
THE UNIVERSITY OF MICHIGAN

COMPUTING RESEARCH LABORATORY

THREE CONSTRAINT SATISFACTION
ALGORITHMS AND THEIR

COMPLEXITIES: SEARCH-ORDER
DEPENDENT AND EFFECTIVELY

INSTANCE-SPECIFIC RESULTS

BERNARD NADEL
CRL-TR-3-88

l>1'EAi^f«rreNCE BFPSMMNT SROIW"

1079 East Engineering Bldg.
Ann Arbor, Ml 48109



 



THE UNIVERSITY OF MICHIGAN

COMPUTING RESEARCH LABORATORY*

THREE CONSTRAINT SATISFACTION
ALGORITHMS AND THEIR

COMPLEXITIES: SEARCH-ORDER
DEPENDENT AND EFFECTIVELY

INSTANCE-SPECIFIC RESULTS

BERNARD NADEL
CRL-TR-3-80

January 1080

Room 1079, East Engineering Building
Ann Arbor, Michigan 48100
USA

Teh (313) 703-8000

*

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of
the author/s and do not necessarily reflect the views of the funding agency.



 



THREE CONSTRAINT SATISFACTION ALGORITHMS and THEIR COMPLEXITIES:

SEARCH-ORDER DEPENDENT and EFFECTIVELY INSTANCE-SPECIFIC RESULTS1

Prof. Bernard A. Nadel2

Dept. Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI 48109

January 1986

1 This work wu in part supported by the Computer Science Dept. of Rntgers University, New Brunswick, N.J., and in part
by the Dept. Electrical Engineering and Computer Science of the University of Michigan, Ann Arbor, MI. This technical report
therefore appeals as part of the Technical Report series of both departments — DCS-TR-171 at Rntgers U. and CRL-TR-3-86 at
U. Michigan.

2 Previously: Bernard A. Nudel.



 



1

THREE CONSTRAINT SATISFACTION ALGORITHMS and THEIR COMPLEXITIES:

SEARCH-ORDER DEPENDENT and EFFECTIVELY INSTANCE-SPECIFIC RESULTS

ABSTRACT
»

The Consistent Labeling (or Constraint Satisfaction) Problem3 CLP, constitutes one of the central
problem-solving paradigms in Artificial Intelligence. Many algorithms have been developed for solving CLP
instances. But the effort in algorithm-design has not been paralleled by an effort in algorithm analysis —

which could provide a much-needed formal basis for intelligent problem-solving decision-making. In this
paper we present and analyze three important CLP algorithms: Backtracking, Forward Checking and
word-wise Forward Checking. The results, besides their obvious use in choosing between algorithms, cap¬
ture for the first time the search-order dependent effects that are so important for CLP instances, and as
such are capable of providing theory-based guidance in selecting good search orderings. In addition, due to
the use of ''homogeneous" classes underlying the analyses, the eipeeted-ea$e results for classes can be used
as virtually exact-caoe complexities for individual instances, and may be used predictively as such. Besides
allowing theory-based algorithm selection and search-order selection to thus be done on an instance-by-
instance basis, this instance specificity even allows (apparently for the first time) theory-based representa¬
tion selection for individual instances (as seen in [18])- To exploit to the full these possibilities for
instance-specific theory-based guidance, the results of this paper are for a version of CLP that is far more

general than that usually considered. This means that instance-specific guidance can be had for arbitrary,
redxotie instances that arise in practice rather than only for the special-form instances usually studied — in
particular, studied analytically in [11], [21], [22].

1. INTRODUCTION

The Consistent Labeling (or Constraint Satisfaction) Problem has long been of interest in Artificial
Intelligence and Operations Research. Yet an adequate theoretical understanding has remained lacking —

in spite of its great potential for improving problem-solving efficiency, by providing a formal basis for
intelligent decision-making.

A detailed presentation of CLP (and various partitions and probability models) appears in [19]. It is
formulated there far more generally than is usual in systematic studies — whether theoretical or empiri¬
cal. This generality is maintained in all the complexity analyses of the present paper. The main reason
we have sought such generality is because of the ability of our expected-case values to approximate well
exact-case values for individual instances. Since we can thus predict complexity for individual instances,
we wish to take advantage of this ability to the full by having results that cover a problem class general
enough to include all the various CLP instances that arise in real-world contexts. Our analytic results
then become practical problem-solving tools, since they can guide decision-making on an instance-specific
basis for arbitrary real-world instances. In particular — since we analyze here several CLP algorithms, as
a function of search-order used, and with respect to homogeneous underlying classes — the results (as seen
in [18]) may be used to provide effectively instance-specific, theory-based guidance for algorithm-selection,
search-order-selection and even for problem-representation selection.

The development of CLP algorithms has received intense attention within Artificial Intelligence, as

exemplified by [2], [3], [5], [6], [8]-[l0], [12], [15]-[17], [24], [25]. The Ph.D. thesis [7] of Gaschnig is espe¬
cially important in this regard, as is Haralick's paper [11] which contains an empirical comparison of seven
different CLP algorithm. The algorithms analyzed here are generalizations of three of the seven corn-

paled by Haralick: Backtracking, Forward Checking and bit-parallel Forward Checking. The first of these
was chosen because of its historical importance and its simplicity; the latter two because they were found
by Haralick to be the best two of the seven he studied.

The following subsections briefly review some of the material from [19] needed as background for
the present paper. The reader is encouraged to refer to [19], or to [18], for more details. Simplified

3 The word problem will be used in two senses in this work. The first sense refers to the usual kind of problem — for which a
specific answer is sought to some question about some specific situation (or problem structure). The second sense refers to a elaaa of
problems of the first kind (usually obtained by allowing the problem structure to vary by use of a few parameters). To reduce am¬
biguity we will often use Problem (with an upper case P) when referring to such a class, and problem (with a lower case p), Problem
inatance or just inatanee when referring to a class member. (This convention is not always adhered to, but the intended sense will
generally be clear from context.) Analogously we use CLP for the class of problems we are interested in here, while elp will refer to
an individual member of CLP.
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versions of this work have appeared in [20]-[22j.

