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Abstract

A vast literature on interviewer effects (interviewer measurement error variance) is de-
voted to the estimation of these effects and understanding their causes and associated
factors. However, consideration of interviewer effects in active quality control (QC) does
not seem widespread, despite their known effect on reducing precision of survey estimates.
We address this gap in this dissertation with the overarching goal of using item-level para-
data (keystrokes and time stamps generated during the computer-assisted interviewing
process) in a systematic manner to develop an active interviewer monitoring system in
order to control interviewer effects. The dissertation is structured around exploring asso-
ciations between paradata, indicators of interviewing quality, and interviewer effects. Our
hypothesis is that different levels of interviewing quality cause different paradata patterns.
Differing levels of interviewing quality also result in different between-interviewer response
means even after controlling for respondent characteristics, leading to interviewer effects.
Thus, interviewing quality is conceptualized as a common cause of both interviewer ef-
fects and paradata patterns, making it possible for us to think about paradata patterns

as being potentially effective proxies of interviewer effects.

Little is known about what paradata say about the actual quality of an interview. This is
explored in Chapter 2 where we use paradata patterns to either predict the proportion of
flags in an interview (interview-level analysis) or the occurrence of a QC flag for an item
(item-level analysis). The results show that paradata patterns have strong associations
with interviewing quality. A key finding is that a multivariate approach to paradata use

is necessary.

Chapter 3 turns to investigating associations of indicators of interviewing quality with
interviewer effects. Survey quality control (QC) systems monitor interviewers for their
compliance with interviewing protocol. But what is not very clear is if deviations from
protocol are also associated with interviewer effects. While the results of our analysis show
moderate associations in this regard, we find that when QC variables are complementary
to other interviewer-level characteristic variables; when used together, a fair magnitude

of interviewer variance can be explained.
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Based on the foundations laid by Chapters 2 and 3, Chapter 4 uses paradata to di-
rectly predict interviewer effects. We find that paradata are fairly strong predictors of
interviewer effects for the items we analyzed, explaining more than half the magnitude
of interviewer effects on average. Also, paradata outperformed interviewer-level demo-
graphic and work-related variables in explaining interviewer effects. While most of the
focus in the literature and practice has been on time-based paradata, e.g., item times,
we find that non-time based paradata, e.g., frequency of item revisits, outperform the
time-based paradata for a large majority of items. We discuss how survey organizations
can use the dissertation findings in active quality control. All our analyses use data from

the 2015 wave of the Panel Study of Income Dynamics.
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Chapter 1

Introduction

1.1 Dissertation goal

The overarching goal of this dissertation is to examine if paradata can be used systemati-
cally to develop an active interviewer monitoring system in order to measure and manage
interviewer effects. To achieve this goal, we explore associations between paradata, indi-

cators of interviewing quality, and interviewer effects.

We use the term ‘paradata’ in the specific sense that it was first defined by Couper (1998),
i.e., keystrokes and time-stamps that are generated in the course of a Computer-Assisted
Interviewing (CAI) survey. By an ‘active’ interviewer monitoring system, we mean a
system that enables a survey manager to quickly detect possible interviewing issues and
undertake remedial actions before more errors are committed during fieldwork. By ‘in-
terviewer effects’, we mean interviewer measurement error variance (except in Chapter 3

where we also use the term in its bias sense).

1.2 Motivation

A vast majority of professionally-run surveys rely on interviewers for data collection. In
these surveys, interviewers play a vital role in contacting respondents, soliciting their co-
operation, motivating them, and trying to ensure that accurate responses are obtained.
However, interviewers are also a source of error. First, interviewers vary in their ability
to obtain answers from respondents potentially giving rise to non-response error. Sec-
ond, leaving aside behavior like falsification, the way a specific interviewer asks questions,

probes respondents’ answers, and gives feedback, induces responses that could be differ-



ent had another interviewer conducted the interview. This results in different expected
response means across interviewers, even after factoring out differences in geographic and
respondent profiles. These interviewer-induced measurement errors are called ‘interviewer
effects’. The associated intra-interviewer correlations (p;,;; Kish 1962) are typically small
in magnitude; Tucker (1983) finds the mean p;,, computed across several variables for 11
telephonic surveys to be 0.004, and Groves (1989) finds values below 0.02 most common
for 130 statistics computed from 10 personal interview surveys. But even these small val-
ues can substantially reduce the precision of an estimate since they increase the variance

of descriptive estimates by a function of their product with interviewer workload.

One of the methods to control interviewer effects is the use of ‘standardized interviewing’
(Fowler and Mangione 1990) in which interviewers are trained to conduct all interviews in
a standard manner so that error-inducing behavioral differences are reduced, if not elim-
inated. To track compliance with interviewing protocols, methods have been developed
to monitor interviewers’ behavior. These include accompanying interviewers on field (for
face-to-face interviews), listening-in on interviews (for centralized telephonic interviews),
re-interviews with respondents, or recording interviews and listening to them later. The
last option is attractive since it is less obtrusive and facilitates the coding of interviewer

behavior so that quantifiable information can be extracted.

However, these monitoring methods have two primary shortcomings. First, they do not
directly link to estimates of interviewer effects; while behaviors are monitored through
these methods, there is rarely any association made between the monitored behaviors
and possible survey error. The second shortcoming is related to the efficiency of these
methods. With the advent of Computer Audio-Recorded Interviewing (CARI; Biemer
et al. 2000; Thissen et al. 2008; Mitchell et al. 2008; Thissen 2014), potentially all inter-
views can be recorded. But it still requires human coders to listen to these interviews and
code them. Since it is expensive and time-consuming to listen to all recordings, survey
managers typically sample a small proportion of cases to monitor, potentially missing
truly problematic interviews. Moreover, trained interviewers rarely conduct entire inter-
views badly; different interviewers struggle with different types of items and respondents.
Ideally, survey managers would be equipped with a method that links each item in an
administered interview with a likelihood-of-measurement-error metric. This would guide
the selection of which recording slice to listen to, resulting in a more efficient and effective
(tailored) approach to giving feedback to interviewers. We aim to develop such a method

using paradata.



1.3 Paradata and interviewer monitoring

Why would we expect paradata to be useful to monitor interviewers for measurement
error? Consider two alternate interview scenarios that involve the same respondent but

two different interviewers.

Scenario 1

INTERVIEWER1: Thinking back on the past week, on an average, for how many
hours a day did you watch TV 7
RESPONDENT: Am not sure.

INTERVIEWER1: Okay. [registers a ‘Don’t know’]

Scenario 2

INTERVIEWERZ2: Thinking back on the past week, on an average, for how many
hours a day did you watch TV ?

RESPONDENT: Am not sure.

INTERVIEWERZ2: Maybe I could repeat the question to help you answer the question.
[slows down pace] Thinking back on the past week, on an average, for how
many hours a day did you watch TV ?

RESPONDENT: What do you mean by “on average”?

INTERVIEWERZ2: In the last seven days, there might have been days you could have
watched less TV and some days more TV. But if I asked you to give me one
number that stands for your daily TV viewing over the week, what would that
be? Please take your time to recall your TV viewing last week and answer

the question.

RESPONDENT: About two and a half hours.

The two interviews obtained very different responses. Interviewerl does not take the effort
to probe when faced with a non-response. On the other hand, interviewer2 undertakes
the right steps by first repeating the question to the respondent, clarifying the question
in a neutral fashion, and giving encouraging feedback. These actions are likely to have
yielded an accurate response. Such interviewer behavior tends to be consistent as noted
by Fowler and Mangione (1990, p.45): “Some interviewers obtain more answers than
others on a consistent basis because they consistently probe for more answers, and that
affects the data”.

Broadly, a respondent goes through the process of comprehending the question (Compre-
hension), recalling the relevant information from memory (Retrieval), combining various
recalled information in order to answer the question (Judgment), and finally communi-

cating the answer (Tourangeau et al. 2000). An interviewer who is speeding through the



process could make comprehension difficult, and even if the respondent did comprehend
the question, the rushed behavior could give cues that the respondent need not bother re-
sponding carefully (Fowler and Mangione 1990, p.71). On the other hand, careful probing
would encourage better cognitive processing by the respondent resulting in better data
quality. However, this effort would also tend to be associated with higher item times. In
other words, item times (paradata in general) could be capturing interviewer behaviors

that are associated with survey error.

These intuitions are not new. As early as 1964, Steinkamp looked at average interview
length and variability in interview length to assess interviewer performance. Another
example comes from Groves (1983) who said that data sets that count the number of
back-ups during an interview “are badly needed |[...] to measure the behaviors of in-
terviewers during questioning”, the implicit assumption being that more back-ups could
mean more measurement error. Despite these long-standing intuitions, there seem to
be no empirical links established between paradata and interviewing quality. Current
quality control efforts continue to use methods based on intuitions such as focusing on
interviews that are completed before a certain threshold minimum time (e.g., Cheung
et al. 2016). While such heuristics can be useful they are inherently subjective and un-
likely to be optimal. With technological advancement, the ease of obtaining paradata has
increased. Ironically, this sometimes becomes an obstacle since survey managers are inun-
dated with paradata and find it challenging to separate signal from noise. This requires
research on the properties of paradata but, so far, as pointed out by Couper and Kreuter
(2013), “relatively little attention has been paid to keystroke or item-level paradata” and
“the absence of research on the large-scale use of measurement-error-related paradata in

interview surveys is unfortunate”.

We attempt to fill these gaps in interviewer monitoring and paradata research by an-
alyzing associations between paradata, interviewing quality and interviewer effects. If
such associations exist, the strengths of paradata, e.g., accuracy and being available for
all respondents quickly at low cost, can be utilized to predict items which an interviewer
may be struggling with. Quality control staff could then listen to these specific recordings
and draw up a tailored training program which could be in the form of a simple low-cost
exercise such as calling up interviewers and giving them feedback specific to their areas
of weakness. The feedback can be followed-up by a re-evaluation after more fieldwork is

completed.



1.4 Ideal survey and data

As a useful benchmarking exercise, we picture an ideal survey and dataset for our research.

Given the above objectives, these would have the following characteristics:

e Paradata: The survey would be a CAI survey in which the instrument would capture
and store every keystroke made, along with the associated date and time stamp. It
is critical to have external software to be able to parse these paradata. Figure 1.1
reproduces an example from Cheung et al. (2016) which displays the raw paradata
as captured by the CAI instrument; transforming such data for analysts’ use is not

trivial.

Timestamps
Hours:Minutes:Seconds: Thousands of a second

Case ID in Blaise database

"1/17/2012 9:00:06:304 AM","Enter Form:1","Key:3975053020 " -+—— Sample ID

"1/17/2012 9:00:06:304 AM","Metafile name:C:\blproj\HR52012\work\HRS12.bmi" Start IwW
"1/17/2012 9:00:06:304 AM","Metafile timestamp:Friday, January 06, 2012 1:08:04 PM"  »Audit trail file

"1/17/2012 9:00:06:304 AM","WinUserName:14554015" <+——  Interviewer ID Information
"1/17/2012 9:00:06:304 AM"," DictionaryVersionInfo:0.0.0.0" )

"1/17/2012 9:00:12:702 AM","Enter Field:5ecA. Startinterview, AGOTTRAlive A","Status:Normal","Value:"

"1/17/2012 9:00:13:965 AM","(KEY:)1[ENTR]" =——— Time of first keystroke

"1/17/2012 9:00:14:276 AM","Action:Store Field Data","Field:SecA Startinterview. ADO7TRAlive_A" » CQuestion

"1/17/2012 9:00:14:328 AM","Leave Field:5ecA Startinterview. AD07TRAlive_A","Cause:Next Field",
"Status:Normal","Value:1"

"1/17/2012 9:02:51:681 AM","Enter Field:Sec). WORKSTATUS.JO0SMCurrEmpStatus|1]","Status:Normal","Value:" |
"1/17/2012 9:02:55:971 AM","(KEY:) 15[ BACK][BACK]S[ENTR]" Question
"1/17/2012 9:03:03:200 AM","Action:Store Field Data","Field:5ec) WORKSTATUS J005MCurrEmpStatus[1]" ~with changed
"1/17/2012 9:03:03:256 AM","Leave Field:Sec) WORKSTATUS.JOOSMCurrEmpStatus[1]","Cause: Next answer
Field®,"Status:Normal”,"Value:5"

"1/17/2012 9:13:24:923 AM","Enter Field:IWComplete”,"Status:Normal”,"Value:"

"1/17/2012 9:13:28:480 AM","(KEY:) 1[ENTR]"

"1/17/2012 9:13:29:650 AM"," Action:Store Field Data","Field:|WComplete"

"1/17/2012 9:13:29:728 AM","Leave Field:IWComplete","Cause:Next Field","Status:Normal',"Value;1" [ Complete IW
"1/17/2012 9:13:30:056 AM","Leave Field:IWComplete","Cause:Exit","Status:Normal","Value:1"

"1/17/2012 9:13:30:056 AM","Leave Form:1","Key:3975053020 "

Figure 1.1: Example of raw paradata. Source: Cheung et al. 2016.

e Behavior codings: The survey would record and code interviewer behaviors for all

1ts interviews.

e Sample Size: The survey would deploy a large number of interviewers, each with a
large workload. Since our interest is in estimating interviewer measurement error
variances, the number of interviewers is more important than the overall sample
size (Hox 1998; Maas and Hox 2005, Raudenbush 2008, p.228-229). However, very
small workloads (even if the number of interviewers is large) can create problems
since likelihood ratio tests that rely on asymptotic results will not hold, interviewer
effects are underestimated (Raudenbush 2008, p.225) but precision of the estimates
is overestimated especially when interviewer effects are small (Raudenbush 2008,

p.227), and numeric evaluation of integrals in the case of non-linear models would be
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difficult (Raudenbush 2008, p.209,234). Biemer and Lyberg (2003, p.168) indicate
a minimum 20/50 size (i.e., 20 interviewers with a minimum workload of 50 cases
each), Hox (1998) suggests a 100/10 rule if there is a special interest in variance
components, while Maas and Hox (2005) indicate that a sample size of 50 with
workloads even as small as 5 is sufficient. Using the maximum of the indicated
sizes in these suggestions, our ideal survey would have at least 100 interviewers
with a workload of at least 50 interviews per interviewer (a total size of at least
5000 respondents).

e Interpenetrated design; the survey would employ an interpenetrated sample design

(Mahalanobis 1946) to avoid the confounding of sampling and measurement errors.

e True values; true values for factual items would be available to compute both mea-

surement error biases and measurement error variances.

1.5 Survey and data used for the dissertation

We searched for surveys that came close to the above characteristics. To the best of
our knowledge, there is no survey that simultaneously meets the last two of the above
characteristics. True values for factual items might be accessible for some federal surveys
via special Research Data Center enclaves but access to these data would be very difficult,

let alone access to paradata and interviewing quality data.

We requested for, and obtained, access to data from the Panel Study of Income Dynam-
ics (PSID), a nationally representative survey of families and individuals in the U.S.,
conducted via Computer Assisted Telephone Interviewing (CATI); a small proportion of
interviews (approximately 2.5%) are conducted face-to-face but we focused only on the
CATI interviews for this dissertation. The survey is designed and executed by the Survey
Research Center (SRC), Institute for Social Research (ISR), University of Michigan, Ann
Arbor. We used the 2015 wave of the PSID where 9048 respondents were interviewed by
96 interviewers, thus meeting the above sample size requirements. While paradata are
available for all interviews, interviewing quality data can be used only for a sample of 555
interviews. While not being a very small size, this reduced sample size (as compared to
the full PSID sample) impacts the power to detect effects in analyses involving interview-
ing quality. PSID’s telephonic mode is an advantage since there are no confounding area
effects to contend with. Also the PSID has many questions on the economic situation of
the household. Such questions can be sensitive and be susceptible to interviewer effects
(Schaeffer et al. 2010; West and Blom 2016). On the other hand, our effects could also

be dampened since the PSID is a panel survey and the majority of respondents would



be familiar with the questions. A Memorandum of Understanding (MoU) with SRC’s
Survey Research Operations governs access to data; while we have access to data on in-
terviewer evaluations, the MoU does not allow access to the recordings themselves. This
somewhat prevents us from drawing qualitative insights to supplement model results.
Data on interviewers’ sex, age, and education levels have also been provided but data on
interviewers’ experience levels are not accessible. Detailed descriptions of the survey and

data are given in the relevant dissertation chapter sections.

1.6 Dissertation structure

This dissertation consists of 5 chapters including the current one. Our starting point is the
hypothesis that different levels of interviewing quality cause different paradata patterns.
Varying levels of interviewing quality also translate into interviewer effects. Interviewing
quality is thus conceived to be behind both paradata patterns and interviewer effects.
Chapters 2, 3, and 4 devote themselves to exploring the two-way associations between

paradata, interviewing quality, and interviewer effects.

Chapter 2 explores associations between paradata patterns and interviewing quality. We
first conduct a Principal Components Analysis (PCA) on 10 interview-level paradata
measures and, separately, on 8 item-level paradata measures. We then use these principal
components to predict either a) the proportion of evaluated items in an interview for which
quality flags were raised (interview-level analysis), or b) a binary variable that indicated
if a quality flag was raised or not (item-level analysis). We also fit models that use only
respondent, interview, and interviewer characteristics; item characteristics are also used
in the case of the item-level models. Comparing models that use only paradata inputs,
only non-paradata inputs, and full models that include both paradata and non-paradata
inputs, can potentially tell us about the source of variation being captured by paradata

in predicting interviewing quality.

Chapter 3 investigates associations between interviewing quality and interviewer effects.
As stated earlier, to minimize interviewer effects survey organizations train their inter-
viewers to undertake standardized interviewing (Fowler and Mangione 1990) and then
track deviations of interviewing behaviors from protocol. But not much is known as to
how these deviations are directly associated with interviewer effects. To test this, we
first estimate interviewer effects for each of our analysis items using multilevel models,
where a vector of respondent characteristics approximates an interpenetrated design (Ma-
halanobis 1946). Next, we define an interviewer-level ‘flag proportion’ variable which is
the proportion of interviewing quality evaluations for an item for which QC flags were

raised. We also define an overall flag proportion variable that is computed across all



evaluated items. These flag proportion variables are then added as inputs to the initial
model. The proportion of between-interviewer variance explained by the flag variables is
an indicator of the success of the quality process in detecting interviewers contributing to
interviewer effects. The performance of the flag variables is benchmarked against other
interviewer-level characteristics such as interviewer education levels. We also conduct
an observation-level analysis using the interviewing evaluation data to check for possible
associations of the substantive outcomes with indicator QC flag variables. Significant
coefficients for the QC indicator variables even after controlling for respondent character-
istics would indicate that the QC process is detecting possible inaccuracies in estimates
due to interviewing issues. Both the interviewer-level and observation-level analyses are
repeated for item non-response as well. Here we take advantage of the fact that the
outcome variable has the same structure for all variables, i.e, a binary variable indicating
either response or non-response. This allows us to pool observations and fit one cross-
classified model by incorporating item and respondent random effects in addition to the

interviewer random effects.

Based on our findings in Chapters 2 and 3, we use paradata measures to directly predict
interviewer effects in Chapter 4. As in Chapter 3, we first estimate interviewer effects for
our analysis items. We then use paradata measures defined at the interviewer-level to
explain interviewer effects. We fit separate models using the time and non-time paradata
measures to assess their relative performance; the literature has focused on time-based
paradata measures such as item time but not much is known about non-time paradata
measures such as access to help or making remarks. We calibrate the performance of
the paradata measures against interviewer-level characteristics and the flag proportions
that were defined in Chapter 3. Variable selection for all models is conducted using
the ALASSO (adaptive least absolute shrinkage and selection operator). To evaluate our
predictions, we undertake a bootstrap-based approach where models are fit to the original

data based on variables selected on the resample data.

Each chapter contains practical implications of our findings. Chapter 5 summarizes these

implications and also recommends steps for future research.
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Chapter 2

Can paradata tell us about
interviewing quality?

2.1 Introduction

The term paradata was defined by Couper (1998) to refer to keystrokes and time stamps
generated during the Computer-Assisted Interviewing (CAI) process. While the term is
generally used to refer to any additional data generated in the process of conducting a
survey (Kreuter 2013), in this chapter we refer to ‘paradata’ in the specific sense it was
first defined. Paradata have been used in quality control since they are detailed, generated
‘free’; largely not afflicted by missingness, and relatively error-free (West and Sinibaldi
2013). However, assumptions behind their usage are largely untested. Specifically, little
is known about patterns of paradata and their associations with interviewing quality.
Figure 2.1 plots two paradata variables - average item time and proportion of interviews
in which help was accessed - for each interviewer in the 2015 wave of the Panel Study of
Income Dynamics (PSID) for a question on the number of rooms. The figure shows visible
between-interviewer differences for item time as well as help access. Moreover, since
accessing help takes time, we see a correlation between these two variables. But Figure
2.1 provokes the following questions: Do higher item times indicate better interviewing?
Does a higher frequency of help access signify a careful interviewer or does it signify a
confused interviewer? Is there a difference in interviewing quality between cases that

have the same item time but differ in their access to help?

The literature on this topic is sparse (Couper and Kreuter 2013) and has concentrated on
data on timings and their associations with item, respondent, and interviewer characteris-
tics (Couper and Kreuter 2013; Loosveldt and Beullens 2013a,b; Olson and Smyth 2015),
instrument design (Couper et al. 1997; Edwards et al. 2008), and ‘internal’ measures of

quality e.g., using rounded responses as a proxy for satisficing (Nix 2014; Turner et al.
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Figure 2.1: Average item time and access to help for item A8 (no. of rooms). Help access is seen to be
correlated with item time. Each dot represents one of the 96 PSID 2015 interviewers, with the dot size
proportional to interviewer workload; the plot suggests that help access is not correlated with interviewer
workload. The horizontal dashed line in the plot is the average proportion of cases for which help was
pressed (9.4%).

2015; Vandenplas et al. 2017). The few papers that have looked at multiple paradata
variables have focused on their use in survey instrument design and usability training
(Couper et al. 1997; Couper 1998; Lepkowski et al. 1998; Hansen et al. 1998; Couper
2000; Bumpstead 2001; Mockovak and Powers 2008). The little research concerning the
use of multiple paradata variables for quality control in CAI surveys (Couper 1998; Gu
et al. 2013; Joyal 2016) do not seem to have used external (non-paradata based) quality

benchmarks.

In the absence of direction from the literature, paradata usage in quality control has been
guided by intuitions (Johnson et al. 2001; Penne and Snodgrass 2003; Wang et al. 2013)
and rules of thumb (Moshinsky and Carter 2013; Devonshire 2013; Cheung et al. 2016;
Hunt 2016) which are largely untested. Finally, since the level of detail in paradata can
be overwhelming (Couper et al. 1997; Nicolaas 2011), they are generally aggregated and

used in univariate fashion (e.g., Hansen and Marvin 2001).

In summary, studies investigating associations of multivariate paradata patterns with
interviewing quality are lacking, a gap that we address in this chapter. If such associations
exist, practitioners can utilize them to harness the full range of paradata in an objective

way for survey quality control.

We consider both interview-level and item-level inferences. The following are our research

questions at the interview-level:
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1. What paradata patterns, if any, are associated with interviewing quality?

2. What respondent, interview, and interviewer characteristics - henceforth collectively

called non-paradata characteristics - if any, are associated with interviewing quality?

3. How do the paradata and non-paradata variables compare when predicting inter-

viewing quality?

We replicate these questions at the item-level but also additionally include item charac-
teristics as predictors. This chapter is organized as follows: Section 2 gives an overview
of the study survey, Section 3 describes the data used for analysis, Section 4 details the
analysis methods, Section 5 presents the results obtained, and Section 6 discusses these

results and considers how they can be used in practice.

2.2 Study survey

We used data from the 2015 wave of the PSID for our research. The PSID is a nationally
representative survey of families and individuals in the U.S., conducted via Computer
Assisted Telephone Interviewing (CATI); a small proportion of interviews (approximately
2.5%) are conducted face-to-face but we focus only on data from the CATT interviews. The
survey consists of biennial waves where one respondent per family is administered a ‘main
interview’; supplemental studies are added to this main interview, e.g., the ‘transition into
adulthood supplement’ is asked to individuals when they become 18 years of age. The
PSID main interview begins by taking consent from the respondent followed by questions
about the family composition and member details. These ‘coverscreen’ questions are
followed by substantive questions. On average, a respondent answers approximately
360 substantive questions from 11 sections as shown in Table 2.1; sections concerning
employment (sections BC/DE), expenditures (section F), and health (section H) account

for close to 60% of interview duration.

Between March-December 2015, 9048 respondents were interviewed by 96 interviewers
with a response rate of 89% (calculated with respect to the previous wave). An interview

lasted 80 minutes on average. The detailed questionnaire ! and codebook 2 are available
on the PSID website.

Lftp://ftp.isr.umich.edu/pub/src/psid/questionnaires/q2015.pdf
2ftp://ftp.isr.umich.edu/pub/src/psid/codebook/fam2015er_codebook.pdf
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Average # items

. ) . . Average W duration
No. Saction Substantive area administered in an

W {mins)
1 A Housing, utilities, and computer use 36 7
2 BC, DE Employment 46 22
3 F Expenditures 52 11
A G Current income .and other family unit 18 9
member education
5 R Off.—year income and public 12 >
assistance
G w Wealth and active savings 22 5
7 P Pensions 13 3
8 H Health 96 14
9 | Marriages and children 11 1
10 KL New head and spouse/partner 14 3
background
11 %] Philanthropy 9 2
Average interiew 358 80

Section BC, OF includes the Fvent Histony Calendar (ERC)

Table 2.1: PSID substantive section descriptions.

2.3 Data

To address our research questions we considered five forms of predictor data: paradata
- Interview-level; paradata - Item-level; Item characteristics; Respondent and Interview
characteristics; and Interviewer characteristics. Data from interviewing quality evalua-

tions form our outcome variable. These data are described below.

2.3.1 Outcome: Interviewing quality evaluations

In 2015, PSID recorded two of the first four interviews in every interviewer’s workload
followed by a further 10% random sample, resulting in 1120 recorded interviews. A
‘capture list” dictated which item in the interview was to be recorded, based on the item'‘s
substantive importance. For the first 3 weeks of fieldwork, the capture list inadvertently
contained 1157 items belonging to a pretest version. This was corrected and the list pared

down to 382 items. We only consider data from the 382 items for our analyses.

Of the 1120 interviews, 594 CATT interviews (53% of all the recorded interviews) were
listened to by nine quality control (QC) evaluators. Some of these interviews were ran-
domly chosen while others were subjectively selected; we do not have information on
the selection mechanism associated with each interview. Owing to issues such as bad

recordings or missing interviewer characteristics, only 555 interviews were available for
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analysis. These interviews were conducted by 92 interviewers (96% of the 96 interview-
ers), with a median of 6 evaluated interviews per interviewer (first quartile: 4 interviews,
third quartile: 8 interviews). The recorded items accounted for a median 35% of the total
number of administered substantive items (IQR: 31% - 40%) and a median 45% of the

substantive interview duration (range: 40% - 50%) within the 555 evaluated interviews.

Apart from their training and extensive experience in behavior coding, many of the QC
evaluators have been interviewers themselves which especially equips them to understand
interviewer behavior. An evaluator raised a QC flag for an item if she encountered an

issue in any of the five interviewing dimensions in Table 2.2.

Table 2.2: The five interviewing evaluation dimensions with sixteen categories.

No. | Interviewing dimension Categories
1 | Question asking Altered wording; Skipped question; Question delivery; Not verbatim; Other reading error
2 | Probing and clarifying | Failure to probe or clarify; Inappropriate, evaluative, or directive probe; Other probing error
3 | Data entry Wrong category; Wrong entry
4 | Feedback Emotive feedback; Other feedback error
5 | Other reasons Unprofessional conduct; Consent error; Household composition; Other error

Coders also explicitly noted the cause of a major flag; four of the sixteen categories
accounted for 70% of all major flags: ‘failure to probe or clarify’ (44%), ‘altered wording’
(11%), ‘inappropriate, evaluative, or directive probe’ (9%), and ‘other entry error’ (6%).
The large proportion of flags due to improper probing is expected since interviewers find
it the hardest skill to learn (Fowler and Mangione 1990, p.44); Hicks et al. (2010) find
that interviewers probed only in 57 percent of the instances when a probe was needed.
In line with recommendations in Couper et al. (1992) and Steve et al. (2007, p.404),
coders also look for good interviewer behaviors that can be reinforced. Such behaviors
are coded as ‘positive’. Some coders left the evaluations blank when they encountered
satisfactory interviewing, i.e., neither praise-worthy nor flag-worthy, while other coders
coded such behavior as ‘positive’. For our analyses, we combined the blank and positive
evaluations into one ‘no flag’ category and the major and minor flags into a single ‘some
flag’ category. We had 2329 flags (spread across interviews and interviewers) from 56471
item-by-interview cases. The overall flag rate is therefore 4.1% which varies by interview
(IQR: 1.6% - 5.7%) and interviewer (IQR: 2.1% - 5.3%).

2.3.2 Paradata - Interview-level

We defined 10 interview-level measures and computed these from the raw paradata:

1. Count of interview sessions; multiple interview sessions might indicate a time-

strapped or difficult respondent. Only sessions greater than 15 minutes were counted
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for this measure so as to exclude multiple sessions occurring due to technical issues.
Since multiple sessions could take place on the same date, we also included measure
2 below.

2. Range of interview dates (i.e., number of days elapsed between the first and last

interview session), top-coded at 30 days.

3. Count of unique items administered; a larger number could impact interviewer and

respondent fatigue, potentially associated with more flags.

4. Proportion of items revisited; a low proportion indicates a more straightforward
interview. Field visits less than one second were excluded from this measure to

filter out transitory item visits.

5. Duration (minutes) spent before the substantive sections of the questionnaire; a
large time spent on the coverscreen questions may contribute to compensatory

speeding in the substantive part of the questionnaire.

6. Duration (minutes) spent on the substantive part of the interview; this is to distin-
guish between interviewers who may administer the same number of items (measure

3) but differ in their interviewing pace.

7. Proportion of the interview duration accounted by times up to the first keystroke
(computed across items). We use this as a proxy for the amount of time it takes for
the interviewer to Ask, Probe and give feedback to the respondent, and Receive a
response (abbreviated henceforth as ‘APR time’). Behaviors such as quick question
delivery and lack of probing (‘speeding’) would result in a lower magnitude for this
measure. A high magnitude for this measure could be a result of longer cognitive
processing time by the respondent and/or slower questioning and probing by the
interviewer. Only the first item visits were considered to compute this measure

since this is when the question would actually have been asked.

8. Proportion of items with remarks; a high proportion could be an indicator of unsure

interviewing since interviewers feel the need to justify responses.

9. Proportion of items for which help was accessed; while a high proportion could

indicate unsure interviewing, it could also indicate conscientiousness.

10. Count of error messages. During the interviewing process, the CATI software trig-
gers error messages when data which are logically inconsistent or beyond preset
numerical ranges are entered. A high count indicates many inconsistent responses

which could be due to inadequate interviewing and/or difficult respondents.

Descriptive statistics for these measures are given in Table 2.3. All measures except ‘du-
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ration before substantive sections’ were computed on the substantive sections. Measures

8-10 have small average values but exhibit variation at the upper end of the distributions.

Table 2.3: Descriptive statistics for interview-level paradata measures. These are based on 9048 inter-
views. Some measures are top-coded as described in Section 2.4.1.

No. Interview-level measures Min. Q1 Median Mean Q3 Max.
1 No. of interview sessions 0 1 1 1.2 1 5

2 Range of interview dates 0 0 0 1.5 0 30
3 Number of unique items administered 159 268 346 349 412 709
4 Proportion of items revisited 0 0.04 0.06 0.07 0.09 0.29
5  Interview duration (mins) spent before the substantive sections 0.8 2 4 5 6 33
6  Interview duration (mins) spent on the substantive sections 16 57 71 75 88 200
7  Proportion of interview duration accounted by APR times 0.04 0.08 0.09 0.09 0.12  0.28
8  Proportion of items with remarks 0 0.004  0.009 0.014 0.018 0.14
9  Proportion of items for which help was invoked 0 0 0.003 0.006  0.008 0.08
10 Proportion of error messages 0 0 0 0.0017 0.0025 0.086

2.3.3 Paradata - Item-level

For inferential and computational reasons, we limited ourselves to 171 items that had at
least 100 QC evaluations; with small group sizes, the likelihood for higher-level variances
can be highly skewed and numeric integration required for our models becomes difficult
(Raudenbush 2008, Rabe-Hesketh and Skrondal 2008). We also excluded ‘Event History
Calendar’ which appears in the data as a single ‘item’ but is actually a complex set of
questions. We now had 44927 cases from 170 items for our analysis. These 170 items were
distributed across the questionnaire and accounted for a median 35% of the substantive

items and substantive interview duration among the evaluated interviews (ranges: 16%-
52% and 14%-59% respectively).

The item-level dataset had 1.03 million item-interview rows each associated with 8 mea-
sures that we computed from the raw paradata. These item-level measures are largely

analogous to the interview-level measures and are as follows:

1. Count of multiple item visits. Item visits less than 1 second were excluded from

the computing since these could just be transitory visits.
2. Item time on the first visit.
3. APR time on the first visit.
4. Keycounts.
5. Count of mouse clicks.

6. Count of the number of times the remark option was invoked.
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7.

8.

Count of the number of times help was accessed.

Count of error messages.

Descriptive statistics for these measures are given in Table 2.4. While many measures

are sparse, there is substantial item-level variation.

Table 2.4: Descriptive statistics for the item-level paradata measures. These are based on 1.03 million
item-within-interview observations. Some measures are top-coded as described in Section 2.4.1.

No. Item-level measures Min. Q1 Median Mean Q3 Max.
1 Count of multiple item visits 0 0 0 0.1 0 3
2 Item time (seconds) 0 5 9 12 14 822
3 APR time (seconds) 0 4 7.5 9.7 12 281
4 Keycounts 0 2 2 ) 3 184
5  Count of mouseclicks 0 0 0 0.14 0 20
6  Count of times remark invoked 0 0 0 0.02 0 3
7 Count of times help accessed 0 0 0 0.01 0
8  Count of error messages 0 0 0 0 0

2.3.4 Item characteristics

For each of the 170 items, we coded five variables as follows:

1.

