5.4. Since the breast is in an 

uncompressed state when imaged in bCT, the bCT base model is being deformed to match the 

reference models for DBT and ABUS imaging. 

5.3.5.1 Surface Mesh Creation  

     All segmented contours are converted into triangular surface meshes using the shrinkwrap 

tool in the FE pre-processor, HyperMesh. The compilation of surface meshes are used to build 

the base model. A 1 mm element size was used for all lesions and 5 to 10 mm element sizes were 

used for the other phantom areas (phantom skin and background gel) due to the larger volume in 

comparison to the lesions. Each surface mesh is based off the original voxel sizes. The 

HyperMesh FE pre-processor uses a widely accepted proprietary meshing technology that 

ensures to high accuracy that created elements have a proper aspect ratio suitable for FEA. If the 

elements are outside the aspect ratio the user is notified of a mesh error.  

5.3.5.2 Finite element model generation  

     Once all segmentations are converted into surface mesh files. The deformable mapping 

algorithm uses the FE pre-processing software, HyperMesh, to generate the base FE model for 

the bCT image set and the reference image sets (e.g. base DBT (CC), base DBT (MLO), and 

base ABUS). 3D four point fully meshed tetrahedral models are created from the mesh contours 

for each modality model being used for registration. The material properties are assigned for the 

various model volumes as described in Table 5.1. Two plates are added to the bCT model to 

simulate DBT compression (top compression plate and bottom breast support plate) and one 

compression plate is added to the bCT model for the case of ABUS compression as shown in 

Figure 5.5. For simulating DBT compression the model assumes no flexure in the compression 

plate. The plate used in ABUS compression is flat, representing the ABUS mesh paddle. The 
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curvature of the transducer is not modeled for the simulation of ABUS compression. Contact 

interfaces are defined between the face of the plate model in contact with the skin of the phantom 

and the skin of the base bCT model. A study by Han et al. (2012) used frictionless contact to 

simulate plate compression. Additionally, a study by Mertzanidou et al. (2014) found negligible 

difference when introducing friction into a model vs. using a frictionless plate model for lesion 

registration. Other studies, have used a friction coefficient of 0.1 between breast skin and 

compression plates 98,144,145. As a compromise, we chose to use a coefficient of friction between 

the skin and plate contact interfaces of 0.05, which is the median between the 0.1 and frictionless 

coefficients. Each plate is initially positioned to clear 1 mm from the breast surface. For DBT 

compression the bottom plate is fixed, and compression is only performed with the top plate. For 

DBT-MLO compression the plates are rotated 45º. The back of the phantom or “chest wall” 

region restricts motion along the x-axis for DBT compression as shown in Figure 5.5(a) and (b), 

and this “chest wall” restricts motion in the along the y-axis for ABUS compression as shown in 

Figure 5.5(c) and (d). In bCT it is often difficult to distinguish between solid and cystic lesions 

49,53, which is even more true from this phantom since all lesions are made of the same material 

they just have difference in ultrasound properties. Therefore, all lesions in the bCT model has the 

material properties of dense lesions as shown in Table 5.1. 

 

Figure 5.5: Plate deformation (a). bCT in DBT (CC) setup no compression applied (b) resulting CC compression to 

bCT model (c) bCT to ABUS setup no compression applied (d) resulting ABUS compression to bCT model 
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 Correction for gravity was not made in this model as it is a minor effect in comparison to the 

high deformation induced by the compression plates in both DBT and ABUS. The effect of 

gravity is likely accounted for with the use of the external fiducial marker corrections involved in 

this study. Other research groups have ignored the initial stress present from gravity with the 

breast in the prone geometry and believe its effect would not be significant in most cases 132,146. 

However, other studies have found the effect of gravity loading significant for biomechanical 

models for prone and supine MRI 147,148 and directly relating prone to supine breast MRI 149. For 

those studies’ gravity needed to be modeled as there are no other external or compressive forces 

acting on the breast unlike in ABUS and DBT imaging. 

     The amount of plate compression is determined by the difference between the face of the 

compression plate and the compressed thickness of the reference model. For the DBT (CC view), 

to match the experimental conditions, the compressed thickness that was used was 44.2 mm and 

for the MLO view it was 48.5 mm. For ABUS imaging, the imaging depth 40 mm was used as 

the compressed thickness. The number of elements/nodes are 698,768/118,730 for the base bCT 

model, 577,295/99,684 for the base DBT (MLO) model, 547,426/94,408 for the base DBT (CC) 

model and 231,990/38,021 for the base ABUS model. 

5.3.5.3 Finite Element Analysis  

     The FEA solver, ABAQUS, is used to implement FE methodologies to solve the partial 

differential equations to simulate the plate compression and outputs the resulting stress and strain 

of the deformation applied to the bCT breast volume. The resultant breast compression by the 

plate, as shown in Figure 5.5(b) and (d), to the breast is performed using a non-linear quasi-static 

analysis and large displacement theory in two steps. The first step is to ensure adequate contact 

between the breast surface and plates. In the first step the breast is compressed to half the total 
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compression distance. The second step continues the compression until the boundary condition is 

satisfied by compressing the plate on the bCT model to ensure an axial compression depth of 

approximately 40 mm for ABUS compression (ABUS imaging depth), 44 mm for DBT-CC 

compression and 49 mm for DBT-MLO compression (compressed breast thicknesses from the 

DICOM headers).  

5.3.5.4 External fiducial marker correlation  

     After the FEA is completed, the deformed bCT model is loaded back into HyperMesh and the 

model is translated and rotated to the COM of the reference DBT or ABUS breast model. Then 

the algorithm determines the COM locations of all the corresponding external fiducial markers 

between the two models. Using HyperMorph, a mesh-morphing feature within HyperMesh, 

handles are generated at seven equidistant locations along each coordinate axis that encompasses 

the entire deformed bCT volume. Global handles (8 in total) and are generated at the 8 corners 

surrounding the skin mesh, they are used to make large scale changes to the mesh. Local handles 

(60 in total) are positioned on each plane between the global handles which can make smaller 

scale manipulations to skin nodes of that region. This allows modifications to be made to the 

deformed bCT model so that markers can be registered to the markers in the reference model 

(DBT or ABUS) within a user-defined distance, dM. The algorithm determines which local 

handle from the deformed bCT model is needed in order to be better aligned with the 

corresponding marker from the reference model (DBT or ABUS). To create the changes to the 

nodes within the morphed volume, HyperMorph, takes the handle information to create 

proprietary non-linear influence functions that relate the movement of the handles to the 

morphed volume. The algorithm only manipulates handles in areas of the breast where the 

distances between the corresponding external fiducial markers are greater than dM. Once all 
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marker corrections take place, the algorithm determines if there are still marker distances greater 

than dM. If so, the algorithm will iterate until all markers satisfy the dM boundary condition only 

performing handle corrections for the markers that do not satisfy the dM boundary condition. The 

maximum number of handle corrections for each iteration is the same as the total number of 

matched markers. More information on this process can be found in our previous paper.34 

5.3.5.5 Matching Corresponding Lesions 

     Once all external fiducial markers are within dM the COMs of all lesions from the external 

markers, the FEA deformed bCT model and the reference model are determined. A matching 

algorithm is then used to determine the lesion matches between the two models by finding the 

minimum distances, dCOM, between each possible pair of COMs. Two corresponding lesions are 

considered matched if the minimum dCOM between the FEA bCT lesion and the reference model 

is ≤ 15 mm and the lesions overlap as shown in Figure 5.6 (a). If the lesions do not overlap the 

minimum dCOM is still restricted to being ≤ 15 mm. A second parameter known as the minimum 

distance to overlap, dO, is calculated and is restricted to 7.5 mm to ensure a match discrepancy is 

not created. Figure 5.6 (b) shows two corresponding lesions that are considered matched but do 

not show overlap. The results are output into a table and are used to relate corresponding lesions 

in the original sets of DICOM images in a graphical-user-interface (GUI) viewer application.  
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Figure 5.6: Matching corresponding lesions showing a. overlapping lesions b. non-overlapping lesions. dCOM is 

restricted to 15 mm (dCOM ≤ 15 mm) for both and dO is restricted to 7.5 mm (dO ≤ 7.5 mm) for non-overlapping 

corresponding lesions. 

5.3.6 Studies Performed 

     Studies were undertaken to evaluate the performance of the deformable mapping technique 

for bCT registered to ABUS, bCT registered to DBT (CC) and bCT registered to DBT (MLO). 

Lesion correlation results (total matched lesions, dCOM, number of lesions that overlap, and dO) 

were compared with and without the use of external fiducial marker correlation and the statistical 

significance (p < 0.05) of the differences were quantified using paired t-test of the average dCOM 

values. For each registered set, results also included comparisons of lesion correlation results 

when external fiducial markers were within dM ≤ 5 mm vs. within dM ≤ 1 mm.  

5.4 Results 

5.4.1 Performance of deformable mapping technique for bCT registered to ABUS 

     An overview of the results for registration of the bCT model to ABUS is illustrated in Table 

5.2. All 20 lesions were visible in the bCT and ABUS reconstructed images. Without the use of 

marker analysis 13 out of 20 lesions were matched with an average dCOM of 8.6 ± 3.0 mm. With 

the use of external markers, the total number of matched lesions improved to 20 out of 20. When 
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all external markers were within 1-mm distances (dM ≤ 1 mm) the average dCOM was 5.3 ± 1.8 

mm. When the external markers were within 5-mm (dM ≤ 5 mm) the average dCOM was 4.8 ± 2.4 

mm. The mean difference in lesion dCOM for dM ≤ 1 mm vs. dM ≤ 5 mm was 0.41 mm and 

resulted with a p-value of 0.02. Thus, there is a statistically significant improvement in lesion 

dCOM when the markers are within a dM ≤ 5 mm.  

Table 5.2: Lesion Correlation summary for bCT registered to ABUS. A maximum of 20 lesions could be matched 

between image sets. (dCOM = distance between centers of masses of corresponding lesions in the two modalities, dO 

= minimum distance for overlap of corresponding lesions, dM = distance between external fiducial markers). 

 

Without Marker 

Analysis 

With Marker Analysis  

(dM ≤ 1 mm) 

With Marker Analysis  

(dM ≤ 5 mm) 

Total Matched Lesions 13 20 20 

Mean dCOM (mm) 8.6 ± 3.0 5.3 ± 1.8 4.8 ± 2.4 

Mean dO (mm) 5.2 ± 4.1 3.0 ± 2.8 2.4 ± 2.0 

Total Overlapping Lesions 5 14 14 

 

     A paired t-test of the dCOM’s was performed for the 13 lesions that were matched in the 

without marker analysis case to the same 13 lesions that were matched with marker analysis 

cases with dM ≤ 1 mm and dM ≤ 5 mm, a summary of the values used for this calculation are 

shown in Table 5.3. For dM ≤ 1 mm and dM ≤ 5 mm, the resulting differences in the average dCOM 

between without marker vs. with marker analysis were 5.3 mm and 4.8 mm, respectively, with p-

values of 0.01 and 0.005, indicating significant improvement in average lesion dCOM with the use 

of external fiducial markers.  
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Table 5.3: Lesion correlation summary of 14 matched lesions between without marker analysis and with marker 

analysis cases for bCT registered to ABUS (dCOM = distance between centers of masses of corresponding lesions 

in the two modalities, dO = minimum distance 

  

Without Marker 

Analysis 

With Marker Analysis  
With Marker 

Analysis  

(dM ≤ 1 mm) (dM ≤ 5 mm) 

Total Matched Lesions 13 13 13 

Mean dCOM (mm) 8.6 ± 3.0 5.3 ± 1.8 4.8 ± 1.9 

Mean dO (mm) 5.2 ± 4.1 2.3 ± 1.5  2.5 ± 1.3 

Total Overlapping Lesions 5 9 10 

 

     Figure 5.7 (a) and Figure 5.7 (b) display the improvement in lesion correlation between the 

bCT and ABUS models for all 20 lesions. Figure 5.7 (c) shows a GUI-Viewer display of 

corresponding marked lesions in the original bCT and ABUS images. The dCOM values for each 

pair of corresponding lesions are listed in Table 5.4. 

 

Figure 5.7: Lesion correlation for bCT (blue) registered to ABUS (yellow) (a) coronal view without marker analysis 

(b) coronal view with marker analysis (c) GUI representation from a lesion in original DICOM images of bCT 

(left), coronal view ABUS (upper-right), and transverse ABUS (lower-right) for a lesion (Lesion ID= 8). Numbers 

correspond to lesion ID’s and correlation values in Table 5.4).
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Table 5.4: Lesion matching results for each lesion with and without marker analysis for bCT registered to ABUS 

Lesion ID 
Lesion 

type 

Without Marker Analysis With Marker Analysis (dM ≤ 5 mm) 

dCOM 

(mm) 

dO 

(mm) 
Overlap 

dCOM 

(mm) 

dO 

(mm) 
Overlap 

1 dense n/a n/a no 11.1 5.6 no 

2 dense n/a n/a n/a 3.3 0.0 yes 

3 dense 5.6 0.0 yes 6.9 0.0 yes 

4 dense 4.5 0.0 yes 7.0 1.8 no 

5 dense 8.9 3.5 no 2.3 0.00 yes 

6 dense 7.4 0.00 yes 7.6 0.9 no 

7 cystic n/a n/a n/a 6.1 0.0 yes 

8 dense n/a n/a n/a 3.6 0.0 yes 

9 dense 6.8 0.00 yes 5.1 0.0 yes 

10 dense n/a n/a n/a 2.7 0.0 yes 

11 cystic 9.8 6.1 no 2.9 0.0 yes 

12 cystic n/a n/a n/a 0.5 0.0 yes 

13 cystic 11.5 5.5 no 2.2 0.0 yes 

14 cystic 13.7 7.8 no 4.0 0.0 yes 

15 cystic 11.1 5.2 no 5.1 0.0 yes 

16 cystic 12.3 5.5 no 3.7 0.0 yes 

17 cystic 9.0 6.3 no 4.7 1.7 no 

18 dense 6.4 0.00 yes 5.2 0.0 yes 

19 cystic 4.5 0.8 no 7.4 4.0 no 

20 cystic n/a n/a n/a 4.3 0.4 no 

Mean 9.00 5.51 Overlap* 4.8 2.4 Overlap* 

σ 3.12 1.97 5/14 2.4 1.2 14/20 

 

5.4.2 Performance of deformable mapping technique for bCT registered to DBT (CC) 

     An overview of the results for registration of the bCT model to DBT-CC is illustrated in 

Table 5.5. As explained previously, only 18 lesions were viewed in the reconstructed DBT-CC 

images because 2 lesions were too close to the chest wall. Therefore, the maximum number of 

possible lesion matches is 18. Without the use of external fiducial marker analysis only 9 out of 

18 lesions were matched with an average dCOM of 11.6 ± 2.0 mm. With the use of external 

markers, the total number of matched improved to 18 out of 18. When all external markers were 
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within 1 mm (dM ≤ 1 mm) the average dCOM was 5.0 ± 2.2 mm. When the external markers were 

within 5 mm (dM ≤ 5 mm) the average dCOM was 5.1 ± 2.2 mm. The mean difference in lesion 

dCOM for dM ≤ 1 mm vs. dM ≤ 5 mm was 0.12 mm with a p-value of 0.11 indicating no statistical 

difference in lesion dCOM when the external fiducial markers are closer in distance.  