1.1. CLP Instance*

An instance of CLP requires finding all ways to instantiate variables to values from their associated
domains so that a given set of constraints is satisfied. The following instance, which we call clp0t reflects
much of the generality of structure that we allow in the present formulation. It was introduced in [19]
and will be used as a running example below. Consider the problem of assigning values to the three vari¬
ables zl9 z2 and z8 from their respective value domains {0 1}, {0 1} and {0 1 2}, in such a way that the
following four constraints Cx to CA are satisfied.

As in this example, we do not require that the variables of a CLP instance all have the same number
of candidate values. Also, as with C4 of clp o, we do not restrict constraints to be binary (i.e. having only
two argument variables). Neither need the constraints of an instance all have the same number of argu¬
ment variables (compare Cx and C4) and there may be more than one constraint over the same set of
arguments (C2 and Cs). Some subsets of variables (such as {z2 £3}) may have no constraint over them,
and this will be explicitly modeled rather than using the usual unrealistic expedient of modeling such
"missing constraints'* by universal constraints.

These aspects of generality are captured in the following formalization of a CLP instance. A rela¬
tively simple canonical form will suffice because for the algorithms and their complexity measures of
interest here, all instances that have the same canonical form also have the same complexity of solution.
A canonical-form CLP instance dp(n m c Z T) is a five-tuple (n m c Z T)4, where:
t n is the number of problem variables. These variables we denote zx, and the set of all problem vari¬

ables is Z = { Zi z2 . . zn }.
• m = ( m. m. . . mT ) is the vector of domain sizes m2, where m2 is the number of candidate* • 1 * 2 ■ 7 1 1

values in the domain d2 for variable zx. The domain itself is denoted i2 = { ztl zt2 . . ztm }, ztJ' 1 ri

being the ;-th candidate value for zx. We will also use 5j to denote an arbitrary value of zt from
d2, and d = ( d2 d2 . . d2 ) to denote the vector of all n domains.*1 x * 1 * 2 *% '

• c is the number of constraints.

• A (not necessarily canonical) constraint C} is some way of specifying which tuples of values for a
certain argument set C Z of variables are mutually compatible. The algorithms discussed later
may have such constraints specified extensively as tables, or intensively as subprograms. But all that
counts for the complexity of solving a CLP instance is the canonical form C} = (Z; T}) for each
constraint C;. The first component, Z} C Zy is the set of argument variables which C} constrains.
The second component T} is the relation induced by constraint C;; that is, is the set of value
tuples that satisfies Cj, where values are of course chosen for each argument variable z% from its
respective domain . Thus, denoting by D} = X 7j f cartesian product of the domains of
the argument variables of constraint C;, we have that Tj C Dj consists of all value tuples
Zj € Dj that satisfy C}.

• The two parameters Z and T of the generic CLP instance dp(n m c Z T) are the vectors of con¬
straint argument sets Z; and of constraint relations T} respectively

4 Note thit parameters M and C are actually redundant since Tl = | m | and C = | Z | = | T | . They are however
retained for clarity.

Ci; zl\j z2

(z8-3)2+(Z1-4)2<25

(1)

(2)

(3)

C4: expf Zi + z2 + zs] > 1.0 (4)
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Z - {Zx Z2 . . Zc) and T = (7\ T2 . . Tc)
3

A consistent labeling is an assignment of values to all n problem variables which satisfies all c
constraints. The goal in solving a CLP instance is to find all consistent labelings. That is, the goal is to
find the set

T = { Z | Z £ D and Z; (Z )eT; 1 <j<c) (5)
where D = 15 cartes*an product of the domains of all problem variables, and Z; (Z) denotes the

projection of the value-tuple Z onto the argument set Z7.6
The following are some other parameters of a CLP instance that will be useful. Table 1-1 and figure

1-1 make these and earlier parameters more concrete, by giving their values for the particular case of our
running example clp0.
• We use Mj = \ Dj \ to denote the size of the cartesian product of (the domains of the argument

variables of) the j-th constraint. Of course, from the definition of D} we have that
= II/, cz} mv

• We use Sj = | | to denote the size of the relation Tj induced by the ;-th constraint. This is
called the satisfiability or looseness of constraint Cj 9 since, by definition of T}, it gives the
number of value-tuples from Dj that satisfy C}. The vector of satisfiabilities for the c problem
constraints is denoted S = (5X S2 • . Sc).
Constraint satisfiability is a key parameter in the present work, as it allows us to analyze CLP in
terms of classes (called small-classes) that are largely homogeneous. As a result, expected-case com¬
plexities for a small-class are good estimates for the complexities of individual instances in the class,
and may thus provide virtually instance-specific information.

• The sum 55 = J]i<;<c^; °' satisfiabilities for the c constraints of an instance is called the
summed satisfiability.

• The ratio R} = | Tj | / | D, | = S3 /A/; is the satisfiability ratio of constraint C,. Note that
for any CLP instance we have that

0C Tj C Dj 0 < Sj < M, 0 < R, < 1 0 < 55 < £ A/; (6)
i

• The number of argument variables for constraint C} is A, = | | , called the arity of constraint
Cj. Constraints with Aj = 2 and Aj = 3 arguments are called respectively binary and ternary
constraints. Most CLP work in Artificial Intelligence has treated instances all of whose constraints
are binary.

1.2. CLP and Its Sub-Problems

Having defined the generic CLP instance clp(n m c Z T), the class CLP is defined as the set of all
actual instances obtained from the generic instance as its parameters range over their respective allowed
values. Specifically, the number of variables may be any integer n > 1, each component domain size of m

may independently be any integer m, > 0 and the number of constraints may be any integer c > 0.
Each component constraint argument set of Z may independently be any subset Z; C Z (containing at
least two variables) of the set of problem variables Z, and each component constraint relation of T may
independently be any subset T; C of the set Dj of possible value-tuples for the constraint argument
variables.

Two types of sub-Problem of CLP are particularly important for our analyses. These we call blg-
claasea and small-claases. CLP is partitioned by either type of class, but small-classes form a finer par¬

tition, and have the important property of homogeneity as a result of which small-class expectations pro¬
vide effectively instance-specific predictions. Results are given for special-form big-classes in [11], [22] and

_ 6 For example, if Z = (j s 37 t 12) for the variables of Z = {zx z2 z&z4 zs) and if Z} = {z2 z4 z5} then the projection of
Z onto Zj is Z} (Z) = (a t 12). We will use the convention that in tnples Z}, values zx are arranged left to right so that their as¬
sociated variables are in order of increasing index.