Whether an item may be considered sensitive (30 items) or not (140 items); sensitive
items may be more subject to quality issues. To classify an item as sensitive, we
followed the guidance in Tourangeau et al. (2000) and Tourangeau and Yan (2007)
and gauged whether it was one or more of the following: could be perceived by
the respondent as intrusive, could raise concerns of disclosure risk, or could evoke
socially desirable responses, e.g., item A27G asks how likely is it that the respondent

will continue to be behind on their mortgage/loan payments in the next 12 months.

. A variable called ‘RecallHeavy’ that checks if an item relied heavily on the respon-

dent’s memory and/or would be likely to require reference or very specific knowledge
(51 items) or not (119 items), e.g., item A21 asks for ‘yearly property taxes, includ-
ing city, county, and school taxes’ or item A24 asks for the remaining principal on
the housing loan). The interviewer’s task is more difficult for such items since they

might require more probing.

. Whether the item had a specific probing instruction to the interviewer (22 items)

or not (148 items), e.g., item A31 is a question on monthly rent. It has a specific
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instruction to the interviewer to probe if the given response is only that family’s

share, in case the dwelling is shared by more than one family.

Whether the question had any special instruction (apart from any probing instruc-
tion) to the interviewer (36 items) or not (134 items), e.g., in the case of item
A31 mentioned above, if the dwelling is a mobile home, then the instruction is: ”If

family unit owns the lot, do not include the value of the lot”.

Response type was coded into 7 categories as follows: binary (74 items), multinomial
with an ‘other-specify’ option (27 items), multinomial but no ‘other-specify’ option
(10 items), numeric monetary values (35 items, e.g., income), numeric non-monetary
values (14 items, e.g., number of rooms), open-ended (4 items), and others (6
items, e.g., item F49b on vehicle type where the instrument has a drop-down list
to choose from). The modal binary response category was chosen as the reference
category. The ‘numeric monetary’ category includes not only $ value responses but

also responses on interest rates.

A list of the 170 items and the above associated variables is in Appendix 2.A.

2.3.5 Respondent and interview characteristics

We included eight respondent and interview characteristics in our analyses as follows:

1.

Respondent sex (female respondents: 60% among the evaluated interviews); past
research suggests that respondent sex may be associated with response effects
(Skowronski and Thompson 1990; Auriat 1993; Lee and Lee 2012).

. Respondent education in years (mean: 13.5 years, standard deviation: 2.3 years); a

measure of cognitive sophistication (Krosnick and Alwin 1987; Groves 1989; Kros-

nick 1991; Knauper 1999).

Respondent age in years (mean: 50 years, standard deviation: 17 years); this vari-
able is known to be correlated with response errors even after accounting for edu-

cation (Fowler and Mangione 1990; Knauper 1999).

Number of waves as a respondent in the last five waves; more frequent respondents
may pose fewer issues to the interviewer. Seventy-eight percent of respondents in

the evaluated interviews were present for at least 4 waves.

Number of adults in the family unit (mean: 1.7, standard deviation: 0.8); higher
values are potentially more burdensome to the respondent and interviewer since

some items must be repeated for every adult.
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6. Number of calls exchanged between the respondent and interviewer prior to the
interview (mean: 14.4, standard deviation: 22.7); a difficult-to-reach respondent

may also be pressed for time, leading to speeding by the interviewer.

7. A binary variable based on interviewer-provided information that indicated if the
respondent had records, statements, or other documents readily available for refer-
ence during the interview; respondents with documents available may be less likely
to need aiding by interviewers, reducing the probability of a quality flag occurring.

Fourteen percent of respondents were reported to have these available.

8. A binary variable that indicated whether the interview was the first two in the
interviewer’s sequence (10% of the evaluated interviews were in this category) or
not. The initial interview pair may be associated with a higher flag proportion as

interviewers start to get accustomed to the wave.

2.3.6 Interviewer characteristics

We used 3 demographic variables and 3 variables derived from interviewers’ work char-

acteristics.
1. Interviewer sex (88% female).
2. Interviewer age (mean: 53.6 years, standard deviation: 12.1 years).

3. Interviewer education, which was categorized as: less than High school (12% of in-
terviewers), high school/GED (35% of interviewers), some college (28% of interview-
ers), and college graduate and above (25% of interviewers). The high school/GED

category was used as the reference category for our analyses.

4. Interviewer workload, i.e., number of conducted interviews (mean: 114.5 interviews,

standard deviation: 41.6 interviews)

5. Mean interviews per day (mean: 1.2 interviews, standard deviation: 0.12 inter-
views); even a moderate workload may lead to interviewer fatigue if completed in

a short time period.

6. The coefficient of variation of the number of daily interviews conducted (mean:
0.53, standard deviation: 0.11 interviews); interviewers with more consistent daily
workloads may be more organized interviewers associated with better interviewing

quality.
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2.4 Methods

2.4.1 Principal components analysis (PCA)

Despite efforts to create independent paradata measures, some of them were correlated,
e.g., item counts and interview duration, leading to multicollinearity issues in our models.
Also, we were more interested in patterns of paradata. Therefore, we turned to Principal
Components Analysis (PCA, Jolliffe 1986). We conducted two PCAs - one each at the
interview-level and item-level - using the correlation matrices of the respective centered
and scaled paradata measures. PCA performs an orthogonal transformation of the data
such that the same number of dimensions (Principal Components, PCs) are returned
as the number of paradata measures, but these new dimensions are now linearly uncor-
related. The analysis also returns a rotation matrix which is a matrix of correlations
(‘loadings’) of each paradata measure with the PCs, thus allowing us to interpret the
PCs. Each interview (in the interview-level analysis) or observation (in the item-level
analysis) now has a value for each PC, called a ‘score’. We will use these scores as inputs

in our models.

Even though our models can ultimately use data from only the 555 evaluated interviews,
we did not want to limit our understanding of paradata patterns to these interviews.
Therefore, we ran the PCA on all interviews and used scores from the subset of the
555 evaluated interviews for modeling. Generally, in PCA, interest is in the first few
large components. However, in a regression context, PCA does not involve the outcome
variable; substantively interesting small components may be associated with the outcome
variable but the big components may not have any associations (Hadi and Ling 1998;
Faraway 2005, p.144). We therefore extracted PCs that cumulatively account for 90%
variation in the paradata measures, resulting in the extraction of 8 interview-level PCs
and 6 item-level PCs.

Some paradata were extreme and clearly the result of technical issues, e.g., an interview
duration of more than 37 hours. Moreover, PCA is sensitive to extreme observations
and we did not want a few cases, even if genuine, to reduce the generalizability of our
analysis. On the other hand, we wanted to be conservative since observations towards the
tails can convey valuable information. After some sensitivity analyses, we top-coded the
raw time-based paradata variables at the 99.95"" percentile and used these to compute our
measures. Other paradata measures were visually inspected and extreme data points top-

coded. The PCA analyses were conducted in R (Team 2013) using the prcomp function.

21



2.4.2 Modeling

Interview-level model

Our outcome variable is Y;; ~ BIN(N;;, p;;) ,where Y;; and N;; are the number of flags
and the number of items respectively, assessed in interview j = 1,2, ..., n; conducted by
interviewer i = 1,2,...,92. We used interview-level PC scores as inputs in the following
varying interviewer-intercept logistic model, where z. ;; is the ¢/ PC score (the ‘T’ in
the subscript indicates that this is an interview-level score). Initial models that we fit
showed signs of overdispersion with the dispersion parameter being approximately 1.31,
computed using the dispersion_glmer function in the blmeco package (Korner-Nievergelt
et al. 2015) in R (Team 2013). We therefore introduce an Observation Level Random
Effect (OLRE), denoted by §;; in the model below, to correct for this (Browne et al. 2005;
Skrondal and Rabe-Hesketh 2007).

8
log (%) = 0o+ 0ij T ui + E Be,@eyij +
— pi;

=1

BoRespMale; + ProRespAge; + Bi11 RespEducation; +

Bi2TimesRespLastiWaves; + B3 Adults FamilyUnit; +

B1aCallsj + BisIW seqFirstTwo; + BigReferenceDocs; + (2.)
BrrlwerMale; + Biglwer Age; + Brolwer Educ_LessThanHS; +
Boglwer Educ_SomeCollege; + o1 lwer Educ_Graduate; +
BaglwerWorkload; + Bazlwer MeanDailylW; + PaglwerCV DailyIW;
u; ~ N(0,07,.,) (2.2)
dij ~ N (0, Torre) (2.3)

We tried introducing interactions, especially cross-level interactions between respondent
and interviewer sex, age, and education, and between the variable indicating the first 2
interviews and the interviewer workload variables. However, none of these were found
to be significant and were dropped from the model. Before fitting the full model above,
we fit the following subset models: a model with only the PC terms (‘Paradata model’)

and a model with only the non-paradata variables (‘Non-paradata model’). Both these
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models also accounted for overdispersion, the dispersion parameters being 1.34 and 1.36

respectively. The full model was constructed by adding terms from these subset models.

Item-level analysis

Our outcome here is a Bernoulli variable, Y;;z ~ BER(p;ji) , set equal to 1 if a QC
flag occurs for item £ = 1,2,...,170 within interview 7 = 1,2,...,n; administered by
interviewer ¢+ = 1,2,...,92. While an interview is nested within an interviewer, an item
occurs across multiple interviews resulting in a cross-classified data structure allowing us
to specify random item intercepts u; in addition to random interview intercepts u; and
random interviewer intercepts ;. The full model, which includes interactions between
the item characteristics and the paradata and non-paradata terms, is as follows, where

where @y, is the ¢ PC score:
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6
Dijk
log (1_—j> = Bo+uj +u; +u, + Zﬂcxcijk +

ijk =1
BrSensitivey, + Py Recall Heavyy, + By ProbingInstrucy + BroSpecial Instrucy, +

b1 ResponseType_NumericMonetary, +

BroResponseType_NumericNonMonetaryy, +

Bz ResponseType_Multinomial Othery, +

BraResponseType_Multinomial N oOther;, +

P15 ResponseT'ype_OpenEndedy, + [1¢Responselype_Others +

prrRespMale; + [1gRespAge; + frgRespEducation; +

BaoT'imesRespLastiW aves; + Ba1 Adults FamilyUnit; +

Ba2Callsj + Loz IW seqFirstTwo; + Paq Re ferenceDocs; +

Boslwer Male; + Poglwer Age; + Borlwer Educ_LessThanH S; +

Boglwer Educ_SomeCollege; + Poglwer Educ_Graduate; +

BsolwerWorkload; + B3 Twer MeanDailyIW; + BsolwerC'V DailylW; +

Bs3(x 145k * Sensitiveg) + Bsa(T1ijx * ProbingInstrucy) + Bss(z1i5x * SpecialInstrucy) +
Bs6(z2i51 * ResponseType_NumericMonetaryy,) +

Bs7(z2i1 * ResponseType_NumericNonMonetaryy) +

Bss(2ijx * ResponseType_MultinomialOthery,) +

B39 (a4, * ResponseType_Multinomial NoOthery,) +

Bao(z2i51 * ResponseType_OpenEndedy,) +

Ba1 (2251 * ResponseType_Othersy) +

Baz(xsiji * Recall Heavyy) + Bas(xsiji * RecallHeavyy) + Baa(xeiji * Splinstrucy) +
Bas(Recall Heavyy, * Twer Educ_LessThanH S; )+

Bas(Recall Heavyy, * Twer Educ_SomeCollege; )+

Bar(Recall Heavyy, x lwer Educ_Graduate; )

(2.4)
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(u;7 Uy, uk) ~ N(07 D) (2 5)
o’ 0

D=| 0 o2 0 (2.6)
0 0 o2

Similar to the interview-level analysis, we preceded the fitting of the full model by fitting

subset models. These are as follows:
1. A model with only the item characteristic terms (‘Item model’).
2. A model with only the paradata terms (‘Paradata model).

3. A model that additively includes terms from the above 2 models (‘Item + Paradata’
model). Comparing coeflicients from this model to the above 2 models can tell us
about common information between the paradata and non-paradata variables in

predicting occurrence of a flag.

4. A model that also allows for interactions between the item characteristic and PC

terms (‘Item x Paradata’ model).
Fitting of subset models was also conducted for the non-paradata variables as follows:
5. A model with only the non-paradata terms (‘Non-paradata’ model).

6. A model that additively includes the item characteristic and paradata terms (‘Item

+ Non-paradata’ model).

7. A model that also allows for interactions between the item characteristic and non-

paradata terms (‘Item x Non-paradata’ model).

The full model includes terms from the ‘Item x Paradata’ model and ‘Item x Non-

paradata’ model.

2.4.3 DModel fitting and inference

Before model fitting, we looked at the pairwise correlations among PC scores (for the
subset of interviews that we used for modeling) and visually inspected the distribution of
scores; we did not find any problem. After this, we centered and scaled numeric model
inputs. All multilevel models were fit with the lme4 package (Bates et al. 2015) using

the Laplace approximation in the R (Team 2013) software. Logistic models in [mej use
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ML estimation. Rather than use the default BOBYQA optimizer, we used the ‘NLopt’
implementation of the BOBQYA optimizer (Johnson) via its R interface ‘nloptr’ (Ypma
et al. 2014); some testing showed that estimates were almost exactly the same as when

the default optimizer was used but with more than a 50% reduction in runtime.

In the interview-level case, we computed Cook’s distances and DFBETAs and found two
interviews with large magnitudes of these statistics which were impacting effect sizes and
significance of our estimates. These interviews were dropped and the model re-run with
the remaining 553 interviews. We did not compute the leave-one-out diagnostic measures

for the item-level model due to the size of the dataset.
We assess the fit of our models using 2 methods.

1. Model predictions are compared to observed data. While this will be anti-conservative
since we are using the same data for fitting and prediction, it gives us an approxi-
mate measure of the predictive utility of our models. For the item-level model, we
also conducted an ROC curve analysis using the pROC package (Robin et al. 2011)
in R.

2. We undertake simulation-based diagnostics described by Hartig (2018). The key
idea is that data simulated from the fitted model should mimic the observed data if
the fitted model was correctly specified (Gelman and Hill 2006, p. 158-159). To do
this, a thousand datasets are simulated from the model, conditioning on all random
effects. Then, for each observation a quantile residual (Dunn and Smyth 1996) -
defined as the proportion of simulated values larger than the observed value - is

computed and two plots are constructed as described below.

e If there are no model fit issues, we would expect the quantile residuals across
observations to be uniformly distributed. We draw a quantile-quantile plot
to evaluate this; more formally, a Kolmogorov-Smirnov test is conducted to

detect deviation from uniformity:.

e The quantile residuals are plotted against the mean simulated value for each
observation (similar to the diagnostic plot of residuals versus fitted values con-
structed for a linear model). The mean simulated values are rank transformed
and scaled to make it easier to spot issues. To make the analysis more con-
crete and help protect against missing patterns visually (especially when there
are a lot of observations such as in the item-level model), a quantile regres-
sion is conducted between the 25th percentile, median, and 75th percentile of
the mean simulated values and the quantile residuals; the quantile regression
lines should ideally match horizontal lines at these percentiles that would in-

dicate no association between the residuals and the mean simulated responses.
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The quantile regression is conducted using quantile regression neural network
models via the QRNN package (Cannon 2011) in R, so as to be able to spot

potential non-linearities in the patterns.

R code for undertaking the simulation-based analyses was adapted from the source
code of the DHARMa package (Hartig 2018) and is included in Appendix 2.B.

Our analysis involves comparing coefficients across models. However, for logistic models
the variance at the lowest-level is fixed at 72 /3 which means that each time covariates are
included at this level, the latent variable distribution underlying the logistic distribution
is rescaled to be able to hold this variance constant. This scale change tends to inflate the
regression coefficients (Snijders and Bosker 1999, p.228-229) and “makes it impossible to
compare regression coefficients across models, or to investigate how variance components
change” (Hox 2010, p.134) since we cannot separate the impact of scale changes from
real substantive changes (Austin and Merlo 2017). To be able to compare results across
models, we follow the procedure given in Hox 2010 (p.136) by scaling our variance com-
ponents by the ratio of the variance under the null model (no covariates used) to variance

under the fitted model; regression coefficients were scaled by the square root of this ratio.

We accounted for multiple comparisons in our inferences by adjusting p-values and confi-
dence intervals using the Benjamini-Hochberg (B-H) False Discovery Rate (FDR) method
(Benjamini and Hochberg 1995; Benjamini and Yekutieli 2005).

2.5 Results

2.5.1 Interview-level analysis

PCA

Table 2.5 shows the loading structure for the first 8 PCs that were extracted. For clearer
interpretation, only loadings that are more than 0.25 are shown in the table. The PCs
make for coherent interpretations, e.g., interviews with high scores on PC6 are those which
exhibit speeding as well as apparently compensatory item revisits. Short PC labels based
on the loadings are included in Table 2.5. We see that PCs with smaller proportions
of variance explained in Table 2.5 are also more sharply defined, tending to strongly

correlate on fewer measures.
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Model results: Coefficients

Figure 2.2 plots the odds ratios from the paradata model (dashed lines) and paradata
terms from the full model (solid lines). The confidence intervals (ClIs) were computed by
exponentiating the endpoints of the FDR-adjusted log-odds CIs rather than directly using
the standard errors on the odds ratio scale, thus giving us better coverage (Faraway 2006).
The scaling factors for the paradata and full models were 0.93 and 0.94 respectively. A
detailed table containing the coefficient estimates, standard errors and p-values for the

interview-level analyses is in Appendix 2.C.

Only-paradata model vs Full model
{(Interview-level analysis)

--- Only-paradata model — Full model

IR NP P L FC1 (unsure long multi-session +

multiple itermn visits

: PO - PC2 (unsure)

‘ B PC3 (multiday)

PC4 (error messages)

T T i , PCS (short coverscreen)
, T bl U PCE (speeding +
multiple item visits)
| P T i , PCT (slow-paced +
multiple item visits)
[ *------- al
} . | PC8 (help but not remarks)
0.8 0.9 1.0 1.1 1.2
Odds ratios for a QC flag

Figure 2.2: Interview-level analysis: Only-paradata model versus Full model. The odds ratios for the
only-paradata model terms are shown by dashed lines and those for the fully-adjusted model are shown
by solid lines. These effects correspond to scaled PC scores. The horizontal bars are B-H adjusted
90% confidence intervals. The intercept has not been shown in these plots. Estimates whose confidence
intervals do not contain 1 are shown with a bigger point size.

We first focus on the paradata model and find 6 of the 8 PCs with significant effects.
Interviews with positive scores on 4 PCs - PC1 (unsure long multi-session interviews

with multiple item visits), PC2 (unsure interviews), PC4 (error-prone interviews), and
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PC6 (speeding interviews with multiple item visits) - are associated with a statistically
significant increase in the odds ratio of a flag; for every 1 standard deviation increase in
the scores for these PCs, there is an 8% to 11% increase (depending on the PC) in the
odds ratio of a flag. Two PCs - PC5 (Short-coverscreen interviews) and PC8 (interviews
invoking help but not remarks) are associated with a decrease in odds ratio of a flag

occurring; odds ratios for the 2 PCs are 0.93 and 0.91 respectively.

From these results, we see that relying only on univariate paradata measures may be
misleading, e.g., interviews that have positive PC2 (unsure interviews) scores are those
which seem to spend more time administering items on average and with fewer items
to administer. However they are still predicted to have a higher odds ratio of a QC
flag. This may be due to their relatively higher help-access and remark-making rates
that not only indicate unsure interviewing by themselves, but could also be behaviors
that disrupt the flow of an interview leading to more errors. Another example lies in the
comparison of PC6 (speeding interviews with multiple item visits) and PC7 (slow paced
interviewing also involving multiple item visits). The ‘multiple item visit’ measure loads
on both these PCs with a fairly high magnitude. But in PC7’s case, this is also combined
with higher APR times and lesser occurrence of help access and remark making. These
mixed behaviors likely go in opposite effect directions leading to no significant PC7 effect.
However, PC6 is strongly identified with only multiple item visits leading to an increased

odds ratio of a flag.

We now examine relationships for the PC terms in the full model, shown by solid lines in
Figure 2.2. Of the 6 PCs that were significant in the paradata model, only 2 remain sig-
nificant in the full model. This means that behaviors that were predictive of interviewing
quality and captured by these 4 PCs - PC1 (unsure long multi-session interviews with
multiple item visits), PC4 (error-prone interviews), PC5 (short-coverscreen interviews),
and PC6 (speeding interviews with multiple item visits) - have their origin in respondent,
interview, and interviewer characteristics. The 2 PCs that still remain significant are
PC2 (unsure interviews) and PC8 (interviews invoking help but not remarks). Behaviors
represented by these PCs possibly originate from interviewing idiosyncrasies that are at
least partially independent of respondent, interview, and interviewer characteristics in
predicting interviewing quality. The loss of significance of the 4 PCs could simply be
because of reduced degrees of freedom since we are adding several more terms in the
full model. But we also generally find that the effect sizes of these PCs has changed;
in contrast the 2 PCs that still remain significant in the full model have their effect
magnitudes more or less unchanged. This lends more credence to our inferences. We
follow the above line of analysis for the non-paradata terms as well (scaling factor for the
non-paradata model was 0.93). Figure 2.3 shows that of the 8 respondent and interview

characteristics, 4 relationships are significant in the non-paradata model. Compared to
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female respondents, male respondents on average have a 15% lesser odds ratio of a flag
occurring. Every standard deviation increase in education years over the mean reduces
the odds ratio of a flag by 8%. On the other hand, every standard deviation increase (17
years) in respondent age over the mean (50 years) increases the odds ratio of a flag by 8%.
This means that interviewers, in general, find interviewing more educated respondents
less challenging and older respondents more challenging. On average, the first two inter-
views in an interviewer’s workload are associated with a substantially higher odds ratio
of a flag (29%) compared to other interviews. This finding suggests that early interviews
- not limited to only the 1st two interviews - need to be monitored carefully. In the full
model, only this particular term among the respondent and interview variables remains
significant. Of the 3 other terms that became insignificant we see a fair reduction in the

effect size as well.

Only non-paradata model vs Full model
{Interview-level analysis)

=== Only non-paradata model — Full model

jjrininiek. alvislniei i Male respondent
N inaisl Respondent age (scaled)
ik el Respondent education (scaled)
il #times resp. in the last 5 waves (scaled)
kel il-dinin i #adults in family unit (scaled)
il lalalal) #calls (scaled)
afadelsinlelateled il 3 1st two interviews
ettt Salebbebebel - Reference available
"""""""""" hininlaks hdudnlals sabebalalat telekubebel el Male iwer
(culeleleb ikl lwer age (scaled)
""""""""" hnlaladiel alndnlotety nbnlatebnin alabnlaleted P IwerEduc_LessThanHS (ref:HS)
il alalalulol elelletoly el - lwerEduc_SomeCollege (ref:HS)
i nladalulolefotolfnlel inlolulutol elulotolols inlulelulol ; lwerEduc_Graduate+ (ref:HS)
et et IwerWorkload (scaled)
ik ialaluietd il lwerMeanDailyWorkload{scaled)
i -kttt - lwerCVDailyWorkload{scaled)

0.75 1.00 1.25 1.50 1.75 2.00 2.25 250

Odds ratios for a QC flag

Figure 2.3: Interview-level analysis: Only non-paradata model versus Full model. The odds ratios for
the only non-paradata model are shown by dashed lines and those from the fully-adjusted model are
shown by solid lines. The horizontal bars are B-H adjusted 90% confidence intervals. The intercept has
not been shown in these plots. Estimates whose confidence intervals do not contain 1 are shown with
a bigger point size. The thick grey line on the right of the plot separates the respondent and interview
terms from the interviewer terms. ‘HS’ in the interviewer education labels stands for ‘high school’.
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Of the 8 interviewer characteristics, only 2 have significant relationships in the non-
paradata model. Compared to female interviewers, male interviewers on average are
associated with a 42% higher odds ratio of a flag occurring. The wide confidence intervals
for this effect are due to the small number of male interviewers in the study. After
controlling for the PC scores, however, the odds ratio for this term reduces to 1.27 and
becomes insignificant. The only interviewer term that is significant in both the non-
paradata and full models is the CV of daily workload; the effect sizes for this term are
the same in both models. The non-paradata analysis results again demonstrate that
there is common information between the PC scores and the respondent, interview, and

interviewer characteristics in predicting interviewing quality.

Model Results: Interviewer variance, model fit, and predictive power

Table 2.6 shows the interviewer variance component and model fit indicators for the 3
models. The variances were tested using a 50:50 x* approach (Self and Liang 1987)
and were all significant. The scaling factors for the variance terms were 0.87, 0.88, and
0.89 for the paradata, non-paradata, and full models respectively. Even though the
paradata model did not have explicit interviewer-level terms, it still manages to account
for approximately a third of the interviewer variance. This can happen only when there
are between-interviewer differences in mean PC scores, demonstrating that paradata are
capturing differences in interviewer behaviors related to interviewing quality. In terms of
the AIC and BIC indicators, the paradata model performs the best. All 3 models were
able to predict the proportion of flags within +2% for at least 61% of the interviews.

Table 2.6: Interview-level analysis : Interviewer variance and model fit summary

Paradata model Non-paradata model Full model

(Null model 62, = 0.28) 62, 0.19 0.14 0.15
AIC 2588 2607 2591
BIC 2635 2689 2708

Interviews with predicted flag proportion
views with & Proport 61% 62% 63%
within £2% of the actual proportion

We assess model predictions in more detail in Figure 2.4. Here, we categorize the actual
flag proportions into deciles. Then, within each decile we plot the mean actual proportion
of flags and mean predicted proportion of flags for the 3 models. In conducting the
predictions, we conditioned on specific interviewers which is reasonable since a large
majority of interviewers tend to be used across PSID waves. The predictions are not very
good, especially at the tails of the distribution. That considered, the paradata model

does better than the non-paradata model at the upper tail.

32



Figure 2.5 displays the goodness-of-fit plot. The left panel shows that there is a deviation
of the quantile residuals from the expected uniform distribution which is also confirmed
by the Kolmogorov-Smirnov test. The right panel shows that while the quantile regres-
sion line corresponding to the median is close to the expected line, the 25th percentile
line shows a quadratic nature indicating that it might be worth considering quadratic
transformations of the predictors. But this would also make interpretation a little more
difficult.

Proportion of flagged items in an interview s
(Bold line: Actual proportions,
Flain solid line: Only-paradata model predictions,
Dotted line: Mon-paradata model predictions,
Dashed line: Full model predictions)
0.10 -
0.05
0.00 -

0.008 0.013 0.019 0.025 0.031 0.039 0.049 0.068 0.08 0.215

Upper bound of actual IV flag proportion decile intervals

Figure 2.4: Interview-level analysis: Comparison of model predictions. Mean predicted flag proportions
of the three models are compared to the mean actual flag proportions in each of the actual flag proportion
deciles. The vertical bars are the IQRs for the actual flag proportions and full model flag proportion
predictions.

2.5.2 Item-level analysis

PCA

Table 2.7 displays the loading structure for the 6 item-level paradata PCAs that were
extracted. Similar to the interview-level results, all PCs are interpretable and correspond-
ing labels are given in Table 2.7, e.g., we label PC1 as ‘unsure’ due to the presence of
remarks as well as higher mouseclicks without a noticeable loading for multiple visits,
indicating that response edits might be taking place on the original item visit. We do not

use the term ‘speeding’ here in describing the PCs since short APR times could simply
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QQ plot - Quantile residuals Simulated responses versus Quantile residuals
(Interview-level mode)l (Interview-level model)

Kolmogorov-Smirnov test :
test statistic, D = 0.1; p-value < 0.001
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Figure 2.5: Interview-level model diagnostics. The left panel compares the quantile residuals to draws
from a uniform distribution. Each point in the right panel is the mean simulated response (across 1000
simulations) for an observation in the data (there are therefore 553 points in this panel). The solid lines
in the correspond to the quantile regression lines and the dotted lines are benchmarks for these lines.

be a function of the specific items driving that PC. In contrast to interview-level PCs,

we see that even PCs with smaller proportions of variance are correlated with several

variables with reasonable magnitude, due to the heterogeneity introduced by the items.
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Model Results: Item and Paradata terms

Figure 2.6 plots the log-odds of a flag for the item model, paradata model, and ‘item
+ paradata’ model; the scaling factors for these models were 0.93, 0.92, and 0.92 re-
spectively. We display all item-level results in terms of log-odds; some models have
interactions for which the display of odds ratios can be misleading. A detailed table con-
taining the coefficient estimates, standard errors and p-values pertaining to this figure is

in Appendix 2.D.

Paradata and [tem characteristics

ltem model or Paradata model — Item + Paradata model
- PC1 {unsure)
by PC2 (Remarks + multiple visits + lesser AFR time)
- PC3 (single-visit + lesser APR time)
Paradata
. PC4 (error messages)
. PC5 (single-visit + error messages + help)
] PCB (remarks + single-visits)
e e RecallHeawy
bbb iole. el Probing instruction
by S Sensitive
el el Special instruction
I ) ltem
RS e ettt e Mumeric (non-monetary) L
characteristics
S iy Mumeric monetary
P ettty it Multiple categories (no 'other-specify')
T Multiple categories (‘other-specify')
"""""""" Labhhitb bbb Open-ended
"""""""""""""" Other response type

45 10 05 00 05 10 15 20
Log-odds of a QC flag occuring

Figure 2.6: Item-level analysis: ‘Item 4 Paradata’ model estimates. Log-odds of a QC flag based on the
paradata model are represented by dashed lines and those from the ‘Item + Paradata’ model are shown
by solid lines. The horizontal bars are B-H adjusted 90% confidence intervals. The intercept has not
been shown in these plots. Point estimates whose confidence intervals do not contain zero are in bold.
The grey line to the right of the plot separates the paradata terms from the item characteristic terms.

All 6 PC terms in Figure 2.6 are significant. An increase in the PC1 (unsure interviewing)
score by 1 standard deviation increases the odds ratio of a flag by a fairly substantial
41% while the increase in odds ratio associated with PC6 (single-visit remarks) is 12%.
The other 4 PCs are associated with a lower odds ratio of a flag, with odds ratios ranging
from 0.87 to 0.97. When the item-characteristic terms are added, the effect sizes are
approximately the same; PC2 turns insignificant but this term was borderline significant

earlier (p-value = 0.088).
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Turning to the item model, we do not find evidence of a relationship for the RecallHeavy
variable. However, items that have a probing instruction are more likely on average to
have a flag occurring, compared to items that do not have such an instruction (odds
ratio = 2.6). Sensitive items and items with instructions are also associated with higher
odds ratio of a flag (1.42 and 1.99 respectively). Among the response type terms, only
the effect for the open-ended response type is significant; compared to a binary response
item, on average an open-ended response item has a much greater odds ratio of a flag
occurring (odds ratio = 3). The CI for this effect is large given that we have only 4
open-ended items in the analysis; in general, the Cls of the item characteristic terms are
much wider than those of the PC terms. In the ‘Item + Paradata’ model, the effect for
the open-ended response type becomes insignificant with a substantial reduction in effect
size (odds ratio reduces from 3.00 to 1.92). The odds ratio for items having a probing
instruction also reduces from 2.61 to 2.29. These results imply that paradata contain

item characteristic effects associated with interviewing quality.

We further pursue this line of analysis by interacting the PC terms with item characteris-
tics, results of which are shown in Figure 2.7; data pertaining to this figure is in Appendix
2.F. PC4 (‘error messages’) is the only PC that does not have an associated interaction
and its main effect too is no longer significant. The remaining 5 of the 6 PCs have signif-
icant interactions with the item characteristics and different PCs interact with different
characteristics. The PC explaining most of the variance in the data - PC1 (unsure inter-
viewing) - interacts with probing, sensitive, and special instruction characteristics, PC2
interacts with response type, PC3 and PC5 interact with recall-heavy characteristic, and
PC6 interacts with the special instruction characteristic. The presence of the recall-heavy
characteristic in 2 PCs is interesting; while it itself does not have an overall effect (as
seen in Figure 2.6), it plays a moderating role between paradata and interviewing quality.
Effect sizes are more or less unchanged in the full model (when the non-paradata terms
are added), except for some change in the open-ended main effect. The interaction terms

involving PC5H and PC6 are seen to be non-significant in the full model.

Given the interactions in Figure 2.7, to facilitate interpretations we predict the probability
of a flag at 3 PC score levels - average, 2 standard deviations above the average (‘high’),
and 2 standard deviations below the average (‘low’) - for different item characteristics,
all else being equal. The item response type is assumed to be binomial unless stated
otherwise. These predictions ignore the random effects. We select the first 3 PCs to
conduct this analysis. We start with the interaction of PC1 with the probing instruction
and sensitive item characteristics. Figure 2.8 computes flag predictions when an item
has a probing instruction. The magnitudes of the predicted probabilities are small since
the overall flag rate is only 4.1%. In general, for a given PC1 score level, items that

have a probing instruction have a higher chance of a flag occurring than those that don’t
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Paradata and Iltem characteristics

Iltem x Paradata model — Full model

e PC1 (unsure)
i PC2 (remarks + multiple visits + lesser APR)

el PC3 (single-visit + lesser APR)
Paradata
i PC4 (error messages)

PC5 (single-visit + error messages + help)
i e PC6 (remarks + single-visits)

—_ RecallHeavy

— e Probing instruction
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----------------------

Numeric (non-monetary)

Open-ended

i Sl PC1 : Probing instruction
e PC1 : Sensitive
e PC1 : Special instruction
e PC2 : Numeric (non-monetary) Interaction terms
[l S PC2 : Open-ended
-l PC3 : RecallHeavy
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Figure 2.7: Item-level analysis: ‘Item x Paradata’ and full model estimates. Log-odds of a QC flag based
on the ‘Item x Paradata’ model are represented by dashed lines and those from the full model are shown
by solid lines. The horizontal bars are B-H adjusted 90% confidence intervals. The intercept has not been
shown in these plots. Odds ratios for response types that are not significant are not shown for cleaner
display. Point estimates whose confidence intervals do not contain zero are in bold. The grey lines to
the right of the plot separate the paradata terms, the item characteristic terms, and the interactions.

have such an instruction. However, the predicted flag probability for an item that has
a probing instruction but a low PC1 score (i.e., straightforward interviewing), is lower
than the situation for a non-probing instruction item but having a high PC1 score (unsure

interviewing).

The scenarios involving sensitive items are shown in Figure 2.9. We find that when the
PC1 score is high, the predicted flag probability for a non-sensitive item is higher than
a sensitive item; it is more understandable to have remarks, more mouseclicks etc. (the

prominent measures for PC1) when the item is sensitive than when not.