Table 5.5: Lesion Correlation summary for bCT registered to DBT (CC). A maximum of 18 lesions could be 

matched between image sets (dCOM = distance between centers of masses of corresponding lesions in the two 

modalities, dO = minimum distance for overlap of corresponding lesions, dM = distance between external fiducial 

markers). 

 

Without Marker 

Analysis 

With Marker Analysis  

(dM ≤ 1 mm) 

With Marker Analysis  

(dM ≤ 5 mm) 

Total Matched Lesions 9 18 18 

Mean dCOM (mm) 11.6 ± 2.0 5.0 ± 2.2 5.1 ± 2.2 

Mean dO (mm) 2.7 ± 1.9 0.5 ± 0.3 0.3 ± 0.1 

Total Overlapping Lesions 2 16 16 

 

 A paired t-test of the dCOM’s was performed for the 9 lesions that were matched in the 

without marker analysis case to the same 9 lesions that were matched with marker analysis cases 

with dM ≤ 1 mm and dM ≤ 5 mm, a summary of the values used for this calculation are shown in 

Table 5.6. For dM ≤ 1 mm, and dM ≤ 5 mm the resulting differences in the average dCOM were 8.1 

mm and 8.2 mm, respectively, with p-values of 0.00001 and 0.000008 indicating significant 

improvement in average lesion dCOM with the use of external fiducial markers.  

Table 5.6: Lesion correlation summary of 9 matched lesions between without marker analysis and with marker 

analysis cases for bCT registered to DBT (CC). (dCOM = distance between centers of masses of corresponding 

lesions in the two modalities, dO = minimum distance for overlap of corresponding lesions, dM = distance between 

external fiducial markers). 

  Without Marker 

Analysis 

With Marker Analysis  With Marker Analysis  

(dM ≤ 1 mm) (dM ≤ 5 mm) 

Total Matched Lesions 9 9 9 

Mean dCOM (mm) 11.6 ± 2.0 3.5 ± 1.6 3.4 ± 1.4 

Mean dO (mm) 2.7 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 

Total Overlapping Lesions 2 9 9 
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     Figure 5.8 (a) and Figure 5.8 (b) visually display the improvement in lesion correlation 

between the bCT and DBT (CC) models for several lesions. Figure 5.8 (c) shows a GUI-Viewer 

for a marked corresponding lesion in the bCT and DBT (CC) original image sets. The dCOM and 

dO values for each pair of corresponding lesions are listed in Table 5.7. 

 

Figure 5.8: Lesion correlation bCT (blue) registered to DBT (CC view) (red) (a) axial view without marker analysis 

(b) axial view with marker analysis (c) GUI representation from original DICOM images for lesion (Lesion ID= 8). 

Numbers correspond to lesion ID’s and correlation values in Table 5.7. Note: All lesions are not visually 

represented in this figure due to superposition of the 2D representation
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Table 5.7: Lesion matching results for each lesion with and without marker analysis for bCT registered to DBT 

(CC) 

Lesion ID Lesion type 
Without Marker Analysis With Marker Analysis (dM ≤ 1 mm) 

dCOM (mm) dO (mm)  Overlap dCOM (mm) dO (mm) Overlap 

1 dense n/a n/a n/a 8.2 0.0 yes 

2 dense n/a n/a n/a 8.4 0.3 no 

3 dense 14.6 1.1 no 2.7 0.0 yes 

4 dense 13.2 5.4 no 3.5 0.0 yes 

5 dense 9.4 1.2 no 6.4 0.0 yes 

6 dense n/a n/a n/a 5.5 0.0 yes 

7 cystic n/a n/a n/a 6.0 0.0 yes 

8 dense n/a n/a n/a 8.0 0.0 yes 

9 dense n/a n/a n/a 5.4 0.0 yes 

10 dense n/a n/a n/a 5.2 0.0 yes 

11 cystic 10.1 2.1 no 2.2 0.0 yes 

12 cystic 11.6 3.7 no 5.0 0.0 yes 

13 cystic 11.0 0.7 no 1.0 0.0 yes 

14 cystic n/a n/a n/a 7.4 0.7 no 

15 cystic 9.3 0.0 yes 4.2 0.0 yes 

16 cystic 14.1 4.6 no 3.7 0.0 yes 

17 cystic n/a n/a n/a 3.7 0.0 yes 

18 dense 11.6 0.0 yes 2.9 0.0 yes 

19 cystic n/a n/a n/a n/a n/a n/a 

20 cystic n/a n/a n/a n/a n/a n/a 

Mean 11.6 2.7 Overlap* 5.0 0.5 Overlap* 

σ 2.0 1.9 2 2.2 0.3 16 

 

5.4.3 Performance of deformable mapping technique for bCT registered to DBT (MLO) 

     An overview of the results for registration of the bCT model to DBT (MLO) is illustrated in 

Table 5.8. As with the CC view, only 18 lesions were viewed in the reconstructed DBT (MLO) 

images because 2 lesions were too close to the chest wall. Therefore, the maximum number of 

lesions matches for this set is 18. Without the use of marker analysis only 9 out of 18 lesions 

were matched with an average dCOM of 8.2 ± 3.1 mm. With the use of external markers, the total 

number of matches improved to 18 out of 18. When all external markers were within 1 mm the 
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average dCOM was 4.7 ± 2.5 mm. When the external markers were within 5 mm the average dCOM 

was 5.4 ± 2.9 mm. lesion dCOM for dM ≤ 1 mm vs. dM ≤ 5 mm was 0.6 mm with a p-value of 0.09, 

indicating no statistical difference in lesion dCOM when the external fiducial markers are closer in 

distance. However, more lesions overlapped when the markers were closer together.  

Table 5.8: Lesion Correlation summary for bCT registered to DBT (MLO). A maximum of 18 lesions could be 

matched between image sets. (dCOM = distance between centers of masses of corresponding lesions in the two 

modalities, dO = minimum distance for overlap of corresponding lesions, dM = distance between external fiducial 

markers). 

 

Without Marker 

Analysis 

With Marker Analysis  

(dM ≤ 1 mm) 

With Marker Analysis  

(dM ≤ 5 mm) 

Total Matched Lesions 9 18 18 

Mean dCOM (mm) 8.2 ± 3.1 4.7 ± 2.5 5.4 ± 2.9 

Mean dO (mm) 1.9 ±1.5 1.4 ± 1.6 1.2 ± 1.0 

Total Overlapping Lesions 4 16 13 

 

     A paired t-test of the dCOM’s was performed for the 9 lesions that were matched in the without 

marker analysis case to the same 9 lesions that were matched with marker analysis cases with dM 

≤ 1 mm and dM ≤ 5 mm, summary of the values used for this calculation are shown in Table 5.9. 

For dM ≤ 1 mm and dM ≤ 5 mm the resulting differences in the average dCOM were 4.7 mm and 

4.3 mm, respectively with p-values of 0.002 and 0.001 indicating significant improvement in 

average lesion dCOM with the use of external fiducial markers. 
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Table 5.9: Lesion correlation summary of 9 matched lesions between without marker analysis and with marker 

analysis cases for bCT registered to DBT (MLO). (dCOM = distance between centers of masses of corresponding 

lesions in the two modalities, dO = minimum distance for overlap of corresponding lesions, dM = distance between 

external fiducial markers). 

  

Without Marker 

Analysis 

With Marker Analysis  With Marker Analysis  

(dM ≤ 1 mm) (dM ≤ 5 mm) 

Total Matched Lesions 9 9 9 

Mean dCOM (mm) 8.2 ± 3.1 3.6 ± 1.6 4.0 ± 1.5 

Mean dO (mm) 1.9 ± 1.5 0.0 ± 0.0 0.0 ± 0.0 

Total Overlapping 

Lesions 
4 9 9 

 

     Figure 5.9 (a) and Figure 5.9 (b) display the improvement in lesion correlation between the 

bCT and DBT (MLO) models for several lesions. Figure 5.9 (c) shows a GUI-Viewer display for 

a marked corresponding lesion in the bCT and DBT (MLO) original image sets. The dCOM, lesion 

overlap, and dO values for each pair of corresponding lesions are listed in Table 5.10. 

 

Figure 5.9: Lesion correlation bCT (blue) registered to DBT (MLO view) (green) (a) axial view without marker 
analysis (b) axial view with marker analysis (c) GUI representation from original DICOM images for a lesion. 

Numbers correspond to lesion ID’s and correlation values in Table 5.10. Note: All lesions are not visually 

represented in this figure due to superposition of the 2D representation. 
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Table 5.10: Lesion matching results for each lesion with and without marker analysis for bCT registered to DBT 

(MLO) 

Lesion ID 
Lesion 

type 

Without Marker Analysis With Marker Analysis (dM ≤ 1 mm) 

dCOM (mm) 

dO 

(mm)  Overlap dCOM (mm) 

dO 

(mm) Overlap 

1 dense n/a n/a n/a 7.5 0.2 no  

2 dense n/a n/a n/a 7.0 0.0 yes 

3 dense 6.5 0.00 yes 4.0 0.0 yes 

4 dense 4.0 0.00 yes 5.5 0.0 yes 

5 dense 8.4 0.8 no  3.5 0.0 yes 

6 dense 11.9 0.00 yes 3.25 0.0 yes 

7 cystic n/a n/a n/a 11.1 2.5 no  

8 dense 12.0 1.4 no  6.0 0.0 yes 

9 dense 7.3 0.00 yes 0.6 0.0 yes 

10 dense 9.6 1.4 no  2.7 0.0 yes 

11 cystic 0.00 n/a n/a 8.0 0.0 yes 

12 cystic 10.5 4.2 no  2.9 0.0 yes 

13 cystic 0.00 n/a n/a 6.0 0.0 yes 

14 cystic 0.00 n/a n/a 3.8 0.0 yes 

15 cystic 0.00 n/a n/a 3.8 0.0 yes 

16 cystic 0.00 n/a n/a 3.4 0.0 yes 

17 cystic 0.00 n/a n/a 2.7 0.0 yes 

18 dense 3.9 0.00 yes 3.7 0.0 yes 

19 cystic n/a n/a n/a n/a n/a n/a 

20 cystic n/a n/a n/a n/a n/a n/a 

Mean 8.2 1.9 Overlap* 4.7 1.4 Overlap* 

σ 3.1 1.5 5/9 2.5 1.6 16/18 

 

5.5 Conclusions  

     This work demonstrates and evaluates the potential for use of a deformable mapping 

technique to relate lesions in bCT images to ABUS images and to match lesions in bCT to DBT 

images. To our knowledge, this is the first study involving the use of deformable registration of 

bCT images to ABUS or DBT views. Segmentations for each model were used to create a 3D 

tetrahedral finite element breast model where plate deformations were performed on the bCT 

model to simulate DBT and ABUS compression. The rate of correlation between the lesions in 
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the two different modality images increased with the use of external fiducial markers with this 

method. With the use of external marker corrections, the mean dCOM values decreased by 49% 

for bCT to ABUS registration, 57% for bCT to DBT (CC) registration, and 40% for bCT to DBT 

(MLO) registration. Additionally, the maximum number of corresponding lesions was achieved 

with the use of external marker corrections, where the mean marker dM values were within 1-mm 

and 5-mm distances for all analyzed cases. Thus, this study showed that external marker analysis 

could potentially correct for discrepancies that may be influenced by mesh density, friction, and 

elasticity properties of various tissue types. Implementation of this methodology could 

significantly improve radiologist’s characterizations of breast lesions. In the case for dense 

breasts where a lesion is not easily identifiable, this method can allow a radiologist to indicate an 

ROI within the bCT image to determine with higher confidence the ROI location is a match to a 

better defined region in DBT or ABUS. However, some sort of optimization for patient specific 

material properties must be considered when applying this technique in the clinic. The results 

obtained in this work are preliminary and an expansion of this work is planned to quantify the 

effectiveness of this technique on actual patient data analyzed in an IRB-approved patient study.  

5.6 Discussion 

 A novel deformable registration technique has been described and assessed for identifying 

related lesions in bCT and ABUS images and in bCT and CC and MLO DBT images. For all 

analyzed cases there was statistically significant improvement in lesion correlation with the use 

of external fiducial markers.  

 This study is to our knowledge the first to show lesion registration between bCT and ABUS 

breast images. The use of this technique with bCT in conjunction with ultrasound could likely 

lead to valuable contributions for breast characterizations as it has for mammography 16–18. This 
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study does not show a significant variation in lesion dCOM for cystic lesions in comparison to 

dense lesions. All lesions in this study are given the material property of dense lesion during 

FEA since in all x-ray based breast imaging of this phantom, the solid and cystic lesions are not 

differentiable. The t-test results indicated no difference in lesion correlation based on lesion type. 

This result is expected since both the simulated dense and cystic lesions use the same Zerdine- 

based material and just exhibit different ultrasound properties (anechoic for cystic lesions and if 

dense have hyperechoic). Therefore, when applied to patients, there may be a difference in lesion 

correlation (dCOM) for cystic masses since the algorithm does not use cystic properties during 

FEA.   

 This study also indicated a significant difference lesion dCOM when the external markers 

were further apart (dM ≤ 5 mm) vs. (dM ≤ 1 mm) for the bCT to ABUS case. When all markers 

are aligned to be closer together larger iterations take place which may be over compensating for 

some areas of the breast. For instance, in one iteration a set of markers could have first been 

within correlation bounds and then fall outside the specified correlation bounds, due to shifts 

from movements of other neighboring corresponding markers within correlation bounds. Thus, 

this marker set must be readjusted in the next iteration. This over-correction feature may be the 

cause of the better results with a less strict marker distance (dM ≤ 5 mm). This effect was also 

noted in our previous work for DBT to ABUS registration 34. Additionally, this can be an 

indications that although the external fiducial markers are helpful in registration their use is not 

completely indicative of internal deformation caused by compression. Currently in ABUS 

imaging, there is not a distinct way to determine the compressive force used on the breast. In this 

study, the imaging depth was used to determine ultrasound compression. However, using the 



 135 

imaging depth is not completely accurate since the transducer for the ABUS system has a reverse 

curvature so the depth varies with lateral position.  

 Additionally, this study did not model the reverse curvature of the ABUS transducer during 

FEA analysis. Due to this curvature, the lateral ends of the transducer can experience 

approximately an additional 6 mm of compression (See Figure 5.10). We believe the effect of the 

curvature is not very significant based on the high degree of lesion correlation found in our 

study. The degree to which this is true for real breasts can be better determined through an IRB-

approved patient study. For translation of this technique to patients, the present limited depth of 

ultrasound penetration of 5 cm may make this technique unsuitable for patients with larger 

breasts. From our previous DBT to ABUS study, we found larger dCOM correlation values than 

with the present bCT to ABUS study. That is largely because the previous study did not simulate 

plate compression since the breast is compressed during the DBT and ABUS acquisitions. 

 

Figure 5.10: Measurement of lateral compression difference from Invenia Reverse curve transducer during ABUS 

imaging. 