0 In [20] and [21] it was called the compatibility of the argument variables of Cj . Volume or simply size of constraint Cj
would also be appropriate names for parameter Sj .
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Table 1-1: CLP Instance clp 0 — our running example.

Variables: n = 3

i m»,
1 *1 {01} 2

2 Z2 {01} 2

3 {012} 3

Constraints: e = 4

j z, T, M,

1 {zi zz) {(01) (10) (11)} 2 4 3 3/4

2 {*i*s} {(00) (01) (02) (10) (11) (12)} 2 6 6 1

3 {Z1 zs} { (12) } 2 6 1 1/6

4 {*1 z2 zi) { (001) (002) (010) (011) (012)
(100) (101) (102) (110) (111) (112) }

3 12 11 11/12

Fig. 1-1: The two solutions of instance dp0,
and their projections onto the various constraint argument sets.

0 12 0 1

zl

z2

zs

Z: (102) (112)

1,(1): (10) (11)
zm (12) (12)
zm- (12) (12)
Z4(Z): (102) (112)
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[21]. The latter paper also treats special-form small-classes. In section 3 below we present the recently
derived results for fully arbitrary big- and small-classes.

In his thesis [7], Gaschnig, besides also using (special-form) big-classes, studied CLP empirically
using yet another type of CLP sub-Problem which might be called the (special-form) middle-sized class.
His results show that middle-sized classes, like big-classes, do not have the desirable homogeneity pro¬
perty, and on page 241 of [7] he proposes small-classes as an improvement. Small-classes were however
independently arrived at in this work, as a refinment of Haralick's big-classes. The definitions of these
classes are as follows:

The generic big-class CLP m c Z) is the set of all CLP instances having the generic values n, m, c
and Z respectively for the number of variables, vector of domain sizes, number of constraints and vector
of constraint-argument sets. The component constraint-relations T} of an instance's constraint-relation
vector T are arbitrary subsets of the corresponding cartesian products Ds.

CLP^n m c Z) =■ {clp{n m c Z T) | T} C Dj 1 < j < c } (7)

The generic middle-sized class CLP^n m c Z 55} is the set of all CLP instances having the generic
values n, m, c and Z for the corresponding features. In addition, the constraint-relations 7"; of an
instance are such that the sum of their sizes is 55.

CLP^n m c Z 55) = {clp{n m c Z T) | £ | T, | = 55 } (8)
i

The generic small-class CLP~(n m c Z S) is the set of all CLP instances having the generic values n, m,
c and Z for the corresponding features. In addition, each constraint-relation T, of an instance has size
Sj, the j'-th component of the small-class constraint-satisfiability vector S.

CLPa(n m e Z S) = {clp(n mcZT) | | T} | = 5; 1 < j < c } (9)
The difference between the above three types of CLP sub-Problem is the degree to which the

constraint-satisfiabilities 5; are restricted. An orthogonal kind of restriction of historic interest in induc¬
ing sub-Problems of CLP is one placed on Z, the vector of argument-sets. It is often assumed that
instances are binary, that is, have constraints only over pairs of variables. Moreover, it is often assumed,
as is the case for n-queens instances (under the usual formulation), that all possible pairs of variables have
exactly one constraint over them. Instances with exactly one constraint over each pair of variables, and
having no other constraints, we call pure and simple binary. If there is at least one constraint for each
pair of variables, and no other constraints, such instances are called pure (but not necessarily simple)
binary.

Most systematic studies in Artificial Intelligence have considered only pure and simple binary
instances. In particular this is the case in [11] where pure and simple binary big-classes are used, in [7]
where pure and simple binary big- and middle-sized classes are used, and in [21] where pure and simple
binary big- and small-classes are used.7 The next level of generality occurs in [22] where we consider pure
and simple A-ary big-classes — big-classes of instances having exactly one constraint over each combi¬
nation of A variables, and no other constraints. (If each combination of size 2 through A variables has
exactly one constraint, and no other constraints exist, such instances are called full and simple A-ary.)
No other analysis had ever treated that general a case before. However, our results of section 3 below are
far more general yet, being in terms of fully arbitrary small-classes and big-classes, with no restriction at
all placed on the vector of argument sets Zj characterizing instances of the class. In particular, each con¬
straint of an instance — independently of the other constraints — may be over an arbitrary subset Z} of
the problem variables Z, and hence each constraint may individually be of arbitrary arity Af = ] Z3 | .

As a result, some subsets of variables may in fact have no constraint whereas other subsets may have
more than one constraint over them. In addition, the domains of problem variables need not be the same,
nor need they be of the same size.

I.3. Probability Models for CLP
This section introduces several probability models for the distribution of instances in the CLP

small-classes and big-classes of the previous section. It is under these probability models that the

7 In [21 j the (pnre and simple binary) big-classes and small-classes are called respectively, v-classes and c-classes.
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expected-complexity of CLP problem-solving will be derived in section 3. Certain useful events in big-
classes and small-classes are defined and their probabilities are given under the corresponding probability
models. Note that the results of this section are in an algorithm-independent form. Section 3 will use
them as the basis of the algorithm-dependent results derived there.

1*3.1* Some Notation

This section presents some notation and results that will be useful. This paper assumes a familiarity
with the theory of probability for finite sample spaces, for which useful references are [4), [23] and [13].

Probability Spaces: We will be associating probability models with CLP big-classes and small-classes. To
emphasize that these big- and small-classes then become sample-spaces — where CLP instances are out¬
comes — we write Clp(n mcZ) and m c Z S), or more simply flj and fl^, respectively for
CLP^(n m c Z) and CLP^n m c Z S). An instances clp(n m c Z T) or more simply clp, may accord¬
ingly be denoted aa w(n m c ZT) or u;. When the distinction between big-class and small-class Cla is
not important we use CI to stand for either one.

