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ABSTRACT

Uncertainties that result from renewable generation and load consumption can com-

plicate the optimal power flow problem. These uncertainties normally influence the

physical constraints stochastically and require special methodologies to solve. Hence,

a variety of stochastic optimal power flow formulations using chance constraints have

been proposed to reduce the risk of physical constraint violations and ensure a reliable

dispatch solution under uncertainty. The true uncertainty distribution is required to

exactly reformulate the problem, but it is generally difficult to obtain. Convention-

al approaches include randomized techniques (such as scenario-based methods) that

provide a priori guarantees of the probability of constraint violations but general-

ly require many scenarios and produce high-cost solutions. Another approach is to

use an analytical reformulation, which assumes that the uncertainties follow specif-

ic distributions such as Gaussian distributions. However, if the actual uncertainty

distributions do not follow the assumed distributions, the results often suffer from

case-dependent reliability.

Recently, researchers have also explored distributionally robust optimization, which

requires probabilistic constraints to be satisfied at chosen probability levels for any

uncertainty distributions within a pre-defined ambiguity set. The set is construct-

ed based on the statistical information that is extracted from historical data. Ex-

isting literature applying distributionally robust optimization to the optimal power

flow problem indicates that the approach has promising performance with low objec-

tive costs as well as high reliability compared with the randomized techniques and

xiii



analytical reformulation. In this dissertation, we aim to analyze the conventional

approaches and further improve the current distributionally robust methods.

In Chapter II, we derive the analytical reformulation of a multi-period optimal

power flow problem with uncertain renewable generation and load-based reserve. It

is assumed that the capacities of the load-based reserves are affected by outdoor

temperatures through non-linear relationships. Case studies compare the analytical

reformulation with the scenario-based method and demonstrate that the scenario-

based method generates overly-conservative results and the analytical reformulation

results in lower cost solutions but it suffers from reliability issues.

In Chapters III, IV, and V, we develop new methodologies in distributionally ro-

bust optimization by strengthening the moment-based ambiguity set by including a

combination of the moment, support, and structural property information. Specifical-

ly, we consider unimodality and log-concavity as most practical uncertainties exhibit

these properties. The strengthened ambiguity sets are used to develop tractable re-

formulations, approximations, and efficient algorithms for the optimal power flow

problem. Case studies indicate that these strengthened ambiguity sets reduce the

conservativeness of the solutions and result in sufficiently reliable solutions.

In Chapter VI, we compare the performance of the conventional approaches and

distributionally robust approaches including moment and unimodality information

on large-scale systems with high uncertainty dimensions. Through case studies, we

evaluate each approach’s performance by exploring its objective cost, computation-

al scalability, and reliability. Simulation results suggest that distributionally robust

optimal power flow including unimodality information produces solutions with better

trade-offs between objective cost and reliability as compared to the conventional ap-

proaches or the distributionally robust approaches that do not include unimodality

assumptions. However, considering unimodality also leads to longer computational

times.

xiv



CHAPTER I

Introduction

1.1 Motivation and Objectives

Power systems are becoming more complicated with the integration of advanced

equipment, sensing, and control techniques and the development of optimal opera-

tional approaches. Although these changes have brought significant benefits to power

system operation, they have also introduced different uncertainties to the system.

These uncertainties can include uncertain power injections from renewable genera-

tion, load consumption forecast errors, or random component failures. For example,

more renewable resources are being incorporated into the power grid to achieve low

operational costs and less environmental impact. Since the renewable generation is

generally non-dispatchable and highly dependent on the ambient conditions such as

the wind and solar level, the actual power output is uncertain and may deviate from

the forecasts.

Similarly, in terms of load consumption, there is generally a power forecast mis-

match between real-time consumption and the demand forecast. To ensure power

balance between total demand and supply, these power mismatches must be compen-

sated by backup resources or services such as spinning reserve, non-spinning reserve,

and frequency regulation [57, 34]. In the following paragraphs, these services will

be referred to as ‘reserves’ for short. If system operators fail to consider the risk

1



from these uncertainties, there might be disastrous outcomes such as severe power

imbalance, loss of critical infrastructure, or even massive system failure. Hence, to

ensure reliable operations, it is important to manage the risk of these uncertainties.

In addition to scheduling more conventional backup resources, it is also necessary

to harness additional types of flexible resources to provide reserves and to develop

operational planning methodologies to schedule the generation and reserve capacities

in a way that balances system cost and reliability.

In addition to conventional generator reserve providers such as thermal and hy-

dropower plants, flexible loads like electric heaters, air conditioners, and electric ve-

hicles are also capable of providing reserves [15, 16, 37, 5, 63, 105, 64, 53]. For

example, recent studies have developed methods to use commercial and residential

loads to provide reserves such as load following and frequency regulation [63, 64].

Compared with generator reserves, load reserves are expected to respond faster, have

lower operational costs, and less environmental impact [16, 45].

Controllable loads are externally coordinated to provide reserves by changing their

power consumption from normal operation. Unlike generator reserves, the flexibility

of these controllable loads is uncertain and time-varying because their operations are

closely related to human behaviors and ambient conditions [61, 60]. For example,

in [62], an aggregated thermal energy storage model was used to estimate the power

and energy flexibility of an aggregation of electric heaters as a function of outdoor

temperature. Recent studies have also developed methods to dispatch controllable

loads within the optimal power flow (OPF) or unit commitment problem [46, 71].

Stochastic OPF has been proposed to manage the increasing need for reserve

capacity and risks from uncertainties such as renewable power production and load

consumption. Stochastic OPF is an important tool for system planning because it

helps to minimize system operational costs while managing the risk from uncertainties.

Efficient methodologies to solve the stochastic OPF problem benefit both the system

2



operators and the consumers by generating solutions with low objective costs but

high reliability in the out-of-sample tests. To ensure the approaches are practically

applicable they must also require low computational effort. Otherwise, the approaches

are difficult to apply in real time operations and the resulting solution might reduce

the welfare of the consumers and pose risks to system reliability and stability.

One way to formulate the stochastic OPF problem is to use two-stage stochastic

optimization [103, 76, 47]. In this formulation, the first stage contains all the decision

variables and corresponding constraints that are deterministic and independent of

the uncertainty. The second stage instead contains the remaining decision variables

and constraints that are affected by the uncertainty realizations. The overall objec-

tive cost is a summation of the operational cost from the first stage and an expected

cost from the second stage given the uncertainty. Another way to pose the stochastic

OPF problem is as a chance-constrained optimization problem [94, 104, 42, 96, 79, 97].

This formulation enables physical constraints such as line limits and generation lim-

its to be formulated as probabilistic constraints that must be satisfied for most of

the realizations of system uncertainties. For example, a chance-constrained formu-

lation to optimally determine the dispatch and reserve capacities for generators in

systems with uncertain renewable production is discussed in [96]. Comparing these

two stochastic OPF formulations, the two-stage formulation aims to determine the

optimal operations under uncertainty while the chance-constrained formulation tries

to manage the risks from constraint violation. In this dissertation, we only focus on

solving different types of chance-constrained optimal power flow problems.

The true underlying distribution is required to exactly reformulate the probabilis-

tic constraints. However, that distribution is normally unknown and hard to estimate.

To solve the problem without the true distribution, researchers have proposed differ-

ent solving methodologies. The first method uses randomized techniques such as

the scenario approach [17] or the scenario-based method [58] that uses robust opti-

3



mization. Uncertainty scenarios or their probabilistically robust support are used to

transform the probabilistic constraints into deterministic constraints. With enough

scenarios, both methods provide a priori guarantees that the original probabilistic

constraints are satisfied regardless of the true underlying distribution. However, ran-

domized techniques can provide excessively-conservative solutions with high objective

costs and reliability beyond the requirements, and there might not be enough data

points to enable the reformulation. Recent work that uses the scenario-based method

to solve the chance-constrained OPF problems is discussed in [95, 96].

Another method is to reformulate the constraints by assuming that the uncer-

tainties follow specific distributions such as the Gaussian distribution [9, 79]. Since

the reformulation does not change the problem dimension of the chance-constrained

problem, analytical reformulation normally requires less computation effort and gen-

erates results with lower objective costs than the randomized techniques. However,

analytical reformulation has no a priori guarantee of the out-of-sample reliability of

the resulting solution. The empirical reliability is case-dependent and can be evaluat-

ed using the Monte Carlo analysis. Previous studies [9, 79] have used analytical refor-

mulation by assuming that the uncertainty distributions are Gaussian and stochastic

constraints are affine with respect to the random variables. It is more difficult to

reformulate the problem if the constraints are nonlinear with respect to the random

variables.

Researchers have also explored distributionally robust (DR) optimization to over-

come the challenge of estimating the true underlying distribution [13, 22, 27, 36, 84,

101, 44, 110] and to manage the stochasticity in OPF problems [107, 80, 102, 48, 88,

33, 56]. This approach requires the probabilistic constraints to be satisfied with all the

possible uncertainty distributions in a pre-defined ambiguity set. The set is normal-

ly constructed with statistical information (e.g., first and second moment) extracted

from the empirical uncertainty data. Since the DR formulation evaluates the proba-
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bilistic constraint using the worst-case distribution of the ambiguity set, it produces

more conservative results than the approach using the true distribution. Ambiguity

sets should include adequate and accurate statistical information about the true dis-

tribution. Otherwise, the solution may be conservative (if the ambiguity set is too

large, i.e., more general), or the approach can become computationally intractable (if

the ambiguity set is very precise). Recent studies have demonstrated that DR opti-

mization can be used to solve chance-constrained OPF [107, 80, 102, 48, 88, 33, 56]

and leads to good trade-offs between objective costs and out-of-sample reliability.

However, the ambiguity sets in these works either only include moment information

or consider simple univariate structural properties such as symmetry or unimodality.

A key question is how to achieve better solutions with lower costs and high reli-

ability using DR optimization. An intuitive direction is to strengthen the ambiguity

sets. The underlying reason is shown via the trade-off triangle in Fig. 1.1. In OPF

problems, it is normally difficult to achieve high reliability with low costs. However,

with DR optimization, both optimal cost and reliability are connected to the gen-

erality of the ambiguity set. In particular, reliability is positively correlated to the

generality of the ambiguity set. Similarly, low cost and high generality must trade off

because more generality means that the ambiguity set contains more distributions.

Furthermore, the optimal cost is more likely to be driven by the extreme distribu-

tions in the ambiguity set. However, the reliability is normally driven by the extreme

of the typical distributions in the ambiguity set because practical uncertainties are

unlikely to follow distributions with abnormal structure. Hence, if the atypical dis-

tributions could be effectively removed from the ambiguity set, solutions with low

costs and high reliability could be achieved. For example, empirical wind generation

forecast errors are generally unimodal and log-concave. These properties can provide

more accurate structural information in terms of describing the distributions. We can

strengthen the ambiguity sets by including these structural properties and develop
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Figure 1.1: Trade-off triangle in distributionally robust optimization.

the corresponding solving methodologies.

Based on the background, the literature review, and the identified problems above,

the objectives of this dissertation are as follows.

Objective 1: Incorporate uncertain load-based reserves into the stochastic OPF

problem with uncertain renewable generation. Derive the analytical reformulation and

compare the performance (i.e., objective cost, solution reliability, and computational

tractability) with the scenario-based method.

Objective 2: Strengthen the existing moment-based ambiguity set with more struc-

tural properties such as generalized unimodality, log-concavity, and bounded sup-

port. Compare the performance with the moment-based DR approaches on a chance-

constrained OPF problem.

Objective 3: Compare the performance of different conventional and newly devel-

oped approaches by performing case studies on a large-scale power network with high

uncertainty dimension to gain insights on the advantages and disadvantages of each

approach.
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1.2 Contributions and Structure of the Dissertation

In this dissertation, we completed different tasks based on the objectives. The

contributions can be summarized as follows.

For the first objective, we first derived a specific analytical reformulation for a

multi-period OPF problem with uncertain wind generation and load-based reserves

provided by an aggregation of electric heaters. It was assumed that the flexibility of

the controllable load would be affected by the ambient temperature and that both

wind and temperature uncertainties would follow multivariate Gaussian distributions.

Next, we used empirical examples and a proof sketch to demonstrate that the

reformulated constraints are convex. The reformulated problem was solved using

a nonlinear solver and an iterative cutting plane approach [9]. Then, we present-

ed the scalability of the reformulation and performed case studies to compare the

objective costs, computational requirements, and reliability with the scenario-based

method. Analysis was also performed to determine how the different types and levels

of uncertainty, cost relationship between reserve and generation, and controllable load

capacity affect power system dispatch, operational costs, and CO2 emissions.

For the second objective, the following contributions were made.

1. We first incorporated generalized multivariate unimodality assumptions into the

DR chance and risk-constrained OPF problems by using moment information

and then developed tractable reformulations and approximations. For risk con-

straints, we used conditional value-at-risk [81, 82] to measure the expectation of

the constraint violation and bounded the expected risk with pre-defined toler-

ance. The separation approach was used to derive an efficient solving algorithm

[67]. We also performed case studies on a simple OPF problem with uncer-

tain wind generation. The simulation results were compared with existing DR

approaches using only moment information.
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2. We derived a tractable sandwich approximation for a DR chance-constrained

OPF problem that assumes log-concave distributions. We also compared with

solutions obtained from analytical reformulation under Gaussian assumptions

and DR approaches with only moment information.

3. We studied an ambiguity set based on moment and unimodality information

with a potentially misspecified mode location. We demonstrated that the DR

chance constraints could be recast as a set of second-order conic (SOC) con-

straints. Furthermore, we derived an efficient iterative algorithm that guaran-

tees global optimality. Then, we performed case studies to compare the op-

erational cost, reliability, computational time, and optimal solutions to those

obtained using ambiguity sets with the exact moment or unimodality informa-

tion [49, 87, 80, 107].

4. We developed a new optimal parameter selection (OPS) technique to determine

the optimal sandwich approximation of the DR chance-constrained problem

with moment and unimodality information. The OPS problem is equivalent to

finding the optimal piecewise linear (PWL) outer approximation of a concave

function and provides us with multiple options (i.e., online or offline) to calculate

the approximation. Finally, we compared the approximate solutions obtained

from OPS with the solutions from the default settings [49] to demonstrate the

improvements on computational time and solution quality.

For the third objective, we compared the conventional and newly developed DR

approaches with unimodality and moment information on a large-dimension OPF

problem with uncertain wind generation. Two different wind data sets were used

to explore diverse uncertainty correlations. The performance difference and relative

rankings of all the tested approaches were analyzed to demonstrate the trade-off

between reliability and objective costs.
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The main content of the dissertation is divided into five further chapters.

Chapter II presents the modeling technique, problem formulation, different solving

methodologies, and simulation analysis for a multi-period OPF problem with uncer-

tain wind generation and load-based reserves. The chapter also demonstrates how

the types and levels of uncertainty, reserve costs, and controllable load capacity affect

the dispatch solution, operational costs, and CO2 emissions for different approaches.

Chapter III considers DR chance and risk constraints and presents the exact re-

formulations, asymptotic sandwich approximations, and efficient solving algorithms

for a DR OPF problem with moment and unimodality information.

Chapter IV presents the sandwich approximation of a DR chance-constrained OPF

formulation with the first-order moment, ellipsoidal support, and an assumption that

the distribution is log-concave.

Chapter V presents a DR chance-constrained OPF problem in which the con-

straints are satisfied over a set of unimodal distributions with known first and second-

order moments but misspecified mode values. These values are also assumed to be

bounded within either a rectangular or ellipsoidal support.

Chapter VI presents the OPS technique that properly selects the parameters used

in the conservative approximation that is presented in Chapter III. The chapter also

presents the detailed simulation results of comparing the conventional analytical re-

formulation under Gaussian assumption, DR approach with only moment information

and all the developed DR approaches with unimodality information.

Chapter VII summarizes the dissertation and presents potential future work.
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CHAPTER II

Chance Constrained Optimal Power Flow Using

Uncertain Controllable Loads

In this chapter, we solve a multi-period chance constrained optimal power flow

problem to optimally schedule generation and reserves from both generators and ag-

gregations of controllable electric loads. Unlike generator-based reserve, load-based

reserve capacities are less certain because they depend on load usage patterns and

ambient conditions. To handle the uncertainties from load-based reserves and renew-

able generation, we analytically reformulate the problem assuming the uncertainties

follow multivariate normal distributions. We compare the results against the conven-

tional scenario-based method. We find that the analytical reformulation solved using

a cutting plane algorithm requires less computational time than the scenario-based

method. Additionally, its solution is less costly and less conservative; however, its

empirical reliability is lower, though still close to the desired reliability. With the

new methodology developed, we then explore how the types and levels of uncertainty,

reserve costs, and controllable load capacity affect the dispatch solution, operational

costs, and CO2 emissions. We find that different types and levels of uncertainty have

significant impacts on the optimal dispatch and emissions. More controllable loads

and less conservative solution methodologies lead to lower costs and emissions. The

main content of this chapter is summarized in the following papers.
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1. B. Li and J.L. Mathieu. Analytical reformulation of chance-constrained optimal

power flow with uncertain load control. In IEEE PowerTech, Eindhoven, Netherlands,

2015.

2. B. Li, M. Vrakopoulou, and J.L. Mathieu. Chance constrained reserve schedul-

ing using uncertain controllable loads part II: analytical reformulation. IEEE Trans

Smart Grid (in press), 2017.
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2.1 Introduction

As the grid penetration of fluctuating renewable energy sources increases, more

reserves are needed to balance supply and demand. Thermal and hydropower plants

typically provide balancing reserves to power systems, but aggregations of electric

loads may be able to do so at lower cost and/or with less environmental impact

[16]. Recent studies have developed methods to use commercial and residential loads

to provide balancing reserves such as load following and frequency regulation, e.g.,

[63, 64]. Loads are coordinated to decrease and increase their consumption with

respect to their baseline consumption to provide up and down balancing. Recent

studies have also developed methods to dispatch controllable loads within the optimal

power flow or unit commitment problem [46, 71].

To manage power system uncertainty stemming from fluctuating renewable power

production and loads, we can formulate and solve stochastic optimal power flow prob-

lems. One method is to minimize the expected cost of operating the power system

over a heuristically-chosen finite number of uncertainty scenarios, e.g., [72]. Another

method is to formulate a chance constrained optimization problem in which con-

straints with random variables hold probabilistically, ensuring feasibility for a vast
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majority of uncertainty scenarios, see e.g., [104, 95]. In [96] a chance constrained

formulation to schedule the production levels and reserve capacities for generators in

systems with uncertain renewable energy production is proposed. It is straightforward

to extend this approach to additionally schedule the reserve capacities of aggregations

of controllable loads if we assume the available reserve capacity is known. However,

in practice, the available reserve capacity of an aggregation of loads is a function of

random variables such as ambient conditions (e.g., the capacity of an aggregation of

air conditioners is a function of outdoor temperature) and load usage patterns (e.g.,

the capacity of an aggregation of electric vehicles is a function of driving patterns)

[61].

The objectives of this chapter are to i) present a multi-period chance constrained

optimal power flow (CC-OPF) problem to schedule generator production and load

consumption set points along with both generator and load-based reserve capacities

assuming wind power and outdoor temperature forecast uncertainty, ii) solve the

problem using several solution methods, and compare the results in terms of perfor-

mance (objective cost, solution reliability) and computational requirements, and iii)

determine how outdoor temperature forecast uncertainty, in conjunction with wind

uncertainty, affects power system dispatch and system CO2 emissions. We use the DC

power flow approximation. As one solving approach, we solve the problem using the

scenario-based method [58] that may require large numbers of uncertainty scenarios,

but provides a priori guarantees on the probability of constraint violation, assuming

no knowledge of the uncertainty distributions. As the other approach, we analytically

reformulate the problem assuming that wind and outdoor temperature forecast uncer-

tainty follow multivariate normal distributions and re-solve the problem, comparing

the results against those of the scenario-based method. In reality, the errors may not

follow these distributions; however, the assumption allows us to solve the problem

faster and with less need for real data (i.e., uncertainty scenarios), at the cost of less
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reliable solutions. This idea of analytical reformulation builds upon our preliminary

work presented in [97, 51]. Other recent studies also solve CC-OPF problems using

the same scenario-based method [95, 96] or via analytical reformulation [9, 79], but

these studies do not model load-based reserves or their uncertainty. Ref. [59] ex-

tends the formulation in [97] to the unit commitment problem and solve it with the

scenario-based and the percentile methods. Ref. [107] solves a single-period CC-OPF

with uncertain renewable energy production and load-based reserve capacities using

distributionally robust optimization.

The contributions of this chapter are four-fold. First, we reformulate the problem

assuming the uncertainty is normally distributed, resulting in a deterministic convex

nonlinear problem. Second, we solve the reformulated problem using both a nonlinear

solver and an iterative cutting plane approach [9] that introduces linear approxima-

tions of the nonlinear constraints only when they are binding. Third, we compare

the solutions against the scenario-based method in terms of performance and compu-

tational requirements. Fourth, we perform case studies to show how different types

and levels of uncertainty, reserve costs, and controllable load capacity affect power

system dispatch, operational costs, and CO2 emissions.

The remainder of the chapter is organized as follows. Section 2.2 presents the de-

tailed formulation of the multi-period CC-OPF problem and the conventional scenario-

based method. Section 2.3 derives the analytical reformulation and presents the case

study results against the scenario-based method. Section 2.4 shows the case study

results on how system factors and uncertainties affect the optimal dispatch and CO2

emissions.
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2.2 Problem Formulation and Conventional Approaches

In this section, we provide the detailed formulation and introduce the scenario-

based methodologies used in [93]1.

2.2.1 Modeling

In this section, we introduce the load models, reserve mechanisms and market

setups we use in the problem formulation.

2.2.1.1 a. Uncertain controllable loads

In this work, we assume that aggregations of thermostatically controlled loads

(TCLs) comprise a portion of the total system load. Each TCL is locally controlled

to maintain its internal temperature within a narrow temperature range (e.g., 1
◦
C)

by switching on/off its power consumption. The TCLs are coordinated to shift their

consumption in time (ensuring that the total amount of energy delivered over a specific

longer time horizon is fixed) without violating their temperature constraints. We can

model the aggregations of TCLs as thermal energy storage units [62]. We assume

that the aggregator is able to broadcast control signals to all TCLs inducing on/off

switching actions achieving a desired aggregate power consumption PC,t. When the

ambient conditions are constant, the energy state St of the aggregation evolves with

time steps t of length ∆τ as

St+1 = St + (PC,t − PB,t)∆τ, (2.1)

where PB,t is the baseline aggregate power consumption, i.e., the consumption that

would have occurred without external scheduling. Actions which decrease (increase)

1These contents are from the Part I of the two-part journal [93, 52] with Maria as the primary
contributor. The contents and discussions are included in this proposal so that it will help interpret
the mechansim of the problem and help explain some derivations and ideas in Part II. For Part II
which starts in Section 2.3, I am the primary contributor.
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Figure 2.1: Energy capacity, power capacity, and baseline power consumption of an
aggregation of electric heaters modeled as a thermal energy storage unit.

consumption relative to the baseline empty (charge) the storage unit.

A TCL aggregation’s baseline consumption, power capacity (i.e., limits for PC,t),

and energy capacity (i.e., limits for St) are a function of a variety of time-dependent

uncertain quantities such as ambient conditions and load usage patterns. Here, we

assume outdoor air temperature Tt alone determines the baseline consumption PB(Tt),

the power capacity PC(Tt), and the energy capacity S(Tt), i.e.,

0 ≤ PC,t ≤ PC(Tt), 0 ≤ St ≤ S(Tt).

In [62], a method of computing PB(Tt), PC(Tt), and S(Tt) for an aggregation of

residential electric space heaters or air conditioners is described. Here, we use this

method to compute these quantities for an aggregation of 1,000 heterogenous electric

space heaters, and obtain the results shown in Fig. 2.1. We assume that the values

in Fig. 2.1 are accurate for a given outdoor air temperature but that our forecasts

of outdoor air temperature are uncertain. Hence Fig. 2.1 serves as a look-up table

which maps an outdoor air temperature forecast to the baseline consumption, power

capacity, and energy capacity of a thermal energy storage unit.
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When ambient conditions are changing, the energy state equation (2.1) must be

modified to take into account changes in the energy capacity. Specifically, for heating

loads, when Tt increases, S may decrease (as shown in Fig. 2.1) because Tt+1 is within

or above some heaters’ temperature range and those heaters are no longer available

for control. We can assume that the aggregation of heaters that become unavailable in

t+1 had approximately the same percent energy state St/S(Tt) as the aggregation of

all heaters available in t. Therefore, when Tt increases, we assume the percent energy

state at the beginning of time-step t+1 is the same as the percent energy state at the

end of time step t. When Tt decreases, S(Tt) may increase because heaters that were

previously unavailable become available. We assume that the heaters that become

available have a 50% energy state. With these assumptions, the new energy state

equation is

St+1 = (St + (PC,t − PB(Tt))∆τ) min

(
S(Tt+1)

S(Tt)
, 1

)
+ 0.5 max

(
S(Tt+1)− S(Tt), 0

)
. (2.2)

2.2.1.2 b. Generation-load mismatch

We consider two types of uncertainty: uncertainty on the wind power forecast and

uncertainty on the outdoor temperature forecast. If the system is operated based on

the forecasts, forecast error may create generation-load mismatch, which should be

compensated by reserves to maintain power balance. When the controllable loads are

unscheduled, they consume the baseline power and hence the total generation-load

mismatch is the sum of the total wind power forecast error and the total baseline

power forecast error, i.e.,

Pm,t =1T (PW,t − P f
W,t) + 1T (PB(Tt)− PB(T ft )), (2.3)
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where PW,t and P f
W,t are vectors including the actual and forecast wind power produc-

tion of each wind power plant, respectively. Similarly, PB(Tt) and PB(T ft ) are vectors

including the actual and forecast baseline power consumption of each controllable

load aggregation, respectively. The vector 1 is a unit vector with the same dimension

as the vector that is multiplied with, and so Pm,t is a scalar.

When the controllable loads are scheduled, their consumption is no longer uncer-

tain and hence the generation-load mismatch is only the total wind power forecast

error, i.e.,

Pm,t =1T (PW,t − P f
W,t). (2.4)

In this case, as detailed later, both types of uncertainty will affect the energy state

trajectory.

2.2.1.3 c. Reserve policies

We assume that secondary frequency control (i.e., automatic generation control)

compensates power mismatches on the timescale of seconds to minutes and tertiary

frequency control is applied every 5–15 minutes to redispatch the system economically.

We refer to the former as “secondary reserves” and the latter as “redispatch reserves,”

which are comparable to real-time energy market actions in the U.S. Our CC-OPF de-

termines the minimum-cost adequate capacities of secondary and redispatch reserves.

We assume both generators and controllable loads can provide secondary reserves,

but only generators provide redispatch reserves.

To determine the adequate secondary or redispatch reserve capacity, we need to

model the operating point after a control action. In [95] the new generation set

point P new
G is modeled using an affine function of the power mismatch while [94]

differentiates between positive and negative generation-load mismatch by using a
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piecewise affine function. Following [97], we model P new
G and the new controllable

load set point P new
C using piecewise affine functions, which gives us the policies

P new
G,t =PG,t + dG,t max(−Pm,t, 0)− dG,t max(Pm,t, 0), (2.5)

P new
C,t =PC,t + dL,t max(Pm,t, 0)− dL,t max(−Pm,t, 0), (2.6)

where PG,t and PC,t denote the generator and controllable load set points that main-

tain power balance for the forecasts P f
W,t and T ft . To achieve power balance under

forecast error, a positive mismatch decreases the power production of generators and

increases the power consumption of controllable loads as a function of the distribu-

tion vectors d ≥ 0, where 1TdG,t + 1TdL,t = 1 and 1TdG,t + 1TdL,t = 1, and each d

is treated as a decision variable. Adequate reserve capacities are determined by the

amount that the generators (controllable loads) may need to increase/decrease their

production (consumption) as a function of Pm,t. The exact constraints used within

the optimization problem are defined in Section 2.2.2; for notational simplicity we

define

f(d1, d2, x) = d1 max(−x, 0)− d2 max(x, 0). (2.7)

2.2.1.4 d. Market setup

Our multi-period OPF dispatches resources hourly over a 24-hour horizon, where

∆τ = 1 hour. Generator and controllable load set points and all reserve capacities are

constant within each hour. Secondary reserve may be activated at any point within

the hour but redispatch is activated every ∆τ/n minutes, where n is the number of

intra-hour redispatch intervals. Redispatch compensates not only the generation-load

mismatch but also unforecasted deviations in the energy state of the controllable load-

s, similar to the California Independent System Operator’s Regulation Energy Man-
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agement functionality [14]. Forecasted changes in the load energy state result from

differences between PC,t and PB(T ft ), as shown in (2.1). Unforecasted changes result

from load-based secondary reserve actions used to compensate wind power forecast

error and baseline error resulting from temperature forecast error. Hence, the actual

change in load energy state in each time step will be (PC,t + Rt − PB(Tt))∆τ , where

Rt is the reserve action. When the system is redispatched, generator production and

controllable load consumption are adjusted to compensate for unforecasted changes

in the load energy state over the previous ∆τ/n minutes. This ensures that the actual

load energy state trajectory is closer to the forecasted one, and increases the ability

of the controllable loads to continue providing reserves.

We assume temperature forecast errors, and so baseline power forecast errors,

are constant within each hour whereas wind power forecast errors may appear at

any time within each hour and may persist until the end of the hour. Figure 2.2

shows an example of how the forecast errors affect reserve actions. Dotted lines

show the baseline power forecast error (top), the resulting load energy state deviation

(bottom), the generators’ redispatch action that stops the increase of this deviation

(upper middle), and the loads’ response (lower middle). The x-axis of the load energy

state plot represents the forecasted energy trajectory. Continuous lines show the wind

power forecast error (top), secondary reserve actions in the second time interval by the

generators (upper middle) and the loads (lower middle) that compensate this error,

the resulting load energy state deviation (bottom), and the generators’ redispatch

actions in third and fourth intervals that compensate the wind power forecast error

and this load energy state deviation (upper middle). A third error that affects hourly

decisions is any remaining load energy state deviation from the previous hour resulting

from baseline power forecast error in the previous hour and/or secondary reserve

actions in the last ∆τ/n-minute interval of the previous hour. The responses to this

error are shown with dashed lines. We show the responses to each of the three errors
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Figure 2.2: An example of how forecast errors activate secondary and redispatch
reserves and influence the load energy state (n = 4). Dotted lines correspond to
responses to baseline power forecast error, continuous lines to wind power forecast
error, and dashed lines to the remaining load energy state deviation from the previous
hour.

independently for clarity; in reality all three errors will occur simultaneously and the

required generation/load deviations will be the sum of those shown.

Given our assumptions, we only need to check that the system constraints are

satisfied at three intra-hour operating points, i.e., if the constraints are satisfied at

these points they will be satisfied at all intra-hour operating points.

Operating Point 1 corresponds to the end of any ∆τ/n-minute interval, except the

first, in which generators provide redispatch to compensate load energy state devia-

tions due to the baseline power forecast error of the previous ∆τ/n-minute interval

and also provide secondary reserve actions. In Fig. 2.2, this point is reached at the

30th minute.
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Operating Point 2 corresponds to the end of any ∆τ/n-minute interval, except the

first, in which generators provide redispatch to compensate the wind power forecast

error, load energy state deviations due to baseline power forecast error, and load-based

secondary reserve actions of the previous ∆τ/n-minute interval, but do not provide

secondary reserve actions. In Fig. 2.2, this point is reached at the 45th minute.

Operating Point 3 corresponds to the end of the first ∆τ/n-minute interval, in which

generators provide redispatch to compensate the remaining load energy state devi-

ation from the previous hour and may also provide secondary reserves actions. In

Fig. 2.2, this point is reached at the 15th minute.

2.2.2 CC-OPF Formulation

In this section, we present a CC-OPF formulation that co-optimizes energy and

reserves provided both by generators and controllable loads under the market setup

described in Section 2.2.1.4 taking into account wind power and temperature forecast

uncertainty. The objective is to find the generation/controllable load set points (i.e.,

the dispatch), reserve capacities, and distribution vectors that minimize the energy,

secondary reserve, and redispatch costs such that system constraints are satisfied in

a probabilistic sense.

2.2.2.1 Notation & reserve constraints

We use an optimization horizon Nt = 24 hours with hourly steps t. Each load is

comprised of an uncontrollable portion PL,t, which is assumed known and constant

over a time step t, and a controllable portion PC,t. For each step t, we define the

vector of decision variables as xt = 〈Pt, dt,Rt〉, where we use angle brackets to stack

column vectors into a single column vector (i.e., 〈α, β〉 = [αT , βT ]T ) and Pt contains
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the generator and load dispatch 〈PG,t, PC,t〉, dt the distribution vectors

〈dGS,t, dGS,t, dLS,t, dLS,t, dGD,t, dGD,t〉

and Rt the reserve capacities

〈RGS,t, RGS,t, RLS,t, RLS,t, RGD,t, RGD,t〉.

The subscripts GS/LS correspond to generation/load secondary reserves and GD

to generation redispatch reserves. Vector dGD,t = 〈dwGD,t, dbGD,t, dwoGD,t, d
bo
GD,t〉 and

dGD,t = 〈dwGD,t, d
b

GD,t, d
wo
GD,t, d

bo
GD,t〉, where the component vectors correspond to redis-

patch actions initiated for different reasons, as described below. We use the subscript

LD to denote variables related to load adjustments initiated by a redispatch. We

denote the baseline power forecast error by ∆PB,t = PB(Tt) − PB(T ft ) and the total

baseline power deviation by P b
m,t = 1T∆PB,t. Since we choose PC,t (and the uncon-

trollable load is assumed known), the generation-load mismatch Pm,t is given by (2.4).

We next describe the four types of reserve actions.

1. Secondary reserves due to wind power forecast error Wind power forecast

error activates secondary reserves and Pm,t is distributed to generators and control-

lable loads by shifting their power injection by RGS,t and RLS,t, respectively. Using

the piecewise linear policy defined in Section 2.2.1.3, the constraints are

RGS,t = f(dGS,t, dGS,t, Pm,t), (2.8)

RLS,t = f(dLS,t, dLS,t,−Pm,t), (2.9)

1TdGS,t + 1TdLS,t = 1, (2.10)

1TdGS,t + 1TdLS,t = 1. (2.11)
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2. Redispatch compensating secondary reserve actions After the secondary

reserves have achieved power balance, redispatch redistributes the power mismatch

Pm,t to the generators and compensates unforecasted energy state deviations due

to prior load-based secondary reserve actions. Let the power injection shift for the

generators be Rw
GD,t and for the loads be Rw

LD,t, which should be of the same magnitude

and opposite sign as RLS,t. To maintain power balance, the distribution vectors

should sum to one plus the portion of the mismatch compensated by the loads. The

constraints are

Rw
GD,t = f(d

w

GD,t, d
w
GD,t, Pm,t), (2.12)

Rw
LD,t = −RLS,t, (2.13)

1Td
w

GD,t = 1 + 1TdLS,t, (2.14)

1TdwGD,t = 1 + 1TdLS,t. (2.15)

3. Redispatch due to baseline power forecast error Baseline power forecast

error results in unforecasted energy state deviations, which are compensated by re-

dispatch. Let the power injection shift for the generators be Rb
GD,t and for the loads

be Rb
LD,t. The generators should compensate P b

m,t, while the loads should shift by

∆PB,t. The constraints are

Rb
GD,t = f(d

b

GD,t, d
b
GD,t,−P b

m,t), (2.16)

Rb
LD,t = ∆PB,t, (2.17)

1Td
b

GD,t = 1, (2.18)

1TdbGD,t = 1. (2.19)

4. Redispatch at the beginning of an hour Redispatch is activated in the first

∆τ/n-minute interval to compensate energy state deviations from the previous hour
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t− 1. The constraints, similar to those above, are

Rwo
GD,t = f(d

wo
GD,t, d

wo
GD,t, Pm,t−1), (2.20)

Rbo
GD,t = f(d

bo
GD,t, d

bo
GD,t,−P b

m,t−1), (2.21)

Rwo
LD,t = −RLS,t−1 (2.22)

Rbo
LD,t = ∆PB,t−1 (2.23)

1Td
wo
GD,t = 1TdLS,t−1, (2.24)

1TdwoGD,t = 1TdLS,t−1, (2.25)

1Td
bo
GD,t = 1, (2.26)

1TdboGD,t = 1. (2.27)

2.2.2.2 Optimization problem

Let c1 and c2 be generation cost vectors and cR be the reserve cost vector. The

optimization problem is

min
{xt}Ntt=1

Nt∑
t=1

(
P T
t [c2]Pt + cT1 Pt + cTRRt

)
, (2.28)

subject to deterministic constraints and probabilistic constraints corresponding to the

three points described in Section 2.2.1.4, which we describe in the following sections.

All constraints should be satisfied for all t = 1, . . . , Nt.
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2.2.2.3 Deterministic constraints

1TPinj,t = 0, (2.29)

− Pl ≤ APinj,t ≤ Pl, (2.30)

PG ≤ PG,t ≤ PG, (2.31)

PC(T ft ) ≤ PC,t ≤ PC(T ft ), (2.32)

0 ≤ St ≤ S(T ft ), (2.33)

0 ≤ St + (PC,t − PB(T ft ))∆τ ≤ S(T ft ), (2.34)

St+1 =
(
St + (PC,t − PB(T ft ))∆τ

)
min

(
S(T ft+1)

S(T ft )
, 1

)

+ 0.5 max
(
S(T ft+1)− S(T ft ), 0

)
, (2.35)

S1 = 0.5S(T f1 ), SNt+1 = 0.5S(T fNt+1), (2.36)

where Pinj,t = CGPG,t + CWP
f
W,t − CL(PL,t + PC,t) and the C matrices map the

generators, wind power plants, and loads to the buses. Constraint (2.29) enforces

power balance given the wind power forecast; (2.30), (2.31), and (2.32) encode the

line, generation, and controllable load capacity limits, respectively, where A is a

constant matrix that depends on the network impedances [95]; (2.33) and (2.34)

ensure that the load energy state is within its limits at the beginning and end of each

hour; (2.35) specifies the evolution of the load energy state; and (2.36) sets the load

energy state at the beginning and end of the day to 50% of its maximum capacity

(which corresponds to baseline operation). Since (2.35) is linear, (2.33) and (2.34)

ensure that the load energy state is within the limits through out each hour.
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2.2.2.4 Probabilistic constraints

At Operating Point 1 generator production and controllable load consumption are

P new
G,t = PG,t +RGS,t +Rb

GD,t,

P new
C,t = PC,t +RLS,t +Rb

LD,t,

where the reserve shifts are given in (2.8), (2.9), (2.16), and (2.17). The new power

injection is

P new
inj,t = CGP

new
G,t + CWPW,t − CL(PL,t + P new

C,t ) (2.37)

and the constraints that must be enforced are

−Pl ≤ AP new
inj,t ≤ Pl, (2.38)

PG ≤ P new
G,t ≤ PG, (2.39)

0 ≤ P new
C,t ≤ PC(Tt), (2.40)

−RGS,t ≤ RGS,t ≤ RGS,t, (2.41)

−RLS,t ≤ RLS,t ≤ RLS,t, (2.42)

−RGD,t ≤ Rb
GD,t ≤ RGD,t, (2.43)

constraints (2.10), (2.11), (2.18), (2.19),

where (2.41)–(2.43) determine the generator secondary reserve capacity, load sec-

ondary reserve capacity, and generator redispatch capacity, respectively. Note that

load deviations due to redispatch actions (i.e., R
b/w/wo
LD,t ) are not considered reserve

actions and so are not financially rewarded (i.e., R
b/w/wo
LD,t does not affect the load

secondary reserve capacity).