Turning to PC2, Figure 2.10 plots the predicted flag probabilities for 3 different response
types. From the 1st panel, we see that PC2 scores have no impact on the reference

binary response type level. The trends for the numeric non-monetary and open-ended
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Figure 2.8: Predicted flag probabilities: Interaction between PC1 and the probing instruction indicator.
The vertical bars are 90% confidence intervals.
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Figure 2.9: Predicted flag probabilities: Interaction between PC1 and the sensitive item indicator. The
vertical bars are 90% confidence intervals.

response types go in opposite directions. As the PC2 score increases, the predicted
flag probabilities for open-ended items increase; speeding, multiple visits, and remark
making are predictive of flag occurrences for this response type. Why does the trend
for the numeric non-monetary response type go in the other direction? An example of
this response type is item F3 in the PSID questionnaire which asks about time spent
on housework in an average week. Consulting the questionnaire objectives manual for
this question 3 shows that if the respondent is unable to give an exact number of hours
despite probing, interviewers are asked to make a remark. They are also asked to make a
remark if roomers or boarders live in the housing unit but the respondent cannot separate
time spent on cleaning their rooms (this would be classified as income-producing work).
Thus, remark making for this item would actually be an indicator that the interviewer
has tried to probe the respondent and is conscientious about remark-making when exact

answers are not forthcoming. Further, 871 of the 8789 interviews (9.9%) for this item

3ftp://ftp.isr.umich.edu/pub/src/psid/questionnaires/q2015.pdf
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involved multiple visits. It is not obvious why this should occur but the data do show a
correlation between remark-making and revisits for this item. Of the 871 interviews with
multiple item visits, 83 also involve a remark for this item (9.5%). In comparison, only
1.8% of the single-visit interviews (149 of 7918 interviews) had a remark. Perhaps good
interviewers go back to an item to make a remark when they find discrepancies in the

response to this item and a related response to another item.

Binary Numeric (non-monetary) Open-ended
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a I [ 3 I

-2 0 2 -2 0 2 -2 0 2
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Figure 2.10: Predicted flag probabilities: Interaction between PC2 and 3 item response types. The
vertical bars are 90% confidence intervals.

Finally, Figure 2.11 plots the flag probabilities for the recall-heavy item characteristic for
PC3. The tendency to not undertake multiple visits and not access help possibly signifies
confidence in interviewing which reflects in higher PC scores reducing the chances of a
flag occurring. However, this PC is also associated with low APR times. This could be a
drawback for recall-heavy items that may require slower questioning and more probing.
This may be the reason why the drop in flag probabilities as the PC3 scores increase is
not as dramatic as that for items that are not recall-heavy. Here again, we see how item

characteristics are moderating item-level paradata effects.

ltern is not recall heavy ltem is recall heavy

0.020

0.0151

0.0101 ‘{
0.005 I

-2 0 2 -2 0 2
Scaled PC3 scores

Predicted probabilty of a flag

Figure 2.11: Predicted flag probabilities: Interaction between PC3 scores and the recall-heavy indicator.
The vertical bars are 90% confidence intervals.
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Model Results: Item and Non-paradata terms

We repeat the above analysis for the non-paradata variables. Figure 2.12 shows the
log-odds of a flag for the item characteristics model, non-paradata model, and ‘item +
non-paradata’ model. The direction of effects in the non-paradata model are similar to
that we saw in the interview-level model. Being a male respondent and having higher
levels of education are associated with lower odds ratio of a flag. In contrast, older
respondents, the first 2 interviews, male interviewers, and the CV of interviewer daily
workload are, on average, associated with higher odds ratio of a flag. When non-paradata
terms are added to the item characteristics, there are generally no changes in the effect

sizes or significance, the open-ended response type being an exception.

In the ‘Item x Non-Paradata’ model, we only found the interaction of the recall-heavy
characteristic with the ‘college graduate and above’ interviewer education level (Figure
2.13). For a recall-heavy item, on average, the odds ratio of a flag when the interview
is conducted by a college graduate are 37% higher compared to when the interview is
done by a high school graduate. When the paradata terms are added to this model, the
respondent and interview gender terms are no longer significant, and there are reductions
in effect sizes for respondent age and education. The effects for the first two interviews and
CV of interviewer workload continue to remain significant with no changes in magnitudes.

Appendices 2.E and 2.G contain detailed data pertaining to Figures 2.12 and 2.13.
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Non-paradata and Item characteristics
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Figure 2.12: Ttem-level analysis: ‘Item + Non-paradata’ model estimates. Log-odds of a QC flag based
on the only-item or only non-paradata model are shown by dashed lines and those from the ‘Item +
Non-paradata’ model are shown by solid lines. The horizontal bars are B-H adjusted 90% confidence
intervals. The intercept has not been shown in these plots. Point estimates whose confidence intervals
do not contain zero are in bold. The grey lines to the right of the plot separate the respondent and
interview terms, the interviewer terms, and the interactions.

42



Non-paradata and Item characteristics
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Figure 2.13: Item-level analysis: ‘Item x Non-paradata’ model estimates. Log-odds of a QC flag based
on the item x non-paradata model are shown by dashed lines and those from the full model are shown by
solid lines. The horizontal bars are B-H adjusted 90% confidence intervals. The intercept has not been
shown in these plots. Point estimates whose confidence intervals do not contain zero are in bold. The
grey lines to the right of the plot separate the respondent and interview terms, the interviewer terms,
and the interactions. Among the response types, only the significant ‘open ended’ category is shown.

Model Results: Variance components and model fit

Table 2.8 shows the variance components from our models. We see that in the null model,
the random item intercept has the largest variance, followed by that of the interview
and interviewer random intercepts. Given the interactions between paradata and item
characteristics, the ‘Item x Paradata’ model explains 63% of the scaled between-item
variance compared to 48% explained by the ‘Item x Non-paradata’ model. However, the
explicit inclusion of interviewer-level characteristics in the ‘Item x Non-paradata’ model
allows it to explain 36% of the between-interviewer variance. The between-interviewer
variance is seen to increase in the ‘Item x Paradata’ model which indicates that controlling
for phenomena represented by the paradata-item interactions is uncovering the ‘true’

difference between interviewers. The full model expectedly draws on the relative strengths
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of the subset models. However, for a given variance component, we do not see any
incremental explanation over the better-performing subset model, e.g., the between-item
variance in the full model is almost the same as that in the ‘Item x Paradata’ model.
This indicates that there is a lot of duplication in the sources of variance explained by

the ‘Item x Paradata’ and ‘Item x Non-paradata’ models.

Table 2.8: Ttem-level analysis - Model variance components and model fit summary.

Null Item x Paradata Item x Non-paradata Full

62, 0.839 0.311 0.433 0.319
62, 0.455 0.385 0.355 0.340
62, 0272 0.292 0.174 0.213
AIC 11830 11243 11732 11225
BIC 11865 11521 12019 11670

In terms of the AIC and BIC criteria, the ‘Item x Paradata’ model performs the best.
We conducted an ROC curve analysis to further assess the performance of these models,
the results of which are shown in Figure 2.14. The plot also includes results for the
paradata model as a benchmark. Arriving at the optimal probability cut-offs and AUC
was done using Youden’s method (Youden 1950). In conducting the predictions, we only
conditioned on the specific interviewers but not on items and interviews. Conditioning
on specific items would also be reasonable and the AUCs would be higher. However,
we wanted to check how the models could perform if only the item characteristics were

included and not the specific items themselves.

Figure 2.14 shows that the paradata model, with only 6 inputs, is able to correctly predict
that a case has a flag for 68% of the actually flagged cases (true positive rate) and
incorrectly predicts a flag for 28% of the cases for which there was actually no flag (false
positive rate). The AUC for this model is 0.77. In comparison, the ‘Item x non-paradata’
model despite having 29 terms (excluding the intercept) has a lower true positive rate at
63% with only a 1 percent point lower false positive rate than the paradata model. This

establishes the efficiency of the paradata model.

When item characteristics interact with the paradata inputs (paradata x item model),
we make gains over the paradata model by reducing the false positive rate and also
marginally improving the true positive rate. Finally, the full model increases the true
positive rate over the ‘Item x Paradata’ model by 4% but also increases the false positive
rate. A small true flag rate (as in PSID’s case) means that an overwhelming number of
cases have no flags. This means that even small increases in the false positive rate can

translate into large inefficiencies. Therefore, unless there is a strong need to only focus
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on the true positive rate, the ‘Item x Paradata’ model should be preferred.
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Figure 2.14: ROC analyses for the item-level models. Each panel corresponds to one model and contains
information on the Area Under the Curve (AUC), the false positive rate (1 - specificity; horizontal axis),

the true positive rate (sensitivity; vertical axis) and the optimal cut-off probability, computed using
Youden’s method.

Figure 2.15 shows the diagnostic plots for the item-level model; we see no apparent issues.

2.6 Discussion

The results of this study show fairly strong evidence of associations between paradata
patterns and interviewing quality. A critical lesson is that a multivariate approach to
using paradata is necessary for quality control; it is insufficient, for example, to only focus
on ‘speeding’. Adopting two analysis levels, at the interview-level and item-level item,
aided our understanding of paradata, e.g., the aspect of speeding was clearer through
the interview-level analysis. On the other hand, the item-level analysis showed how

item characteristics moderate associations between item-level paradata and interviewing

quality.
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Figure 2.15: Item-level model diagnostics. The left panel compares the quantile residuals to draws
from a uniform distribution. Each point in the right panel is the mean simulated response (across 1000
simulations) for an observation in the data (there are therefore 44927 points in this panel). The solid
lines correspond to the quantile regression lines. These lines match the dotted benchmark lines.

Many of the respondent effects on interviewing quality disappeared or were reduced when
we added the paradata terms into the model, indicating that paradata are capturing
interviewing challenges arising due to specific respondent characteristics. One possible
mechanism is as follows: older respondents may face more recall issues (Knauper 1999)
and therefore require more probing. This would usually take more time. Impatient
interviewers who speed-through in such situations would get flagged on account of ‘lack
of probing’. Such cases would also be associated with a shorter APR time. The evidence
suggests that paradata are not only able to capture information present in the non-
paradata terms, but are also able to pick up nuances in interviewer behavior such as
probing which may not be fully accounted for by only interviewer demographics. This is
why the paradata models did better than the non-paradata models on the basis of AIC,

BIC, and predictive performance - and far more efficiently (fewer terms).

Interviewers are typically aware when interviews are recorded since consent is obtained
from the respondent only in those situations. McGonagle et al. (2015) show that in such
situations, interviewers adjust their interviewing pace and some measures of data quality
improve. This means that the effects we found in our study could actually be larger in

the wider population of interviews and interviewers.

There were limitations in our research: First, we did not have inter-rater reliability
scores to evaluate the QC coding. Second, our analysis on predictive power could be

overly optimistic since we are predicting the outcome for the same set of data that we
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built the model on. For this research, we wanted to utilize all available information since
our goal was primarily explanatory and therefore did not split the data into training
and test sets. But a pilot project using the paradata models to predict flags in the
2013 PSID data yielded good results. Third, our interview-level analysis ignores item
heterogeneity that could lead to inaccurate inferences. Fourth, our results are conditional
on the measures we defined; perhaps other more creatively defined measures could yield
better results. Fifth, our analysis could have benefited from richer item-level data such as
that used in Couper and Kreuter (2013) or Olson and Smyth (2015). At the interviewer-
level, one variable which is potentially important is that of interviewer experience (Bailar
et al. 1977; Lipps 2007; Couper and Kreuter 2013; West and Blom 2016), which we
were unable to access. Sixth, our research cannot confirm the causal mechanisms that
are generating our effects, e.g., despite our reasoning, we cannot confirm why making
remarks are generally an indication of inadequate interviewing. Investigating these causal
mechanisms using methods such as more detailed behavior coding is another important
step to put our understanding on a stronger footing. Finally, we undertook an analysis
to judge differences between the evaluated and non-evaluated interviews with respect to
respondent and interview characteristics; evaluated respondents were older, associated
with lesser calls, and interviews occurred earlier in interview sequences. The comparisons
are shown in Table 2.9. The p-values based on the Mann-Whitney-Wilcoxon rank sum test
indicate differences in the distributions for five of the eight variables (using a significance

level of 0.05). These findings might affect the generalizability of the findings.

Evaluated interviews Non-evaluated interviews p-value
(555 interviews) (8411 respondents) (diff. in prop.)
Male respondents: 38% 40% 0.46
Respondents with ref. documents available: 14% 17% 0.11
. . . . p-value
Min. Q1 Median Mean Q3 Max.|Min. Q1 Median Mean Q3 Max. (M-W-W)
Respondent education (vears) | 0 12 13 135 16 17 | 0 12 14 13.7 16 17 0.08
Respondent age (vears) | 20 33 48 48 60 94 | 18 32 42 45 57 97 < 0.001
# waves as respondent in the last 5 waves| 1 5 42 5 3 1 3 5 41 5 5 0.001
# adults in the respondent's family unit| 1 1 2 1.7 2 5 1 1 2 1.8 2 7 0.02
# calls between respondent and interviewer| 1 3 5 144 15 139| 1 4 8 20.8 23 180 <0.001
I'W sequence in IWER's workload| 1 11 37 45 72 1741 1 26 53 593 8§ 211 <0.001

Table 2.9: Comparison of respondent characteristics: Evaluated vs Non-evaluated interviews. Data
excludes respondents that are proxy and institutionalized. p-values for characteristics 3-8 are based on
the Mann-Whitney-Wilcoxon (M-W-W) rank sum test.

Even surveys with a well-established Computer Audio-Recorded Interviewing (CARI) in-
frastructure can afford to listen to only a limited number of interviews. However, interest
is in the population of interviews. The steps outlined in this research can be used to
build models that use paradata to predict interviewing quality for all interviews. For

studies such as PSID, models could be built on one wave of data and QC flags predicted
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for incoming interviews of the fresh wave based on their paradata patterns. One could
have a two-level QC process: one that isolates interviews with a large predicted propor-
tion of errors (interview-level model) and another that focuses on specific items across
interviews (item-level model). Future research can experiment with other predictive mod-
eling approaches beginning with relatively simpler steps such as introducing interactions
between the paradata and non-paradata terms. Analysts can also consider the follow-
ing suggestions: First, interview-level PC terms can be added to the item-level model
to provide more context, e.g., relatively shorter APR times for an item in a relatively
longer interview could probably be subject to a higher chances of a flag; Second, incorpo-
rate item-specific slopes in the model in equation 2.4; and third, experiment with other
paradata measures. Some measures worth considering are: splitting keycounts between
those spent on the response and those on remarks; extracting information on whether
a mouseclick was actually used to change a response or if it was simply an idle click;
extracting information on the use of backspaces by the interviewer; explicit coding of
the return key; incorporating information on whether an item revisit is due to an er-
ror message; incorporating additional measures such as ’access to help in multiple item

visits’.

In sum, we regard this research as the first step in understanding the interplay between
paradata, interviewing quality, and interviewer effects. An important next step would
be to replicate this research on different CATI and CAPI surveys. Not only will this
strengthen the evidence on hand, but if we find common associations of paradata patterns
with interviewing quality across surveys, inferences could potentially be transported to
surveys where it might be too expensive to undertake recordings and conduct behavior

coding.
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Appendix

2.A List of items and their covariates included in the

item-level analysis.

Table 2.A.1: List of the 170 items used in the item-level analysis and their characteristics.

No. Item Probing Special  Sensitive Recall Response type
instruc. instruc. heavy
1 Section-A.A19 1 0 0 0 Multinomial (no ‘others’)
2 Section_A.A20 0 0 1 1 Numeric monetary
3 Section_A.A21 0 0 1 0 Numeric monetary
4 Section_A.A22 0 0 1 0 Numeric monetary
5 Section_A.A23 0 0 0 0 Binary
6 Section-A.A28 0 0 0 1 Binary
7 Section_A.A3 0 0 0 1 Multinomial (no ‘others’)
8 Section_-A.A31 1 1 0 0 Numeric monetary
9 Section_A.a31b 0 0 0 0 Binary
10 Section_A.a3lc 0 0 0 0 Binary
11 Section_A.A31Per 0 0 0 0 Multinomial (others spec.)
12 Section_A.A32 0 0 0 0 Binary
13 Section-A.A33 0 1 0 0 Binary
14 Section_A.A37A 0 0 0 1 Binary
15  Section_A.A4 1 0 0 0 Multinomial (others spec.)
16 Section_A.A40_[1] 1 0 0 0 Multinomial (others spec.)
17 Section-A.A42 0 0 1 0 Multinomial (no ‘others’)
18 Section_A.A42A 0 1 1 0 Numeric monetary
19 Section-A.A42APer 0 0 0 0 Multinomial (others spec.)
20 Section-A.A42B 0 1 1 0 Numeric monetary
21 Section-A.A42BPER 0 0 0 0 Multinomial (others spec.)
22 Section_A.A42C 0 1 1 0 Numeric monetary
23 Section_A.A43 0 1 1 0 Numeric monetary
24 Section_A.A43Per 0 0 0 0 Multinomial (others spec.)
25  Section_A.A44 0 1 1 0 Numeric monetary
26 Section_A.A44Per 0 0 0 0 Multinomial (others spec.)
27  Section_A.A45 0 0 1 0 Binary
28  Section_A.A46 0 0 0 0 Binary
29 Section_A.A57[1].A57a 0 1 0 0 Binary
30  Section-A.A57[1].A57b 0 0 0 0 Multinomial (no ‘others’)
31  Section-A.A57[1].A57e 0 0 0 0 Binary
32 Section_A.A57[1].A571 0 0 0 0 Multinomial (no ‘others’)
33 Section_A.A6A 0 0 0 0 Binary
34 Section_A.A8 0 1 0 0 Numeric non-monetary
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No. Ttem Probing Special  Sensitive Recall Response type
instruc. instruc. heavy

35  Section_.A.MGTE[1].A23a 0 0 1 0 Multinomial (others spec.)

36 Section A.MGTE[1].A23b 0 0 0 0 Binary

37  Section_.A.MGTE[1].A24 0 0 1 1 Numeric monetary

38  Section_A.MGTE[1].A25 0 0 0 1 Numeric monetary

39  Section A.MGTE[1].A25al 0 0 1 0 Binary

40  Section A.MGTE[1].A25a2 0 0 1 0 Binary

41 Section-A.MGTE[1].A25a3 0 0 1 0 Binary

42 Section-A.MGTE[1].A25a4 0 1 1 0 Numeric monetary

43 Section-A.MGTE[1].A25b 0 0 1 0 Numeric monetary

44 Section-A.MGTE[1].A26 0 0 0 0 Numeric non-monetary

45  Section-A.MGTE[1].A27 0 0 1 1 Numeric non-monetary

46 Section A.MGTE[1].A27A 0 0 0 1 Binary

47  Section A.MGTE[1].A27F 0 0 0 1 Binary

48  Section.A.MGTE[1].A27G 0 0 0 1 Multinomial (no ‘others’)

49  EmployEHC1.BCDE1[1] 1 0 0 0 Multinomial (others spec.)

50 EmployEHC1.BCDE2 0 0 1 0 Numeric non-monetary

51 EmployEHC1.BCDE3 0 0 0 0 Binary

52  EmployEHC1.BCDE3A 0 0 0 0 Binary

53  Section.BC.BCJobs[1].BC19b 0 0 0 0 Binary

54  Section.BC.BCJobs[1].BC20 1 1 0 0 Open-ended

55  Section.BC.BCJobs[1].BC21 1 1 0 0 Open-ended

56  Section.BC.BCJobs[1].BC21a 0 0 0 0 Open-ended

57  Section . DE.DEJobs[1]. DE19b 0 0 0 0 Binary

58  Section_F.F11 0 1 0 0 Binary

59 Section_F.F14 0 1 0 0 Binary

60 Section_F.F18F22 1 0 1 0 Numeric monetary

61  Section_F.F18F22Per 0 0 0 0 Multinomial (others spec.)

62 Section_F.F19F23 0 0 0 0 Binary

63  Section F.F21F25 1 0 1 0 Numeric monetary

64  Section_F.F21F25Per 0 0 0 0 Multinomial (others spec.)

65  Section_ F.F3 0 1 0 0 Numeric non-monetary

66 Section_F.F47 0 1 0 0 Binary

67  Section_F.F48 0 1 0 0 Numeric non-monetary

68  Section_F.F49Series.F49[1].F49a 0 0 1 0 Numeric non-monetary

69  Section_F.F49Series.F49[1].F49b 1 0 1 0 Others

70  Section_F.F49Series.F49[1].F49b2 1 0 1 0 Multinomial (others spec.)

71 Section_F.F49Series.F49[2].F49a 0 0 1 0 Numeric non-monetary

72 Section_F.F49Series.F49[2].F49b 1 0 1 0 Others

73 Section_F.F49Series.F49(2].F49b2 1 0 1 0 Multinomial (others spec.)

74 Section F.F77 0 1 1 0 Numeric monetary

75  Section_F.F77Per 0 0 0 0 Multinomial (others spec.)

76 Section_F.F79 0 1 1 0 Numeric monetary

s Section_F.F8 0 1 0 0 Binary

78 Section_F.F80b 0 1 1 0 Numeric monetary

79  Section_F.F80c 0 1 1 0 Numeric monetary

80  Section_F.F8la 0 1 1 0 Numeric monetary

81 Section_F.F81b 0 1 1 0 Numeric monetary

82  Section_F.F8lc 0 1 1 0 Numeric monetary

83 Section_F.F82 0 0 0 0 Binary

84 Section_F.F83 0 0 1 0 Numeric monetary

85 Section_F.F84 0 0 0 0 Binary

86 Section_F.F87 0 0 1 0 Numeric monetary

87  Section_F.F87Per 0 0 0 0 Multinomial (others spec.)

88 Section_F.F88 0 0 1 0 Numeric monetary

89  Section_F.F88Per 0 0 0 0 Multinomial (others spec.)

90 Section_F.F89 0 0 1 0 Numeric monetary

91  Section_F.F89Per 0 0 0 0 Multinomial (others spec.)
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No. Ttem Probing Special  Sensitive Recall Response type
instruc. instruc. heavy

92 Section_F.F90 0 0 1 0 Numeric monetary

93  Section_F.F90Per 0 0 0 0 Multinomial (others spec.)

94 Section_F.F91 0 0 1 0 Numeric monetary

95  Section_F.Food.FOOD1 0 0 0 1 Multinomial (no ‘others’)

96  Section_F.Food. FOOD2 0 0 0 1 Multinomial (no ‘others’)

97  Section_F.Food. FOOD3 0 0 0 1 Multinomial (no ‘others’)

98  Section_F.Vehicle[1].F53 0 0 0 0 Multinomial (others spec.)

99  Section_F.Vehicle[1].F55 0 0 0 0 Numeric non-monetary

100  Section_F.Vehicle[1].F57 0 0 0 0 Binary

101  Section_F.Vehicle[1].F58 0 1 0 0 Binary

102 Section_F.Vehicle[1].F61 0 0 1 0 Numeric monetary

103 Section_F.Vehicle[1].F64 0 1 1 1 Numeric monetary

104  Section_F.Vehicle[1].F65 0 0 0 0 Binary

105  Section_F.Vehicle[1].F66 0 0 1 1 Numeric monetary

106  Section_F.Vehicle[1].F67 0 0 1 0 Numeric monetary

107  Section_F.Vehicle[1].F67Per 0 0 0 0 Multinomial (others spec.)

108  Section_F.Vehicle[1].F69 0 0 0 0 Numeric non-monetary

109  Section_F.Vehicle[1].F70 0 0 0 0 Numeric non-monetary

110 Section_F.Vehicle[2].F53 0 0 0 0 Multinomial (others spec.)

111 Section_F.Vehicle[2].F55 0 0 0 0 Numeric non-monetary

112 Section_F.Vehicle[2].F57 0 0 0 0 Binary

113 Section-G.G1 0 0 0 0 Others

114  Section_G.G102 0 0 1 0 Binary

115  Section-G.G103 0 0 0 0 Binary

116  Section_-G.G12 0 1 0 0 Binary

117  Section_-G.G13 0 0 1 1 Numeric monetary

118  Section_G.G14 0 0 0 0 Binary

119  Section_G.G16 0 0 0 0 Binary

120  Section-G.G17f 0 1 0 0 Binary

121  Section_G.G18a 0 0 0 0 Binary

122 Section_G.G25a 0 0 0 0 Binary

123 Section_G.G25b 0 0 0 0 Binary

124  Section_G.G25¢ 0 0 0 0 Binary

125  Section_G.G25d 0 0 0 0 Binary

126 Section_G.G25e 0 0 0 0 Binary

127 Section_G.G25f 0 1 0 0 Binary

128  Section_G.G25g 0 0 0 0 Binary

129  Section_G.G31 0 1 0 0 Binary

130 Section-G.G37a_[1] 1 0 0 0 Multinomial (others spec.)

131  Section-G.G40_[1] 1 0 0 0 Multinomial (others spec.)

132 Section_G.G44a 0 0 0 0 Binary

133  Section_G.G44b 0 0 0 0 Binary

134  Section_G.G44c 0 0 0 0 Binary

135  Section_G.G44d 0 0 0 0 Binary

136 Section-G.G44e 0 0 0 0 Binary

137  Section_G.G44f 0 0 0 0 Binary

138  Section-G.G44g 0 0 0 0 Binary

139  Section_G.G5 0 0 0 0 Binary

140  Section_-G.G99 0 0 0 1 Binary

141  Section_-H.H61d2 0 0 0 0 Binary

142 Section H.H61d3[1] 1 0 0 0 Others

143 Section_H.H61d4 0 0 0 0 Binary

144  Section H.H61le H61g[1].H61le_[1] 1 1 0 0 Multinomial (others spec.)

145  Section H.H61le_ H61g[1].H61f_[1] 1 1 0 0 Multinomial (others spec.)

146 Section H.H61le_ H61g[2].H61e_[1] 1 1 0 0 Multinomial (others spec.)

147  Section_H.H61J 0 0 1 0 Numeric monetary

148  Section-H.H61JPer 0 0 0 0 Multinomial (others spec.)
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No. Ttem Probing Special  Sensitive Recall Response type

instruc. instruc. heavy

149  Section_H.H61k

150  Section H.H611[1]

151  Section H.H61m H61n[1].H61m
152 Section H.H61m_H61n[1].H61n
153  Section KL.KL[2].KL74

Binary

Others
Numeric non-monetary
Numeric non-monetary

Multinomial (no ‘others’)

154  Section KL.KL[2]. KL74a Binary
155  Section-KL.KL[2].KL74b Open-ended
156  Section-KL.KL[2].KL84 Binary
157  Section_-M.M1 Binary
158  Section-M.M10 Binary
159  Section-M.M11 Binary
160  Section-M.M12 Binary
161  Section-M.M2 Binary

162 Section-M.M2a Numeric monetary

O O O O O O O O O O O O OO o+ OOoOOoO o+ O
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163  Section-M.M3 Binary
164  Section-M.M4 Binary
165  Section-M.Mb Binary
166  Section-M.M6 Binary
167  Section.M.M7 Binary
168  Section-M.MS8 Binary
169  Section_-M.M9 Binary
170 Section-M.MIntro Others
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2.B R code for model diagnostics

require (DHARMa)
require (qrnn)

require (ggplot2)

#simulate observations
gof _model <— simulateResiduals (model, #name of the model
#1000 responses simulated
n = 1000,
refit = F,
#condition on all random effects
re.form = NULL)

#mean of the simulated responses for each observation

mean_simresponse <— gof _model$fittedPredictedResponse

#rank transform the mean simulated responses for better visualization
mean_simresponse <— rank(mean_simresponse, ties.method = ”"average”)

mean_simresponse <— mean_simresponse /max(mean_simresponse )

#extract quantile residuals

scaled _resids <— gof_model$scaledResiduals

#data frame for plots
quantresids _data <— data.frame(scaled _resids = scaled _resids , #quantile
Expected = runif(gof_model$nObs)

mean_simresponse = mean_simresponse)

### Quantile regression

#penalty factor kept as 1 to reduce overfitting

#25th percentile

fit25 _nl <— qron. fit (x = as.matrix(quantresids _data$mean_simresponse),
y = as.matrix(quantresids_data$scaled _resids),
n.hidden = 4, iter .max = 1000,
n.trials =1
tau = 0.25)

quantresids _data$fit25 _nl <— qrnn.predict (

, penalty = 1

)

as. matrix(sort (quantresids _data$mean_simresponse)), fit25_nl)

#median

fit50 _nl <— qrnn. fit (x = as.matrix(quantresids _data$mean_simresponse),
.hidden = 4, iter .max = 1000,

.trials = 1, penalty = 1
tau = 0.5)

X
y = as.matrix(quantresids _data$scaled _resids),
n
n

)
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quantresids _data$fit50 _nl <— qrnn.predict (

as. matrix(sort (quantresids _data$mean_simresponse)), fit50_nl)

#75th percentile

fit75 _nl <— qronn.fit (x = as.matrix(quantresids _data$mean_simresponse),

y = as.matrix(quantresids _data$scaled _resids),

n.hidden = 4, iter .max = 1000,
n.trials = 1, penalty = 1,
tau = 0.75)

quantresids _data$fit75 _nl <— qrnn.predict (

as.matrix(sort (quantresids _data$mean_simresponse)), fit75_nl)

#Kolmogorov—Smirnov test — wuniform reference distribution
#used for annotation in the QQ plot
ks.test (quantresids _data$scaled _resids, ’punif’)

#JQ plot (theme elements and annotations not shown for brevity)
p-quantresids <— ggplot(quantresids _data,
aes (x = sort (Expected),
y = sort(scaled _resids))) +

geom _abline(slope = 1, intercept = 0) +

ggtitle ("QQ-plot .—_-Quantile_residuals” ,

subtitle = ” (Interview—level_mode)l”) +

xlab (” Expected”) + ylab(” Observed”)

#Plot of mean simulated responses against quantile residuals
#(theme elements and annotations not shown for brevity)
p-fitted _quantresids <— ggplot(quantresids _data,

aes (x = mean_simresponse ,

y = scaled_resids)) +

#quantile regression lines

geom_line (aes(x = sort(mean_simresponse), y = fit25_nl), size =
geom_line (aes(x = sort(mean_simresponse), y = fit50_nl), size
geom_line (aes(x = sort(mean_simresponse), y = fit75_nl), size =

#reference lines

geom_abline(slope = 0, intercept = 0.25, linetype = 2) +
geom_abline(slope = 0, intercept = 0.50, linetype = 2) +
geom _abline (slope = 0, intercept = 0.75, linetype = 2) +

ggtitle (”Simulated._responses.versus.Quantile_.residuals” |
subtitle = ” (Interview—level_model)”) +
xlab (”Mean_simulated _responses.(Rank_transformed)”) +

ylab (” Quantile_residuals”)
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2.C Interview-level model results

Table 2.C.1: Data used to plot the interview-level model plots. These correspond to Figures 2.2 and 2.3.
The p-values are Benjamini-Hochberg adjusted p-values. p-values less than 0.1 are in bold. OR stands
for ’Odds ratio’.

Paradata model Full model

OR  SE p-value | OR SE p-value
(Intercept) 0.04 0.002 < 0.001 |[0.04 0.004 < 0.001
PC1 1.09 0.04 0.02 1.06 0.04 0.19
PC2 1.11  0.04 0.01 1.11  0.05 0.08
PC3 0.98 0.03 0.64 0.98 0.04 0.73
PC4 1.08 0.04 0.03 1.06 0.04 0.19
PC5 0.93 0.03 0.03 0.95 0.03 0.20
PC6 1.09 0.04 0.03 1.07  0.04 0.19
PC7 0.98 0.03 0.64 0.98 0.03 0.72
PC8 0.91 0.03 0.02 0.91 0.03 0.06

Non-paradata model

OR SE p-value

(Intercept) 0.04 0.004 < 0.001

Male respondent 0.85 0.06 0.04 0.89 0.06 0.19
Respondent age 1.08 0.04 0.09 0.98 0.04 0.79
Respondent education 0.92 0.03 0.03 0.94 0.03 0.19
# times resp. last 5 waves 0.94 0.03 0.16 0.96 0.03 0.57
# adults in family unit 1.03  0.03 0.51 1.03  0.04 0.66
# calls between IWER and resp 1.03 0.04 0.51 1.03 0.04 0.58
First 2 IWs 1.29 0.12 0.03 1.27  0.12 0.07
Reference docs with resp. 0.96 0.09 0.79 0.97 0.09 0.85
Male IWER 1.42  0.23 0.09 1.27  0.21 0.28
IWER age 1.00 0.06 0.97 0.99 0.06 0.92
IWER educ_LessthanHS 1.15  0.20 0.56 1.11 0.19 0.73
IWER educ_SomeCollege 1.02 0.14 0.94 1.00 0.14 0.97
IWER educ_Graduate+ 1.13  0.16 0.53 1.07 0.15 0.78
IWER workload 0.89 0.06 0.11 0.90 0.06 0.19
IWER mean daily workload 0.99 0.05 0.94 0.99 0.05 0.90
IWER CV daily workload 1.26  0.08 0.003 1.26  0.08 0.01
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2.D Item-level results: Item, Paradata and Item -+

Paradata models

Table 2.D.1: Data used to plot the Item, Paradata, and Item + Paradata model estimates. These
correspond to Figure 2.6. The p-values are Benjamini-Hochberg adjusted p-values. p-values less than
0.1 are in bold. For the item response type variable, ‘binary’ is used as the reference category.

Paradata model Item + Paradata model
Log-odds SE  p-value Log-odds SE p-value

(Intercept) -3.85 0.09 < 0.001 -4.33 0.12 < 0.001
PC1 0.35 0.02 < 0.001 0.33 0.02 < 0.001
pPC2 -0.03 0.02 0.09 -0.03 0.02 0.12

PC3 -0.14 0.02 < 0.001 -0.16 0.02 < 0.001
PC4 -0.04 0.01  0.004 -0.04 0.01 0.01

PCs -0.07 0.02 < 0.001 -0.08 0.02 < 0.001
PC6 0.11 0.02 < 0.001 0.13 0.02 < 0.001

Item model
Log-odds SE  p-value

(Intercept) -4.39 013 < 0.001

RecallHeavy 0.27 0.20 0.24 0.25 0.18 0.20
Probing instruction 0.96 0.21 < 0.001 0.83 0.19 < 0.001
Sensitive 0.35 0.17 0.09 0.33 0.15 0.06
Special instruction 0.69 0.15 < 0.001 0.64 0.14 < 0.001
Numeric item 0.36 0.24 0.24 0.15 0.21 0.53
Numeric non-monetary item 0.32 0.24 0.24 -0.004  0.21 0.99
Multinomial (no ‘others’) item -0.01 0.27 0.97 -0.17  0.25 0.53
Multinomial (‘Others specify’) item 0.08 0.21 0.75 0.16 0.19 0.48
Open-ended item 1.10 0.40 0.02 0.65 0.37 0.12
Other response type -0.43 0.36 0.29 -0.47 0.33 0.20
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2.E Item-level results: Item, Non-paradata and Item

+ Non-paradata models

Table 2.E.1: Data used to plot the Item, Non-paradata, and Item 4+ Non-paradata model estimates.
These correspond to Figure 2.12. The p-values are Benjamini-Hochberg adjusted p-values. p-values less
than 0.1 are in bold. For the item response type variable, ‘binary’ is used as the reference category. For
interviewer education, ‘High school/GED’ is used as the reference category.