     For the DBT studies analyzed, there was no statistical difference between results obtained 

with the use of different external fiducial marker spacing, at a distance of ≤ 5 mm vs. ≤ 1 mm 

apart. This is likely due to better compression modeling of the compression plates because of the 

knowledge of the compressive force and compressed breast thickness. However, for the MLO 
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case there was an increase in lesion overlap for 3 lesions when external markers were closer 

together (dM ≤ 1 mm). Two lesions were not visualized in reconstructed DBT images as they are 

too close to the phantom back plate or “chest wall” and were not imaged. In a real breast this 

would should not be an issue with proper technologist positioning.  

 We expect results for patients will likely be worse than those that were obtained in the 

phantom study. The phantom used in our study is made of viscoelastically homogenous material 

whereas there will be much more heterogeneity even within the same material in a real breast. A 

real breast also will include glandular tissue, adipose tissue, blood vessels, Cooper’s ligaments, 

ducts, etc. that can have an effect on the performance of the deformable registration. Breast 

studies that use FE-based techniques typically segment the breast skin, adipose tissue, 

fibroglandular tissue and the lesion (if applicable) for biomechanical modeling 89. These might or 

might not include the effects of ligaments with their primary function of shape control.  

Another limitation to this study is that only one phantom was used. Further developments are 

still needed to produce physical multi-modal breast phantoms that show hyperelastic behaviors.  

The phantom used within this study exhibits linear elastic behavior, whereas real breast tissue 

follows hyperelastic behavior under compression 76,150,151. Although, other research groups such 

as Chung et al.152 have designed and used phantoms with non-linear properties for breast 

biomechanical modeling, these phantoms are not currently commercially available There is a 

rigid posterior wall in the phantom. This causes extreme deformation at the posterior edge of the 

paddle (Figure 5.2 (b)). The gradient in the deformation might, in fact be greater than that in the 

human breast as there are ligaments in the breast that would tend to minimize that deformation 

by pulling down more skin and subcutaneous tissues than in the phantom. Therefore, when 

translating this technique to patients, segmentation of the dense fibroglandular breast tissue from 
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adipose tissue in bCT images and the use of corresponding elastic properties of those tissues will 

be critical. A proof of concept study would be needed to determine the effect these limitations 

have on lesion registration results in patients. 

 There is still high variability in the moduli of elasticity for breast tissues. A study by Gefen 

and Dilmoney82 the Young’s modulus for glandular tissue ranges from 7.5 kPa- 66 kPa and 

adipose tissue ranges from 0.5 kPa – 25 kPa. A study by Athanasiou et al.96 used supersonic 

shear wave imaging on 46 women with 48 breast lesions where the mean elasticity values was 

146.6 ± 40.05 kPa for malignant lesions and a mean elasticity value of 45.3 ± 41.1 kPa for 

benign breast lesions When applying this technique to patients consideration for what material 

properties will need to be used in order to make the model patient-specific. Kellner et al.97 used 

average values found from several in vitro and in vivo elastic coefficients for the skin, fat and 

glandular breast tissue to arbitrarily assign to a model. Contrarily, Han et al.71 used a material 

property optimization algorithm to change the material property based on maximizing the 

similarity between the predicted deformed MR breast images. However, this type of technique 

could lead to huge runtimes with the use of commercial FE packages. Other differences between, 

the work of Han et al.71 and this work is that they used a GPU-based explicit dynamic FEA 

solver153,154 where in this work we use commercial non-linear quasi-static FEA. Due to the high 

runtimes observed in this study we will likely need to explore ways to optimize the results while 

decreasing runtime when applying this technique to patients.  

 When using FEA to simulate application of plate compression to breast models generated 

from bCT images of actual patients’ breasts, a study by Hsu et al.146 found that small alterations 

in the biomechanical properties of the tissues can result in significantly different representations 

of the resulting DBT breast models in the simulations. Hsu et al.146 found that these differences 
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are largely influenced by mesh density, friction coefficient between plates and skin, and relative 

stiffness of the various tissue types which can change the breast tissue distribution during 

simulated compression up to 1 cm. However, other studies have shown the use of external 

fiducial markers can be very helpful and potentially could partially correct for these 

discrepancies and increase confidence in lesion registration 69–72. 
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Chapter 6  

Proof-of-Concept patient validation study of Deformable Mapping 

Technique to relate lesions between DBT and ABUS images 

 

 

6.1 Abstract 

Purpose: This work investigates the application of a deformable localization/mapping method to 

register lesions between the digital breast tomosynthesis (DBT) craniocaudal (CC) and 

mediolateral oblique (MLO) views and automated breast ultrasound (ABUS) images based on 

five patient data sets and up to 7 lesions. This method was initially validated using compressible 

breast phantoms.  

Methods: The automated deformable mapping algorithm uses finite element modeling and 

analysis to determine corresponding lesions based on distances between centers of mass (dCOM) 

in the deformed DBT model and the reference ABUS model.  

Results: This technique has found that using several combinations of external fiducial markers 

can be helpful to improve lesion registration. However, use of external markers are not required 

for deformable registration results described by this methodology. For DBT (CC view) mapped 

to ABUS, the mean dCOM was 11.0 ± 4.9 mm based on 7 lesions. For DBT (MLO view) mapped 

to ABUS, the mean dCOM was 12.3 ± 4.8 mm based on 6 lesions. Both DBT views registered to 

ABUS lesions showed statistically significant improvements (p  0.05) in registration using



 140 

the deformable technique in comparison to a rigid registration.  

Conclusion: Application of this methodology could help improve a radiologist’s timing, 

efficiency, characterization and accuracy in relating corresponding lesions between DBT and 

ABUS image datasets, especially for cases of high breast densities and multiple masses. 

6.2 Introduction 

 Conventional handheld ultrasound (HHUS) imaging is often used as a complement to 

mammography and has shown large improvements in the characterization of breast lesions by 

aiding in differentiating between solid and cystic lesions.16–18 HHUS has a higher sensitivity than 

mammography for lesions in women with dense breasts.54 HHUS produces 2D images and is 

performed freehand in a different geometry (supine) than mammography (upright). In HHUS, the 

image acquisition is freehand and therefore there is difficulty in reproducing images due to high 

operator dependence.  Automated breast ultrasound (ABUS) creates a 3D image volume and has 

advantages in terms of reproducibility, faster image acquisition speed, and operator 

independence over conventional HHUS for breast examinations.18,19,57 As demonstrated by 

D’Orsi et al.40, using ABUS in conjunction with mammography screening for women with dense 

breasts (BI-RADS ACR3 or ACR4) increases the rate in breast cancer detection. Additionally, 

several other studies have shown that ABUS significantly improves the breast cancer detection 

rate with an acceptable recall increase.19,57,58 However, several studies concluded that HHUS is 

superior to ABUS for breast lesion that are smaller in size/diameter, irregular in shape, non-

circumscribed margins, and for breast coverage in peripheral margins.59–62  

 Currently, mammography is the gold standard for detecting breast cancer and is the only 

screening test proven to reduce the breast cancer mortality rate in women.155 However, 

mammography has reduced sensitivity and increased false-negative examinations for women 
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with dense breasts due to the superposition of breast tissues from the single 2D image projection. 

Digital breast tomosynthesis (DBT) mammography’s quasi-3D counterpart, uses limited angle 

tomography in the mammographic geometry and can help locate breast masses that are masked 

in mammography due to superposition of breast tissues. Studies have shown DBT to have an 

increased cancer detection rate and reduced recall rate in comparison with digital 

mammography.45–47 Gains using DBT are largely seen for women with dense breasts, where 

DBT outperforms mammography in both screening and diagnostic uses.129 However, like 

mammography, DBT still has difficulty in distinguishing between solid and cystic breast lesions. 

Thus, there remains a need for supplementary ultrasound imaging.109,110   

  Considering that the breast is highly deformable, and the breast is imaged in different 

geometries and compression for mammography and ultrasound, it can be difficult to relate 

lesions between mammography and ultrasound images. Additionally, at least 10% of the time 

lesions found in ultrasound images do not correspond to those found in mammography/DBT.15 

There are two potential solutions to this problem: (1) The development of a combined x-

ray/ultrasound system that images the breast in the same mammographic geometry using special 

modality paddles or (2) The development of a deformable registration technique to detect and 

relate corresponding lesions between the x-ray and ultrasound modalities in their respective 

geometries. This study will investigate the latter proposed solution.  

 Several groups have evaluated the performance of a combined x-ray/ultrasound system that 

images the breast in the same mammographic geometry using special modality 

paddles.21,22,24,25,27–30,63 Since the images are acquired in the same geometry there is a direct 

localization for lesion registration between the 3D ultrasound to the DBT. However, the singled-

sided ultrasound transducer combined systems have limitations in terms of ultrasound 
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penetration depth and poor ultrasound transducer coupling along the peripheral breast regions in 

the mammographic geometry. To address these issues, Larson et al.33 explored using dual-sided 

ultrasound, however their work has not been implemented into a combined system using x-rays. 

Additionally, a combined x-ray ultrasound system is very expensive and not yet commercially 

available.  

 An alternative solution to using a combined system is to image the breast using DBT and 

ABUS modalities in their respective geometries and then use a deformable registration method to 

relate the corresponding lesions. Using a deformable registration method has advantages of 

improved transducer coupling while imaging with ABUS and it will utilize commercial systems 

that are likely already in the clinic. The main disadvantage of using a deformable registration 

method is that there is greater technical difficulty in relating corresponding masses due to the 

differences in patient positioning and compression between the DBT and ABUS modalities.  

 Our previous work involved the development of a deformable mapping method for lesions 

in DBT (CC-view) and ABUS on a breast phantom with increased improvement using external 

markers and finite element methods (FEM).34 To our knowledge, that study was the first to show 

the direct registration of lesions between DBT and ABUS modalities. We extended that work to 

include registration of DBT (CC and MLO views) and ABUS using a compressible breast 

phantom with multiple lesions.35 Additionally, we extended upon that work to include the 

registration of simulated dedicated breast CT to DBT (CC and MLO views and ABUS using a 

compressible breast phantom with multiple lesions.36 Like other studies, we found the use of 

FEM and external fiducial markers helpful in improving lesion registration.  

 Several studies have used FEM-based methods to register lesions between uncompressed 

MRI (prone positioning) to CC and/or MLO mammograms 85,86,88,90 and between CC and MLO 
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views in mammography.112 Segmentation of the entire breast is required to used FEM 

biomechanical breast models and studies have used manual 71,76, semi-automated 84,85, and 

automated 86–88 segmentation techniques for the development of FEM breast models. 

Additionally, studies have found that using external fiducial markers were helpful to improve 

registration results for MRI/PET registration 69,70, compressed to uncompressed prone MRI 

registration71, and breast MRI to ultrasound registration72.  

 In this chapter, we present modifications and validate our automated deformable registration 

method to relate lesions between DBT (CC and MLO views) and ABUS using FEM. We 

evaluate the improvement in registration by using various numbers of external fiducial markers. 

This study validates the performance of a deformable mapping method based on 5 patient data 

sets to register up to 7 lesions. The validated algorithm can be used to relate regions of interests 

(ROIs) between these two modalities such that a radiologist can directly view corresponding 

lesions in DBT and ABUS images. Implementation of this method can save a radiologist time in 

navigating through the 3D image volumes. This will be especially beneficial for the more 

difficult cases such as women with dense breast tissue or women with multiple breast masses.  

6.3 Materials and Methods 

6.3.1 Experimental Procedures 

 In order to determine the efficacy of our deformable registration technique, we collected 

patient data as part of an IRB-approved study. Inclusion criteria for patient volunteers is defined 

as follows: 1) Women who were scheduled for a biopsy procedure within the Breast Imaging 

clinic at the University of Michigan Cancer Center and 2) have a breast mass 5 mm or greater in 

size that is visible on ultrasound and not located in the axillary breast region. A detailed 

description of the imaging procedures is provided in the Appendix.  
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 In order to help restrict breast motion during ABUS imaging and between ABUS scans, the 

patient volunteer was first fitted by one of the research staff members for an ultrasound camisole. 

The camisole, shown in Figure 6.1 (a), fits on the patient similar to a sports bra. The camisole is 

made in various sizes (women’s dress sizes 0-26). Each camisole is made of a sheer stretchable 

nylon mesh fabric in the front and a stiff cotton fabric in the back. This camisole was tested to 

ensure that penetration ability of ultrasound is not compromised. Additionally, the camisole was 

tested on 10 normal volunteers to ensure that breast motion was restricted, and the locations of 

the external fiducial markers located beneath the camisole were not compromised. The camisole 

was not worn during the x-ray portion of the exam. After being fitted for the camisole the patient 

takes off the camisole and then a research staff member denotes areas of the breast for placement 

of external fiducial markers with a washable magic marker (See Figure 6.1 (b)). Seven external 

fiducial markers were then attached to the breast at the indicated locations using Jobst “It-Stays” 

Roll-On Adhesive (BSN Medical, Charlotte, NC)u. 

                                                 
u  http://www.jobst-usa.com/product/it-stays-roll-on-adhesive/ 

http://www.jobst-usa.com/product/it-stays-roll-on-adhesive/
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Figure 6.1 (a) Ultrasound camisole for ABUS imaging (b) External fiducial marker locations (denoted by A-G) 

shown for marker placements on the left breast 

 One marker was placed at the center of each breast quadrants (labeled as A, C, E and G in 

Figure 6.1 (b)), one marker was placed superior and one marker was placed inferior to the nipple 

(labeled as B and F Figure 6.1 (b)). An additional marker was placed more lateral in the upper 

outer quadrant due to this quadrant being the most common quadrant for breast malignancies 

(labeled as D in Figure 6.1 (b)).Various marker combinations can be analyzed using the 

deformable mapping algorithm. Results in this study are obtained using the following 

combinations with letter designation in Figure 6.1 (b): all 7 markers, 6 markers (located at 

positions A-C and E-G), 4 Markers (located at positions A-D), and 3 markers (positions A-C), 

and 1 marker analysis (dependent on the marker closest to the specified lesion). If a lesion is in 

the retroareolar region of the breast the 1 marker analysis is not run. 

 Each external fiducial marker contains a 1 mm glass bead in a bubble-free thermoplastic 

elastomer gel. The glass bead can be easily seen in the DBT and ABUS reconstructed images as 

shown in Figure 6.2. To ensure that the adhesive holding the fiducial markers to the breast has 
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enough time to cure, we waited a minimum of 5 minutes before initiating x-ray imaging. As a 

precaution TomoSpot bandagesv (with the x-ray target removed) were placed over each marker 

to ensure that the external markers remained in place during x-ray imaging.  

 

Figure 6.2: Red Arrow indicates glass bead of an external fiducial marker in (a) DBT (CC view) (b) DBT (MLO 

view) and (c) ABUS AP view. Yellow arrow shows length x for (a) the medial to lateral breast margins in DBT (CC 

view) needed for DBT surface skin transformation (b) nipple to posterior breast length in DBT (MLO view) 

 After patient preparation, DBT images were acquired in both CC and MLO (at 45° angles) 

views by x-ray technologists using the GE Senographe Pristina DBT system (GE Healthcare, 

Milwaukee, WI). The voxel width and length of the DBT images are 0.1 mm and the slice 

thickness (image depth) was 1 mm. Next, the patient was brought to an adjacent ultrasound room 

and positioned supine. The TomoSpot bandages were removed from the breast while the external 

markers remain attached. Prior to ABUS imaging, the patient puts on the ultrasound camisole 

with assistance from a research staff member. The markers may move in this process in which 

case the magic marker locations indicate where the markers need to be reapplied. Ultrasound 

lotion was then applied over the camisole and light AP compression was applied to the patients’ 

                                                 
v https://www.beekley.com/product-details/tomospot-for-marking-nipples-781 

https://www.beekley.com/product-details/tomospot-for-marking-nipples-781
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breast as she was imaged with the GE Invenia ABUS system (GE Healthcare, Milwaukee, WI). 