26



At Operating Point 2 generator production and controllable load consumption are

P new
G,t = PG,t +Rw

GD,t +Rb
GD,t,

P new
C,t = PC,t +Rw

LD,t +Rb
LD,t,

where the reserve shifts are given in (2.12), (2.13), (2.16), and (2.17). The new power

injection is (2.37) and constraints that must be enforced are

constraints (2.14), (2.15), (2.18), (2.19), (2.38)− (2.40),

−RGD,t ≤ Rw
GD,t +Rb

GD,t ≤ RGD,t. (2.44)

At Operating Point 3 generator production and controllable load consumption are

P new
G,t = PG,t +RGS,t +Rwo

GD,t +Rbo
GD,t,

P new
C,t = PC,t +RLS,t +Rwo

LD,t +Rbo
LD,t,

where the reserve shifts are given in (2.8), (2.9), (2.20) – (2.23). The new power

injection is (2.37) and constraints that must be enforced are

constraints (2.10), (2.11), (2.24)− (2.27), (2.38)− (2.42),

−RGD,t ≤ Rwo
GD,t +Rbo

GD,t ≤ RGD,t. (2.45)

We also need to ensure that the controllable load energy capacity limits are sat-

isfied. The following constraints are sufficient to ensure that the load energy state

remains within its limits within [t, t+1]. Specifically, since the energy state dynamics

are linear, the energy capacity limits are satisfied within each interval of the hour, if
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they are satisfied at the end of the first and last interval of the hour, i.e.,

0 ≤ St + (PC,t +RLS,t − PB(Tt))
∆τ

n
≤ S(Tt), (2.46)

0 ≤ St + (PC,t − PB(T ft ))
(n− 1)∆τ

n

+ (PC,t +RLS,t − PB(Tt))
∆τ

n
≤ S(Tt). (2.47)

2.2.3 Scenario-based Solution Methodology

We solve the optimization problem using a method that does not require assump-

tions on the probability distributions of the uncertainty and provides guarantees on

the probability of constraint satisfaction. For simplicity, define x to be a stacked

version of {xt}Ntt=1 and let δt ∈ RNW+NT denote the uncertainty vector in timestep

t, where NW is the number of wind power plants, i.e., PW,t ∈ RNW , and NT is the

number of temperature zones, i.e., Tt ∈ RNT . We require constraints that are affected

by δt to be satisfied with probability of at least 1 − εt, where εt is the violation lev-

el. Then, the optimization problem can be formulated as a quadratic program with

multiple chance constraints. For each t = 2, . . . , Nt, the chance constraints can be

written compactly as

P (Ht(δt, δt−1)x+ ht + gt(δt) ≤ 0) ≥ 1− εt.

For t = 1, the chance constraint is similar except that H1 depends only on δ1.

To deal with the issue of multiple chance constraints we use a scenario-based opti-

mization method [58, 106] that is a mixture of randomized and robust optimization.

The method includes two steps. In the first step, for each t = 1, . . . , Nt, the scenario

approach [17] is used to determine, with a confidence of at least 1− βt, the minimum

volume set that contains at least 1− εt probability mass of the uncertainty. Let this

set be denoted by ∆t. To compute this set, the number of scenarios we need to use
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is given by

Ns,t ≤
1

εt

e

e− 1

(
ln

1

βt
+ 4(NW +NT )− 1

)
.

In the second step, we use ∆t to formulate a robust problem where the uncertainty is

confined in this set. For each t = 2, . . . , Nt, the chance constraint is replaced by the

following robust constraint

Ht(δt, δt−1)x+ ht + gt(δt) ≤ 0, ∀(δt, δt−1) ∈ ∆t ×∆t−1.

For t = 1, the constraint is similar except that H1 depends only on δ1 and we require

the constraint to be satisfied for all δ1 ∈ ∆1. Any feasible solution satisfying the

robust constraints will be feasible for the chance constraints with a confidence of at

least 1 − βt. To solve the resulting convex problem, standard techniques for robust

optimization can be employed [8].

2.3 Analytical Reformulation Assuming Gaussian Distribu-

tion

In this section, we develop an analytical reformulation to the problem in Sec-

tion 2.2 assuming that wind power forecast error and temperature forecast error

follow multivariate normal distributions. In order to get tractable reformulation, we

assume symmetric reserve deployment since asymmetric reserve deployment may re-

sult in a non-convex problem. We further assume that wind power forecast errors

are correlated and temperature forecast errors are correlated, but wind power and

temperature forecast errors are independent.
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2.3.0.1 Notation

New uncertainty notation is defined in this section. The wind power forecast error

vector is denoted ∆PW,t ∈ RNW , with µW,t ∈ RNW as its mean, ΣW,t ∈ RNW×NW as

its covariance, and δW,t ∈ RNW as its standard deviation. The mean and standard

deviation of the total wind power forecast error Pm,t = 1T∆PW,t ∈ R are denoted

µW,t ∈ R and δW,t ∈ R, respectively. The vector of temperature forecast errors

corresponding to each controllable load aggregation is denoted ∆Tt ∈ RNC , where NC

is the number of controllable load aggregations. ∆PB,t ∈ RNC is the baseline power

forecast error. Let µB,t ∈ RNC be its mean, ΣB,t ∈ RNC×NC be its covariance, and

δB,t ∈ RNC be its standard deviation. The mean and standard deviation of the total

baseline power forecast error P b
m,t = 1T∆PB,t ∈ R are denoted µB,t ∈ R and δB,t ∈ R,

respectively.

To simplify the equations that follow, vector operators (e.g., max(u), min(u), uv,

u2,
√
u, where u and v are arbitrary vectors) are applied element-wise.

2.3.0.2 Approximate controllable load capacities and baseline

To facilitate the analytical reformulation, we approximate the relationships shown

in Fig. 2.1. Specifically, we assume PC and S are piecewise linear in Tt, and ∆PB,t is

linear in ∆Tt:

PC(Tt) = C1 + min(0, kp(Tt − Tbr)), (2.48)

S(Tt) = C2 + min(0, ke(Tt − Tbr)), (2.49)

∆PB,t = a∆Tt, (2.50)

where the slopes kp, ke, and a; intercepts C1 and C2; and “breaking temperature”

Tbr are shown in Fig. 2.3. The slopes kp and ke are computed using linear regression

on the data between Tbr and the “ending temperature” Tend, and a is computed
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Figure 2.3: Approximate energy capacity, power capacity, and baseline power con-
sumption of an aggregation of electric heaters.

using linear regression on the data within the temperature forecast range. We do not

approximate the relationship between the baseline power and temperature forecast

PB(T ft ) but use Fig. 2.1 as a look-up table.

2.3.1 Analytical Reformulation

In this section, we analytically reformulate (2.38) – (2.47). A key difference be-

tween the formulation in Section 2.2 and the analytical reformulation is that the

former satisfies chance constraints jointly, i.e., all constraints within an hour are sat-

isfied with probability 1− ε, while the latter satisfies chance constraints individually,

i.e., each constraint is satisfied with probability 1− ε.
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2.3.1.1 General Reformulation

Assume that a random vector ξ follows a multivariate normal distribution with

mean µ and covariance Σ. Then, the following constraints are equivalent [12]:

P
(
a(x)T ξ + b(x) ≤ 0

)
≥ 1− ε, (2.51)

a(x)Tµ+ b(x) + c
√
a(x)TΣa(x) ≤ 0, (2.52)

where a(x) and b(x) are functions of the decision variable x, and c = Φ−1
N (1−ε), where

ΦN denotes the cumulative distribution function (CDF) of the standard normal dis-

tribution. When a(x) and b(x) are affine functions of x and ε ≤ 0.5, the reformulation

(2.52) is convex.

Constraint (2.52) can also be written as

a(x)Tµ+ b(x) + S ≤ 0, (2.53)

S ≥ c
√
a(x)TΣa(x), (2.54)

where S is a slack variable and (2.54) is a second-order cone (SOC) constraint.

We will reformulate the constraints into this form since it will allow us to apply

a computationally-efficient cutting plane algorithm, described in Section 2.3.2.3.

2.3.1.2 Specific Reformulation

Generation constraints (2.39) for Operating Point 1 are reformulated as

PG,t − dGS,tµW,t + dbGD,tµB,t + SGS,t ≤ PG, (2.55)

PG,t − dGS,tµW,t + dbGD,tµB,t − SGS,t ≥ PG, (2.56)

SGS,t ≥ c
√

(dGS,tδW,t)2 + (dbGD,tδB,t)
2, (2.57)
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where SGS,t is a slack variable. Constraints (2.39) for Operating Points 2 and 3 can

be reformulated similarly.

Next, we reformulate the controllable load power capacity constraints. The lower

constraint of (2.40) for Operating Point 1 is reformulated as

PC,t + dLS,tµW,t + µB,t − SLS,t ≥ 0, (2.58)

SLS,t ≥ c

√
(dLS,tδW,t)2 + (δB,t)2, (2.59)

where SLS,t is a slack variable. The lower constraints of (2.40) for Operating Points 2

and 3 can be reformulated similarly.

The upper constraint of (2.40) is more difficult to reformulate. Recall that the

upper constraint for (2.40) for Operating Point 1 is

PC,t +RLS,t +Rb
LD,t ≤ PC(Tt), (2.60)

which can be rewritten as

PC,t + Z ≤ PC(T ft ), (2.61)

where Z contains the random variables, i.e., Z = RLS,t+∆PB,t− ePC ,t, where ePC ,t =

PC(Tt) − PC(T ft ). We can rewrite Z in terms of Pm,t and ∆Tt, by considering two

cases:

Case 1, T ft < Tbr Referring to Fig. 2.3, denote the positive difference between

the forecast and the breaking temperature as eT,t = Tbr − T ft . Then, ePC ,t =

min (0, kp(∆Tt − eT,t)) and Z = dLS,tPm,t + max (a∆Tt, (a− kp)∆Tt + kpeT,t).

Case 2, Tbr < T ft < Tend Referring to Fig. 2.3, ePC ,t = min
(
C1 − P c(T

f
t ), kp∆Tt

)
and Z = dLS,tPm,t + max

(
a∆Tt + P c(T

f
t )− C1, (a− kp)∆Tt

)
.

Both expressions for Z and the corresponding expressions for Operating Point 2
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are of the form

Z = max(k1X, k2X + h) + dY = M + dY, (2.62)

where X = ∆Tt, Y = Pm,t, d = dLS,t, and k1, k2, and h are constants. In the first

part of the Section 2.3.4, we show how to empirically compute a confidence bound z1

for Z, such that P (Z ≤ z1(dLS,t)) ≥ 1− ε, which allows us to reformulate the upper

constraint of (2.40) as

PC,t + z1(dLS,t) ≤ PC(T ft ), (2.63)

which is nonlinear but convex as shown in the second part of Section 2.3.4.

Unfortunately, the corresponding expressions for Operating Point 3 are not of the

form (2.62), specifically, Z = RLS,t+R
w0
LD,t+R

b0
LD,t−ePC ,t = dLS,tPm,t−dLS,t−1Pm,t−1+

a∆Tt−1−ePC ,t(∆Tt), which includes four random variables. While it would be possible

to analytically reformulate the corresponding constraint, we instead approximate it

as

PC,t + dLS,tP̃m,t +Rw0
LD,t +Rb0

LD,t ≤ PC(T ft + ∆T̃t), (2.64)

where P̃m,t uses the wind power forecast error statistics from t − 1 rather than t

and ∆T̃t = ∆Tt−1. The approximate constraint can be reformulated as (2.63), where

its confidence bound can be computed using the method described in the support-

ing derivation. The approximation is physically justified because wind power fore-

cast statistics and temperature forecast errors should be similar between hours. We

demonstrate the impact of the approximation through case studies in Section 2.3.3.
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For reserve capacity, constraints (2.41) – (2.43) are reformulated as

RGS,t ≥ −dGS,tµW,t + cdGS,tδW,t, (2.65)

RGS,t ≥ dGS,tµW,t + cdGS,tδW,t, (2.66)

RLS,t ≥ dLS,tµW,t + cdLS,tδW,t, (2.67)

RLS,t ≥ −dLS,tµW,t + cdLS,tδW,t, (2.68)

RGD,t ≥ dbGD,tµB,t + cdbGD,tδB,t, (2.69)

RGD,t ≥ −dbGD,tµB,t + cdbGS,tδB,t. (2.70)

Constraints (2.44) and (2.45) can be reformulated similarly.

For controllable load energy capacity constraints, the lower constraints of (2.46)

and (2.47) are reformulated as

St +
(
PC,t − PB(T ft ) + dLS,tµW,t − µB,t

) ∆τ

n
− SEC,t ≥ 0, (2.71)

St +
(
PC,t − PB(T ft )

)
∆τ +

(
dLS,tµW,t − µB,t

) ∆τ

n
− SEC,t ≥ 0, (2.72)

SEC,t ≥
c∆τ

n

√
(dLS,tδW,t)2 + (δB,t)2, (2.73)

where SEC,t is a slack variable.

Like the upper power capacity constraints, the upper energy capacity constraints

are more difficult to reformulate. The portion of the constraints that contains the

random variables is Z = (RLS,t−∆PB,t)∆τ/n− eS,t, where eS,t = S(Tt)−S(T ft ). As

before, we can rewrite Z in terms of Pm,t and ∆Tt, by considering two cases:

Case 1, T ft < Tbr Referring to Fig. 2.3, eS,t = min (0, ke(∆Tt − eT,t)) and

Z = dLS,tPm,t
∆τ

n
+ max

(
− a∆Tt

∆τ

n
− ke(∆Tt − eT,t),−a∆Tt

∆τ

n

)
.
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Case 2, Tbr < T ft < Tend Referring to Fig. 2.3, eS,t = min
(
C2 − S(T ft ), ke∆Tt

)
and

Z = dLS,tPm,t
∆τ

n
+ max

(
− a∆Tt

∆τ

n
− C2 + S(T ft ),−a∆Tt

∆τ

n
− ke∆Tt

)
.

Again, both expressions for Z are of the form (2.62) (though now Y is a fraction

of Pm,t) and so we can reformulate the constraints as

St +
(
PC,t − PB(T ft )

) ∆τ

n
+ z2(dLS,t) ≤ S(T ft ), (2.74)

St +
(
PC,t − PB(T ft )

)
∆τ + z2(dLS,t) ≤ S(T ft ), (2.75)

where z2 is the confidence bound computed using the method described in the first

part of Section 2.3.4. These constraints are nonlinear but convex as shown in the

second part of Section 2.3.4.

Power flow constraints (2.38) include all wind power and temperature forecast

errors. First, we express (2.37) as P new
inj,t = P f

inj,t + Pw
inj,t + P b

inj,t where, for Operating

Point 1,

P f
inj,t = CGPG,t + CWP

f
W,t − CL(PL,t + PC,t), (2.76)

Pw
inj,t = −CGdGS,tPm,t + CW∆PW,t − CLdLS,tPm,t, (2.77)

P b
inj,t = CGd

b
GD,tP

b
m,t − CL∆PB,t. (2.78)

Next, we define the power flows Pt = AP new
inj,t = P f

t +Pw
t +P b

t where, for Operating
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Point 1,

P f
t = AGPG,t + AWP

f
W,t − AL(PL,t + PC,t), (2.79)

Pw
t = DW,t(dGS,t, dLS,t)∆PW,t, (2.80)

P b
t = DB,t(d

b
GD,t)∆PB,t, (2.81)

where AG = ACG, AW = ACW , and AL = ACL. The matrices DW,t and DB,t include

AG, AW , AL, and the distribution vectors as linear functions of the random variables.

Let subscript i refer to the ith row of a vector/matrix. The power flow constraints

for each line i for Operating Point 1 are

P f
t,i +DW,t,iµW,t +DB,t,iµB,t + SL,t,i ≤ Pl,i, (2.82)

P f
t,i +DW,t,iµW,t +DB,t,iµB,t − SL,t,i ≥ −Pl,i, (2.83)

SL,t,i ≥ c
√
DT
W,t,iΣW,tDW,t,i +DT

B,t,iΣB,tDB,t,i, (2.84)

where SL,t,i is a slack variable. Constraints (2.38) for Operating Points 2 and 3 can

be reformulated similarly.

2.3.2 Approximation and Solving Algorithms

The nonlinear, convex constraints (2.63), (2.74), and (2.75) include empirically-

computed confidence bounds z1 and z2. We approximate these bounds with analytic

functions and compare the performance and computational requirements of the ap-

proximations in Section 2.3.3.
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2.3.2.1 Polyhedral Approximation

The polyhedral approximation introduces only linear inequalities, i.e.,

z(d) ≥ αjd+ βj ∀ j, (2.85)

where αj and βj are parameters corresponding to linearization j.

2.3.2.2 2-Norm Approximation

If M , in (2.62), were normally distributed with mean µM and standard deviation

δM , and assume Y (which is also normally distributed) has mean 0 and standard

deviation δY , then

z(d) = µM + c
√

(δM)2 + (dδY )2, (2.86)

Since M is close to normally distributed at low violation levels, we can approximate it

as such and compute µM and δM via nonlinear regression on the empirically-computed

confidence bounds. Then each constraint including a confidence bound can be written

as a linear constraint and a nonlinear slack variable constraint, where the latter is

an SOC constraint. This approximation requires less memory than the polyhedral

approximation.

2.3.2.3 Cutting Plane Algorithm

We use the cutting plane algorithm from [9] to reduce the computational effort

associated with the SOC constraints, i.e., all of the slack variable constraints. In

the first step of the algorithm, the CC-OPF is solved without the slack variable con-

straints. Then, all of the slack variable constraints are evaluated. If all are satisfied,

we have obtained the solution to the full problem. Otherwise, we introduce linear

constraints corresponding to first order Taylor series expansions of the unsatisfied

slack variable constraints, re-solve the problem, check the slack variable constraints,
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and repeat until all are satisfied.

2.3.3 Case Studies

2.3.3.1 Set-up

We use the same set-up as in [93]. All results are generated using temperature

forecast profile 5 (i.e., T case #5) and four intra-hour redispatch intervals, i.e., n = 4.

In [93], we tested the approach on the IEEE 30-bus network using cost/parameter

settings from MATPOWER [108]. We modified the network to include 4 wind power

plants (i.e., NW = 4) connected to buses 1, 2, 22, and 27 with capacities 10, 10,

20, and 10 MW, respectively. We also increased the line capacity limits by 50%.

We defined 13 temperature forecast profiles (referred to as “T cases”), where the

first corresponds to Fig. 3 (a), the last to Fig. 3 (b) in [93], and intermediary cases

shift all temperatures by 1◦ C. We used load profiles from NREL [40] and modeled

all loads as partially controllable. Specifically, we assumed two-thirds of each load

in the first hour of the day corresponding to T case #12 is controllable. Then,

for the remainder of the day, the portion of controllable load is determined by the

temperature. We assumed all loads are affected by the same temperature, i.e., NT = 1,

and symmetric reserve deployment. We set each generator’s secondary reserve costs

to be 5 times its linear energy cost and redispatch costs to be equal to its linear

energy costs, and we set each load’s secondary reserve costs to be 0.5 $/MW. Wind

power and temperature forecast error scenarios were generated using real data and

the Markov Chain Monte Carlo mechanism described in [70]. Specifically, we used

forecasted and actual hourly wind power data from Germany and forecasted and

actual hourly temperature data from eleven weather stations in Switzerland to train

a transition probability matrix that we then used to generate the scenarios. We set

εt = 10% and βt = 10−4 ∀t = 1, . . . , Nt and so we needed 447 uncertainty scenarios.

We evaluated the empirical violation probability using 10, 000 independent scenarios.
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All optimization problems were solved using the solver MOSEK via the MATLAB

interface CVX.

We compute and compare solutions for four test cases that differ in formulation

and solution approach.

• Scenario 1: the formulation/approach presented in Section 2.2, i.e., the original

constraints and original load capacities/baseline (see Fig. 2.1), solved with the

scenario-based method.

• Scenario 2: the approximate constraint (2.64) and the approximate load ca-

pacities/baseline in Fig. 2.3, solved with the scenario-based method.

• Analytical 1: the approximate constraint (2.64) and the approximate load

capacities/baseline in Fig. 2.3, analytically reformulated using the polyhedral

approximation of the confidence bounds and solved with i) a nonlinear solver

and ii) the cutting plane algorithm.

• Analytical 2: the approximate constraint (2.64) and the approximate load

capacities/baseline in Fig. 2.3, analytically reformulated using the 2-norm ap-

proximation of the confidence bounds and solved with i) a nonlinear solver and

ii) the cutting plane algorithm.

We use the same uncertainty scenarios used in [93]. Specifically, for each test case,

we conduct five simulation runs. The first set of runs corresponding to 1−ε = 90% use

the same 447 scenarios as used in [93] to compute the solutions for Scenario 1 and 2

and to compute the mean and covariance of the random variables for Analytical 1 and

2, and the same 10,000 scenarios as used in [93] to compute the empirical reliability,

which is defined as one minus the empirical violation probability. The other four

sets of runs corresponding to 1 − ε = 90% and five sets of runs corresponding to

1 − ε = 99% use different random selections of the uncertainty scenarios, where the

40



Table 2.1: Cost Distribution and Reserve Allocation, 1− ε = 90%

Scenario 1 Scenario 2 Analytical 1 & 2

Cost

Total 17320 17359 12778
Dispatch 11941 11942 11867

GS 904 950 0
LS 237 232 56

GD 4238 4235 855

Capacity
(MW)

GS 181 190 0
LS 474 464 112

GD 2907 2905 855

Table 2.2: Cost Distribution and Reserve Allocation, 1− ε = 99%

Scenario 1 Scenario 2 Analytical 1 & 2

Cost

Total 19657 19721 13474
Dispatch 11978 11978 11876

GS 2863 2938 0
LS 97 90 87

GD 4719 4716 1510

Capacity
(MW)

GS 572 588 0
LS 194 179 175

GD 3162 3158 1370

same scenarios are used to both compute the solutions for Scenario 1 and 2 and to

compute the mean and covariance of the random variables for Analytical 1 and 2.

Therefore, the number of scenarios used to compute the mean and covariance of the

random variables for Analytical 1 and 2 is different for 1− ε = 90% and 1− ε = 99%.

Table 2.3: Computational Time (s), NL = Nonlinear Solver, CPA = Cutting Plane
Algorithm

1− ε Scenario 1 Scenario 2 Analytical 1 (NL)

90% 86.5 86.5 312.5
99% 76.1 77.7 314.4

1− ε Analytical 2 (NL) Analytical 1 (CPA) Analytical 2 (CPA)

90% 440.9 39.2 38.4
99% 433.2 38.9 38.8
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2.3.3.2 Results

Tables 2.1 and 2.2 show the cost distribution and reserve allocation for the four

test cases for 1−ε = 90% and 99%, respectively, and for the first simulation run. The

solutions corresponding to Scenarios 1 and 2 are more costly than those corresponding

to Analytical 1 and 2, because the scenario-based method is more conservative since it

uses extreme uncertainty scenarios from a probabilistically robust set. Subsequently,

the scenario-based method procures more reserves leading to higher reserve costs and

achieves less load shifting leading to higher dispatch costs. Additionally, we find

that the solution corresponding to Scenario 2 is more costly/conservative than that

corresponding to Scenario 1 since Scenario 2 uses the approximate load capacities

and baseline. The approximation error results in small suboptimal changes to PC,t

that reduce the ability of the loads to provide secondary reserves. The different

approximations and solvers used in Analytical 1 and 2 do not affect the solutions or

costs. Lastly, we find that decreasing ε increases reserve procurement and costs for

all test cases. In Scenario 1 and 2, decreasing ε increases the number of uncertainty

scenarios needed to generate the probabilistically robust set and, in Analytical 1 and

2, it increases c = Φ−1
N (1− ε). Both changes tighten the feasible region.

Table 2.3 shows the computational time for the four test cases, for 1−ε = 90% and

99%, where Analytical 1 and 2 are solved with both the nonlinear solver (NL) and the

cutting plane algorithm (CPA). Results for all test cases correspond to the average of

the five simulation runs. Table 2.4 shows the breakdown of the computational time

associated with solving Analytical 1 and 2 using the cutting plane algorithm. In each

step, an optimization problem is solved and more constraints are added as the step

increases from 1 to 4. For our problem, the algorithm converges after 4 steps. The

column “Set-up” lists the the total time between all iterations, which is required to

compute the cuts.

While the computational times associated with Scenario 1 and 2 are smaller than
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Table 2.4: Breakdown of the Computational Time (s) Using the CPA

1− ε Step 1 Step 2 Step 3 Step 4 Set-up

Analytical 1 90% 2.9 9.0 11.1 13.1 3.2
Analytical 1 99% 2.9 8.8 10.9 13.0 3.3
Analytical 2 90% 2.0 8.8 11.1 13.3 3.2
Analytical 2 99% 1.9 8.8 11.5 13.4 3.2

those associated with Analytical 1 and 2 using the nonlinear solver, the computational

times associated with Analytical 1 and 2 using the cutting plane algorithm are the

smallest. Comparing our results to those of [51], we find that this computational

advantage increases with problem dimension. The computational time of the first

step of Analytical 2 is less than that of Analytical 1, but at Step 4 the computational

time of Analytical 1 is less than that of Analytical 2. This is because Analytical 2

uses the 2-norm approximation, which includes a nonlinear slack variable constraint.

New linear approximations of the constraint may be introduced in each step.

Table 2.5 shows the average empirical joint and individual reliability of the solu-

tions associated with each of the test cases, where the average is taken over the five

simulation runs. Table 2.6 shows the maximum and minimum empirical joint reliabil-

ity across the five simulation runs.2 The joint reliability is the percent of hourly sets

of constraints that are satisfied concurrently considering all of the scenarios, whereas

the individual reliability is the percent of constraints that are satisfied individually

considering all scenarios. Recall that the scenario-based method satisfies constraints

jointly, while the analytical reformulation is only capable of satisfying constraints

individually.

As shown in Table 2.5, Scenario 1 and 2 are conservative, achieving empirical

joint reliabilities well-above the desired joint reliability. Analytical 1 and 2 achieve

much lower empirical joint reliabilities, but do achieve empirical individual reliabilities

well-above the desired individual reliability because, for each uncertainty scenario, few

2The minimum empirical joint reliability for Scenario 1, 1− ε = 90%, i.e., 98.15%, is comparable
to the worse-case hourly empirical violation probability reported in [93], i.e., 1.86%.
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Table 2.5: Average Empirical Joint and Individual Reliability (%)

1− ε Scenario 1 Scenario 2 Analytical 1 & 2

Joint 90% 99.66 99.67 80.42
Individual 90% 100.00 100.00 99.54
Joint 99% 99.98 99.98 95.47
Individual 99% 100.00 100.00 99.89

Table 2.6: Maximum and Minimum Empirical Joint Reliability (%)

1− ε Scenario 1 Scenario 2 Analytical 1 & 2

Max 90% 100.00 100.00 88.77
Min 90% 98.15 98.49 75.51
Max 99% 100.00 100.00 97.42
Min 99% 99.87 99.87 94.38

constraints are active. Increasing 1− ε from 90% to 99% improves the empirical joint

reliability of Analytical 1 and 2 indicating that c could be tuned to achieve the desired

joint reliability. As shown in Table 2.6, the empirical joint reliability of Analytical 1

and 2 varies more than that of Scenario 1 and 2, but increasing 1 − ε decreases the

range.

Table 2.7 shows the empirical joint reliability by constraint type for Analytical 1

and 2. The first row (Power Flow) corresponds to all of the power flow constraints

for all three operating points; the second row (Energy Capacity) corresponds to al-

l controllable load energy capacity constraints; the third row (Operating Point 1)

corresponds to all generation, controllable load power capacity, and reserve capaci-

ty constraints corresponding to Operating Point 1; the fourth row (Operating Point

2) corresponds to all generation, controllable load power capacity, and reserve ca-

pacity constraints corresponding to Operating Point 2; and the fifth row (Operating

Point 3) corresponds to all generation, controllable load power capacity, and reserve

capacity constraints corresponding to Operating Point 3, except the redundant con-

straints included in Operating Point 1. Power flow and energy capacity constraints

have high joint reliability because they are rarely active. In contrast, reserve capacity
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Table 2.7: Empirical Joint Reliability by Constraint Type for Analytical 1 & 2 (%)

1− ε = 90% 1− ε = 99%

Power Flow 99.56 99.88
Energy Capacity 95.53 99.17
Operating Point 1 85.49 96.71
Operating Point 2 90.94 98.17
Operating Point 3 92.48 98.53

constraints, which are included within the operating point constraints, are generally

active since we attempt to minimize reserve capacities while providing enough re-

serves to compensate for wind power and temperature forecast error. This point is

also demonstrated by the large improvement in the joint reliability of Operating Point

1–3 constraints as we increase 1− ε from 90% to 99%.

To summarize how the solution approaches scale, Tables 2.8 and 2.9 show the num-

ber of constraints per hour required by the scenario-based method and the analytical

reformulations, respectively. We split the constraints by type and by form, i.e., linear

v.s. SOC constraints. As before, NW is the number of wind power plants, NT is the

number of temperature zones, NC is the number of controllable load aggregations,

and j is the number of linear inequalities introduced by the polyhedral approximation

in Analytical 1. We also define NG as the number of conventional generators and NL

as the number of transmission lines. The number of decision variables per hour is

10NG + 4NC . Observe that NW and NT do not affect the number of constraints, but

do affect the size of the matrices/vectors used to represent the constraints. These

tables can be used to determine the increased computational effort required for in-

creased system sizes and to determine the composition of constraints for Analytical

1 and 2.
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Table 2.8: Number of Constraints per Hour Required for the Scenario-Based Method

Linear SOC

Deterministic, Equality 6 +NC 0
Deterministic, Inequality 2NL + 11NG + 9NC 0
Power Flow 6NL 0
Energy Capacity 4NC 0
Operating Point 1 6NG + 4NC 0
Operating Point 2 4NG + 2NC 0
Operating Point 3 4NG + 2NC 0
Total 6 + 25NG + 22NC + 8NL 0

Table 2.9: Number and Type of Constraints per Hour Required for Analytical 1 and
2

Analytical 1 Linear Analytical 1 SOC

Deterministic, Equality 6 +NC 0
Deterministic, Inequality 2NL + 11NG + 9NC 0
Power Flow 0 6NL

Energy Capacity 2jNC 2NC

Operating Point 1 4NG + (2 + j)NC 2NG +NC

Operating Point 2 jNC 4NG +NC

Operating Point 3 0 4NG + (1 + j)NC

Total 6 + 15NG + (12 + 4j)NC + 2NL 10NG + (5 + j)NC + 6NL

Analytical 2 Linear Analytical 2 SOC

Deterministic, Equality 6 +NC 0
Deterministic, Inequality 2NL + 11NG + 9NC 0
Power Flow 0 6NL

Energy Capacity 0 4NC

Operating Point 1 4NG + 2NC 2NG + 2NC

Operating Point 2 0 4NG + 2NC

Operating Point 3 0 4NG + 2NC

Total 6 + 15NG + 12NC + 2NL 10NG + 10NC + 6NL
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2.3.4 Supporting Material

2.3.4.1 Confidence Bound Derivation

In this section, we derive the confidence bound z1(dLS,t) corresponding to one of

the NC constraints in (2.63) for Case 1 (i.e., T ft < Tbr) at one time interval t. Other

confidence bounds can be derived similarly.

Without loss of generality, assume the mean of X = ∆Tt ∈ R is 0 and the standard

deviation is δX . Then, the probability density function (PDF) of X is

fX(x) =
1

δX
√

2π
exp

(
− x2

2δ2
X

)
, (2.87)

and the CDF of M , defined in (2.62), is

P(M ≤ m) = FX

(
m− h
k2

)
− FX

(
m

k1

)
, (2.88)

where FX is the CDF of X, k1 = a, k2 = a− kp, and h = kpeT,t. The PDF of M is

fM(m) =
dP(M ≤ m)

dm
=
fX

(
m−h
k2

)
k2

−
fX

(
m
k1

)
k1

=
fX

(
m−h
k2

)
k2

+
fX

(
m
−k1

)
−k1

(2.89)

since fX is symmetric with respect to zero.

Similarly, assume the mean of dY = dLS,tPm,t ∈ R is 0 and the standard deviation

is dδY = dLS,tδW,t. The PDF of dY is

fdY (y) =
1

dδY
√

2π
exp

(
− y2

2(dδY )2

)
(2.90)

Since h < 0, k1 < 0, and k2 > 0, M is lower bounded by some value −C3 < 0.
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Figure 2.4: Example confidence bounds z1(d) and z2(d) for 1− ε = 90% and 1− ε =
99%.

Therefore, the CDF of Z is

P (Z ≤ z1(d)) =

∫ ∞
−C3

∫ z1(d)−m

−∞
fM(m)fdY (y) dy dm

=

∫ ∞
−C3

fM(m)ΦN

(
z1(d)−m

dδY

)
dm. (2.91)

We solve for z1(d) empirically by setting (2.91) equal to 1− ε and sweeping discrete

values of d within its domain, i.e., [0, 1]. Examples of the confidence bounds are

shown in Fig. 2.4.

2.3.4.2 Monotonicity and Convexity Proof Sketches

All constraints with the exception of those that include confidence bounds are

clearly convex. Figure 2.4 shows that the empirically-computed confidence bounds

appear to be convex. In this section, we sketch the proofs of monotonicity and

convexity for the confidence bound z1(d) in Section 2.3.4. Similar reasoning can be
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used to prove monotonicity and convexity for all other confidence bounds, and so all

constraints within Section 2.3.1 that include confidence bounds are convex.

Assuming we have a solution triple (d0, z0, P0) corresponding to (dLS,t, z1(dLS,t), 1−

ε) and we pick a large P0 such that z0 > C3 and the integral in (2.91) corresponding

to m ∈ [2z0 +C3,∞] is negligible (because this region corresponds to the tail of fM),

we have

P(Z ≤ z0) =

∫ 2z0+C3

−C3

fM(m)ΦN

(
z0 −m
d0δY

)
dm = P0, (2.92)

min
m∈[−C3,z0]

fM(m) = fM(z0), (2.93)

max
m∈[z0,∞]

fM(m) = fM(z0). (2.94)

Increasing d0 to d1, the change in P0 is

∫ 2z0+C3

−C3

fM(m)

[
ΦN

(
z0 −m
d1δY

)
− ΦN

(
z0 −m
d0δY

)]
︸ ︷︷ ︸

∆Φ

dm

=

∫ z0

−C3

(fM(m)− fM(2z0 −m)) ∆Φ dm, (2.95)

since ΦN is symmetric with respect to z0. From (2.93) and (2.94) we know that

fM(m) − fM(2z0 − m) ≥ 0 ∈ [−C3, z0]. We also know that ∆Φ < 0 ∈ [−C3, z0].

Hence, the change in P0 is negative and to increase P0 we would need to increase

z0. Therefore, for a fixed P0, which is above some threshold ensuring that the above

assumptions hold, z(d) will monotonically increase.

Proving convexity also requires approximations on the tails of the PDFs. Though

fM is the summation of two normal PDFs, as shown in (2.89), one tail will dominate

the other for large P0. Hence, when we increase d0 to d1 the change in P0 will be

approximately the same as the change that would occur if fM corresponded to a

single normal PDF. Therefore, for a fixed P0, which is above some threshold ensuring
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that the above assumptions hold, z(d) will be convex and, when d is scalar, the

corresponding constraint will be convex. When d is a vector, constraint convexity

requires z(d) to be monotonic, which was shown above. This conclusion is supported

by our simulation results, which demonstrate that 2-norm approximations of the

confidence bounds are accurate for large P0.

2.4 Impact of Uncertainties on Dispatch Costs and Emissions

In this section, we perform more case studies to show how different types and

levels of uncertainty, reserve costs, and controllable load (CL) capacity affect pow-

er system dispatch, operational costs, and CO2 emissions using both the analytical

reformulation and scenario-based method.

2.4.1 Simulation Setup

The testbed is a modified IEEE 9-bus system [108] with a 20 MW capacity wind

power plant added to Bus 1. We assume all generators can provide secondary and

re-dispatch reserves. Generator costs are taken from the Matpower case file. We

choose the “base case” reserve costs as follows: the generator secondary reserve cost

is five times the corresponding generator’s first-order generation cost, the re-dispatch

cost is equal to the generator’s first-order cost, and the load reserve cost is 50% of

the lowest first-order generator cost (we vary these costs in one of our case studies).

To assess CO2 emissions, we assume the generators at Buses 1 and 3 are gas turbines

and at Bus 2 is a coal generator. The fuel price and emission factors can be found in

[54]. We use empirical data from [40] for the load profile, which is a bimodal profile

with peaks around hours at t = 10, 20, which represents a common winter load. We

assume that 15% of the load at each bus is controllable but uncertain, and that the

uncontrollable load is perfectly forecastable. We set the line flow constraint from Bus

1 to 4 at 50 MW to produce congestion in periods of high demand.
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We use the same temperature and wind forecast error uncertainty set as [97],

which computed the set from real data. We use two methods to solve the CC-

OPF: the robust method [58] and the Gaussian method [79, 9] and use a similar

formulation as in [51]. For the robust method, the number of required error samples

is determined by the probability of chance constraint violation (here, 1%), a confidence

parameter (here, 10−4), and the uncertainty dimension (here, 2) [58]. We draw 2565

uncertainty samples from the set and use them to construct a robust set. For the

Gaussian method, we compute the sample mean and covariance of the uncertainty set.

Different from [51], we use a conservative approximation for confidence bound (the

upper bound, which is labelled “UB” in Fig. 1 of [51]) to simplify the formulation.

To evaluate the CO2 emissions we consider i) the emissions from fuel combus-

tion from conventional generators and ii) the emissions from provision of reserves by

generators. For i), we assume the hourly fuel consumed is F (G, t) = fg(PG,t)/kc,

where fg(PG,t) is the generation cost and kc is the fuel price. The emissions are then:

E(PG,t) = keF (G, t), where ke is the emissions factor. We assume wind generation

has no emissions. When the generator is providing different upward and downward

reserves, the actual average output could be different from the dispatch schedule. To

evaluate the emissions, we define Pe,t = PG,t + (Rup
t −Rdn

t )/2, where Rup
t and Rdn

t are

the upward and downward reserves provided by the generator. When the reserves are

symmetric (i.e., Rup
t = Rdn

t ), then Pe,t = PG,t. Generators may produce additional

emissions when they change their output quickly to track secondary reserves signals;

however, the amount is not well known [54]. In this section, we let these emissions

be: Eo(R
up
t , R

dn
t ) = αEm(Rup

t + Rdn
t ), where Em is the marginal emissions from the

generator at operating at PG,t and α is a scaling factor. In this section, we take

α = 0.1; more discussion can be found in [54].

We study the impacts of five different factors, listed below, on the system dispatch.

