
UM-C^L--TX-I5-£S"

THE UNIVERSITY OF MICHIGAN

COMPUTING RESEARCH LABORATORY

THE CONSISTENT LABELING PROBLBEM, PART 4:

THE GENERALIZED FORWARD CHECKING AND

WORD-WISE FORWARD CHECKING ALGORITHMS

BERNARD NADEL
CRL-TR-15-85

PLEASE RETURN TO
COMPUTER SCIENCE DEPARTMENT ARCIRMSS
1440 BOELTEK HALE

1079 East Engineering Bldg.
Ann Arbor, Ml 48109

THE UNIVERSITY OF MICHIGAN

COMPUTING RESEARCH LABORATORY*

THE CONSISTENT LABELING PROBLBEM, PART 4:

THE GENERALIZED FORWARD CHECKING AND

WORD-WISE FORWARD CHECKING ALGORITHMS

BERNARD NADEL
CRL-TR-15-85

December 1085

Room 1079, East Engineering Building
Ann Arbor, Michigan 48100
USA
Tell (313) 763-8000

j — ;
Any opinions, findings, and conclusions or recommendations expressed in this publication are those of

the authors and do not necessarily reflect the views of the funding agency.

The CONSISTENT LABELING PROBLEM, Part 4:

The GENERALIZED FORWARD CHECKING and

WORD-WISE FORWARD CHECKING ALGORITHMS1

Prof. Bernard A. Nadel2

Dept. Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI 48109

December 1985

1 This work was in part supported by the Computer Science Dept. of Rntgero University, New Brunswick, N.J., and in part
by the Dept. Electrical Engineering and Computer Science of the University of Michigan, Ann Arbor, MI. This technical report
therefore appears as part of the Technical Report series of both departments — DCS-TR-167 at Rntgeis U. and CRL-TR-16-85 at
U. Michigan.

2 Previously: Bernard A. Nudel.

1

The CONSISTENT LABELING PROBLEM, Part 4:

The GENERALIZED FORWARD CHECKING and

WORD-WISE FORWARD CHECKING ALGORITHMS3

ABSTRACT

This paper is the fourth in a series on the Consistent Labeling Problem (CLP) — also known as the
Constraint Satisfaction Problem — of central interest in Artificial Intelligence and Operations Research.
The reader is refered to [7], [8] and [9], the first three papers in the series, for the necessary background and
notation. Also relevant are [4], [10]-[12] whose work is generalized and extended in this series of papers.

The present paper presents the Forward Checking algorithm and its variant, the word-wise Forward
Checking algorithm in a form which (i) is capable of solving arbitrary instances of the fully general CLP
class described in [7] and [8] and which (ii) explicitly allows arbitrary instantiation ordering and constraint-
check ordering during the problem-solving process. The relevant notation is introduced in terms of which
our subsequent complexity analyses will be able to incorporate these ordering effects, thus providing
theoretical insight into how to choose in advance good search orderings. Examples are given emphasizing
the dependence of problem-solving complexity on the particular instantiation order and constraint-check
order used.

1. Generalised Forward Checking (gFC)
Paralleling the treatment of the generalized Backtracking algorithm (gBT) in [9], this section

develops the generalized Forward Checking algorithm (gFC) based on an alternative recursive function for
the solution set T of a CLP instance. This algorithm is a version of the Forward Checking algorithm of
[4] which also appears anonymously in [6j. However, the version treated here is generalized so as to
explicitly allow arbitrary instantiation ordering and constraint-check ordering and to be able to handle
any problem of the general class CLP defined in [8] — including instances which, amongst other things,
may have constraints corresponding to an arbitrary family of arities and an arbitrary family of argument
sets. It should be noted that the Forward Checking algorithm on which gFC is based, was found second-
best out of seven CLP algorithms studies empirically in [4]. The algorithm found best was a "word-wise"
version of Forward Checking, described in generalized form in section 2 below.

lei. Developement of the Algorithm
Backtracking is notoriously prone to thrashing — the repetitive instantiation of a variable to a

value that will fail to satisfy the constraints again and again for the same reason [2], [4], [5]. For example,
in figure 3.1 the fifth node at level 3 fails for the same reason as the first node at that level. Backtracking
has no ability to learn from its mistakes. Several algorithms have been developed in an attempt to incor¬
porate some kind of memory into the Backtrack search process — see for example the algorithms of [2]
and [4]. Perhaps the simplest and yet most effective of these is the Forward Checking algorithm of 6]
and [4]. Whereas Backtracking checks the current instantiation at a node against past instantiations,
Forward Checking checks the potential future instantiations against those made to-date at the node. If a
violation of a relevant problem constraint is found then the offending future-variable value is filtered out
of the corresponding domain, never to be checked or instantiated again in the search below that node. To
make this explicit we first introduce

3 In this series of papers the numbering of equations, figures, tables and footnotes begins anew from (l) at the start of each
paper. From within the paper that they appear in, such items are referenced simply by their number, say (n). From outside their
paper of appearance, an item in paper p of the series is referenced as (p.ft).

December 4, 1085

r - if I / «'/ ZM II /)< T, Vi<**tU{/})S it

2

(1)
the domain of future variable / e Fk filtered with respect to the Instantiations Xk. In words,
this is tke_subset of values / from the original domain df that may be used to extend XkJto a consistent
labeling Xk 11 /. Thus (1) might also be called the set of consistent /-extensions of Xk . Of course if
Xk is itself inconsistent then djk must be empty, since no value in the original dj can be used to extend
an inconsistent labeling to a consistent one. The list of all future variable domains filtered with respect to
Xk is denoted

jXk (*Xk jXk'
Z*+i Xk +1+2

• <f) (2)

Anticipating the 4-queens example in figure 1 below, the value of this list at say the rightmost node
shown at level 2, where Xk = X2 = (2 4), is

d<24> = (<*,(?«> <24)) = ({1} {13}) (3)

In terms of filtered domains, the set of all consistent labelings of Z that are extensions of a given
labeling Xk of Xk can be expressed by the following recursive function

0 if is inconsistent

F2(Xk k)

{ Xk } if Xk is consistent and k = n

0 if Xk is consistent, k < n and 0 e d k

U- F2(Xk H^i+i *+1) otherwise
Xl , ifk

(4)

This is very much like the recursive function Fl of (3.7) on which gBT is based, except for the following
two differences.

(i) The union of consistent labelings that are extensions of Xk+i = Xk \ \ xk+x is only over values xk+x in
Q dhk+x rather than over all values in the original domain d%M. These are the only values that

need be considered for xk+x since by definition they are the only ones that allow itself to be
consistent.

(ii) If for any future variable / c Fk the domain Altered with respect to Xk is empty then no consistent
completion is possible and the empty set is returned.