Three images were acquired during the ABUS exam (AP View, Lateral View, and Medial View) 

to ensure adequate breast coverage. Depending on patient breast size, the low, medium, or high 

setting could be used to image the desired depth. The 153 mm length reversed-curved transducer 

can image up to a 50 mm depth and scanned the breast through a mesh compression paddle. 

Correction for the reverse-curvature of the transducer is not included in the resulting DICOM 

images, therefore a MATLAB program was created to correct for the transducer curvature.  

 Within this curvature correction program, the ABUS images are resampled from a native 

voxel size of 0.082 mm in depth, 0.2 mm in width, and 0.506-0.511 mm in length (distance 

between adjacent slices dependent on exam setting), to 0.082 mm width, 0.082 mm depth, and 

0.506-0.511 mm in length (depending on the imaging depth setting). This algorithm takes about 

1 hour to complete the resampling and curvature corrections. Methods used within the Invenia 

ABUS workstation software could allow for this curvature processing to be done instantly.  

 The curvature-corrected ABUS images are then resampled from the 0.082 mm in depth, 

0.082 mm in width, and 0.506-0.511 mm in length (distance between adjacent slices dependent 

on exam setting), to 0.2 mm in width, 0.2 mm in depth, and 0.506-0.511 mm length (dependent 

on imaging depth setting). Since each ABUS view generates 330 slices, resampling was needed 

to increase the speed of surface mesh creation for the base FE ABUS model generation. Image 

resampling is done using the MATLAB imresizew command. 

6.3.2 Segmentation Methods 

 All lesions in the acquired patient-specific images in DBT and ABUS were segmented using 

MiViewer, a semi-automated segmentation program based on using 3D level set segmentations 

                                                 
w https://www.mathworks.com/help/images/ref/imresize.html  

https://www.mathworks.com/help/images/ref/imresize.html
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from the University of Michigan CAD Laboratory 140,141. In the MiViewer, program the user 

specifies the best slice, the first slice, and the last slice that the lesion is seen in the 3D image set. 

Then the user places a small box to occupy the lesion in the best view of the image slice. We 

found using window level/width settings that provided more contrast and noise (as shown in 

Figure 3(a)-(c)) provided best visualization of the lesions for box placement to occupy the lesion 

in MiViewer. In the publication from Street et al., the MiViewer segmentation is described, “Our 

computer segmentation system consists of three stages. In the first stage, we apply preprocessing 

techniques to the original CT images in the 3D volume in order to obtain a set of smoothed 

images and a set of gradient images. In the second stage, an initial segmentation contour from the 

pre-processed images is extracted. In the last stage, a serial bank of level sets is propagated from 

the initial segmentation toward the final segmentation.”140  

 MiViewer allows for adjusting many parameters in the level set segmentation. We found 

that two sets of parametric settings (e.g. level-set time sets, sample radius, blur kernel etc.) gave 

best segmentations with minimal adjustments needed. These are listed in the Appendix. Minor 

modifications can be made after segmentation. Further information of the MiViewer program 

can be found in the work by Street et al.140 and Hadjiiski et al.141 If a lesion was unable to be 

sufficiently segmented using MiViewer then manual segmentation was performed. All lesion 

segmentations were checked and verified by a radiologist. Examples of a lesion segmented using 

MiViewer software are shown in Figure 6.3 (a) and Figure 6.3 (b) for DBT images and Figure 

6.3 (c) for ABUS images. 
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Figure 6.3: MiViewer lesion segmentation for (a) DBT (CC view) image slice (b) DBT (MLO view) image slice  (c) 

ABUS (AP view) image slice (sagittal) (d) 3D Slicer skin segmentation of ABUS (AP view) (coronal) 

 Segmentation of the glandular/dense tissue from the breast mask of the DBT images was 

performed using LIBRA, an open-source software package developed by the Computational 

Breast Imaging Group at the University of Pennsylvania.156 The LIBRA software was developed 

to quantitatively determine breast density of mammograms, by segmenting the dense breast 

regions from the breasts as shown in Figure 6.4. We found that it was sufficient for also 

segmenting the dense/breast masked from slices in DBT. Using the LIBRA executable, all DBT 

slices are housed in one directory. This is so that the executable is run using “Batch Processing” 

and also to save the additional intermediate files, which are produced for each image slice within 

the directory. The intermediate files contain the segmentations of the breast mask and the dense 

mask which are used for the patient-specific DBT FEM base model construction.  

 Since DBT has poor axial resolution the first 5 and last 5 image segmentation slices (which 

represents the top 5 and bottom 5 sections of the breast) for the glandular tissue are avoided 

during surface mesh creation. These are excluded from classification as dense tissue since the 
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voxels are likely skin. Five slices were used as it was the maximum number of slices that the 1 

mm glass bead from the external fiducial markers is seen in reconstructed DBT views which is 

on the breast skin surface. An example of the resulting segmentation of the dense mask from a 

DBT image slice using the LIBRA executable is shown in green in Figure 6.4(c). 

 The breast was segmented from the background also using LIBRA to generate the breast 

(shown in red from an image slice in Figure 6.4(c)) mask for the skin. Breast skin thickness can 

range between 0.7 to 3.0 mm as reported by Huang et al.157 from breast CT data. The breast mask 

segmentation (shown in red from an image slice in Figure 6.4(c)) is shrunken by 3 mm for each 

image slice in the x-y plane, to create the inner skin mask which accounts for skin thickness. 

This is done by using the MATLAB bwmorphx function. The inner skin mask rejects the first 

and last 3 image slices to account for the 3 mm skin thickness in the z-plane. The area between 

the glandular tissue and the inner skin mask is fatty/adipose tissue for FEM. An example of the 

resulting segmentation of the breast mask from a DBT image slice using the LIBRA executable 

is shown in red in Figure 6.4(c). 

                                                 
x https://www.mathworks.com/help/images/ref/bwmorph.html  

https://www.mathworks.com/help/images/ref/bwmorph.html
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Figure 6.4: (a) Original DBT DICOM slice (b) LIBRA-generated color map of dense breast regions (c) Breast mask 

segmentation (red) and dense mask segmentation (green) of DBT slice 

 Since ABUS is the reference model, segmentations are only required for the markers, 

lesions, and outer skin layer. The skin layer is segmented using semi-automated techniques using 

3D Slicer.142 This is done by manually segmenting various slices along the coronal ABUS view 

and using the “Fill between Slices” technique under the Segmentation module to segment the 

peripheral breast margins where there was not substantial scatter or signal drop out artifacts.142 

 The first 4-6 slices in the coronal view (see Figure 6.3 (d)) were manually segmented by 

visual inspection. The last slice is segmented based on the manual segmentation of a slice before 

the ribs appear in the breast data. Several intermediate slices should also be segmented to achieve 

more improved results. A resulting segmentation of a slice of the breast image volume for the 

skin outline in ABUS is shown in Figure 6.3 (d). 
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6.3.3 Studies Performed 

The studies undertaken to evaluate the performance of the deformable mapping technique for 

DBT (CC view) mapped to ABUS and DBT (MLO view) mapped to ABUS and are described as 

follows: 

• Validation of deformable registration of the DBT (CC view) mapped to ABUS images: 

Results (dCOM) are compared using the deformable mapping algorithm (with and without 

marker analysis). Those results are then compared to a rigid registration of the DBT (CC 

view) and ABUS image volumes. Various marker combinations are also compared using 

the deformable mapping algorithm. T-test and signed Wilcoxon rank tests are used to 

provide the null hypothesis, that there is no improvement using the deformable method 

for lesion registration over that of rigid registration.  

• Validation of deformable registration of DBT (MLO view) mapped to ABUS images: This 

study was performed similarly to the previous case for DBT (CC view) to ABUS 

registration.  

• Elastic Modulus Sensitivity Analysis: Modifications to the Young’s moduli for adipose, 

glandular and lesions tissues are run on all patient data sets using the deformable 

mapping algorithm without marker analysis. The minimum and maximum elastic moduli 

values that were used are described in Table 6.2. The resulting dCOM values are compared 

to the default dCOM results on all patient datasets using the default/base Young’s moduli 

parameters (see Table 6.1) within the deformable mapping algorithm. The comparison is 

done in order to show the effect that varying the elastic parameters has on the registration 

results (dCOM) using the deformable mapping method. 
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• Algorithm Optimization Study: Results increasing the resampling size to 0.3 mm length, 

0.3 mm width, and 1 mm depth are performed for the subject with the largest breast 

volume in order to determine the effect it on algorithm run time and dCOM. Additionally, 

reducing mesh coarseness of the skin, fat, and glandular tissues is performed for this 

same subject’s image data in order to determine its effect in algorithm run time and 

overall resulting dCOM.  

6.4 Calculations 

 The deformable mapping algorithm is an automated process that leverages a commercial 

pre-processor (HyperMesh version 2017.2, Altair Engineering, Troy, MI) for meshing model 

generation and a commercial FEA solver (HyperMesh version 2017.2, Altair Engineering, Troy, 

MI). An overview of this process is shown in Figure 6.5. This algorithm provides deformation 

results using, or without using, location information provided by external fiducial markers. The 

entire process can take between 30-60 minutes (depending on model/breast size) to complete 

using a Windows 10 Intel® Core™ i7 CPU with a speed of 2500 MHz and 8GB RAM.  
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Figure 6.5: Overview of the Automated Deformable Mapping Process. Software’s used are shown in red. 

6.4.1 Base Finite Element Model Generation 

     The segmented contours are converted into triangular surface meshes using Morfeus, which 

uses the shrinkwrap tool in the finite element (FE) pre-processor, HyperMesh 143. The 

compilation of surface meshes are used to build each base model for the DBT (CC or MLO) and 

ABUS modality. More information on how to generate the base FE model can be found in the 

Appendix. A 1 mm element size was used for all lesions and 5 to 10 mm element sizes were used 

for the glandular, adipose, and skin volumes based on their larger volume and patient 

dependency. The triangular surface meshes are meshed using 3D four-point fully meshed 

tetrahedral models for each modality model being used for registration. This study employs the 

use of a four-compartment model (skin, adipose, glandular, and lesion). The material properties 

assigned for the various model volumes are described in Table 6.1. The skin, adipose, and 

glandular material properties were attributed from work by Kellner et al.158 which has been used 

in other FEM-based breast models 159. Each lesion by default is given the property of a benign 
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lesion based on average reported values by Tozaki and Fukuma160. If specified the algorithm can 

be run so that the mechanical properties of a malignant lesion are used (Tozaki and Fukuma160).   

Table 6.1: Mechanical properties used for biomechanical modeling. By default, a lesion is assigned the properties of 

benign lesion. 

Tissue Type  Young’s Modulus (E) Poisson’s Ratio (ν) 

Skin 88 kPa 0.49 

Adipose Tissue 1 kPa 0.49 

Glandular Tissue 10 kPa 0.49 

Lesion (Benign) 42 kPa 0.49 

Lesion (Malignant) 146 kPa 0.49 

 

 Table 6.2 shows the range of the material properties tested for the sensitivity analysis study 

further discussed in the 6.5 Results section.  

Table 6.2: Minimum and Maximum Young’s Moduli of adipose, glandular and lesion tissue for sensitivity analysis 

 Young’s Modulus (E) 

Tissue Type Minimum (kPa) Maximum (kPa) 

Adipose Tissue  0.5 1.5 

Glandular Tissue 1 20 

Lesion (Benign)  6.3 96 

Lesion (Malignant) 7.1 299 

6.4.2 DBT Skin Deformation 

 Once the base FEM models for the DBT and ABUS models are created the DBT model is 

registered to the center of mass (COM) of the ABUS model. Details of this registration will be 

addressed in the following text for DBT (CC view) to ABUS and DBT (MLO view) to ABUS.  

6.4.2.1 DBT (CC view) mapped to ABUS 

 For DBT (CC view) mapped to ABUS, the base DBT model is rigidly registered to the 

COM of the ABUS base model, as shown in Figure 6.6(a). A check is performed to ensure that 

the nipple is within a 2 cm distance in both the x and y dimensions. If this is exceeded the model 

is rigidly registered to the nipple. This nipple registration check helps correct for proper 

alignment in the case where the nipple was not adequately positioned during ABUS image 

acquisition due to the shape or size of the breast, or improper positioning by a technologist. The 
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nipple correction only corrects in the x and y planes. Skin deformation is performed on the base 

DBT model using the HyperMorph feature, which creates local (yellow) and global (red) handles 

around the DBT FE volume. The handles are manipulated to morph the mesh to be a similar 

shape as the ABUS model in all anatomical directions. Our previous work described the detailed 

process of how skin deformation takes place.34 This method was slightly modified in order to 

account for axillary attachment, breast size, and improper positioning during ABUS imaging. 

The modifications are explained below, and the process is summarized in Figure 6.6.  

 In our previous work, the skin deformation was based on a phantom that did not have an 

axillary attachment, therefore the method deformed the skin based on the shape of the phantom. 

This modification is necessary because real breasts are attached to the body. Since our previous 

method does not account for this attachment this could cause the breast to be deformed too great 

for smaller breasts in which the axillary and upper thoracic regions are included in the ABUS AP 

view. Similarly, it could cause for larger breasts to not be deformed enough, where the ABUS 

AP volume contains more breast tissue and not the upper thoracic and axillary breast regions. 

Therefore, this study employs the use of standardized parabolic shape corrections shown by Eq. 

(10 for skin deformation based on a measure of the medial to lateral breast skin length (denoted 

by L) in Figure 6.2 (a) indicated by the yellow arrow. The patient breast data was fit using the 

parabola equation to determine breast deformation based on L.  

 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (10) 

 Each handle controls deformation of the DBT breast volume based on influence functions 

that control those areas of the mesh model. There are 68 handles along the exterior of the breast 

in all planes. The handles along the x-plane are manipulated based on their location to the center 

of mass (COM) of the breast DBT FEM model (e.g. superior/inferior or anterior/posterior). Each 
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handle is equidistant, L/6, from the neighboring handle along the x-axis. The length from the left 

side of the breast to the handle is used as the variable “x” in Eq. (10 to calculate the proper y-

distance needed for handle manipulation. The coefficients that were found to show the best fit  

based on location and the length L are defined in Table 6.3. Handle manipulations based on these 

parabolic dimensions are shown in Figure 6.6(b). All resulting R2 values based on these fits were 

over 0.98.  

Table 6.3: Coefficients for Equation 1 based on different lengths, L, as described in Figure 6.2. SA= Superior 

Anterior. SP= Superior Posterior. IA= Interior Anterior. IP=Interior Posterior. 

 

 After corrections are made along the y-axis, the anterior handles are then manipulated to 

show AP compression which results in Figure 6.6 (c).   