We will often be discussing parameterized events E = E(a x . . am ) in Q, where the a, are argu¬
ments whose values determine the specific event intended. In this case, we abbreviate probability
P(E(al . . am )) of the event by P{ax . . am ). Of course, for events , j e J that are mutually indepen¬
dent or mutually exclusive we have respectively

P(U£,)= £/>(£,) (10)
; ( / j c / j c / j c I '

where we use IjJ to denote the union over mutually disjoint sets (mutually exclusive events) and f] to
denote the intersection of mutually independent events. We will use the following definition of the
expected value of a random variable Q(u;)

Q — £ ^(w)f(w) (n)

which is equivalent to the more usual definition as a sum over all possible values q of Q(u?), each value
weighted by its probability P(fl).

Indicator Functions: A given event E G CI can be represented by its characteristic or indicator func¬
tion

{1 if u c E . .0 otherwise (12)
When the event E is given parametrically as above, then we abbreviate . . am) a/) as
^(ax . . am u;). A result that will prove useful is that the expected value of the indicator function of an
event E is equal to the probability of that event:

1(E) = £ S(E u>) P(u,) = £ P(u) - P(E) (13)
u t Q u c E

Set Notation: We will also use ( ), where Z is a set, to denote the set of all size-m subsets of Z. Ifv m '
Z n

| Z | =n, then of course | ( ) | = ( ). Note the analogy with | 2Z | = 2* for the size of the
power set of Z. Lastly, we use for the set of integers from n to m inclusive.

1*3.2. Probability Models over Big-Classes and Small-Classes
Within a given big-class or small-class, the instances clp(n m c Z T) differ only in the value of their

constraint-relation vector T == (Tx T2 - - Te). Thus a probability model for the instances of a big-class
or small-class is equivalent to one for the corresponding set of T vectors. By the definition of big-class
and small-class (in section 2.5) we have that the relation-vectors T for the instances in a big-class
CLP^n m c Z) and in a small-class CLP^n m c Z S) are respectively those given by

January 19, 1980
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T £ X 2°> and T e X ( ) (14);«l ;=i v Sj >
The following are three probability models for the distribution of these T vectors. Models 0 and 1 induce
a distribution on the vectors given in the first part of (14), and hence induce a distribution on the CLP
instances of a big-class. Model-2 induces a distribution on the vectors given in the second part of (14),
and hence induces a distribution on the instances of a small-class.

Table 1-2: CLP Probability Models Used

In all three models, the vector T = (Tx T2 . - Tc) of constraint relations arises by c independent
experiments, one for each component T3.

0 Model-0 on a big-class: A given T} arises as the result of A/; independent experiments^ each
determining for a different one of the value-tuples Z; € Z?; whether or not it is in T;. Each Z; has
probability p of belonging to T3.

1 Model-1 on a big-class: As for model-O, but generalizes so that each Z; in D, has probability p
of belonging to T3.

2 Model-2 on a small-class: A given T; arises by a single experiment of randomly selecting a subset
of Sj value-tuples from D3. All subsets of size 5; are equally likely.

We use P p(E ; p) to denote the probability that event E C fl occurs when an instance is randomly
selected from big-class CLP^n m c Z) according to model-1 with satisfiability-rate vector
p = [p x . . pc). The corresponding expression for model-0 is P$(E ; p). We use P?{E) to denote the
probability that event E occurs when a CLP instance is randomly selected from a small-class according
to model-2. For big-classes under model-0 and under modeH, and for small-classes under model-2, the
expected value of a random variable Q(clp) is given by the corresponding versions of (11), which are
respectively

Q m c Z ; p) — £ Q{clp) P?(clp ; p) ,

dpcfynmc Z) 1 '

Q/(nmeZ;p)= J] Q(elp) P p (clp ; p) /16.
clp t m cZ) ' '

Q?(n m c Z S) — J] Q(dp) P?(dp) (17\
dpcQJ^nmcZS) * '

1.3.3. Events and their Probabilities

Table 1-3 gives events that will be needed later when deriving the expected complexity of solving
CLP instances. The events are with respect to a big-class or a small-class as the sample-space. In [18] and
[19] the corresponding event probabilities have been determined under model-1 and model-2, and these
probabilities are summarized in table 1-4. Note that all events and probabilities of this section are
independent of any algorithm, and reflect only the nature of CLP itself and the corresponding probability
model. In section 3 below the results of this section will be used to determine algorithm-dependent proba¬
bilities and expectations.

As indicated in table 1-3, the events we consider can be divided into three types, based on (i)
whether constraints of an instance are satisfied by a given value-tuple, (ii) whether constraint relations of
an instance are equal to given sets and (iii) whether constraint relations of an instance have a certain size.
The following paraphrases and expands on the formal specification of the events in table 1-3.

• E(j Zj) is the set of instances in 11 whose ;-th constraint relation T; (c/p) is satisfied by a given
value-tuple Z3 from the corresponding cartesian product.

• E(j X) is the set of instances in Q whose ;-th constraint relation Tj(clp) is satisfied by a given
value-tuple X labeling X G Z. X need not equal the list Z; of argument variables for T; , but may

January 19, 1980



Table 1-3: Some Basic Subsets of 0 = m c Z) or m c Z S).
(The corresponding event probabilities are in table 1-4.)

Symbol Defined as Defined for

Events based

E{jZ,)

E(j X)

E(JX)

E(J f t X)

E(J f >1 X)

on constraint satisfaction

{dp | Z, £ T, (c/p)}

{dp | Z,{X)tT,{clp))

{dp | Z,(X)eT}(dp)\/ je/}

{dp | 3 exactly t values f tij
s.t. \Zj(X 7)tT}(dp)\j jeJ) }

{dp | 3 at least one value f ti{
s.t. [IjixDtT, (dp) y jtj\)

Z, tDj, jtJ{

XCZ, Z, CX, jeJ{

xcz, JCJi, z, cxy jtj

XCZ, JCJi, fix,

{f}QZ,CXV{!) Vie/, tej;>

XCZ, JCJ{, ax,

{f}CZ]CXV{f}yjeJ

Events based

E(j T,)

E(T)

on constraint equality

{dp\ Tj (dp)= Tj }

{dp | T(c/p)=T} .

Tj e 2°J Model-l

T, t(D' ) Model-2

T £ X2°' Model-l

c
D

T« X ( J ) Model-2J=iv sJ '

Events based

E(j S})

E(S)

on eonstralnt-slse equality

{dp | Sj (dp)-Sj }

{dp | S(c/p)=8)

1\ S} t Jo' Model-l .