Non-paradata model Item + Non-paradata model

Log-odds SE  p-value Log-odds SE p-value
(Intercept) -3.91 0.13 < 0.001 -0.18  0.08 0.07
Male respondent -0.18 0.08 0.07 0.18 0.05 < 0.001
Respondent age 0.17 0.04  0.001 -0.15 0.04 0.001
Respondent education -0.14 0.04  0.001 -0.06 0.04 0.26
# times resp. last 5 waves -0.06 0.04 0.27 0.02 0.04 0.74
# adults in family unit 0.02 0.04 0.72 0.02 0.04 0.74
# calls between iwer and resp 0.02 0.04 0.72 0.31 0.12 0.04
First 2 IWs 0.29 0.12 0.05 0.31 0.12 0.04
Reference docs with resp. -0.05 0.11 0.72 -0.05 0.12 0.74
Male iwer 0.38 0.18 0.08 -0.04 0.06 0.70
Iwer age -0.03 0.06 0.72 0.27 0.20 0.27
Iwer educ_LessthanHS 0.27 0.19 0.27 0.14 0.15 0.47
Iwer educ_SomeCollege 0.14 0.15 0.48 0.19 0.16 0.37
Iwer educ_Graduate+ 0.19 0.16 0.37 -0.14 0.07 0.13
Iwer workload -0.13 0.07 0.12 0.01 0.06 0.93
Iwer mean daily workload 0.01 0.06 0.93 0.27 0.07 0.001
Iwer CV daily workload 0.26 0.07  0.001 0.27 0.07 0.001

Item model

Log-odds SE  p-value Log-odds SE p-value
(Intercept) -4.39  0.13 < 0.001
RecallHeavy 0.27 0.20 0.24 0.29 0.20 0.26
Probing instruction 0.96 0.21 < 0.001 0.95 0.22 < 0.001
Sensitive 0.35 0.17 0.09 0.38 0.17 0.08
Special instruction 0.69 0.15 < 0.001 0.70 0.16 < 0.001
Numeric item 0.36 0.24 0.24 0.37 0.24 0.25
Numeric non-monetary item 0.32 0.24 0.24 0.35 0.24 0.26
Multinomial (no ‘others’) item -0.01 0.27 0.97 -0.02 0.28 0.94
Multinomial (‘Others specify’) item 0.08 0.21 0.75 0.12 0.21 0.70
Open-ended item 1.10 0.40 0.02 1.20 0.41 0.01
Other response type -0.43 0.36 0.29 -0.40 0.37 0.39
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2.F Item-level results: Item x Paradata and Full mod-

els

Table 2.F.1: Data used to plot the Item x Paradata and full model estimates. These correspond to
Figure 2.7. The p-values are Benjamini-Hochberg adjusted p-values. p-values less than 0.1 are in bold.
For the item response type variable, ‘binary’ is used as the reference category.

Item x Paradata model Relevant full model terms
Log-odds SE  p-value Log-odds SE p-value

(Intercept) -4.31 0.12 < 0.001 -4.43 0.16 < 0.001
PC1 0.58 0.04 < 0.001 0.58 0.04 < 0.001
PC2 -0.06 0.05 0.30 -0.07 0.05 0.32
PC3 -0.20 0.03 < 0.001 -0.20 0.03 < 0.001
PC4 -0.02  0.02 0.44 -0.02 0.02 0.57
PC5 -0.10 0.03 < 0.001 -0.10 0.03 0.001
PC6 0.04 0.03 0.34 0.04 0.03 0.43
RecallHeavy 0.27 0.18 0.22 0.13 0.20 0.66
Probing instruction 0.82 0.20 < 0.001 0.81 0.20 < 0.001
Sensitive 0.37 0.16 0.04 0.39 0.16 0.05
Special instruction 0.69 0.14 < 0.001 0.69 0.14 < 0.001
Numeric monetary item 0.17 0.21 0.53 0.20 0.22 0.52
Numeric non-monetary item -0.03 0.22 0.93 0.06 0.22 0.85
Multinomial (no ‘others’) item -0.22 0.25 0.49 -0.21 0.25 0.57
Multinomial (‘Others specify’) item 0.22 0.19 0.34 0.26 0.19 0.32
Open-ended item 1.04 0.37 0.01 1.13 0.38 0.01
Other response type -0.68 0.33 0.08 -0.63 0.34 0.13
PC1 : Sensitive -0.23 0.07 0.001 -0.23 0.07 0.003
PC1 : Probing_instruc. -0.10  0.05 0.08 -0.11 0.05 0.07
PC1 : Special_instruc. -0.22 0.05 < 0.001 -0.23 0.05 < 0.001
PC2 : Numeric non-monetary item -0.19 0.09 0.05 -0.19 0.09 0.07
PC2 : Numeric monetary item 0.00 0.06 0.98 0.00 0.06 0.96
PC2 : Multinomial (no ‘others’) item -0.04 0.09 0.79 -0.03 0.09 0.85
PC2 : Multinomial (‘others specify’) item -0.01 0.06 0.91 -0.01 0.06 0.91
PC2 : Open-ended item 0.30 0.09 0.002 0.29 0.09 0.004
PC2 : Other response type -0.03 0.13 0.91 -0.01 0.13 0.96
PC3 : RecallHeavy 0.16 0.04 < 0.001 0.15 0.04 < 0.001
PC5 : RecallHeavy 0.08 0.04 0.10 0.08 0.04 0.14
PC6 : Special_instruc. 0.08 0.04 0.08 0.08 0.04 0.11
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2.G Item-level results: Item x Non-paradata and
Full models

Table 2.G.1: Data used to plot the Item x Non-paradata and full model estimates. These correspond to
Figure 2.13. The p-values are Benjamini-Hochberg adjusted p-values. p-values less than 0.1 are in bold.
For the item response type variable, ‘binary’ is used as the reference category. For interviewer education,
‘High school/GED’ is used as the reference category.

Item x Non-paradata model Relevant full model terms

Log-odds SE p-value Log-odds SE p-value
(Intercept) -4.54 0.16 < 0.001 -4.43 0.16 < 0.001
Male respondent -0.19 0.08 0.07 -0.16 0.08 0.11
Respondent age 0.18 0.05 < 0.001 0.11 0.05 0.05
Respondent education -0.14 0.04 0.001 -0.11 0.04 0.01
# times resp. last 5 waves -0.06 0.04 0.27 -0.04 0.05 0.58
# adults in family unit 0.02 0.04 0.77 0.04 0.04 0.52
# calls between iwer and resp 0.02 0.04 0.77 0.02 0.04 0.71
First 2 IWs 0.31 0.12 0.05 0.28 0.12 0.07
Reference docs with resp. -0.05 0.12 0.77 -0.14 0.12 0.39
Male iwer 0.38 0.18 0.10 0.38 0.20 0.11
Iwer age -0.03 0.06 0.77 -0.03 0.07 0.74
Iwereduc_LessthanHS 0.16 0.21 0.64 0.18 0.22 0.57
Iwereduc_SomeCollege 0.16 0.16 0.49 0.10 0.17 0.70
Iwereduc_Graduate+ 0.03 0.17 0.92 0.01 0.18 0.96
Twer workload -0.14 0.07 0.13 -0.14 0.08 0.14
Iwer mean daily workload 0.01 0.06 0.94 0.02 0.07 0.85
Iwer CV daily workload 0.27 0.07 0.001 0.27 0.08 0.002
RecallHeavy 0.18 0.22 0.60 0.13 0.20 0.66
Probing instruction 0.95 0.22 0.001 0.81 0.20 < 0.001
Sensitive 0.38 0.17 0.08 0.39 0.16 0.05
Special instruction 0.70 0.16 < 0.001 0.69 0.14 < 0.001
Numeric non-monetary item 0.38 0.24 0.25 0.20 0.22 0.52
Numeric monetary item 0.35 0.24 0.27 0.06 0.22 0.85
Multinomial (‘Others specify’) item 0.11 0.21 0.77 0.26 0.19 0.32
Multinomial (no ‘others’) item -0.02  0.28 0.94 -0.21 0.25 0.57
Open-ended item 1.20 0.41 0.01 1.13 0.38 0.01
Other response type -0.39 0.37 0.49 -0.63 0.34 0.13
Iwereduc_LessthanHS : RecallHeavy 0.28 0.18 0.25 0.22 0.19 0.39
Iwereduc_SomeCollege : RecallHeavy -0.06 0.14 0.77 -0.04 0.14 0.85
Iwereduc_Graduate+ : RecallHeavy 0.32 0.14 0.07 0.32 0.14 0.07
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Chapter 3

Does monitoring interviewing
quality imply monitoring interviewer
effects?

3.1 Why monitor interviewing quality?

Most professionally-run surveys have systems that monitor interviewers for interviewing
quality (Tarnai and Moore 2007). These systems have their roots in the recognition that
interviewer behaviors can introduce error into survey estimates. Interviewers differ in
the way they ask questions (Rustemeyer 1977; Couper et al. 1992), probe respondent
answers (Hyman 1954; Mangione et al. 1992), give them feedback (Marquis 1969; Hildum
and Brown 1956; Cannell et al. 1981), and enter data (Collins 1970; Rustemeyer 1977,
Fowler and Mangione 1990, p.82). These interviewer-specific behaviors introduce cor-
relations among responses within each interviewer’s workload. Since responses within
each workload tend to be similar, expected mean responses between interviewers tend
to be different, assuming a design where samples are randomly assigned to interview-
ers, i.e., an interpenetrated sample (Mahalanobis 1946), and a 100% response rate. The

intra-interviewer correlation coefficient is given by:

between-interviewer variance

(3.1)

between-interviewer variance + within-interviewer variance

While values of p;,,; are small - typically less than 0.02 (Groves 1989, p.318) - the variance
of a mean is inflated by 14 (MeanW orkload — 1) pint, potentially leading to a substantial
drop in precision when mean workloads are large (Elliott and West 2015). The term
‘interviewer effects’ in the literature typically refers to this increase in variance on account
of interviewer measurement error (Davis et al. 2010), though, depending on context, the

term can also refer to the biasing effect of interviewer behavior.
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One method that has been advocated to reduce interviewer effects is to adopt ‘stan-
dardized interviewing’ (Fowler and Mangione 1990) or ‘programmed interviewing’ (Blair
1980, Cannell et al. 1975) that seeks to train all interviewers to perform their tasks in the
same way so that it becomes inconsequential as to which specific interviewer conducts
the interview. But along with these training procedures, survey organizations also need
systems to monitor interviewer behavior “to ensure that interviewers follow procedures
for standardized interviewing and do not deviate from the interview script” (Currivan
et al. 2006; Tarnai 2007) and to provide quick feedback on the quality of interviewing
(Chapman and Weinstein 1988; Couper et al. 1992).

3.1.1 Summary of the monitoring process

The literature places an emphasis on ‘direct’ monitoring that collects information on the
actual interaction of the interviewer with the respondent (Fowler and Mangione 1990).
For Computer Assisted Telephone Interviewing (CATI) surveys, direct monitoring can
be done by listening to interviews or recording the interviews and coding them later.
With technological advances such as Computer Audio-Recorded Interviewing (CARI)
(Biemer et al. 2000; Thissen et al. 2008; Mitchell et al. 2008; Thissen 2014), recording
has become less obtrusive, survey managers have more control such as allowing specific
slices of the interview to be recorded, and storing and retrieving interviews has become
easier. Coding recorded interviews is typically undertaken at an item level by trained
coders who typically follow standard coding schemes mentioned in the literature (e.g.,
Hyman 1954, Cannell et al. 1968, Marquis 1969, Cannell et al. 1975, Mathiowetz and
Cannell 1980, and Ongena and Dijkstra 2006). In their study of the behavior coding
literature, Ongena and Dijkstra (2006) find 134 categories of interviewer behavior that
have been used; most common coding schemes track, at a minimum, question asking,

probing, interactions with respondents, and recording responses.

3.1.2 Evaluating the utility of interviewer monitoring

Behavior coding data give the survey manager a quantification of interviewing quality
that can be used to measure the extent to which interviewers adhere to protocol. However,
little evidence exists of whether these systems are serving their fundamental purpose: the

reduction of survey error.

Two studies have approached this issue. Groves and Magilavy (1986) monitored inter-
viewer behavior in a survey with an interpenetrated sample where 1918 respondents were

interviewed by 33 interviewers. Interviewer effects for 25 variables were computed and an-
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alyzed for associations with two question asking behaviors. Though interviewers differed
widely in the behaviors, these were not found to be correlated with p;,;. Scatterplots of
deviations of interviewer-specific means from the overall mean versus interviewer scores
from the monitoring data did not show any pattern. Interviewer effects were also not

correlated with response rate, productivity, and supervisor evaluations.

Fowler and Mangione (1990) computed p;,; for 65 items where 100 interviews were con-
ducted by 57 interviewers and eight interviewer behaviors were coded. In line with the
findings in Groves and Magilavy (1986), incorrect asking behavior was not correlated
with p;n:. Four behaviors were positively correlated with p;,,; (and were statistically sig-
nificant at a 0.05 level), with correlation coefficients ranging from 0.2 to 0.49. Of these
four behaviors, three were probing behaviors (the highest correlation was for ‘failure to

probe’) and one was to do with incorrect recording of responses.

The Groves and Magilavy (1986) study only looks at asking behavior while the Fowler and
Mangione (1990) study has a limited sample size. There have been significant improve-
ments in computing since the 1990s that allow researchers to fit models that approximate
interpenetrated samples (e.g., Hox 1994; West et al. 2013; Beullens and Loosveldt 2016),
allowing for more in-depth item-level analyses. But there is little research that links
behavior coding data to interviewer effects, especially in the context of production sur-
veys (compared to laboratory-like studies). This shortcoming has been alluded to in the

literature:

e “Unfortunately, although interaction coding can measure compliance with train-
ing standards, there have been few empirical links made between violating those

standards and measurement error.” (Groves 1989, p.387)

e “we outline a variety of procedures and techniques designed to maximize the consis-
tency of interviewing but the test of the efficacy of these solutions lies in assessments
of whether or not interviewers are affecting answers.” (Fowler and Mangione 1990,
p.25)

This is the gap we address in this chapter, i.e., evaluating the utility of interviewer

monitoring in the pursuit of reducing interviewer measurement error.

3.2 Research questions

We define 4 specific research questions in this chapter. Our first question deals with the

between-interviewer variance term of equation 3.1:

1. Do interviewing quality indicators explain estimates of interviewer response vari-
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ance?

Our next question does not concern itself with the between-interviewer variance com-
ponent as much as with case-level associations of quality indicators with substantive
responses. Take a situation where interviewers in a survey behave neutrally for most
part except for a small proportion of cases for each interviewer where there is a bias-
ing effect, e.g., encounters with hostile respondents where interviewers might be wary
of probing. Monitoring evaluations of interviewing quality will flag these situations as
‘failure to probe’. But if the biasing effect for a large majority of interviewers is in the
same direction, the between-interviewer component will tend to remain the same thereby

masking the biasing effect. This leads us to ask:

2. Is there an association between an item’s substantive response and the quality of

interviewing that elicited that response?

The first two questions were about the substantive responses. Our last two questions turn
to the issue of item non-response. In a study on interviewers’ approach to administering
socially uneasy questions, Sudman et al. (1977) do not find interviewer effects for the
substantive responses. However, they find higher non-response rates for interviewers who
felt the questions were sensitive to respondents. In a monitoring process, such behaviors
will be captured when coders find interviewers, say, rushing through the question or not
probing when required. The literature shows that interviewers vary in their ability to
garner responses reflecting in interviewer-varying item missing rates (Bailar et al. 1977;
Loosveldt and Beullens 2014). This leads us to ask the next two questions which mirror

the questions concerning substantive responses:

3. Are interviewing quality indicators for an item predictive of estimates of non-

response interviewer variance for that item?

4. Are item-level interviewing quality indicators predictive of item non-response?

3.3 Study survey

We used data from the 2015 wave of the Panel Survey of Income Dynamics (PSID) for
our research. The PSID is a nationally representative survey of families and individuals
in the U.S., conducted via Computer Assisted Telephone Interviewing (CATI). The sur-
vey consists of biennial waves where one respondent per family is administered a ‘main
interview’; supplemental studies are added to this main interview e.g., the ‘transition into
adulthood supplement’ is asked to individuals when they become 18 years of age. Be-

tween March-December 2015, 9048 respondents were interviewed by 96 interviewers with
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a response rate of 89% (calculated with respect to the previous wave). Interviews are
largely conducted by telephone; only 2.8% interviews had to be conducted in face-to-face
mode. An interview lasted for 80 minutes on average. The detailed questionnaire * and
codebook 2 are available on the PSID website.

Before the survey commences, PSID interviewers undergo video training 3 on the study
terminology, concepts, and individual sections. This is followed by an in-depth in-person
training at Ann Arbor, Michigan, USA. Approximately 60% of interviewers (61 of 96
interviewers) in PSID 2015 were also interviewers for at least one of the previous two

waves.

For this paper, we are interested in PSID’s substantive data and interviewing evaluation

data. These are explained below.

3.4 Data

3.4.1 Substantive data

The PSID main interview begins by taking consent from the respondent followed by ques-
tions about the family composition and member details. These ‘coverscreen’ questions are
followed by substantive questions. On average, a respondent answers about 360 substan-
tive questions across 11 sections as shown in Table 3.1; sections concerning employment
(sections BC/DE), expenditures (section F), and health (section H) account for close to

60% of interview duration.

In 2015, to aid timely research into the aftermath of the 2008 recession, PSID released data
on 357 items concerning mortgage distress, housing, food security, wealth, and computer
use (belonging to Sections A, F, and W) within a month of fieldwork completion. These
early release data (ER data) do not include data from ‘split-oft” families (split-off families
consist of either a person or group of people who moved out from an existing PSID family
since the prior wave’s interview to form a new, economically independent family unit
living in a separate housing unit). This reduces the total ER data sample size to 8262
families. However, since these data were quickly released, they did not undergo the usual
editing, cleaning, and imputing processes which is an advantage for our analytical goals
since data ‘as collected” would better reflect interviewer effects. We therefore used ER

data for these families and the regular public use file data (that have undergone all the

Lftp://ftp.isr.umich.edu/pub/src/psid/questionnaires/q2015.pdf
2ftp://ftp.isr.umich.edu/pub/src/psid/codebook/fam2015er_codebook.pdf
3https://psidonline.isr.umich.edu/videos.aspx
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Average #items  Average IW

No. Section Substantive area administered in duration
an Iw {mins)
1 A Housing, Utilities, Computer Use 36 7
2 BC, DE ) Employment 46 22
{including EHC™ )
3 F Expenditures 52 11
A G Current income;- Other family unit 18 9
member education
c R Dﬁ-—vear income and public 1 5
assistance
6 W Wealth and active savings 22 5
7 p Pensions 13 3
8 H Health 96 14
9 ] Marriages and Children 11 1
10 KL New head and spouse/partner 14 3
background
11 M Philanthropy 9 2
Average interiew 358 80

1. EHC: Event History Calendar

Table 3.1: PSID substantive section descriptions.

data processing) for the remaining respondents. We used only respondents interviewed

via CATT for our analysis.

3.4.2 Interviewing evaluation data

In 2015, PSID recorded two of the first four interviews in every interviewer’s workload
followed by a further 10% random sample, resulting in 1120 recorded interviews. A
‘capture list” dictated which item in the interview was to be recorded; these items were
chosen on the basis of substantive importance. For the first three weeks of fieldwork, the
capture list inadvertently contained 1157 items belonging to a pretest version. This was
corrected and the list pared down to 382 items. We only consider items from the 382

items for our analyses.

Of the 1120 interviews, 594 CATTI interviews (53% of all the recorded interviews) were
listened to by nine quality control (QC) evaluators. Owing to issues such as bad recordings
or missing interviewer characteristics, only 555 interviews were available for analysis.
These interviews were conducted by 92 interviewers (96% of the 96 interviewers), with
a median of 6 evaluated interviews per interviewer (first quartile: 4 interviews, third

quartile: 8 interviews). The recorded items accounted for a median 35% of the total
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number of administered substantive items (IQR: 31% - 40%) and a median 45% of the

substantive interview duration (range: 40% - 50%) within the 555 evaluated interviews.

Apart from their training and extensive experience in behavior coding, many of the QC
evaluators have been interviewers themselves which especially equips them to understand
interviewer behavior. An evaluator raised a QC flag for an item if she encountered an
issue in any of the five interviewing dimensions in Table 3.2. QC flags were classified as

‘major’ or ‘minor’ depending on the potential impact on the substantive response.

Table 3.2: The five interviewing evaluation dimensions with sixteen categories.

No. Interviewing dimension Categories
1 Question asking Altered wording; Skipped question; Question delivery; Not verbatim; Other reading error
2 Probing and clarifying  Failure to probe or clarify; Inappropriate, evaluative, or directive probe; Other probing error
3 Data entry Wrong category; Wrong entry
4 Feedback Emotive feedback; Other feedback error
5  Other reasons Unprofessional conduct; Consent error; Household composition; Other error

Coders also explicitly noted the cause of a major flag; four of the sixteen categories
accounted for 70% of all major flags: failure to probe or clarify (44%), altered wording
(11%), inappropriate, evaluative, or directive probe (9%), and ‘other entry error’ (6%).
The large proportion of flags due to improper probing is expected since interviewers find
it the hardest skill to learn (Fowler and Mangione 1990, p.44); Hicks et al. (2010) find

that interviewers probed only in 57 percent of the instances when a probe was needed.
Based on these data, we created the following three ‘flag variables’ to use in our models:

1. QCFlag, a case-level variable that indicates one of the three interviewing evaluation
outcomes: ‘Major flag’, ‘Minor flag’, and ‘No flag’. Flag counts are generally small
at the item level (see Table 3.3 below) preventing us from splitting ‘Major flag’ by

specific interviewer behaviors.

2. ItemFlagProportion, an interviewer-level variable that represents the proportion
of evaluated cases for a specific item (across interviews) whch have either a major
or minor flag. Since there were only a median 6 evaluated cases per item per
interviewer, splitting this variable on the basis of major and minor flags (let alone
specific behaviors) was not possible. Figure 3.1 plots the item flag proportions for
22 items in the PSID questionnaire (these items were chosen based on the process
described below in Section 3.5.1) where we can see a fair amount of variation in

these proportions across items.

3. Qverall FlagProportion, which is the overall proportion of evaluated cases for an

interviewer (across items and interviews) that have either a major or minor flag.
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The median for this variable is 0.033 with values ranging from 0.008 to 0.099 (IQR:
0.021 - 0.053).

Iltem-wise interviewer flag proportion

1.0

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1

0.0{— — — — —_— T T

H6le H61J A44 GI13 A20 A42 BCDEL A22 A42B A42A A8 GI12 F80B A43 A40_1F49b2 A21 H6lk A4 F47 F77 KL84 F81A F81B F82 Gl4 F57
Iltem

Figure 3.1: Item-wise interviewer flag proportions. Each data point in this plot is the item flag proportion
for a specific interviewer. Items on the horizontal axis are sorted in descending order of the items’ flag
proportions seen in Table 3.3. Items with higher flag proportions have relatively more interviewers
contributing to the flag proportion; items with lower flag proportions are driven by ‘outliers’.

3.4.3 Interviewer characteristics
We used 3 interviewer demographic variables and 3 variables derived from interviewers’
work characteristics.

1. Interviewer sex (88% of interviewers are female).

2. Interviewer age (mean: 53.6 years, standard deviation: 12.1 years)

3. Interviewer education (less than High school, 12% of interviewers; High school/GED,
35% of interviewers; some college, 28% of interviewers, college graduate and above,

25% of interviewers).

4. Interviewer workload, i.e., number of conducted interviews (mean: 114.5 interviews,

standard deviation: 41.6 interviews).

72



5. Mean interviews per day (mean: 1.2 daily interviews, standard deviation: 0.12 daily
interviews); even a moderate workload may lead to interviewer fatigue if completed

in a short time period. We include partial interviews in this calculation.

6. The coefficient of variation (CV) of the number of daily interviews conducted (mean:
0.53, standard deviation: 0.11); interviewers who are more consistent with the

number of daily interviews may be associated with better interviewing quality.

We refer to these 6 interviewer characteristics as ‘non-flag’ variables.

3.5 Methods

3.5.1 Choosing items for analysis

We started by choosing substantive items that had a minimum of 200 interviewing eval-
uations (roughly, a minimum of 2 evaluations each for the 92 interviewers) and at least
10 flags (so we have some potential effects to measure). We then dropped the following
items: ‘Event History Calendar’ (EHC), which is really a battery of questions on em-
ployment and residence but which the interviewing evaluation process treats as a single
‘item’; two open-ended items on the nature of work and industry (BC20 and BC21); a
reading evaluation of the introduction to section M of the questionnaire; a question on
which specific member is covered by health insurance (H61D3); and an item on which
family member’s employer provides insurance (H61f). Finally, we removed binary item
‘G17f’, due to a very low (only 0.2%) substantive response proportion. This yielded 27
items which are a good mix of response types: numeric (14 items, with 13 of them involv-
ing monetary values), binary (7 items), and multinomial (6 items). Seventeen items have
a median of 5 or 6 evaluations per interviewer, 9 items have a median 4 evaluations per
interviewer, and 3 items have a median 3 evaluations per interviewer. More item details

are in Table 3.3 with items’ summary statistics in Appendix 3.A.

3.5.2 Interviewer considerations

For the chosen items, we checked the number of interviewers with only one evaluation
(‘single-evaluation’ interviewers). We found that 16 of the 27 items had up to 2 single-
evaluation interviewers, 5 items had 4 or 5 such interviewers, and 3 items had 8 such
interviewers. Three items (items A20, A21, and A22, that also had the least median
number of evaluations) had 12-13 such interviewers. Such single-evaluation interview-

ers would be associated with very imprecise estimates of ItemFlagProportion. Also, at
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least two evaluations are required to compute a within-interviewer variance. We there-
fore removed these single-evaluation interviewers. Table 3.3 shows a fairly large pool of

interviewers even after removing these interviewers.
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3.5.3 Model: Do quality indicators explain interviewer response

variance?

Research question 1 is about exploring possible associations between the QC flag variables
and interviewer response error variance. Consider the following model with interviewer-
varying intercepts fit to y;; responses of a certain continuous item. For all models in this

chapter, the subscript j refers to a respondent who is interviewed by interviewer 1.

Yij = Qo + Uo; + Xﬁax + €5 (3.2)
itd 2

Ugi ~ N(O7 iner)
iid 2

Eij ~ N(O, Oe)

Up; 1 Eij

In this model (and all others in this chapter), X is a vector of respondent covariates
via which we seek to approximate an interpenetrated design; we do not have substantive
interest in them. We included three household-level variables and three individual-level
variables in X: number of adults in the family (1, 2, 3, and 4+ adults), was included
to account for possible higher income and expense response values in larger families.
Also, many individual-level questions in the PSID questionnaire are repeated for every
adult in the home, potentially adding to respondent and interviewer burden and therefore
increasing response error; the number of children at home (0, 1, 2, 3, and 44 children)
was included to account for potentially larger dwelling units and more expenses.; reported
2014 household income (< $25K, $25K — $50K, $50K — $75K, $75K — $100K, and
> 100K) was included since the survey is primarily economic in nature and many response
values would be correlated with the household economic condition; sex was included since
past research suggests that this may be associated with recall accuracy (Skowronski and
Thompson 1990; Auriat 1993) and measurement error on economic data (Lee and Lee
2012); education (some high school or less, high school graduate, come college, and college
graduate and above) was included since this is known to be correlated with cognitive
sophistication (Krosnick and Alwin 1987, Krosnick1991); and finally, age (< 25 years,
25-34 years, 35-54 years, 55-64 years, 65-74, 75 years and above) was included since it is
known to account for response effects even after taking into account respondent education
(Knauper 1999).

The categorization of continuous control variables helped overcome initial problems dur-
ing model estimation. It also ensured that outlier values do not overly influence our
inferences. We checked if some control variable values were concentrated only among

only a few interviewers but this was not the case. These variables also have low item
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missing rates, the highest being that of total income at 1.4%.

Our interest is centered on 67, ., the estimate of interviewer response variance, and its

wer?

statistical significance was tested using the 50:50 x? approach (Self and Liang 1987). If

~2
OTiwer

was significant, we fit 3 models: ‘Non-flag model’, where only the interviewer-level
non-flag variables were added to equation 3.2; ‘Flag model’, where only the interviewer-
level flag variables were added to equation 3.2; and "Full model’ that included both the
non-flag and flag variables. The full model is shown in Equation 3.3 where W is the
vector of non-flag variables; the non-flag and flag models have the same structure with
only the relevant variables included.

Yij =0 + ug; + X oy + Wiag, + (33
o Item Flag Proportion; + ayOverall Flag Proportion; 4 ¢;; '

up % N0, 0,)

» Y qwer
/ ’L’Ld 12
€5 ™ (0,07)

/ /
Ug; L €

The models in (3.2) and (3.3) were run on on all available PSID cases (rather than
2 and 672 . The flag

only the interviewing evaluation cases) giving us more precise 47, e
variables were computed from the QC evaluation data and were used as an estimate of

the full sample flag proportions.

Given our research question, we wanted to evaluate the performance of the flag and

2
wwer)
explained, p = (62, — 07
p ) pE:cprar

jwer jwer

non-flag variables in explaining & which we measured by the proportion of variance
)/ Giper-  Computing pp,.v,, for the three models
gives us a measure of the incremental utility of flag variables over the non-flag variables

2
wer*

in explaining &

In fitting the non-flag model, we first fit models with individual non-flag variables. Then,
starting with the non-flag variable that yielded the highest pg, ;y,,., other variables were

added if they added at least an incremental 0.01 to pg,.ivqr-

For the flag model, we first separately fit ‘I[tem flag’ and ‘Overall flag’ models that con-
tained only those particular flag proportion variables. We tried square, square root, cube,
and cube root transformations of these variables to explore possible non-linear relation-
ships with the outcome variable (equation 3.3 shows only linear terms for simplicity of
representation). Higher exponent terms were accompanied by the corresponding lower
terms as well, and the transformation with the maximum pg, ., was chosen (if at all

better than using only the linear term). Terms from the item flag and overall flag models
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were then put together to form the final flag model; Overall flag terms were included only

if they typically added at least 0.01 over the pg, ., by the item flag terms.

Finally, terms from the non-flag and flag models were jointly included to form the full

model in equation 3.3.

Model for a binary response item.
When y;; is a binary variable with y;; ~ BER(p;;), we fit logit models where the predictor
part is structurally similar to the linear models above (the same coefficients have been
retained for simplicity):

Dij
L—p

log( ) = og + Ug; + XEEQX (34)

ij

UOz%IzN(O O'2 )

» Y qwer

P) =af + upy + Xl + Wady +
— Dij (3.5)
o' ItemFlagProportion; + ayOverall Flag Proportion;

I
09(1

up ™ N(0,072,,)

» Y qwer

The modeling and inferential approach is the same as in the linear model setting de-
scribed above. For multinomial items, we fit separate logistic models to each category
that constituted at least 5% of the responses. Doing so, rather than fitting a single
multinomial model, gave us the flexibility to fit models with potentially different forms
for each category. While not technically correct, for descriptive ease we refer to these

separate categories as ‘items’ in our results; the 27 entries in Table 3.3 now yield 45 ‘items’.

Confidence intervals for pg, v,

To ascertain if a purported reduction in 62, . due to the added variables is not just sam-

pling variation, we computed 95% bootstrap confidence intervals around p g, yq,- Among
the several choices available to construct bootstrap confidence intervals (Carpenter and
Bithell 2000), we chose the bias-corrected and accelerated (BCa) method (Efron 1987)
since it provides an opportunity to correct for non-normality, bias, and non-constant
standard error in estimates (Efron and Hastie 2016, p.193), and often provides claimed
coverage probabilities even for small samples (Efron and Hastie 2016, p.192). One thou-
sand datasets were generated from the original data by first resampling interviewers and
then selecting all cases from the resampled interviewers. We then fit the final non-flag,

flag, and full models to each of the 1000 datasets (for all selected items) and computed
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Prapivar fOr these. These resample estimates were used to compute 95% BCa intervals
using the steps outlined in Efron and Tibshirani 1993 (p.185-186); the R code is given in
Appendix 3.B. The ‘acceleration constant’ required to construct the intervals were sep-
arately computed via a leave-one-interviewer-out Jackknife procedure using the formula
in Leeden et al. 2008 (p. 419). If a model (e.g., the flag model) for an item encountered
convergence/estimation issues in a particular resample, then estimates for all models (i.e,
the non-flag and full models in this example) from that resample were discarded, ensuring
a common resample base for all models. While the bootstrap approach also allows one
to also compute bias-corrected estimates themselves, this can be ‘often problematic’ and
‘dangerous in practice’ given the high variability of bias (Efron and Tibshirani 1993, p.

138); we use the original sample-based Py, for our inferential needs.

3.5.4 Model: Associations between substantive responses and

interviewing quality indicators

Research question 2 is about possible associations between case-level QC flags and sub-
stantive responses, with the null hypothesis being that there are no such associations.
Then, assuming a successful approximation to interpenetration, a regression of the sub-
stantive response on interviewing quality indicators should show no statistically significant
effects. However, the nature of some questions may be such that interviewing errors push
measurement errors in the same direction, e.g., in the case of a complex question that
has multiple conditions, a quick questioning style can systematically mislead respondents
to provide an erroneous answer based only on the initial condition. Since these errors
are pushed in the same direction, a between-interviewer analysis may fail to detect this
effect if it occurs for many interviewers but a regression of substantive response on the

quality flags will show an association.