 

Figure 6.6: Handle manipulation for external skin DBT mesh. Blue=ABUS (unchanged). Brown= deformed DBT 
(CC view) (a) original DBT mesh registered to COM of ABUS (b) morphed DBT mesh following parabolic 

deformation for nodes along x-axis (c) resulting morphed DBT model after compression along z-axis. The handles 

(red and yellow spheres) are used to manipulate the DBT mesh model to match similar shape of the ABUS model. 

 

 

 Coefficients for Equation 1 

Nodal 

Location 

L < 18.0 cm 18.0 cm < L < 20 cm L > 20 cm 

a b c a b c a b c 

SA -3.65 3.65 1.49 -7.31 7.31 1.48 -4.73 4.73 0.77 

SP -3.65 3.65 1.49 -7.31 7.31 3.48 -4.73 4.73 1.52 

IA 2.57 -2.57 -1.46 2.57 -2.57 0.04 3.65 -3.65 -0.99 

IP 2.57 -2.57 -2.96 2.57 -2.57 -1.46 3.65 -3.65 -1.99 
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6.4.2.2 DBT (MLO view to ABUS) 

 For MLO to ABUS registration, first the base ABUS model is rotated +/- 45° in the x-y 

plane (depending on breast laterality such that the lateral side of the DBT breast is superior and 

the medial side of the DBT breast is inferior as shown in Figure 6.7 (a) in comparison to its 

position in Figure 6.6 (a)). For the right breast the ABUS model is rotated 45° (shown in Figure 

6.7) and for the left breast, the ABUS model is rotated -45°. It should be noted that all analyzed 

cases in this study were acquired at a 45° angle for the MLO view. DBT (MLO) base FEM 

model is then rigidly registered to the COM of the ABUS model shown in Figure 6.7 (a). A 

nipple correction is made by rigidly registering the nipple of base DBT model to the nipple of the 

ABUS model to ensure alignment across all planes, as shown in Figure 6.7 (b). Skin deformation 

is performed by manipulating the handles as similarly described in our previous works.34,35 The 

deformation is performed on the DBT (MLO) model to transform the DBT mesh volume to 

match the outer shape of the breast in the ABUS model. This is done by manipulating handles 

along the x and y planes as shown in Figure 6.7 (c). Posterior nodes are compressed in the 

positive z direction based on the length L (see Figure 6.2 (b)), subtracted from the depth of the 

ABUS 3D volume to correct for depth. Since the MLO view contains the axillary tail there is no 

correction for that area as shown in Figure 6.7(c). The axillary tail which is located on the right 

in the brown DBT MLO model does not correspond to any areas on the blue ABUS model; 

therefore, no skin deformation is made in that region.  
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Figure 6.7: Handle manipulation for external skin DBT mesh. Blue=ABUS (unchanged). Brown= deformed DBT 

(MLO view) (a) original DBT mesh registered to COM of ABUS (b) original DBT mesh registered to the nipple of 

the ABUS model (c) skin morphing performed by handle perturbations to allow DBT MLO model to match similar 

shape of ABUS model. The handles (red and yellow spheres) are used to manipulate the DBT mesh model to match 

similar shape of the ABUS model. 

6.4.3 External Marker Relation (Optional Step)  

 After skin deformation is completed, the algorithm computes the COM positions of the 

external fiducial markers between the morphed DBT and ABUS model. The external markers are 

matched using a matching algorithm that was described in greater detail in our previous work 34. 

We’ve found that allowing the algorithm to search for corresponding markers clockwise (right 

breast) and counter-clockwise (left breast) beginning with the marker located in the lower inner 

breast quadrant was the most helpful to ensure proper marker matching. Once the algorithm 

determines which external markers are matched between the two models and further manipulates 

the handles of the deformed DBT mesh as described in Figure 6.6 and Figure 6.7 to ensure are 

markers are within a 5 mm distance. We’ve found that high iterations (>10 iterations) of the 

algorithm can cause mesh distortions. Therefore, it is recommended that the external marker 

correlation does not iterate more than 10 iterations for both DBT (CC view) to ABUS 

registration and DBT (MLO view) to ABUS registration.  



 160 

6.4.4 Finite Element Analysis  

The constraints or boundary conditions for each external skin node are applied to the base 

DBT FE model. These boundary conditions are used as input to the FEA solver program, 

Optistruct, to generate and solve the differential equations to describe the model deformation 

based on the defined constraints. The boundary conditions are the nodal displacements of the 

external skin DBT mesh after skin deformation and marker corrections (if needed) subtracted 

from the nodal coordinates after being rigidly registered (or registered to the nipple when 

applicable) to the ABUS volume. The FEA is performed as a non-linear quasi-static analysis in 

a single step. The FEA was performed on a Windows 10 Intel® Core™ i7 CPU speed of 2.80 

GHz with 8 GB RAM and it takes approximately 30-60 minutes (dependent on model 

size/complexity) to complete.  

6.4.5 Lesion Registration  

After FEA is performed, the COM of lesions from the FEA-DBT model and the base FE 

ABUS model are determined. A lesion correlation algorithm determines if lesions are matched 

based off distances between COM, dCOM, being within a 25 mm distance (dCOM ≤ 25 mm). The 

lesion correlation algorithm also determines if lesions overlap and the distance between the 

overlap of corresponding lesions, dO, if lesions do not overlap. In our previous study that dealt 

with phantoms with multiple simulated lesions, we restricted the value of the dO and used it as 

part of corresponding lesion criteria. In this study, we do not use dO as part of correlation criteria 

but as supplemental information for a radiologist to aid in validating the registration.   

Previous studies, for deformable registration using FEM from breast MR to mammography 

CC views have shown mean registration errors between 10 - 20 mm 92. Additionally, from 

consulting with a radiologist (Dr. Marilyn Roubidoux) on this study we determined that 25 mm 
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was an acceptable bound, considering that DBT lesions appear elongated due to poor axial 

resolution.  

A radiologist verifies all results and views the original images from an in-house developed 

GUI software routine to show corresponding masses. The radiologist fills out a form to evaluate 

the performance of the algorithm, image quality using the external markers, segmentation quality 

of lesions, and any additional information that is necessary. This evaluation form can be found in 

the Appendix. 

6.5 Results  

 There were up to 7 total masses to be evaluated out of 5 patient datasets that were imaged in 

both the DBT (CC and MLO views) followed by a complete ABUS exam. An overview of 

subject criteria and additional findings from the study is summarized in Table 6.4. There is up to 

7 matched lesions as one patient dataset (Subject ID 7) was a case where 4 masses were seen in 

reconstructed DBT CC view. However, for this subject only 3 masses were found in 

reconstructed ABUS views and 2 in reconstructed DBT MLO views.   
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Table 6.4: Subject and lesion demographics. Compressed thickness is based on the DBT (CC view) 

RA=Retroareolar, LOQ= Lower Outer Quadrant, UOQ= Upper Outer Quadrant, LIQ= Lower Inner Quadrant, 

UIQ= Upper Inner Quadrant. A=Anterior depth P=Posterior depth M=Middle MP=Middle to Posterior depth 

*Indicates a mass has components of fibrocystic change, stromal fibrosis, and usual ductal hyperplasia 

Subject 

ID 

Lesion 

ID 

Compressed 

Thickness 

(mm) 

Quadrant/ 

Depth 

BI-RADS 

Density 

(Suspicion) 

Lesion Type 

(Size) 
Additional Findings 

1 1 59.9 RA/A 
Extremely 

Dense (4A) 

Fibroadenoma 

(13 mm) 

Two additional 

fibroadenomas 

(ABUS) 

2 2 48.1 LOQ/P 
Extremely 

Dense (4A) 

Papilloma 

(8 mm) 

Dilated Ducts 

(ABUS) 

3 3 52.2 UOQ/M 
Scattered 

Areas (4C) 

Invasive Ductal 

Carcinoma 

(16 mm) 

n/a 

4 4 65.3 LOQ/MP 
Scattered 

Areas(4B) 

Fibroadenoma 

(10 mm) 
n/a 

 

5  

5  UIQ/MP 

Scattered  

Areas (4) 

Fibroadenoma 

(13 mm) 
Four lesions shown 

in DBT (CC view) 

images only 3 found 

in ABUS, and 2 in 

DBT (MLO view) 

6 70.2 LIQ/M 
Fibroadenoma 

(6 mm) 

7  RA/A 
Other* 

(4 mm) 

 

6.5.1 Validation of deformable registration of DBT (CC view) mapped to ABUS  

 For DBT (CC view) to ABUS registration, 5 patients were imaged, and 7 masses were 

identified between image sets. An overview of the results for deformable registration of the DBT 

(CC view) to ABUS is illustrated in Table 6.5, where the various marker combinations are 

compared to a rigid registration. Using the deformable mapping technique without marker 

analysis there is up to 2.6 times improvement over rigid registration. Using the deformable 

mapping technique with marker analysis there is up to 4.8 times improvement over rigid 

registration. Using the deformable mapping technique without external marker analysis, all 7 

lesions were matched with a mean dCOM of 17.2 ± 4.3 mm. Using the deformable mapping 

technique with external marker analysis (best marker analysis cases), all 7 lesions were matched 

with a mean dCOM of 11.0 ± 4.9 mm.  
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Table 6.5: Deformable registration results compared to rigid registration for various marker combinations based on 

resulting dCOM values for DBT (CC view) mapped to ABUS. For Lesion ID #4, the lateral marker “G” (see Figure 

6.1(b)) was not seen in resulting ABUS views due to ABUS view misalignment therefore cases using 4 and 7 markers 

were not evaluated. For retroareolar lesions marker analysis using 1 marker is not evaluated. Best dCOM values are 

reported in bold. 

Lesion 

ID # 

Rigid 

dCOM (mm) 

Deformable Registration dCOM (mm) 

Number of Markers used in Analysis Best using Marker 

Analysis 0 1 3 4 6 7 

1 14.7 11.9 n/a 7.2 18.5 3.2 5.5 3.2 

2 21.1 19.6 21.9 18 20.9 20.1 21.2 18 

3 37.4 14.3 15.5 20.9 n/a 12.5 n/a 12.5 

4 11.1 14.7 13.6 8.4 8.3 10.9 11.4 8.3 

5 31 20.2 13.4 20.4 17.6 21.8 18.8 13.4 

6 30.8 23.3 16.8 19.1 16.9 14.9 13.6 13.6 

7 37.6 16.7 n/a 24.5 23.1 7.9 8.22 7.9 

Mean 26.2 17.2 16.20 16.9 17.6 13 13.1 11.0 

σ 10.7 4.0 2.50 6.6 5.1 6.6 6.0 4.9 

 

 A paired t-test and a signed Wilcoxon ranks tests of the dCOM’s was performed to compare 

the best marker analysis cases to the rigid registration values and resulted in p-values of 0.004 

and 0.016. Thus, indicating statistical improvement in lesion dCOM using the deformable method 

in comparison to a rigid registration. A paired t-test and a signed Wilcoxon ranks tests of the 

dCOM’s were performed to compare the deformable case without marker analysis to rigid 

registration and resulted in p-values of 0.06 and 0.08, indicating that the null hypothesis cannot 

be rejected. A paired t-test and a signed Wilcoxon ranks tests of the of dCOM’s were performed to 

compare the deformable case without marker analysis to the deformable case using marker 

analysis (best marker analysis cases) and resulted in p-values of 0.001 and 0.016; thus, showing a 

significant improvement in lesion dCOM using external fiducial markers within the deformable 

mapping method. 
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6.5.2 Validation of deformable registration of DBT (MLO view) mapped to ABUS  

 An overview of the results for registration of the DBT (MLO view) to ABUS is illustrated in 

Table 6.6 where they are compared to a rigid registration. Using the deformable mapping 

technique, we see up to 5 times improvement over rigid registration. Using the deformable 

mapping technique without external fiducial markers all 4 of the 6 lesions were matched within 

correlation bounds, a resulting mean dCOM of 19.6 ± 11.3 mm from all 6 lesions. Using the 

deformable mapping technique with the use of external fiducial markers (best marker analysis 

case), all 6 lesions were matched with a mean dCOM of 12.3 ± 4.8 mm. 

Table 6.6: Deformable registration results compared to rigid registration for various marker combinations based 

off resulting dCOM values for DBT (MLO view) mapped to ABUS. For Lesion ID #4, the lateral marker “G” (see 

Figure 6.1 (a) Ultrasound camisole for ABUS imaging (b) External fiducial marker locations (denoted by A-G) 

shown for marker placements on the left breast(b)) was not seen in resulting ABUS views due to ABUS view 

misalignment therefore cases using 4 and 7 markers could not be evaluated. For Lesion ID 7, was not seen in 

reconstructed DBT (MLO view) and therefore could not be registered due to lack on anterior compression.   

Lesion 

ID # 

Rigid 

dCOM (mm) 

Deformable Registration dCOM (mm) 

Number of Markers used in Analysis Best using Marker 

Analysis 0 1 3 4 6 7 

1 7.8 3.9 n/a 12.7 16.1 8.6 11.2 8.6 

2 43.9 33.9 33.7 26.12 27.6 18.6 14.8 14.8 

3 31 26.7 10.8 21.5 n/a 9.04 n/a 9.04 

4 92.9 19.7 24.1 22.8 18.9 22.3 22 18.9 

5 48.5 24.5 23.4 20.1 19 17.1 15.6 15.6 

6 35.6 9.1 16.0 11.3 10.7 6.8 8.3 6.8 

7 n/a n/a n/a n/a n/a n/a n/a n/a 

Mean 44.8 21.6 16.2 19.1 18.5 13.7 14.4 12.3 

σ 28.1 8.7 2.50 5.9 6.1 6.4 5.2 4.8 

  

 A paired t-test of the dCOM and a signed Wilcoxon ranks tests were performed to compare the 

best marker analysis case to the rigid registration values and resulted in p-values of 0.03 and 

0.06; thus, indicating significant improvement based off the t-test and that the null hypothesis 

cannot be rejected based off the Wilcoxon test. A paired t-test and a signed Wilcoxon ranks tests 
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of the dCOM’s were performed to compare the deformable case without marker analysis to rigid 

registration and resulted in p-values of 0.08 and 0.03, respectively. A paired t-test and a signed 

Wilcoxon ranks tests was performed on the dCOM values to compare the deformable case without 

marker analysis to the deformable case using marker analysis (best marker analysis cases). These 

tests resulted in p-values of 0.12 and 0.15; indicating that the null hypothesis cannot be rejected. 

However, for this case, it should be noted that the number of matched lesion improved from 4 to 

6 within the specified bounds thus, showing improvement with using marker analysis with the 

deformable mapping method. 

6.5.3 Elastic Modulus Sensitivity Analysis 

 A sensitivity analysis was performed on the deformable models without using marker 

analysis by varying the Young’s Moduli using the base, maximum, and minimum values as 

described in Table 6.2. These values are used to calculate the registration dCOM’s for the DBT to 

ABUS sets, by varying the lesion material properties (benign or malignant), fat, and glandular 

tissues. These were performed for benign and malignant lesion material properties with variation 

in the Young’s Moduli for adipose and glandular tissues for the DBT (CC view) mapped to 

ABUS using the deformable mapping method without marker analysis. The results (dCOM) using 

the variation of material properties for adipose, lesion (benign), and glandular tissues is shown in 

Figure 6.8 based on the base E values shown in Table 6.1 and the minimum and maximum E 

values shown in Table 6.2.    
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Figure 6.8: Sensitivity Analysis of variations in Young's Moduli, E, for registered dCOM for DBT (CC view) mapped 

to ABUS using the deformable mapping technique without marker analysis. Base values for E for lesion (benign), 

glandular tissue, and adipose tissue are shown in Table 6.1. The minimum and maximum E values for these tissues 

are shown in Table 6.2.  