Sj = Sj (Dff) Model-2 ; * 1

C

Sc X Jo' Model-l
i

S= S(n„) Model-2
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0

subsume it. In this case, T) is satisfied by X if the projection Z; (X) of X onto Z; is in T; .

• E(J X) is the setjof instances in whose constraints in the set indexed by J are all satisfied by a
given value-tuple X labeling X C Z.

• E(J f t X) is the set of instances in fl for which exactly t of the possible values in domain df
for variable / each allow all the constraints that are indexed by_/ to be satisfied when other argu¬
ment variables take their values as given by X. Thus E(J f t X) can be viewed as the event that
exactly t values for / each ''survive'' all the constraints in T/ = {Tj | ; e / } given the instan¬
tiations in X. Note that as indicated in table 1-3, this set of instances is well defined only for / not
in X and when each constraint in Tj has / as one argument and takes its other arguments only
from the variables X. This and the next set of instances will be important in the analysis of algo¬
rithm gFC.

• E(J / >1 X) is as for E(J f t X) except that instead of requiring exactly t surviving values from
df , we require at least 1.

• E(j Tj) is the set of instances in fl whose /-th constraint relation Tj (clp) is equal to a given rela¬
tion Tj .

• £(T) is the set of instances in fl whose vector T(c/p) = (T x(clp) . . Tc (c/p)) of constraint relations
is equal to a given relation vector T = (Tx . . Tc). As mentioned, within a given big or small-class
there is a one-to-one correspondence between vectors T and instances clp(n m c Z T), so that the
set E(T) is really just the singleton set {dp(n m c Z T)}. As a consequence, the probability of
event i?(T) is the probability of outcome dp(n m c Z T).

• E(j Sj) is the set of instances in fl for which the size S; (clp) = | T} (clp) | of the j-th constraint
relation T; (clp)f is equal to a given number S;.

• £(8) is the set of instances in fl whose vector S(c/p) = (5'1(c/p) . . Sc(clp)) of constraint relation
sizes, is equal to a given vector S = (Sx . . Sc) of sizes. In table 1-3, 8(11^) denotes the satisfiability
vector 8 characterizing the small-class fl^ = CLP^n m c Z 8), and 5; (fl^) denotes its ;-th com¬
ponent.
In addition^we will need the following two results from [19| for the expected value of t under distri¬

bution P(J f t X) for models 1 and 2 respectively:

*X;p)= m, IIP, (18)
jc J

£ / P?{J f tX)=mf n*, (19)
f—0 }(/
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Table 1-4: Probabilities of the Events in Table 1-3

Prob. Model 1 2

n flp = CLP^n m e Z) = CLP^n mcZS)

P(E) P}{E; P) P?(E)

PU z,) pi

P(j X) pj *,

P{JX) Upj
J t J

P{J / t X)
]tl Jll

0 ;(/ 1

n,("')jf / J

p(j i >i x)
SM)'(7)n(5:/)/=s0 ;</ '

P, (*)

P{j T,) p/' (i-p,)^-5' ()"'

P(T) = n P]s>(i-P}f>-s>
• M 1 A <?; >"

P(clp(n m c Z T))
J 1 v

PU s,) 1.0

P(S) ri ( j')n'-O'' 1.0
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2. CLP ALGORITHMS

This section presents three algorithms for solving CLP instances: Backtracking, Forward Checking
and word-wise Forward Checking. Each of these will be analyzed in section 3. Our versions of these
algorithms are generalizations of those in [11] so as to allow solution of the fully general instance of sec¬
tion 1.1 above, as well as to allow flexibility in the choice of instantiation order and constraint-check
order. Examples are given of the use of these algorithms, emphasizing the dependence of problem-solving
complexity on the particular instantiation order and constraint-check order used.

2.1. Preliminaries

This section lays some groundwork needed for the subsequent presentation of our CLP algorithms.
Two notions are introduced, (1) consistency of partial labelings and (2) the instantiation ordering used by
an algorithm. The concept of a constraint-check ordering parallels that of instantiation ordering, but is
best left to be described in the context of the respective algorithms.

As mentioned, the goal in solving a CLP instance is to find the set T of all labelings Z of the prob¬
lem variables that satisfy all the problem constraints. This solution set was therefore denoted explicitly in
(5) as

r= { Z I ZtD and Z,(Z)eT, V jeJl } (20)

which indicates that the members of T — the consistent labelings — must be such that their projection
onto the argument sets of each constraint is a satisfying tuple for the corresponding constraint. It is con¬
venient to generalize the notion of a labeling and its consistency as follows.
Definition:

A labeling of a set A C Z of variables is a tuple of values from the respective domains of the vari¬
ables

A eDA = Xd,tj,<A '

If A is a proper subset of Z, then A is called a partial labeling of Z.
Definition:

A constraint C; = (Z; T}) is said to be applicable to a given set A of variables if Z; C A. The
index set for the constraints applicable to A is therefore

— { 3 I 1 - J - c and Z, QA) (21)
Definition:

A is a consistent labeling of A if and only if it satisfies each instance constraint C; applicable to
set A. Thus, paralleling the above definition for the solution set 7\ the set of all consistent label¬
ings of A C Z is

Ta = { A I A e Da and Z}{A)tTj V 3 } (22)
where Z; (A) denotes the projection of A onto Z;, the argument set_of constraint C; .8 The solution
set T in (20) is a special case of (22) where A = Z. A labeling A of A that is not in TA thus
violates at least one applicable constraint and is an Inconsistent labeling of A. Clearly such a
labeling cannot be extended to form a consistent labeling of Z.
The CLP algorithms to be studied below will generate the solution set T by recursively extending

partial labelings of Z. Starting with the empty labeling, a tree of partial labelings is built up by recur¬
sively extending each consistent partial labeling according to the various values that may be assigned to
an as-yet unlabeled variable. The order in which variables are instantiated at successive levels of the

# For example, if A = {z2 Z$ Z4 Z6 Z9}t A d t g b) and Z; = {z2 ZK Ze} then Z; (A) = (e t g). In
this example, as eaHier, we nse the convention that values Zt in labelings correspond to variables arranged in name order. However,
it will often be convenient to have the valnes corresponding to variables arranged in instantiation order. All that matters is that for
any given labeling it be dear what is the implied correspondence between variables and values.
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search tree is called the Instantiation ordering for variables.
The particular instantiation order used can have a great effect on the complexity of solving a given

CLP instance. Analogously, the constraint-check ordering (described below) may also have consider¬
able effect on problem-solving complexity. Yet virtually no theoretical basis exists for making appropriate
choices for these orderings. One of the main aims of this work has been the derivation of analytic results
that capture the effect of both instantiation order and constraint-check order on problem-solving complex¬
ity — and to show how these results may be used to make good choices for these orderings. The term
search ordering will be used to refer to both instantiation orderings and constraint-check orderings.