Paralleling (3.8) the solution set T for an instance can be expressed as

r»F2(0 0) (5)
But since F 2 extends the labeling Xk only with values guaranteed to lead^to a consistent labeling of
it follows by induction that when computing T in this way, no call_F2(JV^ k) is ever made for which Xk
is inconsistent. Thus for computing T, checking for consistency of Xk may be avoided on the right side of
(4) giving the simpler version

December 29 1085

{ Xk } if Jb = n

F2(Xk Jfc)«

I

0 if Jb < n and 0 c d

U- F2(Xt 11 xk+1 A+l) otherwise
jf

k+l(dT k+1 sk+x

(3)

X
The right side of (6) makes use of d *. Anticipating its usefulness at the next level of recursion we include
it as an explicit argument of F2 — passing along d k on the right side of (6) and receiving its previous
level counterpart d *-1 on the left. We thus obtain the modified version of F 2

{ Xk } if k = n

F2(Xk dXt l k) =
0 if k < n and 0 e d

(7)

U- ^2{Xk || Jf+j d k-hi) otherwise
xk

ldi*+1

In computing the solution set T, for the initial call where k = 0 and Xk = X0 = 0 it is convenient to
use

a*-1 = dXi = dt dt* i * r

which is the list d of the original, unfiltered domains for the variables, prefixed with a dummy element
0. This prefixing of 0 will allow a uniform implimentation of function F 2 as discussed below.

Paralleling figure 3.1, figure 1 here shows half of the symmetrical search tree when using F 2 to
solve 4-queens formulated as in [7j. As in figure 3.1, we are again using for the instantiation order the
standard name order X = (xx x2 *4) = (zx z2 z* z4). A node is drawn in the search tree for each
recursive call to F 2. The node corresponding to call F2(Xk d k) is galled the node at Xk, or simply
node Xk. Each node Xk of the tree shows the corresponding value of Xk using the same convention as
described for figure 3.1. However, an important addition is that for_each future variable / e Fk (or
unplaced queen_in the present case) the corresponding row of a node Xk is not left empty but is used to

x
show the set dj k of still viable values for / given the current instantiations Xk .4 In the present case these
give the still viablejx>sitions for each unplaced queen when the first k queens have been placed on the
board as given by Xk. Values not yet filtered from the original domain df are indicated with a check.
Filtered values have the corresponding square left blank. For filtered domains that become empty,

x

djk =0, a wavy line is shown through the corresponding row. This is called a domain wipe-out.
Note that in_figure 1 (but not in later such search trees) we indicate in the above manner the (fully)

filtered domain djk for each future variable / e Fk at a node Xk. In practice however, at a node where
some future variable has a domain wipe-out, this wipe-out would normally be detected before the compu-

x . x
tation of_all the filtered domains dfk from the inputs dfk~l was fully completed — with filtering of the

x
inputs dfk~l possibly not having even been started for some future variables. In such a case all further
filtering at that node may be avoided, and djk need not necessarily be fully determined for all future
variables. (This is one of the reasons for the dependence, discused below, of problem-solving complexity
on constraint-check order used.)

4 Note thai the filtered domains input to a node Xk are actually djkl. These are not shown in the rows of node Xk but
rather in the rows of the parent node of Xk . In other words, the rows of node Xk show df k which are the input domains after
filtering at that node rather than before filtering.

December 49 1985

Fig. It Half of the symmetrical search tree generated by Forward Checking
in solving the 4-queens problem under the standard CLP formulation.

(Compare with figure 3.1.)

4

5

There is a significant difference in the number of nodes generated by gBT and gFC in figures 3.1
and 1. However, this does not provide a meaningful comparison between the two algorithms, since while
gFC generates less nodes than gBT does, gFC in general does far more constraint checks at a node.6 We
now consider the details of this constraint-checking process for gFC.

As implied above, the filtered domains of d k used on the right side of (7) may be obtained from
X X X

those of d k~l input on the left side. Vector d * consists of the filtered domains dfk for each future_vari-
x

able / € Fk at node Xk. For each of these variables (and for xk in addition) the filtered domain dfk~x is
available from d The question is then how to obtain df k from dj for a variable / e Fk. By defini¬
tion, we have from (1) that

dp-{T \ 7 <*/ zAx*\\7)*Tj u{/>} (s)

df'-1 = {T I T id, and Z,•(Xk_k \ \ J) e T, V J * ^X^UU)) (9)
XX

From these we see that djk C d/*"1 so that only values / from the latter filtered domain need be
considered in computing the former domain. Futhermore, for these values much of the condition required

x
in (8) has already been satisfied by the condition in (9). A little_ thought shows that for values in dfk~l}
the condition of (8) can be ensured by checking consistency of Xk \ \ f only with respect to the reduced
set of constraints \j[f] - Vxk jUl/J — ^e difference of *wo index sets used in (8) and (9) respec¬
tively. In addition, at any node Xk where such a computation is being performed, we have mentioned
above that Xk itself is known to be consistent and hence by definition satisfies all constraints in

x
Thus these constraints need also not be rechecked in obtaining df k. Finally then, (8) can be expressed in
terms of (9) as

dfk = { T I / £ d?'~l and Z, (Xk \ \ J) < T, \J j t 4>kf } (10)

where 4>kf = *xt U{/} ~ ^Uf/} " (H)

= {j \ je J{ and {xk J } C Z, C Xk U {/ } } (12)

Thjis the only constraints that need be checked in filtering the domain of variable / e Fk at a level
k node Xk are those whose argument set contains both variables / and xk and which otherwise contains
only variables of Xk, the variables instantiated to date. These, in other words, are the constraints for
which the current variable xk is an argument and its instantiation leaves only one more argument vari¬
able to instantiate. This is analogous to the situation for gBT where the checkable constraints at level k
where those for which xk was an argument variable and its instantiation left no more variables to instan¬
tiate. The constraints with indices in <l>kf we call the constraints forward-checkable against variable
/ at level it. Table 1 shows for our running example clp0f the sets <f>kj for each level k and each future
variable / e Fk at that level. As with the sets 0* of checkable constraints for gBT, the sets <pkf of
forward-checkable constraints are a function of the instantiation order used. And as in table 3.3, results
are shown for each of the 3! = 6 instantiation orders possible for the 3 variables of c/p0.

Note that as in this example, for any CLP instance each of the c constraints is forward-checkable
against exactly one future variable at exactly one level from 0 to n. The <t>kf thus constitute a partition
of the set of integers 1 to c, so that

8 Moreover, & meaningful comparison mnst consider the behaviour over different families of search orderings, since a good
family of search orderings for one algorithm may be bad for the other algorithm.

December 4f 1985

6

Table Is Sets and at each level k

for each of the 6 possible instantiation orders X for instance clp0.