 Assuming material properties of a malignant lesion, the results (dCOM) using the variation of 

material properties for adipose, lesion (malignant), and glandular tissues is shown in Figure 6.9 

based on the base E values shown in Table 6.1 and the minimum and maximum E values shown 

in Table 6.2. For most lesions, there is not a significant difference in lesion dCOM as a result of 

the variation in material properties. However, Lesion ID’s 4, 5, and 6 show dCOM differences up 

to 6 mm in the varied cases.  
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Figure 6.9: Sensitivity Analysis of variations in Young's Moduli, E, for registered dCOM for DBT (CC view) mapped 

to ABUS using the deformable mapping technique without marker analysis. Base values for E for lesion (malignant), 

glandular tissue, and adipose tissue are shown in Table 6.1. The minimum and maximum E values for these tissues 

are shown in Table 6.2. 

6.5.4 Algorithm Optimization Study 

 An optimization study was performed on Subject ID #4 (see Table 6.4) to determine the 

effect on resulting dCOM and algorithm run time. The Subject ID #4 (Lesion ID #4) dataset was 

chosen because the subject had the largest breast volume which would cause for increased 

runtimes for the FEA within the algorithm. Two cases were tested to be compared against the 

base case to show differences in using the deformable mapping method without external marker 

analysis for DBT (CC view) to ABUS registration. Case 1 uses all the same parameters except 

uses a less discretized meshing scheme by using the HyperMesh function “divide by nearest 
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diagonals” instead of the default “divide midpoint to triangular”. Case 2 resamples the 

segmented DBT volumes to a 0.3 mm length, 0.3 mm depth, and 1 mm slice thickness rather 

than the default resampling of 0.2 mm length, 0.2 mm depth, and 1 mm slice thickness. Results 

(dCOM) are shown in Table 6.7. These results indicate no change in lesion dCOM and reduction in 

run time by a factor of 2, approximately.  

Table 6.7: Variation in dCOM and FEA run time varying meshing parameters in Case 1 and resampling rates in Case 

2 in comparison to the base values 

Case 
dCOM 

(mm) 

FEA run time 

(minutes) 

Base 14.7 25 

1 14.9 15 

2 14.7 14 

 

6.6 Discussion  

 A novel deformable registration method has been described for providing a one-to-one 

correlation between corresponding lesions between two common DBT views (CC and MLO) to 

ABUS images based on 5 patient datasets and up to 7 lesions. For both analyzed cases there was 

a significant improvement in lesion dCOM in comparison to rigid registration using the 

deformable mapping method. This study extends upon our previous works by validating the 

algorithm to relate corresponding lesions on real patient datasets. 



 169 

 

Figure 6.10: Registration results for Subject ID=2 Lesion ID=2 extremely dense breast tissue with presence of 

dilated ducts (a) registered lesion in DBT (CC view) (b) registered lesion in DBT (MLO view) (c) registered lesion 

in an ABUS image slice (d) presence of dilated ducts seen in a ABUS slice; These dilated ducts extended from ABUS 

Slices 180-215 

 We believe this method will be helpful for the one-to-one correlation of breast lesions and 

especially for women with dense breasts and multiple masses. Subject 2 of the study had very 

dense breast tissue and dilated ducts that can make it a more difficult case for a radiologist to 

find the corresponding mass between the DBT and ABUS modalities as shown in Figure 6.10. 

Additionally, since x-ray imaging has lower sensitivity for the imaging of dense breasts, ABUS 

imaging may find additional masses that are not seen in the DBT images as shown for Subject 1 

(see Table 6.4). Therefore, this method would be especially helpful to ensure that a mass seen in 

DBT is registered to the correct lesion in ABUS.  

 Likewise, for the case with multiple masses (Subject ID=5), the deformable registration 

algorithm was able to register and differentiate 3 of the 4 total masses. The fourth mass was 4 

mm in length in its widest dimension and could not be differentiated from other ultrasound 

structures and artifacts. However, 3 lesions were differentiated and matched using the 
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deformable mapping algorithm using the CC view as shown in Figure 6.11. Since the third lesion 

was superficial in-depth and located more anteriorly, the lack of compression anteriorly caused it 

to not be differentiable from other glandular structures in the DBT (MLO view).  

 

Figure 6.11: Corresponding lesions of multiple breast masses based on deformable registration results (a) a DBT 

(CC view) image slice showing Lesion ID=5 (b) a DBT (CC view) image slice showing Lesion ID=6 (red arrow) 

and Lesion ID=7 (yellow arrow) (c) the corresponding ABUS slice for Lesion ID=5 (d) the corresponding ABUS 

slice for Lesion ID=6 (e) the corresponding ABUS slice for Lesion ID=7 

 Based on the sensitivity analysis between material properties, the largest variation in dCOM 

values based on changes in Young’s moduli are shown for Lesion ID’s 4 and 5 using material 

properties of a benign lesion as shown in Figure 6.8. Both lesions are from subject’s who have 

scattered breast densities where the masses are located mid-to-posterior in depth. Similarly, the 

largest variation in resulting dCOM based on changes in Young Moduli are shown for Lesion ID’s 

4,5, and 6 using the material properties for a malignant lesion as shown in Figure 6.9. Here we 

see that using the minimum E values as described in Table 6.2 have the largest variation 

increasing the dCOM for Lesion’s 4 and 5 but the inverse effect for Lesion ID 6. This may indicate 
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that lesion depth can have an effect on the dCOM values. From these two figures, it can be 

observed that for the two cases of high breast density (Subjects ID’s 1 and 2) that there was not 

much variation in resulting dCOM values with changes in material properties which may be 

attributed to the abundance of dense breast tissue.   

 This study uses two statistical metrics, paired t-test and signed Wilcoxon ranks tests, to 

determine if lesion dCOM was significantly improved using the deformable technique in 

comparison to a rigid registration. In our previous study34, we only used t-tests to authenticate 

improvement of dCOM using the deformable case with and without external fiducial markers. 

However, we realize that due to the small sample size a normal distribution cannot be verified in 

order to use this test. Therefore, we decided to also include results from a non-parametric test 

(signed Wilcoxon ranks test) that is not based on a specific distribution in order to also evaluate 

the improvement in dCOM. There were several instances, when one statistical test indicated that 

there was significant improvement in dCOM (p ≤ 0.05) and the other did not. This is caused due to 

underlying differences in how p-values are calculated between the two statistical tests based off 

their respective differences in methodology. 

 Various marker combinations are tested and their corresponding dCOM results are compared. 

Overall results from Table 6.5, show that for DBT (CC) to ABUS registration marker analysis is 

not needed in order for lesions to be within correlation bounds (dCOM ≤ 25 mm). Corresponding, 

p-values based on both statistical tests show significant improvement using the deformable 

method with markers vs. without. Best marker results are shown for the use of 6 external 

markers. Using 1 external marker, was not performed for retroareolar breast masses. This is 

because the closest identifiable location is the nipple. A nipple correction is already being 

accounted for (if needed) by the algorithm. Therefore, modulating the next marker nearest to this 
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lesion will result in worse results since it is only correcting for that specific region in the breast. 

Using 1 marker for deformable analysis showed improved dCOM results for only Lesion ID 5. 

Similarly, for DBT (MLO) to ABUS registration as shown in Table 6.6, larger marker 

combinations (6 markers or greater) showed the largest improvement in dCOM results. Based on 

these results, we recommend that if marker analysis is being used, that at least 6 markers are 

needed to be placed at the indicated areas for the most optimal dCOM result.  

 Additionally, this methodology would work best if used adjunct to a computer-aided 

detection (CAD) program in order to detect breast masses and with a fully-automated 

segmentation program to segment those detected masses. In this study, masses were detected by 

the eye of a single viewer and segmented using semi-automated techniques. If the mass was not 

obvious, a radiologist was consulted in order to determine the lesion location and if the semi-

automated program did not segment the masses sufficiently, manual segmentation was 

performed.  

 One limitation to this registration technique is the fact that it registers DBT images to ABUS 

images and cannot do the inverse of registering ABUS images to DBT (FEA to deform the 

ABUS image to DBT). The latter would be helpful in the cases where additional ABUS findings 

can potentially indicate where in the DBT volume a lesion may be present (e.g. Subject 1 who 

had two additional masses found in the ABUS images with high breast density). Another 

limitation is that this technique only registers to the AP ABUS volume. Since up to 3 sweeps of 

the breast (central, medial, and lateral margins with some overlap) are taken in a typical ABUS 

exam for women with larger breasts the single AP sweep may not be enough to ensure full breast 

coverage. In the case of large breasts, the fusion of the ABUS volumes could be useful and 

would allow the deformable method to register to the stitched ABUS view. M. Costa 
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demonstrated the stitching of ABUS volumes using a homographic transfer model to render a 

stitch panorama view for areas within the AP and lateral ABUS views161.  

 Another limitation to this study is that it was not tested on lesions within the axillary tail and 

some lesions within the areolar region can be missed in ABUS images due to shadowing caused 

inferior to the nipple. Providing sufficient coupling to the axillary region is difficult for the large 

ABUS transducer. Often times HHUS is used in addition to ABUS to ensure there is sufficient 

imaging of the axillary region. Nipple offset pads could be used to reduce artifacts caused by the 

nipple in ABUS images to decrease signal fall out so that that retroareolar masses can be seen.  

 Additionally, using the external markers can be troublesome when translated into the clinic, 

especially with the use of the ABUS camisole. This can be minimized by assisting the patient in 

putting on the camisole, ensuring that enough time (at least 5 minutes) has passed before putting 

on the camisole after markers are glued, and by indicating locations on the breast (e.g. by using a 

washable marker) to reapply the external fiducial markers in case the external marker position is 

compromised. Additionally, if ABUS images are segmented to separate fat and glandular tissues. 

These segmentations could be used to provide internal landmarks for the deformable mapping 

algorithm which could allow less reliance for the methodology on external marker locations.  

 Criteria for volunteers in this study was restricted to women with masses within the breast 

(excluding axillary region) and masses ≥ 5 mm in size. Therefore, the validity of this technique 

was not tested on smaller masses or masses located in the axillary regions. Additionally, the 

algorithm was tested on a small sample size (5 subjects). Therefore, more patients would need to 

be scanned using this method to increase statistics. A larger sample size would allow for a more 

in-depth analysis to be performed to determine which marker combination yields optimal 

registration results based on lesion location and potentially breast density. It could also allow for 
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the investigation of the effect of lesion depth and density in vary the material properties used in 

the deformable registration analysis. Although this algorithm was tested on a small sample size, 

it should be noted that other studies were published that have used FEM based registration 

techniques to register lesions from breast MRI to mammography (CC and/or MLO views) that 

used 4 to 6 cases 86,90,162, 10 cases 85,163, 14 cases 87, and 79 cases 88.  

6.7 Conclusions 

 This work presents a validated deformable registration technique using FEM to register 

breast lesions between DBT and ABUS 3D image volumes. The results show 13 registrations 

between two common DBT views mapped to ABUS based on 5 patient datasets. This indicates 

this method could be a useful tool to aid in the detection and characterization of breast cancers 

and lesions between modalities. Our method is to our knowledge the first to show a direct 

correlation between DBT mapped to ABUS on patient datasets. The method uses nodal 

displacements in the FEA instead of simulating plate compressions which can be more expensive 

in computer run time. We assigned various material properties to the fibroglandular, adipose, and 

lesions to evaluate the differences in lesion accuracy and saw that in most cases there was no 

difference in the resulting dCOM. However, there were a few cases where there were larger 

differences in the resulting dCOM, which may be a result of breast density and lesion depth. Using 

the deformable mapping method, there is up to 5 times improvement in dCOM in comparison to a 

rigid registration and the use of external skin markers can aid in registration results. Future work 

will further validate this technique on a larger patient data set, where we can investigate which 

deformable analysis combination produces higher registration accuracy. We can also perform a 

more in depth analysis on dependence of the accuracy of the technique on breast density and 

lesion location. For the easy/obvious cases (e.g. one mass in a fatty breasts) this method would 
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only be beneficial in saving a radiologist time in navigating between the two 3D image volumes. 

However, for more difficult cases (e.g. multiple masses, dense breasts) this technique can be 

extremely useful in aiding a radiologist in determining corresponding lesion locations between 

DBT and ABUS images which can aid to the early detection of cancer masses. 
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Chapter 7  

Conclusions and Future Works 

 

 

7.1 Summary of Contributions 

 The work presented in this dissertation has demonstrated the efficacy and the diagnostic 

potential of using novel deformable registration methods to relate breast masses between 3D x-

ray (DBT and bCT) and 3D ultrasound (ABUS) breast modalities. For the phantom studies 

involved in this dissertation, this technique showed an improvement in lesion registration using 

external fiducial markers, including having more lesions within the specified correlation bounds 

(Chapter 3 and Chapter 5 (dCOM  15 mm) and Chapter 4 (dCOM  25 mm)). Based on the IRB-

approved patient study, this technique shows an improvement in lesion registration with the use 

of external fiducial markers. However, external markers are not mandatory in order to establish 

whether lesions correspond within the specified correlation bounds (dCOM  25 mm). Ultimately, 

the work in this dissertation demonstrates that this deformable mapping tool can be helpful for a 

radiologist by reducing the time spent navigating through 3D image volumes and provides a 

higher confidence between regions of interests between two modalities, especially for more 

difficult clinical cases, such as women with dense breasts or multiple lesions. Chapter 6 

illustrates a validation study tested on clinical datasets for DBT and ABUS images using the 

deformable registration methodology. A similar IRB-approved study is needed to quantify the
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effectiveness of this method for bCT to DBT and bCT to ABUS registration based on the 

deformable registration algorithm’s preliminary phantom results described in Chapter 5. 

7.2 Conclusions and Limitations  

7.2.1 Efficacy of Deformable Mapping Technique to relate lesions between DBT and ABUS 

images (Phantom Study) 

 Compressible multi-modality breast phantoms were used for studies in Chapter 3 and 

Chapter 4 to provide the foundation of the deformable registration algorithm for DBT to ABUS 

lesion registration. In Chapter 3, two breast phantoms (A and B) with varying stiffness properties 

are used to show the relationship of breast lesions using the FEM for DBT (CC view) to ABUS 

registration. This technique applies nodal displacements to the compressed DBT model in order 

to deform the breast for registration to the ABUS model using FEA. Without using external 

markers for Phantom A, results showed a mean lesion dCOM of 6.8 ± 2.8 mm. Using external 

markers, the average dCOM improved to 4.9 ± 2.4 mm. For Phantom B without external markers, 

the average lesion dCOM of 9.7 ± 3.5 mm improved to 8.5 ± 4.0 mm using marker analysis. 

Additionally, this study had more restrictive correlation bounds than used in Chapter 4 and 

Chapter 6 (patient study) of 15 mm (dCOM  15 mm) vs 25 mm (dCOM  25 mm). To our 

knowledge, this was the first published work to show registration between lesions in DBT and 

ABUS breast images. This study shows an improvement in the overall lesions’ correlation with 

the use of external fiducial markers during FEA.   