Explicitly, the instantiation order X is one of the n! possible permutations of the n problem vari¬
ables in Z. If x = (ttx x2 • • ) denotes a permutation of the integers 1 to n, then

X=s (xx z2 . . x„) — (*»,*#, . . Z,%) (23)
Thus, the k-th variable to be instantiated along any path through the search tree generated will be
xk = Zik. As usual, dtk = dt^ denotes the domain of values for variable xk and xk e d%k is an arbitrary
such value for xk. The set of the first k variables instantiated and an arbitrary labeling of this set are
denoted respectively by Xk and Xk , so that

Xk = {zj z2. .zk) (24)

Xk — (zlz2 . .zk) t dz — DXk (25)

This is analogous to the notation Z; and Z; introduced earlier. However note that in X\, values are
arranged so that left to right their corresponding variables are in instantiation order while Z; is arranged
with corresponding variables in name order. The concatenation operator 11 will be be useful in building
up lists of labelings or of variables. If a is the list (a1a2- ^a.) then a 11 a, denotes the list
(ax a 2 - - a\ )• Thus corresponding to Xk = Xk_x U i^we have Xk = Xk_x 11 xk, which says that we
may form a labeling of Xk by concatenation of a labeling Xk.x of Xk.x and a value xk for variable xk.

We call xk the current variable at level k and Xk the set of Instantiated variables at level k.
Sets

Pk = Xk - {zk } — {*! z2 . . xt_i} and Fk — Z - Xk = {xt+1 :w . . zn }

are respectively the past variables and the future variables at level k. The latter will be particularly
important in relation to the Forward Checking algorithm. Note that F0 = X% = Z, that Fn = X0 = 0,
and that Fk = Fk_x - {xk }.

The above definitions are summarized in table 2-1. For concreteness, table 2-2 shows some of the
above quantities for the case of n ==6 variables and the instantiation ordering
X = (xx x2 z & x4 x6 x6) = (26*8*1*2*9*4) corresponding to permutation x = (5 3 1 2 6 4).

2.2. Generalised Backtracking (gBT)
This section develops the gBT algorithm in terms of a recursive function for the solution set T of a

CLP instance. The algorithm is essentially the well-known Backtracking algorithm treated for example in
[8], [14] and [llj. But unlike the versions often studied in the literature, gBT explicitly allows arbitrary
instantiation ordering and constraint-check ordering. Also, it is able to handle any problem of the gen¬
eral type defined in section 1.1 — including instances which, amongst'other things, may have constraints
corresponding to an arbitrary family of arities and an arbitrary family of argument sets. Several examples
are given of the use of gBT, emphasizing the effect of instantiation order and constraint-check order upon
problem-solving complexity.

2.2.1. Development of the Algorithm
Given a CLP instance to solve, and some instantiation order X for its variables in Z, assume that a

labeling Xk is given for Xk = {i1 j2- • 'k®* * variables in X._The set of all consistent labelings
of Z that are extensions of such a labeling Xk can be expressed as F l(Xk k) given recursively as follows:
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Table 2-1: Some definitions for algorithms gBT, gFC and wgFC

Symbol Defined as Defined for

it (*1 it2 . . ■>r«), a permutation of {1 2 . • "}
Variable z„t l<k<n

An element of domain

X ( *1 *2 • • *n )

X*
( { Ji X2 . . xt }
\0

1 <k<n

1 = 0

Pk
( {liXj.. Xt_! }
I*

2<k<n

1 = 0, 1

Fk
( { ®r+i *k+e • • xn }
\*

0< k<n-l

k=n

X dt

xk (xi x2 . . ), an element of Dxt

I (A) The projection of A onto Z; Z, C AC Z

Table 2-2: An example with instantiation ordering X={zszsz1z2ztz<).

k xk Fk Dtg

0 0 { zlz2z&z4z&z6f 0
1 Zf, {«.} {ZxZ2ZsZ4Z0} d't
2 Zi { ZSZi } { Zt Z2 Z« z# } dH X
3 Z\ { } { z2 z4 Zg } 0,. x i.% X ^
4 z2 { Z6 Zs Zi z2 } {^4^0} d,s X X dfl X rf,a
5 *s { Zs z# Z\ z2 Ze } {z4} d,s X d,3 X <f,x X d,2 X d,#
6 Z 4 { Z5 Zj Zi z2 z8 z4 } 0 X J,s X rf,x X d,2 X <f,# X rf,4
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0 if Xk is inconsistent

Fl[Xk *) = { Xk } if Xk is consistent and ife = n , v1 '
(25)

llJ Fl(Xk || Jb-Hl) otherwise
Zt+lCdl'*+i

In words, the set of consistent labelings of Z formable by extending labeling Xk is
• empty if Xk is itself not a consistent labeling of Xk C Z,
• the set containing only Xk itself, if Xk is consistent and of length n, since then all variables of Z

are already consistently labeled
• otherwise, thejinion of all sets of consistent labelings of Z formable as extensions of the various

extensions of Xk which result from appending to Xk the different possible values for the next vari¬
able to instantiate, zk+v
Since the solution set T for an instance is just the set of consistent labelings of Z that can be

formed by extension of the empty labeling Xk = 0 of length k = 0, we have that

T = F1(0O) (27)

Figure 2-1 shows half of the symmetrical tree of recursive calls made in evaluating (27) for the case
of the 4-queens problem9 under the usual formulation in which a CLP variable is associated with each row
of the chess board and a domain value with each column of the board. In this example, we are using the
name order for variables in Z as the instantiation order X; in other words zt = zx so that

AT = (z, z2 2$ = *2 za **)■ (28)
A node is drawn in the search tree of figure 2-1 for each_recursive call to Fl. The node corresponding to
call Flpf* i)j8 called the node at Xk, or simply node Xk. Each node Xk of a tree shows the correspond¬
ing value of Xk using an array representation where rows of a node correspond to CLP problem variables
and columns to values for those variables (with the particular correspondence as indicated at the root
node). An instantiation of variable xt to some value Jt is shown by darkening the corresponding cell in
the array.