We define both a base case and a range for each factor.
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Table 2.10: Base Case Costs & Emissions Results

Dispatch Gen. Sec. Re-dispatch Load Sec. Emissions
($) ($) ($) ($) (lbs)

Robust 43371 235.4 528.5 154.1 2.59e+06
Gaussian 43022 0 222.8 72.0 2.54e+06

Wind Forecast Error As wind forecast error increases, the system needs more

reserves. We scale the wind forecast errors by values of {0.5, 0.75, 1, 1.25, 1.5},

where 1 corresponds to the base case.

Temperature Forecast Error Temperature affects the CL baseline and reserve

capacity. As temperature forecast error increases, the system needs more reserves

and the CL reserve capacity becomes less certain, requiring more reserves from con-

ventional providers. We scale the temperature forecast errors by values of {0.8, 1,

1.2, 1.4, 1.6}.

Temperature Forecast The temperature forecast affects the CL baseline and en-

ergy/power capacity. We add an hourly temperature offset of {-10, -5, 0, +5, +10}

to the base case forecast.

Controllable Load Energy Capacity To study the impact of the CL’s energy

capacity, we apply a scaling factor with values of {1, 3.25, 5.5, 7.75, 10}. Increasing

the CL’s energy capacity (which corresponds to increasing the temperature range

within which the heat pumps are allowed to operate) increases the flexibility of the

CLs.

Reserve Costs We scale the generator secondary reserve costs by applying a scaling

factor with values of {0.02, 0.265, 0.51, 0.755, 1}.
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Figure 2.5: Generation schedule with re-dispatch reserves for each generator in the
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2.4.2 Results

Base Case The base case results using the robust method are shown in Figs. 2.5-

2.8. Figure 2.5 shows the generation dispatch schedule as well as the re-dispatch

reserve schedule, where “Gen bus n” refers to generator bus n.

We observe that when demand is high, line 1-4 is congested, and the generator

on Gen bus 1, which is the lowest cost generator, is limited. Figure 2.6 shows CL set

points for all loads. Figure 2.7 shows the secondary reserve capacity provided by each

generator and load. We observe that load-based reserves are used first due their low

cost. When their power or energy capacity is used up, the loads cannot provide more

reserves, and so the generators are used to cover the rest of the reserve requirement

(we subsequently refer to this as “saturation”). Load-based reserves cover most of the

reserve requirement especially during peak hours since the CLs have larger capacities

during peak hours. Figure 2.8 shows the emissions results, which follow a similar

trend to the bimodal load profile since most of the emissions are from generator

energy production.

Table 2.10 summarizes all costs and CO2 emissions for both the robust method and

the Gaussian method. The Gaussian method is less conservative resulting in fewer

reserves, which both lowers costs and reduces emissions. The qualitative trends are

similar. For example, CLs are used first for secondary reserves. Since fewer reserves
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Figure 2.9: Dispatch costs and emissions (top) and reserve costs (bottom) for increas-
ing wind forecast error. ∆CO2 is the emissions difference from the base case.

are needed, all secondary reserves are provided by the loads.

In the following sections, we present the results associated with varying each factor

listed in Section 2.4.1. In each case, the Gaussian method always produces lower costs

and emissions, but similar qualitative results. Therefore, we only present the results

for the robust method.

Wind Forecast Error The dispatch costs and emissions difference from the base

case (∆CO2) and the secondary and re-dispatch reserve costs are shown in Fig. 2.9.

As wind forecast error increases, the reserve requirement increases. We observe that

load-based secondary reserves increase until saturation. For low uncertainty, there is

no need for generator secondary reserves because the load-based reserves are able to

compensate all of the error. After load-based reserves saturate, generator secondary

reserves are used, and their cost increases linearly with wind error. Generator re-

dispatch reserves increase with load-based reserves to recover the CLs’ energy states.

Increased wind error also reduces the flow scheduled on line (1-4), ensuring the

line constraint will not be violated when the wind forecast uncertainty is high. This
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Figure 2.10: Dispatch costs and emissions (top) and reserve costs (bottom) for in-
creasing temperature forecast error. ∆CO2 is the emissions difference from the base
case.

results in part of the generation being shifted from Gen bus 1 to the other buses. Since

wind generation is also on Gen bus 1, conventional generator dispatch decreases on

Gen bus 1 and increases on Gen bus 2 and 3. The CL set points do not change much

as wind forecast error increases. This is because, in this case, CLs are mainly used

for reserves, not load shifting.

Since generation is shifted from Gen bus 1 to Gen bus 2 and 3, emissions increase

significantly as the generator on Gen bus 2 is modeled as a coal generator, which has

higher emission factor. There is also an increased asymmetry to the reserves which

results in a small increase in emissions.

Temperature Forecast Error The dispatch costs and emissions difference from

the base case and the secondary and re-dispatch reserve costs are shown in Fig. 2.10.

As temperature forecast error increases the load-based reserves quickly saturate. Also,

more re-dispatch reserves are required to recover the CLs’ energy states. The cost

increase is smaller compared to that in the wind forecast error case, since temperature
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Figure 2.11: Dispatch costs and emissions (top) and reserve costs (bottom) for in-
creasing temperature forecast. ∆CO2 is the emissions difference from the base case.

forecast error does not induce large power mismatches. As temperature forecast error

increases, a greater percentage of load-based reserve capacity is used to compensate

temperature forecast error rather than wind forecast error, since the CLs are the only

source for temperature foreacast error compensation. This leads to more secondary

reserves required from the conventional generators to compensate the wind forecast

error. Similar to the wind forecast error case, after load-based reserves saturate,

secondary generation reserve costs increase linearly with temperature error.

There is a slight increase in emissions with respect to the base case (total change

in emissions for the highest uncertainty case less than 900 lbs CO2) and mostly due to

more reserve usage since the generator dispatch schedule is not significantly affected

by temperature error.

Temperature Forecast The dispatch costs and emissions difference from the base

case and the secondary and re-dispatch reserve costs are shown in Fig. 2.11. The CL

set points and load-based secondary reserve capacities for Load bus 1 are shown in Fig.

2.12. As the temperature forecast increases, the generation cost decreases since the
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Figure 2.12: CL set point and load-based secondary reserves for lowest and highest
temperature forecast on Load bus 1.
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Figure 2.13: Dispatch costs and emissions (top) and reserve costs (bottom) for in-
creasing CL energy capacity. ∆CO2 is the emissions difference from the base case.

CL baseline decreases (i.e., heaters are used less as the temperature increases). The

generator on Gen bus 1 is already limited by the line constraint, and so the generators

on Gen bus 2 and 3 decrease to match the reduced demand. The load-based reserve

costs decrease, the generator secondary reserve costs increase, and the re-dispatch

reserves cost decrease for an offset value of 10 since the CLs’ power capacities becomes

very small; this can be observed in Fig. 2.12. Emissions reduce with increasing

temperature since CL demand reduces, and the change in emissions is dominated by

generator dispatch rather than reserves.
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Figure 2.14: Total load schedule for lowest and highest energy capacity.

Controllable Load Energy Capacity The dispatch costs and emissions difference

from the base case and the secondary and re-dispatch reserve costs are shown in Fig.

2.13. The total load (CL plus uncontrollable load) schedule is shown in Fig. 2.14.

Generation dispatch costs and generation secondary reserve costs decrease as the

energy capacities increase since the CLs can provide more reserves and load shifting.

While the total CL over the day does not change, an increased energy capacity allows

the CL to provide more load shifting, as shown in Fig. 2.14. The resulting peak

shaving reduces operational costs as well as emissions since the marginal cost of

generation is higher during peak hours. Load-based reserves increase with increased

energy capacity until they provide all reserves. With increased energy capacities,

emissions decrease for peak hours and increase for off-peak hours. The total emissions

over the 24-hour period show a slight decrease as the CL energy capacity increases.

Reserve Costs The dispatch costs and emissions difference from the base case and

the secondary and re-dispatch reserve costs are shown in Fig. 2.15. The generation

dispatch schedule for Gen bus 1 and secondary reserves provided the generators and

loads are shown in Figs. 2.16 and 2.17.

In the base case, the generator secondary reserve is more expensive than load-

based secondary reserve, and at most times, it is more expensive than the marginal
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Figure 2.15: Dispatch costs and emissions (top) and reserve costs (bottom) for in-
creasing generator secondary reserve cost. ∆CO2 is the emissions difference from the
base case.

cost of generation. When the scaling is set to 0.02, all generators have cheaper

reserve costs than the CLs. Thus generators will be used first to compensate for wind

forecast errors. Load-based reserves are still used as they are the only resource used

to compensate temperature errors. In this case, during peak hours, the system picks

a more expensive reserve provider – the generator on Gen bus 1. This is because

the wind generation is also on Gen bus 1 and the line (1-4) is congested. Scheduling

reserves on Gen bus 1 allows more power flow be scheduled on the congested line.

This shift in generation reduces the generation cost, which is more than the increase

in the reserve cost and leads to a lower total cost. CLs are also more effective at load

shifting when most of the reserves are provided by generators.

As the scaling factor increases to 0.265, generator secondary reserves still compen-

sate the majority of the wind forecast error due to its low cost. However, during peak

hours, Gen bus 1 is no longer used for reserves and Gen bus 3 provides secondary and

re-dispatch reserves. This is because the reserve cost increase outweighs the conges-
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Figure 2.16: Generator dispatch for the lowest and highest generator secondary re-
serve costs on Gen bus 1.

      
0

0.05

0.1

0.15
Scaling = 0.02

 

 
Load bus 1 Load bus 2 Load bus 3 Gen bus 1 Gen bus 3

      
0

0.05

0.1

0.15

S
e
c
o
n
d
a
ry

 R
e
s
e
rv

e
s
 (

p
.u

.)

Scaling = 0.265

0 5 10 15 20 25
0

0.05

0.1

0.15

Hour

Scaling = 0.51

Figure 2.17: Secondary reserves for increasing generator secondary reserve costs. The
cases with scaling 0.76 and 1 are the same as scaling 0.51 due to CL saturation.

61



tion relief. With less load-based reserve scheduled, the CLs can help more with load

shifting. For scaling factors 0.51 to 1, the CLs will use their full capacity for reserves

and become unable to load shift. Hence, we observe an increase in load-based reserve

and dispatch costs.

For low generator secondary reserve costs, the generation dispatch is shifted from

Gen bus 2 to 1 leading to a reduction in emissions. As generator secondary reserve

costs increase, the dispatch is shifted back to Gen bus 2 and more load-based reserves

are used. Therefore, we first observe an increase in emissions due to the dispatch shift

then a reduction in emissions after load-based reserves saturate.

2.5 Conclusion

In this chapter, we first analytically reformulated the chance-constrained optimal

power flow problem with uncertain controllable loads assuming temperature and wind

power forecast uncertainty follow multivariate normal distributions. We proved that

the nonlinear formulation is convex and we demonstrated how to compute empirical

confidence bounds for the nonlinear constraints. We also showed how to approximate

the confidence bounds with two different convex approximations and use an iterative

cutting plane algorithm to reduce computational times. Through simulations, we

compared the costs, solutions, computational times, and reliability of the approach

to that of the scenario-based method. We showed that the analytical reformulation

provides less conservative, lower cost solutions with empirical individual reliabilities

above desired individual reliabilities. However, the approach does not guaranteed

joint chance-constraint satisfaction and so empirical joint reliabilities are much lower

than that of the scenario-based method. Still, joint reliabilities can be increased

by heuristically tuning the desired individual reliability. Importantly, the analytical

reformulation solved with the cutting plane algorithms requires less computational

time than the scenario-based method for the test system used, and we provided tables
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demonstrating the scalability of the approaches as a function of the problem size.

Next, we performed case studies to investigate the impacts of several factors in-

cluding load-based reserve uncertainty (i.e., temperature uncertainty), wind uncer-

tainty, reserve costs, and chance-constrain optimal power flow solution methodologies

on power system dispatch, operational costs, and CO2 emissions. We find that wind

uncertainty has a larger impact on dispatch and emissions than temperature uncer-

tainty. Changes in the temperature forecast highly affect the dispatch schedule and

the emissions. Due to their low cost, controllable loads are scheduled to provide re-

serves before generators are, until they reach their capacity and the generators are

needed. We also find that changes in generator dispatch have a more significant im-

pact on the emissions than the changes in the reserve schedule, based on our emissions

model. Higher controllable load energy capacities result in more load-based reserves,

more load shifting, and reduced emissions. Complicated trade-offs were observed as

the generator secondary reserve costs were varied.
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CHAPTER III

Distributionally Robust Optimal Power Flow

Using Moment and Unimodality Information

Optimization problems face random constraint violations when uncertainty arises

in constraint parameters. Effective ways of controlling such violations include risk con-

straints, e.g., chance constraints and conditional Value-at-Risk (CVaR) constraints.

In this chapter, we study these two types of risk constraints when the probability

distribution of the uncertain parameters is ambiguous. In particular, we assume that

the distributional information consists of the first two moments of the uncertainty and

a generalized notion of unimodality, similar to the previous work in [48]. We find that

the ambiguous risk constraints in this setting can be recast as a set of second-order

cone (SOC) constraints. In order to facilitate the algorithmic implementation, we also

derive efficient ways of finding violated SOC constraints. Finally, we demonstrate the

theoretical results via a computational case study on power system operations. The

main content of this chapter is summarized in the following papers.

1. B. Li, R. Jiang, and J. L. Mathieu. Distributionally robust risk-constrained

optimal power flow using moment and unimodality information. In IEEE Con- ference

on Decision and Control, Las Vegas, NV, 2016

2. B. Li, R. Jiang, and J.L. Mathieu. Ambiguous risk constraints with moment

and unimodality information. Mathematical Prgramming (Accepted), 2017
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3.1 Introduction

In an uncertain environment, optimization problems often involve making deci-

sions before the uncertainty is realized. In this case, constraints, which may include

security criteria and capacity restrictions, may face random violations. For example,

we consider a constraint subject to uncertainty taking the form

a(x)>ξ ≤ b(x), (3.1)

where x ∈ {0, 1}nB × Rn−nB represents an n-dimensional decision variable, nB ∈

{0, 1, . . . , n} represents the number of binary decisions, a(x) : Rn → RT and b(x) :

Rn → R represent two affine transformations of x, and ξ ∈ RT represents a T -

dimensional random vector defined on probability space (RT ,BT ,Pξ) with Borel σ-

algebra BT . An intuitive way of handling random violations of (3.1) is to employ

chance constraints, which attempt to satisfy (3.1) with at least a pre-specified prob-

ability, i.e.,

Pξ{a(x)>ξ ≤ b(x)} ≥ 1− ε, (3.2)

where 1 − ε represents the confidence level of the chance constraint with ε usually

taking a small value (e.g., 0.05 or 0.10) [18, 66]. Dating back to the 1950s, chance

constraints have been applied in a wide range of applications including power system

operations [68, 100], production planning [11, 28], and chemical processing [38, 39].

In practice, a decision maker is often interested in not only the violation probability

of constraint (3.1), but also the violation magnitude if any [81, 82]. Indeed, chance

constraint (3.2) offers no guarantees on the magnitude of a(x)>ξ − b(x) when it is

positive. This motivates an alternative risk measure called the conditional Value-

at-Risk (CVaR) that examines the (right) tail of a(x)>ξ − b(x). More precisely, the

CVaR of a one-dimensional random variable χ with confidence level 1− ε ∈ (0, 1) is
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defined as

CVaRε
Pχ(χ) = inf

β∈R

{
β +

1

ε
EP[χ− β]+

}
, (3.3)

where Pχ represents the probability distribution of χ and [x]+ = max{x, 0} for x ∈ R.

When the infimum is attained in (3.3), β represents the Value-at-Risk of χ with

confidence level 1−ε, that is, Pχ{χ ≤ β} ≥ 1−ε [3, 82]. As a consequence, CVaRε
Pχ(χ)

measures the conditional expectation of χ on its right ε-tail. Hence, chance constraint

(3.2) is implied by the CVaR constraint

CVaRε
Pξ(a(x)>ξ) ≤ b(x). (3.4)

A basic challenge to using risk constraints (3.2) and (3.4) is that complete informa-

tion of probability distribution Pξ may not be available. Under many circumstances,

we only have structural knowledge of Pξ (e.g., symmetry, unimodality, etc.) and

possibly a series of historical data that can be considered as samples taken from the

true (while ambiguous) distribution. As a result, the solution obtained from a risk-

constrained model can be biased, i.e., sensitive to the Pξ we employ in constraints

(3.2) and (3.4), and hence perform poorly in the out-of-sample tests. A natural way

of addressing this challenge is to employ a set of plausible probability distributions,

termed the ambiguity set, rather than a single estimate of Pξ.

3.1.1 Ambiguity Set with Unimodality Information

We consider an ambiguity set characterized by the first two moments of ξ and

a structural requirement that Pξ is unimodal in a generalized sense. By definition,

if T = 1, then Pξ is unimodal about 0 if function F (z) := Pξ(ξ ≤ z) is convex on

(−∞, 0) and concave on (0,∞). If ξ admits a density function fξ(z), then unimodality

is equivalent to fξ(z) being nondecreasing on (−∞, 0) and nonincreasing on (0,∞).

In a multidimensional setting, i.e., if T > 1, an intuitive extension of this notion is
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that fξ(zd) is nonincreasing on (0,∞) for all d ∈ RT and d 6= 0. That is, the density

function of ξ is nonincreasing along any ray emanating from the mode. The following

definitions extend this intuitive notion to also cover the distributions that do not

admit density functions.

Definition III.1. (Star-Unimodality [23]) A set S ⊆ RT is called star-shaped about

0 if, for all ξ ∈ S, the line segment connecting 0 and ξ is completely contained in S.

A probability distribution Pξ on RT is called star-unimodal about 0 if it belongs to

the closed convex hull of the set of all uniform distributions on sets in RT which are

star-shaped about 0.

In this chapter, we consider a more general notion than the star-unimodality as

follows.

Definition III.2. (α-Unimodality [23]) For any given α > 0, a probability distribu-

tion Pξ is called α-unimodal about 0 if function G(z) := zαPξ(S/z) is nondecreasing

on (0,∞) for all Borel set S ∈ BT .

If ξ admits a density function fξ(z), then it can be shown that Pξ is α-unimodal

about 0 if and only if zT−αfξ(zd) is nonincreasing on (0,∞) for all d ∈ RT and d 6= 0

[23, 75]. As compared to star-unimodal distributions, the density of an α-unimodal

distribution can increase along rays emanating from the mode (e.g., when α > T ), but

the increasing rate is controlled by α. Indeed, along any ray d, fξ(zd) does not increase

faster than zα−T on (0,∞). Furthermore, when α = T , fξ(zd) is nonincreasing on

(0,∞) for all d. This implies that α-unimodality reduces to star-unimodality when

α = T .

Given the first two moments of ξ and α-unimodality, we define the following

ambiguity set

Dξ(µ,Σ, α) :=
{
Pξ ∈MT : EPξ [ξ] = µ, EPξ [ξξ

>] = Σ, Pξ is α-unimodal about 0
}
,

(3.5)
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where MT represents the set of all probability distributions on (RT ,BT ), and µ and

Σ represent the first and second moments of ξ, respectively. Without loss of gen-

erality, we assume that the mode of ξ is 0 in definition (3.5) and a general mode

m can be modeled by shifting ξ to ξ − m (see, e.g., Example 3.4.4 in [35]). For

notational brevity, we often refer to ambiguity set Dξ with its dependency on param-

eters (µ,Σ, α) omitted. Based on Dξ, we consider a distributionally robust chance

constraint (DRCC)

inf
Pξ∈Dξ

Pξ{a(x)>ξ ≤ b(x)} ≥ 1− ε, (3.6)

that is, we wish to satisfy chance constraint (3.2) for all probability distributions Pξ

in ambiguity set Dξ. Similarly, we define a distributionally robust risk constraint

(DRRC)

sup
Pξ∈Dξ

CVaRε
Pξ(a(x)>ξ) ≤ b(x), (3.7)

which requires that CVaR constraint (3.4) is satisfied for all Pξ in Dξ.

3.1.2 Relations to the Prior Work

In recent years, distributionally robust optimization (DRO) has become an impor-

tant tool to handle distributional ambiguity in stochastic programs. Using concepts

similar to DRCC (3.6) and DRRC (3.7), DRO aims to optimize or protect a system

from the worst-case probability distribution, which belongs to a pre-specified ambi-

guity set. DRO was first introduced by [83] as a minimax stochastic program for the

classical newsvendor problem under an ambiguous demand with only moment infor-

mation. Following this seminal work, moment information has been widely used for

characterizing ambiguity sets in various DRO models [7, 22, 109]. A key merit of the

DRO approach is that the model can often be recast as tractable convex programs

such as semidefinite programs (SDPs) [22] or SOC programs [29]. Recently, [101]

successfully identified a class of ambiguity sets that lead to tractable convex program
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reformulations of general DRO models.

DRCCs with moment information (and without structural information) have been

well-studied in recent years [29, 98, 13, 91, 110, 1, 19, 36]. In particular, [29], [98],

and [13] showed that the DRCC can be recast as an SOC constraint if the ambiguity

set is characterized by the first two moments of ξ. Later, [110] showed that DRCC and

DRRC are actually equivalent if the same ambiguity set is employed. Recently, [1]

and [19] extended the analysis of DRCC to the case when variable x involves binary

(i.e., 0-1) decisions, and [36] made significant progress on representing the distribu-

tionally robust joint chance constraints in tractable forms. DRCCs with information

on the density function have also been studied [26, 44, 27].

In contrast, DRCCs and DRRCs with both moment and structural information

have received less attention. [77] considered general DRO models with ambiguity sets

incorporating unimodality, symmetry, and convexity. Recently, by using the Cho-

quet representation of α-unimodal distributions, [74] successfully derived SDPs to

quantify the worst-case probability bound in DRCC. Furthermore, based on both α-

unimodality and γ-monotonicity, [75] extended the analysis to quantifying the worst-

case expectation in DRRC. The main focus of [74, 75] is to evaluate the worst-case

expectations in DRCC or DRRC for a given decision variable x. In contrast, we

adjust x to satisfy DRCC and DRRC. In our prior work [48], we derived approx-

imations of DRRC. Here, we obtain an exact representation of DRRC and derive

tighter approximations than those in [48]. To the best of our knowledge, our results

on DRCC are most related to [35] (in particular, Example 3.4.4), which employs a

different ambiguity set that bounds the second moment of ξ by Σ instead of matching

it as in (3.5). Furthermore, [35] derived a representation of DRCC based on SDP-

s. In contrast, in this chapter, we employ a different approach based on projection,

which allows us to represent DRCC with SOC constraints. SOC constraints are more

computationally tractable than SDPs, especially when x involves binary decisions.
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In addition, many off-the-shelf commercial solvers (e.g., CPLEX and GUROBI) can

directly handle mixed-integer SOC programs.

We summarize our main contributions as follows.

1. We derive equivalent reformulations of DRCC (3.6) and DRRC (3.7) using both

moment and unimodality information. Both reformulations are SOC constraints

and so can be efficiently handled in commercial solvers. Different from previous re-

sults in [110], we find that DRCC and DRRC are not equivalent after incorporating

the unimodality information.

2. Inspired by the separation approach [67], we derive efficient ways for finding vio-

lated SOC constraints in the reformulations of DRCC and DRRC. The separation

procedures can be used to accelerate the algorithmic implementation of DRCC

and DRRC.

3. We derive conservative and relaxed approximations of DRCC and DRRC that

are asymptotically tight. As demonstrated in the computational case study, these

approximations help to provide high-quality bounds for the optimal objective value

of the test instances.

The remainder of this chapter is organized as follows. Section 3.2 represents

DRCC (3.6) as a set of SOC constraints. Section 3.4 represents DRRC (3.7) as a

set of SOC constraints. In both sections, we derive separation procedures for finding

violated SOC constraints based on the golden section search. In Section 3.6, we

analyze an extension of DRCC and DRRC to incorporate the linear unimodality into

the ambiguity set. We present a computational case study in Section 3.7 and provide

some supporting mathematical proofs in Section 3.8.
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3.2 Distributionally Robust Chance Constraint

We show that DRCC (3.6) can be recast as second-order cone (SOC) constraints.

To this end, we first simplify the computation of the left-hand side of (3.6), i.e.,

infPξ∈Dξ Pξ{a(x)>ξ ≤ b(x)}, by projecting random vector ξ on R and considering

a one-dimensional random variable ζ. We summarize this projection result in the

following proposition, whose proof relies on the representation of α-unimodal random

vectors in [23].

Proposition III.3. Define scalars µ1 = a(x)>µ, Σ1 = a(x)>Σa(x), and ambiguity

set D1 = {Pζ ∈M1 : EPζ [ζ] = µ1, EPζ [ζ
2] = Σ1, Pζ is α-unimodal about 0}. Then

inf
Pξ∈Dξ

Pξ{a(x)>ξ ≤ b(x)} = inf
Pζ∈D1

Pζ{ζ ≤ b(x)}. (3.8)

Proof. Theorem 3.5 in [23] states that a random vector X ∈ Rm is α-unimodal if

and only if there exists a random vector Z ∈ Rm such that X = U1/αZ, where U is

uniform in (0, 1) and independent of Z.

First, pick any ξ such that Pξ ∈ Dξ. Then, there exists Zξ such that ξ = U1/αZξ.

We define ζ = a(x)>ξ. It follows that ζ is α-unimodal because ζ = a(x)>(U1/αZξ) =

U1/α(a(x)>Zξ). Furthermore, EPζ [ζ] = µ1 and EPζ [ζ
2] = Σ1. Hence, Pζ ∈ D1, and so

infPξ∈Dξ Pξ{a(x)>ξ ≤ b(x)} ≥ infPζ∈D1 Pζ{ζ ≤ b(x)}.

Second, pick any ζ such that Pζ ∈ D1. Then, there exists a Zζ such that ζ =

U1/αZζ . It follows that E[Zζ ] = (α+1
α

)µ1 and E[Z2
ζ ] = (α+2

α
)Σ1. Based on Theorem

1 in [78], there exists a Zξ ∈ RT such that Zζ = a(x)>Zξ, E[Zξ] = (α+1
α

)µ, and

E[ZξZ
>
ξ ] = (α+2

α
)Σ. We define ξ = U1/αZξ. It follows that ξ is α-unimodal, and

furthermore EPξ [ξ] = ( α
α+1

)E[Zξ] = µ and EPξ [ξξ
>] = ( α

α+2
)E[ZξZ

>
ξ ] = Σ. Therefore,

Pξ ∈ Dξ, and so infPξ∈Dξ Pξ{a(x)>ξ ≤ b(x)} ≤ infPζ∈D1 Pζ{ζ ≤ b(x)}.

Next, we compute the worst-case probability infPζ∈D1 Pζ{ζ ≤ b(x)}, for which we

make the following two assumptions in the remainder of this section.
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Assumption III.4.
(
α+2
α

)
Σ �

(
α+1
α

)2
µµ>.

Assumption III.5. Constraint a(x)>ξ ≤ b(x), and so constraint ζ ≤ b(x) as well,

is satisfied when ξ takes the value of its mode 0. That is, b(x) ≥ 0.

Assumption III.4 is standard in the literature and ensures that Dξ 6= ∅ [74].

Assumption III.5 is standard in the related literature (see, e.g., [74, 75, 35]). In fact,

as DRCC (3.6) requires that a(x)>ξ ≤ b(x) holds with high probability, it is reasonable

to assume that it also holds at the mode of ξ. Additionally, given DRCC (3.6) and

Proposition III.3, we observe that Assumption III.5 holds if Pζ{ζ ≤ 0} < 1 − ε

for each Pζ ∈ D1, i.e., if the distributions in D1 are not extremely negative-skewed.

To represent DRCC (3.6), we show an equivalent reformulation of infPζ∈D1 Pζ{ζ ≤

b(x)} in the following proposition that also sheds light on the worst-case probability

distribution.

Proposition III.6. Define µ0 =
(
α+1
α

)
µ1 and Σ0 =

(
α+2
α

)
Σ1. Then, infPζ∈D1 Pζ{ζ ≤

b(x)} is equivalent to the optimal objective value of optimization problem

min
p1,p2,z1,z2

p1 +

(
b(x)

z2

)α
p2 (3.9a)

s.t. p1 + p2 = 1, (3.9b)

p1z1 + p2z2 = µ0, (3.9c)

p1z
2
1 + p2z

2
2 = Σ0, (3.9d)

p1, p2 ≥ 0, z1 ∈ R, z2 ≥ b(x). (3.9e)

Proof. First, we rewrite infPζ∈D1 Pζ{ζ ≤ b(x)} as a functional optimization problem
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as follows:

min
Pζ

Pζ{ζ ≤ b(x)} (3.10a)

s.t. EPζ [ζ] = µ1, (3.10b)

EPζ [ζ
2] = Σ1, (3.10c)

EPζ [1] = 1, (3.10d)

Pζ is α-unimodal, (3.10e)

where constraints (3.10b)–(3.10c) describe the two moments of ζ, and constraint

(3.10d) ensures that Pζ is a probability distribution. Using Theorem 3.5 in [23], since

Pζ is α-unimodal, there exists a random variable Z such that ζ = U1/αZ, where U

is uniform in (0, 1) and independent of Z. It follows that EPζ [ζ] = E[U1/α]EPZ [Z] =

( α
α+1

)EPZ [Z] and EPζ [ζ
2] = E[U2/α]EPZ [Z2] = ( α

α+2
)EPZ [Z2]. Furthermore,

Pζ{ζ ≤ b(x)} = P{U1/αZ ≤ b(x)}

=

∫ +∞

z=−∞
P{U1/αz ≤ b(x)}dPZ(z)

=

∫ b(x)

z=−∞
1 dPZ(z) +

∫ +∞

z=b(x)

P
{
U1/α ≤ b(x)

z

}
dPZ(z) (3.11a)

=

∫ b(x)

z=−∞
1 dPZ(z) +

∫ +∞

z=b(x)

(
b(x)

z

)α
dPZ(z)

=

∫ +∞

z=−∞

[
b(x)

max{z, b(x)}

]α
dPZ(z), (3.11b)

where equality (3.11a) is because U1/αz ≤ b(x) when z ≤ b(x) (note that b(x) ≥ 0

due to Assumption III.5), and in (3.11b) we designate that 0/0 = 1 in case b(x) = 0.
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Hence, problem (3.10a)–(3.10e) can be recast as

min
PZ

EPZ

[
b(x)

max{Z, b(x)}

]α
(3.12a)

s.t. EPZ [Z] = µ0, (3.12b)

EPZ [Z2] = Σ0, (3.12c)

EPZ [1] = 1. (3.12d)

Second, we take the dual of problem (3.12a)–(3.12d) to obtain

max
π,λ,γ

µ0π + Σ0λ+ γ (3.13a)

s.t. λz2 + πz + γ ≤
[

b(x)

max{z, b(x)}

]α
, ∀z ∈ R, (3.13b)

where dual variables π, λ, and γ are associated with primal constraints (3.12b)–

(3.12d), respectively. Meanwhile, dual constraints (3.13b) are associated with primal

variable PZ . Strong duality holds between problems (3.12a)–(3.12d) and (3.13a)–

(3.13b) due to Assumption III.4 (see Proposition 3.4 in [84]). It follows that there

exist an optimal solution P∗Z to (3.12a)–(3.12d) that is discrete with at most 3 points

of support (see Lemma 3.1 in [86]) and a finite optimal solution (π∗, λ∗, γ∗) to (3.13a)–

(3.13b) (see Proposition 3.4 in [84]).

Third, strong duality yields

EP∗Z

{[
b(x)

max{Z, b(x)}

]α
− (λ∗Z2 + π∗Z + γ∗)

}
=EP∗Z

[
b(x)

max{Z, b(x)}

]α
− (λ∗Σ0 + π∗µ0 + γ∗) = 0.

It follows that P∗Z is supported at those points z such that [b(x)/max{z, b(x)}]α =

λ∗z2 + π∗z+ γ∗. From constraints (3.13b), we note that λ ≤ 0 and so λz2 + πz+ γ is

concave in z. Additionally, [b(x)/max{z, b(x)}]α is piecewise convex and consists of
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two pieces, more specifically,

[
b(x)

max{z, b(x)}

]α
=

 1, if z ≤ b(x)(
b(x)
z

)α
, if z > b(x),

and both pieces 1 and (b(x)/z)α are convex in z. Hence, due to constraints (3.13b),

[b(x)/max{z, b(x)}]α and λ∗z2+π∗z+γ∗ can meet at at most two points, each located

at one piece of [b(x)/max{z, b(x)}]α. It follows that, without loss of optimality,

we can shrink the feasible region of formulation (3.12a)–(3.12d) to those discrete

distributions with at most two points of support, each corresponding to one piece

of [b(x)/max{z, b(x)}]α. Therefore, formulations (3.12a)–(3.12d) and (3.9a)–(3.9e)

have the same optimal objective value (note that we relax z1 ≤ b(x) to z1 ∈ R in

(3.9a)–(3.9e) without loss of optimality, because it is suboptimal that both z1 and z2

correspond to the same piece of [b(x)/max{z, b(x)}]α).

Remark III.7. Suppose that (p∗1, p
∗
2, z
∗
1 , z
∗
2) is an optimal solution to problem (3.9a)–

(3.9e). From the proof of Proposition III.6, we observe that problem (3.9a)–(3.9e) is

solved for the worst-case probability distribution of a random variable Z such that

ζ = U1/αZ, where U is uniform on (0, 1) and independent of Z. It follows that the

worst-case distribution P∗ζ attaining infPζ∈D1 Pζ{ζ ≤ b(x)} is a mixture in the form

P∗ζ = p∗1P1
ζ + p∗2P2

ζ , where, for i = 1, 2, Piζ is defined on the interval connecting 0 and

z∗i (i.e., [0, z∗i ] or [z∗i , 0], depending on the sign of z∗i ) and Piζ{|ζ| ≤ t|z∗i |} = tα for all

t ∈ [0, 1].

Finally, we reformulate DRCC (3.6) by analyzing problem (3.9a)–(3.9e). We sum-

marize the main result of this section in the following theorem.

Theorem III.8. DRCC (3.6) is equivalent to a set of SOC constraints

√
1− ε− τ−α

ε

∣∣∣∣Λa(x)
∣∣∣∣ ≤ τb(x)−

(
α + 1

α

)
µ>a(x), ∀τ ≥

(
1

1− ε

)1/α

, (3.14)
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where Λ := [(α+2
α

)Σ− (α+1
α

)2µµ>]1/2.

Proof. We analyze the solutions to problem (3.9a)–(3.9e) and identify all possible

solutions (p1, p2, z1, z2) that satisfy constraints (3.9b)–(3.9e). To this end, we analyze

the following two cases.

Case 1. If µ0 ≤ b(x), then we parameterize z2 by defining z2 = τb(x) for τ ≥

1. Accordingly, we parameterize all solutions (p1, p2, z1, z2) that satisfy constraints

(3.9b)–(3.9e) by τ as follows:

p1 =
(τb(x)− µ0)2

(τb(x)− µ0)2 + Σ0 − µ2
0

, p2 =
Σ0 − µ2

0

(τb(x)− µ0)2 + Σ0 − µ2
0

, (3.15a)

z1 =µ0 −
Σ0 − µ2

0

τb(x)− µ0

, and z2 = τb(x). (3.15b)

Note that, for each τ ≥ 1, (p1, p2, z1, z2) satisfies constraints (3.9e) because p1, p2 ≥ 0

and z2 = τb(x) ≥ b(x). Then, problem (3.9a)–(3.9e) can be recast as

min
τ≥1

(τb(x)− µ0)2 + τ−α(Σ0 − µ2
0)

(τb(x)− µ0)2 + Σ0 − µ2
0

.

Hence, DRCC (3.6), i.e., infPζ∈D1 Pζ{ζ ≤ b(x)} ≥ 1− ε, can be recast as

(τb(x)− µ0)2 + τ−α(Σ0 − µ2
0)

(τb(x)− µ0)2 + (Σ0 − µ2
0)
≥ 1− ε, ∀τ ≥ 1.

After simple transformations, this is equivalent to

(τb(x)− µ0)2 ≥
(

1− ε− τ−α

ε

)
(Σ0 − µ2

0), ∀τ ≥ 1. (3.16)

As (τb(x) − µ0)2 ≥ 0, we can assume τ ≥ (1/(1 − ε))1/α without loss of generality.

Furthermore, because τb(x)− µ0 ≥ 0 for all τ ≥ 1, we can rewrite constraints (3.16)

as (3.14), using the definitions of µ0 and Σ0.

Case 2. If µ0 > b(x), then we parameterize z2 by defining z2 = τb(x) for τ ≥ 1.

76



For all τ ≥ µ0/b(x), because z2 ≥ µ0, we parameterize (p1, p2, z1, z2) by τ as in

(3.15a)–(3.15b). Similar to Case 1, DRCC (3.6) can be recast as

τb(x)− µ0 ≥

√(
1− ε− τ−α

ε

)
+

√
Σ0 − µ2

0, ∀τ ≥
µ0

b(x)
. (3.17a)

For all 1 ≤ τ < µ0/b(x), because b(x) ≤ z2 < µ0, we parameterize (p1, p2, z1, z2) by τ

as follows:

p1 =
(µ0 − τb(x))2

(µ0 − τb(x))2 + Σ0 − µ2
0

, p2 =
Σ0 − µ2

0

(µ0 − τb(x))2 + Σ0 − µ2
0

,

z1 =µ0 +
Σ0 − µ2

0

µ0 − τb(x)
, and z2 = τb(x).

Then, because µ0 > τb(x), DRCC (3.6) can be recast as

µ0 − τb(x) ≥

√(
1− ε− τ−α

ε

)
+

√
Σ0 − µ2

0, ∀1 ≤ τ <
µ0

b(x)
. (3.17b)

Combining inequalities (3.17a)–(3.17b) and the fact that (1 − ε − τ−α)/ε > 0 if and

only if τ > [1/(1 − ε)]1/α, we have µ0/b(x) ≤ [1/(1 − ε)]1/α because otherwise, when

τ = µ0/b(x), the left-hand side of (3.17a) equals zero while the right-hand side is

strictly positive. It follows that inequalities (3.17b) are equivalent to µ0 − τb(x) ≥ 0

for all 1 ≤ τ < µ0/b(x) and so redundant, and inequalities (3.17a) are equivalent to

(3.14), using the definitions of µ0 and Σ0.

In computation, directly replacing DRCC with constraints (3.14) involves an infi-

nite number of SOC constraints and so is computationally intractable. An alternative

approach is by separation, i.e., (i) obtain a solution x̂ from a relaxed formulation, (ii)

find a τ̂ ≥ (1/(1−ε))1/α such that x̂ violates the corresponding SOC constraint (3.14),

and (iii) incorporate the violated SOC constraint to strengthen the formulation. Note
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that constraints (3.14) imply that

τb(x)−
(α + 1

α

)
µ>a(x) ≥ 0, ∀τ ≥

( 1

1− ε

)1/α

because
√

(1− ε− τ−α)/ε ||Λa(x)|| ≥ 0. These inequalities are equivalent to a single

linear constraint (1/(1 − ε))1/αb(x) − [(α + 1)/α]µ>a(x) ≥ 0, which we assume is

always incorporated in the relaxed formulation in Step (i). We discuss how to effi-

ciently conduct Step (ii) of the separation approach, which is equivalent to solving

the following problem:

Separation Problem 1: Given x̂, does there exist a τ̂ ≥ (1/(1− ε))1/α such that x̂

violates constraints (3.14)?

In the following proposition, we show that Separation Problem 1 can be solved by

conducting a golden section search on the real line. This search is computationally

efficient.