X ^0*3 ^1*3 0L, 4>2s 3 <t>0 h <f>2

(*1 *2*s) 0 0 0 {1} {2 3} {4} 0 {12 3} {4}

(*1 2*22) 0 0 0 {2 3} {1} {4} 0 {12 3} {4}

(22 2\ «S) 0 0 0 {1} 0 {2 3 4} 0 {1} {2 3 4}

(*2*8*1) 0 0 0 0 {1} {2 3 4} 0 {1} {2 3 4}

(*s *1 *2) 0 0 0 {2 3} 0 {14} 0 {2 3} {1 4}

(*8 *2 *l) 0 0 0 0 {2 3} {1 4} 0 {2 3} {1 4}

U U h, - { 1 2 . . c } and £ £ I *»/ I - « (13)
* — 0 firk tm*0 fcfk

There are actually never any constraints to forward-check at level 0 since we are assuming that all con¬
straints involve at least two argument variables. Also, there are never any constraints to forward-check
at level n — all constraints have already been forward-checked at prior levels, and any labeling Xk gen¬
erated at level k » n is known to be consistent without need for further checking, as shown in (6) and
(7). We thus have <£0/ =0 for all future variables / at levels 0 and n respectively (there are in
fact no future variables at level n). At levels 1 through n-1, sets <t>kf will in general contain more than
one constraint. It therefore becomes relevant to consider the order in which constraints are selected for

forward-checking from each set $kf as well as the order in which the sets themselves are chosen. How¬
ever even this, still assumes we are using a specialized scheme of constraint checking, which we call / -

exhaustive, where all constraints of a given set $kf are forward-checked before forward-checking those
corresponding to a different future variable. In other words an /-exhaustive ordering <t>k is some concate¬
nation

h = 4>kfkx 11 <t>an II • • II (14)
of (possibly empty) orderings 4>kf of constraints forward-checkable at level k against the various future
variables f t Fk. These future variables may however be chosen in any order, and as in (14) we use f kt

to denote the 1-th such variable chosen in forming the /-exhaustive ordering <j>k. Examples of /-
exhaustive orderings appear for k = 3 in table 4 below. Only /-exhaustive orderings were treated in our
earlier paper [12]. The analytic complexity results to appear in later papers of this series give results for
the fully general ordering scheme which we now introduce.

x — x
Forming the list d k of filtered domains at a level k node Xk requires the computation of dfk for

each future variable / e Fk and in total this requires the checking of all constraints in the union

0* - U - { J I i 6 Md 3 / * Fk s.t. {xk / } C Z, C |J {/} } ,15i

This union we call the set of constraints forward«eheekable at level Jfc (against some future variable).
Besides the sets <j>t/ , table 1 also shows the corresponding unions • Note that paralleling the situation
for the sets , we have that =■ 0. And also by inheritance from the <fit/ from which they are
formed, the sets <j>t always constitute a partition of the full set of constraint indices, so that paralleling
(13) and (3.12) we have

U <(>k {1 2 . . e} and £ | <f>k | = c (16)
t*0 tag

December 4,1085

7

The members of a set <j>k may very well be checked in any order, even a non / -exhaustive order
that interleaves constraints from different sets <f>kf for a given k. As with varying the instantiation order
X, we will see that variations in the constraint-check orders at the different levels can also have a signifi¬
cant effect on problem-solving complexity. To model this we therefore consider set </>k of (15) to have
some arbitrary order imposed on it

h) (17)
the i-th component <f>k being the index of the constraint that is the t-th to be forward-checked at a level k
node. Such an ordering we call a constraint-check ordering at level k. It is the analog of the
constraint-check order for gBT given in (3.13). There are of course | <f>k | ! such orderings possible for a
given set <f>k, and one is to be chosen by the user at each level k of the search tree. For example, for any
n-queens problem there are (n-Jfc)! possible constraint-check orderings at level k, since at that level there
are n-k constraints to check — one between the current (or Jt-th) queen and each of the n-k other queens
that are yet to be placed on the board. Each such future queen must have its remaining viable positions
tested for consistency with that just chosen for the current queen (see figure 1), and the order of pairing
the current queen with future queens for this position-compatibility test is arbitrary.

In our later experiments, we will usually be using the natural constraint-check ordering <pk at
each level, which orders constraints Cj according to increasing index j. (Of course, the <f>k themselves, as
sets, depend first of all on the instantiation order X, as seen in the example of table 1.) The vector of
constraint-check orderings for gFC at the various levels we denote by

0 = (00 01 02 • • 0n-l 0I») == (0 01 02 • • 0»-l 0) (IS)

Note that, as for gBT, although we allow an arbitrary instantiation order X and arbitrary
constraint-check orders <f>k at the various levels, we do still require for gFC that the same variable xk be
instantiated at all nodes of level k (so that the same instantiation order X applies to all paths through the
search tree) and that the constraint-check order <f>k be the same at all nodes of level k. Actually, an
analysis of this globally-fixed search-ordering case can also be used to provide guidance for the locally-
determined case — as seen in section 9.2 of [11].

Knowing that a constraint is from <f>kj makes it clear that the constraint is to be used in filtering
the domain of future variable / e Fk at level k. However it is less clear what is the future variable fil¬
tered by constraint <f>k since all sets <(>kf for / c Fk are merged and the result permuted in some way in
forming the constraint-check order <j>k. However from (12) we see that the future variable corresponding
to constraint </>k, which we denote as f k or as / ^can be recovered as

fi-f4i-ztrXk <19)
the set difference between the argument set of the constraint C , and the set of variables Xk.* The
constraint-check order of (17) then induces the sequence

Gk = (fkl ft2 • • /*"*') (20)
of future variables / t Fk and it is in this order that the latter are chosen to have their domains filtered.
We call Gk the induced domain-filtering order for future variables at level k. For example

Gk = (zk+& **+1 xk+i xk+i xk+s xk+s) (21)
would be a valid domain-filtering order corresponding to a CLP instance where six constraints are
forward-checked at level k. Note that not all future variables f e Fk are necessarily represented in Gk
whereas some may appear more than once, but not necessarily consecutively. In terms of domain filter¬
ing, this means that not all future variables necessarily have their domains filtered at the nodes of a given
level, while some may be selected for domain filtering multiple times possibly with other variables having
their domains filtered in between. This will all depend on the sets <j>k induced at the various levels and
on the orderings chosen for them. Table 2 shows some of the possible constraint-check orders <t>k (permu¬
tations of the sets <f>k in table 1) together with their induced domain-filtering orders Gk at each level for
our running example clp0 of [7].

0 The right-hand side of (19) is really a singleton set containing variable / k rather than variable / k itself.

December 4, 1985

8

Table 2: Some possible constraint-check orders and their induced domain-filtering orders
for instance clp0 at each level for three different instantiation orders X.