Note that for 4-queens instances under the standard formulation, this representation scheme for Xk
will simply give a "picture" of the corresponding placement of the first k queens on the board.10 This
makes the search trees for n-queen instances particularly easy to understand and is the reason that 4-
queens is used here (and later for Forward Checking) as an introductory example. However, this pictorial
property of our node representation is just an artifact of n-queens problems and the particular CLP for¬
mulation used here for them. In' general the above representation for nodes is nothing more than a con¬
venient display of the state of the solution, and has no particular geometrical significance.

Now in computing the_solution set Tjising the above recursive function Fl of (26), it is necessary
to check for each call Fl(Xk Jfc) whether Xk is consistent or not. From section 2.1, this means checking
whether Xk satisfies all applicable constraints: those whose indices are in

— { i I 1 - 3 - c and Z, C Xk } (29)

However the full set of constraints11 Vxk never really need be checked. This is because for 1 < k < n at
each call F 1(X* k) it can be shown by induction that Xk_x is consistent, that is, satisfies all constraints of

9 Find ill ways to place 4 queens on a 4 X 4 chess board so that no two qneens attack each other. See [10] for a detailed
discussion of 4-queens in relation to our formulation and notation for CLP — in particular, for the 4-queens analogues of table 1-1
and figure 1-1 above.

10 Assuming that row i at a node is made to correspond to variable Zt (which corresponds to row i of the chess board) and
that column i at a node corresponds to domain value t (which corresponds to column t of the chess board).

11 Sets such as in fact do not contain constraints but only indices of constraints. However, to simplify the presentation
we will often loosely refer to constraint indices as being the corresponding constraints themselves.
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l-li Half of the symmetrical search tree generated by Backtracking
in solving the 4-queens problem. (Compare with figure 2-5.)



$xk x- Therefore in testing the consistency of Xk it suffices to test only whether Xk satisfies all con¬
straints of

4>k — = { ;' I 1 Z j < c and {xt } C Z, C Xk } (30)
These are the constraints whose arguments sets Z} are subsumed by Xk but that contain the most
recently instantiated variable xk. In other words, one need check at level k only those constraints for
which the current variable xk is an argument whose instantiation at that level leaves no more arguments
uninstantiated. The constraints with indices in tpk we call the constraints cheekable at level k. (Not
all constraints of^* mayjiowever need checking at a given level k node since if one constraint is found to
be violated by Xk then Xk is known to be inconsistent without checking further constraints.) Of course,
which constraints constitute rpk will depend on the instantiation order chosen — and this is one of the
two ways that instantiation order may effect problem-solving complexity.12 Table 2-3 shows the sets rpk at
each level, induced for each of the 3! = 0 instantiation orders possible for the 3 variables of our running
example clp &

Note that as in this example, for any CLP instance each of the c constraints is checked at exactly
one level from 0 to n. The rj>k thus constitute a partition of the set of integers 1 to c, so that

U — { 1 2 . . c } and f) | | = c (31)

Since we are assuming that all constraints involve at least two argument variables, there are in fact never

any constraints checkable before level 2, and we have that = ^1 = 0. At levels 2 and higher, ipk will
in general contain more than one constraint. It therefore becomes relevant to consider the order in which
constraints of rjtk are checked since — as with varying the instantiation order X — we will see that vari¬
ations in the constraint-check orders at the different levels can also have a significant effect on problem-
solving complexity. To model this, we therefore consider set rf>k of (30) to have some arbitrary order
imposed on it

0* = ( ■ • W *k 1 ) (32)
the i~th component ipk being the index of the constraint that is the i-th to be checked at a level k node.
Such an ordering we call a constraint-check ordering at level k. There are of course | 0* |! such ord-
erings possible for a given set i/>k, and this is to be chosen by the user at each level k of the search tree.
For example, for any n-queens problem, there are (i-1)! possible constraint-check orderings at level k,
since at that level there are £-1 constraints to check — one between the current (or £-th) queen and each

Table 2-3i Sets j>k of constraints that are checkable at level k
for each of the 6 possible instantiation orders X for instance clp 0.

X ^0 Vv ^2 tfs

(Zj Z2ZS) 0 0 {1} {2 3 4}

(*i *a*2) 0 0 {2 3} {1 4}

(z2 Z, ZS) 0 0 {1} {2 3 4}

(z2 za Z j) 0 0 0 {1 2 3 4}

(za Zi z2) 0 0 {2 3} {14}

(*a zi) 0 0 0 {1 2 3 4}

13 When the variables of in instance hive non-equal domain sixes d, then the instantiation order may also effect the com¬

plexity of problem-solving in a second way, namely by effecting the maximum number of nodes that may be generated at a level.
See equation (36) below.
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of the k-1 other queens that have already been placed on the board by level k. All such past queens must
have their position tested for consistency with that just chosen for the current queen (see figure 2-1), and
the order of pairing the current queen with past queens for this position-compatibility test is arbitrary.

The natural constraint-check ordering i>k at a level is that where the corresponding constraints
Cj are checked in order of increasing index ;. (Of course, the i>k themselves, as sets, depend first of all
on the instantiation order X, as seen in the example of table 2-3.) The vector of constraint-check ord¬
er ings for gBT at the various levels we denote by

= (00 $2 ■ • i>n ) = (0 $ ^2 • • ) (33)

Although we have spoken above of allowing an arbitrary instantiation order X and arbitrary
constraint-check orders if>k at the various levels, it should be noted that we do still require that the same
variable xk be instantiated at all nodes of level k (so that the same instantiation order X applies to all
paths through the search tree) and that the constraint-check order rpk be the same at all nodes of level k.