Proposition III.9. Define µ̂0 = (α+1
α

)µ>a(x̂) and Σ̂0 = (α+2
α

)a(x̂)>Σa(x̂). We have

the following:

1. If a(x̂) = 0, then constraints (3.14) are always satisfied;

2. If a(x̂) 6= 0 and b(x̂) = 0, then x̂ violates constraints (3.14) if and only if it violates

them at τ̂ = +∞, i.e.,
√

(1− ε)/ε ||Λa(x̂)|| ≤ −[(α + 1)/α]µ>a(x̂);

3. If a(x̂) 6= 0 and b(x̂) > 0, then x̂ violates constraints (3.14) if and only if√
(1− ε− τ̂−α)/ε ||Λa(x̂)|| ≤ τ̂ b(x̂) − [(α + 1)/α]µ>a(x̂), where τ̂ represents the

minimizer of the one-dimensional problem

min
τ≥(1/(1−ε))1/α

(b(x̂)τ − µ̂0)2 −
(

1− ε− τ−α

ε

)
(Σ̂0 − µ̂2

0), (3.18)

whose objective function is strongly convex and can be minimized via a golden

section search in the interval
[
(1/(1 − ε))1/α, µ̂0/b(x̂) + α(1 − ε)(α+1)/α(Σ̂0 −

78



µ̂2
0)/(2εb(x̂)2)

]
.

Proof. First, if a(x̂) = 0, then constraints (3.14) reduce to τb(x) ≥ 0 for all τ ≥

(1/(1− ε))1/α, which always holds due to Assumption III.5. Second, if a(x̂) 6= 0 and

b(x̂) = 0, then constraints (3.14) reduce to

√
1− ε− τ−α

ε

∣∣∣∣Λa(x̂)
∣∣∣∣ ≤ −(α + 1

α

)
µ>a(x̂), ∀τ ≥

(
1

1− ε

)1/α

.

As the left-hand side of the above inequality is increasing in τ , constraints (3.14) are

violated if and only if they are violated at τ̂ = +∞. Third, if a(x̂) 6= 0 and b(x̂) > 0,

then constraints (3.14) are satisfied if and only if

[√
1− ε− τ−α

ε
||Λa(x̂)||

]2

≤
[
τb(x̂)−

(
α + 1

α

)
µ>a(x̂)

]2

, ∀τ ≥
(

1

1− ε

)1/α

because both sides of constraints (3.14) are nonnegative. By the definitions of µ̂0

and Σ̂0, this is equivalent to (b(x̂)τ − µ̂0)2 − [(1 − ε − τ−α)/ε](Σ̂0 − µ̂2
0) ≥ 0 for all

τ ≥ (1/(1 − ε))1/α. It follows that the Separation Problem 1 can be answered by

checking constraints (3.14) at the optimal solution τ̂ of problem (3.18).

Finally, we denote the objective function of problem (3.18) as H(τ). It follows

that

H ′(τ) = 2b(x̂)(b(x̂)τ − µ̂0)−
(α
ε

)
(Σ̂0 − µ̂2

0)τ−α−1,

H ′′(τ) = 2
[
b(x̂)

]2
+

(
α2 + α

ε

)
(Σ̂0 − µ̂2

0)τ−α−2.

As H ′′(τ) > 0 for all τ ≥ (1/(1−ε))1/α, H(τ) is strongly convex and can be minimized

via a golden section search. More specifically, if H ′((1/(1− ε))1/α) ≥ 0, then (1/(1−

ε))1/α is optimal to problem (3.18). Otherwise, if H ′((1/(1−ε))1/α) < 0, then problem

(3.18) is optimized at τ̂ such that H ′(τ̂) = 0. It follows that 2b(x̂)(b(x̂)τ̂ − µ̂0) =
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(α/ε)(Σ̂0 − µ̂2
0)τ̂−α−1. Since τ̂ ≥ (1/(1− ε))1/α, we have

2b(x̂)2τ̂ ≤ 2b(x̂)µ̂0 +
(α
ε

)
(Σ̂0 − µ̂2

0)(1− ε)(α+1)/α

⇒ τ̂ ≤ µ̂0

b(x̂)
+
α(1− ε)(α+1)/α

2εb(x̂)2
(Σ̂0 − µ̂2

0).

Hence, the golden section search can be restricted to the interval [(1/(1−ε))1/α, µ̂0/b(x̂)

+α(1− ε)(α+1)/α(Σ̂0 − µ̂2
0)/(2εb(x̂)2)] without loss of optimality.

3.3 Approximations of the Distributionally Robust Chance

Constraint

Next, we derive relaxed and conservative approximations of DRCC (3.6) by using

a finite number of SOC constraints. First, based on the exact representation (3.14)

that involves all τ ∈
[
[1/(1 − ε)]1/α,∞

)
, we obtain a relaxed approximation by only

involving a finite number of τ . We summarize this approximation in the following

proposition, whose proof is immediate and so omitted.

Proposition III.10. For given integer K ≥ 1 and real numbers [1/(1−ε)]1/α ≤ n1 <

n2 < · · · < nK ≤ ∞, DRCC (3.6) implies the SOC constraints

√
1− ε− n−αk

ε

∣∣∣∣Λa(x)
∣∣∣∣ ≤ nkb(x)−

(
α + 1

α

)
µ>a(x), ∀k = 1, . . . , K. (3.19)

Second, we obtain a conservative approximation by approximating the left-hand

sides of the inequalities (3.14) by using a piece-wise linear function of τ .

Proposition III.11. Given integer K ≥ 2 and real numbers [1/(1 − ε)]1/α = n1 <

n2 < · · · < nK =∞, we define a piece-wise linear function containing (K−1) pieces:

g(τ) = min
k=2,...,K

{√
1

ε(1− ε− n−αk )

[(
αn−α−1

k

2

)
τ + 1− ε−

(
1 +

α

2

)
n−αk

]}
.
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Then, g(τ) ≥
√

(1− ε− τ−α)/ε for all τ ≥ [1/(1 − ε)]1/α. Furthermore, denote

m1 = [1/(1 − ε)]1/α and let m2 < · · · < mK−1 represent the (K − 2) breakpoints of

function g(τ), i.e.,

mk =

(1− ε)
(

1−
√

1−ε−n−αk
1−ε−n−αk+1

)
+
(
1 + α

2

)(
n−αk+1

√
1−ε−n−αk
1−ε−n−αk+1

− n−αk
)

(
α
2

)(
n−α−1
k+1

√
1−ε−n−αk
1−ε−n−αk+1

− n−α−1
k

) ,

∀k = 2, . . . , K − 1.

Then, DRCC (3.6) is implied by the SOC constraints

g(mk)
∣∣∣∣Λa(x)

∣∣∣∣ ≤ mkb(x)−
(
α + 1

α

)
µ>a(x), ∀k = 1, . . . , K − 1. (3.20)

Proof. Denote h(τ) =
√

(1− ε− τ−α)/ε. Then, the first derivative

h′(τ) =
(ατ−α−1

2

)√ 1

ε(1− ε− τ−α)

and the tangent of h(τ) at nk is

√
1

ε(1− ε− n−αk )

[(
αn−α−1

k

2

)
τ + 1− ε−

(
1 +

α

2

)
n−αk

]

for all k = 2, . . . , K. It follows that g(τ) ≥ h(τ) for all τ ≥ [1/(1 − ε)]1/α because

h(τ) is concave on the interval
[
[1/(1− ε)]1/α,∞

)
. Hence, DRCC (3.6) is implied by

g(τ)
∣∣∣∣Λa(x)

∣∣∣∣ ≤ τb(x)−
(
α + 1

α

)
µ>a(x), ∀τ ≥ [1/(1− ε)]1/α. (3.21)

Furthermore, given x, as the left-hand side of (3.21) is piece-wise linear in τ and the

right-hand side of (3.21) is linear in τ , inequalities (3.21) hold if and only if they

hold at the breakpoints of g(τ). Therefore, DRCC (3.6) is implied by constraints
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(3.20).

Remark III.12. In computation, we can use the conservative approximation (3.20) to

find near-optimal solutions. More specifically, suppose that we employ the separation

approach to solve problem min
{
c(x) : x ∈ X, x satisfies (3.6)

}
and have finished the

first K iterations. Then, from these iterations, we obtain a lower bound cKL of the

optimal objective value and τ̂1, . . . , τ̂K by iteratively solving Separation Problem 1.

By letting n1 = [1/(1 − ε)]1/α, nK+2 = ∞, and nk = τ̂k−1 for all k = 2, . . . , K + 1,

we obtain an upper bound cKU of the optimal objective value by solving problem

min
{
c(x) : x ∈ X, x satisfies (3.20) based on n1, . . . , nK+2

}
, whose optimal solution

is denoted x∗K . If (cKU − cKL )/cKL is small enough, then we can stop the iterations and

output x∗K as a near-optimal solution.

3.4 Distributionally Robust Risk Constraint

To recast DRRC (3.7) as SOC constraints, we adopt a similar method to that

described in Section 3.2. Again, we project random vector ξ on R and consider a one-

dimensional random variable ζ. We summarize this result in the following proposition

and omit the proof due to its similarity to that of Proposition III.3.

Proposition III.13. The following equality holds:

sup
Pξ∈Dξ

CVaRε
Pξ(a(x)>ξ) = sup

Pζ∈D1

CVaRε
Pζ(ζ).

We compute supPζ∈D1
CVaRε

Pζ(ζ) by observing that Pζ is α-unimodal and so there

exists a random variable Z such that ζ = U1/αZ, where U is uniform in (0, 1) and

independent of Z (see Theorem 3.5 in [23]). We summarize this computation in the

following proposition, and note that it can also be obtained by following Theorem 2.1

in [75].
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Proposition III.14. The following equality holds:

sup
Pζ∈D1

CVaRε
Pζ(ζ) = inf

β∈R

{
β +

1

ε
sup

PZ∈D(µ0,Σ0)

EPZ [f(Z)]

}
,

where D(µ0,Σ0) := {PZ ∈ M1 : EPZ [Z] = µ0,EPZ [Z2] = Σ0} and f(Z) = 1[β <

0]f−(Z) + 1[β ≥ 0]f+(Z), where

f+(z) =


0 if z ≤ β

(
α
α+1

)
z − β +

(
β

α+1

) (
β
z

)α
if z > β

,

f−(z) =


−
(

β
α+1

) (
β
z

)α
if z < β

(
α
α+1

)
z − β if z ≥ β

.

Proof. First, based on the definition of CVaR, we have

sup
Pζ∈D1

CVaRε
Pζ(ζ) = sup

Pζ∈D1

inf
β

{
β +

1

ε
EPζ [ζ − β]+

}
= inf

β

{
β +

1

ε
sup
Pζ∈D1

EPζ [ζ − β]+

}
. (3.22)

To justify the switch of infβ and supPζ in (3.22), we observe that β + 1
ε
EPζ [ζ − β]+ is

convex in β and concave (actually affine) in Pζ . Additionally, we claim that β ∈ [µ1−√
(1 + ε)(Σ1 − µ2

1)/(1− ε), µ1 +
√

(2− ε)(Σ1 − µ2
1)/ε], i.e., β belongs to a compact

set, without loss of optimality. Then, the switch follows from the Sion’s minimax

theorem (see [85]). To prove this claim, we observe that

VaRε
Pζ(ζ) ≤ argminβ∈R

{
β +

1

ε
EPζ [ζ − β]+

}
≤ VaRε+

Pζ (ζ)

for all Pζ ∈ D1, where VaRε
Pζ(ζ) := inf{β : Pζ{ζ ≤ β} ≥ 1 − ε} and VaRε+

Pζ (ζ) :=

inf{β : Pζ{ζ ≤ β} > 1 − ε} (see Theorem 10 in [82]). It follows that we can
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assume β ∈ [VaRε
Pζ(ζ),VaRε+

Pζ (ζ)] for all Pζ ∈ D1 without loss of optimality. But

D1 ⊆ D∞1 := {Pζ ∈ M1 : EPζ [ζ] = µ1, EPζ [ζ
2] = Σ1}, and it follows from Cantelli’s

inequality that

inf
Pζ∈D1

Pζ
{
ζ ≤ µ1 +

√(2− ε
ε

)
(Σ1 − µ2

1)
}

≥ inf
Pζ∈D∞1

Pζ
{
ζ ≤ µ1 +

√(2− ε
ε

)
(Σ1 − µ2

1)
}
≥ 1− ε

2
.

Hence, VaRε+
Pζ (ζ) ≤ µ1 +

√
(2− ε)(Σ1 − µ2

1)/ε for all Pζ ∈ D1 because otherwise

there exists a Pζ ∈ D1 such that Pζ{ζ ≤ µ1 +
√

(2− ε)(Σ1 − µ2
1)/ε} ≤ 1 − ε, which

contradicts Pζ{ζ ≤ µ1 +
√

(2− ε)(Σ1 − µ2
1)/ε} ≥ 1 − ε/2. Similarly, application of

Cantelli’s inequality gives us

sup
Pζ∈D1

Pζ
{
ζ ≤ µ1 −

√(1 + ε

1− ε

)
(Σ1 − µ2

1)
}

≤ sup
Pζ∈D∞1

Pζ
{
ζ ≤ µ1 −

√(1 + ε

1− ε

)
(Σ1 − µ2

1)
}
≤ 1− 1 + ε

2
.

Hence, VaRε
Pζ(ζ) ≥ µ1−

√
(1 + ε)(Σ1 − µ2

1)/(1− ε) for all Pζ ∈ D1 because otherwise

there exists a Pζ ∈ D1 such that Pζ{ζ ≤ µ1 −
√

(1 + ε)(Σ1 − µ2
1)/(1− ε)} ≥ 1 − ε,

which contradicts Pζ{ζ ≤ µ1 −
√

(1 + ε)(Σ1 − µ2
1)/(1− ε)} ≤ 1− (1 + ε)/2.

Second, based on the representation ζ = U1/αZ (see Theorem 3.5 in [23]), we

obtain that EPZ [Z] = (α+1
α

)EPζ [ζ] = µ0, EPZ [Z2] = (α+2
α

)EPζ [ζ
2] = Σ0, and

EPζ [ζ − β]+ = EPZ [U1/αZ − β]+

=

∫ +∞

z=−∞

∫ 1

u=0

[
u1/αz − β

]
+
du dPZ(z).
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It follows that, when β < 0,

EPζ [ζ − β]+ =

∫ β

z=−∞

∫ (β/z)α

u=0

(
u1/αz − β

)
du dPZ(z)

+

∫ +∞

z=β

∫ 1

u=0

(
u1/αz − β

)
du dPZ(z)

=

∫ β

z=−∞

(
− 1

α + 1

)(
βα+1

zα

)
dPZ(z)

+

∫ +∞

z=β

[(
α

α + 1

)
z − β

]
dPZ(z)

= EPZ [f−(Z)],

and, when β ≥ 0,

EPζ [ζ − β]+ =

∫ +∞

z=β

∫ 1

u=(β/z)α

(
u1/αz − β

)
du dPZ(z)

=

∫ +∞

z=β

[(
α

α + 1

)
z − β +

(
1

α + 1

)(
βα+1

zα

)]
dPZ(z)

= EPZ [f+(Z)].

Proposition III.14 indicates that computing supPζ∈D1
CVaRε

Pζ(ζ) can be difficult

because it needs to evaluate the worst-case expectation of a nonlinear function f(z),

i.e., supPZ∈D(µ0,Σ0) EPZ [f(Z)]. To obtain a computable form, we first present two

structural properties of f(z). Lemma III.15 proposes two approximations of f(z) from

above (termed fU(z)) and below (termed fL(z)), respectively. Both fU(z) and fL(z)

are convex and consist of two linear pieces. Furthermore, Lemma III.16 represents

convex functions f+(z) and f−(z) by the supporting hyperplanes of their epigraphs.

Lemma III.15. Define fU(z) =
(

α
α+1

)
(z − β)+ +

(
1

α+1

)
(−β)+ and

fL(z) =
[(

α
α+1

)
z − β

]
+

. Then, fL(z) ≤ f(z) ≤ fU(z) for all z ∈ R.

Proof. First, we prove fL(z) ≤ f(z) by discussing the following four cases:

1. If z < β < 0, then 0 ≤ (β/z) ≤ 1 and (−β) ≥ 0. It follows that f(z) =

85



−(β/(α + 1)) (β/z)α ≥ 0. Additionally, define H(z) := −(β/(α + 1)) (β/z)α and

then H(z) is a convex function of z on interval (−∞, β]. It follows that H(z) ≥

H ′(β)(z − β) +H(β), i.e.,

−
(

β

α + 1

)(
β

z

)α
≥
(

α

α + 1

)
(z − β) +

(
− β

α + 1

)
=

(
α

α + 1

)
z − β,

where the inequality is because H ′(z) = (α/(α+1))(β/z)α+1 and H(β) = (−β/(α+

1)). Hence, −(β/(α + 1)) (β/z)α ≥ [( α
α+1

)z − β]+, i.e., f(z) ≥ fL(z).

2. If β < 0 and z ≥ β, then ( α
α+1

)z−β ≥ 0. It follows that fL(z) = ( α
α+1

)z−β = f(z).

3. If β ≥ 0 and z ≤ β, then ( α
α+1

)z − β < 0. It follows that fL(z) = 0 = f(z).

4. If z > β ≥ 0, then (β/z) ≥ 0. It follows that f(z) = (α/(α + 1))z − β + (β/(α +

1))(β/z)α ≥ ( α
α+1

)z − β. Additionally, as −z < −β ≤ 0, from Case 1 we have

−
(
−β
α + 1

)(
−β
−z

)α
≥
(

α

α + 1

)
(−z)− (−β).

In other words, (α/(α+ 1))z− β + (β/(α+ 1))(β/z)α ≥ 0. Hence, (α/(α+ 1))z−

β + (β/(α + 1))(β/z)α ≥ [( α
α+1

)z − β]+, i.e., f(z) ≥ fL(z).

Second, we prove f(z) ≤ fU(z) by discussing the following four cases:

1. If z < β < 0, then 0 ≤ (β/z) ≤ 1 and (−β) ≥ 0. It follows that f(z) =

−(β/(α + 1)) (β/z)α ≤ ( 1
α+1

)(−β) ≤ fU(z).

2. If β < 0 and z ≥ β, then (z − β)+ = z − β and (−β)+ = −β. It follows that

fU(z) = ( α
α+1

)(z − β)+ + ( 1
α+1

)(−β)+ = ( α
α+1

)z − β = f(z).

3. If β ≥ 0 and z ≤ β, then f(z) = 0 ≤ fU(z).

4. If z > β ≥ 0, then 0 ≤ (β/z) < 1 and (z − β)+ = z − β. It follows that f(z) =

(α/(α+ 1))z− β + (β/(α+ 1))(β/z)α ≤ (α/(α+ 1))z− β + β/(α+ 1) = fU(z).
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With these two discussions, the proof is complete.
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Figure 3.1: Examples of function f(z) and its approximations fU(z) and fL(z)

Figs. 3.1a and 3.1b present examples of function f(z) and its approximations fU(z)

and fL(z).

Lemma III.16. The following two equalities hold:

f+(z) = sup
k≥1

{( α

α + 1

)
(1− k−α−1)z − (1− k−α)β

}
(3.23a)

when β ≥ 0, and

f−(z) = sup
k≥1

{( α

α + 1

)
k−α−1z − k−αβ

}
. (3.23b)

when β ≤ 0. Furthermore, f−(z) = fL(z) ≤ f+(z) for all z ∈ R when β ≥ 0 and

f+(z) = fL(z) ≤ f−(z) for all z ∈ R when β ≤ 0.

Proof. First, we suppose that β ≥ 0 and pick a z0 ≥ β. The first derivative of f+(z)

at z0 is f ′+(z)
∣∣
z=z0

= ( α
α+1

)
[
1− ( β

z0
)α+1

]
. It follows that the supporting hyperplane of

the epigraph {(y, z) ∈ R2 : y ≥ f+(z)} at z0 is y ≥ ( α
α+1

)
[
1− ( β

z0
)α+1

]
z−
[
1− ( β

z0
)α
]
β.

Hence, f+(z) = supz0≥β
{

( α
α+1

)
[
1 − ( β

z0
)α+1

]
z −

[
1 − ( β

z0
)α
]
β
}

for all z ≥ β because

f+(z) is convex. Furthermore, as f+(z) = 0 when z ≤ β and ( α
α+1

)
[
1−( β

z0
)α+1

]
z−
[
1−
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( β
z0

)α
]
β = 0 when z0 = β, we have f+(z) = supz0≥β

{
( α
α+1

)
[
1−( β

z0
)α+1

]
z−
[
1−( β

z0
)α
]
β
}

for all z ∈ R. Rewriting z0 = kβ for k ≥ 1 leads to representation (3.23a). The proof

of representation (3.23b) is similar and so omitted.

Second, we suppose that β ≥ 0 and define fk+(z) = ( α
α+1

)(1−k−α−1)z− (1−k−α)β

for all k ≥ 1. Then, f+(z) = supk≥1{fk+(z)} and f−(z) = supk≥1{( α
α+1

)z−β−fk+(z)} =

( α
α+1

)z − β − infk≥1{fk+(z)}. We prove that infk≥1{fk+(z)} = −
[
( α
α+1

)z − β
]
− by

discussing the following two cases:

1. When z ≤ (α+1
α

)β, we have z ≤ (α+1
α

)kβ as k ≥ 1 and β ≥ 0. It follows that

( α
α+1

)(−k−α−1)z + k−αβ ≥ 0 and so fk+(z) = ( α
α+1

)(1 − k−α−1)z − (1 − k−α)β ≥

( α
α+1

)z−β for all k ≥ 1. Hence, infk≥1{fk+(z)} ≥ ( α
α+1

)z−β. In addition, by letting

k → +∞, we have fk+(z) → ( α
α+1

)z − β. Therefore, infk≥1{fk+(z)} = ( α
α+1

)z − β

when z ≤ (α+1
α

)β.

2. When z ≥ (α+1
α

)β, we have (1 − k−α−1)z ≥ (1 − k−α)(α+1
α

)β because β ≥ 0 and

1−k−α−1 ≥ 1−k−α ≥ 0. It follows that fk+(z) = ( α
α+1

)(1−k−α−1)z−(1−k−α)β ≥ 0

for all k ≥ 1. Hence, infk≥1{fk+(z)} ≥ 0. In addition, by letting k = 1, we have

fk+(z) = 0. Therefore, infk≥1{fk+(z)} = 0 when z ≤ (α+1
α

)β.

It follows that f−(z) = ( α
α+1

)z − β +
[
( α
α+1

)z − β
]
− =

[
( α
α+1

)z − β
]

+
. Hence, by

Lemma III.15, f−(z) = fL(z) ≤ f+(z) for all z ∈ R when β ≥ 0. The proof of

f+(z) = fL(z) ≤ f−(z) when β ≤ 0 is similar and so omitted.

We are now ready to derive a reformulation of the worst-case expectation

supPZ∈D(µ0,Σ0) EPZ [f(Z)]. We summarize this result in the following theorem.
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Theorem III.17. For β ∈ R, supPZ∈D(µ0,Σ0) EPZ [f(Z)] = 1
2

max{E+, E−}, where

Sk,µ0,Σ0,β =

{[
(1− k−α)β −

( α

α + 1

)
(1− k−α−1)µ0

]2

+
( α

α + 1

)2

(1− k−α−1)2(Σ0 − µ2
0)

}1/2

,

E+ = sup
k≥1

{
Sk,µ0,Σ0,β − (1− k−α)β +

( α

α + 1

)
(1− k−α−1)µ0

}
, and

(3.24a)

E− = sup
k≥1

{
Sk,µ0,Σ0,β − (1 + k−α)β +

( α

α + 1

)
(1 + k−α−1)µ0

}
. (3.24b)

Proof. To avoid clutter, throughout this proof, we assume that Σ0 > µ2
0 and β 6= 0.

The degenerate cases with Σ0 = µ2
0 or β = 0 can be easily verified. First, we suppose

that β > 0 and define fk+(z) = ( α
α+1

)(1 − k−α−1)z − (1 − k−α)β for k ≥ 1. Then,

f(Z) = f+(Z) by Proposition III.14 and f+(z) = supk≥1{fk+(z)} by Lemma III.16. It

follows that supPZ∈D(µ0,Σ0) EPZ [f(Z)] = supPZ∈D(µ0,Σ0) EPZ [supk≥1{fk+(Z)}]. We make

the following observation on switching the order of two supremum operators.

Observation 1. For β ∈ R, we have

sup
PZ∈D(µ0,Σ0)

EPZ

[
sup
k≥1

{
fk+(Z)

}]
= sup

k≥1

{
sup

PZ∈D(µ0,Σ0)

EPZ

[
fk+(Z)

]
+

}
.

Proof of Observation 1: First, for all k ≥ 1, it is clear that supk≥1{fk+(Z)} ≥ [fk+(Z)]+

because supk≥1{fk+(z)} = f+(z) ≥ 0 for all z ∈ R. It follows that

sup
PZ∈D(µ0,Σ0)

EPZ [sup
k≥1
{fk+(Z)}] ≥ sup

k≥1
{ sup
PZ∈D(µ0,Σ0)

EPZ [fk+(Z)]+}

. We now show the opposite, i.e., supPZ∈D(µ0,Σ0) EPZ [supk≥1
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{fk+(Z)}] ≤ supk≥1{supPZ∈D(µ0,Σ0) EPZ [fk+(Z)]+}. When β ≤ 0, this holds because

sup
PZ∈D(µ0,Σ0)

EPZ

[
sup
k≥1

{
fk+(Z)

}]
= sup

PZ∈D(µ0,Σ0)

EPZ
[
fL(Z)

]
= lim

k→∞

{
sup

PZ∈D(µ0,Σ0)

EPZ

[
fk+(Z)

]
+

}

≤ sup
k≥1

{
sup

PZ∈D(µ0,Σ0)

EPZ

[
fk+(Z)

]
+

}
,

where the first equality follows from Lemma III.16. To prove the second equality,

we make the following observation on the monotonicity of function [fk+(z)]+ in k and

relegate the proof to Section 3.8.0.1.

Observation 2. [fk+1
+ (z)]+ ≥ [fk+(z)]+ for all z ∈ R and k ≥ 1.

By Observation 2, fL(z) = limk→∞[fk+(z)]+ for all z ∈ R. It follows that, for any

PZ ∈ D(µ0,Σ0),

EPZ

[
fL(Z)

]
= EPZ

[
lim
k→∞

[fk+(Z)]+

]
= lim

k→∞
EPZ

[
[fk+(Z)]+

]
,

where the second equality follows from the monotone convergence theorem. Hence,

EPZ

[
fL(Z)

]
≤ lim

k→∞

{
sup

PZ∈D(µ0,Σ0)

EPZ [fk+(Z)]+

}
.

As this inequality holds for all PZ ∈ D(µ0,Σ0), we have

sup
PZ∈D(µ0,Σ0)

EPZ [fL(Z)] ≤ lim
k→∞

{
sup

PZ∈D(µ0,Σ0)

EPZ [fk+(Z)]+

}
.

On the other hand, as supPZ∈D(µ0,Σ0) EPZ [fL(Z)] ≥ supPZ∈D(µ0,Σ0) EPZ [fk+(Z)]+ for all
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k ≥ 1, we have

sup
PZ∈D(µ0,Σ0)

EPZ [fL(Z)] ≥ lim
k→∞

{
sup

PZ∈D(µ0,Σ0)

EPZ [fk+(Z)]+

}
,

which proves the second equality. Hence, we focus on the case when β > 0 in the

remainder of this proof.

Second, we present supPZ∈D(µ0,Σ0) EPZ [supk≥1{fk+(Z)}] as the following optimiza-

tion problem:

(P) : vP = max
PZ

EPZ [f+(Z)]

s.t. EPZ [Z] = µ0,

EPZ [Z2] = Σ0,

EPZ [1] = 1,

whose dual is (D) : vD = min
p,q,r

µ0p+ Σ0q + r

s.t. qz2 + pz + r ≥ f+(z), ∀z ∈ R. (3.25)

Strong duality holds between (P) and (D) due to Assumption III.4 (see Proposition

3.4 in [84]), i.e., vP = vD. Furthermore, by Lemma 3.1 in [84], there exists a worst-

case probability distribution (i.e., an optimal solution to (P)) with a finite support

of at most 3 points. That is, there exists m ∈ {1, 2, 3}, (z∗1 , . . . , z
∗
m) ∈ Rm, and

(π∗1, . . . , π
∗
m) ∈ Rm

+ such that
∑m

i=1 π
∗
i z
∗
i = µ0,

∑m
i=1 π

∗
i (z
∗
i )

2 = Σ0, and
∑m

i=1 π
∗
i = 1.

Denoting an optimal solution to (D) by (p∗, q∗, r∗), we claim that q∗(z∗i )
2 +p∗z∗i +r∗ =

f+(z∗i ) for all i = 1, . . . ,m, i.e., constraint (3.25) holds at equality at points z∗1 , . . . , z
∗
m.
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Indeed, if this claim fails to hold, then we have

vP =
m∑
i=1

π∗i f+(z∗i ) <

m∑
i=1

π∗i [q
∗(z∗i )

2 +p∗z∗i +r∗] = q∗Σ0 +p∗µ0 +r∗ = vD, (3.26)

where the inequality follows from constraint (3.25), and the second equality follows

from the definitions of (z∗1 , . . . , z
∗
m) and (π∗1, . . . , π

∗
m). As inequality (3.26) violates

the strong duality, the claim holds. In addition, it can be shown that f+(z) and any

quadratic function qz2 + pz + r satisfying constraint (3.25) intersect at most once in

interval (−∞, β] and at most once in interval [β,∞). It follows that m ≤ 2, and so

m = 2 because Σ0 > µ2
0. Without loss of generality, we assume that z∗1 ∈ (−∞, β]

and z∗2 ∈ [β,∞).

Third, we define k∗ = z∗2/β and consider function [fk
∗

+ (z)]+ that is tangent to

f+(z) at z∗1 and z∗2 by Lemma III.16. Hence, qz2 + pz + r ≥ [fk
∗

+ (z)]+ for all z ∈ R

with equality holding only at z∗1 and z∗2 . Consider the primal and dual formulations

of supPZ∈D(µ0,Σ0) EPZ [fk
∗

+ (Z)]+ as follows:

(Pk∗) : vk
∗

P = max
PZ

EPZ [fk
∗

+ (Z)]+

s.t. EPZ [Z] = µ0,

EPZ [Z2] = Σ0,

EPZ [1] = 1,

(Dk∗) : vk
∗

D = min
p,q,r

µ0p+ Σ0q + r

s.t. qz2 + pz + r ≥ [fk
∗

+ (z)]+, ∀z ∈ R.

It is clear that the pair (z∗1 , z
∗
2) and (π∗1, π

∗
2) provide a primal feasible solution to

(Pk∗), and (p∗, q∗, r∗) is a dual feasible solution to (Dk∗) because f+(z) ≥ [fk
∗

+ (z)]+
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for all z ∈ R. Meanwhile, these two solutions share the same objective function

value because
∑2

i=1 π
∗
i [f

k∗
+ (z∗i )]+ =

∑2
i=1 π

∗
i f+(z∗i ) = µ0p

∗ + Σ0q
∗ + r∗, where the

first equality follows from the definition of [fk
∗

+ (z)]+ and the second equality is due

to vP = vD. It follows that strong duality holds between (Pk∗) and (Dk∗) and

supPZ∈D(µ0,Σ0) EPZ [supk≥1{fk+(Z)}] = supPZ∈D(µ0,Σ0) EPZ [fk
∗

+ (Z)]+. Therefore,

supPZ∈D(µ0,Σ0) EPZ [supk≥1{fk+(Z)}] ≤ supk≥1{supPZ∈D(µ0,Σ0) EPZ [fk+(Z)]+} and so the

proof is completed.

(Proof of Theorem III.17 continued) By Observation 1, we have

sup
PZ∈D(µ0,Σ0)

EPZ [f(Z)]

= sup
k≥1

{
sup

PZ∈D(µ0,Σ0)

EPZ

[( α

α + 1

)
(1− k−α−1)Z − (1− k−α)β

]
+

}

= sup
k≥1

{( α

α + 1

)
(1− k−α−1) sup

PZ∈D(µ0,Σ0)

EPZ

[
Z −

(α + 1

α

)( 1− k−α

1− k−α−1

)
β

]
+

}

= sup
k≥1

{( α

α + 1

)
(1− k−α−1)

(1

2

)[√[(α + 1

α

)( 1− k−α
1− k−α−1

)
β − µ0

]2

+ (Σ0 − µ2
0)

−
(α + 1

α

)( 1− k−α

1− k−α−1

)
β + µ0

]}
(3.27)

=
1

2
E+,

where equality (3.27) follows from Observation 3 presented in Section 3.8.0.2.

Second, we suppose that β < 0. Then, f(Z) = f−(Z) by Proposition III.14. It
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follows that

sup
PZ∈D(µ0,Σ0)

EPZ [f(Z)]

= sup
PZ∈D(µ0,Σ0)

EPZ

[
sup
k≥1

{( α

α + 1

)
k−α−1Z − k−αβ

}]
(3.28a)

= sup
PZ∈D(µ0,Σ0)

EPZ

[
sup
k≥1

{
max

{( α

α + 1

)
k−α−1Z − k−αβ,

( α

α + 1

)
Z − β

}}]
(3.28b)

= sup
k≥1

{
sup

PZ∈D(µ0,Σ0)

EPZ

[
max

{( α

α + 1

)
k−α−1Z − k−αβ,

( α

α + 1

)
Z − β

}]}
(3.28c)

= sup
k≥1

{( α

α + 1

)
k−α−1µ0 − k−αβ + sup

PZ∈D(µ0,Σ0)

EPZ [fk+(Z)]+

}
(3.28d)

=
1

2
E−, (3.28e)

where equality (3.28a) follows from Lemma III.16, equality (3.28b) is because

( α
α+1

)k−α−1z − k−αβ = ( α
α+1

)z − β when k = 1, equality (3.28c) is parallel to Obser-

vation 1 and can be similarly proved, and equality (3.28d) follows from the definition

of fk+(z).

Finally, it remains to prove that E+ ≥ E− when β > 0 and E+ ≤ E− when β < 0.

Due to the similarity of proof, we only show the former case, i.e., when β > 0. To

that end, we note that the equalities (3.28b)–(3.28e) are independent of the sign of β

and so still hold when β > 0. It follows that 1
2
E− = supPZ∈D(µ0,Σ0) EPZ [f−(Z)] when

β > 0. Similarly, we have 1
2
E+ = supPZ∈D(µ0,Σ0) EPZ [f+(Z)]. But f−(z) ≤ f+(z) for

all z ∈ R by Lemma III.16, and so 1
2
E− ≤ 1

2
E+ when β > 0.

Theorem III.17 leads to an equivalent reformulation of DRRC (3.7). We summa-

rize the main result of this section in the following theorem.
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Theorem III.18. DRRC (3.7) is equivalent to a set of SOC constraints

∥∥∥∥∥∥∥
(1− k−α)β − (1− k−α−1)µ>a(x)(

α
α+1

)
(1− k−α−1)Λa(x)


∥∥∥∥∥∥∥

≤ 2εb(x)− (1− k−α−1)µ>a(x) + (1− k−α − 2ε)β, (3.29a)∥∥∥∥∥∥∥
(1− k−α)β − (1− k−α−1)µ>a(x)(

α
α+1

)
(1− k−α−1)Λa(x)


∥∥∥∥∥∥∥

≤ 2εb(x)− (1 + k−α−1)µ>a(x) + (1 + k−α − 2ε)β, (3.29b)

for all k ≥ 1.

Proof. By Propositions III.13–III.14, DRRC (3.7) is equivalent to

inf
β∈R

{
β +

1

ε
sup

PZ∈D(µ0,Σ0)

EPZ [f(Z)]

}
≤ b(x).

Meanwhile, the proof of Proposition III.14 shows that there exists a finite β that

attains the above infimum. It follows that DRRC (3.7) is satisfied if and only if there

exists a β ∈ R such that β + 1
ε

supPZ∈D(µ0,Σ0) EPZ [f(Z)] ≤ b(x). Then, the conclusion

follows from Theorem III.17 by the definition of µ0, Λ, and that

Sk,µ0,Σ0,β =

∥∥∥∥∥∥∥
(1− k−α)β − (1− k−α−1)µ>a(x)(

α
α+1

)
(1− k−α−1)Λa(x)


∥∥∥∥∥∥∥ , ∀k ≥ 1.

In computation, directly replacing DRRC with constraints (3.29a)–(3.29b) re-

quires an infinite number of SOC constraints and is so computationally intractable.

Like what we described for DRCC in Section 3.2, we adopt the separation approach

and solve the following problem:

Separation Problem 2: Given β̂ and x̂, does there exist a k̂ such that (β̂, x̂) violate
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constraints (3.29a)–(3.29b)?

In the following proposition, we show that Separation Problem 2 can be solved by

conducting a golden section search on the real line. This search is computationally

efficient.

Proposition III.19. Define µ̂0 = (α+1
α

)µ>a(x̂), Σ̂0 = (α+2
α

)a(x̂)>Σa(x̂). We have

the following:

1. If β̂ = 0, then (β̂, x̂) violate constraints (3.29a)–(3.29b) if and only if (β̂, x̂) violate

them at k̂ =∞;

2. If β̂ 6= 0 and Σ̂0 = µ̂2
0, then (β̂, x̂) violate constraints (3.29a)–(3.29b) if and only

if (β̂, x̂) violate them at k̂ = max{µ̂0/β̂, 1};

3. If β̂ 6= 0 and Σ̂0 > µ̂2
0, then (β̂, x̂) violate constraints (3.29a)–(3.29b) if and only

if (β̂, x̂) violate them at the unique root of equation

2

[(α + 1

α

)( 1− k−α

1− k−α−1

)
− µβ

]
= (k − µβ)− Γβ

(k − µβ)
(3.30)

lying within the interval
[
1+
√

(1− µβ)2 + Γβ, 1+1/α+
√

(1− µβ + 1/α)2 + Γβ

]
,

where µβ = µ̂0/β̂ and Γβ = (Σ̂0 − µ̂2
0)/β̂2.

Proof. For a given (β̂, x̂), solving Separation Problem 2 is equivalent to finding

supPZ∈D(µ0,Σ0) EPZ [f(Z)], i.e., 1/2 max{E+, E−} defined in Theorem III.17. First, if

β̂ = 0, then

Sk,µ̂0,Σ̂0,β̂
=

√[( α

α + 1

)
(1− k−α−1)µ̂0

]2

+
( α

α + 1

)2

(1− k−α−1)2(Σ̂0 − µ̂2
0)

=
( α

α + 1

)
(1− k−α−1)

√
Σ̂0.
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It follows that

1

2
E+ =

1

2
sup
k≥1

{( α

α + 1

)
(1− k−α−1)

√
Σ̂0 +

( α

α + 1

)
(1− k−α−1)µ̂0

}

=
1

2
sup
k≥1

{( α

α + 1

)
(1− k−α−1)

(√
Σ̂0 + µ̂0

)}
(3.31a)

=
1

2

( α

α + 1

)(√
Σ̂0 + µ̂0

)
, (3.31b)

where equality (3.31b) is because
√

Σ̂0 + µ̂0 ≥ 0 and so k = ∞ maximizes (3.31a).