 The work presented in Chapter 4 performs deformable registration for the DBT (CC view) 

to ABUS view and incorporates deformable registration for the DBT (MLO view) for ABUS 

registration. The matching criterion was increased to 25 mm (dCOM  25 mm) from the 15 mm 

(dCOM  15 mm) used in Chapter 3 in order to account for translation of this technique to patients, 
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where the phantom is not representative of breast heterogeneity and complexity. For mapping of 

DBT (CC view) to ABUS without markers, the mean dCOM was 13.6 ± 6.3 mm. With markers the 

mean dCOM was 12.8 ± 6.0 mm. Without markers, 14 of 18 lesions were matched within 

correlation bounds and with markers this improved to 17 of 18 lesions matched. This resulted in 

a p-value of 0.04 (paired T-test) which shows a significant improvement in lesion registration. 

However, a p-value of 0.06 (Wilcoxon signed-rank test) indicated that not enough evidence is 

available to suggest that dCOM improves using external markers. For mapping of DBT (MLO 

view) to ABUS without markers, the mean dCOM was 9.3 ± 2.8 mm and which worsens to the 

mean dCOM was 12.3 ± 5.8 mm using external markers. Without markers, 8 of 18 lesions were 

matched which improved to 17 of 18 lesions matched. Based on these phantom studies, we see 

the largest improvement using external fiducial markers. A proof-of-concept study will need to 

be performed to validate this technique and specify its potential use to specific breast regions.  

 There are several limitations to these studies based on the fact that the phantoms are not 

anthropomorphic in that they used homogenous material and exhibit linear elastic behavior, 

whereas breasts are heterogeneous and exhibit non-linear elastic behavior. Additionally, the 

phantoms used in Chapter 3 and Chapter 4 do not contain an axillary attachment making it 

further difficult to resolve the implementation of this technique for lesions within the axillary 

region. Additionally, not having this axillary attachment may also contribute to the phantom’s 

linear elastic behavior under compression.  
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7.2.2 Efficacy of Deformable Mapping Technique to relate corresponding lesions between 

bCT to ABUS and DBT images (Phantom Study) 

 Chapter 5 describes the deformable mapping methodology for relating simulated bCT 

phantom images to DBT and ABUS images. The same phantom was used for this study as in 

Chapter 4 that contained 20 lesions. Anterior-to-posterior plate compression is simulated on the 

bCT model using FEA to relate the compressed bCT model to ABUS image volume. 

Additionally, CC and MLO compression is simulated on the bCT model using FEA to relate the 

compressed bCT model to the DBT image volumes. 

 For bCT to ABUS registration, without markers, 13 out of 20 lesions were matched and the 

mean dCOM was 8.6 ± 3.0 mm. With markers, 20 lesions were matched and the mean dCOM 

improved to 4.8 ± 2.4 mm. This resulted in p-values of 0.01 (paired T-test) and 0.02 (Wilcoxon 

signed-rank test); thus, indicating a significant improvement using external markers within the 

analysis. For registration of bCT to DBT (CC view), without using markers, 9 out of the 18 

lesions were matched and the mean dCOM was 11.6 ± 2.0 mm. With markers, all 18 lesions were 

matched and the mean dCOM was 5.0 ± 2.2 mm. This resulted in p-values of 0.00001 (paired T-

test) and 0.004 (Wilcoxon signed-rank test); thus, indicating a significant improvement using 

external markers within the analysis. For registration of bCT to DBT (MLO view), without using 

markers, 9 out of the 18 lesions were matched and the mean dCOM was 8.2 ± 3.1 mm. With 

markers, all 18 lesions were matched and the mean dCOM was 4.7 ± 2.5 mm. This resulted in p-

values of 0.002 (paired T-test) and 0.01 (Wilcoxon signed-rank test) thus indicating a significant 

improvement using external markers within the analysis.  

 Similar to Chapter’s 3 and 4, a major limitation to the bCT studies described in Chapter 5 is 

that the breast phantom has numerous inconsistencies in comparison to a real breast as described 
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in the previous section. These results indicate that the methodologies could be of potential use 

after validation with patient volunteers. Therefore, this method still needs to be validated with an 

IRB-approved proof of concept study for bCT to DBT and bCT to ABUS registration. 

Additionally, plate compression involved in this method is highly taxing in terms of 

computational time which may not make using this method applicable for medical centers that do 

not have access to super-computing capabilities. The time it took to run bCT to ABUS 

registration is approximately 13 hours, for bCT to DBT (CC view) registration approximately 30 

hours, and bCT to DBT (MLO view) registration approximately up to 45 hours. These high 

runtimes can be reduced by using parallel processors using super computers and larger graphics 

processing units.    

 Additionally, this method could be translated to uncompressed ultrasound CT for breast 

imaging provided by the Delphinus Medical Technologies (Novi, MI) for direct use to relate to 

DBT imaging. This will be discussed further within this chapter in Section 7.3.4 in Future 

Works.  

7.2.3 Design and Implementation of ABUS Camisole to Restrict Breast Motion  

 In Chapter 2, information was provided about the development and implementation of using 

an ABUS camisole to restrict breast motion during ABUS imaging which acquires multiples 

views for a complete ABUS examination. The overall results of this camisole design ensured that 

there was not degradation to the ultrasound beam penetration depth and minimal distortion. 

Several fabrics were tested, and a stretchable nylon mesh fabric was found to be superior. The 

camisole was tested on ten normal volunteers and was found to be helpful in restricting breast 

motion during ABUS imaging. Clinical translation of this camisole was used in the IRB-

approved study discussed in Chapter 6.  
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7.2.4 Implementation of Deformable Mapping Technique to relate corresponding lesions 

between DBT and ABUS images (Patient Study) 

 Chapter 6 discusses the results of the deformable mapping technique applied to clinical 

patient data sets and describes the minor modifications in the algorithm to relate corresponding 

lesions between DBT (CC and MLO views) to ABUS in clinical datasets. Up to 7 lesions were 

assessed from 5 patient datasets. This study compares the deformable registrations metrics (with 

and without using marker analysis) to a rigid registration and shows there was up to 5 times 

improvement using the deformable method over rigid registration.  

 For DBT (CC view) mapped to ABUS resulting p-values of 0.01 (paired T-test) and 0.02 

(Wilcoxon signed-rank test); thus, indicating a significant improvement in dCOM using the 

deformable mapping algorithm in comparison to rigid registration. Further analysis showed that 

using marker analysis has an insignificant affect in the number of total matched lesions in 

comparison to using the deformable mapping method without using marker analysis for lesion 

registration improvements. Thus, showing that markers increase the efficacy of the registration 

for DBT to CC views, however markers are not needed to ensure matched lesions are within 

correlation bounds.  

 For DBT (MLO view) mapped to ABUS resulting p-values of 0.03 (paired T-test) and 0.06 

(Wilcoxon signed-rank test) thus significant improvement based on the t-test using the 

deformable mapping algorithm in comparison to rigid registration. Improvements using the 

registration method ranged from 16% improvement over rigid registration to up to 5.2 times 

improvement. Further analysis showed that using marker analysis has a significant affect in the 

number of total matched lesions in comparison to using the deformable mapping method without 

using marker analysis for lesion registration improvements. Thus, showing that using marker 
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analysis is significant in improving lesion registration and the total number of matched lesions 

within correlation bounds based on the deformable mapping technique.  

 With such a small sample size, conclusive results on which breast regions the deformable 

registration has the most effect cannot be determined. However, based on the results presented, 

all breasts quadrants saw improvement using the deformable registration in comparison to a rigid 

registration. Lesions that had greater than twice the registration improvement included lesions in 

the retroareolar, medial, and upper outer breast regions for DBT (CC view) to ABUS 

registrations. For MLO view to ABUS registration, all breast mass locations except for one 

retroareolar case showed at least 2 times improvement over rigid registration. 

 Overall, it was mostly observed that when testing various ranges of material properties (i.e. 

Young’s modulus) there was not a significant difference in resulting dCOM. This is advantageous 

as it shows the method is mostly independent of material parameters which can widely vary. 

However, as shown for Lesions ID’s 4 and 5 further analysis into whether or not a lesion’s depth 

and breast density may explain the variation in dCOM using the varied elastic properties. To our 

knowledge, there are not any other studies that register breast lesions between two compressed 

states as shown in this study. However, uncompressed breast studies imaging with MRI or bCT 

often simulate the breast compression of mammography using FEM’s. A study by Hsu. et al. 

validated compression using a breast phantom by varying the relative Young’s modulus for the 

glandular, fat, and skin tissues of a breast and found it had a significant impact on the 

deformation of the breast under mammographic plate compression, even more so for less dense 

breasts.146 This may indicate why those lesions (Lesion ID’s 4, 5 and 6) show high differences. 

However, since this study applies FEA using nodal displacements to deform the DBT to ABUS 
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and not simulating the plate compression/decompression of the DBT image volume we suspect 

that this may reduce the mechanical property dependence.  

 Among the patient data sets there were cases of high breast density and multiple lesions 

within a breast. These are cases for which the algorithm would have the most impact. This 

deformable registration algorithm is also useful in reducing the time needed for a radiologist to 

navigate between large 3D image volumes. These results demonstrate the potential of the utility 

of the deformable registration technique to relate lesions between DBT and ABUS image 

volumes. Another advantage to this technique is that the FEA runs off nodal displacements the 

run times are about 30-60 minutes depending on breast volume. Thus, making the technique 

feasible to translate into the clinic. Although commercial FEA solvers are used within this 

dissertation, the methods can be translated to in-house or open source FEM packages for 

implementation.  

 A limitation of this technique is the fact that the deformable mapping algorithm relates DBT 

images to ABUS and not relate ABUS images to DBT. The latter would be helpful in the cases 

where additional ABUS findings can potentially indicate where in the DBT volume a lesion may 

be present, especially for dense breasts. Another limitation is that this technique only registers to 

the AP ABUS volume. Since up to 3 sweeps of the breast (AP, medial, and lateral margins with 

some overlap) are taken in a typical ABUS exam for women with larger breasts, the single AP 

sweep is not enough to ensure full breast coverage. Stitching of the ABUS volumes could be 

useful for this case in which then this method could use to register to the stitched ABUS view. 

M. Costa showed stitching of ABUS volumes using a homographic transfer model to render a 

stitch panorama view for areas within the AP and LAT views.161 Additionally, Chang et al. used 

a simple sum of absolute block-mean difference based registration technique to stitch 3D 
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ultrasound for women in pendant positioning and using ultrasound CT acquisition and validated 

the algorithm on 25 experimental cases.164 Nonetheless, stitching ABUS views would be very 

difficult due to the issues of alignment, a transducer tracking type of algorithm could be helpful 

in multi-view ABUS stitching to improve this alignment.  

 Criteria for volunteers in this study was restricted to women with masses within the breast 

(excludes axillary region) and masses (≥ 5 mm) in size. Therefore, the validity of this technique 

was not tested on smaller masses and masses located in the axillary regions. Additionally, the 

algorithm was tested on a small sample size (5 patient volunteers) therefore more patients would 

need to be scanned using this method to determine more accurate statistics. There was difficulty 

to recruit women to participate in the study due to the emotional distress associated with having a 

biopsy procedure and needing to come in before that procedure to receive additional imaging. 

We believe this software would be great to be used in adjunct to a computer aided diagnostic 

software in order to allow for automated detection of a breast lesion. Additionally, automated 

segmentation techniques would improve the pre-processing segmentation steps that can be 

directly fed into the algorithm for FE model generation.  

7.3 Future Works  

7.3.1 Extensive Proof-of-Concept study for DBT to ABUS Deformable Registration 

 As discussed previously, a more extensive study would be needed to gain proper statistics to 

determine the validity of this method with patient volunteers. With a more extensive study, we 

can more definitively quantify the improvement using marker analysis and determine which 

marker combination can provide optimal results based on lesion location/depth. The study results 

shown in Chapter 6 are based on up to 7 lesions from 5 clinical datasets. Although only 5 

subjects were imaged to validate this technique, other groups who used FEM based methods for 
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lesion registration for breast MRI and mammography (CC and/or MLO views) also had small 

sample sizes between 4 to 6 subjects.86,90,162. 

 With larger patient datasets some of the parameters that can be investigated are the quantity 

and location of the external fiducial markers and the effects on the deformable registration based 

on lesion location (breast quadrant), and depth. Additionally, more datasets will allow a more in 

depth analysis to determine if this technique improves a radiologist’s ability to better 

characterize lesions in dense breasts. 

7.3.2 Proof of Concept Study for bCT to DBT and bCT to ABUS Deformable Registration 

 Although promising results for bCT to DBT registration and bCT to ABUS registration are 

shown in Chapter 5, an IRB approved proof-of-concept study is still needed with patient 

volunteers to determine the validity of the technique. Within this study, investigations of quantity 

and location of fiducial markers can be assessed based on lesion location. Also, studies into the 

modeling the plate compression such as the friction coefficient can be analyzed along with a 

sensitivity analysis on the effects of using different material properties during the simulated plate 

compressions. A surprising finding within the patient study for DBT to ABUS registration 

showed that overall the lesion correlations (dCOM) are independent of changes in material 

properties (e.g. Young’s Moduli). Since this study does not model the actual decompression and 

plate compression of the breast for the deformable registration. I would hypothesize that 

modeling these mechanics would allow for more substantial changes to be seen in registration 

using material properties. Therefore, for the deformable registration techniques described in 

Chapter 5 that do simulate actual plate compression on the bCT model to register to ABUS and 

DBT models, I would expect changes in material properties to have a more significant impact 

based on results shown by a study by Hsu et al. that varied the elastic modulus of breast tissues 
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in a phantom model and found it had significant impact on the deformation of the breast under 

mammographic plate compression.146 Additionally, improved patient specific FE models can be 

generated with the isotropic spatial resolution provided in bCT imaging which can possibly show 

improvement in the deformable registration by accounting for breast heterogeneity.  

7.3.3 Relating Multiple ABUS Views into Singular 3D Volume 

 As mentioned in Chapter 6, one limitation to the deformable mapping algorithm is the fact 

that the DBT volume can only be registered to the AP ABUS projection. For women with larger 

breasts, the AP ABUS view may not acquire complete coverage for the breast when imaged. In 

these cases, creating a singular 3D ABUS volume based on all the views would be helpful. The 

use of FEMs could be used to apply deformation to the views based on the nipple location and 

relating the external fiducial markers to one another. There would need to be a correction for the 

medial and lateral views since the transducer is angled and positioned in a different orientation. 

We believe the use of the ABUS camisole can help reduce the amount of correction due to these 

effects by restricting breast motion.  

 Modeling the different views to create a solitary image volume could be simulated in FEA 

by modeling plate compression or by applying nodal displacements based on the nipple and/or 

marker locations. Additionally, if a lesion or other internal breast structures are seen between 

views this could provide an additional landmark in order to stitch views into one image volume. 

This is advantageous as the markers are only located at the breast surface and depth information 

can better relate internal breast structures.  