X 4>o / Go <t>i 1 G1 <j>2 / G2

(*i 2s 2 2) 0/0 (12 3)/ (z2 z8 zs) (4) / (*,)
0/0 (3 12)/ (zj z2 z3) (4) / (*2)
0/0 (2 13)/ (zs z2 zs) (4) / (*2)

(z2 Zj Zi) 0/0 (1) / (*1) (2 4 3)/ (zj zx z,)
0/0 (1) / (*1) (3 4 2)/ (zj z1z1)

(zs z2 ZX) 0/0 (3 2)/(z1z1) (4 1) / (zi z,)

The above considerations lead us finally to the generalized Forward-Checking algorithm or gFC
presented in figure 2 using a Pascal-like language. As for gBT in [9], it is generalized in that it allows
arbitrary instantiation order X, arbitrary constraint-check order <pk at each level, and is able to solve
arbitrary instances of the very general class CLP defined in [8|. Note that function Filter uses a copy d

x x
of d k~\ This is simply to avoid using d as the name of a variable whose value (once filtering is under¬
way) does not agree with the definitions in (1) and (2). In practice this copying need not be done and the
filtering can be performed directly with the components of the input vector d

At line 20, algorithm gFC checks the consistency of value / with respect to constraint C ,, given
the prior instantiations Xk. As for gBT it should be remembered that the test Z3 i T} is in general just a
convenient shorthand for a test performed by a subroutine that represents constraint Cj intensively,
rather than indicating a test of membership in an extensive representation of set . The call
Update(d df) at line 24 replaces the previous filtered domain for variable / in d with its (generally) new
version df formed in the FOR loop at lines 17 to 22. Note that df is being used to denote the current
(generally filtered) set of viable values for variable /, as opposed to df which denotes the initial domain
of /. At line 26, tail(d) is the list d with its first element removed. This first element is the filtered
domain for variable xk and is not needed at the next (or lower) levels of the the search tree since xk has
already been instantiated at level k. To allow a uniform implimentation in the case k = 0, it is con-

— x
venient in the initial call gFC(X0 d _1 0) to use

dX"1=(0 dXi dl2 . . dtJ
where we prefix a dummy entry 0 before the list of initial unfiltered domains for the variables. In this way
the initial call to Filter at Jfc = 0 will cause tail(d) to return (dXj dx^ . .) which is the required value of
d*°. Note that it is implicit in gFC that sets d f are represented directly as lists of their component ele¬
ments. This will not be so for algorithm gwFC of section 3.5, where a bit vector representation is used for
sets d^ .

1.2. Some Examples Using gFC
Paralleling section 2.2 of [9] for gBT, this section shows several examples of using the gFC algorithm

of figure 2. Again our standard instance clp0 of (7) is used as the test case, and is solved using a variety
of instantiation orders X and constraint-check orders <f>k. And again, the choices of ordering are seen to
have a significant effect on the problem-solving complexity of gFC. For more realistic CLP instances
much greater variation is possible. For pure and simple binary CLP instances, our earlier paper [11] pro¬
vides theory-based heuristics for choosing these gFC search orderings and empirically studies the savings
that may result from their use.

Figures 3 and 4 represent the tree of recursive calls to gFC when solving clp0 with the instantiation
orderings X = (zx z$ z2) and X = (z2 z$ ^i) respectively. Essentially the same conventions as described

December 4, 1985

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

0

PROCEDURE gFC(Xk d*1"1 k);

Fig. 2s Algorithm gFC and its subroutine Filter.

: Enter node Xk
IF k = n THEN print(Xt) ELSE

BEGIN

d"** - Filter^* d*'1 it)
IF dXt / (0) THEN

FOR ALL xk+1 e d*k+i DO
gFC(Xk \ \xk+1dXt it+1);

: Dummy call at it = 0

: dX* from dX*zt+i

: Generting node Xk+1 = Xk 11 Ft+1
END;

END;

FUNCTION Filter(Xk d**1 k);
d - d^;

: Filters domains in tail of d 1 1

'• I I = 0 for it = 0 (and n)FOR » = 1 TO | <f>k | DO
BEGIN

3 <- *1;
f - Zj -xk;
df *- current domain for / in d;
FOR ALL J e d' DO

BEGIN

Zi +-Z,(Xk II J);
IF Z, i T,

THEN d' 4- df -(/");
END;

IF d! = 0 THEN RETURN (0)
ELSE d ♦- Update(d d1); : Update domain of / in d

END;

RETURN tail (d); : Filter (Xt d"**"1 *) = d**
END;

Initial call:

gFC(0 (0 dti . . dr<) 0)
Global Instance parameters:

n,T-(TxT9..Te),Z = (ZlZ2..Ze)
Global algorithm parameters:

Xt (^1 ^2 • • 0»-1)

: Index of constraint to check

: Determining / x eFk whose domain will be filtered

: Filter domain df

: Projection onto arguments of C . t

: Checking constraint C .,

: Filtering / from d f

: A domain wipe-out has occured

December 4, 1085

10

for figure 1 are used here. The two families of sets <f>kf fit induced by each instantiation order used
here can be seen in the corresponding row of table 1. As for gBT, the node structure of a search tree is
determined only by the instantiation order X and not by the choice of constraint-check orderings imposed
on the induced sets <f>k of forward-checkable constraints at each level. The number of nodes generated at
each level k when solving instance clp using gFC is denoted iV(gFC k clp), and these are shown in the
table associated with each figure. Also shown in these tables, at the bottom of the 7V(gFC k dp) column,
are the sums

N(gFC Clp) = £ N(gFC * dp) (22)

giving the total number of nodes generated (excluding the root node). Note that the total number of
nodes generated is 5 or 10 depending on the instantiation order used. Again, as for gBT, we see a factor of
two difference. But note that in absolute terms, gFC is generating considerably fewer nodes in these
examples than did gBT in figures 3.3 and 3.4 where the same instance was being solved. It is easy to
show that gFC never generates more nodes than gBT on a given instance with a given instantiation order¬
ing.7 But this is not the whole story, since gFC in general performs more checks per node.

As mentioned, an instantiation order completely determines the set <j>k of constraints forward-
checkable at each level k of the search, but the constraint-check order at a given level may be any permu¬
tation of this set — and these orders may have a considerable influence on the number of constraint-
checks performed. Both figures 3 and 4 show numbers of constraint-checks performed using two different
families of constraint-check orderings — permutations (appearing in table 2) of the corresponding sets <j>k
shown in table 1. Each such family of orderings heads a seperate column in the table associated with
the figure. In each such column appear the corresponding numbers C(gFC k clp) of constraint-checks per¬
formed at each level k of the search tree. These C(gFC k clp) values are of course the sum of the number
of constraint-checks performed at each node at level k, so that

C(gFC k clp) = £ C(gFC k Xk clp)
Xk cDXi

where C(gFC k Xk clp) is the number of constraint-checks performed by gFC at node Xk in solving
instance clp. As for equation (3.16), this sum is over all node sites Xk e DXk at level k, rather than only
over nodes actually generated, with the understanding that C(gFC k Xk clp) = 0 at a node site where no
node is generated. The number of such node sites at level Jfc for a gFC search tree is again as given in
(3.17). For the case of the first (leftmost) family of constraint-check orders <f>k appearingjn the associated
table, figures 3 and 4 label the arc leading to a node by the number of checks C(gFC k Xk clp) performed
at that node. This latter quantity is itself just the sum of the numbers of constraint-checks performed at
that node for each of the corresponding forward-checkable constraints. Thus

I I

C(gFC kXk clp) = £ C(gFC k i Xk clp) (24)
i=i

where C(gFC k i Xk clp) is the number of checks of the i-th forward-checkable constraint <7^, performed
by gFC at node-site Xk when solving instance clp. As before, C(gFC k i Xk clp) = 0 at a node-site Xk
at which no node is actually generated, or at which forward-checking of constraint C ., is not reached due
to an earjier domain wipe-out at that node. These constraint-specific numbers of checks
C(gFC k i Xk clp) that make up the number of checks at a node, can be conveniently indicated on gFC
search tree diagrams such as figures 3 and 4, by showing their values alongside the node row associated
with the corresponding future variable f k being filtered by constraint C^,. This is done in figures 3 and
4 for the first family of constraint-check orders tabulated in each figure.