Additionally,

1

2
E− =

1

2
sup
k≥1

{( α

α + 1

)
(1− k−α−1)

√
Σ̂0 +

( α

α + 1

)
(1 + k−α−1)µ̂0

}

=
1

2

( α

α + 1

)
sup
k≥1

{(√
Σ̂0 + µ̂0

)
+ k−α−1

(
µ̂0 −

√
Σ̂0

)}
(3.31c)

=
1

2

( α

α + 1

)(√
Σ̂0 + µ̂0

)
, (3.31d)

where equality (3.31d) is because µ̂0 −
√

Σ̂0 ≤ 0 and so k = ∞ maximizes (3.31c).

Summing up the above two cases, we have k̂ =∞ if β̂ = 0.

Second, if β̂ 6= 0 and Σ̂0 = µ̂2
0, then Sk,µ̂0,Σ̂0,β̂

= |(1−k−α)β̂− ( α
α+1

)(1−k−α−1)µ̂0|.

It follows that

1

2
E+ =

1

2
sup
k≥1

{∣∣∣(1− k−α)β̂ −
( α

α + 1

)
(1− k−α−1)µ̂0

∣∣∣− (1− k−α)β̂

+
( α

α + 1

)
(1− k−α−1)µ̂0

}

= sup
k≥1

{[( α

α + 1

)
(1− k−α−1)µ̂0 − (1− k−α)β̂

]
+

}
(3.32a)

= f+(µ̂0), (3.32b)

where equality (3.32b) results from Lemma III.16 and so k = max{µ̂0/β̂, 1}maximizes
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(3.32a). Meanwhile,

1

2
E− =

1

2
sup
k≥1

{∣∣∣(1− k−α)β̂ −
( α

α + 1

)
(1− k−α−1)µ̂0

∣∣∣− (1 + k−α)β̂

+
( α

α + 1

)
(1 + k−α−1)µ̂0

}

= sup
k≥1

{
max

{( α

α + 1

)
µ̂0 − β̂,

( α

α + 1

)
k−α−1µ̂0 − k−αβ̂

}}
(3.32c)

= f−(µ̂0), (3.32d)

where equality (3.32d) results from Lemma III.16 and so k = max{µ̂0/β̂, 1}maximizes

(3.32c). Summing up the above two cases, we have k̂ = max{µ̂0/β̂, 1} if β̂ 6= 0 and

Σ̂0 = µ̂2
0.

Third, suppose that β̂ 6= 0 and Σ̂0 > µ̂2
0. As the case when β̂ < 0 can be

similarly derived, we focus on the case when β̂ > 0. In this case, solving Separation

Problem 2 is equivalent to finding the maximizer of optimization problem (3.24a)

that defines E+. To this end, we let F (k) represent the objective function of (3.24a),

i.e., F (k) := Sk,µ̂0,Σ̂0,β̂
− (1− k−α)β̂ + ( α

α+1
)(1− k−α−1)µ̂0. It follows that

F ′(k) = αβ̂k−α−2


[(

α+1
α

) (
1−k−α

1−k−α−1

)
− µβ

]
(k − µβ) + Γβ√[(

α+1
α

) (
1−k−α

1−k−α−1

)
− µβ

]2
+ Γβ

− (k − µβ)

 .

We prove that F (k) is unimodal, and in particular, F (k) is nondecreasing on [1, k̂]

and nonincreasing on [k̂,∞), where k̂ represents the root of equation (3.30). The

conclusion of this proposition then follows because k̂ is the maximizer of F (k) on

[1,∞). To that end, it suffices to show that (i) limk→1+ F
′(k) > 0, (ii) there exists a

k ∈ [1,∞) such that F ′(k) < 0, and (iii) k̂ is the unique root of equation F ′(k) = 0.

We show (i)–(iii) as follows.
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(i) As limk→1+{ 1−k−α
1−k−α−1} = α

α+1
and Γβ > 0, we have

lim
k→1+

F ′(k) = αβ̂
[√

(1− µβ)2 + Γβ − (1− µβ)
]
> 0

.(ii) We have

F ′(k)

αβ̂k−α−2
=

 (
α+1
α

) (
1−k−α

1−k−α−1

)
− µβ√[(

α+1
α

) (
1−k−α

1−k−α−1

)
− µβ

]2
+ Γβ

− 1

 (k − µβ)

+
Γβ√[(

α+1
α

) (
1−k−α

1−k−α−1

)
− µβ

]2
+ Γβ

.

As 1−k−α
1−k−α−1 ∈

[
α
α+1

, 1
]

and

(
α+1
α

) (
1−k−α

1−k−α−1

)
− µβ√[(

α+1
α

) (
1−k−α

1−k−α−1

)
− µβ

]2
+ Γβ

− 1 < 0,

there exists a sufficiently large k such that F ′(k) < 0.

(iii) We consider the roots of equation F ′(k) = 0. As F ′(k) = 0 is equivalent to

1−

(
α+1
α

) (
1−k−α

1−k−α−1

)
− µβ√[(

α+1
α

) (
1−k−α

1−k−α−1

)
− µβ

]2
+ Γβ

 (k − µβ)

=
Γβ√[(

α+1
α

) (
1−k−α

1−k−α−1

)
− µβ

]2
+ Γβ

,

any root k satisfies k − µβ > 0 because Γβ > 0. The above equation can be

further simplified to equation (3.30) and so any roots k of equation (3.30) also

satisfy F ′(k) = 0. We now prove the uniqueness of the root. We note that

the first derivative of 2
[
(α+1

α
)( 1−k−α

1−k−α−1 )−µβ
]
, i.e., the left-hand side of equation

(3.30), is always less than 1. To see this, we take the first derivative and denote
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it

Q(k) := 2
(α + 1

α

)k−2α−2 + αk−α−1 − (α + 1)k−α−2

(1− k−α−1)2
.

Through basic algebraic manipulations, it follows that Q(k) ≤ 1 if and only

if Q(k) := (α + 2)k−2α−2 + (2α2 + 4α)k−α−1 − (2α2 + 4α + 2)k−α−2 − α ≤ 0.

As Q(1) = 0, it suffices to show that Q
′
(k) ≤ 0 for all k ≥ 1. Noting that

Q
′
(k) = 2(α + 1)(α + 2)k−2α−3[(α + 1)kα − αkα+1 − 1], we need to show that

Q̂(k) := (α + 1)kα − αkα+1 − 1 ≤ 0 for all k ≥ 1, which holds because Q̂(1) =

0 and Q̂′(k) = α(α + 1)kα−1(1 − k) ≤ 0. Meanwhile, the first derivative of

(k − µβ) − Γβ
(k−µβ)

, i.e., the right-hand side of equation (3.30), is always greater

than 1. Furthermore, 2
[
(α+1

α
)( 1−k−α

1−k−α−1 ) − µβ
]
∈ [2(1 − µβ), 2(α+1

α
− µβ)], while

the range of function (k − µβ) − Γβ
(k−µβ)

is (−∞,∞) for k ∈ (µβ,∞). It follows

that the two sides of equation (3.30) can meet only once, i.e., this equation has

a unique root.

Finally, we provide lower and upper bounds of root k̂. As 1−k−α
1−k−α−1 ∈

[
α
α+1

, 1
]
,

we have 2(1 − µβ) ≤ (k̂ − µβ) − Γβ

(k̂−µβ)
≤ 2(α+1

α
− µβ). It follows that k̂ ∈[

1 +
√

(1− µβ)2 + Γβ, 1 + 1/α +
√

(1− µβ + 1/α)2 + Γβ

]
.

3.5 Approximations of the Distributionally Robust Risk

Constraint

Next, we derive approximations of DRRC (3.7). First, in the following proposition,

we present a conservative approximation based on fU(z) and a relaxed one based on

fL(z), both of which are in the form of SOC constraints.
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Proposition III.20. DRRC (3.7) is implied by SOC constraints

∥∥∥∥∥∥∥
β − (α+1

α

)
µ>a(x)

Λa(x)


∥∥∥∥∥∥∥ ≤

[
2ε(α + 1)

α

]
b(x)−

[
2ε(α + 1)

α
− 1

]
β −

(
α + 1

α

)
µ>a(x),

(3.33a)∥∥∥∥∥∥∥
β − (α+1

α

)
µ>a(x)

Λa(x)


∥∥∥∥∥∥∥

≤
[

2ε(α + 1)

α

]
b(x)−

[
(2ε− 1)(α + 1)− 1

α

]
β −

(
α + 1

α

)
µ>a(x). (3.33b)

Furthermore, DRRC (3.7) implies SOC constraint

∥∥∥∥∥∥∥
(α+1

α

)
β −

(
α+1
α

)
µ>a(x)

Λa(x)


∥∥∥∥∥∥∥

≤
[

2ε(α + 1)

α

]
b(x)−

[
(2ε− 1)(α + 1)

α

]
β −

(
α + 1

α

)
µ>a(x). (3.33c)

Proof. First, based on Propositions III.13–III.14 and Lemma III.15, DRRC (3.7) is

implied by constraint β + 1
ε

supPZ∈D(µ0,Σ0) EPZ [fU(Z)] ≤ b(x). Furthermore, we have

sup
PZ∈D(µ0,Σ0)

EPZ [fU(Z)] = sup
PZ∈D(µ0,Σ0)

EPZ

[(
α

α + 1

)
[Z − β]+ +

(
− β

α + 1

)
+

]
=

(
− β

α + 1

)
+

+

(
α

α + 1

)
sup

PZ∈D(µ0,Σ0)

EPZ [Z − β]+

=

(
− β

α + 1

)
+

+(
α

α + 1

)(
1

2

)[√
(β − µ0)2 + (Σ0 − µ2

0)− β + µ0

]
,

where the last equality is due to Observation 3 presented in Section 3.8.0.2. It follows
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that DRRC (3.7) is implied by

β +

(
1

ε

){(
− β

α + 1

)
+

+

(
α

α + 1

)(
1

2

)[√
(β − µ0)2 + (Σ0 − µ2

0)− β + µ0

]}
≤b(x)⇔

√
(β − µ0)2 + (Σ0 − µ2

0) ≤
[

2ε(α + 1)

α

]
b(x)−

[
2ε(α + 1)

α
− 1

]
β

−
(

2

α

)
(−β)+ − µ0.

This is equivalent to constraints (3.33a)–(3.33b) by the definition of µ0 and observing

that √
(β − µ0)2 + (Σ0 − µ2

0) =

∥∥∥∥∥∥∥
β − (α+1

α

)
µ>a(x)

Λa(x)


∥∥∥∥∥∥∥ .

Second, based on Propositions III.13–III.14 and Lemma III.15, DRRC (3.7) im-

plies constraint

β + 1
ε

supPZ∈D(µ0,Σ0) EPZ [fL(Z)] ≤ b(x). Furthermore, we have

sup
PZ∈D(µ0,Σ0)

EPZ [fL(Z)] = sup
PZ∈D(µ0,Σ0)

EPZ

[(
α

α + 1

)
Z − β

]
+

=

(
α

α + 1

)
sup

PZ∈D(µ0,Σ0)

EPZ

[
Z −

(
α + 1

α

)
β

]
+

=

(
α

α + 1

)(
1

2

)√((α + 1

α

)
β − µ0

)2

+ (Σ0 − µ2
0)−

(
α + 1

α

)
β + µ0

 ,
where the last equality is due to Observation 3. It follows that DRRC (3.7) implies

β +

(
1

ε

)(
α

α + 1

)(
1

2

)√((α + 1

α

)
β − µ0

)2

+ (Σ0 − µ2
0)−

(
α + 1

α

)
β + µ0


≤ b(x)⇔

√((
α + 1

α

)
β − µ0

)2

+ (Σ0 − µ2
0) ≤

[
2ε(α + 1)

α

]
b(x)

−
[

(2ε− 1)(α + 1)

α

]
β − µ0.
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(b) β = 1 and α = 1

Figure 3.2: K-piece approximations of f(z) with K = 4, n1 = 1, n2 = 2, n3 = 3, and
n4 =∞

This is equivalent to constraints (3.33c) by the definition of µ0 and observing that

√((
α + 1

α

)
β − µ0

)2

+ (Σ0 − µ2
0) =

∥∥∥∥∥∥∥
(α+1

α

)
β −

(
α+1
α

)
µ>a(x)

Λa(x)


∥∥∥∥∥∥∥ .

Second, we derive tighter approximations of DRRC (3.7) based on tighter approx-

imations of function f(z). Note that both fU(z) and fL(z) approximate f(z) based

on two linear pieces (see Figs. 3.2a–3.2b). We generalize fU(z) and fL(z) by defining

K-piece approximations as follows.

Definition III.21. Given integer K ≥ 3 and real numbers 1 = n1 < n2 < · · · <

nK = ∞, we define fKU (z) = 1[β < 0]fKU−(z) + 1[β ≥ 0]fKU+(z) and fKL (z) = 1[β <
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0]fKL−(z) + 1[β ≥ 0]fKL+(z), where

fKU+(z) = max{0, fKU+(z)},

fKU+(z) =

max
k=1,...,K−1

{[( α

α + 1

)
+

n−αk+1 − n
−α
k

(α + 1)(nk+1 − nk)

]
z +

[ nk+1n
−α
k − nkn

−α
k+1

(α + 1)(nk+1 − nk)
− 1
]
β

}
,

fKU−(z) = max

{( α

α + 1

)
z − β, fKU−(z)

}
,

fKU−(z) = max
k=1,...,K−1

{[ n−αk − n
−α
k+1

(α + 1)(nk+1 − nk)

]
z −

[ nk+1n
−α
k − nkn

−α
k+1

(α + 1)(nk+1 − nk)

]
β

}
,

fKL+(z) = max
k=1,...,K

{( α

α + 1

)
(1− n−α−1

k )z − (1− n−αk )β

}
, and

fKL−(z) = max
k=1,...,K

{( α

α + 1

)
n−α−1
k z − n−αk β

}
.

We note that fKU (z) is the linear interpolation of points {(nk, f(nkβ))}k=1,...,K

and fKL (z) is the pointwise maximum of the tangents of f(z) at these points (see

Figs. 3.2a–3.2b). Due to the convexity of f(z), it follows that fKU (z) and fKL (z) are

convex, and fKL (z) ≤ f(z) ≤ fKU (z). Furthermore, we observe that fKL+(z) ≤ f+(z) by

definition. Based on Lemma III.16, fKL+(z) ≤ fL(z) ≤ fKL−(z) when β < 0. Similarly,

we have fKL−(z) ≤ fKL+(z) when β ≥ 0. It follows that fKL (z) = max{fKL+(z), fKL−(z)}.

We formalize and extend this observation to fKU (z) in the following lemma.

Lemma III.22. We have fKL (z) = max{fKL+(z), fKL−(z)} for all z ∈ R. Furthermore,

fKU+(z) ≤ f(z) when β < 0 and fKU−(z) ≤ f(z) when β ≥ 0. It follows that fKU (z) =

max{fKU+(z), fKU−(z)}.

Proof. We first show that fKU+(z) ≤ fL(z) =
[(

α
α+1

)
z − β

]
+

when β < 0. Assuming

this is true, we have fKU+(z) ≤ f(z) based on Lemma III.16. To this end, we define

fKU+(z) = max
{

0,maxk=1,...,K−1 gkU+(z)
}

, where

gkU+(z) :=
[( α

α + 1

)
+

n−αk+1 − n
−α
k

(α + 1)(nk+1 − nk)

]
z +

[ nk+1n
−α
k − nkn

−α
k+1

(α + 1)(nk+1 − nk)
− 1
]
β.
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For each k = 1, . . . , K − 1, we prove gkU+(α+1
α
β) ≤ 0 by the following chain of equiva-

lences:

[( α

α + 1

)
+

n−αk+1 − n
−α
k

(α + 1)(nk+1 − nk)

](α + 1

α

)
β +

[ nk+1n
−α
k − nkn

−α
k+1

(α + 1)(nk+1 − nk)
− 1
]
β ≤ 0

⇔
n−αk+1 − n

−α
k

α(nk+1 − nk)
+
nk+1n

−α
k − nkn

−α
k+1

(α + 1)(nk+1 − nk)
≥ 0

⇔ nαk+1(αnk+1 − α− 1) ≥ nαk (αnk − α− 1),

where the last line holds because function g(y) := yα(αy − α − 1) is nondecreasing

when y ≥ 1. Indeed, g′(y) = (α2 + α)yα−1(y − 1) ≥ 0 when y ≥ 1. It follows that

fKU+(α+1
α
β) = 0. In addition, we note that 0 ≤

(
α
α+1

)
+

n−αk+1−n
−α
k

(α+1)(nk+1−nk)
≤ α

α+1
. On the

one hand,
(

α
α+1

)
+

n−αk+1−n
−α
k

(α+1)(nk+1−nk)
≤ α

α+1
because nk+1 > nk and n−αk+1 − n

−α
k < 0. On

the other hand,
(

α
α+1

)
+

n−αk+1−n
−α
k

(α+1)(nk+1−nk)
≥ 0 follows from the following equivalence:

n−αk − n
−α
k+1

(α + 1)(nk+1 − nk)
≤ α

α + 1
⇔ n−αk+1 + αnk+1 ≥ n−αk + αnk,

where the right-hand side holds because function h(y) := y−α + αy is nondecreasing

when y ≥ 1. Indeed, h′(y) = α(1 − y−α−1) ≥ 0 when y ≥ 1. Hence, the slope of

gkU+(z) is within interval [0, α+1
α

] for all k. It follows that fKU+(z) ≤ fL(z) for all z ∈ R

because (i) fKU+(α+1
α
β) = fL(α+1

α
β) = 0, (ii) fKU+(z) ≤ 0 = fL(z) when z < α+1

α
β

because the slopes of all affine functions making up fKU+(z) are nonnegative, and (iii)

fKU+(z) ≤ fL(z) when z > α+1
α
β because the slopes of all affine functions making up

fKU+(z) are smaller than or equal to that of fL(z), i.e., α
α+1

.

Second, we show that fKU−(z) ≤ fL(z) =
[(

α
α+1

)
z − β

]
+

when β ≥ 0. Assuming

this is true, we have fKU−(z) ≤ f(z) based on Lemma III.16. To this end, we define
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fKU−(z) = max
{

α
α+1

z − β,maxk=1,...,K−1 gkU−(z)
}

, where

gkU−(z) :=
[ n−αk − n

−α
k+1

(α + 1)(nk+1 − nk)

]
z −

[ nk+1n
−α
k − nkn

−α
k+1

(α + 1)(nk+1 − nk)

]
β.

For each k = 1, . . . , K − 1, we prove gkU−(α+1
α
β) ≤ 0 by the following chain of equiva-

lences:

[ n−αk − n
−α
k+1

(α + 1)(nk+1 − nk)

](α + 1

α

)
β −

[ nk+1n
−α
k − nkn

−α
k+1

(α + 1)(nk+1 − nk)

]
β ≤ 0

⇔ (α + 1)(n−αk − n
−α
k+1) ≤ α(nk+1n

−α
k − nkn

−α
k+1)

⇔ nαk+1(αnk+1 − α− 1) ≥ nαk (αnk − α− 1),

where the last line has been shown above. It follows that fKU−(α+1
α
β) = 0. In addition,

we note that 0 ≤ n−αk −n
−α
k+1

(α+1)(nk+1−nk)
≤ α

α+1
since 0 ≤

(
α
α+1

)
+

n−αk+1−n
−α
k

(α+1)(nk+1−nk)
≤ α

α+1
. It

follows that fKU−(z) ≤ fL(z) for all z ∈ R because (i) fKU−(α+1
α
β) = fL(α+1

α
β) = 0,

(ii) fKU−(z) ≤ 0 = fL(z) when z < α+1
α
β because the slopes of all affine functions

making up fKU−(z) are nonnegative, and (iii) fKU−(z) ≤ fL(z) when z > α+1
α
β because

the slopes of all affine functions making up fKU−(z) are smaller than or equal to that

of fL(z), i.e., α
α+1

.

In the following proposition, we present conservative approximations based on

fKU (z) and relaxed ones based on fKL (z), both of which are in the form of linear

matrix inequalities. We note that these approximations are asymptotically tight as

K grows to infinity. We omit the proof here because it follows from the standard

duality approach. Interested readers are referred to [29] and [110].

Proposition III.23. Define (T + 1) × (T + 1) matrix Ω :=


(
α+2
α

)
Σ

(
α+1
α

)
µ(

α+1
α

)
µ> 1

.

Then, for given integer K ≥ 3 and real numbers 1 = n1 < n2 < · · · < nK = ∞,

DRRC (3.7) is satisfied if there exists a symmetric matrix MU ∈ R(T+1)×(T+1) such
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that

β +
1

ε
MU · Ω ≤ b(x), MU � 0, MU �

 0 1
2

(
α
α+1

)
a(x)

1
2

(
α
α+1

)
a(x)> −β

 ,
(3.34a)

MU �

 0 1
2

[(
α
α+1

)
+

n−αk+1−n
−α
k

(α+1)(nk+1−nk)

]
a(x)

1
2

[(
α
α+1

)
+

n−αk+1−n
−α
k

(α+1)(nk+1−nk)

]
a(x)>

[
nk+1n

−α
k −nkn

−α
k+1

(α+1)(nk+1−nk)
− 1
]
β

 ,
∀k = 1, . . . , K − 1, (3.34b)

MU �

 0 1
2

[
n−αk −n

−α
k+1

(α+1)(nk+1−nk)

]
a(x)

1
2

[
n−αk −n

−α
k+1

(α+1)(nk+1−nk)

]
a(x)> −

[
nk+1n

−α
k −nkn

−α
k+1

(α+1)(nk+1−nk)

]
β

 , ∀k = 1, . . . , K − 1,

(3.34c)

where · represents the Frobenius product of matrices. Furthermore, DRRC (3.7) im-

plies that there exists a symmetric matrix ML ∈ R(T+1)×(T+1) such that

β +
1

ε
ML · Ω ≤ b(x), ML � 0, ML �

 0 1
2

(
α
α+1

)
a(x)

1
2

(
α
α+1

)
a(x)> −β

 ,

ML �

 0 1
2

(
α
α+1

)
(1− n−α−1

k )a(x)

1
2

(
α
α+1

)
(1− n−α−1

k )a(x)> −(1− n−αk )β

 , ∀k = 1, . . . , K − 1,

ML �

 0 1
2

(
α
α+1

)
n−α−1
k a(x)

1
2

(
α
α+1

)
n−α−1
k a(x)> −n−αk β

 , ∀k = 1, . . . , K − 1.
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Note that, as nK =∞, constraints (3.34b)–(3.34c) reduce to

MU �

 0 1
2

(
α
α+1

)
a(x)

1
2

(
α
α+1

)
a(x)>

(
n−αK−1

α+1
− 1
)
β

 ,

MU �

0 0

0 −
(
n−αK−1

α+1

)
β


when k = K − 1.

Remark III.24. In computation, we can use the conservative approximation (3.34a)–

(3.34c) to find near-optimal solutions. More specifically, suppose that we employ the

separation approach to solve problem min
{
c(x) : x ∈ X, x satisfies (3.7)

}
and have

finished the first K iterations. Then, from these iterations, we obtain a lower bound

cKL of the optimal objective value and K outputs, denoted ϕ1, . . . , ϕK , by iteratively

solving Separation Problem 2. By letting n1 = 1, nK+2 = ∞, and nk = ϕk−1 for all

k = 2, . . . , K+1, we obtain an upper bound cKU of the optimal objective value by solv-

ing problem min
{
c(x) : x ∈ X, x satisfies (3.34a)–(3.34c) based on n1, . . . , nK+2

}
,

whose optimal solution is denoted x∗K . If (cKU − cKL )/cKL is small enough, then we can

stop the iterations and output x∗K as a near-optimal solution.

3.6 Extension to Linear Unimodality

In this section, we consider an extension of DRCC (3.6) and DRRC (3.7) based

on a related structural property called linear unimodality.

Definition III.25. (Linear Unimodality; see [23]) A probability distribution Pξ is

called linear unimodal about 0 if for all a ∈ RT , the linear combination a>ξ is uni-

variate unimodal about 0.

Analogous to (3.5), we define the alternative ambiguity set based on linear uni-
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modality as

DLU

ξ (µ,Σ) :=
{
Pξ ∈MT : EPξ [ξ] = µ, EPξ [ξξ

>] = Σ, Pξ is linear unimodal about 0
}
.

(3.35)

We now show an equivalence between ambiguity sets DLU
ξ (µ,Σ) and Dξ(µ,Σ, α) with

α = 1. It follows that all results derived in Sections 3.2–3.4, with α set to be 1,

remain valid under DLU
ξ (µ,Σ).

Proposition III.26. For any Borel measurable function h : R→ R, we have

inf
Pξ∈Dξ(µ,Σ,1)

EPξ
[
h(a(x)>ξ)

]
= inf

Pξ∈DLU
ξ (µ,Σ)

EPξ
[
h(a(x)>ξ)

]
.

Proof. By Theorem 3.5 in [23], a random variable X is 1-unimodal if and only if

there exists a random variable Z such that X = UZ, where U is uniform in (0, 1) and

independent of Z.

First, pick any ξ such that Pξ ∈ Dξ(µ,Σ, 1). As a>ξ is univariate 1-unimodal for

all a ∈ RT because Pξ is 1-unimodal, Pξ ∈ DLU
ξ (µ,Σ). It follows that Dξ(µ,Σ, 1) ⊆

DLU
ξ (µ,Σ) and so infPξ∈Dξ(µ,Σ,1) EPξ [h(a(x)>ξ)] ≥ infPξ∈DLU

ξ (µ,Σ) EPξ [h(a(x)>ξ)].

Second, pick any ξ such that Pξ ∈ DLU
ξ (µ,Σ). Then, ζ := a(x)>ξ is 1-unimodal

because Pξ is linear unimodal. Hence, there exists a Zζ such that ζ = UZζ . It follows

that E[Zζ ] = 2µ1 and E[Z2
ζ ] = 3Σ1. Based on Theorem 1 in [78], there exists a

Zξ ∈ RT such that Zζ = a(x)>Zξ, E[Zξ] = 2µ, and E[ZξZ
>
ξ ] = 3Σ. It follows that

UZξ is 1-unimodal, and meanwhile EPξ [UZξ] = 1
2
E[Zξ] = µ and EPξ [(UZξ)(UZξ)

>] =

1
3
E[ZξZ

>
ξ ] = Σ. Furthermore, a(x)>ξ = a(x)>(UZξ). Therefore, the probability

distribution of UZξ belongs to Dξ(µ,Σ, 1), and so infPξ∈Dξ(µ,Σ,1) EPξ [h(a(x)>ξ)] ≤

infPξ∈DLU
ξ (µ,Σ) EPξ [h(a(x)>ξ)].
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3.7 Case Studies

In this section, we evaluate the theoretical results derived in Sections 3.2–3.4 based

on a risk-constrained optimal power flow (RCED) problem in power system operation.

We present a nominal RCED model as follows:

min
g,d,rU,rD

∑
i∈I\IR

[
ci2g

2
i + ci1gi + cRi (rUi + rDi )

]
(3.36a)

s.t.
∑

i∈I\IR

gi +
∑
i∈IR

fi =
B∑
b=1

Lb, (3.36b)

ri = −
(∑
i∈IR

wi

)
di, ∀i ∈ I \ IR, (3.36c)

∑
i∈I\IR

di = 1, (3.36d)

− rDi ≤ ri ≤ rUi , ∀i ∈ I \ IR, (3.36e)

gMIN

i ≤ gi + ri ≤ gMAX

i , ∀i ∈ I \ IR, (3.36f)

− C` ≤
B∑
b=1

Db
`

[∑
i∈Gb

(gi + ri) +
∑
i∈Hb

(fi + wi)− Lb
]
≤ C`, ∀` ∈ L, (3.36g)

where B represents the number of buses in the power system, I represents the set

of generating units (conventional and renewable), IR represents the set of renewable

units, L represents the set of transmission lines, Gb represents the set of conventional

units at bus b, Hb represents the set of renewable units at bus b, ci2 and ci1 represent

cost parameters of conventional unit i, cRi represents the unit cost for up/down reserve

capacity of conventional unit i, Lb represents the load at bus b, and C` represents the

capacity of transmission line `. For each renewable unit i ∈ IR, fi and wi represent the

forecasted power output and the forecast error, respectively. For each conventional

unit i ∈ I\IR, gi and ri represent the planned generation amount and the adjustment

amount, respectively, and di represents the portion of total generation-load mismatch

to be offset by this unit [96, 9]. Constraint (3.36b) describes the power balance
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requirement for generation and loads (we assume that the loads are deterministic),

constraints (3.36c) describe the proportional distribution of mismatches, constraint

(3.36d) requires that all proportions sum up to be 1, constraints (3.36e) limit the

adjustment amount by the reserve capacities rU and rD, constraints (3.36f) bound the

generation amount by the generation capacity, and constraints (3.36g) describe the

transmission capacity limits based on the dc approximation where Db
` maps power

injections to power flows (see, e.g., [6] and [30]).

Our case study uses the IEEE 30-bus system [108]. We increase all electricity

loads by 50% and add two wind farms at buses 5 and 22. The forecasted pow-

er output from each wind farm is 30 MW. The transmission line between buses

1 and 2 has a capacity of 30 MW, while all other line flows are unconstrained.

Other cost and capacity coefficients are reported in Table 3.1. We assume ran-

dom forecast errors and describe the uncertainty by an uncorrelated random vector

w := [w1, w2]> with mean µw and covariance matrix Γw = diag(9, 9). Additional-

ly, we assume that w is α-unimodal about [0, 0]>. To handle random violations of

constraints (3.36e)–(3.36g), we replace them by DRCC (3.6) and DRRC (3.7), and

term the resultant RCED model (C-ED) and (R-ED), respectively. For example,

in (C-ED), we replace constraints (3.36e) by infPw∈Dw{di
∑

i∈IR wi ≤ rDi } ≥ 1 − ε

and infPw∈Dw{−di
∑

i∈IR wi ≤ rUi } ≥ 1 − ε, where Dw = {Pw ∈ M2 : EPw [w] =

µw,EPw [ww>] = µwµ
>
w + diag(9, 9),Pw is α-unimodal about 0}. In contrast, in (R-

ED), we replace constraints (3.36e) by supPw∈Dw
CVaRε

Pw

(
di
∑

i∈IR wi

)
≤ rDi and

supPw∈Dw
CVaRε

Pw

(
−di

∑
i∈IR wi

)
≤ rUi . Throughout this case study, we set 1 − ε =

95%. Lastly, when the requirement of α-unimodality is relaxed from Dw, (C-ED) and

(R-ED) become equivalent and we term this model (O-ED).

By using (O-ED) as a benchmark, we test (C-ED) and (R-ED) under various

selections of µw and α values. First, we fix α = 1 and let µw = φ[1, 1]> with

φ ∈ {−3,−2, . . . , 3}. We report the optimal objective values of the three models
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Conventional Bus ci1 ci2 cRi gMIN
i gMAX

i

Unit Index ($/MW) ($/MW2) ($/MW) (MW) (MW)
1 1 20 0.04 200 0 360
2 2 40 0.25 400 0 140
3 5 40 0.01 400 0 100
4 8 40 0.01 400 0 100
5 11 40 0.01 400 0 100
6 13 40 0.01 400 0 100

Table 3.1: Coefficients of the Case Study
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Figure 3.3: Optimal values of (O-ED), (C-ED), and (R-ED) with various φ and α

in Fig. 3.3a. From this figure, we observe that the optimal value of (O-ED) is consis-

tently larger than that of (R-ED), which is consistently larger than that of (C-ED).

This demonstrates that incorporating α-unimodality makes the RCED model less

conservative and hence decreases the cost of economic dispatch. Meanwhile, unlike

in (O-ED), DRCC (3.6) and DRRC (3.7) are not equivalent when α-unimodality is

incorporated in the ambiguity set. Furthermore, we observe that the discrepancy

between (O-ED) and (C-ED)/(R-ED) amplifies as φ deviates from 0. This indicates

that α-unimodality plays a more important role in Dw as the difference between µw

and the mode increases.

Second, we fix µw = [0, 0]> and let α increase from 1 to 10. We report the optimal

objective values of the three models in Fig. 3.3b. From this figure, we observe that

the discrepancy between (O-ED) and (C-ED)/(R-ED) shrinks as α grows. This is as
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expected because the requirement of α-unimodality weakens as α grows. Although not

shown in this figure, the convergence of (R-ED) to (O-ED) takes place when α ≥ 40,

while the convergence of (C-ED) takes place when α ≥ 104. The slow convergence

indicates that unimodality information can significantly influence the structure of Dw

and the worst-case probability distribution.
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Figure 3.4: Gaps between the Optimal Objective Value and the Relaxed and Conser-
vative Approximations of (C-ED)
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Figure 3.5: Gaps between the Optimal Objective Value and the Relaxed and Conser-
vative Approximations of (R-ED)

Third, we let α = 1, µw = φ[1, 1]> with φ ∈ {−2, 0, 2}, and evaluate the tightness

of the approximations of DRCC and DRRC derived in Propositions III.10–III.11 and

Proposition III.23, respectively. In this test, we follow Remarks III.12–III.24 to choose

the interpolation points n1, . . . , nK in these approximations. In Fig. 3.4, we report the

gap between the optimal objective value v∗(C-ED) of (C-ED) and the upper bound vUB

obtained from the conservative approximation, and the gap between v∗(C-ED) and the
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lower bound vLB obtained from the relaxed approximation, for K ∈ {4, 6, 8, 10}. The

gaps are obtained by computing UB% = (vUB − v∗(C-ED))/v
∗
(C-ED) × 100% and LB% =

(v∗(C-ED) − vLB)/v∗(C-ED) × 100%. Similarly, in Fig. 3.5, we report the gap between the

optimal objective value v∗(R-ED) of (R-ED) and those of its K-piece approximations

with K ∈ {2, 4, 6, 8}. From Figs. 3.4–3.5, we observe that the gaps quickly shrink as

K increases and the approximations become near-optimal (e.g., UB% + LB% < 1%)

when K ≥ 8.

3.8 Supporting Material

In this section, we prove the proof of the Observations 2 and another observation

on the worst case expectation.

3.8.0.1 Proof of Observation 2

Proof. As fk+(z) =
(

α
α+1

)
(1− k−α−1)z − (1− k−α)β, we have

[
fk+(z)

]
+

=


0, if z < z0(k) :=

(
α+1
α

)
( 1−k−α

1−k−α−1 )β(
α
α+1

)
(1− k−α−1)z − (1− k−α)β, if z ≥ z0(k)

for all k ≥ 1. As [fk+1
+ (z)]+ ≥ 0 for all z ∈ R, to show that [fk+1

+ (z)]+ ≥ [fk+(z)]+,

it suffices to prove that [fk+1
+ (z)]+ ≥ fk+(z) for all z ∈ R. First, as β ≤ 0 and

1−k−α
1−k−α−1 increases in k, we have

(
α+1
α

)(
1−k−α

1−k−α−1

)
β ≥

(
α+1
α

)( 1−(k+1)−α

1−(k+1)−α−1

)
β, i.e., z0(k) ≥

z0(k + 1). It follows that, when z < z0(k), fk+(z) ≤ 0 and hence [fk+1
+ (z)]+ ≥ fk+(z).

Second, when z ≥ z0(k), fk+1
+ (z) ≥ 0 because z ≥ z0(k) ≥ z0(k + 1) and fk+1

+ (z)

increases in z. As both fk+(z) and fk+1
+ (z) are affine functions of z, we have fk+1

+ (z) =

fk+1
+ (z0(k))+( α

α+1
)(1−(k+1)−α−1)(z−z0(k)) and fk+(z) = ( α

α+1
)(1−k−α−1)(z−z0(k))

for z ≥ z0(k). It follows that fk+1
+ (z) − fk+(z) = fk+1

+ (z0(k)) + ( α
α+1

)[k−α−1 − (k +

1)−α−1](z − z0(k)) ≥ 0. Hence, [fk+1
+ (z)]+ ≥ fk+(z) when z ≥ z0(k) and the proof is
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complete.

3.8.0.2 Observation on Worst Case Expectation

For random variable Z and constant β ∈ R, we make the following observation

on the worst-case expectation supPZ∈D(µ0,Σ0) EPZ [Z − β]+. Note that this observation

can be made following the derivations in [83], and we present a proof below for

completeness.

Observation 3. Given β ∈ R, we have

sup
PZ∈D(µ0,Σ0)

EPZ [Z − β]+ =
1

2

[√
(β − µ0)2 + (Σ0 − µ2

0)− β + µ0

]
.

Proof. We represent supPZ∈D(µ0,Σ0) EPZ [Z−β]+ as the following optimization problem

vP = max
PZ

EPZ [Z − β]+

(P) s.t. EPZ [Z] = µ0,

EPZ [Z2] = Σ0,

EPZ [1] = 1,

whose dual is vD = min
q,p,r

µ0p+ Σ0q + r

(D) s.t. qz2 + pz + r ≥ [z − β]+, ∀z ∈ R.

The weak duality between (P) and (D), i.e., vD ≤ vP , holds because µ0p+ Σ0q+ r =

EPZ [qZ2 + pZ + r] ≤ EPZ [Z−β]+ for any feasible solution (q, p, r) to (D) and feasible

solution PZ to (P). Now we prove the strong duality by constructing two feasible

solutions to (P) and (D), respectively, that have the same objective value. On the

one hand, the primal solution P̂Z is supported on two points z1 and z2 with probability
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masses p1 and p2, respectively, where ∆ =
√

(β − µ0)2 + (Σ0 − µ2
0) and

p1 =
β − µ0 + ∆

2∆
, p2 =

µ0 − β + ∆

2∆
, z1 = β −∆, and z2 = β + ∆.

We have p1, p2 ≥ 0 because ∆ ≥ |β − µ0|. Meanwhile, we have

p1z1 + p2z2 =
(β − µ0 + ∆)(β −∆)

2∆
+

(µ0 − β + ∆)(β + ∆)

2∆
= µ0,

and

p1z
2
1 + p2z

2
2 =

(β − µ0 + ∆)(β −∆)2

2∆
+

(µ0 − β + ∆)(β + ∆)2

2∆

=
(β − µ0) [(β −∆)2 − (β + ∆)2] + ∆ [(β −∆)2 + (β + ∆)2]

2∆

= − β2 + 2µ0β + ∆2 = −β2 + 2µ0β + (β − µ0)2 + (Σ0 − µ2
0) = Σ0.

Hence, P̂Z is feasible to (P). On the other hand, the dual solution (q̂, p̂, r̂) is such that

q̂ =
1

4∆
, p̂ =

∆− β
2∆

, and r̂ =
(∆− β)2

4∆
.

Hence, q̂z2 + p̂z + r̂ = 1
4∆

(z + ∆− β)2. It follows that q̂z2 + p̂z + r̂ ≥ 0 for all z ∈ R.

Meanwhile, (q̂z2 + p̂z+ r̂)− (z− β) = 1
4∆

(z− β −∆)2 ≥ 0, i.e., q̂z2 + p̂z+ r̂ ≥ z− β.

Thus, q̂z2 + p̂z + r̂ ≥ [z − β]+ and so (q̂, p̂, r̂) is feasible to (D).