Our model for a numeric variable is shown in equation 3.6. The random interviewer
intercepts (vp;) are included only to account for the nesting of respondents within in-
terviewers - unlike research question 1, we are not interested in this component here.
Statistically significant fixed effects (51 or 32) indicate associations between the response
and the quality flag/s. We also allow the coefficients to vary by interviewer to investigate
if these associations are driven by specific interviewers. This is also useful in cases where
the fixed effect, i.e., the average effect across interviewers, may not be significant but
certain interviewer-specific effects might be significant. Covariances between the random
coefficients and random intercepts are introduced to see if interviewer-level associations

between the QC flags and the response are related to the mean response value obtained
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by interviewers.

Yij = Bo + vo; + Xgﬁx+(ﬁ1 + Uli)](QCFlagij = “Major”)—i—

(3.6)
(B2 +vai) [(QC Flags; = “Minor™) +G;
2
UOZ O'Lwer ToliweT TOinET
iid
2
Ul’i ~Y N O; Toliwe'r Tliwer O
2
V2; Toziwer' 0 2iwer

itd

Gij ~ N(0,77)

(Uoia V14, U2i> 1 Cij

Random effect variances/covariances were tested using the 50:50 x? test (Self and Liang
1987) but relevant variance terms were retained even if these were insignificant since they
make substantive sense; covariance terms, however, were not retained in such cases. In
case variance/s of the random coefficients are significant, we also add interactions of the

interviewer-level non-flag variables, W, to see if they explain the variances.

Yi; =B + v + XEIBS( + W?ﬁ;‘/‘i‘
(8, + WMo o \I(QC Flagy; = “Major”)+ (3.7)
(85 + WiTﬁ;(VMmor) + v9;) [ (QCFlag;; = “Minor”) + (..

)

/ 12 / /
UOZ iid Toiwer TOliwer T02iwer
/ w / 2
Uli ~ N 07 TOliwe'r Tliwer 0
/ / /2
U2’i Toziwer 0 Tiner

G N0, 72)

(Ugia Vs, Uéz) 1 Cz/g

The predictor part of models for binary response items, where y;; ~ BER(p;;), is struc-
turally similar to the above equations. As in research question 1, we model individual
categories of a multinomial items separately. The basic model for binary items is as

follows (the model with the non-flag variables follows equation 3.7 similarly).
ZOQ(L) = Bo + voi + Xg,@x—i—(ﬂl + v1;)[(QCFlag;; = “Major”)+

1—pi (3.8)
(B2 + v2)[(QCFlag;j = “Minor”)
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2
Voi

Oswer TOliwe'r Toziwe'r
iid
2
V14 ~ N 0, TOLliwer Tliwer 0
2
UQZ 7—02iu)57‘ 0 2iwer

Since this particular analysis is an interview-level analysis, we are restricted to the in-
terviewing evaluation data for model fitting. For this reason, the following 10 binary
response ‘items’ ended up with very few counts in the smaller category (less than 20
cases) and were therefore not analyzed: KL84, G17f, category codes 12 and 97 of H61e,
category codes 4, 10 and 97 of A40_1, category codes 1 and 4 of F49b2, and category
code 6 of item A4.

3.5.5 Model: Do quality indicators explain interviewer non-

response variance?

Research question 3 investigates possible associations between interviewer-level flag vari-
ables and interviewer non-response variance. Unlike research question 1 where we had
to fit models for each item separately, here we make use of the fact that the form of
the outcome variable is common across items, i.e., 1 = non-response, 0 = response; we
fit a single model for all items using ‘item’ as a random effect thus enabling sharing of

i(jJZR) ~ BER(q;ji), where item k

occurs across interviews thus giving a crossed data structure; the superscript “NR” over

information across items. The non-response indicator, y

Yijk 1s to highlight that the variable denotes non-response. Our base model is as follows
where we include covariances between the interviewer and item random effects since dif-

ferent sets of interviewers could be challenged in obtaining a response for different sets

of items.
qijk
log(7—" — _”q, —) =0+ woi + woy + wor + Xy (3.9)
ij
2

Wos NTwer 0 NIwerItem

woj ~ N 0’ 0 n%{esp 0

Wok NIwerItem 0 n%tem

Since we are working with a single model, we could have potentially included more items
than restrict ourselves to the selected 27 items. But we retained only the latter so that
all models in this research are working with the same item base. Analogous to the model

in equation 3.3 for research question 1, we now introduce the non-flag and flag variables.
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viItemF'lagProportion;, + ~voOverall Flag Proportion;

log(

/ 12 /

Woi Niwer 0 NIwerItem
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wOj ~ N 0’ 0 nResp 0
/ / 12

ka NrwerItem 0 Nitem

The modeling goal and steps closely follow research question 1 in terms of testing the
variance components and covariances, trying out different transformations of the flag
variables, and running the non-flag, flag, and full models. However, unlike research
question 1 no bootstrapping was undertaken to estimate uncertainty of pp, ;y,; this is
computationally prohibitive given that there were 225,572 cases overall (cases for all the

27 items pooled together).

Item non-response in PSID is coded in two ways (Andreski et al. 2007): Don’t know (‘DK’)
and Not-ascertained /Refused (‘NA/Refused’). Twenty-five of the 27 items in our analysis
have separate codes for DK and NA /Refused. Although item non-response rates for PSID
are small (typically less than 2%), due to our pooling approach we had a sufficient number
of cases to conduct separate analyses for these two non-response categories; there were
2342 DK cases and 834 NA/Refused cases among the 225,572 cases. Shoemaker et al.
(2002) show that DKs are linked with the lack of respondents’ cognitive effort while
refusals are associated with lack of cognitive effort as well as item sensitivity. Comparing
PEapivaer for overall non-response, non-response due to only DK, and non-response due
to only NA /refusal can point us to the non-response mechanism/s getting captured by
the QC process. The DK and NA/Refused outcome models are structurally the same as
the above overall item non-response model in Equation 3.10 with the outcomes changed

accordingly. The two items that had a common non-response code were included in both

the ‘DK’ and ‘NA/Refused’ analyses.

3.5.6 Model: Associations between item non-response and in-

terviewing quality indicators

Here we are checking for case-level associations between item non-response and quality
flags. Despite using the pooling approach of research question 3, we were unable to
estimate models for DK and NA /Refusal outcomes separately since we are using only the
QC interviewing evaluation data; of the total 13,655 cases used for this analysis, there

were 172 non-response cases, split as 122 for DK and 50 for NA /Refusal. However, unlike
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research question 3 where we used flag variables summarized at the interviewer-level,
using disaggregated case-level data allowed us to split ‘Major flag’ into two variables: an
indicator whether it was on account of failure to probe or clarify (ProbingFailure, 226
cases) or due to other reasons (OtherMagor, 284 cases); Minor flag had 290 cases. Note
that splitting Major flag could not be undertaken in research question 2 (which was also

at a case-level) since the analyses there had to be undertaken item-wise. Our model is as

follows.
lOg(l%—jg;) =00 + 20; + 205 + 2ok + ngx + W?(SW-F
— Qijk
(01 + W/Z-T5€,5r0bingFailwe) + 21:)[(QCFlag;jx = “ProbingFailure”)+
(09 + W/Z-T(SégtherMajor) + 29)) I (QCFlagj,, = “Other Magjor™)+
(03 + I/I/Z»T(sgymor) + 23) [ (QCFlag;jx = “Minor")
(3.11)

20; Vo 1wer 0 0 Votrwer Vo2rwer Vo3lwer

20 0 gy, O 0 0 0

20 | nlo 0 0  yem O 0 0

214 | vorrwer O 0 Ve O 0

224 Vo21wer 0 0 0 VZQIwer 0

23 L Vo3 1wer 0 0 0 0 VSQIwer

Our inferential interests are similar to research question 2: we allow interviewer-varying
coefficients and are primarily interested in the fixed effects of the flag variables (1, d2, d3)
and the conditional modes of the random coefficients. Our secondary goals are to see
how the variances are explained by W and how the flag and non-flag variables interact

in predicting non-response.

3.5.7 Assessing model fit

We undertake simulation-based diagnostics as described by Hartig (2018) for all our
models. The key idea is that data simulated from the fitted model should mimic the
observed data if the fitted model was correctly specified (Gelman and Hill 2006, p. 158-
159). To do this, a thousand datasets are simulated from the model, conditioning on all
random effects. Then, for each observation a quantile residual (Dunn and Smyth 1996) -
defined as the proportion of simulated values larger than the observed value - is computed

and two plots are constructed as described below.

e If there are no model fit issues, we would expect the quantile residuals across obser-

83



vations to be uniformly distributed. We draw a quantile-quantile plot to evaluate
this; more formally, a Kolmogorov-Smirnov test is conducted to detect deviation

from uniformity.

e The quantile residuals are plotted against the mean simulated value for each obser-
vation (similar to the diagnostic plot of residuals versus fitted values constructed
for a linear model). The mean simulated values are rank transformed and scaled to
make it easier to spot issues. To make the analysis more concrete and help protect
against missing patterns visually (especially when there are a lot of observations),
a quantile regression is conducted between the 25th percentile, median, and 75th
percentile of the mean simulated values and the quantile residuals; the quantile re-
gression lines should ideally match horizontal lines at these percentiles that would
indicate no association between the residuals and the mean simulated responses.
The quantile regression is conducted using quantile regression neural network mod-
els via the QRNN package (Cannon 2011) in R, so as to be able to spot potential

non-linearities in the patterns.

R code for undertaking the simulation-based analyses was adapted from the source code
of the DHARMa package (Hartig 2018) and is included in Appendix 3.D.

3.5.8 Other analysis details

All models were fit with the ime4 package (Bates et al. 2015) in the R software (Team
2013). Linear models are fit using Restricted Maximum Likelihood (REML) via the
Laplace approximation and the BOBYQA optimizer. Logistic models in /mej use ML
estimation. Here, we used the ‘NLopt’ implementation of the BOBQYA optimizer (Powell
2009) via its R interface ‘nloptr’ (Ypma et al. 2014); some testing showed that variance
estimates were almost exactly the same as when the default BOBYQA optimizer was
used but with more than a 50% reduction in runtime. The reduction in runtime was
especially critical for research question 1 where we were undertook the computationally

intensive bootstrapping.

All tests were conducted at a 5% level of significance unless noted otherwise. All numeric
input variables were centered and scaled. We do not screen for ‘outliers’ when running our
models since these are actually potentially valuable in being responsible for interviewer
effects. For items H61J and F77, survey responses were obtained in different time units
- follow-up questions asked about the time unit being used to report those spends. We

used these time-unit responses to convert all substantive responses to a monthly figure.

Our models do not add item characteristic covariates since our focus is on the interviewer.
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We do not include survey weights since we are interested in uncovering interviewer effect
structures conditional on the current PSID design, not averaged over the design to the
population. All our models use the vector of respondent-level covariates X but only as

controls; effects for these are not presented in our results since they are not our focus.

Approximately 3% of all interviews were undertaken by multiple interviewers. For these
interviews, we used keystroke paradata to match an item to the interviewer who actually
asked the question. In the case of some items (such as A42A, utility expenses), a code
of zero could mean either an actual zero value or that the item was not administered
due to the skipping pattern; matching records to the keystroke paradata files also helped

distinguish between these two situations.

When lowest-level covariates are added to logistic models, the underlying latent variable
distribution is rescaled due to which the estimates need to be rescaled back to ensure
comparability (Snijders and Bosker 1999, p. 228-229; Hox 2010, p.134; Austin and Merlo
2017). Research questions 1 and 3 entail comparisons between the flag, non-flag and full
models. However, for these questions, all covariates added over the base model are at the
interviewer level and not the case-level which obviates the need for such rescaling (Hox
2010, p.138).

3.6 Results

3.6.1 Research question 1 - Do quality indicators explain inter-

viewer response variance?

Of the 45 base models, the interviewer variance component was significant for all but 6
items (F81B, F80B, G13, F82, KL.84, A4 2; ‘A4 2’ indicates category code 2 of multi-
nomial item A4). Further model fitting and bootstrap analyses were undertaken for the
remaining 39 items. Power transformations of the flag variables were found to be much

2
Twer

more effective in explaining & compared to only the linear terms; Table 3.5 described
later shows that almost all flag models with a significant pg, 1, used a cube transfor-

mation.

Thirty-five of the 39 items had at least 950 valid bootstrap estimates. Of the remaining
4 items, 3 items (A40-1_10, F49b2_5, and G14) had at least 900 valid estimates while 1
item (F'57) ended up with only 702 valid estimates. Bootstrap pp,,y,, distributions were
plotted and examined for all 39 items; no concerning features such as discontinuities were
seen. Since all interviewers do not conduct the same number of interviews, resample sizes

were not constant. However, the coefficients of variation were small (range: 3.3% - 4.2%
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across items).

Figure 3.2 summarizes pg,,v,, for the 39 items for each of the three models. We find
a modest median pg, y,, for the non-flag and flag models with the former higher than
the latter (19% and 15% respectively). In comparison, the median pg, ., for the full
model is at a relatively much higher 30% suggesting that the flag and non-flag variables

complement each other.

N
pEprVar

1.0+
0.9+ °
0.8+
0.7+
0.6+ .

0.5+

0.4+

0.31

0.2+

0.1

Non—fla'g model Flag model Full model

0.0+

Figure 3.2: Boxplot of pp,, 1y, for the non-flag, flag and the full models. These are computed based
on the 39 analyzed items. The plot suggests the complementarity of the flag and non-flag variables in
explaining 2, . in the full model.

rwer

To explore this phenomenon more and quantify the uncertainty in pg,,;v,., Figure 3.3
plots the sorted item-wise ﬁglx‘;ﬁvw estimates (shown by circles) along with the 95% BCa

confidence intervals (the superscript ‘Flag’ in ﬁglﬁwr indicates that these are flag model

X

estimates). Fourteen of the 39 items have statistically significant estimates (black circles)

and the wide confidence intervals suggest that a few interviewers may be driving these
effects. The plot also displays ﬁg;’;f{;lgf (by ‘x’s; confidence intervals are not plotted for
these to avoid clutter) and we find 17 significant estimates (bold ‘x’s). Approximately half

of these estimates (9 estimates) are significant where ﬁg;‘z‘/ar are not significant; similarly,

of the 14 significant ﬁgi‘gm, 6 belong to items where ﬁg;;f{;lsf are non-significant.
Figure 3.4 now plots the sorted pgjgﬂgf along with the BCa confidence intervals onto

which are overlaid ﬁggﬁqur (shown by squares). A large majority of the items (28 items)

now have significant pg;;}WM and we can see the incremental variance explained by the

_ . . : NonFl
flag variables over the non-flag variables - especially for items where py. "7 are non-
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significant. The flag variables explain an incremental median 17% points (IQR: 10% -
22%) over the non-flag variables for these 28 items resulting in the full model explaining
a fairly sizable median 37% of 62, (IQR: 29% - 53%). These results show that the flag
and non-flag variables are indeed complementary to each other; the flag variables seem
to be deriving their explanatory power by capturing interviewing behaviors that are not

fully explained by interviewers’ sex, age, education, and work-related characteristics.
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Diagnostic checks did not show any problems with model fit. Table 3.4 shows the
Kolmogorov-Smirnov statistics based on the quantile residual analysis for the 28 items
with significant ﬁggﬁl‘/ar. Magnitudes of all K-S statistics are small; only one item,
F49b2 4 (alternate fuel vehicle) is associated with a p-value less than 0.05. The di-
agnostic plots for this item are shown in Figure 3.5 which does not indicate any issues
with model fit. Diagnostic plots for the other items are not shown since they are similar

to Figure 3.5.

Table 3.4: Test of uniformity for the quantile residuals. Testing was done using the Kolmogorov-Smirnov

(KS) test. Of the 28 items with significant ﬁg%ﬂzv ar» Only one item (F49b2_4, Alternate fuel vehicle type;
data in boldface) has a p-value less than 0.05.
Item KS test statistic p-value
A4 1 (Dwelling - One-family house) 0.009 0.48
A4 3 (Dwelling - Apartment) 0.007 0.82
A4_4 (Dwelling - Mobile home/Trailer) 0.011 0.29
A4.6 (Dwelling - Row/Town house) 0.009 0.49
A40.1_10 (Home heating - Bottled gas) 0.011 0.3
A40_1_1 (Home heating - Gas) 0.009 0.55
A40_1_2 (Home heating - Electricity) 0.007 0.79
A40.1_3 (Home heating - Oil) 0.009 0.44
A40.1.97 (Home heating - Others) 0.011 0.21
A42_1 (Utility bill - 1 bill, can separate amounts) 0.007 0.74
A42_2 (Utility bill - 1 bill, cannot separate amounts) 0.009 0.51
A42.5 (Utility bill - Not 1 bill) 0.011 0.21
BCDEL_1 (Employment status - Working) 0.011 0.3
BCDE1.3 (Employment status - Looking for work, unemployed) 0.012 0.16
BCDE1 4 (Employment status - Retired) 0.009 0.46
BCDEL_5 (Employment status - Disabled) 0.013 0.37
BCDE1.6 (Employment status - Keeping house) 0.017 0.36
F47 (Own/lease a car for personal use?) 0.008 0.69
F49b2_1 (Vehicle type - Hybrid) 0.006 0.96
F49b2_4 (Vehicle type - Alternate fuel) 0.018 0.04
F49b2_5 (Vehicle type - Neither hybrid, electric or alternate fuel) 0.016 0.08
F57 (Vehicle used for business purposes?) 0.007 0.91
G12 (Earn wages/salary apart from uninc. business?) 0.007 0.83
G14 (Income from bonus, tips, overtime, or commissions?) 0.006 0.96
H61le 1 (Insurance type - Employer provided) 0.009 0.58
H61e_3 (Insurance type - Medicare) 0.008 0.69
H61le_5 (Insurance type - Medicaid) 0.009 0.67
H61k (Anyone went without health insurance?) 0.008 0.58

Since we had fit separate models using the ItemFlagProportion and QuverallFlagPropor-

tion variables while arriving at the final flag model, we were able to assess the relative
2

rwer”®

importance of these variables in explaining & Three key points emerge from the re-
sults. First, ItemFlagProportion generally outperforms QverallFlagProportion, which is
not surprising given that interviewers struggle with specific items. Second, OverallFlag-
Proportion, however, does not perform badly - outperforming ItemFlagProportion for
some items. This suggests that interviewer effects are not always driven by item-specific
struggles but also by general interviewing behaviors. Third, for many items, the two sets

2
iwer*

of variables complement each other in explaining & These results are displayed in

Table 3.5.
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QQ plot — Quantile residuals Simulated responses versus Quantile residuals
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Figure 3.5: Diagnostics for the full model for item F49b2_4 (alternate fuel vehicle). The left panel
compares the quantile residuals to draws from a uniform distribution. Each point in the right panel is
the mean simulated response (across 1000 simulations) for an observation in the data. The solid lines in
the correspond to the quantile regression lines and the dotted lines are benchmarks for these lines.

A similar analysis of the non-flag variables (Table 3.6) shows that interviewer education is
the most important non-flag variable in explaining interviewer effects. This is possibly to
do with the economic nature of the survey. Interviewer sex also emerges as an important

variable.

While our selection of analysis items is not suited to make general inferences on item
characteristics, we find that for all multinomial items except one, significant pg, 1y,
for the first category (i.e. code = 1 in the questionnaire) were obtained only by the
non-flag model (the one item had significant estimates via both the flag and non-flag
models). Conversely, pp,. 4, were significant for the later coded categories only via the
flag models. Since the later categories also tend to be the smaller ones, the flag variables

2

< ver compared to the

are perhaps able to capture finer behavioral nuances in explaining &

‘coarser’ non-flag variables.
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3.6.2 Research question 2 - Associations between substantive

responses and interviewing quality indicators

Of the 35 items analyzed for this question, 15 items had some significant effect of interest
- having either a significant flag variance component (Table 3.7) or a significant fixed
effect (Table 3.8), with the exception of item A44 which is present in both tables. In
addition, 3 items also had a significant random intercept variance but this is not shown

in Table 3.7 since it is not the estimate of interest.
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Proportions of variances in Table 3.7 explained by non-flag variables tended to be extreme
(e.g., 100% using only interviewer education) and are therefore not shown. This is gener-
ally the result of a small number of interviewers driving the effects, i.e., the variances are
more due to interviewer-specific behavioral idiosyncrasies rather than due to general in-
terviewer demographic or work characteristic variables. We computed interviewer-specific
coefficients for items which had a significant variance component in Table 3.7 by adding
the conditional modes of the random effects to the fixed effects; standard errors were
estimated by the square root of the sum of the variances of the fixed effect and the condi-
tional modes (covariances between the fixed and random effects were ignored). We found
significant interviewer-specific coefficients only for items A44 and H61J, plotted in Figure
3.6.

Item A44 Iltem H61J
80 — . ——
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< o
(9] [}
= 50+ =
Q [}
S S 40+
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204
0 0
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Conditional Modes for the 'major flag' coefficient Conditional Modes for the 'minor flag' coefficient

Figure 3.6: Interviewer-specific coefficients for items A44 and H61J. These are sorted coefficients with
those for item A44 shown in the left panel and those from H61J shown in the right panel. The horizontal
bars are the 95% confidence intervals with bold lines representing significant interviewer-specific effects.

We first focus on item A44 which asks about the monthly expense incurred on three ser-
vices - telephone (including cell phone), cable and satellite TV, and Internet. The model
for this item also has a significant fixed effect for the major flag (Table 3.8) that indicates
that, on average, the occurrence of a major flag is associated with a $97.2 reduction in
the expense reported for these services. This could indicate a primacy effect; given that
there are multiple utilities involved, if the respondent simply gives the telephone expense
(the first utility mentioned in the question) and this is not probed further by the inter-
viewer, there will be an underestimate in the value obtained. Analyzing the QC data,
we find that 76% of the major flags for this item are due to a failure to probe or clarify.
To explore more, we drill-down to the values obtained by the three interviewers with
significant interviewer-specific major flag coefficients in the left panel of Figure 3.6. We
found one major flag for each for these interviewers, all of which had a recorded value of

only $1, a rather small value. Of the three cases, the cause of one flag was data entry (the
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interviewer might have, e.g., entered $1 instead of $100), and that of the other two were
a failure to probe or clarify (the interviewer might have failed to probe the respondent

even after receiving a low value for this item).

The right panel of Figure 3.6 shows two interviewers with significant interviewer-specific
minor flag coefficients for item H61J, an item that asks about the monthly family insur-
ance amount. The interviewer with the maximum conditional mode has a respondent
(linked to the minor flag) whose family pays a monthly insurance premium that is 40%
of the total household income (actual $ values not reported to protect confidentiality).
The other interviewer has a respondent who is the sole member of the family yet pays
a large sum per month on insurance. Since we are dealing with a minor flag, we do not

have data on specific flag reasons but the response values seem non-ordinary.

We now turn to Table 3.8 that displays the eight models for which we obtained significant
fixed effects for the flag variables. We find that the confidence intervals are wide in all
cases reflecting the small flag counts that are producing the effects. Of the 8 ‘items’
in Table 3.8, 3 belong to item A42 that asks about the type of utility bill received. A
major flag increases the odds ratios of a response to category 1 (receives one bill and
can separate amounts for different utilities) and category 2 (receives one bill but cannot
separate amounts for different utilities) by 12.8 and 2.8 respectively compared to 0.03 for
category 3 (receive different utility bills) - the odds ratio for each category are relative to
the other two. Given the double-barreled nature of this question, it is likely that there
could be confusion between the ability to separate utility amounts and actually getting
separate bills; indeed, a check shows that 50% of the major flags for this item are due to

‘wrong category’.

A major flag for item BCDEL (a question on employment status) increases the odds ratio
of category 3 (‘looking for work, unemployed’) being selected as compared to the other
categories. Of the 8 possible response categories for this question, category 3 is the only
one one where a special probing instruction is provided; if the respondent is unemployed
but is not looking for work, category 3 is the wrong category and the interviewer has
to put this into category 6 (‘keeping house’). Thus, a failure to probe would result in a
higher chance of category 3 being selected. The QC data align with this thinking; 52%
of major flags for this item were due to ‘Failure to probe or clarify’ and 24% were due to

‘wrong category’.

The occurrence of a major flag for item F82 (any school-related expenses incurred) in-
creases the odds ratio of a ‘yes’ to the question. The actual question contains a fairly
long list of possible school-related expenses; unless carefully asked, the question could be
interpreted as being broad enough to answer in the affirmative. While there are only 7

major flags in all for this item in the QC data, we find that 5 major flags are to do with

97



improper asking or data entry issues.

The occurrence of a minor flag for item F49b2 (a question on whether the vehicle is
hybrid, electric, or alternate fuel) is associated with a reduced odds ratio of category 5
(‘None of the above’) relative to the other categories. Examination of the questionnaire
and QC data did not suggest a straightforward mechanism behind this result. Finally, the
occurrence of a minor flag for item H61e (type of health insurance or coverage) reduces
the odds ratio of category 3 (Medicare) being selected compared to other categories. This
is the only category for the question that has a special check that the interviewer has to
perform if the category is not selected by the respondent; a failure to probe would reduce

the chances of this category occurring.

These results show that the QC indicators are at least partially successful in identifying

observations that may be contributing to bias in estimates.

Figure 3.7 displays the diagnostic plots for the models whose estimates are shown in
Tables 3.7 and 3.8. Looking at the QQ plot (left panel) in conjunction with the ‘simulated
responses versus quantile residuals’ plot (right panel) for each item, in general the models
show only moderate deviations from a good fit. The exceptions are items H61J (insurance
amount), A44 (telephone/TV /Internet expenses), and H6le_3 (Medicare insurance); at
least in case of the first two of these items, one could consider transforming the response

variable but this would make interpretations more difficult.
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Figure 3.7: Quantile residual diagnostic plots - Models for associations between substantive values and
QC indicators. Each item is on one row of the plot with the order of the items as followed in Table
3.8. The left panel compares the quantile residuals to draws from a uniform distribution. Each point in
the right panel is the mean simulated response (across 1000 simulations) for an observation in the data.
The solid lines in the correspond to the quantile regression lines and the dotted lines are benchmarks for

these lines.
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QQ plot - Quantile residuals

Simulated responses versus Quantile residuals
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Figure 3.7 (continued).
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QQ plot - Quantile residuals

Simulated responses versus Quantile residuals
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Figure 3.7 (continued).
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QQ plot - Quantile residuals

Simulated responses versus Quantile residuals
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Figure 3.7 (continued).
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QQ plot - Quantile residuals

Simulated responses versus Quantile residuals
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Figure 3.7 (continued).
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3.6.3 Research question 3 - Do quality indicators explain inter-

viewer non-response variance?

Our interest here lies in the explanation of interviewer non-response variance by the flag
and non-flag variables. Table 3.9 shows the variance components for two outcomes -
overall item non-response and non-response only due to DK. The variance components
are all statistically significant and we see that the interviewer variance components are
small compared to the item and respondent components. The covariance term in equation
3.9 was not significant and was dropped. The model with the non-response only due to
‘NA /Refused’ failed to be estimated by the software.

Table 3.9: Variance components for non-response models. The outcomes are the overall non-response
and non-response only due to DK.

Outcome variable: Overall item Outcome variable: Non-response
non-response only due to DK

(DK and NA /Refused)

Item Respondent Interviewer Ttem Respondent Interviewer
Base model 4.3 3.1 0.18 5.1 2.8 0.20
Non-flag model 4.5 3.1 0.12 5.2 2.8 0.15
Flag model 4.4 3.1 0.09 5.2 2.8 0.12
Full model 4.4 3.1 0.08 5.2 2.8 0.11

Figure 3.12 plots pg, ., for the non-flag, flag, and full models using the interviewer
variance components from Table 3.9. We find 4 salient results. First, ﬁg;ﬁlwr for either
outcome is fairly substantial - 56% and 47% for the overall non-response and only-DK
outcomes respectively; second, the flag model substantially outperforms the non-flag
model - pp,yqr Of 52% versus 33% respectively for the overall non-response outcome
and 42% versus 25% respectively for non-response only due to DK. These findings reflect
previous research (e.g., Pickery and Loosveldt 1998) finding that typical interviewer-level
variables (i.e., non-flag variables) fail to explain non-response interviewer variance; third,
the full model does not add much over the flag model showing that, on average across
items, the non-flag variables are not explaining any additional variance. This result is
in contrast to the result for interviewer response error variance in research question 1
where the two sets of variables were complementary to each other; finally, pp, 1y, for the
only-DK model are lower than the overall item non-response outcome model. This can
occur if relatively more DKs are ‘genuine’ as compared to the ‘NA /refusals’, with respect

to the protocols that the QC system are evaluating interviewers.

The odds ratios for the full model are plotted in Figure 3.13. Based on pg,y,,, flag

models (and therefore also the full models) for the overall non-response outcome (left
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— Non-response (all reasons) -— Non-response only due to ‘Don’t know*
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Figure 3.12: Proportions of variance explained by various non-response models. The pgzpivqer for non-
flag, flag, and full models are plotted for two different outcomes: Overall non-response (DK and NA /Re-
fused) and non-response only due to DK.

panel) used a quadratic transformation of OuerallFlagProportion and a linear term of
ItemFlagProportion while the only-DK outcome (right panel) used a quadratic transfor-
mation of both flag proportion variables. ItemFlagProportion is statistically significant in
case of the only-DK outcome but not for the overall non-response outcome, while Over-
allFlagProportion is significant for both outcomes. This suggests that interviewers face
item-specific challenges in eliciting responses when respondents finally give a DK answer
while overall performance (i.e, averaged across items) impacts both DKs and NA/Re-
fusals. Based on the effect sizes, OverallFlagProportion seems to be a more important
interviewer-level variable than ItemF'lagProportion in predicting either outcome - this
result too is in contrast to what we obtained for research question 1. The opposite direc-
tion of the quadratic term for QuerallFlagProportion has an effect of slightly dampening
the effects at the higher end of the proportions (the maximum overall flag proportion in
the data is 0.1).

Figure 3.14 shows the diagnostic plot for the non-response (only ‘don’t know’) model; we
do not see any model fit issues. The plot for the non-response (all reasons) is similar and

is therefore not shown.
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Figure 3.13: Odds ratios for overall non-response versus that due to only DK for the flag, non-flag, and
full models. Results for the overall non-response outcome is plotted in the left panel and results for
non-response only due to DK are plotted in the right panel. Horizontal bars are the 95% confidence
intervals and bold points show those effects which are significant at a significance level of 0.1. The
non-flag variables are all interviewer-level variables.
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Figure 3.14: Diagnostic plots for the ‘don’t know’ interviewer variance model. The left panel compares
the quantile residuals to draws from a uniform distribution. Each point in the right panel is the mean
simulated response (across 1000 simulations) for an observation in the data; the plot appears shaded in
grey due to the large number of points. The solid lines in the correspond to the quantile regression lines
and the dotted lines are benchmarks for these lines.
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3.6.4 Research question 4 - Associations between item non-

response and interviewing quality indicators

Here we explore associations between the case-level flag variables and item non-response.
Before viewing the formal model results, we plot non-response rates within each QC flag
category in Figure 3.15. We find that the two sub-categories of the major flag category
have distinct non-response rates: 14% of the ProbingFailure cases are associated with
a non-response compared to only 3% of the OtherMajor category. Non-response rates
in the two major flag categories and the Minor flag category are much greater than the

NoFlag category.

0.142 (base: 226 cases)

ProbingFailure -

) 0.032 (base: 284 cases)
OtherMajor - —_

0.066 (base: 290 cases)

Minor -

0.009 (base: 12855 cases)
NoFlag- toi

0.00 0.05 0.10 0.15 0.20 0.25
Item non-response proportion

Figure 3.15: Non-response proportions in the four QC flag categories. The horizontal bars are the 95%
confidence intervals that take into account the clustering of the (item-level) cases within interviewer.

Results of our formal model, which controls for respondent characteristics, are shown in
Table 3.10 and reinforce the evidence seen above. Apart from statistically significant main
effects for all flag terms, we find statistically significant interactions between ProbingFail-
ure and Mean daily workload, and Minor and some High school interviewer education.
The OtherMajor variable does not interact with any non-flag variable. Table 3.10 shows
that among the random effects, only the item and interview-level random intercepts were

significant but these are not our estimates of interest.

Interpretation of the coefficients in Table 3.10 is not straightforward given the presence
of interactions. Figure 3.16 therefore plots predicted probabilities of non-response for the
different flag variables, different levels of interviewer education, and different magnitudes
of scaled interviewer mean daily workloads. The interviewers were assumed to be female,
of average interviewer age, having an average workload, and average CV of daily workload.
We used the following ‘average’ respondent to compute our predictions: a female high

school graduate between 35 and 55 years of age who lives in 2 adult-1 child household
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Table 3.10: Variance components and model coefficients for the case-level item non-response model. The
interviewer variance component was small in magnitude and not significant, and is therefore not shown.
Terms in bold are those which are significant at a 0.1 level.

Variance components

2 _
VOResp =33
2 —
Yortem = 2.5

Log-odds SE p-value

Intercept -6.32 0.87 < 0.001

QC flag variables (implicit reference level: ‘No flag’)

ProbingFailure 3.00 0.32 <«0.001
OtherMajor 1.26 0.42 0.002
Minor 2.04 0.60 0.001

Interviewer-level covariates

Male interviewer 0.08 0.44 0.93
Education (reference level: High School graduate)

Some High school -0.28 0.57 0.67
Some college 0.46 0.38 0.25
Graduate and above 0.72 0.39 0.07
Age (scaled) -0.18 0.15 0.23
Workload (scaled) 0.03 0.16 0.86
Mean daily workload (scaled) -0.25 0.17 0.15
CV of daily workload (scaled) -0.13 0.14 0.41

Interaction terms: QC flag and Interviewer covariates
Probing failure : Mean daily workload (scaled) 1.08 0.31 < 0.001

Minor flag: Some High school 2.07 0.95 0.03
Minor flag: Some college -0.48 0.86 0.62
Minor flag: Graduate and above -1.47 0.94 0.12

with an annual income between $50,000 and $75,000.

We see that the predicted probabilities of non-response for cases with ‘major flags for
reasons other than probing’ (third panel) are not different from the very small predicted
probabilities for the NoFlag cases (first panel). This is true for the minor flag cases too
except for those cases conducted by interviewers with the lowest education level with
a relatively light average daily workload. The trend among the ProbingFailure cases
is in the opposite direction: when higher educated interviewers with a relatively higher
mean daily workload fail to probe, those cases are associated with a greater non-response
propensity. These probabilities represent a large increase in relative risk over the NoFlag

cases.