In these figures, if more than one forward-checked constraint filters the same future variable (see
table 2), the corresponding numbers of checks for these constraints are shown beside that variable's row as
a sum whose summands correspond to the various constraints checked — with the order of summands,
left to right, being that of the chronological order of the checking of their corresponding constraints.
Thus for example, in figure 3, at the right son Xx = (1) of the root node, using constraint-check order

7 Sinceji given node Xk is generated by gBT iff is consistent but it is generated by gFC iff the stronger condition is sa¬
tisfied that Xk is consistent and djk~l=£ 0 for each / € Fk .

December 4, 1085

11

Fig. 3i Solving c/p0 by gFC using a best instantiation-order, X = z2),
with a best (and a worst) set of constraint-check orders fo) for that X.

(Compare with figures 4, 3.3 and 3.4.)

3 *a w
O CQ .

-3

&
on

CJ

^-x

£! 0- CV 0 i T-* 4
T-4

>sr -ts!
^2-

"tT

y. <N ■H <N j if) -

>;
v» c< cO

&
9->

u

■a
o

o I
M ifN

<0 W
.Eft

<4
N-

ri-

-a
n -

12

Fig. 4t Solving clp0 by gFC using a worst instantiation-order, X = (z2 z{),
with a worst (and a best) set of constraint-eheck orders ^2} for that X.

(Compare with figures 3, 3.3 and 3.4.)

0 W ft) 2 0 £N
J*

<T">
VJ

O

/-V
^ 2L
- T
^ ci N 0 ,» /

«)

fat
ci S3 c~i 0 -

■H cS «)

N d
H

N •

fi -

N rt
4

N 0
ff -

bi

u

bi

13

fa = (3 l 2), Cs then C2 (the first and third of the forward checkable constraints respectively) are
forward-checked to filter the domain of the same future variable / x = f * = zs (as shown in table 2)
with constraint Cx beinj^used between them to filterjrariable f \ = z2, The corresponding numbers of
checks are C(gFC k 1 Xk dp) =f_3 and C(gFC k 3 Xk dp) = 1 and these values appear in the sum
3 + 1 beside the row of node Xx = (1).

These last-mentioned constraint-specific numbers of checks at a node add, as in (24), to give the
total number of checks at a node (and these totals label the arc leading to the node concerned). The
numbers of checks performed at the nodes of a level add, as in (23), to give the number of checks per¬
formed at that level. And finally, the number of checks at a level add, as below, to give C(gFC dp) the
overall total number of constraint-checks performed by gFC when solving dp

C(gFC dp) = £ C(gFC k dp) (25)
*=i

Note that the k = 0 and k = n summands are excluded here since gFC never has any constraints to for¬
ward check at those levels. The total numbers of checks performed are shown at the bottom of the
corresponding C(gFC k clp) columns in the tables. We see that as for gBT, changing the family of
constraint-check orders may have a considerable effect on the number of constraint-checks performed.
This is possible for two reasons. Firstly, the constraint-check order determines at what stage any domain
wipe-outs occuring at a node are discovered. As soon as such a wipe-out is detected, the termination con¬

dition 0 e d * is satisfied and further processing at that node is unecessary.8 Note that for nodes Xk
where not only no wipe-out occurs, but where no inconsistency at all is detected (so that no values are fil-

x
tered), the i-th constraint of rpk is checked | I times. In this case, irrespective of the order used for
checking the constraints in <t>k, we have that

1 1
x

<7(gFC*X* clp)- £ \d
i=i k

A domain wipe-out is not the only reason that the </>k order can effect the number of constraint-
checks at a node. The second reason® is because the constraint-check order at a level determines at what

— x

stage a given value / is elliminated (if it is elliminated) from a given input domain d/*"1. Once it is
removed, later constraints in <t>kf C <j>k need not check it again. The pattern of these removals at a node
Xk is determined by the order <f>k and over a whole search tree the cummulative effect of using different
families of constraint-check orderings may result in large variations in the number of constraint-checks
performed in solving a given instance. In figure 4 for example, changing from the family of orderings
<f>\ = (1), fa = (2 4 3) to the family fa — (1)> 0s = (3 4 2) reduces the total number of checks from 31 to
17 — even though the instantiation order is of course the same, X = (z2 zs zi). Using the instantiation
order X = (zx z2) and constraint-order family <f>x = (3 1 2), fa = (4) of figure 3 further reduces the
total number of checks performed to 11. We will see in a later paper of this series that this figure, 11
(attained also for gBT in figure 3.3), is in fact for both algorithms gBT and gFC, the minimum number of
constraint-checks possible in solving dp q. Thus as long as the appropriate search orderings are chosen, we
see that there exist CLP instances for which gBT is just as efficient (in terms of constraint checks) as gFC
in solving a given instance. In fact there are instances for which gBT has a lower minimum over orderings
than does gFC.

As done for gBT in section 2.2_of [9], we also introduce here two indicator functions in terms of
which N(gFC k dp) and C(gFC k i Xk dp) can be be further expanded. The first is

8 Figures 3 and 4 show (for the case of the first family of constraint-check orders in each figure) filtered domains and the
corresponding number of constraint-checks performed only up until the discovery of a domain wipe-out, at nodes where such wipe-
outs occur.

9 This effect has no analogue in gBT, where only one inconsistency is sufficient to terminate processing at a node. It also does
not arise in gFC if (as is the case in most studies, where simple (and usually also pure) binary instances are used) there is no more
than one constraint in each set <f>kj .