Finally, the primal objective value associated with P̂Z is

p2(z2 − β) = (µ0−β+∆)∆
2∆

= 1
2
(∆ − β + µ0). Meanwhile, the dual objective value
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associated with (q̂, p̂, r̂) is

µ0

(
∆− β

2∆

)
+ Σ0

(
1

4∆

)
+

(∆− β)2

4∆

=
∆2 + (β2 − 2µ0β + µ2

0) + (Σ0 − µ2
0) + 2µ0∆− 2∆β

4∆

=
2∆2 + 2µ0∆− 2∆β

4∆
=

1

2
(∆− β + µ0),

which coincides with the primal objective value associated with P̂Z .
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CHAPTER IV

Distributionally Robust Optimal Power Flow

Assuming Log-Concave Distributions

Optimization formulations with chance constraints have been widely proposed to

operate the power system under various uncertainties, such as renewable production

and load consumption. Constraints like the system’s physical limits are required to

be satisfied at high confidence levels. Conventional solving methodologies either make

assumptions on the underlying uncertainty distributions or give overly-conservative

results. In this chapter, we develop a new distributionally robust (DR) chance con-

strained optimal power flow formulation in which the chance constraints are satisfied

over a family of distributions with known first-order moments, ellipsoidal support,

and an assumption that the probability distributions are log-concave. Since most

practical uncertainties have log-concave probability distributions, including this as-

sumption in the formulation reduces the objective costs as compared to traditional

DR approaches without sacrificing reliability. We derive second-order cone approxi-

mations of the DR chance constraints, resulting in a tractable formulation that can

be solved with commercial solvers. We perform case studies to compare our approach

to standard approaches and find that our approach produces solutions that are suffi-

ciently reliable and less costly than traditional DR approaches. The main content of

this chapter is summarized in the following paper.
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1. B. Li, R. Jiang, and J.L. Mathieu. Distributionally robust chance constrained

optimal power flow assuming log-concave distributions. In Power Systems Computa-

tion Conference, Dublin, Ireland, 2018.

4.1 Introduction

Uncertainties resulting from, e.g., renewable generation or load consumption,

complicate the optimal operation of power systems. Optimal power flow (OPF)

formulations using chance constraints [104, 42, 96, 79, 97] have been proposed to

limit the chance of violating physical constraints, such as generation and line limits.

The key difficulty in solving chance constrained problems is that we usually do not

know the true underlying probability distributions of the uncertain variables. Most

existing work either assumes that the uncertainties follow known, empirical distri-

butions [9, 51] or use the randomized techniques that require constraint satisfaction

for a large number of scenarios [17]. The former often fail to guarantee reliability

(unless the distributions are modeled perfectly) while the latter often give overly-

conservative results. Recently, distributionally robust chance constrained (DRCC)

OPF formulations have been developed, e.g., [107, 80, 102, 48, 88, 33, 56]. This new

approach requires the chance constraints to be satisfied for all possible distributions

with known statistical parameters (e.g., first and second-order moments [107, 102, 56]

or likelihood to a data-based distribution [33]) producing highly reliable solutions gen-

erally at a lower cost than those obtained with the randomized techniques. In addition

to moment information, common structural properties of practical uncertainties, like

unimodality [48, 88] and symmetry [80], can be enforced to further lower the cost-

s. To solve DRCC OPF problems, the constraints are either exactly reformulated

or approximated resulting in second-order cone programs (SOCPs) [49] or semidefi-

nite programs (SDPs) [44, 110], which can both be directly solved using commercial

solvers.
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In this chapter, we propose a new DRCC OPF formulation in which chance con-

straints are satisfied over a family of distributions (i.e., an ambiguity set) with known

first-order moments, an ellipsoidal support, and an assumption that the probability

distributions are log-concave [23, 4]. Most practical uncertainties follow log-concave

distributions; Gaussian, Beta and Weibull distributions are all log-concave. For ex-

ample, wind forecast errors are generally modeled as specific distributions in the

log-concave family [73, 24, 10]. Including this assumption limits the distributions

over which the chance constraints should be satisfied, reducing the conservatism and

the objective cost of the solution. Meanwhile, assuming the real uncertainty distri-

butions are log-concave, the solutions will be sufficiently reliable. We benchmark our

approach against a DRCC approach that uses an ambiguity set with only moment

and support requirements and a chance constrained approach that assumes all uncer-

tainty follows multivariate normal distributions, which is a special type of log-concave

distribution.

The contributions of the chapter are as follows. 1) We derive a projection property

to simplify the multi-dimensional ambiguity set into an equivalent single dimensional

one. 2) We derive second-order cone (SOC) relaxing and conservative approximations

(i.e., a sandwich approximation) of the distributionally robust chance constraints

under our ambiguity set. Using the DC power flow equations, the resulting DRCC

OPF is an SOCP. We also derive exact SOC constraints for the simpler ambiguity set.

3) We apply the theoretical results to solve a DC OPF problem on a modified IEEE

9-bus system with wind uncertainty. 4) We compare our results to those produced by

the two benchmark approaches described above and report the objective costs and

reliability of all approaches. To the best of our knowledge, this is the first work to

include the log-concavity structure in distributionally robust optimization.

In the remainder of the chapter, the DR chance constraints and ambiguity set

are introduced in Section 4.2. In Section 4.3, we derive the projection property. In
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Section 4.4, we give our main theoretical results. Finally, in Section 4.5, we present

the case studies.

4.2 Ambiguity Sets with Log-Concave Information

Here, we follow the same assumption as in Chapter IV. Assume that ξ represents

an n-dimensional random vector defined on a probability space (Rn,B,Pξ) with Borel

σ-algebra B and probability distribution Pξ. We define x ∈ Rm as the design variable

vector and 1− ε as the confidence level, and obtain the following chance constraint

Pξ (f(x, ξ) ≤ 0) ≥ 1− ε. (4.1)

Furthermore, by considering a distributional ambiguity set Dξ that incorporates plau-

sible candidates of the true distribution Pξ, we obtain the following DR chance

constraint:

inf
Pξ∈Dξ

Pξ (f(x, ξ) ≤ 0) ≥ 1− ε. (4.2)

Next, we further specify that the constraint function f(x, ξ) is a bilinear function,

i.e., f(x, ξ) = a(x)T ξ − b(x), where both a(x) : Rm → Rn and b(x) : Rm → R are

affine functions of x. The DR chance constraint is then in the form:

inf
Pξ∈Dξ

Pξ
(
a(x)T ξ ≤ b(x)

)
≥ 1− ε. (4.3)

For ambiguity sets, we assume Dξ consists of all probability distributions Pξ that

live in an ellipsoid around its mean value µ and satisfies structural properties specified

in set PS, i.e.,

Dξ := {Pξ ∈ PS : EPξ [ξ] = µ,

‖Σ−
1
2 (ξ − µ)‖2 ≤ r almost surely}, (4.4)
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where matrix Σ � 0 defines the ellipsoid and r represents its radius. For example,

we could choose Σ to be the empirical covariance matrix obtained from the data

corresponding to ξ. In this chapter, we consider the following two options for Dξ:

• Case 1: PS
1 = {Pξ is log-concave},

• Case 2: PS
2 = {Pξ is any probability distribution},

where Case 2 is our DRCC benchmark. We denote the ambiguity set corresponding

to Case 1 as D1
ξ and corresponding to Case 2 as D2

ξ , where D1
ξ ⊆ D2

ξ . We formally

define the log-concavity [23] as follows.

Definition IV.1. A probability distribution P is log-concave if and only if for all

non-empty sets A,B ∈ B and for all θ ∈ (0, 1), we have

P (θA+ (1− θ)B) ≥ [P(A)]θ[P(B)]1−θ. (4.5)

A large family of probability distributions are log-concave, including Gaussian,

Beta, and Weibull distributions and log-concavity is commonly assumed for many

practical uncertainty distributions.

4.3 Projection Property

In this section, we derive a projection property that transforms the ambiguity

set Diξ of a random vector ξ ∈ Rn into an equivalent ambiguity set Diζ of a random

variable ζ ∈ R, for i = 1, 2.

Lemma IV.2. For i = 1, 2, the following equality holds:

inf
Pξ∈Diξ

Pξ
(
a(x)T ξ ≤ b(x)

)
= inf

Pζ∈Diζ
Pζ (ζ ≤ g(x)) , (4.6)
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where

g(x) = b(x)− a(x)Tµ+ r‖Σ
1
2a(x)‖2 (4.7)

and

Diζ := {Pζ ∈PS

i : EPζ [ζ] = r‖Σ
1
2a(x)‖2,

0 ≤ ζ ≤ 2r‖Σ
1
2a(x)‖2 almost surely}. (4.8)

Proof: We provide the proof for i = 1; the proof for i = 2 is similar and so omitted.

On the one hand, we can pick any ξ with Pξ ∈ D1
ξ . Define ζ = a(x)T (ξ − µ) +

r‖Σ 1
2a(x)‖2, we have EPζ [ζ] = r‖Σ 1

2a(x)‖2 and 0 ≤ ζ ≤ 2r‖Σ 1
2a(x)‖2 almost surely,

where the bounds of ζ are valid because

ζ ≤ r‖Σ
1
2a(x)‖2 + max

ξ:‖Σ−
1
2 (ξ−µ)‖2≤r
a(x)T (ξ − µ)

= r‖Σ
1
2a(x)‖2 + max

y:‖y‖2≤r
(Σ

1
2a(x))Ty

= r‖Σ
1
2a(x)‖2 + r‖Σ

1
2a(x)‖2 = 2r‖Σ

1
2a(x)‖2

and

ζ ≥ r‖Σ
1
2a(x)‖2 + min

ξ:‖Σ−
1
2 (ξ−µ)‖2≤r
a(x)T (ξ − µ)

= r‖Σ
1
2a(x)‖2 − r‖Σ

1
2a(x)‖2 = 0.

Furthermore, from Lemma 2.1 of [23], we know that Pζ is log-concave. Hence, Pζ ∈ D1
ζ

and

inf
Pξ∈D1

ξ

Pξ
(
a(x)T ξ ≤ b(x)

)
≥ inf

Pζ∈D1
ζ

Pζ (ζ ≤ g(x)) .

On the other hand, we can pick any ζ with Pζ ∈ D1
ζ and define ξ = µ + (ζ −

r‖Σ 1
2a(x)‖2) Σa(x)

a(x)TΣa(x)
. We have EPξ [ξ] = µ and ‖Σ− 1

2 (ξ − µ)‖2 ≤ r almost surely,
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which follows from

‖Σ−
1
2 (ξ − µ)‖2 =

‖Σ 1
2a(x)‖2

a(x)TΣa(x)

∣∣∣ζ − r‖Σ 1
2a(x)‖2

∣∣∣ ≤ r.

Furthermore, from Lemma 2.1 of [23], we know that Pξ is log-concave. Hence, Pξ ∈ D1
ξ

and

inf
Pξ∈D1

ξ

Pξ
(
a(x)T ξ ≤ b(x)

)
≤ inf

Pζ∈D1
ζ

Pζ (ζ ≤ g(x)) .

4.4 Reformulation and Approximation

We next present an SOC sandwich approximation of (4.3) under ambiguity set

D1
ξ and an SOC exact reformulation under ambiguity set D2

ξ .

4.4.1 Sandwich Approximation

First, we derive a conservative approximation for (4.3) under D1
ξ by relaxing PS

1 to

a set consisting of all Pξ with a log-concave cumulative distribution functions (CDFs).

Letting PL represent the set of all Pξ with a log-concave CDFs, we define

DL

ζ := {Pζ ∈PL : EPζ [ζ] = r‖Σ
1
2a(x)‖2,

0 ≤ ζ ≤ 2r‖Σ
1
2a(x)‖2 almost surely}. (4.9)

From Theorem 1 of [4], we have D1
ζ ⊆ DL

ζ and so

inf
Pζ∈DL

ζ

Pζ (ζ ≤ g(x)) ≤ inf
Pζ∈D1

ζ

Pζ (ζ ≤ g(x)) . (4.10)

Theorem IV.3. If ε ≤ 1
4
, then (4.3) under D1

ξ is implied by the following SOC
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constraint:

a(x)Tµ+

[
1− 2 log(1− ε)

d∗

]
r‖Σ

1
2a(x)‖2 ≤ b(x), (4.11)

where d∗ is the unique root of function exp{d}−d/2 = 1 on the interval (−∞, 0) and

log represents the natural logarithm.

Proof: From the above discussion, it is clear that (4.3) under D1
ξ is implied by

inf
Pζ∈DL

ζ

Pζ (ζ ≤ g(x)) ≥ 1− ε. (4.12)

Define π = r‖Σ 1
2a(x)‖2 and the CDF of ζ as Fζ(z) = Pζ(ζ ≤ z). Then, Fζ(z) is

log-concave in z for any Pζ ∈ DL
ζ .

We claim that, without loss of optimality, we can focus on those Pζ with log(Fζ(z))

being the minimum of an affine function of z and the constant-zero function when

computing infPζ∈DL
ζ
Pζ (ζ ≤ g(x)). To see this, we pick any ζ with Pζ ∈ DL

ζ . Then

log(Fζ(z)) is concave and non-decreasing. Consider a tangent of log(Fζ(z)) at z∗ =

g(x), i.e., G(z) = k(z − z∗) + log(Fζ(z
∗)) with k ∈ ∂ log(Fζ(z

∗)). As log(Fζ(z)) is

nondecreasing and concave, we have k ≥ 0 and G(z) ≥ log(Fζ(z)) for all z ∈ [0, 2π].

Define F̂ζ(z) = min{1, exp(G(z))}, which satisfies the property of a log-concave CDF

and yields a probability measure P̂ζ . In addition, we have P̂ζ (ζ ≤ z∗) = Pζ (ζ ≤ z∗)

and EPζ [ζ] ≥ EP̂ζ [ζ]. Then, we manipulate G(z) via the following two steps.

1. Increase the horizontal intercept to 2π with vertical intercept fixed, and

2. decrease the vertical intercept towards −∞ with the horizontal intercept fixed.

Both actions will decrease P̂ζ (ζ ≤ z∗) and increase EP̂ζ [ζ]. So we could stop as soon

as P̂ζ (ζ ≤ z∗) ≤ Pζ (ζ ≤ z∗) and EPζ [ζ] = EP̂ζ [ζ]. This proves the claim.
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Based on the claim, we recast the left side of (4.12) as follows.

min
c,d

min{1, exp{cz∗ + d}} (4.13)

s.t.

∫ 2π

0

[1−min{1, exp{cz + d}}] dz = π (4.14)

exp{c(2π) + d} ≥ 1 (4.15)

c > 0, d < 0, (4.16)

where (4.14) enforces EPζ [ζ] = π, (4.15) enforces 0 ≤ ζ ≤ 2π almost surely, and (4.16)

makes sure that CDF min{1, exp{cz+d}} is nondecreasing and nontrivial. Note that

(4.15) is equivalent to −d/c ≤ 2π. Then, it follows that (4.14) is equivalent to

π =

∫ 2π

0

[1−min{1, exp{cz + d}}] dz

=

∫ −d/c
0

[1− exp{cz + d}] dz

=
1

c
[exp{d} − d− 1] ,

and so c = (1/π)[exp{d} − d − 1]. Thus, (4.15) is equivalent to 2π ≥ −d/c =

−dπ/[exp{d} − d− 1], or exp{d} ≥ 1 + d/2 because exp{d} − d− 1 > 0 when d < 0.

It follows that the optimal objective value of problem (4.13)–(4.16) equals that of the

following problem:

min
d<0

min

{
1, exp

{
exp{d} − d− 1

π
z∗ + d

}}
(4.17)

s.t. exp{d} ≥ d

2
+ 1. (4.18)

We analyze the objective function in (4.17) by considering the following two scenarios.
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• Scenario 1. If z∗ ≥ 2π, then

(exp{d} − d− 1)

(
z∗

π

)
+ d

≥(exp{d} − d− 1)

(
2π

π

)
+ d

=2

(
exp{d} − d

2
− 1

)
≥ 0

for all d < 0 and exp{d} ≥ d/2 + 1. Then, the optimal objective value of

problem in (4.13)–(4.16) equals 1. Note that this makes sense because when

z∗ ≥ 2π, we always have ζ ≤ z∗ for any ζ ∈ [0, 2π].

• Scenario 2. If z∗ < 2π, then by the definition of d∗

(exp{d∗} − d∗ − 1)

(
z∗

π

)
+ d∗

<(exp{d∗} − d∗ − 1)

(
2π

π

)
+ d∗

=2

(
exp{d∗} − d∗

2
− 1

)
= 0

Hence, there exists a d < 0 with exp{d} ≥ d/2 + 1 such that (exp{d} − d −

1)(z∗/π) + d < 0. It follows that the objective function in (4.17) is equivalent

to

min
d<0

exp

{
(exp{d} − d− 1)

(
z∗

π

)
+ d

}
.

Finally, we recast (4.12) by discussing the following two scenarios.

• Scenario 1. If z∗ ≥ 2π, then (4.12) always holds.

• Scenario 2. If z∗ < 2π, then (4.12) holds if and only if the optimal objective

value of problem (4.17)–(4.18) is greater than or equal to 1− ε, or equivalently,

z∗ ≥ max
d<0; exp{d}≥d/2+1

{
log(1− ε)− d

exp{d} − d− 1

}
π.
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Note that d < 0 and exp{d} ≥ d/2 + 1 is equivalent to d ≤ d∗ because h(d) =

exp{d} − d/2 − 1 is convex in d with roots d = 0 and d = d∗ ≈ −1.59. In

addition, H(d) = log(1−ε)−d
exp{d}−d−1

is nondecreasing in d because ε ≤ 1/4. It follows

that (4.12) is equivalent to

z∗ ≥
{

log(1− ε)− d∗

exp{d∗} − d∗ − 1

}
π =

{
2− 2 log(1− ε)

d∗

}
π.

Note that 2− 2 log(1−ε)
d∗

< 2 as d∗ < 0 and 1− ε ∈ (0, 1).

Summarizing the above two scenarios, (4.12) is equivalent to

z∗ ≥
{

2− 2 log(1− ε)
d∗

}
π.

The proof is complete given the definition of z∗.

Second, we derive a relaxing approximation for (4.3) by focusing on a particular

distribution in D1
ζ . More specifically, let PU

ζ represent the uniform distribution on the

interval [0, 2r‖Σ1/2a(x)‖2], then (4.3) implies

PU

ζ {ζ ≤ g(x)} ≥ 1− ε. (4.19)

which can be recast as

a(x)Tµ+ r(1− 2ε)‖Σ
1
2a(x)‖2 ≤ b(x). (4.20)

The conservative approximation and this relaxing approximation are used as the

sandwich approximation.

Third, we consider another relaxing approximation of (4.3) by restricting Pξ to be

normally-distributed with mean µ and covariance matrix Σ. Then, based on existing
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results (e.g., [6]), (4.3) implies the following SOC constraint:

a(x)Tµ+ Φ−1
N (1− ε)‖Σ

1
2a(x)‖2 ≤ b(x). (4.21)

where ΦN is the inverse CDF of the standard normal distribution. This relaxing

approximation is used as a benchmark.

4.4.2 Exact Reformulation

We next derive an exact reformulation for (4.3) under D2
ξ , which we use as the

DRCC benchmark.

Theorem IV.4. If ε < 1
2
, then (4.3) under D2

ξ is equivalent to the following SOC

constraint:

a(x)Tµ+ r‖Σ
1
2a(x)‖2 ≤ b(x). (4.22)

Proof: We prove by contradiction.

First, if g(x) < r‖Σ 1
2a(x)‖2, then we consider P̂ζ ∈ D2

ζ such that ζ = r‖Σ1/2a(x)‖2

almost surely. It follows that P̂ζ(ζ ≤ g(x)) = 0 and so infPζ∈D1
ζ
Pζ (ζ ≤ g(x)) = 0 <

1− ε.

Second, if r‖Σ 1
2a(x)‖2 ≤ g(x) < 2r‖Σ 1

2a(x)‖2, then there exists a point ζ̃ such

that g(x) < ζ̃ < 2r‖Σ 1
2a(x)‖2. Consider a specific distribution P̂ζ ∈ D2

ζ that puts

equal weight at ζ̃ and 2r‖Σ 1
2a(x)‖2 − ζ̃. We have

inf
Pζ∈D2

ζ

Pζ (ζ ≤ g(x)) ≤ P̂ζ (ζ ≤ g(x)) =
1

2
< 1− ε.

Hence, (4.3) is valid if and only if g(x) ≥ 2r‖Σ1/2a(x)‖2.

Note that (4.3) under D2
ξ is conservative because it is invariant for any ε ∈ (0, 1/2).
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4.5 Case Studies

4.5.1 Simulation Setup

We consider the DCOPF problem from [48] and Chapter III, which is similar to

that of [9, 96]. Assuming two wind power plants, the random variables are the wind

forecast error W̃ = [W1,W2]T . Assuming the system has NG generators and NB

buses, the design variables are generation PG ∈ RNG , up and down reserve capacities

Rup ∈ RNG , Rdn ∈ RNG , and a “distribution vector” d ∈ RNG , which allocates real-

time supply/demand mismatch to generators providing reserves. The problem is

min P T
G [C1]PG + CT

2 PG + CT
R(Rup +Rdn) (4.23)

s.t.− Pl ≤ AsPinj ≤ Pl (4.24)

R = −d(W1 +W2) (4.25)

Pinj = CG(PG +R) + CW (P f
W + W̃ )− CLPL (4.26)

PG ≤ PG +R ≤ PG (4.27)

−Rdn ≤ R ≤ Rup (4.28)

11×NGd = 1 (4.29)

11×NB(CGPG + CWP
f
W − CLPL) = 0 (4.30)

PG ≥ 0NG×1, d ≥ 0NG×1, (4.31)

Rup ≥ 0NG×1, R
dn ≥ 0NG×1 (4.32)

where [C1] ∈ RNG×NG , C2 ∈ RNG , and CR ∈ RNG are cost parameters. Constraint

(6.16a) uses the DC power flow approximation to relate the power injections Pinj to

the line flows using parameter matrix As, which includes the network impedances,

and constrains the flows to below to the line limits Pl. Constraint (6.16b) computes

the real-time reserve actions R; (6.16c) defines the real-time power injections, where

P f
W is the wind forecast and CG, CW , and CL are matrices that map generators, wind
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Figure 4.1: Modified IEEE 9-bus system.

power plants, and loads to their buses; (6.16d) constrains generator production to

within its limits [PG, PG]; (6.16e) requires the real-time reserve actions be within the

reserve capacity; (6.16f) normalizes the distribution vector; (6.16g) enforces power

balance for the wind forecast; and (6.16h), (6.16i) ensures all decision variables are

non-negative. Real-time power balance is enforced by (6.16b) and (6.16f) which re-

quire reserve actions to exactly compensate for the wind forecast error. Constraints

(6.16a), (6.16d), and (6.16e) are reformulated as chance constraints. Each constraint

is enforced individually, not jointly.

We test our approach on the modified IEEE 9-bus system shown in Fig. 4.1.

We use the network parameters and generation costs from [108], and set the reserve

cost CR = 10C2. We set the wind power forecasts to P f
W = [66.8, 68.1] MW. We

use the same wind power forecast uncertainty data as in [93], which was generated

using a Markov Chain Monte Carlo mechanism [70] applied to real data. We congest

the system by increasing each load by 50% and reducing the line limit of the line

connecting buses 2 and 8 from 250 MW to 200 MW. We pick this transmission line

because it connects a wind power plant to the system and its forecasted power flow

is close to its limit. All optimization problems are solved using CVX with the Mosek
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Figure 4.2: Histogram of univariate wind forecast errors and its logarithmic profile.

solver [32, 31].

4.5.1.1 Empirical Wind Forecast Error Distributions

We verify the log-concavity of the wind forecast error distributions using the full

data set (10,000 scenarios) with the exception of statistical outliers (total probability<

0.1%). Note that the outliers are also not used when empirically estimating the first-

order moment µ, covariance Σ, and radius r, but they are used when evaluating the

reliability of the solution.

In Fig. 4.2, we show the histogram of univariate wind forecast errors (i.e., all

errors analyzed together) and its logarithmic profile, which appears to be concave.

Figure 4.3 shows the histogram of the bivariate wind forecast error (i.e., errors were

used to generate paired forecasts for the two wind power plants) and its logarithmic

profile, which also appears to be concave. Figures 4.2 and 4.3 empirically justify our

assumption that Pξ in the ambiguity set D1
ξ is log-concave.

4.5.2 Results

1. Objective Cost We first compare the optimal objective cost across the following

four DRCC OPF formulations:
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Figure 4.3: Histogram of bivariate wind forecast errors and its logarithmic profile.

• Gaussian: relaxing approximation in which Pξ is normally-distributed, given in

(4.21).

• RA: relaxing approximation of D1
ξ , given in (4.20).

• CA: conservative approximation of D1
ξ , given in (4.11).

• BM: benchmark based on D2
ξ , given in (4.22).

For each formulation, we test two confidence levels ε = 5%, 10% and four data sizes

N = 500, 1000, 2000, and 5000. We replicate the test associated with each (ε, N)

combination 20 times by re-drawing N error scenarios. Table 4.1 displays the mini-

mum, average, and maximum objective costs for each formulation over all replicates.

BM yields the same optimal objective costs at different confidence levels as it is in-

variant under any ε ∈ (0, 1/2) (see Theorem IV.4). We also observe that, for all

formulations, the range of the optimal objective cost becomes narrower as the data

size grows because of better estimation of µ, Σ, and r. In addition, we observe that

the optimal objective cost of a purely moment-based formulation (i.e., Gaussian) de-

pends less on the data size as compared with the formulations using both moment

and support information. The reason is that the support is more sensitive to outliers

than the moments are. We observe that the optimal objective cost increases in the
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Table 4.1: Optimal Objective Cost of DRCC OPF under Various Formulations, Data
Sizes, and Confidence Levels

Data size 500 1000 2000 5000
1-ε 95% 90% 95% 90% 95% 90% 95% 90%

Gaussian
min 4891 4849 4894 4851 4895 4852 4903 4858
avg 4903 4858 4907 4862 4907 4861 4906 4861
max 4927 4877 4925 4876 4915 4868 4913 4866

RA
min 5078 5035 5192 5134 5748 5623 5985 5830
avg 5468 5377 5918 5772 6001 5845 6046 5885
max 6069 5904 6119 5948 6110 5940 6121 5950

CA
min 5094 5064 5212 5173 5793 5708 6040 5934
avg 5501 5439 5970 5870 6057 5950 6104 5994
max 6127 6015 6180 6063 6171 6054 6183 6065

BM
min 5122 5122 5250 5250 5875 5875 6141 6141
avg 5561 5561 6066 6066 6159 6159 6211 6211
max 6235 6235 6292 6292 6282 6282 6295 6295

same order as the list above due to the increasing size of the corresponding ambiguity

set.

We next employ the full data set to construct the ambiguity sets. Then, we solve

all formulations with varying confidence levels from 75% to 99% (i.e., ε ∈ [1, 25]%).

Figure 4.4 displays the optimal objective costs and the generation cost as a percent

of the total cost for each formulation. We observe that the optimal objective costs

of RA and CA increase at a faster rate than that of Gaussian. Consistent with

Table 4.1, BM yields a constant optimal objective cost independent of ε. At high

confidence levels (ε ≤ 5%), the objective costs of RA and CA become closer and

they both converge to that of BM as ε decreases. This indicates that the sandwich

approximations become tighter as ε decreases. Meanwhile, the impact of the log-

concavity assumption on the ambiguity sets becomes weaker. The optimal objective

cost increases in the same order as in Table 4.1 (i.e., Gaussian, RA, CA, and BM).

We also observe that the generation cost percentage of all formulations except BM

decreases as the confidence level increases because we need to procure more reserve

capacity to balance wind forecast error at a higher confidence levels. More reserve
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Figure 4.4: Optimal objective costs and generation cost percentage at various confi-
dence levels (1− ε).

capacity is required by more conservative approaches (i.e., reserve capacity increases

and generation cost percentage decreases in the following order: Gaussian, RA, CA,

and BM). We also observe a similar convergence on the generation cost percentages

associated with RA, CA, and BM as the confidence level increases.

2. Reliability We evaluate the empirical reliability of all formulations via an out-

of-sample Monte Carlo analysis for data sizesN = 500, 5000 (used to generate the sta-

tistical information needed in the formulation) and confidence levels 1−ε = 95%, 75%.

For each formulation, we select the solution associated with the minimum optimal

objective value reported in Table 4.1 and test it on 20 randomly-generated groups

of 1000 out-of-sample wind forecast errors. We define the empirical reliability as the

percentage of errors for which all chance constraints are satisfied by the selected op-

timal solution. Tables 4.2 and 4.3 show the results. With a data size of 5000, we get

an accurate estimate of the statistical information and hence RA, CA, and BM all

achieve high overall reliability, while Gaussian does not meet the reliability require-

ment. With a data size of 500, the reliability drops since the statistical information

estimated is less accurate, but RA and CA still give sufficiently high reliability and

are less conservative than BM. This demonstrates that the sandwich approximation
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Table 4.2: Overall Reliability (%) with Data Size 5000

1− ε Gaussian RA CA BM

95%
min 87.5 99.7 99.8 99.8
avg 88.7 99.9 99.9 100
max 90.2 100 100 100

75%
min 53.2 99.5 99.5 99.8
avg 55.2 99.8 99.8 100
max 57.5 100 100 100

Table 4.3: Overall Reliability (%) with Data Size 500

1− ε Gaussian RA CA BM

95%
min 85.4 98.3 98.5 98.9
avg 86.9 99.1 99.3 99.5
max 89.2 99.6 99.8 99.8

75%
min 51.6 88.7 94.7 98.9
avg 53.4 90 95.9 99.5
max 55.4 92.1 96.7 99.8

(RA and CA) provides a good trade-off between cost and reliability.

4.6 Conclusion

In this chapter, we derived distributionally robust chance constraints correspond-

ing to log-concave uncertainty distributions with known first-order moment and ellip-

soidal support. We derived a projection property and a tractable sandwich approxi-

mation (i.e., relaxing and conservative approximations) of the distributionally robust

chance constraints as second-order cone constraints. We compared the approxima-

tions to a benchmark using only moment and support information and another that

assumed normally-distributed uncertainty. The optimal objective costs of the sand-

wich approximation depend on the accuracy of the moment and support information.

As the confidence level increases, the gap between the conservative and relaxing ap-

proximation reduce and the effect of the log-concavity assumption becomes weaker.

The sandwich approximation provides a better trade-off between optimal objective

cost and reliability than either benchmark, where the benchmark assuming normal
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distributions is cheap but not sufficiently reliable and the benchmark assuming known

first-order moment and support (without log-concavity) is expensive. Our approach

works well even if only a small number of data points are available to estimate the

statistical parameters.

137



CHAPTER V

Distributionally Robust Chance Constrained

Optimal Power Flow Assuming Unimodal

Distributions with Misspecified Modes

Chance constrained optimal power flow (CC-OPF) formulations have been pro-

posed to minimize operational costs while controlling the risk arising from uncertain-

ties like renewable generation and load consumption. To solve CC-OPF, we often

need access to the (true) joint probability distribution of all uncertainties, which is

rarely known in practice. A solution based on a biased estimate of the distribution

can result in poor reliability. To overcome this challenge, recent work has explored

distributionally robust chance constraints, in which the chance constraints are sat-

isfied over a family of distributions called the ambiguity set. Commonly, ambiguity

sets are only based on moment information (e.g., mean and covariance) of the ran-

dom variables; however, specifying additional characteristics of the random variables

reduces conservatism and cost. In this chapter, we consider ambiguity sets that ad-

ditionally incorporate unimodality information. In practice, it is difficult to estimate

the mode location from the data and so we allow it to be potentially misspecified. We

formulate the problem and derive a separation-based algorithm to efficiently solve it.

Finally, we evaluate the performance of the proposed approach on a modified IEEE-30
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bus network with wind uncertainty and compare with other distributionally robust

approaches. We find that a misspecified mode significantly affects the reliability of

the solution and the proposed model demonstrates a good trade-off between cost and

reliability. The main content of this chapter is summarized in the following paper.

1. B. Li, R. Jiang, and J.L. Mathieu. Distributionally robust chance constrained

optimal power flow assuming unimodal distributions with misspecified modes. IEEE

Trans Control of Network Systems (Submitted), 2018

5.1 Introduction

With higher penetrations of renewable generation, uncertainties have increasing

influence on power system operation and hence need to be carefully considered in

scheduling problems, such as optimal power flow (OPF). To manage the risk arising

from uncertainties, different stochastic OPF approaches have been studied. Among

these formulations, CC-OPF has been proposed to directly control the constraint

violation probability below a pre-defined threshold [104, 42, 96, 9, 79, 93, 52]. Tradi-

tional methods to solve chance constrained programs require knowledge of the joint

probability distribution of all uncertainties, which may be unavailable or inaccurate.

However, biased estimate may yield poor out-of-sample performance. Randomized

techniques such as scenario approximation [17, 58], which provides a priori guarantees

on reliability, require the constraints to be satisfied over a large number of uncertainty

samples. The solutions from these approaches are usually overly conservative with

high costs [107, 52]. Another popular approach is to assume that the uncertainties

follow a parametric distribution such as Gaussian [9, 79, 52]. The resulting CC-OPF

is often easier to solve but the solution may have low reliability unless the assumed

probability distribution happens to be close to the true one.

As an alternative, distributionally robust chance constrained (DRCC) OPF mod-

els do not depend on a single estimate of the probability distribution [102, 33, 88,
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56, 50, 49, 80, 107]. More specifically, DRCC models consider a family of distri-

butions, called the ambiguity set, that share certain statistical characteristics and

requires that the chance constraint holds with respect to all distributions within the

ambiguity set [29, 22, 87, 44]. Most existing work characterizes the ambiguity set

based on moment information obtained from historical data of the uncertainty (see,

e.g., [107, 102, 56, 88]). For example, a commonly adopted ambiguity set consists of

all distributions whose mean and covariance agree with their corresponding sample

estimates [107, 102, 88]. Many uncertainty distributions (e.g., those associated with

wind forecast error) are unimodal and so, recently, unimodality has been incorpo-

rated to strengthen the ambiguity set and reduce the conservatism of DRCC models

[88, 49, 80]. However, as compared to the moments, the mode location is more likely

to be misspecified in sample-based estimation.

In this chapter, we study a DRCC model with an ambiguity set based on moment

and unimodality information with a potentially misspecified mode location. To the

best of our knowledge, this is the first work discussing misspecification of a value

related to a structural property, though others have considered misspecification of

moments [22, 56, 29, 44, 107] and misspecification of distributions [33, 90]. Our main

theoretical result shows that the distributionally robust chance constraints can be

recast as a set of second-order conic (SOC) constraints. Furthermore, we derive an

iterative algorithm to accelerate solving the reformulation. In this algorithm, we

begin with a relaxed formulation, and in each iteration, we efficiently find the most

violated SOC constraint, if any, or terminate with a globally optimal solution. We

apply the theoretical results to a direct current (DC) OPF problem and conduct a

case study using a modified IEEE 30-bus system with wind power. We compare our

results (operational cost, reliability, computational time, and optimal solutions) to

those obtained using four alternative ambiguity sets [49, 87, 80, 107].

The remainder of this chapter is organized as follows. Section 5.2 empirically
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Figure 5.1: Histograms of univariate and bivariate wind forecast errors (15 bins).

verifies the (multivariate) unimodality of wind forecast errors and explores misspeci-

fication of the mode location. The proposed DRCC model and ambiguity set are in-

troduced in Section 5.3 and the main theoretical results are presented in Section 5.4.

Section 5.5 includes the case studies and Section 5.6 provides the supporting mathe-

matical proofs.

5.2 Validation and Misspecification Error on Unimodality

In this section, we first empirically verify the unimodality of wind forecast error

distributions using 10,000 data samples from [93, 52] with statistical outliers omitted

(total probability < 0.1%). The samples were generated using a Markov Chain Monte

Carlo mechanism [70] based on real data that includes both hourly forecast and actual

wind generation in Germany. In Fig. 5.1, we depict the histograms of univariate and

bivariate wind forecast errors with 15 bins. Both histograms empirically justify our

assumption that the probability distribution of wind forecast errors is unimodal.

Next, we empirically evaluate the errors of mean and mode estimates (i.e., the

peak location in the histogram). We randomly extract 100 groups of samples, each

group containing 500 data points, from the wind forecast error data pool. For each

group of samples, we estimate the mean by taking sample averages and estimate the
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Figure 5.2: Scatter plots of mode and mean estimates from data samples (left) and
mode vs. mean differences (right).

mode by identifying the center of the highest bin in the 15-bin histogram. In Fig. 5.2,

we plot all the mean and mode estimates and the differences between them. From the

left subfigure, we observe that sampling errors have larger impacts on mode estimates

than on mean estimates. From the right subfigure, we observe that the mode estimate

can deviate from the corresponding mean estimate in all directions. This indicates

the importance of considering the misspecification of mode location in DRCC models,

because the mode-mean deviation shows the skewness of the uncertainty. As a result,

if we misspecify the mode location (e.g., by modeling a right-skewed distribution as

a left-skewed one, see Section 5.3.0.2 for an example), then we may mistakenly relax

the chance constraint and get poor out-of-sample performance.

5.3 Ambiguity Sets with Misspecified Mode

Similar to other chapters, we consider the following physical constraint under

uncertainty:

a(x)>ξ ≤ b(x), (5.1)

where x ∈ Rl represents an l-dimensional decision variable, and a(x) : Rl → Rn and

b(x) : Rl → R represent two affine functions of x. Uncertainty ξ ∈ Rn represents

an n-dimensional random vector defined on probability space (Rn,Bn,Pξ) with Borel
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σ-algebra Bn and probability distribution Pξ.

To manage constraint violations due to uncertainty, we define a probability thresh-

old 1− ε and obtain the following chance constraint [18, 66]:

Pξ
(
a(x)>ξ ≤ b(x)

)
≥ 1− ε, (5.2)

where 1− ε normally takes a large value (e.g., 0.99). With an ambiguity set Dξ con-

sisting of plausible candidates of Pξ, we further obtain the following distributionally

robust chance constraint:

inf
Pξ∈Dξ

Pξ
(
a(x)>ξ ≤ b(x)

)
≥ 1− ε. (5.3)

5.3.0.1 Ambiguity Sets

In this chapter, we consider three ambiguity sets, denoted as Diξ for i = 1, 2, 3,

that are defined by a combination of moment and unimodality information. Precisely,

we consider α-Unimodality as in Chapter III.

From the definition, we notice that α parameterizes the “degree of unimodality.”

When α = n = 1, the definition coincides with the classical univariate unimodality

with mode 0. When α = n > 1, the density function of ξ (if exists) peaks at the

mode and is non-increasing in any directions moving away from the mode. As α→∞,

the requirement of unimodality gradually relaxes and eventually vanishes. Next, we

define the following three ambiguity sets:

Ambiguity set 1: (moment information only)

D1
ξ :=

{
Pξ ∈ Pn : EPξ [ξ] = µ, EPξ [ξξ

>] = Σ
}
, (5.4)
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Ambiguity set 2: (moment and α-unimodality, fixed mode)

D2
ξ :=

{
Pξ ∈ Pnα ∩ D1

ξ : M(ξ) = mt

}
, (5.5)

Ambiguity set 3: (moment and α-unimodality, misspecified mode)

D3
ξ :=

{
Pξ ∈ Pnα ∩ D1

ξ : M(ξ) ∈ Ξ
}
, (5.6)

where Pnα and Pn denote all probability distributions on Rn with and without the

requirement of α-unimodality respectively; µ and Σ denote the first and second mo-

ments of ξ; and M(ξ) denotes a function returning the true mode location of ξ with

mt and Ξ representing a single mode value and a connected and compact set. The

compact set can be constructed using possible mode estimates calculated from sam-

ples of historical data.