Figure 3.17 shows the diagnostic plot for the model in Table 3.10; we do not see any

model fit issues.
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Figure 3.16: Plot of predicted item non-responses for different QC flags and interviewer covariates. The
4 different QC outcomes are shown in the 4 panels of the plot. The two interviewer level covariates
are plotted - scaled mean daily workload (vertical axis, where ‘sd’ refers to standard deviation) and
interviewer education (horizontal axis). The horizontal lines around each point are the 95% prediction
intervals.

3.7 Discussion

Quality control systems seek to control interviewer effects by trying to detect interviewers’
deviations from interviewing protocol. This research used data from a well-established
QC system to investigate if detected deviations are actually associated with response
and non-response measurement errors. We also checked if QC data have any incremental
utility over traditional interviewer variables in this regard - this is important since QC

processes can be expensive and time consuming.

Our results adduced reasonable evidence on both counts. In research question 1, we saw
that while the QC flag variables were themselves able to only modestly explain interviewer
effects, their complementarity with the non-flag variables led to a fairly substantial overall
proportion of variance explained. Also, for 7 of the 39 models, more than a quarter of

the interviewer variance was explained by the flag variables alone. This means that if
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Figure 3.17: Diagnostic plots for the item non-response case-level associations model. The left panel
compares the quantile residuals to draws from a uniform distribution. Each point in the right panel is
the mean simulated response (across 1000 simulations) for an observation in the data; the plot appears
shaded in grey due to the large number of points. The solid lines in the correspond to the quantile
regression lines and the dotted lines are benchmarks for these lines.

the QC process is followed-up with quick and focused retraining (say, via audio/video
calls) resulting in better interviewer behavior, we could theoretically expect a reduction
in variance by a quarter for such items (for subsequently collected data) - a substantial

reduction that can impact substantive inferences.

But what can explain why the interviewer effects are explained only moderately by the flag
variables in research question 17 There are four possible reasons. First, the interviewer-
level flag proportion variables are based on a small number of evaluations per se (median
6 evaluations per interviewer per item as pointed out in Section 3.4.2) which means
that these predictors themselves have a lot of uncertainty. Second, the small number of
evaluations also meant that we could not use specific behavioral indicators which would
have been more effective as seen in research question 4. Third, the flag proportions
are built out of indicator flag variables that perhaps do not have the granularity nor
the flexibility to represent a complex phenomenon such as interviewer behavior. This
may perhaps explain why proportions of variance explained by the flag variables for the
continuous variables were not statistically significant. Fourth, the flag variables are based
on a fixed set of behaviors based on interviewing protocols. It is possible that interviewer
effects are associated with other finer dimensions such as paralinguistic aspects (Draisma

and Dijkstra 2004) which are not captured in this QC process.

Based on these points, researchers wanting to study associations of quality control indi-

cators with measurement error will benefit from designs that have a sufficient number of
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evaluations per item that allow for robust and flexible analyses, even if this means having
to reduce the total number of study items due to cost reasons. Also, rather than use
a fixed set of behaviors, an open-ended approach of having coders evaluate all observed
behaviors such as interviewer disfluencies, answer backchannels, and overspeech (Conrad
et al. 2010) will yield richer data for analyses. Especially for telephone surveys where the
interviewer can only establish presence via her voice, vocal characteristics might play a
critical role, e.g., when the interviewer pauses or uses fillers such as “um”, it could create
a relaxed impression perhaps leading to more thoughtful responses by the respondent
(Conrad et al. 2010; Christenfeld 1995). Results from this research can lead to reviewing
the Quality Assurance (QA) process which lays down the interviewing protocols to be
followed, by placing more emphasis on those behavioral aspects that impact interviewer

effects the most.

Our construction of confidence intervals around pg, v, In research question 1 showed
that it is important to compute measures of uncertainty for this statistic, something that
does not seem to be commonly done. While the BCa is generally considered the best
available procedure for constructing bootstrap confidence intervals (Efron and Tibshirani
1993, p.170; Carpenter and Bithell 2000; Puth et al. 2015) and our results appear rea-
sonable, there are two cautionary notes. First, an examination of bias estimates and the
acceleration constants (Appendix 3.C) as recommended by Efron and Hastie 2016 (p.195)
shows that while the latter values were small, the former were generally large (Efron and
Hastie (2016) suggest that these be less than or equal to 0.2). This means that the
confidence intervals need to interpreted cautiously. Second, the definition of accelera-
tion constant is ‘not well-defined for multilevel models” and it is ‘doubtful whether the
jackknife for multilevel models will give a reasonable estimate of a third-order moment’
(Leeden et al. 2008, p.419). We also computed percentile intervals (Efron and Tibshirani
1993, p. 170) but the BCa intervals, while producing fewer significant results than the
percentile intervals, produced more reasonable results (percentile intervals spanned al-
most the entire range of possible values for many items). While computing bootstrap Cls
for Research Question 3 was computationally prohibitive, a feasible approach might be
to compute Jackknife (leave-one-interviewer-out) intervals. We hope that the production
of confidence intervals for pp, v, In this research - to the best of our knowledge, the first

in the survey methodology literature to do so - stimulates more research in this regard.

Turning to research question 2, the results point to possible bias for the few items where
we found significant fixed effects. But given that only a tiny proportion of cases were
found to be involved and that we are working with early release data (and not final data
where these anomalies would most likely be corrected by methods such as imputation), the
bias levels would be small; yet, the results are important in shedding light on properties
of the QC flag variables. Except for item F49b2_5 (not a hybrid, electric and alternate
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fuel vehicle type), none of the items in Tables 3.7 and 3.8 had a significant relationship in
research question 1 thereby demonstrating the value of conducting a case-level analysis
as done here. While the results were intuitively appealing, they should be interpreted
cautiously since they could be causally driven by common cause variables other than
interviewer behaviors. Also, the reasoning that we offered for the results can only be

verified by listening to the recordings but we unfortunately did not have access to these.

As compared to explaining interviewer response variance (research question 1), the QC
flag variables were more successful in explaining non-response variance (research question
3). A skeptical explanation is that the outcome is very visible in the case of non-response;
since QC coders for this project were experienced with many of them also having inter-
viewing experience, they would be sensitive to the fact that non-response is undesirable,
making them prone to flag incidences of non-response. However, we do not see indiscrim-
inate flagging of non-response cases; of the 172 evaluated non-response cases for the 27
analyzed items, interviewing in 112 cases (65%) were actually evaluated as being positive.
The results show that the QC process is successful at picking up behaviors that predict
non-response. Reading results from research questions 2 and 4 together suggests that
lack of probing is an important correlate of both response and non-response interviewer

variance, a finding in line with previous research (e.g., Fowler and Mangione 1990).

Results of our research will be conservative due to three reasons. First, interviewers are
aware of which interviews are recorded and they tend to adhere to better interviewing
standards for these (McGonagle et al. 2015). Second, our evaluation of interviewer effects
is based on the data finally recorded by the interviewer but at least some values would
have undergone edits during the survey. This can happen when the interviewer realizes an
inconsistency in a later question and returns to edit the response, or when the computer
throws up an error message forcing the interviewer to edit the response. In such cases,
the value gets corrected but the case would still be flagged if it was an interviewing
behavior that led to the initial error. This reduces the magnitude of the associations
between the interviewing quality indicators and interviewer effects. Third, we did not
include interactions between the flag and non-flag covariates in research questions 1 and
3 since we were primarily interested in checking the incremental value of the flag variables
over the non-flag variables in explaining variance; including interactions would potentially

increase the proportion of variance explained by the full model.

We mention seven limitations of this study. First, we will not know if we are successful
in making a good approximation to a true interpenetrated design. If there are situations
where difficult respondents (where difficulty cannot be accounted for by X) are alloted
to interviewers only of a certain profile, respondent effects will masquerade as interviewer

effects. We regard this as an area of future research. Second, our analysis assumes

112



that the QC coding itself has no measurement error. Unfortunately, no inter-reliability
scores were available to assess this. Third, research questions 1, 3, and 4 focused on
overall patterns of associations between QC variables and interviewer effects and we did
not delve into item-specific explanations. Future research can consider questions such as
which item types are better explained by flag (or non-flag) variables and why, e.g., we
found that interviewer variance for none of the numeric variables were explained by the
flag variables in research question 1. Fourth, our analysis ignores the panel aspect of the
study survey. A potentially important non-flag interviewer variable could have been the
proportion of the current workload defined by the same respondents as the previous wave;
familiarity may help the respondent be more forthcoming with responses but it could also
lead the interviewer to be less careful with interviewing. Fifth, effects for items subject
to dependent interviewing (which arises given the panel nature of the study) could be
different from the rest (Pascale and McGee 2008) but we did not access information
on which items were pre-filled for the interviewer. Sixth, West and Olson (2010) show
that there is a component of interviewer variance that is also due to non-response error
variance and not measurement error variance alone. This may not matter in the case of
PSID with a very high wave-on-wave response rate, but methods to be able to parse out
the measurement error component may be important for other surveys. Finally, due to
reasons explained earlier, our analysis did not include items in the EHC which is a core
part of the PSID questionnaire and which interviewers find complex (Mcgonagle 2013).
Our recommendation is to code specific items in the EHC so these can be analyzed in

the future.

3.8 Implications for survey practice and conclusion

The complementarity of the flag and non-flag variables that we found in answering re-
search question 1 is an opportunity to increase efficiency of the QC process. Figure 3.18
shows one possible strategy based on the proportion of variance explained by the flag
variables (vertical axis) and its absolute difference with the non-flag variables (horizontal

axis).

Those items where the flag variables explain a high proportion of variance performing
much better than the non-flag variables (quadrant 1) should get the highest emphasis in
the QC evaluation process. On the other extreme is quadrant 3 where flag and non-flag
variables do not explain interviewer effects. More research is needed on the exploration
of the possible mechanisms that generate interviewer effects for these items. Quadrants
2 and 4 are items where the non-flag variables do better than (quadrant 2) or somewhat

equal to (quadrant 4) the flag variables. Here, one can use the non-flag model of a
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Figure 3.18: Prioritization of items in a QC process

preceding survey wave to predict the current wave’s conditional modes. Interviewers
with the high magnitudes of predicted conditional modes can then be selected so as to

listen to their recordings.

In answering research questions 1 and 3, we found that the overall flag variable was
important in predicting item-specific interviewer effects. This means that refresher in-
terviewer training should not only focus on administering specific items but also general
interviewing behavior. Based on results in research question 4, QC systems should pay

closer attention to interviewers with a high workload in order to reduce non-response.

Survey organizations often classify errors between major and minor (e.g., Couper et al.
1992; Mudryk et al. 1996) so that supervisors can prioritize cases when giving feedback to
interviewers. While such classifications are useful, results for research questions 2 and 4
showed that the minor flag was also important in detecting interviewer effects/predicting
non-response. This means that behaviors that coders might perceive as ‘minor’ can
actually have a substantial impact on data quality (Marquis et al. 1972; Schuman and
Presser 1981) thereby cautioning survey managers from ignoring minor flags. The exact

behaviors that cause the minor flags should also be recorded.

Mudryk et al. (1996) list 7 characteristics of CATI quality control but none of these are
directly linked to measurement error. We feel it is imperative to link quality control
to survey error explicitly. Groves (1989, p.389) mentions that research that links such
interviewing evaluations and measurement error “should receive highest priority in the

future”. This research is one step in this direction. Replications of this research on other
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surveys, including face-to-face surveys, will serve to add to the evidence on hand.

The limitations of the QC data motivate the next chapter: as compared to these data,
paradata have a wide range of variables, have information on all respondents, the flex-
ibility to be transformed and interactions created among variables, are a better proxy
for the interviewer-respondent interaction (evaluation data takes into account only the
interviewer), and are objective (no reliance on human coders). It is worth exploring how
paradata can be used to spot interviewers who may be injecting measurement error into

estimates.
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Appendix

3.A Summary descriptive statistics for the items used

for the analyses.

Table 3.A.1: Descriptive statistics for the 27 variables used for the analyses. These are five-number
summaries for the 14 numeric response items, and proportions for the 7 binary response variables. Items
are arranged according to their order in the questionnaire. Item descriptions are not precise; please see
the questionnaire for the detailed question.

Numeric response variables

Item Item description Minimum Q1 Median  Mean Q3 Maximum
A8  Number of rooms 0 4 5 5 7 20
A20  Present home value ($) 1 97,000 170,000 231,408 280,000 8,500,000
A21  Total yearly property tax ($) 1 900 1,900 2,865 3,596 4,000
A22  Total yearly homeowner’s insurance ($) 1 600 950 1,102 1,300 9,000
A42A  Monthly gas expenses ($) 0 0 40 97 100 698
A42B  Monthly electricity expenses ($) 0 60 100 134 170 398
A43  Monthly water and Sewer expenses ($) 0 0 30 51 68 392
A44  Telephone and internet expenses ($) 0 90 175 196 270 436
F77  Monthly car insurance amount ($) 1 118 200 568 700 917
F80B  Monthly car gasoline expenses ($) 1 100 150 197 250 2,000
F81A Monthly bus and train fare expenses ($) 0 0 0 9 0 100
F81B Monthly taxicab expenses ($) 0 0 0 4 0 58
G13 Head’s annual gross wages/salaries ($) 15 20,000 37,000 50,624 62,000 5,000,000
H61J Monthly health insurance amount ($) 0 75 188 252 350 4,992

Binary response variables

F47
Fb57
F82
G12
G14
H61K
KL84

Any vehicle owned/leased for personal use? Yes = 84%

Vehicle also used for business purposes? Yes = 17%

Any school-related expenses in 20147 Yes = 24%

Any salaries or wages besides uninc. business? Yes = 76%

Any income from bonuses, overtime, tips, or commissions? Yes = 15%
Any family member without health insurance? Yes = 23%

Spouse attending or enrolled in regular school? Yes = 2%
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Category proportions for the 6 multinomial response items. Proportions of categories that are analyzed
are in bold. Categories are ordered as they appear in the questionnaire. Item H61E does not include
‘Other state sponsored plan’, ‘Indian health insurance’, and ‘Other government plan’ for which the
proportions are close to 0. Item descriptions are not precise; please see the questionnaire for the detailed

question.

Ad
{Dwelling-unit type)

A1 1
{Home heating type)

A42
{Utility bill type)

BCDE1
{Person 1 employment
status)

F49B2
{Vehicle type)

H61E
(Person 1 type of health
insurance)

One-family  Two-family house or  Apartmentin a Mobile home or Row or Other-
house duplex multi-unit trailer town house  Specify
65% 4% 23% 5% 2% 1%
Bottled
. . Other-
Gas Electricity Qil Wood  Coal Solar gas; Kerosene .
specify
propane
51% 40% 4% 1% 0% 0% 0% 1%

One Electricity/Gas/Fuel utility bill
and can report separate amounts

One Electricityf/Gas/Fuel utility

bill but cannot report separate
amounts

Electricity/Gas/Fuel utilities not

on one bhill

12%

Temporari Looking for work,

Permanently Housewife; keeping

71%

Workin . Retired ) Student
8 by laid off unemployed disabled house
B67% 0.5% 12% 4% 7% 1%
. . . . . Electric vehicle  Alt tive fuel vehicle N fth Other-
Hybrid vehicle Plug-in hybrid vehicle ectric vehicle ernative fuel vehicle None of the e.r
or battery {CNG, Ipg) above Specify
2% 0% 0% 2% 96% 0%
Employer- . .
K Private Medi- .. . Other
provided health Medicare Gap/Supplemen Medicaid/ Military health
health . P/UPR State medical program health care |
. insurance tal insurance
insurance
58% 9% 15% 0.2% 14% 3% 0.4%

117



3.B R code for bias-corrected and accelerated confi-

dence intervals

Sk

boot_results is a dataframe containing the resampled statistics

The estimate of interest in this example is the proportion of
variance explained by the flag variables (’p_varezpl_flag ');
the wvector of estimates in ‘boot_results * is called

‘p_varexpl_flag_boot’ while the original sample estimate 1is

DT T N N N

called ‘p_varexpl_flag_original .
# 20 1s an estimate of the bias
z0 <— gnorm ((sum(boot_results |, p_varexpl_flag _boot]| <

p_varexpl_flag original)/1000))

# standard normal quantiles corresponding to a 95% interval
z <— gnorm(c(0.05/2, 1-0.05/2))

# The ‘acceleration_constant’ comes from a Jackknife procedure
numer <— z0 + z
denom <— 1 — acceleration _constant*(z0 + z)

p = pnorm(z0 + numer/denom)

BCa_ClIs <— quantile(boot_results|[ , p_varexpl_flag _boot] |,
p=p, names=FALSE, na.rm=TRUE)
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3.C Magnitudes of bootstrap bias corrections and
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Figure 3.C.1: Bias estimates and acceleration constants for the BCa intervals. The bias estimates are
plotted in the left panel and acceleration constants in the right panel for all three models. Each point in
the plots is an item for which the models were fit. While the acceleration constants are fairly small we
see evidence of some fairly large biases.
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3.D R code for model diagnostics

require (DHARMa)
require (qrnn)

require (ggplot2)

#simulate observations
gof _model <— simulateResiduals (model, #name of the model
#1000 responses simulated
n = 1000,
refit = F,
#condition on all random effects
re.form = NULL)

#mean of the simulated responses for each observation

mean_simresponse <— gof _model$fittedPredictedResponse

#rank transform the mean simulated responses for better visualization
mean_simresponse <— rank(mean_simresponse, ties.method = ”"average”)

mean_simresponse <— mean_simresponse /max(mean_simresponse )

#extract quantile residuals

scaled _resids <— gof_model$scaledResiduals

#data frame for plots
quantresids _data <— data.frame(scaled _resids = scaled _resids , #quantile
Expected = runif(gof_model$nObs)

mean_simresponse = mean_simresponse)

### Quantile regression

#penalty factor kept as 1 to reduce overfitting

#25th percentile

fit25 _nl <— qron. fit (x = as.matrix(quantresids _data$mean_simresponse),
y = as.matrix(quantresids_data$scaled _resids),
n.hidden = 4, iter .max = 1000,
n.trials =1
tau = 0.25)

quantresids _data$fit25 _nl <— qrnn.predict (

, penalty = 1

)

as. matrix(sort (quantresids _data$mean_simresponse)), fit25_nl)

#median

fit50 _nl <— qrnn. fit (x = as.matrix(quantresids _data$mean_simresponse),
.hidden = 4, iter .max = 1000,

.trials = 1, penalty = 1
tau = 0.5)

X
y = as.matrix(quantresids _data$scaled _resids),
n
n

)
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quantresids _data$fit50 _nl <— qrnn.predict (

as. matrix(sort (quantresids _data$mean_simresponse)), fit50_nl)

#75th percentile

fit75 _nl <— qronn.fit (x = as.matrix(quantresids _data$mean_simresponse),

y = as.matrix(quantresids _data$scaled _resids),

n.hidden = 4, iter .max = 1000,
n.trials = 1, penalty = 1,
tau = 0.75)

quantresids _data$fit75 _nl <— qrnn.predict (

as.matrix(sort (quantresids _data$mean_simresponse)), fit75_nl)

#Kolmogorov—Smirnov test — wuniform reference distribution
#used for annotation in the QQ plot
ks.test (quantresids _data$scaled _resids, ’punif’)

#JQ plot (theme elements and annotations not shown for brevity)
p-quantresids <— ggplot(quantresids _data,
aes (x = sort (Expected),
y = sort(scaled _resids))) +

geom _abline(slope = 1, intercept = 0) +

ggtitle ("QQ-plot .—_-Quantile_residuals” ,

subtitle = ” (Interview—level_mode)l”) +

xlab (” Expected”) + ylab(” Observed”)

#Plot of mean simulated responses against quantile residuals
#(theme elements and annotations not shown for brevity)
p-fitted _quantresids <— ggplot(quantresids _data,

aes (x = mean_simresponse ,

y = scaled_resids)) +

#quantile regression lines

geom_line (aes(x = sort(mean_simresponse), y = fit25_nl), size =
geom_line (aes(x = sort(mean_simresponse), y = fit50_nl), size
geom_line (aes(x = sort(mean_simresponse), y = fit75_nl), size =

#reference lines

geom_abline(slope = 0, intercept = 0.25, linetype = 2) +
geom_abline(slope = 0, intercept = 0.50, linetype = 2) +
geom _abline (slope = 0, intercept = 0.75, linetype = 2) +

ggtitle (”Simulated._responses.versus.Quantile_.residuals” |
subtitle = ” (Interview—level_model)”) +
xlab (”Mean_simulated _responses.(Rank_transformed)”) +

ylab (” Quantile_residuals”)
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Chapter 4

Can paradata predict interviewer
effects?

4.1 Introduction

4.1.1 Interviewer effects

The positive role of interviewers in surveys has long been recognized; interviewers solicit
cooperation, motivate and probe respondents to provide accurate responses, assist in
clarifying questions, and record responses (Groves 1989, p.359; Groves and Couper 1998,
Chapter 7; Groves et al. 2004, p.141). On the other hand, interviewers are also a source of
error. Ideally, interviewers in a survey should be exchangeable. Holding all other survey
conditions constant, we should obtain the same response from a respondent irrespective
of which interviewer undertakes the interview. But interviewers vary in their behaviors
thereby impacting responses. Even if two different interviewers read questions exactly
as worded in the instrument, they might pace their delivery differently thus affecting
respondent attention (Cannell et al. 1981). This results in answers from respondents
interviewed by a particular interviewer tending to be similar to each other as compared to
responses obtained from respondents belonging to other interviewers, even after factoring
out differences in geography and respondent profile (Hansen et al. 1960; Fellegi 1974;
Biemer and Stokes 1985). Thus, the expected response means across interviewers differ,
even under an interpenetrated sample design (Mahalanobis 1946) with a 100% response
rate. We use the term ‘interviewer effects’ to refer to this ‘interviewer measurement error

(response) variance’. The associated intra-interviewer correlation (p;,) is given by:

between-interviewer variance

between-interviewer variance + within-interviewer variance
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Values of p;,; are small - typically less than 0.02 (Groves 1989, p.318). However, the
inflation in variance for a mean due to interviewer measurement error is given by 1 +
(MeanW orkload — 1)pin. This means that if an item had a p;,; of 0.02 when the mean
interviewer workload is 50, the variance almost doubles, greatly reducing the precision of

the estimate. This necessitates methods to control interviewer effects.

4.1.2 The need for tailored training interventions

Since interviewer effects are the result of interviewer behaviors, they can be managed by
effective training, a finding known for many decades now (Stock and Hochstim 1951; Kish
1962). Billiet and Loosveldt (1988) find that the skills of giving instructions to respon-
dents, probing, and giving feedback are markedly improved with training. Dahlhamer
et al. (2010) show that average item response times for some NHIS questionnaire sec-
tions show marked improvement after refresher training; training in which considerable
time was devoted to reading questions as worded. In reviewing the literature for factors
impacting interviewer effects, Schnell and Kreuter (2005) say: “one conclusion seems to
apply to most of those studies: interviewer effects can be reduced if the interviewer has

received good training, and if the use of a standardized procedure is ensured”.

Professionally-run surveys conduct well-structured interviewer training sessions. How-
ever, even relatively intensive training of interviewers before a survey does not appear to
keep interviewers from performing inadequately during fieldwork (van der Zouwen and
Dijkstra 1988), suggesting the need for retraining interviewers during the survey data
collection. Two aspects are important here. First, retraining needs to be responsive as
early as possible in the interviewing process so that poor interviewer behaviors are cor-
rected early. Second, retraining needs to be tailored; many interviewers may not need a
full and expensive retraining but guidance on specific items that they may be struggling
with.

These needs are even greater for large-scale surveys given the impact of workload on
precision discussed above. Practitioners would like a cost-effective data-driven automatic
system to detect interviewing issues that could impact estimate precision; small-scale
surveys can sift through data using even semi-manual procedures. However, these kinds
of systems do not seem to be common; interviewer effects are rarely evaluated during
fieldwork (Biemer and Lyberg 2003, p.168) and interviewers contributing to it rarely
identified despite literature calling for it (e.g., West et al. 2013). Two challenges with
evaluating interviewer effects during a survey (and therefore interviewers who contribute
to it) are that estimates of p;,; are notoriously unstable (Groves 1989, p.368; Biemer
and Lyberg 2003, p.168) and the sheer number of items that need to be evaluated would
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increase pressure on survey managers who are already dealing with production issues.
This is where paradata can potentially play an important role by acting as a proxy for
interviewer effects. We use the term ‘paradata’ in the specific sense that it was first
defined by Couper (1998), i.e., keystrokes and time-stamps that are generated in the

course of a Computer-Assisted Interview (CAI).

4.1.3 Paradata

Why would we expect paradata to be useful to monitor interviewers for measurement
error? Consider two alternate interview scenarios that involve the same respondent but

two different interviewers.

Scenario 1

INTERVIEWER1: Thinking back on the past week, on an average, for how many
hours a day did you watch TV ?

RESPONDENT: Am not sure.

INTERVIEWER1: Could you guess? For example, about 20 hours?

RESPONDENT: Yes, actually about 20 hours.

Scenario 2

INTERVIEWERZ2: Thinking back on the past week, on an average, for how many
hours a day did you watch TV ?

RESPONDENT: Am not sure.

INTERVIEWERZ2: Maybe I could repeat the question to help you answer the question.
[slows down pace] Thinking back on the past week, on an average, for how
many hours a day did you watch TV ?

RESPONDENT: What do you mean by “on average”?

INTERVIEWERZ2: In the last seven days, there might have been days you could have
watched less TV and some days more TV. But if I asked you to give me one
number that stands for your daily TV viewing over the week, what would that
be? Please take your time to recall your TV viewing last week and answer

the question.

RESPONDENT: About two and a half hours.

The two interviews obtained very different responses. Interviewerl ends up giving a
directive probe to the respondent when faced with a potential non-response. On the
other hand, interviewer2 undertakes the right steps by first repeating the question to the
respondent, clarifying the question in a neutral fashion, and giving encouraging feedback.

These actions are likely to have yielded an accurate response. Such interviewer behavior
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tends to be consistent as noted by Fowler and Mangione (1990, p.45): “Some interviewers
obtain more answers than others on a consistent basis because they consistently probe

for more answers, and that affects the data”.

Broadly, a respondent goes through the process of comprehending the question (Compre-
hension), recalling the relevant information from memory (Retrieval), combining various
recalled information in order to answer the question (Judgment), and finally communi-
cating the answer (Tourangeau et al. 2000). An interviewer who is speeding through the
process could make comprehension difficult, and even if the respondent did comprehend
the question, the rushed behavior could give cues that the respondent need not bother re-
sponding carefully (Fowler and Mangione 1990, p.71). On the other hand, careful probing
would encourage better cognitive processing by the respondent resulting in better data
quality. However, this latter effort would also tend to be associated with higher item
times. In other words, item times (paradata in general) could be capturing interviewer

behaviors that are associated with survey error.

These intuitions go back a long way - e.g., Steinkamp (1964) looks at average interview
length and variability in interview length to assess interviewer performance - and are used
even in current survey quality control by methods such as focusing on interviews that are
completed in less than a threshold time. While such heuristics can be useful, they are
inherently subjective and unlikely to be optimal. With technological advancement, the
ease of obtaining paradata has increased. They have the advantage of being generated
at low marginal cost, are generally not afflicted by missingness, and can be considered
relatively error-free (West and Sinibaldi 2013). Moreover, they contain a lot of detail (as
seen in Chapter 2). Paradoxically, this feature of paradata has proven to be an obstacle,
with analysts often being overwhelmed with the amount of data (Couper et al. 1997;
Nicolaas 2011) and finding it challenging to separate signal from noise. Consequently,
paradata tend to be highly summarized before they are used, e.g., Biemer and Lyberg
(2003, p.429) and Jans et al. (2011). Better use of paradata requires research on its
properties but “relatively little attention has been paid to keystroke or item-level para-
data” and “the absence of research on the large-scale use of measurement-error-related

paradata in interview surveys is unfortunate” (Couper and Kreuter 2013).

We attempt to fill these gaps in this chapter. The overarching goal is to try and harness
the power of item-level paradata by linking them explicitly with interviewer effects in
order to enable quick, tailored training interventions with interviewers. If successful, it
will be a definite advantage over traditional quality control systems that rely on recordings
from a small subsample; paradata have no such restrictions, being available on the full
sample. Given our intuitions above on how paradata might be predictive of interviewer

effects, we preceded this study with separate research (Chapter 2 of this dissertation)
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that shows that paradata patterns are associated with indicators of interviewing quality.
This helps us proceed with the present research with greater confidence. The surveys we

have in mind for our application are repeated cross-section surveys and panel surveys.
We formulate three specific research questions.
1. How effective are paradata in predicting interviewer effects?

2. How do the paradata compare to interviewer demographics, work-related variables,

and quality control indicators in predicting interviewer effects?

3. Are there specific paradata variables that analysts should focus on during survey

quality control?

The rest of this chapter is organized as follows. Section 4.2 briefly reviews the Panel
Study of Income Dynamics (PSID), which is used as the “testbed” for the proposed
methods, Section 4.3 discusses in detail the PSID data used in this chapter, Section 4.4
describes the models used to estimate interviewer response variance, Section 4.5 describes
the results of the analysis, Section 4.6 discusses the results obtained and gives suggestions
for future research, and Section 4.7 considers issues of practical implementation of the

proposed methods.

4.2 Study survey

We used data from the 2015 wave of the PSID for our research. The PSID is a nationally
representative survey of families and individuals in the U.S., conducted via Computer
Assisted Telephone Interviewing (CATI). The survey consists of biennial waves where
one respondent per family is administered a ‘main interview’; supplemental studies are
added to this main interview e.g., the ‘transition into adulthood supplement’ is asked
to individuals when they become 18 years of age. Between March-December 2015, 9048
respondents were interviewed by 96 interviewers with a response rate of 89% (calculated
with respect to the previous wave). Interviews were largely conducted by telephone;
only 2.8% interviews had to be conducted in face-to-face mode. An interview lasted 80

1

minutes on average. The detailed questionnaire ' and codebook ? are available on the

PSID website.

Before the survey commences, PSID interviewers undergo video training ® on the study

terminology, concepts, and individual sections. This is followed by an in-depth in-person

Lftp://ftp.isr.umich.edu/pub/src/psid/questionnaires/q2015.pdf
2ftp://ftp.isr.umich.edu/pub/src/psid/codebook/fam2015er_codebook.pdf
Shttps://psidonline.isr.umich.edu/videos.aspx
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training at Ann Arbor, Michigan, USA. Approximately 60% of the 96 interviewers in

PSID 2015 were also interviewers for at least one of the previous two waves.

4.3 Data

4.3.1 Substantive data

The PSID main interview begins by taking consent from the respondent followed by ques-
tions about the family composition and member details. These ‘coverscreen’ questions are
followed by substantive questions. On average, a respondent answers about 360 substan-
tive questions across 11 sections as shown in Table 4.1; sections concerning employment
(sections BC/DE), expenditures (section F), and health (section H) account for close to

60% of interview duration.

Average #items Average IW

No. Section Substantive area administered in duration
an Iw {mins)
1 A Housing, Utilities, Computer Use 36 7
2 BC, DE . Employment 46 22
{including EHC" )
3 F Expenditures 52 11
4 G Current income;- Other family unit 18 9
member education
c R Dﬁ.—vear income and public 19 2
assistance
6 W Wealth and active savings 22 5
7 p Pensions 13 3
8 H Health 96 14
9 ] Marriages and Children 11 1
10 KL New head and spouse/partner 14 3
background
11 M Philanthropy 9 2
Average interiew 358 80

1. EHC: Event History Calendar

Table 4.1: PSID substantive section descriptions.

In 2015, to aid timely research into the aftermath of the 2008 recession, PSID released data
on 357 items concerning mortgage distress, housing, food security, wealth, and computer
use (belonging to Sections A, F, and W) within a month of fieldwork completion. These
early release data (ER data) do not include data from ‘split-off” families (split-off families

consist of either a person or group of people who moved out from an existing PSID family
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since the prior wave’s interview to form a new, economically independent family unit
living in a separate housing unit). This reduces the total ER data sample size to 8262
families. However, since these data were quickly released, they did not undergo the usual
editing, cleaning, and imputing processes which is an advantage for our analytical goals
since data ‘as collected” would better reflect interviewer effects. We therefore used ER
data for these families and the regular public use file data (that have undergone all the
data processing) for the remaining respondents. We used only respondents interviewed

via CATI for our analysis.

4.3.2 Paradata

We created 13 interviewer-level paradata measures for each item. For count measures,
we included the coefficients of variation (CV) along with the mean values; including just
the latter would mask variations across interviews that may be important predictors of

interviewer effects.

Measures 1.- 4. below are time-based paradata variables. The paradata literature has
generally looked at item times as a single measure. But item times are generated by
different activities having potentially different correlations with interviewer effects, e.g.,
asking a question versus recording a response. Given the data we had, we could split
an item into 2 parts. The first part counted the number of seconds from the time the
interviewer gets into an item on the CATTI instrument up to the first keystroke made.
This was used as a surrogate for the time taken for the interviewer to Ask the question,
Probe and give feedback to the respondent, and Receive a response (abbreviated as ‘APR
time’). The second part counted the time from the first keystroke up to the exit from
the item which we used as a surrogate for Data Entry time (‘DE time’). Both APR time
and DE time are computed using the first visit to the item when it would actually have

been administered to the respondent.
1.-2. APR time (Mean and CV)

3.—4. DE time (Mean and CV)

5.~6. No. of item visits (Mean and CV). From previous research (Chapter 2), we know
that multiple visits to an item are an indicator that the interviewer may be facing
a problem. A high mean with a low CV for this measure could especially indicate

an issue.

7.-10. Keycounts (Mean and CV) and Mouseclicks (Mean and CV) could be important

indicators of response editing.
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11. Proportion of remarks. This measure and the one below (help access) were included
based on research (Chapter 2) that showed that they are correlates of interviewing

quality.
12. Proportion of help access

13. Proportion of error messages. During the interviewing process, the CATT software
triggers error messages when data which are logically inconsistent or beyond preset

numerical ranges are entered.

All measures were top-coded at the 97.5th percentile to prevent very large values from
overly influencing our models. For binomial and multinomial response items, we did not
use the two keycount measures; any keystroke would largely be due to remarks which
would be captured by that measure. For numeric response items, we did not use the
CV of mouseclicks but we retained the mean of this measure since some interviewers
might indulge in idle clicking when the interview is in progress, a potential indicator
of distracted interviewing. Since these measures are item-dependent, their descriptive

statistics are presented for a select set of analysis items later in Section 4.5.1.