December 4, 1985

in terms of which we may express the number of nodes generated at level k as

The total number of nodes generated by gFC given in (22) may then be expressed as

14

£(gFC k Xk clp)

1 if gFC generates a node at site Xk
when solving instance clp

0 otherwise

(26)

N(gFC * dp) = £ 5(gFC * Xk dp)
Xk <D~ (27)

N(gFC clp) = £ £ 5(gFC k Xk dp)
t-i jrt<p. (28)

Whereas for gBT, a given constraint C^, is checked at most once at a level k node, for gFC a con¬
straint C., may be checked up to m,, times — once for each of the m,, initial domain values for the*k > k ' k

variable f k which is by definition the future variable whose domain is filtered by C^,. Accordingly, it is
useful to introduce an indicator function for whether constraint C^, is checked exactly t times, for
0 < t < m.,.~ ik

£(gFC kit Xk clp)

1 if gFC checks C^ exactly t times at site Xk
when solving instance dp

0 otherwise

(29)

In terms of this, the number of checks of constraint (7^, can be expressed as
'it

C(gFC k i Xk clp) - £ t S(gFC k i t Xk clp) (30)

Note the inclusion of t as a factor of the summed terms. Combining this with the above equalties (23),
(24) and (25), gives

.-1 I *k I m!k
C(gFC clp) = £ £ £ E * %FC kitxk clp) (31)

*—1 Xk (Dx^ «—l tm

for the total number of checks performed by gFC in solving instance clp. The expected values of the
total number of nodes generated and of constraint checks performed by gFC in solving an instance are
derived in a subsequent paper of this series where equations (28) and (31) provide the starting points for
the respective analyses. One last indicator function that will be useful for these analyses can be defined

December 4, 1085

15

in terms of that in (29). It is
n,i

-

5(gFC * » >1 Xk dp) = 1 - fi(gFC kiOXk dp) = £ 5(gFC k i t Xk dp) (32)
f=l

Clearly this equals 1 if gFC performs at least one check of constraint C ^ at node Xk when solving
instance clp, and equals 0 otherwise.

1.3. More on gFC Constraint Sets
Table 3 defines several additional constraint (index) sets for gFC that will be useful in our later ana¬

lyses. Examples of these new sets and the earlier constraint sets for gFC are given in tables 4, 5 and 6.
Lastly, table 7 presents without proof some simple relationships between these sets. This section parallels
section 2.3 of [9] for gBT, and tables 3 to 7 here correspond tables 4 to 6 of [9] for gBT.

In words, the new constraint sets in table 3 are as follows:
• $k and $kf are cummulative versions of (f>k and <(>kf respectively in the same way that V k is a

cummulative version of \pk — see (3.26). Thus $k is the set of constraints forward-checkable at
some level at or before the jfc-th and $kf is the set of constraints forward-checkable against variable
/ at some level at or before the jfc-th.

• fik (<l") ^ analogue of V* (<0 for gBT. It denotes the first i-1 constraints forward-checkable at
level ifc.

• $*(<*') is a cummulative version of 0*(<*')> and is to fa(<i) as Vk(<i) was to ^*(<t) for gBT.
$*(<*) contains those constraints that are forward-checkable at some level prior to k or that are
amongst the first i-l forward-checkable at level k.

Table 3: Constraint-related definitions for algorithm gFC

Symbol Defined as Defined for

U <t>»f
Hwm 0

0< ifc< n-l, J tFk

** U h
h — O

0 < Jfc < n—1

Sets induced by imposing constraint-check orders on the <f>k

h (<») | W ■ • H-1} / 2<t< i#, i
0<t<»-i,|,.= lort = 0 „

<t>k/ (<») <!>kf 0 (<») 0<k< n-l, 1 <»< | <f>k | , / tFk

(<») 0 <t>h U <t>k (<»')
hmm 0

0<k< n-l, 1 < i< | 4>t |

**/ (<») 8*, u^/(<o
A —0

0<k< n-l, 1< »< | 4>k | , / eFk

December 4, 1985

16

• <f>kf (<i) denotes the set of constraints forward-checkable against variable / from amongst the first
t'-l forward-checkable constraints at level k. Note that it does not mean the first i-l constraints
forward-checkable against / at level k.

• (<*) is a cummulative version of <f>kf (<*)> M $t(<l) was f°r ^ contains the constraints
forward-checkable against / at some level prior to k or forward-checkable against / from amongst
the first i-l forward-checkable constraints at level k.

Tables 4 to 6 should prove useful in developing familiarity with these and the earlier constraint sets
<(>k and <t>kf for gFC. The tables refer to a full and simple 4-ary CLP instance on n = 5 variables, as did
table 3.5, and they use the same convention for indexing constraints as used in table 3.5. Table 4 shows
the partitioning of the problem constraints into sets <j>tf of (indices of) constraints forward-checkable
against variable / at level Jfc, and shows how these are combined to form the sets Vk and $kf (the
former being as given in (3.10) for gBT). Table 5 emphasizes the alternate partitioning of constraints into
the sets <f>k of constraints forward-checkable at level k, and their combination into sets .

Note that in both these tables, an underlying constraint-check ordering is intended at each level k
for the constraints in the corresponding set ^ — and this is the top-to-bottom ordering of constraints
given in the <f>k column as the index i increases. Such a constraint-check ordering underlies the defini¬
tions in table 3 of the sets <£*(<*)> <t>kf (<0> ^*(<#") and &kf (<0* Examples of these sets for the table 4
situation are given in table 6.

Note that in table 4 (and 5), fa is an f-exhaustive constraint-check ordering, defined in section 1.1
above, where all constraints relevant to a given future variable are employed before proceeding to use
those for a different future variable. The ordering of fa on the other hand might be called f-cyclic since
successive constraints filter the domains of different future variables till all variables f eFk have been fil¬
tered by one constraint, with this cycle of domain filtering then repeating till all constraints of <f>k have
been employed.

Table 7 presents, without proof, some simple relationships between constraint index sets for gFC.
They follow more or less directly from the definitions. The results shown for pure and simple A-ary
instances should be quite easy to understand in the context of tables 4 to 6, although the latter are for full
and simple (rather than for pure and simple) instances. The related discussion in [12] may be helpful.

2. Generalized word-wise Forward Checking (gwFC)
In this section we describe a version of gFC adapted to perform multiple constraint-checking in

parallel by exploiting the computer's parallel bit-handling capabilities. Being based on gFC, but being
able to check a whole "machine-word-full" of domain values at once, we call the algorithm generalized
word-wise Forward Checking or gwFC. A less general version appears in [6] and in [4] where it is
called bit-parallel Forward Checking.

One can adapt gFC to perform multiple constraint-checking in parallel by using a bit-vector
representation for domains and constraints of a CLP instance. In gFC, the current filtered domain d1 of
a future variable / is represented directly as a list of all its member values, and forward checking is per¬
formed against each of these values in turn. In gwFC on the other hand, df is represented in terms of a
machine word with one bit corresponding to each value of the initial domain df . Set df C df is
represented by setting the j-th bit of the machine word to 1 iff the corresponding value of df is in d f .

This is a standard way of representing sets, and is treated for example in [1], where it is called the charac¬
teristic vector representation. We assume for the moment that each domain is small enough to require no
more than one machine word. That is, if there are b bits in a machine word, we assume < b for all
problem variables.

Besides the domains, gwFC also represents the CLP instance constraints in bit-vector form. In
filtering the domain of a variable /, parallel constraint-checking is achieved by machine anding an
appropriate bit-vector from the constraint representation with the bit vector representing d ' . The follow¬
ing makes this more explicit.