7.3.4 Deformable Registration to relate corresponding lesions from ABUS to DBT 

 As mention in Chapter 6, a limitation to the deformable registration algorithm described 

here is that it relates from DBT to ABUS and not ABUS to DBT. This can be especially limiting 
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for women with dense breasts. For dense breast cases where additional lesions are found in 

ABUS, the ability to map to a ROI within the original DBT location could be helpful to improve 

lesion characterization. The main reason this was not done is because ultrasound imaging can 

provide many artifacts and acoustic shadowing which makes it difficult to segment dense breast 

structures. Additionally, the breast surface is not as well defined as in DBT imaging and 

ultrasound has increased false positive findings13,14,165. There are also limited publications in 

automated segmentation methods to segment the dense breast structures from 3D ultrasound 

systems. Complete breast segmentation of the ABUS volume is essential for FEA to perform on 

the ABUS model for registration to DBT. Improvements in ABUS segmentation could allow for 

this technique to be implemented for ABUS to DBT registration.  

 Likewise, 3D ultrasound CT ultrasound systems (e.g. Delphinus Medical Systems) like bCT 

also acquire breast images in the prone geometry (unlike the ABUS supine geometry). Acquiring 

ultrasound images in the pendant configuration can allow for direct 3D models to be created 

using FEM of the breast in an uncompressed state. Therefore, the deformable registration method 

described in Chapter 5 could be implemented to use FEM to simulate plate compression on the 

uncompressed 3D ultrasound CT model to register with a reference DBT volume; thus, directly 

correlating and characterizing a lesion from ultrasound CT to DBT. This would be beneficial as 

ultrasound can decipher between solid and cystic lesions and that these determine and display 

ultrasound attenuation and ultrasound speed of sound images in addition to ultrasound B-mode 

reflection images. The disadvantage of this technique is the markers used within this study 

cannot be used since the adhesive used to attach the markers to the breast is not waterproof. 

Additional work would need to be completed to find an acceptable marker to be used between 

the two image sets if external markers would like to be analyzed for improved registration. 
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7.4 Final Thoughts  

 This dissertation presents validated methodologies to investigate the accuracy and 

performance of a novel deformable registration technique to relate corresponding lesions 

between 3D (DBT and bCT) x-ray and 3D ultrasound images. The methods described can save a 

radiologist time in navigating 3D volumes and provide higher confidence in relating the 

corresponding masses between the image sets. Implementation of this methodology could 

improve a radiologist’s characterizations of breast lesions, reduce negative biopsies, reduce 

patient callbacks and could be a useful tool for the early detection of breast cancers based on the 

direct localization of corresponding lesions between 3D x-ray and 3D ultrasound breast images.
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Appendix 

 

Clinical Protocol for ABUS Camisole Evaluation Study 

1. Research assistant will setup ABUS Machine in designated area. Research assistant will 

input the anonymized patient identification information into Invenia workstation. This 

includes putting a new ABUS mesh panel on ABUS transducer.  

2. The study coordinator, will consent the patient with the specified forms 

3. Research assistant will fit the patient for their camisole based on taking a band measurement 

(under the breast). Patient will try on camisole to ensure fit  

4. Research assist will denote fiducial marker areas on the patient’s breast with a magic marker 

attach the external markers at those locations.  

5. Ultrasound technologist will position patient and ensure that the ultrasound camisole is 

placed over the breast with the external markers underneath the camisole.  

6. Ultrasound technologist will place ultrasound lotion over the camisole. Performs the first 

anterior to posterior, AP, scan for the left breast. If needed a second scan of the lateral 

margins of the breast will be performed. If needed a third scan of the medial portions of the 

breast will be performed. Additional scans can be added to ensure complete coverage.  

7. Repeats Step 6 for the right side of the breast.  

8. Research assistant or Ultrasound technologist helps patients remove excess gel/lotion and 

markers from breast with alcoholic wipes. 
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9. Research assistant will dispose of the used Invenia mesh panel, camisoles, and external 

markers from patient  

10. Research assistant will save patient images on USB drive on Invenia, breakdown Invenia 

device, and perform any other cleaning involved with the room used for ABUS images.  

11. Patient redresses and signs form for gift card for participation in research study.  
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Procedures for Developing External Fiducial Markers 

1. Spread glass beads across a baking mini-cupcake baking sheet.  

2. Place 2-4 glass beads in each baking compartment. (Note: Use sufficient spacing between 

each glass bead as they will need to be cut into separate squares for each marker) 

3. Place the thermoplastic elastomer clear gel over glass beads in each baking compartment.  

4. Cover the top of the baking sheet in aluminum foil. (Note: Do not fold over the sides so 

that air bubbles can escape) 

5. Place in vacuum oven and heat to 130º C. (Note: Do NOT Preheat oven and then add 

sample tray. TPE must heat with oven to avoid voids within material.) 

6. Once oven reaches set temperature point turn on vacuum to reduce oven pressure to 1.5-2 

inHg. 

7. Close vacuum once pressure point is reached. Allow to sit at set temperature and pressure 

point for one hour.  

8. Turn off the oven temperature to allow it too cool down back to room temperature (Do 

Not release vacuum) this takes several hours to cool.  

9. Release vacuum and take out samples.  

10. Cut samples into square pieces with the glass bead as the center point.  
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Clinical Protocol for Proof-of Concept Study 

1. ABUS Machine setup in Ultrasound Imaging Room. She will input the anonymized 

Patient identification information into Invenia workstation. This includes putting a 

new ABUS mesh panel on ABUS transducer.  

2. Patient consented by study coordinator, or research assistant, and will verify which 

breast is being biopsied (right or left).  

3. Research assistant will fit the patient for their camisole based on taking a band 

measurement (under the breast). Patient will try on camisole to ensure fit. The 

camisole will not be used for x-ray imaging.  

4. Research assistant will use a washable magic marker to designate areas on the breast. 

Research assistant will attach the external fiducial markers to the breast at those 

locations using a commercial body adhesive. And place Tomospot sticker over each 

marker.  

5. Patient volunteer will be given a gown/robe and will be escorted to mammography 

room to prepare for the DBT examination.  

6. Research assistant will give mammography technologist the anonymized information 

for Patient study to input into the DBT machine.   

7. Mammography technologist will image the patients’ breast with DBT in the CC view 

and DBT in the MLO view. If attached markers come off during imaging they will be 

reattached before next image phase is performed.  

8. Patient will robe and be escorted to the ABUS imaging room (Research room). 

External fiducial markers will remain attached to the breast. 
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9. Patient will put on the ultrasound camisole above her breasts while sitting up on the 

bed. The patient will then lay down and with assistance of the research assistant or the 

ultrasound technologist for the camisole to be lowered across the breast for ABUS 

imaging.  

10. Ultrasound technologist will place ultrasound lotion over the camisole. The 

technologist will perform the first anterior to posterior, AP, scan of the indicated 

breast. A second scan of the lateral margins of the breast will be performed adding 

lotion if needed. Next, a third scan of the medial margins of the breast will be 

performed with added lotion if needed. Additional scans can be added to ensure 

complete coverage.  

11. Research assistant will cut the camisole off the patient from behind. Research 

assistant or Ultrasound technologist will help patient remove excess gel/lotion and 

markers from breast with towels. The patient will wash her breast to remove the 

magic marker ink. 

12. Research assistant will dispose of the used Invenia mesh panel, camisoles, and 

external markers from patient.  

13. Research assistant will save patient’s ultrasound images on an USB drive on the 

Invenia, shut down Invenia device, and perform any other cleaning involved with the 

room used for ABUS images.  

14. Patient dresses and signs form for gift card for participation in research study. 
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Parameters used for MiViewer Program  

 Table A.1 shows the parameter settings used for Lesion segmentation using the MiViewer 

program. It was found that two combination of parameters were most helpful in using the 

software, shown for Run 1 and Run 2 in Table A.1. For use of this software please contact the 

University of Michigan CAD laboratoryy.  

Table A.2:  Parameter setting used to Run MiViewer program on DBT and ABUS images 

 Run 1 Run 2 

Blur Kernel 0.2 0.2 

Diffusion Conductance 2 2 

Diffusion Timesteps 8 8 

Sample Width 3 3 

Ellipse Radius 0.8 1 

Sample Radius -1 -1 

Level-Set 1 Timesteps 150 150 

Level-Set 2 Timesteps 4 4 

Level-Set 3 Timesteps 10 10 

Level-Set 4 Timesteps 5 5 

Main Propagation Scaling 0.9 1.2 

Main Advection Scaling 4 4 

2D Propagation Scaling 0.9 1.2 

2D Advection Scaling 4 4 

2D Time-Steps 20 25 

curvscale -1 -1 

Zblur1 0.2 0.2 

timestep 0.045 0.045 

gradchopoff 1200 1200 

gradblursigma 0 0 

holerad1 2 2 

holerad2 2 2 

gradchop 0.5 0.5 

gaussianthresh 0.7 0.7 

priorsigma 4.5 4.5 

printseg 1 1 

printgrad 0 0 

 

                                                 
y https://medicine.umich.edu/dept/radiology/research/basic-radiological-sciences-brs/cad-research-laboratory  

https://medicine.umich.edu/dept/radiology/research/basic-radiological-sciences-brs/cad-research-laboratory
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HyperMesh Scripting Optimization 

 

 Tcl/Tk scripting is used in order to create input files to run HyperMesh commands by a 

command prompt. Using HyperMesh the input files are generated to run for the specific FEA 

problem. For more information, on these built in commands for HyperMesh please see the 

following scripting documentationz as this entire process was automated using a MATLAB 

script. The script is used to build the models and export the 3D parameters to be analyzed to 

compute things such as the center of mass (COM) based on the nodal information. Additionally, 

information on how to use HyperMesh to generate the input files needed for FEA for Optistruct 

and ABAQUS can be found in the HyperMesh Solver Interfaces documentationaa.  

 Each segmentation should be housed in its own folder within the parent directory in order 

for the base FEM model file to be generated. An example of these directories are shown in 

Figure A.1. The original DICOM images should be in a separate folder within that directory (in 

Figure A.1 that folder is denoted as “Base_DCM”). Folder ‘1’ indicates the folder that contains 

the DICOM segmentation files for the lesion. If multiple lesions are used each lesion is separated 

(e.g. Folder “2” and Folder ‘3’). Mk1, Mk2, Mk3 etc. folders show the separate marker DICOM 

files. Folders for the segmented fat, glandular tissue, skin should also be housed as a separate 

folder in the directory.    

                                                 
z 

https://altairhyperworks.com/hwhelp/Altair/2017/help/hm_ref_guide/topics/chapter_heads/commands_and_function

s_scripts_r.htm  
aa https://altairhyperworks.com/hwhelp/Altair/2017/help/hm/hmbat.htm?HyperMesh_solver_interfaces_tutorials.htm  

https://altairhyperworks.com/hwhelp/Altair/2017/help/hm_ref_guide/topics/chapter_heads/commands_and_functions_scripts_r.htm
https://altairhyperworks.com/hwhelp/Altair/2017/help/hm_ref_guide/topics/chapter_heads/commands_and_functions_scripts_r.htm
https://altairhyperworks.com/hwhelp/Altair/2017/help/hm/hmbat.htm?hypermesh_solver_interfaces_tutorials.htm
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Figure A.1: Example of parent directory that houses all segmentation folders and base DICOM folder for base FE 

model generation 

 The Morfeus software is run on the segmented DICOM data to produce a resulting STL file. 

Therefore, all folders containing segmented data will have a Morfeus generated STL file. The 

STL file is the 3D object surface mesh based on the segmented DICOM information. These STL 

files are read into the HyperMesh program in order to mesh the base model. Base model 

generation can be described in the following pseudo-code for creating a BASE DBT file using 

HyperMesh shown in Figure A.2. The base templates contains the necessary components 

identifies and material properties for the run.  
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Figure A.2: Pseudo-code describing base FE model generation used within the deformable mapping algorithm 
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GUI Interface for relating corresponding lesions 

 A graphical user interface, GUI, was developed in order for a radiologist to view 

corresponding masses based on the deformable mapping registration results. The interface uses 

the slice information from the segmented DICOM files between modalities to determine lesion 

locations in the original DICOM images. It then takes the deformable mapping results to know 

which lesions are matched to the corresponding modality lesion. A user can pick from a drop 

down menu the Lesion ID number and the GUI will automatically change to the corresponding 

image slices for DBT and ABUS imaging.  

 First a user needs to indicate the specific parent folders that houses the base directory 

through a menu for each modality as shown in Figure A.3 for DBT and ABUS. 

 

Figure A.3: Selection Menu for GUI interface 
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 Additionally, the lateral (LAT) and medial (MED) ABUS views can also be shown. 

However, the deformable mapping program only registers to the ABUS AP view. Therefore, 

lesions will not be located to the LAT and MED views but can still be viewed as supplemental 

information. The resulting MATLAB file from the deformable mapping program will contain the 

folder information needed for the GUI to know which lesion segmentation folders to look in. 

This file also contains the dCOM values based off the algorithm results.  

 If only one mass was seen in corresponding views the User must select Lesion ID 1. Once 

the Lesion is displayed from the drop down menu the corresponding results can be viewed as 

shown in Figure A.4. A red cross hair will be shown on the middle slice for the corresponding 

lesions between views. 

 

Figure A.4 GUI Viewer results for a corresponding mass between the DBT (CC view) and ABUS view indicated by 

the red cross hair. 

The image window/level settings can be manually adjusted for the DBT and ABUS image views.  
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DBT/ABUS Study Radiologist Form 
Patient 

ID___________________________________________Date_____________________________ 

Radiologist Initials _________________ 

  Yes  No  Additional Comments  

DBT Image Quality 

Do the external fiducial markers 

affect the quality of DBT images?  

   

Can the lesion be clearly 

identified and is it sufficiently 

segmented? 

   

Are there any additional findings 

from the DBT images? 

   

ABUS Image Quality  

Do the external fiducial markers 

affect the quality of the ABUS 

images? 

   

Does the breast camisole affect 

the quality of the ABUS images? 

   

Can the lesion be clearly 

identified and is it sufficiently 

segmented? 

   

Are there any additional findings 

from the ABUS images? 

   

Comment on the image quality of 

the ABUS images in comparison 

to conventional ultrasound. 

 

Deformable Registration Algorithm         dCOM-CC=                                             dCOM-MLO= 

Does the algorithm correctly 

identify the corresponding lesion 

in the two modalities? 

   

Does the algorithm aid in lesion 

characterization between DBT 

and ABUS images? 

   

 

1) Do you have any recommendations for improving the display of the corresponding lesions in 

the ABUS and DBT images?    

 

2) Is the distance between the corresponding lesions sufficient? 

 

 

3) Do you have any suggestions for improving the interface for scrolling through the 

corresponding DBT and ABUS images? 

Additional Comments: 
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ABUS Camisole Form  
Patient ID___________________________________________ 

Date________________________________________________ 

Ultrasound Technologist/ Observer Initials _________________ 

 

  Yes  No  Additional Comments  

Were all external markers glued 

to breast before ABUS imaging?  

   

Did the glued external markers 

move when ultrasound gel/lotion 

is added over breast?  

   

Did the glued external markers 

move when patient puts on ABUS 

camisole? 

   

Was the camisole fitted to the 

breast? 

   

Does the camisole help restrict 

breast motion in comparison to if 

no camisole were not used? 

   

Do the external markers remain in 

the same position in between 

ABUS scans? 

   

Did the external fiducial markers 

have to repositioned at any time 

during ABUS exam  

   

Once breast camisole is removed 

were the external markers still in 

place? 

   

 

Additional Comments:  
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