4.3.3 Interviewer characteristics
We used 3 interviewer demographic variables and 3 variables derived from interviewers’
work characteristics.

1. Interviewer sex (88% of interviewers are female).

2. Interviewer age (mean: 53.6 years, standard deviation: 12.1 years)

3. Interviewer education (less than High school, 12% of interviewers; High school/GED,
35% of interviewers; some college, 28% of interviewers, college graduate and above,

25% of interviewers).

4. Interviewer workload, i.e., number of conducted interviews (mean: 114.5 interviews,

standard deviation: 41.6 interviews).

5. Mean interviews per day (mean: 1.2 daily interviews, standard deviation: 0.12 daily
interviews); even a moderate workload may lead to interviewer fatigue if completed

in a short time period. We include partial interviews in this calculation.

6. The coefficient of variation (CV) of the number of daily interviews conducted (mean:
0.53, standard deviation: 0.11); interviewers who are more consistent with the

number of daily interviews may be associated with better interviewing quality.
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We refer to these 6 interviewer characteristics collectively as Interviewer Demographic

and Work-related (IDW) variables.

4.3.4 Interviewing evaluation data

In 2015, PSID recorded two of the first four interviews in every interviewer’s workload
followed by a further 10% random sample, resulting in 1120 recorded interviews. A
‘capture list” dictated which item in the interview was to be recorded; these items were
chosen on the basis of substantive importance. For the first three weeks of fieldwork, the
capture list inadvertently contained 1157 items belonging to a pretest version. This was
corrected and the list pared down to 382 items. We only consider items from the 382

items for our analyses.

Of the 1120 interviews, 594 CATT interviews (53% of all the recorded interviews) were
listened to by nine quality control (QC) evaluators. Owing to issues such as bad recordings
or missing interviewer characteristics, only 555 interviews were available for analysis.
These interviews were conducted by 92 interviewers (96% of the 96 interviewers), with
a median of 6 evaluated interviews per interviewer (first quartile: 4 interviews, third
quartile: 8 interviews). The recorded items accounted for a median 35% of the total
number of administered substantive items (IQR: 31% - 40%) and a median 45% of the

substantive interview duration (range: 40% - 50%) within the 555 evaluated interviews.

Apart from their training and extensive experience in behavior coding, many of the QC
evaluators have been interviewers themselves which especially equips them to understand
interviewer behavior. An evaluator raised a QC flag for an item if she encountered an
issue in any of the five interviewing dimensions in Table 4.2. QC flags were classified as

‘major’ or ‘minor’ depending on the potential impact on the substantive response.

Table 4.2: The five interviewing evaluation dimensions with sixteen categories.

No. Interviewing dimension Categories
1 Question asking Altered wording; Skipped question; Question delivery; Not verbatim; Other reading error
2 Probing and clarifying  Failure to probe or clarify; Inappropriate, evaluative, or directive probe; Other probing error
3 Data entry Wrong category; Wrong entry
4 Feedback Emotive feedback; Other feedback error
5  Other reasons Unprofessional conduct; Consent error; Household composition; Other error

Coders also explicitly noted the cause of a major flag; four of the sixteen categories
accounted for 70% of all major flags: failure to probe or clarify (44%), altered wording
(11%), inappropriate, evaluative, or directive probe (9%), and ‘other entry error’ (6%).

The large proportion of flags due to improper probing is expected since interviewers find
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it the hardest skill to learn (Fowler and Mangione 1990, p.44); Hicks et al. (2010) find

that interviewers probed only in 57 percent of the instances when a probe was needed.

Based on these data, we created the following two interviewer-level ‘flag variables’ to use

in our models:

1. ItemFlagProportion, an interviewer-level variable that represents the proportion of
evaluated cases for a specific item (across interviews) whch have either a major or
minor flag. Since there were only a median 6 evaluated cases per item per interviewer,
splitting this variable on the basis of major and minor flags (let alone specific be-
haviors) was not possible. Figure 4.1 plots the item flag proportions for 27 items in
the PSID questionnaire (the choice of these items is described below in Section 4.4.2)

where we can see a fair amount of variation in these proportions across items.

2. OverallFlagProportion, which is the overall proportion of evaluated cases for an
interviewer (across items and interviews) that have either a major or minor flag. The
median for this variable is 0.033 with values ranging from 0.008 to 0.099 (IQR: 0.021
- 0.053).

Iltem-wise interviewer flag proportion
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Figure 4.1: Item-wise interviewer flag proportions. Each data point in this plot is the item flag proportion
for a specific interviewer. Items on the horizontal axis are sorted in descending order of the flag rate.
Items with smaller flag proportions are driven by only a few interviewers.
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4.4 Methods

4.4.1 Models for interviewer response variance

Consider the following model with interviewer-varying intercepts fit to y;; responses of a
certain continuous item, where the subscript j refers to a respondent who is interviewed

by interviewer 1.

Yij = Bo + uoi + X5 Bx + €5 (4.2)
itd 2

Uoi ~ N(O7 Oiwer)

€ ~ N(0,02)

ug; L €ij

In this model, X is a vector of respondent covariates via which we seek to approximate an
interpenetrated design; we do not have substantive interest in them. We included three
household-level variables and three individual-level variables in X: number of adults in
the family (1, 2, 3, and 44 adults) was included to account for possible higher income
and expense response values in larger families. Also, many questions in the PSID ques-
tionnaire are repeated for every adult in the home, potentially adding to respondent and
interviewer burden, thereby increasing response error; number of children at home (0, 1,
2, 3, and 4+ children) was included to account for potentially larger dwelling units and
more expenses; reported 2014 household income (< $25K, $25K — $50K, $50K — $75K,
$75K — $100K, and > 100K ) was included since the survey is primarily economic in na-
ture and response values for many items would be correlated with the household economic
condition; sex was included since past research suggests that this may be associated with
recall accuracy (Skowronski and Thompson 1990; Auriat 1993) and measurement error
on economic data (Lee and Lee 2012); education (some high school or less, high school
graduate, come college, and college graduate and above) was included since this is known
to be correlated with cognitive sophistication (Krosnick and Alwin 1987, Krosnick 1991);
and finally, age (< 25 years, 25-34 years, 35-54 years, 55-64 years, 65-74, and 75 years and
above) was included since it is known to account for response effects even after taking

into account respondent education (Knauper 1999).

The categorization of continuous control variables helped overcome initial problems dur-
ing model estimation. It also ensured that outlier values do not overly influence our
inferences. We checked if some control variable categories were concentrated only among

only a few interviewers but this was not the case. These variables also have low item
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missing rates, the highest being that of total income at 1.4%.

Our interest is in 62,,,, the estimate of interviewer measurement error variance. We test
its statistical significance (at a 0.05 level) using a 50:50 x? approach (Self and Liang
1987). If the interviewer variance component is significant, we we fit the following ‘full
model” where P and Z are the vectors of paradata variables (described in Section 4.3.2)
and non-paradata variables (described in Sections 4.3.3 and 4.3.4). The flag proportions
that are part of Z were computed from the QC evaluation data and used as an estimate

of the full sample flag proportions.
yi; = B+ ug + X5 8« + (P B, + 2" B,) + ¢ (4.3)

U{)z‘% (0 o )

» Yqwer

iy N0, 07)

ij

/ /

Given our research questions, we wanted to evaluate the performance of P and Z in

2
wer*

)/62,.,, as our evaluation measure. We compare this measure for the para-

explaining &

~2 ~12
(iner — Ojwer

data model (‘P model’, that only adds P to equation 4.2), the non-paradata model (‘NP
model’, that only adds Z to equation 4.2), and the full model.

We used the proportion of interviewer variance explained, pg,,;vq, =

Further, we divide P into 2 variable blocks: time-based measures and non-time-based
measures. The paradata literature has focused on the former with little attention to
the latter; separate analyses will provide evidence of the comparative utility of these 2
variable sets. Variables in Z can be divided into 2 blocks: variables involving interviewer
characteristics and work-related variables (Section 4.3.3), and the flag variables (Section
4.3.4). While not all survey organizations undertake the kind of detailed QC that PSID
conducts, they will all have the IDW variables which can serve as a minimum bench-
mark against which to evaluate the paradata. Based on these variable blocks, we fit the

following subset models:
1. P-Time, that uses only time-based paradata variables.
2. P-NonTime, that uses only the non time-based paradata variables.
3. NP-IDW, that uses only the IDW variables.
4. NP-Flag, that uses only the flag variables.

The P and NP models are formed by adding terms from their respective subset models.
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Model for a binary response item.
When y;; is a binary variable with y;; ~ BER(p;;), we fit logit models where the predictor
part is structurally similar to the linear models above (the same coefficients have been
retained for simplicity). The base and full models are as follows.

Pij

log(7—"— > ) = fo + uoi + X558y (4.4)
i

Uol%iN(O O'2 )

» Yqwer

@(%) = By + up+ X506 + (P B, +Z8,) (4.5)

ij

U < N(0,072,,)

» Yiwer

For multinomial items, we fit separate logistic models to each category that constituted
at least 5% of the responses. Doing so, rather than fitting a single multinomial model,
gives us the flexibility to fit models with potentially different forms for each category.
While not technically accurate, we refer to these individual categories as items too for

descriptive convenience.

4.4.2 Choosing items for analysis

Since our analysis also involves the flag variables, we first looked at all substantive items
with a minimum of 200 interviewing evaluations (approximately a minimum of 2 eval-
uations each for the 92 interviewers) and at least 10 flags (so we have some potential
effects to measure). We then dropped the following items: ‘Event History Calendar’
(EHC), which is really a battery of questions on employment and residence but which
the interviewing evaluation process treats as a single ‘item’; two open-ended items on the
nature of work and industry (BC20 and BC21); a reading evaluation of the introduction
to section M of the questionnaire; a question on which specific member is covered by
health insurance (H61D3); and an item on which family member’s employer provides
insurance (H61f). Finally, we removed binary item ‘G17f’, due to a very low (only 0.2%)
substantive response proportion. This yielded 27 items which are a mix of response types:
numeric (14 items, with 13 of them involving monetary values), binary (7 items), and
multinomial (6 items). On average, an item in this set was administered to 7276 respon-
dents (standard deviation of 1554 respondents) by 89 interviewers (standard deviation of
4 interviewers). Since categories of multinomial models were modeled separately we had

a total of 45 resultant ‘items’.
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We wanted to select items (we drop the quotes around ‘items’ unless necessary) with
different magnitudes of p3’ . so that we can benchmark the performance of the para-
data variables at these different levels. Therefore, we first fit the model in equation 4.2
or equation 4.4 to each of the 45 items followed by fitting the NP model to those items

2

rwer”

with a significant & We then selected 11 items such that they spanned the range of
ﬁgi;lv(" and included all response types. We avoided selecting more than one category of
the same multinomial variable so as to get more item heterogeneity. The results of this

analysis are shown later in Section 4.5.1.

4.4.3 Model fitting and analysis details

Model variable selection

We decided to use an automatic variable selection method since we wanted to discover
terms, their higher powers, and interactions that we might miss with a manual variable
selection process. Also, we envisage our research being used in practice for many items
(e.g., hundreds of items) in a questionnaire in which case fitting models to each item
‘by hand’ would be impractical. We chose the Adaptive Least Absolute Shrinkage and
Selection Operator (ALASSO, Zou 2006) to undertake variable selection. By using the
L1 penalty and selecting variables by cross-validation, ALASSO gives us a subset of
variables that have predictive importance as well as reduce the chances of overfitting.
The procedure also has the ‘oracle property’ that gives us consistent variable selection
and coefficient estimates. We used the polywog package [Kenkel and Signorino 2018] in
the R [Team 2013] software to undertake ALASSO. Our initial predictor input included
all square transforms and two-way interactions. Based on the results in Chapter 3 we
also included cubic transformations for the flag variables. We forced back main effects in
situations where the algorithm selected interactions or higher powers but did not select
the main effects themselves. The ALASSO penalty factor was chosen on the basis of a
10-fold cross-validation(CV); folds were created by grouping interviewers into 10 groups
so that each group had approximately the same number of respondents. The control

variables (X) were left unpenalized.

The final selected inputs based on ALASSO (selected at a 5% significance level) were then
used to fit the multilevel model in equation 4.3 or equation 4.5 . All multilevel models
were fit with the Ime4 package (Bates et al. 2015) using the Laplace approximation in
the R (Team 2013) software. For linear multilevel models, we used Restricted Maximum
Likelihood (REML) that was fit using the Bobyqa optimizer. Logistic models in Ime/ use
ML estimation. Here, we used the ‘NLopt’ implementation of the BOBQYA optimizer
(Johnson) via its R interface ‘nloptr’ (Ypma et al. 2014); some testing showed that

variance estimates were almost exactly the same as when the default BOBYQA optimizer
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was used but with more than a 50% reduction in runtime. The reduction in runtime was

important since our model validation methods involve bootstrapping (explained below).

All numeric input variables were centered and scaled to facilitate convergence of the model
estimation process. We do not screen for ‘outliers’ when running our models since these
are actually potentially valuable in being responsible for interviewer effects. We do not
include survey weights since we are interested in uncovering interviewer effect structures
conditional on the current PSID design, not averaged over the design to the population.
Since all our variables of interest are at the interviewer-level, coefficient rescaling that is
recommended to make coefficients comparable across models (Snijders and Bosker 1999,
p. 228-229; Hox 2010, p.134; Austin and Merlo 2017) is not necessary to be undertaken
(Hox 2010, p.138). Approximately 3% of all interviews were undertaken by multiple
interviewers. For these interviews, we used paradata to match an item to the interviewer

who actually asked the question.

Model diagnostics

We undertake simulation-based diagnostics as described by Hartig (2018) for all our
models. The key idea is that data simulated from the fitted model should mimic the
observed data if the fitted model was correctly specified (Gelman and Hill 2006, p. 158-
159). To do this, a thousand datasets are simulated from the model, conditioning on all
random effects. Then, for each observation a quantile residual (Dunn and Smyth 1996) -
defined as the proportion of simulated values larger than the observed value - is computed

and two plots are constructed as described below.

e If there are no model fit issues, we would expect the quantile residuals across obser-
vations to be uniformly distributed. We draw a quantile-quantile plot to evaluate
this; more formally, a Kolmogorov-Smirnov test is conducted to detect deviation

from uniformity.

e The quantile residuals are plotted against the mean simulated value for each obser-
vation (similar to the diagnostic plot of residuals versus fitted values constructed
for a linear model). The mean simulated values are rank transformed and scaled to
make it easier to spot issues. To make the analysis more concrete and help protect
against missing patterns visually (especially when there are a lot of observations),
a quantile regression is conducted between the 25th percentile, median, and 75th
percentile of the mean simulated values and the quantile residuals; the quantile re-
gression lines should ideally match horizontal lines at these percentiles that would
indicate no association between the residuals and the mean simulated responses.
The quantile regression is conducted using quantile regression neural network mod-
els via the QRNN package (Cannon 2011) in R, so as to be able to spot potential

non-linearities in the patterns.
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R code for undertaking the simulation-based analyses was adapted from the source code

of the DHARMa package (Hartig 2018) and is included in Appendix 4.B.

Predictive evaluation
Though cross-validation is used to select variables, evaluation of our models’ predictive
ability will still be optimistic since we are using the same data for selection and evaluation.

To get a more realistic measure of predictive ability, we conducted the following steps.

1. We generated 200 bootstrapped datasets (the number of resamples is based on

recommendations in Harrell et al. 1996) by resampling interviewers.

2. All our models are fit to each resample using the variable selection procedure de-
scribed. We use the subscript ‘Bootstrap’ in place of pp,.y 4. to denote such esti-

mates.

3. The variables selected when fitting each of the bootstrap models are used to then
fit corresponding models to the original data. We use the subscript ‘Predicted’ in

place of P, 1y, to denote such estimates.

4. Since, on average, approximately 37% of the data is not present in each boot-
strapped sample (Efron 1983; Efron and Tibshirani 1997), the average pp,ogicted

will give us a more realistic measure of model performance.

We use the subscript ‘Apparent’ in place of ‘ExplVar’ in pg, ., When we refer to es-

timates computed when variable selection as well as model fitting are conducted on the

~P—Time

original data. We use superscripts to denote the model being fit, €.g., Dupparen:-

4.5 Results

4.5.1 TItems selected and descriptive analysis

Of the 45 items analyzed, we found that the interviewer variance component was signif-
icant for all but 6 items (F81B, F80B, G13, F82, K1.84, A4 2; ‘A4_2’ indicates category
code 2 of multinomial item A4). Of the remaining 39 items, the adaptive lasso algorithm
failed to converge for items H6le_12 and BCDE1.6. Table 4.3 shows ppl v, for the
remaining 37 items along with their descriptions. For a large number of items (22 items),
the non-paradata variables failed to explain any of the estimated interviewer variance.
While these results are not directly comparable to those obtained in Chapter 3 since the

model building methods are different, they are directionally the same.

The highlighted rows in Table 4.3 correspond to the 11 items that we chose for further
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analysis. We conducted a descriptive analysis before we fit the P models to these items.
For each paradata measure across items, the mean magnitude and +1 standard devia-
tions across interviewers are plotted in Figures 4.2 (time and item visit measures) and
4.3 (all other measures). Some measures are strongly prevalent for some items, e.g.,
proportion of help for item A8 (number of rooms), or exhibit more variation for specific
items, e.g., proportion of remarks for item A44 (Telephone/TV /Internet expenses); our
formal models will check if these between-interviewer paradata differences are predictive
of between-interviewer response variance. Binomial and multinomial response items gen-
erally have a lower DE time than the numeric response items since they potentially only
involve a mouseclick. However the presence of a non-zero mean DE time for these items
indicate that one or more of the following activities are taking place even after the ini-
tial response is entered: response editing, accessing help, entering remarks, interactions
with the respondent, etc. Descriptive statistics for the 11 items based on the substantive

responses are given in Appendix 4.A.1.
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Table 4.3: The original item pool along with the 11 selected items. Data are sorted by p

NP

Apparent*

The

highlighted rows correspond to the 11 items that were finally chosen for the analysis. The (B), (M),
and (N) in the third column refer to binomial, multinomial, and numeric response for that item; the
underscore appended to multinomial items is the category number that is being modeled.

~2

ANP

No. Item Description Tiwer  Dapparent
1 A44 (M) Dwelling - Mobile home/Trailer 0.33 0.80
2 A401.3 (M) Home heating - Oil 0.38 0.67
3 A22 (N) Yearly homeowner’s insurance premium 6173.78 0.59
4 A40.1.10 (M) Home heating - Bottled gas or propane 0.36 0.47
5 GI2 (B) Earn wages/salaries apart from uninc. business? 0.04 0.43
6 A46 (M) Dwelling - Row or town house 0.38 0.43
7 BCDE13 (M) Employment status - looking for work, unemployed 0.05 0.42
8 F49b2.4 (M) Vehicle type - Alternate fuel 0.55 0.41
9 A2l (N) Yearly property taxes 3x10° 0.37
10 A43 (N) Monthly water and sewer amount 56.97 0.33
11 Gl14 (B) Any income from bonus, tips, commissions? 0.12 0.28
12 A421 (M) Utility bill type - One bill and can separate amounts  0.18 0.23
13 A43 (M) Dwelling - Apart. in multi-unit building 0.06 0.22
14 H61J (N) Monthly health ins. premium 328.63 0.17
15 A20 (N) Present home value 1.1x10°  0.17
16  F49b2.5 (M) Vehicle type - none of the options 0.22 0.16
17 BCDEI1.1 (M) Employment status - working now 0.02 0.14
18 A422 (M) Utility bill type - One bill and can separate amounts  0.14 0.12
19 H6les (M) Medicaid insurance 0.06 0.12
20 H61k (B) Was anyone without insurance? 0.04 0.11
21 A4l (M) Dwelling - One-family house 0.05 0.09
22 FT7 (N) Amount spent on car insurance 198.91 0.09
23 A44 (N) Telephone/TV /Internet expenses 275.96 0.08
24 A42B (N) Amount spent on electricity 214.53 0.06
25 F47 (B) Own/lease car for personal use? 0.10 0.02
26 H6le3 (M) Medicare insurance 0.10 0.02
27 A40.1.1 (M) Home heating - Gas 0.09 0.00
28 A40.12 (M) Home heating - electricity 0.12 0.00
29  A40.197 (M) Home heating - Other specify 0.59 0.00
30 A425 (M) Do not get one utility bill 0.13 0.00
31 A42A (N) Amount on gas or other fuel for home 682.87 0.00
32 A8 (N) No. of rooms 0.10 0.00
33 BCDE1.5 (M) Employment status - disabled 0.15 0.00
34 F49b2.1 (M) Vehicle type - Hybrid 0.29 0.00
35 F57 (B) Vehicle used for business purposes? 0.10 0.00
36  F81A (N) Amount on transportation last month 10.16 0.00
37 Hé6lel (M) Employer provided insurance 0.18 0.00
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4.5.2 Modeling results

We describe our results in top-down fashion by starting with comparing performances
of the P and NP models. We then proceed to explore the components of the P model,
namely, the P-time and P-NonTime models, including conducting coefficient-level anal-
ysis for these subset models. We finally come back to study possible complementarities
between the P and NP models.

Comparison of NP and P models

We compare the apparent performances of the P and NP models in Figure 4.4. The
NP model estimates in this figure are the same as shown in Table 4.3. For 7 of the 11
items, the P model outperforms the NP model and quite substantially so; the difference
N D gpparens PEtWeen the P and NP models for these items is 0.39 with the P model

explaining an average 52% of Gjyer-
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Figure 4.4: Comparison of pp,., 1y, for the P and NP models. The P models are shown by filled circles

and the NP models are shown by empty circles. Items are sorted in descending order of ﬁfﬁwem. The
(B), (M), and (N) in the item labels on the vertical axis indicate binomial, multinomial, and numeric
response types respectively. The connector lines between the NP and P estimates for an item are only
visual guides to judge differences in estimates; the dashed lines denote the 4 cases when ﬁﬁ;arent is

greater than ﬁipparent.

While these are encouraging results, as explained earlier they are optimistic due to which

we conducted the bootstrapped-based prediction analysis. We did not include bootstrap
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resamples for which problems in estimation or computing were encountered for any model.
Yet, 9 of the 11 items had at least 195 valid resamples; items H61K (was anyone without
insurance) and G12 (whether earned any salary apart from unincorporated business) had
188 and 180 valid resamples respectively. Since all interviewers do not conduct the same
number of interviews, resample sizes were not constant. However, the coefficients of

variation were small (range: 3.7% - 4.3% across items).

Figure 4.5 plots the pp,.gicteq for the P and NP models along with the interquartile (IQR)

ranges.
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Figure 4.5: Comparison of pp,..4ieieq for the P and NP models. The P models are shown by filled circles
and the NP models are shown by empty circles. Items are sorted in the same order as Figure 4.4. The
(B), (M), and (N) in the item labels in the vertical axis indicate binomial, multinomial, and numeric
response types respectively. The horizontal lines with each point are the prediction IQRs.

Our general conclusions remain the same. For 5 items - H61J (health insurance pre-
mium), A44(telephone/Internet expenses), H61le_3 (whether Medicare insurance availed),
A8 (number of rooms), and A40_1_2 (home heating - electricity) - the P model continues
to do better than the NP model with an average pp,.4icteq difference of 0.36. We also
see the prediction IQRs generally well separated between the P and NP models for these
items. For 3 items - A4.4 (Dwelling - Mobile home/Trailer), A22 (Yearly homeowner
insurance premium), and H61K (anyone without insurance) - the NP model continues to
do better than the P model with an average pp, gieq difference of 0.20. For the remain-
ing 3 items - G12 (Earn wages/salaries apart from unincorporated business), BCDE1_3

(looking for work, unemployed), and A42_1 (One utility bill and can separate amounts)

148



- the Pp,cgiceq for the P and NP models are very close to each other.

A counter-intuitive result is that pp,.gieq 15 greater than po, ..., for some items. A
stark example is that of item BCDE1_3 (looking for work, unemployed) where pl e i
0 while p5 4. ..q is 0.85. To get a better sense of the optimism inherent in our estimates,
Figure 4.6 plots the optimism indices for the P and NP models which are computed
S Ppootstrap — Ppredictea- Ve find that the predictions are subject to a fair amount of
optimism; the average optimism index is 0.3, which is the same for the P and NP models
(8 of the 11 items are close to the 45 degree diagonal line). However, we see a wide
range of values; leaving aside items H61J (Health insurance premium) and A22 (yearly
homeowner’s premium) that have relatively extreme values, the optimism indices range
from 0.1 - 0.5 for the P models and 0.09 - 0.7 for the NP models. A surprising result is
that of item H61J where pp,.gicicq 18 better than pg,o.q,- For item BCDE1.3 (looking
for work, unemployed) that we referred to above, the optimism index for the P model
is just 0.14, implying that the large difference in pp,.gicteq A0 Plyparens that we saw can
be trusted and that we need not always be pessimistic about model fit in predicting

interviewer effects.
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Figure 4.6: Optimism indices for the P and NP models. The indices for the P models are on the horizontal
axis and those of the NP models are on the vertical axis. The diagonal line is the 45 degree line.

For the rest of this chapter we will only use pp, gieq fOr our inferences since they are
conceptually more realistic than p 4, ..., Before we proceed to study the components
of the P model, we check if the differences between the P and NP models would have
been higher had we used only the IDW variables (and not the flag variables) in the NP
models. Figure 4.7 shows that the flag variables add only little over the IDW variables

(incremental Pp, gicea Of 0.05, on average). For these 11 items, the direction of results is
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the same that we obtained in research question 1 of Chapter 3.
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Figure 4.7: Comparison of pp,.gicreq for the NP and IDW models. The NP models are shown by circles
and IDW models by squares. Items are sorted in the same order as the earlier figures, i.e., in descending
order of pN© ...... The (B), (M), and (N) in the item labels on the vertical axis indicate binomial,

multinomial, and numeric response types respectively. The horizontal lines with each point are the
prediction IQRs.

Comparison of P-Time and P-NonTime models

Figure 4.8 plots pp,.gicteq fOr the P-Time, P-NonTime, and P models. We first focus on
the differences between pﬁ;eﬁjggjd and pﬁ;&g’;jjme. There is only 1 item - item A8 (number
of rooms) - for which the P-Time model does better than the P-NonTime model (mean
difference of 0.44). The P-Time IQRs are narrow indicating that the time measures are
reliable predictors for this item. For the remaining 7 items (ignoring the 3 items in the top
row of the figure for which the differences between the models are too small to consider),
the P-NonTime model outperforms the P-Time model with a mean pp, . .0q difference
of 0.27 (range: 0.13 - 0.56). However, the P-NonTime IQRs tend to be wider than those
of the P-Time models; more non-time variables add to predictive power but this comes

at the cost of predictive uncertainty.

We now check if the time and non-time variables explain the same source of variance
by comparing the P-Time and P-NonTime estimates to the paradata model estimates in

Figure 4.8. Leaving aside item A22 (yearly home insurance premium) for which p& .. .
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is negligible, we find 3 items - A44 (telephone/TV /Internet expenses), A8 (number of
rooms), and H61le_3 (whether Medicare insurance) - where the time and non-time vari-
ables subsume the other, as the case may be, in explaining 67,.,. For the other 7 items,
we can see that the time and non-time variables complement each other in explaining
Giwer; the incremental Pp, . ieq OVEr the larger of the 2 estimates is 0.14 (range : 0.10 -

0.18).
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Coefficient analysis: P-Time model

2

What specific paradata measures work best in explaining 7;,,.,

for an item? We gauge
this by the proportion of bootstrap models in which a measure occurs, and the mean
magnitude and standard deviation of the measure’s coefficient in the prediction models.
We look at main effects that occur in at least 80% of the bootstrap models. Since we
forced main effects back when needed, they will tend to have a higher occurrence; we set
the occurrence threshold for quadratic terms and interactions at a lower 60% for their

estimates to be displayed.

We take up the P-Time model and focus on the 4 items for which ﬁﬁ;ﬁfgfd was at

least 0.25. The results for these are shown in Table 4.4, with the columns arranged
in descending order of pb Tie — Of the 4 time variables, mean APR time is the most
important variable in terms of frequency of occurrence. The CV-based measures show
that, after controlling for respondent characteristics, between-interviewer differences in
how the measures vary within workloads (and not just differences in means) are predictive
of 62

wer”*

The high occurrence of mean DE time for A44 (telephone/TV /Internet expense),
compared with the other 3 items, aligns with the descriptive analysis in Figure 4.2 which
showed that the strongest between-interviewer variation for mean DE time was for this
item. This again reinforces the fact that differences in paradata among interviewers are

explaining interviewer effects.

Looking at the coefficients, we see that almost all of them have small standard deviations
compared to the means which is a good indicator of predictive stability. All displayed
coefficients were also consistent in their sign (not shown in the table); across items, the
minimum proportion of resample models with the same sign for any of the time measures

was 0.97.

The presence of interactions and higher powers makes it difficult to judge the magnitude
and direction of a measure’s impact on the response. We therefore choose two measures
- mean APR time and mean DE time - and compute predictions of their impact on
substantive responses. These mean-based measures rather than their CV counterparts
were chosen since they are easier to interpret. The predictions were done at 2 levels
of both paradata measures - 2 standard deviations above (‘High’) or below (‘Low’) the
mean - giving us 4 scenarios in all. We assume all other measures are held constant. The
results are displayed in Figure 4.9. Results for items BCDE1_3 and G12 are in terms of
log-odds while for A8 and A44, they are in terms of the numeric values (number of rooms

and monthly dollar expense on telephone/TV /Internet, respectively)

Looking at the first panel, it is clear that the distinguishing measure for item A8 (number

of rooms) is mean APR time. On average, when we have a speeding interviewer (Low
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Table 4.4: Occurence proportions and coefficient estimates of the time paradata variables. These are
proportions of times a time paradata measure occurs in the bootstrap models along with the mean

coeflicient estimates for the 4 items for which ﬁg;eﬁfzt’:d is greater than 25%. Columns are arranged

in descending order of 135;@5?;:(1- Only main effects with an occurrence proportion greater than 0.8
are shown; the minimum threshold for quadratic terms and interactions is 0.6. The top 2 main effects
for each item are in bold. The B, M, and N in the item labels indicate binomial, multinomial, and
numeric response types for those items. The B correspond to scaled measures used as inputs in the
models. The models for items A8 and A44 are linear multilevel models predicting the no. of rooms
and monthly telephone/TV /Internet expenses, respectively. The models for items BCDE1_3 and G12
are logistic multilevel models predicting the log-odds of looking for work and being unemployed, and

whether wages/salaries apart from unincorporated business are being earned, respectively.

A8 BCDE1.3 A44 G12
(No. of rooms, N) (Empl. status - looking (Telephone/TV/ (Earn wages/salaries
for work, unemployed) Internet expenses) apart from uninc.
business?)
phrLime, 51% 41% 36% 26%
Occurrence Mean 3 Occurrence Mean 3 Occurrence Mean J Occurrence Mean 3
(proportion) (sd) (proportion) (sd) (proportion) (sd) (proportion) (sd)
Main effects
APR time (mean) 1.00 0.2 0.81 0.07 0.87 4.5 0.92 0.08
(0.02) (0.02) (1) (0.03)
DE time (mean) 0.84 -0.04 0.74 0.05 0.97 -9.4
(0.02) (0.01) (1.6)
APR time (CV) 0.86 -0.05 0.80 0.06 0.83 -0.05
(0.04) (0.02) (0.02)
DE time (CV) 0.98 -0.11 0.69 0.05 0.90 9.1
(0.02) (0.02) (4.4)
Quadratic terms
APR time (mean) 0.68 -0.09
(0.01)
DE time (mean) 0.63 5
(1.7)
APR time (CV) 0.84 -0.1
(0.01)
DE time (CV) 0.67 0.07
(0.02)
Interactions
APR time (mean) : APR time (CV) 0.72 -0.14
(0.01)
APR time (mean) : DE time (CV) 0.92 0.17 0.61 7.6 0.71 -0.09
(0.01) (1.1) (0.02)
DE time (mean) : DE time (CV) 0.63 10.7
(3.1)
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Figure 4.9: Response predictions based on the time paradata measures, e.g., ‘High APR’ refers to high
APR mean time. The boxplots show the variation in changes to the response across the approximately
200 prediction models for the combination of levels shown in the horizontal axis.

mean APR time), irrespective of whether the data entry time is high or low, we can
predict an undercount in the number of rooms. But this impact is not symmetrical, i.e.,
interviewers associated with high mean APRs, on average, are associated with values

close to the average; spending a lot of time administering the item may be inefficient.

On the other hand, for item A44 (monthly TV /telephone/Internet expense), mean DE
time is the differentiating measure. Low mean DE times are associated with higher dollar
expenses perhaps reflecting confidence in the responses. Further, on average, a low DE
time coupled with high APR time is associated with a substantial median $40 increase in
reported monthly TV /telephone/Internet expenses. But the 2 situations involving high
DE time are associated with lower response values. Perhaps, the high DE times are a
reflection of a lack of clarity at the interviewer’s end which may find expression in activities
such as back-forth with the respondent even after the response is recorded, response
editing, making a remark etc. These scenarios indicate that paradata are capturing item-
specific nuances of interviewer behaviors that lead to interviewer effects, even when the

items are of the same response type.

In the case of BCDE1_3, a speeding interviewer (low mean APR time), on average, is
associated with a lower odds of an ‘unemployed, looking for work’ response. This is possi-
bly due to the sensitive nature of the question so that speeding is helping the respondent
gloss over possible unemployment by, say, responding with response option 2 which is
“Only temporarily laid off, sick or maternity leave”. If the respondent does says they

s/he is unemployed and looking for work, the special instruction to the interviewer for
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this question is to verify if they are looking for work. If ‘yes’, then response option 3 is
indeed the correct answer failing which the interviewer is asked to record the response as
option 6 (‘keeping house’). Interviewers associated with a high mean APR time (more
time probing) and low DE time (confident answers) do not have an impact on the sub-
stantive response (median predicted response close to zero). However, a high mean APR
accompanied by a high mean DE time results, on average, a markedly higher 32% higher
odds of choosing this response option. It is difficult to say whether this is for the better
or worse. If the ‘extra’ DE time is used to probe more after the first response is recorded
(perhaps the interviewer gets a hint of discomfort from the respondent), then a more
accurate response will perhaps be obtained. On the other hand, using this time to access

help, enter remarks etc. maybe a sign of lack of clarity.