Among these three ambiguity sets, we use D1
ξ as a benchmark. Set D2

ξ is a special

case of D3
ξ , i.e., Ξ only contains a single value mt. In practice, since the mode estimate

is influenced by sampling errors, the mode estimates from data samples are not the

same single values but distribute around a certain area. The shape of this area

decides the underlying structural skewness in the uncertainty distribution. Hence,

we compare D2
ξ and D3

ξ to see how misspecified mode estimates affect the DRCC

problem. In this work, we do not additionally consider misspecified moments since

this topic has been well-studied [22, 56, 29, 44] and our main results can be easily

extended based on these existing works.

5.3.0.2 Impact of Inaccurate Mode Estimate

We use a simple example to illustrate the impact of an inaccurate mode estimate.

We assume random variable ζ follows distribution Pζ1 . Pζ2 is a biased estimate of Pζ1

due to sampling errors. Both distributions are illustrated in Fig. 5.3, where each has
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Figure 5.3: True estimate Pζ1 and biased estimate Pζ2

zero mean and unit variance. However, Pζ1 is right-skewed with mode at −1 and Pζ2

is left-skewed with mode at 1. Suppose that we try to reformulate Pζ(ζ ≤ z) ≥ 90%.

Based on the given distributions, we find z ≥ 1.8 from the correct distribution Pζ1

and z ≥ 0.925 from the biased distribution Pζ2 . In this example, we observe that a

misspecified mode estimate could shrink the 90% confidence bound by almost a half

and significantly decrease the reliability of the solution to the chance constraint.

5.4 Iterative Solving Algorithm with Separation

5.4.0.3 Assumptions and previous results

To compute the exact reformulation of distributionally robust chance constraints

with various ambiguity sets, we make the following assumptions same to Chapter IV.

Assumption V.1. For D2
ξ , we assume that

(
α + 2

α

)
(Σ− µµ>) � 1

α2
(µ−mt)(µ−mt)

>.
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Similarly, for D3
ξ , we assume that, ∀m ∈ Ξ,

(
α + 2

α

)
(Σ− µµ>) � 1

α2
(µ−m)(µ−m)>.

Assumption V.2. For D2
ξ , we assume that a(x)>mt ≤ b(x). Similarly, for D3

ξ , we

assume that a(x)>m ≤ b(x), ∀m ∈ Ξ.

Both assumptions are standard in the related literature [35, 74, 75, 49]. Assump-

tion V.1 ensures that the corresponding Diξ 6= ∅. Assumption V.2 ensures that the

constraint is satisfied at the mode. Furthermore, we assume ε < 0.5 and α ≥ 1, since

in practice the uncertainties will at least be univariate-unimodal.

Reformulations of (6.7) under D1
ξ and D2

ξ are derived in previous work.

Theorem V.3. (Theorem 2.2 in [98]) With D1
ξ , (6.7) can be exactly reformulated as

√(
1− ε
ε

)
a(x)>(Σ− µµ>)a(x) ≤ b(x)− a(x)>µ. (5.7)

Theorem V.4. With D2
ξ , (6.7) can be exactly reformulated as

√
1− ε− τ−α

ε
‖Λta(x)‖ ≤ τ

(
b(x)− µ>a(x)

)
+

(
τ − α + 1

α

)
(µ−mt)

>a(x), ∀τ ≥
(

1

1− ε

)1/α

, (5.8)

where Λt :=
((

α+2
α

)
(Σ− µµ>)− 1

α2 (µ−mt)(µ−mt)
>)1/2

. This result is adapted

from Theorem 1 in [49] and Theorem III.8 in Chapter III by assuming mt 6= 0.

Since parameter τ has an infinite number of choices, the reformulation in Theo-

rem V.4 also involves an infinite number of SOC constraints. Here we obtain a similar

result for the generalized ambiguity set D3
ξ .
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5.4.0.4 Reformulation for D3
ξ

We now present the reformation with D3
ξ , which is based on Theorem V.4:

√
1− ε− τ−α

ε
‖Λa(x)‖ ≤

(
τ − α + 1

α

)
(µ−m)>a(x)

+ τ
(
b(x)− µ>a(x)

)
, ∀τ ≥

(
1

1− ε

)1/α

, ∀m ∈ Ξ, (5.9)

a(x)>m ≤ b(x), ∀m ∈ Ξ, (5.10)

where Λ :=
((

α+2
α

)
(Σ− µµ>)− 1

α2 (µ−m)(µ−m)>
)1/2

and (5.10) comes from As-

sumption V.2.

Compared to (6.8), (5.9) is more complicated with two parameters m and τ each

with an infinite number of choices. To solve an optimization problem with (5.9), we

propose an iterative solving algorithm given in Algorithm 1.

Algorithm 1: Iterative solving algorithm

Initialization: i = 1, τ0 =
(

1
1−ε

)1/α
, and m0 = {any singular point in Ξ};

Iteration i:
Step 1: Solve the reformulated optimization problem with (5.9) using τj and
mj for all j = 0, . . . , i− 1 and obtain optimal solution x∗i . All τj and mj

values are collected from previous iterations;
Step 2: Find worst case τ ∗ and m∗ that result in the largest violation of (5.9)
under x∗i : IF m∗ and τ ∗ does not exist, STOP and RETURN x∗i as
optimal solution; ELSE GOTO Step 3;

Step 3: Set τi = τ ∗, mi = m∗, and i = i+ 1;

Note that the reformulated optimization problem in Step 1 contains only SOC con-

straints.

5.4.0.5 Step 2 of Algorithm 1

The challenge is how to efficiently perform Step 2 of Algorithm 1. In the following,

we assume a(x∗i ) 6= 0, otherwise (5.9) is satisfied with x∗i regardless of the values of τ
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and m. Next, we define the following terms

h = a(x∗i )
>(µ−m)/α, c̃ = b(x∗i )− µ>a(x∗i ),

R̃ =

√
a(x∗i )

>
(
α + 2

α

)
(Σ− µµ>)a(x∗i ),

g(τ) =

√
1− ε− τ−α

ε
, f(τ) = −(ατ − α− 1).

Since m ∈ Ξ, we have h ∈ [h, h] where

h = max
m∈Ξ

a(x∗i )
>(µ−m)/α, h = min

m∈Ξ
a(x∗i )

>(µ−m)/α. (5.11)

From Assumption V.1, we have [h, h] ∈ (−R̃, R̃) and transform (5.9) into

[
g(τ)

√
R̃2 − h2 + f(τ)h

]
− c̃τ ≤ 0, ∀h ∈ [h, h], ∀τ ≥ τ0. (5.12)

Since the left side of (5.12) is not jointly convex or concave in h and τ (see a proof

in Section 5.6.0.5), we can not find the global maximum value for the left side by

simply checking the boundary values or stationary points. Therefore, we propose the

following algorithm to efficiently find the global maximum.

We notice that for given a τ and if h ∈ [−R̃, R̃], the maximum value of

g(τ)
√
R̃2 − h2 + f(τ)h equals R̃

√
g(τ)2 + f(τ)2 with maximizer

ĥ(τ) = f(τ)√
g(τ)2+f(τ)2

R̃. Next, by taking the derivative of ĥ, we observe that ĥ is a

strictly decreasing function of τ . Hence, we can compute τ and τ that cause h to

reach its boundary values by solving ĥ(τ) = h and ĥ(τ) = h. Since ε < 1/2 and

α ≥ 1, we have τ0 < (α + 1)/α and hence ĥ(τ0) = R̃. Then we know [τ , τ ] > τ0 as

[h, h] < R̃.

To efficiently solve these two equalities, we will use a golden section search by first

solving for τ on [τ0,∞] and then for τ on [τ0, τ ]. To efficiently apply a golden section
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search on τ , we need to find a finite upper bound instead of∞. The following lemma

describes the selection of the finite upper bound τ1 and the best region to conduct

the golden section search.

Lemma V.5. If h ≥ 0, τ1 = α+1
α

. The golden section search of τ can be conducted on

[τ0,
α+1
α

]. If h < 0, τ1 = −
(
h
√

1−ε
ε(R̃2−h2)

− (α + 1)
)
/α. The search can be conducted

on [α+1
α
, τ1]. The proof is given in Section 5.6.0.6.

Furthermore, from Assumption V.2, we have c̃ ≥ −αh ≥ −αh.

Based on the threshold values τ and τ , we divide our discussion into three cases.

Case 1: If τ ∈ [τ0, τ ], h∗ = h. Then from (5.12), we find

g(τ)

√
R̃2 − h2

+ f(τ)h− c̃τ ≤ 0.

Then, we transform the above constraint into the following equivalent form:

F1(τ) = C1g(τ)− (c̃+ αh)τ + (α + 1)h ≤ 0, (5.13)

where C1 =

√
R̃2 − h2 ≥ 0. The left side of (5.13) is concave on τ . Define the

derivative of the left side as F ′1(τ) = C1g
′(τ)− (c̃+ αh). We observe that F ′1(τ0) > 0

as g′(τ0)→∞ and

1. if F ′1(τ) ≤ 0, τ ∗ is the unique solution of F ′1(τ) = 0 within the domain [τ0, τ ];

2. else if F ′1(τ) > 0, τ ∗ = τ .

Case 2: If τ ∈ [τ , τ ], h∗ = ĥ(τ). Then from (5.12), we find

R̃

√
g(τ)2 + f(τ)2 − c̃τ ≤ 0.

The above problem is a one-dimensional problem on τ . We transform it into the
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following form:

F2(τ) = R̃2
(
g(τ)2 + f(τ)2)− c̃2τ 2 ≤ 0. (5.14)

We observe that F2(τ) is differentiable on [τ , τ ]. Then, we know that the extreme

value of F2(τ) happens at the critical points (boundary points τ , τ or τi such that

that F ′2(τi) = 0). In the following numerical analysis, we present efficient ways to find

τ ∗ which maximize the left side of (5.14).

The first and second derivative of the left side of (5.14) are

F ′2(τ) = R̃2
(α
ε
τ−α−1 + 2α(ατ − α− 1)

)
− 2c̃2τ

=
αR̃2

ε
τ−α−1 + (2α2R̃2 − 2c̃2)τ − 2R̃2α(α + 1),

F ′′2 (τ) = −αR̃
2(α + 1)

ε
τ−α−2 + (2α2R̃2 − 2c̃2).

Given this, there are two conditions.

Condition 1: If 2α2R̃2−2c̃2 ≤ 0, F ′2(τ) is monotonically decreasing on τ and F2(τ)

is concave on τ . Then,

1. if F ′2(τ) ≤ 0, τ ∗ = τ ;

2. else if F ′2(τ) > 0 and F ′2(τ) ≤ 0, τ ∗ is the unique solution of F ′2(τ) = 0 within

the domain [τ , τ ].

3. else if F ′2(τ) > 0, τ ∗ = τ .

Condition 2: If 2α2R̃2−2c̃2 > 0, F ′′2 (τ) is monotonically increasing on τ and F ′2(τ)

is convex on τ . Then,

1. if F ′′2 (τ) ≤ 0, F ′2(τ) is decreasing within the domain. To find τ ∗, we follow the

same discussions as in Condition 1;

2. else if F ′′2 (τ) > 0 and F ′′2 (τ) ≤ 0, F ′2(τ) is first decreasing and then increasing.
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Define Fs = F ′2(τs) where F ′′2 (τs) = 0 within the domain [τ , τ ], Fl = F ′2(τ), and

Fu = F ′2(τ). Then,

(a) If 0 ≤ Fs, τ
∗ = τ .

(b) If Fs ≤ 0 ≤ Fl ≤ Fu or Fs ≤ 0 ≤ Fu ≤ Fl, τ∗ = τ or the unique solution

of F ′2(τ) = 0 within the domain [τ , τs] that maximizes F2(τ).

(c) If Fs ≤ Fl ≤ 0 ≤ Fu, τ
∗ = τ or τ that maximizes F2(τ).

(d) If Fs ≤ Fu ≤ 0 ≤ Fl, τ
∗ equals the unique solution of F ′(τ) = 0 within the

domain [τ , τs].

(e) If Fs ≤ Fl ≤ Fu ≤ 0 or Fs ≤ Fu ≤ Fl ≤ 0, τ ∗ = τ .

3. else if F ′′2 (τ) > 0, F2(τ) is convex on τ . τ ∗ = τ or τ that maximizes F2(τ).

Case 3: If τ ∈ [τ ,∞], h∗ = h. Then from (5.12), we find

g(τ)

√
R̃2 − h2 + f(τ)h− c̃τ ≤ 0,

which we transform into the following equivalent form

F3(τ) = C3g(τ)− (c̃+ αh)τ + (α + 1)h ≤ 0, (5.15)

where C3 =

√
R̃2 − h2. Define the derivative of the left hand side of (5.15) as

F ′3(τ) = C3g
′(τ) − (c̃ + αh). Then F3(τ) is concave on τ and as τ → ∞, F ′3(τ) ≤ 0.

Then,

1. if c̃+ αh = 0, F3(τ) is an increasing function and τ ∗ =∞;

2. else if c̃ + αh > 0, as τ → ∞, F ′3(τ) < 0. Based on the concavity of F3(τ), we

find

(a) if F ′3(τ) ≤ 0, τ ∗ = τ ;
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(b) else if F ′3(τ) > 0, τ ∗ equals the unique solution of F ′3(τ) = 0 within the

domain [τ ,∞].

To efficiently apply the golden section search, we determine an effective finite

upper bound instead of ∞. Let the effective upper bound be τ2, we have

F ′3(τ2) = C3g
′(τ2)− (c̃+ αh) ≤ 0.

Lemma V.6. A feasible selection of τ2 is

τ2 =

[
−1 +

√
1 + 4(1− ε)C2

2C2

]− 1
α

,

where C2 =
α2C2

3

4ε(c̃+αh)2
. The proof is given in Section 5.6.0.7.

Then, instead of a search on [τ ,∞], we only need to search on [τ , τ2].

Combining all three cases, we can find the overall worst case τ ∗ and h∗ given x∗i .

If (5.12) is satisfied with these parameters, then there is no violated constraint in

Step 2 of Algorithm 1. If (5.12) is not satisfied, we need to use the worst case τ ∗

and m∗ in Step 3 and the iteration continues. Depending on how we define Ξ, m∗ are

different functions of h∗.

5.4.0.6 Candidates of Ξ

In this section, we demonstrate how the selection of Ξ affects the determination

of h, h, and m∗. Specifically, we give two examples of Ξ and show how to exactly

reformulate (5.10) (i.e., Assumption V.2) and how to calculate h and h, given x∗i .

Furthermore, we show how to find the worst case m∗ from h∗.

Rectangular Support: We assume that Ξ = [k, k] and hence we can reformulate
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(5.10) as

a(x)>
(
k + k

2

)
+ |a(x)|>

(
k − k

2

)
≤ b(x). (5.16)

Furthermore, given x∗i , we have the following relationships due to (5.11).

h =

[
a(x∗i )

>
(
µ− k + k

2

)
− |a(x∗i )|>

(
k − k

2

)]
/α, (5.17)

h =

[
a(x∗i )

>
(
µ− k + k

2

)
+ |a(x∗i )|>

(
k − k

2

)]
/α. (5.18)

Based on (5.17) and (5.18), if we have the worst case h∗, we find the worst case m∗

by solving (5.19) for λr and substituting in (5.20):

h∗ =

[
a(x∗i )

>
(
µ− k + k

2

)
+ λr|a(x∗i )|>

(
k − k

2

)]
/α, (5.19)

m∗ =

(
k + k

2

)
− λrsign (a(x∗i ))

(
k − k

2

)
, (5.20)

where sign (a(x)) returns a diagonal matrix whose diagonal elements equal the sign

of each elements in a(x).

Ellipsoidal Support: We assume that Ξ = {m : m = mc +P 1/2u, ||u||2 ≤ 1}, where

P � 0. Then we can reformulate (5.10) as

a(x)>mc +
∥∥P 1/2a(x)

∥∥
2
≤ b(x). (5.21)

Furthermore, due to (5.11), we have the following relationships:

h =
[
a(x∗i )

>(µ−mc)−
∥∥P 1/2a(x∗i )

∥∥
2

]
/α, (5.22)

h =
[
a(x∗i )

>(µ−mc) +
∥∥P 1/2a(x∗i )

∥∥
2

]
/α. (5.23)

Next, if we have the worst case h∗, we find the worst case m∗ directly by solving
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(5.24) for λe and substituting in (5.25):

h∗ =
[
a(x∗i )

>(µ−mc)− λe
∥∥P 1/2a(x∗i )

∥∥
2

]
/α, (5.24)

m∗ = mc + λe
Pa(x∗i )

‖P 1/2a(x∗i )‖2

. (5.25)

5.5 Case Studies

5.5.1 Simulation Setup

For problem formulation, we consider the same DC OPF problem as in Chapter IV

and test our approach on a modified IEEE 30-bus system with network and cost

parameters from [108]. We set CR = 10C2. We add the wind power plants to buses

22 and 5 and set P f
W = [66.8, 68.1] MW. We use the same wind power forecast

uncertainty data (10000 scenarios) as in Section 5.2. We congest the system by

increasing each load by 50% and reducing the limit of the line connecting buses 1 and

2 to 30 MW. All optimization problems are solved using CVX with the Mosek solver

[32, 31].

To construct the ambiguity sets, unlike in Section 5.2, the outliers are used when

estimating the statistical parameters (first moment µ, second moment Σ, and the set

of the mode Ξ) and evaluating the reliability of the solution. We set ε = 5%, α = 1,

and assume Ξ is a rectangular set.

5.5.1.1 Additional Ambiguity Sets

We benchmark against two additional ambiguity sets from related work.

Ambiguity set 4: (moment and unimodality with fixed mode at the mean [87])

D4
ξ :=

{
Pξ ∈ Pnα ∩ D1

ξ : M(ξ) = µ
}
. (5.26)
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Ambiguity set 5: (moment and unimodality with α = 1 and arbitrary mode [80])

D5
ξ :=

{
Pξ ∈ Pn1 ∩ D1

ξ

}
. (5.27)

Set D4
ξ is a special case of D2

ξ with the mode at the mean, while D5
ξ is a special case of

D3
ξ with α = 1 and Ξ := {all possible values of M(ξ)} that is an ellipsoidal set based

on µ and Σ as shown in Assumption V.1. In other words, our D3
ξ is more general

than D2
ξ , D4

ξ , and D5
ξ . The reformulations of D4

ξ and D5
ξ are simpler than D3

ξ with a

single SOC constraint

K
√
a(x)>(Σ− µµ>)a(x) ≤ b(x)− a(x)>µ, (5.28)

where K can be found in [87] for D4
ξ and in [80] for D5

ξ .

5.5.2 Results

5.5.2.1 Estimation of Ξ

We next analyze how the data size of each sample Ndata and the number of bins

within the histogram Nbin affect the estimate of the mode support. Figure 5.4 shows

that if we change Nbin from 15 to 30 the histograms no longer show a unimodal

distribution, as compared to Fig. 5.1. The problem is exacerbated as Nbin grows.

We next explore the impact of the size of the data pool. We first use the entire

data pool to select 100 samples with different data sizes Ndata (100 and 1000) and

number of bins Nbin (15 and 30) and show scatter plots of the mode values in Fig. 5.5.

As Ndata gets larger, the mode values are more condensed and hence more accurate.

When Nbin = 30 and Ndata = 100 mode values appear in several disjoint regions, but

this disjointness is mitigated as Ndata increases to 1000. Based on the scatter plots,

we determined the parameters k, k of the four rectangular sets Ξ used in D3
ξ . The
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Figure 5.4: Histogram of univariate and bivariate wind forecast errors (30 bins).

Table 5.1: Full pool: k and k (MW) of Four Rectangular Sets Ξ.

Ndata = 100 Ndata = 1000

Nbin k k k k

15
Plant 1 -4.44 0.10 -3.45 0.17
Plant 2 -4.45 0.24 -3.69 -0.11

30
Plant 1 -4.36 0.19 -3.02 -0.93
Plant 2 -4.22 0.22 -3.06 -0.39

results are given in Table 5.1.

We repeated the analysis using only a partial data pool, specifically, we randomly

selected 1000 data from the full pool to comprise the partial pool. We also use different

choices of Ndata and Nbin. The scatter plots are shown in Fig. 5.6 and parameter values

for Ξ are given in Table 5.2.

Table 5.2: Partial pool: k and k (MW) of Four Rectangular Sets Ξ

Ndata = 50 Ndata = 200

Nbin k k k k

10
Plant 1 -4.77 0.58 -3.52 0.09
Plant 2 -5.05 0.44 -4.43 0.06

20
Plant 1 -5.82 0.06 -4.36 -0.09
Plant 2 -5.76 0.04 -3.86 0.19
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from the full data pool.
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5.5.2.2 Objective Costs

We next analyze the objective costs and the optimal reserve capacities using dif-

ferent ambiguity sets. The results are summarized in Table 5.3. In all case studies,

since we focus on mode misspecification not moment misspecification, moments are

calculated using the full or partial data pool and all ambiguity sets use the same

moments.

For ambiguity setD2
ξ , we perform tests with the following six fixed mode estimates.

• M1: mode determined using the full (partial) data pool with histogram of 15

(10) bins. This case demonstrates the performance of D2
ξ with an accurate mode

estimate.

• M2: mode determined using the full (partial) data pool with histogram of 30

(20) bins. This case shows how Nbin affects the result.

• M3-6: combinations of the largest k and the smallest k of both plants from

Table 5.1 (full pool) and Table 5.2 (partial pool). These cases demonstrate the

affect of outlying data samples.

For ambiguity set D3
ξ , we perform tests with different Ξ, specifically, Ξ1 : 100 ×

15,Ξ2 : 1000×15,Ξ3 : 100×30,Ξ4 : 1000×30,Ξ5 : 50×10,Ξ6 : 200×10,Ξ7 : 50×20,

and Ξ8 : 200×20, where the first number refers to Ndata and the second number refers

to Nbin. In each case we use the parameters k, k from Tables 5.1 and 5.2.

As shown in Table 5.3, D1
ξ has the highest objective cost since it does not include

the assumption of unimodality. The cost of D2
ξ varies with the mode estimate. We

observe opposite variations on the total up and down reserve capacities since different

mode estimates lead to different estimates of the skewness of the uncertainty distri-

bution. Comparing M1 and M2 to M3-6 we see that inaccurate estimation of the

mode could lead to either higher or lower costs. Furthermore, results for M1 and M2

are significantly different demonstrating the effect of different choices of Nbin.
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The costs of D3
ξ are higher than those of D2

ξ since the solution is designed to cope

with mode misspecification. The costs do not vary significantly as a function of Nbin

and Ndata. For a given Nbin, as Ndata increases, the costs decrease since the mode

estimates are more closely clustered.

The cost of D4
ξ is higher than the costs of D2

ξ with M1, demonstrating the benefit

in allowing the mode to be different than the mean. The cost of D5
ξ is close to that

of D3
ξ with Ξ3 since the mode estimates are widely distributed in this case; however,

the cost of all other D3
ξ is below that of D5

ξ . As expected, D3
ξ is lower bounded by the

fixed mode ambiguity sets D2
ξ and D4

ξ , and upper bounded by D5
ξ .

5.5.2.3 Reliability

Using the solutions we generated, we run out-of-sample test with 20 samples of

5000 wind forecast errors to evaluate the joint reliability of each optimal solution.

We define the joint reliability as the percentage of wind forecast errors for which all

chance constraints are satisfied. Then, we compare the reliability results with our

pre-defined probability level (1− ε = 95%). The results are summarized in Table 5.4.

We observe that reliability ranking almost always matches the cost ranking. Ambi-

guity sets D1
ξ and D5

ξ have the most conservative solutions and hence higher reliability

and costs. The reliability of D3
ξ is lower bounded by the reliability of D2

ξ and D4
ξ , and

upper bounded by the reliability of D5
ξ . It also shows robustness against the selection

of Ndata and Nbin. For the full pool, all ambiguity sets achieve constraint satisfac-

tion above 95%. For the partial pool, D2
ξ and D4

ξ fail to meet the threshold, while

ambiguity sets with misspecified modes D3
ξ , arbitrary modes D5

ξ , or no unimodality

assumptions D1
ξ achieve constraint satisfaction above 95%.

In this example, D5
ξ can be use to approximate D3

ξ since they have similar reliabil-

ity. However, D3
ξ is less conservative than D5

ξ if Ξ does not include the global worst
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Table 5.5: Iteration Count and Computational Time for D2
ξ and D3

ξ

Full pool
D2
ξ D3

ξ

M1 M2 M3 M4 M5 M6 Ξ1 Ξ2 Ξ3 Ξ4

Iterations 4 4 8 8 4 4 9 8 9 6
Time (s) 16.73 16.65 40.25 39.34 17.39 16.93 33.53 31.64 33.58 19.53

Partial pool
D2
ξ D3

ξ

M1 M2 M3 M4 M5 M6 Ξ5 Ξ6 Ξ7 Ξ8

Iterations 4 4 6 7 4 4 9 9 9 9
Time (s) 16.78 17.05 27.30 33.35 16.79 16.91 34.08 36.72 36.21 36.08

case mode. Set D3
ξ is also more applicable to multivariate unimodality as D5

ξ is only

defined for α = 1.

5.5.2.4 Computational Effort

Table 5.5 shows the iteration count and computational time for D2
ξ and D3

ξ . The

problems can be solved within 10 iterations and the computational time grows linearly

with the number of iterations. Set D3
ξ requires more iterations than D2

ξ . Problems

using ambiguity sets D1
ξ , D4

ξ , and D5
ξ can each be solved in a single run, and each

takes less than one second.

5.6 Supporting Material

5.6.0.5 Convexity and Concavity of (5.12)

Here we prove the left side of (5.12) is neither jointly convex nor concave in h and τ

through counter examples. We first pick α = R̃ = 1, ε = 0.05, and c̃ = 0 without loss

of generality. Then we select two groups of points and calculate the left-side values v.

Group 1: [h, τ, v] = (0.1, 2, 2.985) and (0.3, 3, 3.05), then the midpoint (0.2, 2.5, 3.15)

has a value higher than line segment value 3.0175 (concave). Group 2: [h, τ, v] =

(0.4, 11, 0.1990) and (0.6, 10,−1.5015), then the midpoint (0.5, 10.5,−0.6693) has a

value lower than line segment value −0.65125 (convex).
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5.6.0.6 Proof of Lemma V.5

We first check if h ≥ 0. If so, we know τ1 ∈
[
τ0,

α+1
α

]
as ĥ

(
α+1
α

)
= 0 and ĥ is

decreasing. Hence, we can conduct the golden section search on [τ0,
α+1
α

].

Next, if h < 0, we know τ1 >
α+1
α

and we have

ĥ(τ1) < h2(τ1) =
f(τ1)√

1−ε
ε

+ f(τ1)2
R̃.

If we further force h2(τ1) = h, we have ĥ(τ1) < h2(τ1) = h and τ ∈ [α+1
α
, τ1]. The

equality h2(τ1) = h will always have a solution on
[
α+1
α
,∞
]

as h2

(
α+1
α

)
= 0 and as

τ →∞, h2(τ) = −R̃.

Next we solve the equality and find

f(τ1) = h

√
1− ε

ε(R̃2 − h2)
⇒

τ1 = −

(
h

√
1− ε

ε(R̃2 − h2)
− (α + 1)

)
/α.

5.6.0.7 Proof of Lemma V.6

We have the following relationship because τ ≥ τ0 > 1.

g′(τ) =
α
ε
τ−α−1

2g(τ)
≤ g2(τ) =

α
ε
τ−α

2g(τ)
.

Then, we have the following relationship where τ2 is the effective upper bound.

F ′3(τ2) ≤ F4(τ2) = C3g2(τ2)− (c̃+ αh) = 0.
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The last equality will always have solution on [τ ,∞] since F4(τ) ≥ F ′3(τ) > 0 and as

τ →∞, F4(τ) < 0. By solving the equality, we obtain

C2(τ−α2 )2 + τ−α2 − (1− ε) = 0,

where C2 =
α2C2

3

4ε(c̃+αh)2
. This is a quadratic equation of τ−α2 and we find

τ2 =

[
−1 +

√
1 + 4(1− ε)C2

2C2

]− 1
α

.

5.7 Conclusion

In this chapter, we proposed a distributionally robust chance constrained optimal

power flow formulation considering uncertainty distributions with known moments

and generalized unimodality with misspecified modes. We derived an efficient solving

algorithm using the separation approach. In each iteration of the algorithm, the

problem contains only SOC constraints and hence can be solved with commercial

solvers. Using wind forecast errors, we found that the distribution of mode estimates

are highly dependent on the data pool size, the data size of each sample, and the

number of bins used in the histogram. We tested our approach on a modified IEEE

30-bus system and compared our results to those generated with other ambiguity

sets. Without the assumption of unimodality, we obtain overly conservative results as

unrealistic distributions are included in the ambiguity set. Considering unimodality,

but with fixed mode, the results are highly dependent on the quality of the mode

estimate. Considering unimodality with misspecified mode, the results are relatively

consistent across different mode supports and the performance is bounded by that

of the fixed-mode model and that of the arbitrary-mode model. With univariate
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unimodality and large mode deviations, the misspecified-mode model can be well

approximated by the arbitrary-mode model.
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CHAPTER VI

Assessing the Value of Including Unimodality

Information in Distributionally Robust

Optimization Applied to Optimal Power Flow

To manage uncertainty, chance-constrained optimal power flow formulations and

various solution methodologies have been proposed. However, conventional approach-

es either provide overly-conservative results or rely on accurate estimates of uncer-

tainty distributions, which may not exist. Chapter IV considered a distributionally

robust optimal power flow problem with both moment and unimodality information

because most practical uncertainties follow unimodal distributions. The problem is

formulated using chance constraints. Additionally, reformulations, approximations,

and efficient solving techniques were provided. This chapter improves on the pre-

vious work with a new optimal parameter algorithm that searches for an optimal

approximation. The algorithm improves the computational time and quality of the

approximate solution. Additionally, we evaluate the performance of the aforemen-

tioned approaches in solving the chance constrained OPF problem using modified

IEEE 118-bus and 300-bus systems with high penetrations of renewable generation.

Results show that including unimodality information improves the solution quality

but increases the computational requirements. The main content of this chapter is
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summarized in the following paper.

1. B. Li, R. Jiang, and J.L. Mathieu. Assessing the value of including unimodality

information in distributionally robust optimization applied to optimal power flow.

Working Paper, 2018.

6.1 Introduction

Previous literature has sought to ensure the reliability of power system operation

under uncertainties such as renewable generation forecast error by solving the chance

constrained optimal power flow (CC-OPF) problem in which physical constraints are

required to be satisfied at high probability levels [104, 42, 96, 9, 79, 93, 52]. Con-

ventional approaches to solving the CC-OPF problem include randomized techniques

with empirical uncertainty scenarios [17, 58], various analytical reformulations that

assume known distributions [9, 79, 52, 80], and sample average approximation (SAA)

[69, 2]. Randomized techniques such as the scenario-based method [58] require a large

number of scenarios and often provide overly-conservative results.

Analytical reformulations incur less computational efforts because the reformula-

tions often involve estimates of statistical information like moments. However, the

solutions can be unreliable because estimates might not be accurate. SAA performs

better as the number of samples increases, but it also introduces heavier computa-

tional burden as more binary variables and constraints are needed when recasting

the SAA formulation as a mixed-integer program. The objective of this work is to

identify new approaches that are efficient to solve and generate high-quality solutions

with low objective costs and high reliability.

A distributionally robust (DR) optimization formulation has recently been pro-

posed to mitigate the ambiguity from estimating the uncertainty distribution. This

formulation incorporates chance constraints with regard to the worst-case probability

distributions within a data-driven ambiguity set [29, 22, 87, 44]. This new formulation
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is closely related to robust and stochastic optimization because (1) it reduces to a

robust optimization model if the ambiguity set includes only the support information

and (2) it reduces to a stochastic optimization model if the ambiguity set includes

only a single distribution. By incorporating statistical information (e.g., mean, co-

variance, etc.) into the ambiguity set, DR formulations can achieve a better trade-off

between objective costs and reliability than the existing approaches.

In previous studies on DR-OPF problems, tractable reformulations have been de-

rived if the ambiguity set is moment-based [56, 88, 65, 107, 102, 55, 89], statistical

density-based [33, 25, 99], or if the ambiguity set additionally includes structural in-

formation such as symmetry [80], unimodality [80, 48, 49, 88], and log-concavity [50].

Reference [107] used an ambiguity set with the first and second moments to solve

a single-period OPF problem and obtained a good trade-off between objective per-

formance and computational tractability. Similarly, [102] considered two-sided joint

chance constraints for generator and transmission line limit constraints. References

[88, 80] derive analytical reformulations when the ambiguity set incorporates struc-

tural properties such as symmetry and unimodality. References [33, 99, 25] construct

the ambiguity set based on the discrepancy between the real distribution and the em-

pirical distribution. In this chapter, we consider an ambiguity set that incorporates

the first two moments and a generalized unimodality property ([49, 48]). In practice,

most uncertainties such as wind power forecast error follow a “bell-shaped” unimodal

distribution, whose density function has a single peak and decaying tails. Specifically,

our ambiguity set employs the concept of α-unimodality, where parameter α adjusts

the degree of unimodality and the shape of the distribution.

This chapter seeks to solve a distributionally robust chance-constrained (DRCC)

OPF problem by extending the DRCC optimization methodologies with both moment

and unimodality information from [49] and Chapter III. In particular, we propose

an optimal parameter selection (OPS) approach to find a compact and conservative
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approximation of the DRCC, in order to find high-quality solutions efficiently. The

OPS problem is equivalent to finding the closest piecewise linear (PWL) outer approx-

imation of a concave function that is irrelevant to the design variables. We further

propose multiple options, both online and offline, to exploit the optimal parameters

in the approximation and compare with the default parameter selection from [49]

and Chapter III. Additionally, we provide the mathematical proofs for the optimal-

ity condition, the existence guarantee of these parameters, and a heuristic solving

algorithm. Finally, we demonstrate the proposed DRCC-OPF model on modified

118-bus and 300-bus systems with high renewable penetration, and benchmark a-

gainst the Gaussian approximation, scenario approximation, and a DR model that

does not consider unimodality. We compare these approaches in objective costs, reli-

ability, and computational tractability. Specifically, we assess the value of including

unimodality information in the DR approaches. In addition, we demonstrate the

performance and computational tractability of the proposed OPS approach.

The remainder of the chapter is organized as follows. In Section 6.2, we introduce

some fundamental concepts and generalize the results regarding DRCC formulations

in [49] and Chapter III. In Section 6.3, we introduce the OPS approach for the

sandwich approximation of the DR chance constraints. In Section 6.4, we test all the

proposed approaches, algorithms, and newly developed techniques and compare them

with conventional methodologies. We specifically discuss the trade-offs and value of

adding unimodality into a moment-based DR optimization. Section 6.6 provides the

supporting mathematical proofs and statistical analysis.

6.2 Fundamentals and Ambiguity Sets

In this section, we first introduce the key fundamentals and the ambiguity sets

considered in the DR reformulation. Note that the theoretical results in this section

are adapted from [49] and Chapter III with minor generalizations.
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We assume the constraints under the uncertainty can be transformed into

a(x)>ξ ≤ b(x), (6.1)

where x ∈ Rn represents the vector of decision variables and a(x) : Rn → Rl and

b(x) : Rn → R represent two affine functions of x. Uncertainty ξ ∈ Rl represents

a random vector defined on probability space (Rl,Bl,Pξ) with Borel σ-algebra Bl

and probability distribution Pξ. To manage uncertain violations in (6.1), we use the

following chance constraint with probability threshold 1− ε:

Pξ
(
a(x)>ξ ≤ b(x)

)
≥ 1− ε. (6.2)

6.2.0.8 Ambiguity Sets

Here, we introduce the two types of ambiguity sets considered in the DR reformula-

tion. These sets are defined as combinations of moment and unimodality information

(i.e., α unimodality introduced in Chapter III with parameter α).

Next, we define our ambiguity sets:

Moment information only:

Dξ :=
{
Pξ ∈ P l : EPξ [ξ] = µ, EPξ [ξξ

>] = Σ
}
. (6.3)

Moment and unimodality information:

Uξ :=
{
Pξ ∈ P lα ∩ Dξ : M(ξ) = m

}
, (6.4)

where P lα and P l denote all probability distributions on Rl with and without the

requirement of α-unimodality respectively; µ and Σ denote the first and second mo-

ments of ξ; and M(ξ) = m means that the true mode value of ξ is m.
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Next, before we present the DR reformulations, we discuss the minor generaliza-

tions. In [49] and Chapter III, the results are derived assuming the mode is at the ori-

gin. Without loss of generality, we can rewrite (6.1) as a(x)>(ξ−m) ≤ b(x)−a(x)>m

with ξ−m as our new random vector whose mode is at the origin and apply the results

accordingly. Meanwhile, we also require Assumptions V.1 and V.2 as in Chapter V

with D2
ξ . Furthermore, we assume ε < 0.5 and α ≥ 1, since in practice the uncertain-

ties will at least be univariate-unimodal.

6.2.0.9 DR reformulations with Dξ

In this section, we consider the DR chance constraint with Dξ:

inf
Pξ∈Dξ

Pξ
(
a(x)>ξ ≤ b(x)

)
≥ 1− ε, (6.5)

and have the exact reformulation in the following SOC constraint base on Theorem

V.3. √(
1− ε
ε

)
a(x)>(Σ− µµ>)a(x) ≤ b(x)− a(x)>µ. (6.6)

6.2.0.10 DR Chance Constraint with Uξ

In this section, we consider the DR chance constraint with Uξ:

inf
Pξ∈Uξ

Pξ
(
a(x)>ξ ≤ b(x)

)
≥ 1− ε, (6.7)
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6.2.0.11 Exact Reformulations

From Theorem V.4, DR chance constraint (6.7) can be exactly reformulated as

√
1− ε− τ−α

ε
‖Λa(x)‖ ≤ τ

(
b(x)− a(x)>m

)
−
(
α + 1

α

)
(µ−m)>a(x), ∀τ ≥

(
1

1− ε

)1/α

, (6.8)

where Λ :=
((

α+2
α

)
(Σ− µµ>)− 1

α2 (µ−m)(µ−m)>
)1/2

.

Since parameter τ has an infinite number of choices, the reformulation in Theo-

rem V.4 also involves an infinite number of SOC constraints. To solve an optimization

problem with (6.8), we give the following iterative algorithm, i.e., Algorithm 2 below,

based on the separation approach in [49] and Chapter III. Note that the reformulated

optimization problem in Step 1 can be solved directly.

Algorithm 2: Iterative solving algorithm

Initialization: i = 1, τ0 =
(

1
1−ε

)1/α
;

Iteration i:
Step 1: Solve the reformulated optimization problem with (6.8) using τj for
all j = 0, . . . , i− 1 and obtain optimal solution x∗i . All τj values are
collected from previous iterations;

Step 2 (Separation [49]): Find worst case τ ∗ that result in the largest
violation of (6.8) under x∗i : IF τ ∗ does not exist, STOP and RETURN x∗i
as optimal solution; ELSE GOTO Step 3;

Step 3: Set τi = τ ∗ and i = i+ 1, GOTO Step 1;

To efficiently perform Step 2 in Algorithm 2, we follow the proposition below.