As given in (19), to each constraint Cj = (Zj T}) and instantiation order X, there corresponds a
unique future variable f 3 t Z, whose domain is filtered by that constraint.10 At the stage when C; is

10 Since this variable f} is a function of X, the structure of the gwFC bit-vector representation for constraints — described
below — is also a function of X. Use of a different instantiation order will require a reconfiguration of the data structure represent-

December 4, 1085

Table 4i Constraint-index seta 4>if , $kf and for a full and simple 4-ary instance
with n = 5 variables when using the generic instantiation order X = (zx z2 zs z4 z8).

(Compare with table 3.5.)

Table 5s A repeat of the table 4 situation showing constraint-index sets <t>t/ , and i>t
(Compare with table 3.5.)

* I <t>t | » | +tf

*2 *3 *<

1
2
3
4

12
13
14
15

12
13

14

*ut

15

1 23 2
— 2Z

2 24 24
3 25 25
4 123 123
5 124 124
6 125 125

o
1 34 4 — o4

y

2 134 134

3 234 234
4 1234 1234
5 35 35

6 135 135

7 235 ■-s.
235

8 1235 1235

1 45 7 --^45
2 145 145

3 245 245

4 345 345

5 1245 1245

0 1345 1345

7 2345 2345
*4

Table 6s A repeat of the table 4 situation showing constraint-check-order-dependent
sets fa (<»), <j>kf (<i), *k(<i) and (<s) defined in table 3.

(Compare with table 3.5.)

* I I 1 I tkf I
*2 *3

10

1
2
3
4

12
13
14
15

1
2
3
4

23
24
25

123

5 124
6 125

TV

12

T»\

13

123

^2sji<^)/

14

24

124

15

25

125

^<5)

^<5) - { 23 24 25 123)

<t»j|<5) <M<5) - { 12 13 14 15 } U { 23 24 25 123 } - { 12 13 14 15 23 24 25 123 }

0a*a(<5) - ^,,f| U<S) - { 23 123 } f| { 23 24 25 123 } - { 23 123 }
**4(<5) - ^4f) fc(<5) - { 24 124 } f) { 23 24 25 123 } - { 24 }

" +*% O fc(<5) - { 25 125 } 0 { 23 24 25 123 } - { 25 }

+*,(<5) - '»«, U ^tjl<8) - { W } U { 23 123) - { 13 23 123)
*2,4(<5) - fas, U ^a»4(<5) - { 14) U { 24) - { 14 24)

*2Is(<5) - U **.(<5) - { 15 } U { 25 } - { 15 25 }

20

Table 7s Relations between Constraint Index Sets for gFC

Arbitrary instances:

{i 2.. c} = U U 4^/ = U = $„_i = U fa =
k*m0 / (Fk k>—Q km*0 (33)

*kf = U faf (^0/ = faf = fa[= 0) (34)

= *i-l U <i>k (*o — fa — <t>* —^) (35)

4>t (<») = $t_! U <f>k (<») (<M<0 = M<i) = (<*) = 0) (36)

$*/ (<*) = *i-u u <t>kf (<»') (*„/ (<») = faf (<»') = far (<»') = 0) (37)

$kf (<1) = $k-l,f (38)

*kzi+1 = 1>k+1 (39)

1 fa (<*) 1 — »-l (40)

1 *k/ I — £ 1^/1 = 1 *k-u I + 1 fa! I (41)

1 $kf (<»') | " E \ faf \ + \ faf (<0 1 = 1 1 + 1 <t>kl (<l) 1
A=0 (42)

*, = 8 ♦ _ 0 P!S+1h*mO hmm0 fM*l (43)

1 ** 1 - E 1 ♦*.»« 1
h s=0 (44)

1 *. 1 - E 1 1 - c
AcacO (45)

December 4, 1085

21

Table 7: Continued

Pure and Simple A-ary Instances (A £2):

1^/1= (A-2) («)

I I ~ (A-SS) (47)

*V I - E \<f», I - S(a"-2) = (A-I) (48)
hsssO h*B=0

I *t/ (<•') I "* I *1-1,/ I + I fat (*-') I *■ (x_t) + I fat (<>') I (49)

I*. I = 2 1*^,1 - E {II)-(a)-(A°-I)-(A) (601
A=0 M

I I = C = (A) (81)

December 4,1085

22

forward-checked, all its argument variables except this f} have been instantiated. We denote this instan-
tiated subset of arguments by Z; - f j 9 and a list of instantiations of this subset we denote by Z, - /,.
Algorithm gwFC requires that each relation Tj be stored as an array indexed by value-tuples Z; - /;.
For a given such value-tuple, the array contains Tj(Zj -/;), a machine word representing, in characteris¬
tic vector form, the set of values f j acceptable for variable f j with respect to constraint C, given the
instantiations in Z; - f} for the other arguments of the constraint. In other words, 7>(Z; -/>) is the
machine word representing the set of values

{ 7, | Tj *d{. and Z~77ll/; £ T, }

With these machine words available, the loop from lines 17 to 22 of function Filter in figure 2 can
be replaced by a single machine and as follows

rf>^and(rf' T,(Z~rf~)) (52)
which is the generalized form of Haralick's expression on page 271 of [4]. The number of ands performed
by gwFC is thus never greater than the number of constraint-checks performed by gFC since a single and
is performed by gwFC iff at least one check is performed in gFC in the loop at lines 17 to 22 of figure 2.

However, as mentioned, we have assumed that no initial domain has more members than there are
bits in a machine word — so that one machine word suffices to represent any of its subsets. More gen¬
erally however, if domain dg. has size m,. and if a machine word contains b bits then

= K/*l (53)
machine words are required to represent the subsets of d2 . The loop over / values in Filter is then
replaced not by a single and as in (52), but by the following loop over machine words

FOR ui=1TO u;/ DO (54)

d'M-andf i'(w) T}(Z~^f~ «"))
where w is being used to index the Wf seperate words required to represent df and the corresponding
constraint information.

When more than one word is required to represent a given domain, the possibility arises that gFC
may perform less checks than gwFC does ands in solving a given instance.11 In forward checking a con¬
straint against a variable / whose current filtered domain is df , gFC performs | df | constraint-checks
(at lines 17 to 22 of figure 2). Algorithm gwFC on the other hand will perform wf machine ands in the
loop of (54), independent of the size of the current filtered domain dfQdf. So the relative efficiency of
the two algorithms depends in part on the size of a machine word relative to the sizes of the various fil¬
tered domains df encountered throughout the search tree. At lower nodes (larger value of k) in the tree,
d f will tend to be small, so that Wf > | df | . The relative inefficiency of gwFC in such cases may very
well offset the savings gained by that algorithm at the the higher nodes, where Wf < | df | . (This sug¬
gests a hybrid algorithm, using the gwFC approach at higher nodes and the gFC approach at lower
nodes.)

For certain instances with domains for which more than one word is required, it is therefore conceiv¬
able that gFC is preferable to gwFC. The gwFC analysis of a subsequent paper in this series will allow
this possibility to be studied theoretically, since the analysis will be for domains and machine words of
arbitrary size. Simplified versions of gFC and gwFC are compared in our earlier paper [11].