In the case of G12 (whether earned wages/salaries apart from unincorporated business),
the interviewer is asked to read out the list of employers (from the event history calendar)
worked for by the respondent and if necessary review her/his employment history. An
interviewer going through this process diligently would give the respondent a good chance
of remembering any source of wages/salaries previously forgotten, thus leading to a pos-
itive response. This is reflected in the results for G12 in Figure 4.9 where an interviewer
associated with a high APR time, on average, is predicted to have an approximately 20%
higher odds of getting a ‘yes’ to this question. Mean DE time does not have an impact
for this item (Table 4.4 also showed that this measure was relatively infrequent); Figure
4.3 shows that the mean DE time is approximately 1.3 seconds for this item with a very

small standard deviation among interviewers of approximately 1 second.

Coefficient analysis: P-NonTime model

We extend the above line of analysis for the non-time paradata measures as well, focusing
on the 7 items for which ﬁﬁ;ﬁi’zgme is more than 25%. For clearer display, we show the
occurrence proportions in Table 4.5 and the coefficient-related results separately in Table

4.6.

Looking at Table 4.5, we find that ‘mean item visits’ is the most important non-time
paradata measure in terms of occurrence across items, followed by the CV of item visits.
We see the presence of ‘proportion remarks’ for items BCDE1_3 (looking for work, un-
employed) and A44 (Telephone/TV /Internet expenses), responses for which were seen to
be impacted by DE time in the P-time analysis above. We could surmise that remarks
account for at least some of the ‘extra’ DE time spent by interviewers for these items.
We do not find many interactions displayed in Table 4.5; the presence of many compet-

ing variables makes it difficult for an interaction to have a occurrence proportion greater
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than our minimum display threshold (lowering the threshold to 50% allowed too many

interactions reducing display clarity).

We now turn to Table 4.6 which displays the 3 (mean and standard deviation) for the
non-time measures, and the proportion of resamples in which the coefficient has the same
sign. Unlike the time variables, we see that many non-time coefficients have a high
standard deviation compared to the mean. This is because many non-time paradata
measures are sparse (as we can gauge from Figure 4.3), unlike the time variables which
are ubiquitous for every item. In addition, we also have more potentially competing and
correlated variables. This coefficient instability is also reflected in the low proportion of
models for which the coefficient maintains the same sign, e.g., only approximately 60%
of models have a positive sign for the mean item visit measure for item H61e_3. Despite
these individual instabilities, the non-time measures, when used together, are generally

2

s ver @8 We saw in Section 4.5.2.

more powerful than the time measures in explaining &
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Just as we did for the time measures, we predict the impact on substantive responses
based on the non-time measures. We first consider the marginal effects of high values
(2 standard deviations above the mean) of mean item time, the measure that occurs
for all items with a high frequency. This is shown in Figure 4.10). Item A44 has not
been shown in this plot for convenience; responses for all other items are on a common
log-odds scale. We see that high values of this measure generally lead to a lower log-
odds of the response. One plausible mechanism is that error messages appear in other
items due to ‘positive’ responses in these items. Interviewers therefore revisit these items
to change the response to ‘negative’ to eliminate these messages. The impact for item
H61e_3 (Medicare insurance) is in the other direction where, on average, an interviewer
with high mean field visits is associated with an increased log-odds of a response. For this
question, if the respondent says she does not have Medicare, a special instruction comes
up where the interviewer has to confirm from the respondent that this is the case. If
the respondent changes her answer, the interviewer goes back to the original item screen
and changes the response to this option in the affirmative. Thus, items revisits are likely

linked to better probing resulting in a higher log-odds of a positive response.

Impact on the substantive response by interviewers with high mean item visits

Log-odds

=T T +=

A0 1.2 HE1e_3 A2 1 BCDE1_3 G12 Ad_4
(M) Home heating- (M) Medicare insurance (k) Cne bill utility and (M) Looking for wiork, (B) Eamings apart (M) Dwelling MWobile homef
electricity can separate amounts unemployed from uninc. business? Trailer

Figure 4.10: Predictions of impact on response for high mean item visits.

Next, in Figure 4.11 we investigate the impact of interactions between help access and
remark-making behavior on the response for items H61e_3 (Medicare insurance) and A44
(Telephone/TV /Internet expenses), items for which both measures appear in Table 4.5.
For item H61e_3 (Medicare insurance), interviewers who frequently access help for this
question (without remarks) are associated with a higher odds of this response option
being selected. As explained earlier, this response option has a special check; careful

interviewers may be double-checking details by accessing help. The other combinations
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do not impact the response. For item A44 (TV/telephone/Internet expense), interviewers
with straightforward interviewing (low help, low remarks) are associated with a median
$25 higher value. Either one of high remark making or high help access are also associated
with a median higher value. If remarks and help are accessed after the first keystroke
is entered, then the lower median response value associated with the high remarks-high
help combination partially explains the lower median response value for the high DE time

combinations seen in Figure 4.9 for this item.

Hé1e_3 Add
(M) Medicare insurance (N) Telephone/T\/Internet expenses
Log-odds . H
.
2 i
: 1 1501 1
. :
t
' ]
i
1 1004
i
| ]
501
0 F |
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! |
[ ]
. : |
High remarks Low remarks High remarks Lowi remarks High remarks Low remarks High remarks Lo remarks
High Help High Help Lowi Help Low Help High Help High Help Low Help Low Help

Figure 4.11: Predictions of impact on response by the interaction of help access and remarks. 'High’ or
"Low’ denotes a proportion that is 2 standard deviations above or below, respectively, from that of the
average interviewer.

Comparison of P, NP, and Full models

After exploring the components of the P models, we return to the findings in Section
4.5.2, where the P models did better than the NP models for 5 items, while the NP
model did better than the P model for 3 items. In practice, can we then focus on
either the NP or P model, as the case may be? To see this, Figure 4.12 plots pp, .gicted
for the P and NP models along with the full model. The 11 analysis items can be
divided into four groups. The first group has a single member, item A22 (homeowner’s
insurance premium) where we can use only the NP model given that the P model fails to
explain any ;.. The second group consists of 3 items where using only the P model is
sufficient since the NP variables do not add any incremental explanatory power. These
3 items are: item A44 (monthly telephone/TV /Internet expenses), item A8 (number of
rooms), and item H61le_3 (whether Medicare insurance). In fact, for item A44, it might

be advisable to use only the paradata variables since the non-paradata variables appear
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to be adding more noise in the full model. The third group consists of a single item,
BCDE1 3 (looking for work, unemployed) where pp,..jieeq 15 @approximately the same for
the P and NP models and either model can be used in practice. For the remaining 6
items, the P and NP models are complementary to each other, on average contributing
a fairly substantial incremental 0.26 to the larger of the P or NP pp. . jiciea- These 6
items are: H61J (insurance premium), H61K (was anyone without insurance), A42_1(one
single utility bill and can separate amounts), A40_1_2 (home heating - electricity), A4 4
(dwelling - mobile home/trailer), and G12 (whether earned wages/salaries apart from

unincorporated business).
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Figure 4.13 displays diagnostics for the full ‘apparent’ model (i.e., the model fit to the
original data). Except for items A22 (yearly homeowner’s insurance premium), A44
(telephone/TV /Internet expenses), and H61J (Health insurance premium) we do not see
any major problems in model fit. Of the 3 items with evidence of model fit issues, items
A22 and A44 are also those where we see a fairly substantial predictive optimism in
Figure 4.6. In such cases, one could try variable transformations to help improve model
fit.
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Simulated responses versus Quantile residuals
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Figure 4.13: Quantile residual diagnostic plots for the full models. The plots are based on the ‘apparent’
models. Each item is on one row of the plot with the order of the items as followed in Figure 4.12. The
left panels compare the quantile residuals to draws from a uniform distribution. Each point in the right
panels is the mean simulated response (across 1000 simulations) for an observation in the data. The solid
lines in the correspond to the quantile regression lines and the dotted lines are benchmarks for these

lines.
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Simulated responses versus Quantile residuals

QQ plot - Quantile residuals
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Figure 4.13 (continued).
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QQ plot - Quantile residuals

Simulated responses versus Quantile residuals
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Figure 4.13 (continued).
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QQ plot - Quantile residuals

Simulated responses versus Quantile residuals
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4.6 Discussion

The results establish that paradata are quite successful in explaining interviewer effects.
This success is likely due to paradata being able to capture interviewer behaviors that
drive interviewer effects. The impact-on-response analysis showed that paradata are also
able to pick up item-specific behaviors that matter. With these encouraging results,
a tempering finding was that while the paradata models generally outperformed the
non-paradata models, the latter are still important in being able to add incremental
explanatory power. This suggests that behaviors or respondent interactions involving,
say, different levels of interviewer education are not fully captured by paradata. In

practice, it is therefore generally advisable to use both P and NP variables.

The results pertaining to the non-time paradata measures are noteworthy since the para-
data literature has focused on item times. The success of the non-time variables could be
because they not only capturing information present in the time variables (e.g., remark
making behavior is also likely reflected in higher DE times) but different non-time mea-
sures are capturing different facets of item-specific interviewer-respondent interactions.
This was seen in our results which showed that the frequency of occurrence and impact
of different non-paradata measures on the response varies by item. Studies on the lines
of Couper and Kreuter (2013) and Olson and Smyth (2015) that have studied item, re-
spondent, and interviewer associations with item times, should also be extended to the
non-time paradata variables to better understand the properties of these variables. For
the time paradata, the results showed that splitting item times into APR and DE times
added more insight. We encourage this split as a standard research practice wherever
possible, given that these components are associated with different stages of the interview

process involving different types of interviewer and respondent behaviors.

The results showed that the CV variables were important predictors. In the context
of APR times, this could be a reflection of inconsistent probing by interviewers, a phe-
nomenon conceived to be arising due to interviewer expectations of the respondents an-
swers (Biemer and Lyberg 2003, p.172). Inconsistent probing has also been posited as
a cause of interviewer effects (Biemer and Lyberg 2003; Kreuter 2008), though ”so far
there has been no systematic study of this effect”. Whether the CV variables are specif-
ically getting at this interviewer behavior, and whether this behavior is associated with

interviewer effects is an avenue for future work.

Drilling down to the actual measures showed that no single paradata variable is dominant
but conversely, there was no paradata measure that did not frequently occur for at least
1 item. Our inferences are conditional on how we defined the measures. It is possible

that more creatively defined measures could perform better. To be able to capture as
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many behavioral dimensions as possible, we also experimented with other measures, e.g.,
splitting the error messages into ‘hard’ errors (which force the interviewer to correct any
inconsistency and only then move forward) and ‘soft’ errors (which the interviewer can
simply escape), the proportion of item revisits that involve response edits, whether the
interviewer ever exited an interview prematurely at that particular item, etc. However,
we found that being sparse, such measures increased predictive uncertainty, a finding
echoed in previous literature (Xu et al. 2008; Flynn et al. 2017). Moreover, there was no
substantial improvement in average prediction levels when these measures were included.
In a similar vein, we caution practitioners from over-relying on automatic variable se-
lection methods to choose the right variables (Belloni et al. 2014, p.40); prior thought,
motivated by theoretical findings or practical observations, is important to arrive at the
right measures. We checked if we could get more stable predictions (especially for the
non-time paradata) if we used only main effect models. However, pp,..sictions Were far

smaller than what we obtained with the models we presented in this chapter.

Our research in this area is far from comprehensive, and subject to limitations. We used
the simple bootstrap method (Efron and Tibshirani 1993) to give us realistic predictions.
A better option is to use the enhanced bootstrap (Efron and Tibshirani 1993, p.248-249;
Harrell et al. 1996) that adds an additional step of subtracting the optimism indices
from the apparent estimates. We did not do this since we obtained 5 zero values of
P apparens (Figure 4.4); using the enhanced bootstrap would mean getting a negative value
of Pp,ediction- HOwever, this means that our predictions may still be optimistic. On the
other hand, given our research objectives, our model building did not include interactions
between the variable blocks which would potentially add to predictive power. Since, on
average, 63% of all interviewers would be in a bootstrap resample (Efron 1983; Efron
and Tibshirani 1997), one criticism could be that our predictions are not validated on a
fully independent sample. However, as pointed out earlier, approximately 60% of PSID
interviewers are duplicated between waves so the bootstrap approach indeed gives us a

realistic estimate of predictive power.

While the findings of this research are promising, this research is also subject to several
limitations, many of which are avenues for future work. We list 11 such limitations.
First, our models rely on the successful approximation to an interpenetrated design but
we do not know if we were successful in this endeavor. Second, we are assuming a normal
distribution for the random interviewer effects; conceptually, this stands for the effect of
many small unobserved interviewer influences so that the central limit theorem would
apply. But in our case, we could have many ‘average’ interviewers and a small number
of interviewers who are large exceptions at the tails of the distribution, representing a
heavy-tailed distribution. In such cases, there is marked disagreement in the literature as

to whether parametric assumptions are important or innocuous (McCulloch and Neuhaus
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2011). Some studies such as Maas and Hox (2004) and McCulloch and Neuhaus (2011)
show that estimation of the random effect variance is robust to misspecification of the
distribution, but one needs to be careful if interest is in the statistical significance of the
variance. Grilli and Rampichini (2015) say that “an appropriate specification is crucial for
valid predictions of the random effects”. Future work could conduct sensitivity analyses
on how distributional assumptions impact predictions. Third, we assumed independence
of random effects and residual errors. We are not aware of a standard way to adjust our
inferences in the event should this assumption not hold in practice. This is another area
of future research, including exploring survey mechanisms where this assumption might
not hold. Fourth, by looking at a random intercept model, we are looking at the average
response. But, if interviewer-specific biases are all in the same direction, we will fail to
pick up any interviewer effect. The literature has started looking at this issue (Peytchev
2006; Brunton-Smith et al. 2017) and it would be interesting to see if paradata can explain

within-interviewer response variations as well as between-interviewer variability.

Fifth, recent work has shown that responses within interviewers may appear correlated
because different interviewers successfully obtain cooperation from different pools of re-
spondents (West and Olson 2010). In our case, this might not matter as much since PSID
has a response rate of approximately close to 90% (computed with respect to the previ-
ous wave), but future research can consider ways to separately model the measurement
error component of the total between-interviewer variance. Sixth, and in a similar vein,
models that use paradata to predict interviewer non-response variance would be useful.
Seventh, our models ignore the time element; it is possible that associations between
interviewer measurement error and paradata patterns change as fieldwork proceeds —
and differently for different types of interviewers. Eighth, by conducting an item-level
analysis, we ignore correlation of effects between items; interviewer behaviors on an item
may impact responses for later items. Ninth, we saw that our models are subject to a
fair degree of optimism. One approach to get more stable predictions could be to refit
models after using only variables that appear in, say, 50% of resample models. Tenth,
while the CV variables were found to be generally important predictors, they could also
be unstable especially when used in the early stages of a survey; it is worth assessing
the stability of the CV measures. Eleventh, while we gave plausible explanations for our
results, going back to recordings where possible and confirming the mechanisms involved
will contribute to our knowledge of paradata and interviewer behavior. We did not have

access to the recordings and therefore could not undertake this exercise.
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4.7 Practical implementation

How do we envisage this research being practically applied? As stated at the outset of
this dissertation, and in Section 1 of this chapter, our goal is to develop an interviewer
monitoring system that is quick, inexpensive, tailored, and one that does not overly add

to the burden on operations’ staff. Figure 4.17 shows one way this can occur.

Previous wave Current wave

Step 3
Stepl
Predict conditional modes of
Compute &i%m. for each item incoming data by plugging in P and
Z in the models of Step 2

Step 2
Step 4
For variables with a statistically
significant G2,.,, use P and Z to predict Zero-in on conditional modes that
conditional modes of the interviewer are, say, < 3and = 3

random effects.

Figure 4.17: Implementation Flow.

Comparing equations 4.2 and 4.3, we see that we are trying to use the vector of paradata

and interviewer-level covariates to predict wug;:

uoi = P B+ Z{' B, +uy, (4.6)

As stated in Section 1.3, our focus is on repeated cross-section or panel surveys. Given
the nature of these surveys, an overwhelming majority of questionnaire items are constant

2

e 1s estimated for all items (Step 1) and

across waves. Once a wave is completed, o

2

= vers We fit the models in equations 4.3 or 4.5 using P

for those items with significant o
and Z (Step 2). The models are thus kept ready prior to the commencement of a fresh
wave. When the current wave starts, incoming P and Z are plugged into these models to
predict the interviewer conditional modes (Step 3). The crux is that we do not need data
on the actual responses to estimate the interviewer effects. This gets around the issue of
estimation instability. We also do not need respondent covariate information since these

have been controlled for when estimating the model coefficients in equations 4.3 or 4.5.

From this analysis, we will obtain an ¢ x k matrix of predicted conditional modes. We
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could then focus on conditional modes towards the extremes of the random effect distri-
bution (Step 4). If recordings are available, they could be reviewed for these specific items
and interviewers to check if anything is amiss with the interview. If so, the interviewers
in question could be telephoned and be given feedback. In the absence of recordings,
more general feedback could be provided to interviewers identified by their conditional

modes.
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Appendix

4.A Summary descriptive statistics for the items used

for the analyses.

Table 4.A.1: Descriptive statistics for the 10 variables used for the analyses. Item descriptions are not
precise; please see the questionnaire for the detailed question.

Numeric response variables

Ttem Item description Minimum Q1 Median Mean Q3  Maximum
A8 Number of rooms 0 4 5 5 7 20
A22 Total yearly homeowner’s insurance ($) 1 600 950 1,102 1,300 9,000
Ad4 Telephone and internet expenses ($) 0 90 175 196 270 436
H61J Monthly health insurance amount ($) 0 75 188 252 350 4,992

Binary response variables

G12 Any salaries or wages besides uninc. business? Yes = 76%

H61K Any family member without health insurance? Yes = 23%

Categories of Multinomial response variables

A4 (category 4) Dwelling type - Mobile home/trailer. Proportion = 5%

A40 (category 2) Heating 1st mention - Electricity. Proportion = 40%

A42 (category 1) Receive one utility bill and can separate amounts. Proportion = 12%
BCDEL (category 3) Employment status - Looking for work, unemployed. Proportion = 7%

H61e (category 3)  Type of health insurance - Medicare. Proportion = 15%
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4.B R code for model diagnostics

require (DHARMa)
require (qrnn)

require (ggplot2)

#simulate observations
gof _model <— simulateResiduals (model, #name of the model
#1000 responses simulated
n = 1000,
refit = F,
#condition on all random effects
re.form = NULL)

#mean of the simulated responses for each observation

mean_simresponse <— gof _model$fittedPredictedResponse

#rank transform the mean simulated responses for better visualization
mean_simresponse <— rank(mean_simresponse, ties.method = ”"average”)

mean_simresponse <— mean_simresponse /max(mean_simresponse )

#extract quantile residuals

scaled _resids <— gof_model$scaledResiduals

#data frame for plots
quantresids _data <— data.frame(scaled _resids = scaled _resids , #quantile
Expected = runif(gof_model$nObs)

mean_simresponse = mean_simresponse)

### Quantile regression

#penalty factor kept as 1 to reduce overfitting

#25th percentile

fit25 _nl <— qron. fit (x = as.matrix(quantresids _data$mean_simresponse),
y = as.matrix(quantresids_data$scaled _resids),
n.hidden = 4, iter .max = 1000,
n.trials =1
tau = 0.25)

quantresids _data$fit25 _nl <— qrnn.predict (

, penalty = 1,

as. matrix(sort (quantresids _data$mean_simresponse)), fit25_nl)

#median

fit50 _nl <— qrnn. fit (x = as.matrix(quantresids _data$mean_simresponse),
.hidden = 4, iter .max = 1000,

.trials = 1, penalty = 1,

tau = 0.5)

X
y = as.matrix(quantresids _data$scaled _resids),
n
n
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quantresids _data$fit50 _nl <— qrnn.predict (

as. matrix(sort (quantresids _data$mean_simresponse)), fit50_nl)

#75th percentile

fit75 _nl <— qronn.fit (x = as.matrix(quantresids _data$mean_simresponse),

y = as.matrix(quantresids _data$scaled _resids),

n.hidden = 4, iter .max = 1000,
n.trials = 1, penalty = 1,
tau = 0.75)

quantresids _data$fit75 _nl <— qrnn.predict (

as.matrix(sort (quantresids _data$mean_simresponse)), fit75_nl)

#Kolmogorov—Smirnov test — wuniform reference distribution
#used for annotation in the QQ plot
ks.test (quantresids _data$scaled _resids, ’punif’)

#JQ plot (theme elements and annotations not shown for brevity)
p-quantresids <— ggplot(quantresids _data,
aes (x = sort (Expected),
y = sort(scaled _resids))) +

geom _abline(slope = 1, intercept = 0) +

ggtitle ("QQ-plot .—_-Quantile_residuals” ,

subtitle = ” (Interview—level_mode)l”) +

xlab (” Expected”) + ylab(” Observed”)

#Plot of mean simulated responses against quantile residuals
#(theme elements and annotations not shown for brevity)
p-fitted _quantresids <— ggplot(quantresids _data,

aes (x = mean_simresponse ,

y = scaled_resids)) +

#quantile regression lines

geom_line (aes(x = sort(mean_simresponse), y = fit25_nl), size =
geom_line (aes(x = sort(mean_simresponse), y = fit50_nl), size
geom_line (aes(x = sort(mean_simresponse), y = fit75_nl), size =

#reference lines

geom_abline(slope = 0, intercept = 0.25, linetype = 2) +
geom_abline(slope = 0, intercept = 0.50, linetype = 2) +
geom _abline (slope = 0, intercept = 0.75, linetype = 2) +

ggtitle (”Simulated._responses.versus.Quantile_.residuals” |
subtitle = ” (Interview—level_model)”) +
xlab (”Mean_simulated _responses.(Rank_transformed)”) +

ylab (” Quantile_residuals”)
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Chapter 5

Conclusion

In this chapter, we review the goals of this dissertation, discuss some key implications of

the results, and suggest next steps for future research.

5.1 Review of dissertation goals

The central goal we set at the outset was to explore if paradata could be used in a
systematic manner to create an early warning system to spot interviewers likely to be
contributing to interviewer effects. We started with the hypothesis that different levels
of interviewing quality cause different paradata patterns. Differing levels of interviewing
quality also result in different between-interviewer response means even after controlling
for respondent characteristics, thus leading to interviewer effects. Thus, interviewing
quality was conceptualized as a common cause of both interviewer effects and paradata
patterns, making it possible for us to think about directly using paradata to predict in-
terviewer effects. Chapters 2-4 tested if there was evidence to support these hypotheses
using the following six streams of data from the 2015 wave of the Panel Study of In-
come Dynamics (PSID): paradata, interviewing quality data, the early release version of
substantive data, respondent characteristics, interviewer characteristics, and item char-

acteristics.
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5.2 Key implications of the dissertation results

5.2.1 Paradata and interviewer effects

The results from Chapter 4 provide strong evidence to establish the utility of paradata
in predicting interviewer effects. A key strength of the approach in Chapter 4 lies in the
manner in which paradata and estimates of interviewer effects are working in tandem.
On the one hand, paradata are produced almost free of charge, are relatively error-free,
and are available on all cases but need objective outcomes to link with to maximize their
utility; interviewer effect estimates provide these links. On the other hand, interviewer
effects that are often neglected (Elliott and West 2015) are now in active consideration via
their paradata proxies; this research attempts a shift in the thinking that “the assessment
of interviewer error is a post-survey quality measure” (Biemer and Lyberg 2003, p.168).
From a survey management perspective, this is a step towards resolving the issue that
“most methodologists are several degrees distant from operations managers” (Edwards
et al. 2017, p.269). Another feature of our methods is that the interviewer quality control

(QC) process is now directly tied to substantive responses.

One aspect we did not cover in this dissertation, but is certainly worth considering for
future research, is the use of Bayesian methods to update models based on incoming data.
Future research should also consider methods for one-time surveys; this dissertation only

considered applications to repeated cross-sectional or panel surveys.

5.2.2 What do we mean by interviewing quality?

Results in Chapters 2 showed strong associations between paradata and indicators of in-
terviewing quality, and results in Chapter 4 showed strong associations between paradata
and interviewer effects. However, we saw only moderately strong associations between
QC flag variables and interviewer effects in Chapter 3. How do we explain this seeming
discrepancy? First, we recognize the extensive literature that establishes that differences
in interviewing quality among interviewers do cause interviewer effects (e.g., Kish 1962;
Groves 1989, West and Blom 2016). Then, the lack of strong effects in Chapter 3 could

be due to the shortcomings of the QC variables, as explained in Section 7 of that chapter.

However, consider the case where there are no problems with the QC variables as well. An
important aspect to then consider is the quality assurance (QA) process that deals with
the interviewing standards to be met - in contrast to the actual implementation of those

standards that quality control (QC) deals with. In Chapter 3, an implicit assumption
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is that the QC process is being implemented as designed. Then, a lack of variance
explanation by the flag variables implies that the interviewing protocols themselves, i.e.,
the QA process itself, could be ineffective at achieving the desired objective which is
to control interviewer effects. If this is the case, perhaps more thought needs to be
given to the design of interviewing protocols. For example, rather than sticking to a
strictly standardized format, interviewers could be given more flexibility in interviewing
for questions that have complex mappings to respondent situations (Schober and Conrad
1997; Schober et al. 2004). However, any such redesign should be preceded by resolving,
to the extent possible, issues with the QC flag variables (pointed out earlier) and an
evaluation of the robustness of the QC coding process. It would also be advantageous
to try to implement an approximately interpenetrated design (Biemer and Lyberg 2003,
p.166) to eliminate possible issues with model approximation to interpenetration that

lead us to our inferences.

A related idea is that more thought needs to be given to the meaning of ‘interviewing
quality’. The flag variables used in Chapter 3 were based on interviewer behaviors such
as probing, asking questions, etc., which certainly have firm grounding in the literature
(Groves 1989; Fowler and Mangione 1990; West and Blom 2016). However, more research
is needed on the impact of other phenomena such as interviewer paralinguistic behaviors
(Conrad et al. 2008) and interviewer-respondent interactions on interviewer effects; some
estimates suggest that half of everything the interviewer says in an interview is other than
a question or a probe (Cannell et al. 1968; Fowler and Mangione 1990, p.68). Previous
research (Conrad et al. 2013) has shown that moderate use of fillers (e.g., ‘um’ and
‘uh’) by interviewers is associated with higher participation rates while simultaneous
speech between interviewers and respondents produced more refusals. We could imagine
these results having analogues in measurement error as well; hypothetically, the non-
use of fillers could communicate a robotic communication style which may discourage

respondents from thinking actively thus providing less accurate responses.

Some of the success of paradata over the interviewing quality variables in predicting in-
terviewer effects could be stemming from paradata absorbing some of information present
in paralinguistic features. For example, the use of fillers would lead to an increased APR
time while simultaneous speech would lead to lower APR times, all else being equal.
Anxious interviewing could be reflected in frequent remark-making but also manifest in
interviewers’ pitch which is perceived by the respondent. Paradata are therefore, we
think, not only able to capture behaviors that the QC system does (Chapter 2 results)
but they also go beyond this by capturing other information that impact interviewer
effects. This, coupled with the strength of paradata such as its flexibility, leads to the
strong results in Chapter 4.
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Some recent work (Nuttirudee 2015) has looked at associations between interviewer voice
features and data quality. But the indicators of data quality used were indirect in nature,
e.g., rounding, directional hypotheses such as ‘more is better’, and respondent behaviors
such as interrupting questions with an answer. Future research can consider analyses
such as those done in this dissertation - using interviewer effects as direct estimates of
data quality. Results of such research can have important consequences for training such
as emphasizing that interviewers should not speak over respondents or to modulate ones

pitch effectively.

5.2.3 Implications on survey operations

The evidence presented in this dissertation bolsters the case for increased use of paradata
in practice, especially given that we tried to be as realistic as possible in our inferences by
adopting methods such as adjusting for multiple comparisons in Chapter 2 or undertaking
the bootstrap-based predictions in Chapter 4. Survey organizations should seriously
consider investing in necessary infrastructure for the parsing, storing, and easy access to
paradata. Paradata, as stored by the Computer-Assisted Interviewing (CAI) instrument,
is not usable unless parsed by external software. While this will incur some initial software
development cost, it is likely to be more or less a fixed cost. Paradata should not be fully
processed into measures by such software but left flexible for researchers to define, at
least in the initial phase when efficacy of several measures should be tested. This will
also allow researchers to examine the incremental value of a particular paradata measure.
All this will require close coordination between the operations staff (who typically have
strong insights on likely mechanisms producing the paradata) and research staff (whose
expertise lies in model building). A strong feedback loop from operations to research is

needed when models are being tested on live data so that models can be refined.

Databases should be structured to also incorporate pre-edit substantive data (to enable
computing of interviewer effects), QC data (to check interviewing quality status), inter-
viewer characteristics, and respondent characteristics (to use as controls in modeling).
Having such a common database across analysts reduces the chances of analytic errors.
For implementation, managers can start with a small set of items that are most valuable

to the user community and then expand to the full set for modeling, if needed.

5.2.4 Sampling interviews for quality control

Organizations employing Computer-Assisted Recorded Interviewing (CARI) often choose

a small number of interviews in advance to be recorded (PSID uses a sampling rate of
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approximately 6%). However, it is possible for interviewers to gauge whether an interview
is being recorded and improve their performance for only those interviews (McGonagle
et al. 2015). This being the case, our recommended strategy is to record all interviews and
use the methods outlined in Chapters 2 and 4 to listen to the sampled recordings so that
there is concrete evidence of interviewers deviating from protocol. However, there are
2 downsides to this approach. First, not every respondent will consent to the recording
(e.g., PSID’s consent rate is 94%, McGonagle et al. 2015) so we risk reducing sample size.
Second, McGonagle et al. (2015) found that interviewers take an additional 7% longer
to conduct an interview when they know that interviews are being recorded. While this
incremental time is not very high, there is some risk of increased interviewer fatigue

leading to poorer interviewing quality especially towards the later stages of fieldwork.

For surveys such as PSID that have historical QC data, it is advantageous to use the
methods in Chapters 2 and Chapter 4 in combination. The interviewer-level predic-
tions based on the models in Chapter 4 are conducted only after a certain proportion of
the fieldwork is complete. Until then, the models in Chapter 2 can be used to predict
interview-level quality issues; results in Chapter 2 showed that the first 2 interviews have
a higher odds of a QC flag thereby illustrating the importance of identifying issues early.
Interviews or items-within-interviews with low predicted odds of a flag should also be
sampled to give an opportunity to identify positive interviewer behaviors and reinforce
these (Couper et al. 1992; Biemer and Lyberg 2003, p. 179).

Even after the Chapter 4 models start getting implemented, Chapter 2 models can be
used to zero-in on the exact interview within an interviewer’s workload that has potential
problems (often needed by supervisors to give concrete feedback). This is especially useful
at later stages of fieldwork when the number of completed interviews is high; it would
be time-consuming to listen to all interviews of an interviewer even for a single item.
Note that we do not rely only on Chapter 2 models since they do not explicitly involve
the substantive response values. Another advantage of using Chapter 2 models along
with Chapter 4 models arises in situations where an interviewer exhibits inconsistent
interviewing across interviews so that her mean response is close to the overall average.
Chapter 4 models would miss such interviewers but Chapter 2 models would still identify

potentially problematic interviews.

5.3 Future research

While we suggested avenues for future research in each chapter as well as in the preceding

discussion, we feel the following 4 areas should receive priority:
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1. Replication.

Given that this is the first study of its kind, replication of this research will add to
evidence on hand. The PSID is a survey focusing mainly on questions of economic
interest. Replication on surveys that deal with other subject matters or questions of
a different type (e.g., attitudinal questions) will be helpful. It would also be useful
to see how our results compare to surveys using the face-to-face mode. For this, it
is necessary that interviewers not be restricted to a single geographic unit or else
geographic and interviewers effects would be confounded. We would also require
geographic covariates to control for the non-random assignment of interviewers to
geographies (West et al. 2013).

2. Exploring the properties of non-time paradata.
Studying the properties of non-time paradata is important given its association
with interviewer effects as seen in Chapter 4. Couper and Kreuter (2013) look
at item times as a function of item characteristics, respondent characteristics and
interviewer characteristics for a face-to-face survey; Olson and Smyth (2015) do the
same for a telephone survey. Similar studies should be conducted for the non-time
variables too. One challenge is that many non-time variables are sparse as we saw
in Chapter 4. To overcome this, the PCA approach used in Chapter 2 can be
used. Here, the PC scores would be the outcome variable and item, respondent,
and interviewer characteristics would be the inputs. Results of this study can have
questionnaire design and interviewer training implications, e.g., if we know that
certain types of interviewers are more prone to remark making (which may disrupt

interview flow), this can be addressed during training.

3. Understanding the mechanisms that drive paradata.
In Chapters 2 and 4, we advanced likely mechanisms that explained our results
involving paradata. For example, we hypothesized that higher mean DE times
could mean back-forth with the respondent even after the response is recorded.
But these post-hoc explanations can be confirmed only by actually listening to the
relevant recordings. This will help map paradata to actual interviewer activities and
understand the paradata-generating mechanisms (which would also vary by item
type). Another example is that of item revisits which we found to be an important
paradata measure in predicting interviewer effects in Chapter 4. We can partially
understand why revisits take place by refining this measure as say, ‘revisits that also
involve response edits’. But this will still not directly answer questions such as ‘Are
item revisits taking place to compensate for lack of initial probing?’. Undertaking
such analysis, even of a qualitative kind, will add to our understanding of paradata

and help refine question construction and training efforts.
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4. Understanding the role of paralinguistic features in explaining interviewer effects

as explained in Section 5.2.2.

Writing in 1981, Cannell et al. say: “Despite the potential for interviewers to bias data
somehow, concern over interviewer effects has lessened in recent years”. They attributed
this to ‘improvements in survey practice’. However, close to 4 decades later, the need
to focus on interviewer effects is probably more than ever as “longer interviews (are)
being requested by interviewers with less experience from persons who are more sensitive
to the burden of the request” (Groves 2003). With declining response rates, growing
privacy concerns, and respondent reluctance, a lot of focus in recent years has been
on non-response, possibly at the cost of measurement error. Part of the reason is also
that non-response is ‘visible’ while measurement error seems to lurk in the background;
while response rate targets are set, it is difficult to set a ‘data quality’ target. We like to
imagine survey quality dashboards in the near future having measurement error indicators
for interviewers on the lines of ‘contribution to p;,;” along with existing non-response and

productivity indicators.

This dissertation was designed with a strong emphasis on improving survey practice. We

will be rewarded if these ideas find their way into regular survey operations.
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