Proposition VI.1. Define µ∗0 =
(
α+1
α

)
(µ−m)>a(x∗i ) and

Σ∗0 =

(
α + 2

α

)
a(x∗i )

>(Σ +mm> −mµ> − µm>)a(x∗i ).

Then we have the following:

1. If a(x∗i ) = 0, then constraints (6.8) are always satisfied;
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2. If a(x∗i ) 6= 0 and b(x∗i )− a(x∗i )
>m = 0, then x∗i violates constraints (6.8) if and

only if it violates them at τ ∗ =∞.

3. If a(x∗i ) 6= 0 and b(x∗i ) − a(x∗i )
>m > 0, then x∗i violates constraints (6.8) if

and only if it violates them at τ ∗ = τ̂ , where τ̂ represents the minimizer of the

one-dimensional problem

min
τ≥τ0

(
(b(x∗i )− a(x∗i )

>m)τ − µ∗0
)2

−
(

1− ε− τ−α

ε

)
(Σ∗0 − µ∗0

2), (6.9)

whose objective function is strongly convex. The minimizer can be efficiently

found through golden section search in the interval [τ0, τu] where

τu =
µ∗

b(x∗i )− a(x∗i )
>m

+
α(1− ε)α+1

α (Σ∗0 − µ∗02)

2ε(b(x∗i )− a(x∗i )
>m)2

. (6.10)

The result is adapted from Proposition 3 in [49] and Proposition III.9 in Chapter III

by assuming m 6= 0.

In other words, if x∗i can violate (6.8), the largest violation happens at τ ∗ given

in Proposition VI.1.

6.2.0.12 Asymptotic Sandwich Approximations

We notice that solving the exact reformulation can be cumbersome since we might

have to deal with many separation problems and iterations. Hence, it is reasonable

to have the sandwich approximations to bound the true objective value from both

below and above. The approximations are asymptotic since they will converge to the

true objective costs with more parameters considered. The results are as follows.
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Proposition VI.2. Relaxed Approximation For given integer K ≥ 1, and real number

τ0 ≤ n1 < n2 . . . < nK ≤ ∞, (6.7) implies the SOC constraints

√
1− ε− nk−α

ε
‖Λa(x)‖ ≤ nk

(
b(x)− a(x)>m

)
−
(
α + 1

α

)
(µ−m)>a(x), ∀k = 1, . . . , K. (6.11)

The result is adapted from Proposition 4 in [49] and Proposition III.10 in Chapter III

by assuming m 6= 0.

Proposition VI.3. Conservative Approximation For given integer K ≥ 2, and real

number τ0 = n1 < n2 . . . < nK =∞, we define a piece-wise linear function containing

(K − 1) pieces:

g(τ) = min
k=2,...,K

{√
1

ε(1− ε− n−αk )

[(
αn−α−1

k

2

)
τ

+ 1− ε−
(

1 +
α

2

)
n−αk

]}
. (6.12)

Denote q1 = τ0 and q2 < . . . < qK−1 represent the (K − 2) breakpoints of function

g(τ). Then, (6.7) is implied by the SOC constraints

g(qk)‖Λa(x)‖ ≤ qk
(
b(x)− a(x)>m

)
−
(
α + 1

α

)
(µ−m)>a(x), ∀k = 1, . . . , K − 1. (6.13)

The result is adapted from Proposition 4 in [49] and Proposition III.11 in Chapter III

by assuming m 6= 0.

The convergence of the sandwich approximation is directly affected by the selec-

tion of nk for all k = 1, . . . , K. In [49], we proposed to use a default online parameter

selection scheme by using the worst case τ ∗ values on the affected constraints deter-
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mined by the separation problem in Algorithm 2. However, these values are only

critical to the relaxed approximation (see Theorem V.4) but they do not have any

direct connections to the conservative approximation. In Section 6.3, we will propose

a new offline OPS approach to help improve the conservative approximation.

Remark: If the decision makers are more interested in the violation magnitude rather

than violation probability, we can use other risk measures such as conditional value

at risk (CVaR) which evaluates the conditional expectation of a(x)>ξ − b(x) on the

right tail of its distribution. The details of solving DR CVaR constrained problem

under Dξ or Uξ are discussed in [110, 49] and Chapter III respectively.

6.3 Optimal Parameter Selection

In this section, we propose an OPS approach to develop the conservative approx-

imations of the DR chance constraint. Based on [49] and Chapter III, qk for all k in

Proposition VI.3 define the break points of a concave PWL function g(τ) that outer

approximates the nonlinear function

v(τ) =

√
1− ε− τ−α

ε
where τ ∈ [τ0,∞). (6.14)

Hence, equivalently we can define the OPS problem as to find the optimal PWL

outer approximation of v(τ). Conventional approaches on finding optimal PWL ap-

proximation have been thoroughly discussed in [21, 41, 92]. However, they are not

applicable to our problem as they do not consider outer approximations and assume

the function has a bounded domain. Based on their work, we make the following

specific extensions for our OPS problem:

1. We prove the optimality condition and existence guarantee for the optimal PWL

outer approximation of v(τ).
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2. We develop a heuristic searching algorithm to find the optimal PWL outer

approximation.

6.3.1 Optimality and Existence

First we define what is an optimal PWL approximation in our problem. Denote

an |S|-piece PWL outer approximation of v(τ) as h(τ) = mins∈S{dsτ + fs} where

S represents the set of indices representing the pieces and ds is non-increasing with

increasing s. We further define hs(τ) representing the s-th piece in h(τ). Suppose the

domain of each piece in h(τ) as Hs, then the error emax of the PWL outer approxi-

mation can be defined as the largest distance between these two functions

emax = max
s∈S

max
τ∈Hs
{dsτ + fs − v(τ)}. (6.15)

Hence, the optimal PWL outer approximation describes the |S|-piece PWL approxi-

mation that minimizes emax.

Next, we discuss the optimality conditions such that: if there exists a PWL solu-

tion satisfying these conditions then this solution is optimal. When |S| ≥ 1, we have

the following theorem.

Theorem VI.4. (Optimality) An |S|-piece PWL function h(τ) = mins∈S{dsτ + fs}

is an optimal PWL outer approximation of v(τ) defined in (6.14) if the following three

conditions hold.

1. h|S|(τ) =
√

1−ε
ε

.

2. hs(τ) is tangent to v(τ) for all s ∈ S.

3. Denote all |S| break points of h(τ) (including τ0) as {Bs, s ∈ S}. Then

h(Bs1)− v(Bs1) = h(Bs2)− v(Bs2), ∀s1, s2 ∈ S.
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The proof is given in Appendix 6.6.0.5. Next, for given v(τ), we show there always

exists an h(τ) that satisfies all three conditions in Theorem VI.4.

Theorem VI.5. (Existence) There always exists an |S|-piece PWL function h(τ) =

mins∈S{dsτ + fs} that satisfies all three conditions in Theorem VI.4.

The proof is given in Appendix 6.6.0.6.

6.3.2 Searching Algorithm

Here we provide a heuristic searching algorithm Algorithm 3 to solve for the

optimal |S|-piece PWL approximation of v(τ) on [τ0,∞) in (6.14). The algorithm is

adapted from the recursive descent algorithm in [41]. Before we give the algorithm,

we define the following notation:

• I: max number of iterations;

• δ: percentage tolerance as termination criteria;

• hi(τ): For iteration i, the current first |S|−1 pieces of the |S|-piece PWL outer

approximation of v(τ). We exclude the last zero-slope piece since it is trivial.

his(τ) represents the s-th linear function in the PWL approximation.

• Bi ∈ R|S|: For iteration i, all the break points and end points in hi(τ). Bi
s

represents the s-th entry and we have Bi
1 = τ0;

• T i ∈ R|S|−1: For iteration i, all the tangent points between h(τ) and v(τ). T is

represents the s-th entry;

• Ei ∈ R|S|: For iteration i, distance between h(τ) and v(τ) at all Bi’s. Define the

error between last zero-slope piece and v(τ) at Bi
|S| as eiT =

√
(1− ε)/ε−v(Bi

|S|).

• γi ∈ R|S|−1: For iteration i, the modification on T i. γis represents the s-th entry;
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• ∆ ∈ RI : the step size for all iterations. ∆i represents the step size for i-th

iteration.

Algorithm 3: Heuristic searching algorithm

Initialization: i = 1, ∆ = 1, δ = 0.01, I = 50, B1
|S| = 10, calculate T 1 by

evenly divide [τ0, B
1
|S|] into |S| pieces;

Iteration i:
Step 1: IF i ≤ I, calculate the internal Bi for i = 2, ..., |S| − 1 based on end
points τ0 and Bi

|S| as well as all T i;
ELSE STOP and RETURN no convergence under current initialization.
Step 2: Calculate Ei and eiT :

• IF (1 + δ)eiT < Ei
|S| or (1 + δ)Ei

|S| < eiT , set Bi
|S| = 0.5(τ ∗ +Bi

|S|) where

h|S|−1(τ ∗) =
√

(1− ε)/ε. GOTO Step 1;

• ELSE GOTO Step 3;

Step 3: IF max(Ei) ≤ (1 + δ) min(Ei), STOP and RETURN hi(τ)
combined with the last zero-slope piece as the optimal solution; ELSE
GOTO Step 4;
Step 4: IF i = 1, GOTO Step 5; ELSEIF max(Ei) > max(Ei−1), i = i− 1,
∆i = ∆i/2, and GOTO Step 5; ELSE GOTO Step 5;
Step 5: For all s = 1, ..., |S| − 1,

γis =
∆i(Ei

s+1 − Ei
s)

Eis+1

Bis+1−T is
+ Eis

T is−Bis

.

Then, set T i+1 = T i+1 + γi and i = i+ 1. GOTO Step 1;

In the initialization step, δ, ∆, B1
|S|, and I can use other reasonable values. When

|S| = 2, an illustrative example is shown in Fig. 6.1. In each iteration i, Step 1 first

estimate T i with in [τ0, B
i
|S|]. In Step 2, we first coarsely adjust the current last break

point Bi
|S| by comparing Ei

|S| and eiT . Generally, if Ei
|S| is larger, we should reduce

Bi
|S| and vice versa. In Step 4, we further adjust T ii with γi, that is based on the

same derivations as in [41]. If the algorithm successfully terminates from Step 3 at

iteration i∗, based on Theorem VI.4, we have Ei∗
s = ei

∗
T for all s ∈ S. The optimal

break points Bi∗ can be used in the Proposition VI.3 to establish the corresponding

conservative approximation.
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Last zero-slope piece

Figure 6.1: Illustrative Example of Iteration i in Algorithm 3 when |S| = 2.

Remark: We observe that the resulting optimal parameter from Algorithm 3 is

uniquely determined once the required dimension |S| is determined. Specifically,

it is independent of the decision variable values but only dependent on the system

parameter. Hence, these optimal parameters can be efficiently determined offline.

6.4 Case Studies

6.4.1 Simulation Setup

We consider a similar DC OPF problem as in [49] and Chapter III with more

uncertain wind power plants. We assume that the system has NW wind power plants

with wind power forecast error w̃ ∈ RNW (each element is represented as w̃i), NG

generators, and NB buses. The wind power forecast errors are calculated as the

difference between actual realizations and their corresponding forecasts and will be

compensated by the generator reserves. Design variables include generation output

PG ∈ RNG , up and down reserve capacities Rup
G ∈ RNG , Rdn

G ∈ RNG , and a distribution

vector dG ∈ RNG , which determines how much reserve does each generator provide

to balance the overall wind forecast forecast error. The full problem formulation is
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given below.

min P T
G [C1]PG + CT

2 PG + CT
R(Rup

G +Rdn
G )

s.t.− Pl ≤ APinj ≤ Pl, (6.16a)

RG = −dG(ΣNW
i=1 w̃i), (6.16b)

Pinj = CG(PG +RG) + CW (P f
W + w̃)− CLPL, (6.16c)

PG ≤ PG +RG ≤ PG, (6.16d)

−Rdn
G ≤ RG ≤ Rup

G , (6.16e)

11×NGdG = 1, (6.16f)

11×NB(CGPG + CWP
f
W − CLPL) = 0, (6.16g)

PG ≥ 0NG×1, dG ≥ 0NG×1, (6.16h)

Rup
G ≥ 0NG×1, R

dn
G ≥ 0NG×1, (6.16i)

where [C1] ∈ RNG×NG , C2 ∈ RNG , and CR ∈ RNG are cost parameters. Constraint

(6.16a) bounds the power flow by the line limits Pl. The power flow is calculated from

the power injections Pinj in (6.16c) and the parameter matrix A based on admittance

and network connection. Constraint (6.16b) computes the real-time reserve value RG

that is bounded by the reserve capacities Rdn
G and Rup

G in (6.16e). In (6.16c), P f
W

is the wind power forecast, PL is the load, and CG, CW , and CL are matrices that

map generators, wind power plants, and loads to buses; (6.16d) bounds generation

within its limits [PG, PG]; (6.16f), (6.16g) enforce power balance with and without

wind power forecast error; and (6.16h), (6.16i) ensure all decision variables are non-

negative.

We test our approaches on the modified IEEE 118-bus and 300-bus systems with

network and cost parameters from [20]. We set CR = 10C2 and add wind power plants

to all generation buses to achieve high uncertainty dimension. Meanwhile, to realize
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high wind penetration, we add in total 400 and 2000 MW forecast generation for

the 118-bus and 300-bus systems respectively. Specifically, we scale the wind power

forecast so that the forecast generation on each generation bus is proportional to its

generation limit.

For uncertainty data, we define the forest error ratio that is calculated as the

ratio between the wind power forecast error and the corresponding forecast. Then,

we consider the following two data sets with distinct properties:

Data Set 1 (DS1) We use the same wind power scenarios as in [93]. The data set is

generated using the Markov-Chain Monte Carlo mechanism [70] on real wind power

forecasts and realizations from Germany. The wind power is well-forecasted with

small forecast error ratios (−30% ∼ 60%). For each wind bus, we randomly select

the scenarios from the same wind data pool without considering spatial correlation.

Data Set 2 (DS2) The RE-Europe data set [43] contains hourly wind power fore-

casts and realizations based on the European energy system. The data set includes

strong spatio-temporal correlation. However, the data set also contains poor fore-

casts with extreme forecast error ratios, up to 5300%. Hence, we apply an additional

filter to exclude the outliers and scale down the forecast error while maintaining its

distribution and correlation. The details are given in Section 6.6.0.7.

We solve all the optimization problems using CVX with the Mosek solver [32, 31].

We set ε = 5% and α = 1. The latter is valid because, in general, wind power forecast

error is marginally unimodal (details in Section 6.6.0.8). We use 5000 and 8000

randomly generated data points for the 118-bus and 300-bus systems to construct Dξ

and Uξ. More data is needed for the 300-bus system since the uncertainty dimension is

larger. In addition, we use histograms with 15 and 20 bins to determine the locations

of mode m for DS1 and DS2 by identifying the bin with the most points. Further, we

randomly select 5000 and 8000 data points to conduct out-of-sample tests to evaluate
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reliability for the 118-bus and 300-bus systems respectively. We define the reliability

as the percentage of wind power forecast errors for which all chance constraints are

satisfied. To guarantee the credibility of the result, we perform 3 parallel tests by

randomly reselecting the data used to construct the ambiguity sets.

As benchmarks, we consider the following conventional approaches:

• Scenario-based method [58]: The method enforces the constraints affected by

uncertainties to be robust against a probabilistically robust set. This set is con-

structed using a sufficient number of randomly selected uncertainty realizations.

• Analytical reformulation with Gaussian assumption [9, 52, 79]: Here, we assume

the uncertainty follows a multivariate normal distribution with moments deter-

mined by the data. Then all the chance constraints can be exactly reformulated

as SOC constraints.

6.4.2 Results

6.4.2.1 Convergence of Algorithm 3

Here, we demonstrate the convergence performance of Algorithm 3 under different

|S| values. In Fig. 6.2, we observe that when |S| increases, the optimal approximation

error emax will decrease and the total number of iterations grows almost linearly. In

addition, the algorithm also demonstrates a fast convergence rate at different |S|

values.

6.4.2.2 Costs, Computational time, and Reliability

Here, we compare the scenario-based method (SC), analytical reformulation under

Gaussian assumption (GA), DR approach with only moment information (DR-M),

and DR approach with both moment and unimodality information (DR-U) in terms

of objective costs, reliability, and the overall computational requirement. The results
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Figure 6.2: Total iteration and optimal approximation error at different |S| (top);
convergence of the approximation error through iterations at different |S| (bottom).

are summarized in Tables 6.1 and 6.2. To quantify the comparisons, we define a

percentage difference (Diff) on objective cost and reliability against our benchmarks

SC and GA as they normally bound the other approaches. Specifically, we define Diff

of GA to be 0 and Diff of SC to be 100%. Diffs of other approaches are calculated as

(X-GA)/(SC-GA) where X can refer to DR-M or DR-U. Next, we define the improve-

ment (Improv) of a certain approach to be the ratio of its Diff on reliability to its

Diff on cost. Both SC and GA have Improvs of 1 (i.e., we assume 0/0 = 1 for GA). If

the Improv of a certain approach is large, we conclude that this approach has better

trade-off between cost and reliability than the SC and GA benchmarks. Specifically,

it means the approach achieves high reliability with low relative cost.

From Tables 6.1 and 6.2, we see that, at any system dimensions or data sets,

SC provides overly conservative results with the highest objective costs and 100%

reliability far from our pre-defined probability level of 95%. GA provides the least

conservative results with the lowest objective costs and the lowest reliability that

always below the 95% requirement. For DR-U and DR-M, their costs and reliabil-

ity are between SC and GA and satisfy the 95% requirement. Specifically, DR-U

provides higher objective costs and higher reliability since it only considers moment

information in the ambiguity set. If we compare the Diffs and Improvs of DR-U
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Table 6.3: Percentage Time of Step 2 (%) and Iteration Number

Bus/Data Set
118/DS1 118/DS2 300/DS1 300/DS2

min avg max min avg max min avg max min avg max

Percentage 86.2 86.8 87.4 85.4 85.6 85.9 59.1 59.1 59.2 43.1 43.6 43.9
Iteration 5 5 5 26 32 36 6 7 7 14 23 33

and DR-M, we can conclude that DR-U provides the best trade-off in terms of cost

and reliability and hence has the best solution quality. In terms of the computation

time, GA, SC, and DR-M finish in a single run. However, DR-U requires an iterative

solving algorithm and hence takes the longest computational time. As the system

dimension increases, we observe that the resulting computational burdens become

severe but similar relationship between approaches still hold. Comparing DS1 and

DS2, solutions from DS1 are more stable with less variability across the parallel tests.

Meanwhile, cost Diffs and solving time from DS1 are much smaller than the ones

from DS2, but reliability Diffs and Improvs of DS1 are much larger.

6.4.2.3 Convergence of Algorithm 2

Here, we analyze the computational performance of Algorithm 2 as well as the

approximate solutions of its intermediate iterations. Table 6.3 summarizes the percent

time it takes to complete Step 2 in Algorithm 2 (i.e., the separation problem) and

the total number of iterations. The rest of the percent time is used to complete Step

1, i.e., to solve for optimal solutions. We observe that generally DS2 requires a larger

number of iterations than DS1 and the 118-bus system requires more computational

effort to complete Step 2 than the 300-bus system.

We further use the 4 test cases (i.e., different combinations of systems and data

sets) to analyze the time decomposition in each iteration as shown in Fig. 6.3. We

see that, in all the cases, the time used for solving Step 2 almost remains constant.

With larger number of iterations, the overall solving time slightly increases as more

constraints are added in Step 1 of Algorithm 2. Additionally, cases with the 300-bus
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Figure 6.3: Total Solving Time and Time of Step 2 in Each Iteration.

system or DS2 require longer solving time in each iteration.

We have shown that the exact solution of DR-M normally requires long solving

time. Next, we check if the solutions from the intermediate iterations can be good

approximates of the final optimal solution. As an example, we use 36-iteration test

case in 118/DS2 and calculate its reliability and optimality gap as shown in Fig. 6.4.

We observe that solutions from the intermediate iterations (i.e., lower bound approx-

imations) are not suitable to approximate the optimal solution. The reason is that

even at low optimality gap (< 1%), it may have disastrous reliability (< 70%). In

addition, we also observe that higher objective costs do not always guarantee higher

reliability in the out-of-sample tests.

6.4.2.4 Conservative Approximations and OPS

In this section, we provide several other options to approximate the optimal solu-

tions by using the conservative approximation together with the OPS solutions. We
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Figure 6.4: Optimality Gap and reliability of intermediate-iteration solutions of Al-
gorithm 2 (red dash marks 1% threshold optimality gap).

propose 5 different options to carry out the conservative approximation: Given K in

Proposition VI.3:

• UB ([49] and Chapter III): an online approach that uses the worst case τ ∗

on the violated constraints from the separation problem in Algorithm 2 for all

iterations before K − 1.

• OPS0: an online approach that uses the OPS solutions |S| = K − 1 on the

violated constraints from the separation problem in Algorithm 2.

• OPS1: an offline approach that uses the OPS solutions |S| = K − 1 on all the

chance constraints.

• OPS2: an aggregated version of OPS0 that use all the OPS solutions with

1 ≤ |S| ≤ K − 1.

• OPS3: an aggregated version of OPS1 that use all the OPS solutions with

1 ≤ |S| ≤ K − 1.

Note that if |S| = 1, the solution of Algorithm 2 trivially coincides with Proposi-

tion VI.3 with K = 2. Comparing the online (OPS0 and OPS2) and offline (OPS1

and OPS3) options, online options require the information about which DR chance
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Figure 6.5: Overall performance of the conservative approximations on the 118-bus
system with DS1 (red dash marks 1% threshold optimality gap).

constraints are violated in the separation problem in Algorithm 2, but offline options

apply the conservative approximations with OPS on all of the DR chance constraints.

Further, if we compare normal (OPS0 and OPS1) and aggregated versions (OPS2 and

OPS3), the aggregated versions take advantage of the OPS solutions from smaller pa-

rameter dimension and hence the OPS solutions from smaller |S| are subsets of the

ones from larger |S|. However, the normal versions do not include the OPS solutions

from smaller |S|.

Next, we use the same 4 test cases and analyze their overall performance. For

UB, we check the resulting solutions from all iterations in the separation problem.

For OPS0/1/2/3 options, we limit |S| ≤ 5 for the 118-bus system and |S| ≤ 4 for the

300-bus system.

Figure 6.5 shows the comparison of the conservative approximations on the 118-

bus system with DS1. UB fails to converge into the 1% optimality gap as K increases

to the maximum number of iterations. OPS0 and OPS1 demonstrate better con-

vergence rates and optimality gaps but the cost does not continue to decrease as

|S| increases. The reason is that the OPS solutions for smaller |S| values are not
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Figure 6.6: Overall performance of the conservative approximations on the 300-bus
system with DS1 (red dash marks 1% threshold optimality gap).

a subset of the OPS solutions for larger |S|. On the other hand, we also see that

OPS2 and OPS3 show similar convergence rates as well as non-increasing costs as

|S| increases since they aggregate the OPS solutions. In addition, OPS1 and OPS3

successfully converge to the 1% optimality gap when |S| ≥ 2. In terms of the solving

time, we observe that all the approximation solutions except the last solutions of

UB/OPS0/OPS1 take less time than exactly solving the DR-U (483.4s). Specifically,

the offline OPS options: OPS1 and OPS3 show overall faster convergence than the

other online options. Actually, the first few solutions in OPS1 and OPS3 even take

similar amount of time as the single-run approaches (i.e., GA, SC, and DR-M). Online

options UB/OPS0/OPS2 show linear relationships between solving time and K − 1

or |S|. However, the solving time in OPS1 and OPS3 grow faster as |S| increases. In

terms of reliability, all the approximation solutions satisfy the 95% level and follow

the tendencies of the optimality gaps since the objective costs from the conservative

approximations are higher than the exact optimal cost. Hence, solutions with larger

optimality gaps are more conservative with higher reliability than our requirement.

Next, if we shift to the 300-bus system as shown in Fig. 6.6, similar properties can

be observed except that the convergence time of OPS1 and OPS3 grow beyond that

of the offline options when |S| ≥ 3. Hence, to approximate the optimal solution of
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DR-U, we can either use offline options with small |S| or online options. Both of the

options have small optimality gaps, high reliability and much less convergence time

than solving the DR-U exactly (2263.6s).
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Figure 6.7: Overall performance of the conservative approximations on the 118-bus
system with DS2 (red dash marks 1% threshold optimality gap).
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Figure 6.8: Overall performance of the conservative approximations on the 300-bus
system with DS2 (red dash marks 1% threshold optimality gap).

Figure 6.7 shows similar test results on the 118-bus system with DS2. Since more

iterations are required to solve DR-U, UB also shows much slower convergence rate

and larger initial optimality gap 25% that finally converges to 1% optimality gap

when K − 1 = 35. Meanwhile, all OPS options show excellent convergence rates

even if we limit |S| ≤ 5. Online options OPS0 and OPS2 converge when |S| = 2
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with optimality gaps < 5%. Offline options OPS1 and OPS3 achieve optimality gaps

around the 1% threshold as |S| increases to the limits. For convergence rate, all OPS

options are much faster than the UB or exactly solving the DR-U (3815.9s). Among

the OPS options, similar linear and nonlinear properties in terms of the solving times

are observed as in Fig. 6.5. For reliability, we see all options still satisfy the 95%

probability level and the UB reliability converges faster than its optimality gap. The

reliability of all the OPS options follow the same trend as the optimality gap results.

However, we also observe two interesting results that: OPS0 and OPS2 have the

same costs when |S| ≥ 2 but OPS0 has higher reliability. OPS1 has lower cost than

OPS0 and OPS2 but has higher reliability. Next, we check the 300-bus system with

DS2 as shown in Fig. 6.8. We observe similar properties as in Fig. 6.7 and all online

and offline options give solutions with better performance much faster than exactly

solving the DR-U (15720.6s). We also see changes on the solving time difference

between the online and offline options similar to Fig. 6.6 due to the increase on the

problem dimension. Further, we also see an oscillation on the reliability of UB which

is similar to Fig. 6.4 which shows that reliability is not always driven by the cost.

In addition to the results above, we also observe that the conservative approxima-

tions from DS1 generally have smaller optimality gaps than DS2. The solving time

advantages of the offline options start to decrease when system dimension increases.

In general, we can see that, conservative approximations are suitable to approximate

the optimal solution of DR-U since they provide solutions with smaller optimality

gaps and higher reliability. Especially with OPS, we are able to use the offline ap-

proximations or improve the online approximations to achieve better convergence rate

and high-quality approximate solutions with less solving time.

193



6.5 Conclusions

In this chapter, we developed an optimal parameter selection approach to solve

a DRCC OPF problem. We further derived optimality and existence guarantee as

well as an efficient solving algorithm. The approach extended the existing DRCC

methodology that considers the moment and unimodality information by effectively

seek high-quality approximate solutions.

To evaluate the approaches and new ideas, we compared the scenario-based method,

analytical reformulation under Gaussian assumption, and DRCC approaches with

moment or unimodality information. We performed case studies on modified IEEE

118-bus and 300-bus systems using two wind uncertainty data sets, and observed

that including unimodality information in a moment-based DRCC approach greatly

improves the trade-off between objective costs and reliability compared with other ap-

proaches. However, this approach also requires larger computational efforts because

the separation algorithm takes more iterations than the single-run approaches.

Detailed analysis indicates that the separation algorithm’s computation effort is

approximately the same in each iteration. Additionally, conservative approximations

proved to be more reliable than relaxed approximation for efficient determination of

optimal approximates. Furthermore, optimal parameter selection enabled the devel-

opment of multiple online and offline options that outperformed the existing conser-

vative approximation approach by providing solutions with low optimality gaps that

satisfied reliability level and that required much less solving time.

Potential areas for future research include comparing DR approaches using differ-

ent ambiguity sets, solving optimization problems other than OPF, and improving

the performance of current DR approaches.
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6.6 Supporting Material

6.6.0.5 Proof of Theorem VI.4

Condition 1: The last piece of h(τ), i.e., h|S|(τ) must have zero slope because

otherwise the error is infinite (if the slope is strictly positive) or h|S|(τ) < v(τ) for

a sufficiently large τ (if the slope is strictly negative). It follows that h|S|(τ) =

limτ→∞ v(τ) =
√

(1− ε)/ε because this is the constant function that dominates v(τ)

with the smallest error.

Condition 2: Since v(τ) is non-decreasing and concave, we have ds ≥ 0 and ds is

non-increasing in s. If a piece of h(τ) is not tangent to v(τ), then we decrease the

intercept of this piece until it meets v(τ). Note that this does not increase emax. Then,

all the pieces of h(τ) are tangent to v(τ), with the only exception that h1(τ0) = v(τ0)

and h′1(τ0) > v′(τ0). In the case of this exception, we rotate h1(τ) clockwise around

the point (τ0, v(τ0)) until h1(τ) becomes tangent to v(τ) at τ0. Note that the rotation

does not increase the error emax.

Condition 3: We prove by contradiction. Assume that ht(τ) satisfies all three

conditions and has an error et,max, and there exists an hc(τ) that satisfies Conditions

1 and 2 and has an error ec,max < et,max.

If |S| = 1, then ht(τ) = hc(τ) due to Condition 1. This contradicts the assumption.

If |S| > 1, since ec,max < et,max = Et
2 = Et

|S|, we have Bt
2 > Bc

2 (note that Bt
2 and Bc

2

represent the first break points of ht and hc other than τ0, respectively) and Bt
|S| < Bc

|S|

(last break points of ht and hc, respectively). If |S| = 2, this is a clear contradiction. If

|S| > 2, then there exists an s ∈ [2, |S|−1] such that [Bt
s, B

t
s+1] $ [Bc

s, B
c
s+1], i.e., there

exists a pair of pieces hts(τ) and hcs(τ) with the same index s such that the domain of

hts(τ) is a strict subset of that of hcs(τ), because ht(τ) and hc(τ) have the same domain

[τ0,∞) and the same number of pieces. According to Condition 2, both hts(τ) and

hcs(τ) are tangent to v(τ) and hence et,max = Et
s = Et

s+1 ≤ max{Ec
s, E

c
s+1} ≤ ec,max,
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contradicting the assumption.

6.6.0.6 Proof of Theorem VI.5

First, with a similar proof to that of Theorem VI.4, we can show that an |S|-

piece PWL function h(τ) is an optimal outer approximation of v(τ) on a bounded

interval [τ0, τ ] if it satisfies Conditions 2 and 3 in Theorem VI.4. We term this result

Theorem VI.4-finite.

Second, we use mathematical induction to prove that there exists an |S|-piece

PWL approximation that satisfies the conditions of Theorem VI.4-finite, if v(τ) is

defined on a bounded interval [τ0, τ ]. When |S| = 1, Condition 3 becomes h(τ0) −

v(τ0) = h(τ) − v(τ). The single-piece optimal PWL approximation exists by simply

searching for a point in [τ0, τ ] where h(τ) and v(τ) are tangent at.

Next, we show that if a C-piece optimal PWL approximation exists and satisfies

the conditions of Theorem VI.4-finite, then so does a (C + 1)-piece optimal PWL

approximation. In the C-piece approximation, denote the second largest break point

as BF . According to the induction assumption, there exists a C-piece approximation

on [τ0, BF ] and a single-piece approximation on [BF , τ ]. As we move BF from τ0

to τ , the error of the C-piece approximation continuously increases from zero to a

finite positive number (i.e., the optimal error for a C-piece approximation on [τ0, τ ]).

Accordingly, the error of the single-piece approximation continuously decreases from a

finite positive value (i.e., the optimal error for a single-piece approximation on [τ0, τ ])

to zero. It follows that there exists a B∗F ∈ [τ0, τ ] such that the corresponding error of

the C-piece approximation (on [τ0, B
∗
F ]) equals that of the single-piece approximation

(on [B∗F , τ ]). The resultant (C+ 1)-piece PWL approximation satisfies the conditions

of Theorem VI.4-finite. The proof of the case with τ = +∞ is similar and so omitted

here.
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6.6.0.7 Statistical analysis and filter on DS2

First, we demonstrate the poor forecast quality in DS2 by showing the distribution

of the forecast error ratio for an instance node. Since the wind power realization has

to be non-negative, this ratio is practically lower bounded by −100%. In the boxplot

of Fig. 6.9, we see that the original data contains extreme outliers. Further, from

the histogram of Fig. 6.9, we observe that the forecast error ratio is distributed with

large magnitudes (> 200%). As one of data points in DS2, a wind plant with a

forecast of 2 MW actually produces an output of 20 MW with a forecast error ratio

of 900%. Hence, if we directly use the data from DS2, we might get extreme wind

power forecast errors after we scale the forecast up based on our testing systems.

To obtain appropriate data for the simulations while maintaining the distribution

of the wind power forecast error, we scale all the forecast errors down by 60% and

then filter out the extreme points with forecast error ratios larger than 100%. The

resulting histogram and the boxplot are shown in Fig. 6.10 and we see that the new

distribution is much more reasonable than Fig. 6.9.
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Figure 6.9: Histogram (100 bins) and the boxplot of the original wind power forecast
error ratio of an instance node.
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Figure 6.10: Histogram (10 bins) and the boxplot of the filtered wind power forecast
error ratio of an instance node.

6.6.0.8 Validation of Unimodality

Here, we validate the unimodality of the wind power forecast error from DS1 and

DS2 using 5000 data samples. In Figs. 6.11 and 6.12, we present the histograms

of univariate and bivariate forecast errors with 15 and 20 bins for DS1 and DS2

respectively.
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Figure 6.11: Histograms of univariate and bivariate wind power forecast errors of DS1
(15 bins).

Figure 6.12: Histograms of univariate and bivariate wind power forecast errors of DS2
(20 bins).

In general, both figures empirically justify our assumption that the probability

distribution of wind power forecast errors is unimodal and hence satisfies Assump-

tion V.1. Furthermore, we also observe that the distribution of DS2 is more skewed

than DS1.
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CHAPTER VII

Conclusion and Future Work

With an increasing amount of uncertainties involved with power system operation,

special techniques have to be developed to alleviate the influence from the uncertain-

ties to the system feasibility. For example, uncertain power output from increasing

penetration of renewable generation might lead to large variability to the network

power flow and severe supply and demand mismatch across the system. Stochastic

optimal power flow problems with chance constraints are formulated to not only help

reduce the risk of physical constraint violations but also minimize the operational

cost of generations and reserves. To solve the problem, most existing methodologies

either produce conservative results with high objective costs or suffer from solutions

with low reliability against uncertainty. Based on these facts, new methodologies are

needed to achieve better performance with low cost and high reliability for realistic

optimal power flow problems under different uncertainties. Recent research demon-

strates that distributionally robust optimization can outperform the conventional

approaches by using properly defined ambiguity set that summarizes the potential

probability distributions of the uncertainty.

This dissertation analyzed the performance of the conventional approaches, devel-

oped new distributionally robust approaches with strengthened ambiguity sets and

performed related case studies to illustrate the performance of those approaches.
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The first part of the dissertation dealt with the difficulties of applying analytical

reformulations assuming Gaussian distributions to an optimal power flow problem

with uncertain load-based reserves. Chapter II discussed the development of new

techniques to reformulate the problem and proved that the reformulation is convex.

These techniques were compared with the scenario-based method, and the results indi-

cated that analytical reformulation provides less conservative results but the optimal

solutions suffer from low reliability in the out-of-sample tests. Case studies were also

performed to investigate the impacts of several factors including uncertainty levels, re-

serve costs, and solution methodologies on power system dispatch, operational costs,

and CO2 emissions and illustrated complicated trade-offs from different factors.

The second part of the dissertation dealt with developing new distributionally

robust formulations with strengthened ambiguity sets. Chapter III explained how

to strengthened a moment-based ambiguity set with generalized unimodality infor-

mation and derived tractable reformulations and approximations as well as efficient

solving algorithms. Case studies compared with the original moment-based ambiguity

set demonstrated that the new ambiguity set including the unimodality information

results in less conservative solutions but had similar computational requirements.

Similarly, Chapter IV demonstrated how to strengthened a moment and support-

based ambiguity set with log-concavity information and derived tractable sandwich

approximations. Case studies illustrated a better trade-off between objective cost

and reliability compared with the conventional ambiguity set excluding log-concavity

information. Chapter V extended the work of Chapter III by assuming that the mode

value from the unimodality information can be misspecified but still be bounded by

either an ellipsoidal or rectangular support. Case studies demonstrated that the

solution of the distributionally robust approaches including unimodality information

depend significantly on the quality of mode estimate. Considering misspecified modes

in the ambiguity sets effectively reduces the risk of generating solutions with low
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reliability against uncertainty.

Chapter VI proposed an optimal parameter selection scheme to improve the con-

servative approximation of the distributionally robust approach with unimodality by

efficiently finding high-quality approximates of the global optimal solution. In addi-

tion, simulations were conducted to compare the conventional approaches with the

newly developed distributionally robust approach with unimodality information. Case

studies demonstrated that strengthening ambiguity sets with unimodality informa-

tion helps to significantly improve the trade-off between objective cost and reliability.

However, this approach also requires larger computational efforts. In addition, by

using optimal parameter selection, high-quality approximates of the global optimal

solution can be efficiently found with a low optimality gap and high reliability.

7.0.0.9 Future Work

This section will introduce two potential directions for future work after the final

defense.

Improvements on the distributionally robust approaches Based on the dis-

sertation results, we propose the following potential areas to improve the developed

distributionally robust approaches:

• To improve the solution quality, the exact reformulation of the distribution-

ally robust approaches using log-concavity information will be derived. This

result will further improve the trade-off between objective cost and reliability

compared with Chapter IV.

• To reduce the computational time, parallel or distributed algorithms will be

developed to tackle the computational burden of implementing the current it-

erative algorithm on large-scale systems. For example, in the distributionally

robust approach with unimodality information, a high percentage of simulation
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time is used to solve the separation problem; however, it can be parallelized to

reduce computation effort.

• Distributionally robust optimization with joint chance constraints (e.g., two-

sided constraint with lower and upper bounds) or nonlinear constraints will be

derived.

Power System Adaptation under Uncertain Natural Disasters This project

will be in collaboration with the Los Alamos National Laboratory. In this project,

I propose to develop efficient algorithms to solve a multi-period power system adap-

tation problem (i.e., bus hardening and expansion) that is scalable in the problem

dimension and scenario size. The objective of this project is to improve the resiliency

of coastal power networks that face potential threats to sea level changes and storm

surge events. In terms of the optimization model, the original problem is formulat-

ed as a two-stage joint chance-constrained problem with finite support and feasible

mixed binary recourse. The problem is difficult to solve because it is a combina-

tion of stochastic programming and mixed integer programming. The only algorithm

available is a scenario-based approach with finite convergence and a global optimality

guarantee. However, the algorithm suffers from computational intractability when

there are many scenarios. To improve computational performance, I first reformulate

the problem to avoid faulty decisions under extreme scenarios while providing scenario

dominance relationships. Next, to speed up the algorithm, I will develop techniques

that are based on warm starts, bound tightening, smart constraints based on network

topology, and a scalable algorithm with improved computational tractability.
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