Whether or not gwFC proves superior to gFC in terms of the respective complexity measures of ands
and checks, it should be noted that gwFC incurs what may be a significant extra overhead in setting up
the above-mentioned bit-vector representation of the constraints. This preprocessing is not required by
gFC. On the other hand, if gFC is to incorporate heuristics of the type developed in [11], which make use
of constraint satisfiability values S;, it may be necessary to apply an equivalent amount of preprocessing
to extract the values. This will depend on the form of the constraints for the problem and on which
extraction methods are applicable from those discussed in section 4 of [8].

11 Haralick in [4] found word-wise Forward Checking to be better than Forward Checking, but he nsed domain sizes small
enough to require only a single word.

December 4, 1085

23

Postscript

The next paper in this series deals with probablity models over the class of CLP instances. It
defines events of the type needed for our later complexity analyses of algorithms gBT, gFC and gwFC,
and derives the probabilities of these events as well as certain basic expected values. However all results
of the following paper are presented at a level of generality that makes them independent of any algo¬
rithm — so that they reflect only the nature of CLP and the probability models used. Later papers in this
series will specialize these results as required for the algorithm analyses.

December 4, 1085

REFERENCES

24

Aho A. V., Hopcroft J. E., and Ullman J. D., The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass, 1974.

Gaschnig J., Performance Measurement and Analysis of Certain Search Algorithms, Dept. Com¬
puter Science, Carnegie-Mellon University, May 1979, Ph.D. dissertation.

Goldberg A., "Average case complexity of the satisfiability problem," Proc. 4-th Workshop on
Automated Deduction, pp. 1-6, Austin, Texas, 1979.

Haralick R. M. and Elliot G. L., "Increasing tree search efficiency for constraint satisfaction prob¬
lems," Artificial Intelligence, vol. 14, pp. 263-313, 1980.

Mackworth A. K., "Consistency in networks of relations," Artificial Intelligence , vol. 8, pp. 99-
118, 1977.

McGregor J. J., "Relational consistency algorithms and their application in finding subgraph and
graph isomorphisms," Information Sciences, vol. 19, pp. 229-250, 1979.

Nadel B. A., "Consistent Labeling Problem, Part 1: Background and Problem Formulation,"
Report DCS-TR-164, Computer Science Dept., Rutgers University., New Brunswick, N.J., 1985,
Also appears as Report CRL-TR-13-85, Dept. Electrical Engineering and Computer Science, U. of
Michigan, Ann Arbor, MI, 1985.

Nadel B. A., "Consistent Labeling Problem, Part 2: Subproblems, Enumerations and Constraint
Satisfiability," Report DCS-TR-165, Computer Science Dept., Rutgers University., New
Brunswick, N.J., 1985, Also appears as Report CRL-TR-14-85, Dept. Electrical Engineering and
Computer Science, U. of Michigan, Ann Arbor, MI, 1985.

Nadel B. A., "Consistent Labeling Problem, Part 3: The Generalized Backtracking Algorithm ,"
Report DCS-TR-166, Computer Science Dept., Rutgers University., New Brunswick, N.J., 1985,
Also appears as Report CRL-TR-12-85, Dept. Electrical Engineering and Computer Science, U. of
Michigan, Ann Arbor, MI, 1985.

Nudel B. A., "Consistent Labeling Problems and their algorithms," Proc Nat. Conf. on Artificial
Intelligence (AAAI), pp. 128-132, Pittsburgh, August 1982.

Nudel B. A., "Consistent-labeling problems and their algorithms: expected-compiexities and
theory based heuristics," Artificial Intelligence (Special Issue on Search and Heuristics), vol. 21,
no. 1 and 2, pp. 135-178, March 1983, Also in book: Search and Heuristics, North-Holland,
Amsterdam 1983.

Nudel B. A., "Solving the general consistent labeling (or constraint satisfaction) problem: Two
algorithms and their expected complexities," Proc Nat. Conf. on Artificial Intelligence (AAAI),
pp. 292-296, Washigton D.C., August 1983, Also available as report DCS-TR-128, Computer Sci¬
ence Dept., Rutgers University, New Brunswick, N.J., 1983.

December 4, 1985

UNIVERSITY OF MICHIGAN

3 9015 09911 4590

PLEASE RETURN TOCOMPUTER SCIENCE DEPARTMENT AR£2Bffll
K44Q BOELTER HALL

AIIM SCANNER TEST CHART#2
Spectra

4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmriopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:'t,./?$0123456789

Times Roman
4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:", ./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789

Century Schoolbook Bold
4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghgklmnopqrstuvwxyz;:",./?$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$012&56789

News Gothic Bold Reversed

ABCDEFGHI J KLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:",./? $012 34 567 89
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopqrstuvwxyz;:'\./?$012 34567 89
ABCDEFGHIJKLMN0PQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
Bodoni Italic
A HCDHh'CHIJKl.MNOI'QRSTUyWXY/MbcdefghijklmnoiHintuvwxyz:: ",./?S0123456789

ABCDEFGHIJKLMNOPQRSTUVWX YZabcdefghijklrnnopqrstuvwxyz;: ",./?$0123456 789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:. /?$0123456789
ABCDEFGHIJKLMNOPQR STUVWX YZabcdefghijklmnopqrstuvwxyz;:'r,.
Greek and Math Symbols
ABTAEH0HIKAMNOII<l)P2TYnX>l'Za/378€^Si7iKA^voir((>pcrTVo)X<|»{=:F' '>•/== + = ?t°> <><>< =

ABrAE=6HIKAMNOn4>PZTYnX1'Za/3T8£5e7)iKXti.TOir<|)po-ruo)Xi);{Sq:",./^± = ^-> <><>< =

ABrAE=eHIKAMNOn<I>P2;TYnX4'Za/3y8€|9T)iKAjuvo7r<f)p<Trvo)X>l'^T". /^± = =A°> <><><=

ABrAES0HIKAMNOn<l>P2TYfiXvPZa/3y8e£0i7iKA.fAvo7r<j>pcrTy2 =

t rr

6 PT

8 PT

10 PT

6 PT

8 PT

10 PT

White

MESH HALFTONE WEDGES
i i i i

0123456
6.

MEMORIALDRIVE,ROCHESTER,NEWYORK14623
H >

Z o > O
_J
O z X o

03SEP
1S53j 233EJ 33EB̂ tiIf™55538355 6EE57B35 cthji^Ca)N)—*O wmrummiULJl

ffl

UlnjIUmillmmSr.Ki-HsJ
oicji4ĈOfOJ0 !"«iuifllllinBBSffi!P.niinwm

ui

WmSSSSSn̂cnrninruuinimS;;:::i%DjJI OEEE
13EB 2E35 3E35 453B 5EB5 63EB

10S3B 93BS 8335 7553

c H O z H O

x

CJ

o

a3iN30HoavasaasiavoiHdvaoas03onaoad