The above considerations lead us to the generalised Backtracking algorithm or gBT presented in
figure 2-2 using a Pascal-like language. It is generalized with respect to the versions usually appearing in
the literature, in that

1) the instantiation order X may be any permutation of Z (though this same order is to be used along
all paths through the search tree),

2) the constraint-check order at each level may be any permutation of the set i>k of constraints check¬
able at level k (though this same order is to be used at all nodes of level £),

3) it is able to solve any instance of the very general type defined in section 1.1.
At line 15, algorithm gBT checks the current partial labeling Xk with respect to constraint C; by deter¬
mining if the corresponding projection onto Z; satisfies C;. The use of the notation Z; < T} is however
in general just a convenient shorthand. It is not intended to imply that the constraint relation T; is
necessarily available extensively (although this is one possibility). This test will more commonly be made
by a subroutine which represents the constraint C; intensively.

2.2.2. Some Examples Using gBT
This section shows several examples of the use of algorithm gBT. Our running example clp0 is

solved using a variety of instantiation orders X and constraint-check orders tpk. We will see that the
choice of these orders may have a strong effect on the algorithmic complexity of gBT. For more realistic
CLP instances, much greater variation is possible (and chapter 8 of [18] provides theory-based heuristics
for choosing these gBT search orderings). Note that the complete data for solving clp0 using gBT (and
gFC) under all possible instantiation orders and constraint-check orders appears in chapter 6 of [18].

Figures 2-3 and 2-4 represent the tree of recursive calls to gBT when solving clpQ with the instantia¬
tion orderings X = (zx z2) and X = (z$ z2 z i) respectively. The same conventions as described for
figure 2-1 are used here. The family of sets rl>k induced by each instantiation order used here can be seen
in the corresponding row of table 2-3. The node structure of a search tree is determined only by the
instantiation order X and not by the choice of constraint-check orderings imposed upon the induced sets
$k. The number of nodes generated at each level k when solving instance clp using gBT is denoted
N(gBT k dp), and these are shown in the table associated with each figure. Also shown in these tables, at
the bottom of the iV(gBT k clp) column, are the sums

N(gBT dp) = £ N(gBT k dp) (34)
kmm 1

giving the total number of nodes generated (excluding the root node). Note that with these two instantia¬
tion orders, the total number of nodes generated varies markedly from 10 to 21 (a factor of two differ¬
ence). We will see that the variation in the number of checks performed is even greater.

As mentioned, an instantiation order completely determines the set V* °f constraints checkable at
each level k of the search, but the constraint-check order at each level may be any permutation of the
corresponding set — and these orders may have a considerable influence on the number of constraint-
checks performed. Both figures 2-3 and 2-4 show numbers of constraint-checks performed using two dif¬
ferent sets of constraint-check orderings — permutations of the corresponding sets 1?k shown in table 2-3.
Each such family of orderings heads a separate column in the table associated with the figure. In each
such column appear the corresponding numbers C(gBT k clp) of constraint-checks performed at each level
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Fig. 2-2i Algorithm gBT and its subroutine Consistent.

PROCEDURE gBT( Xt k ); : Enter node Xk
IF Consistent( Xt k ) THEN : Dummy call at k = 0, 1

IF k =» n THEN print( Xt )
ELSE FOR ALL xt+1 e d,t+i DO

BEGIN

Xt+l *- Xt II Xk+l',

gBT( Xk+i jfc+1 ); : Generating node ATt+1 = Xk 11 Jt+l
END;

END;

FUNCTION Consistent( Xt k );
FOR — 1 TO | Vt | DO

BEGIN

; - *i;

I ~z,(Xt);
w z, i Tj

THEN RETURN false;

END;
RETURN true;

END;

: | ^ | = 0 for k — 0, 1

: Index of constraint to check

: Projection onto arguments of C .,

: Checking constraint (7 ,

Initial calk

gBT( 0 0 )

Global Instance parameters)

n, T - ( r, Tf . . Tc ), Z = ( Zx Z2 . . Zc ), d = ( i,x rf,a . . d,t )
Global algorithm parameters)

X, ( v2 V's • • )
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Fig. 2-3i Solving clp0 by gBT using a best instantiation-order, X = (z^ z

with a best (and a worst) set of constraint-check orders {02 V's} for tllat X.
(Compare with figures 2-4, 2-7, 2-8)
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Fig. J-4i Solving dp0 by gBT using a worst instantiation-order, X — {z3 z2 z

with a worst (and a best) set of constraint-check orders {i>2 $%} for that X.
(Compare with figures 2-3, 2-7, 2-3)
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k of the search tree. These C(gBT k clp) values are of course the sum of the number of constraint-checks
performed at each node at level k, so that

C(gBT*c/p) = £ C(gBT k Xk dp)
xk cDXk (35>

where C(gBT k Xk dp) is the number of constraint-checks performed by gBT at node Xk in solving
instance clp. This sum is actually over all node sites Xk e DXk at level k, rather than only over all gen¬
erated nodes, with the understanding that C(gBT k Xk clp) = 0 at a node site where no node is gen¬
erated. The number of such node-sites^at level k of the search tree for gBT (and for gFC below) is just
the number of different instantiations Xk that are possible, and this is of course

_s 1- 10*. 1 - 1 x 1 - n ki - n (36)
Xk<DXk '■ JtcXk ixcXk

For the case of the first (leftmost) family of constraint-check orders ipk appearing in the_ associated
table, figures 2-3 and 2-4 label the arc leading to a node by the number of checks C(gBT k Xk clp) per¬
formed at that node. The total number of constraint-checks performed when solving clp is the sum

C(gBT dp) - £ C(gBT k clp) (37)
k—2

of the numbers of checks performed at the different levels of the search tree. Note that the k = 0 and
£ = 1 summands are excluded here because gBT never has any constraints to check at those levels. The
total numbers of checks performed are shown at the bottom of the corresponding C(gBT k clp) columns
in the tables. We see that as mentioned, changing the family of constraint-check orders may have a con¬
siderable effect on the number of constraint-checks performed. This effect js possible because the
constraint-check order at a level determines at what stage any inconsistency of Xk is discovered. As soon
as such an inconsistency is detected all further processing at that node is unnecessary.

The cumulative effect of such savings over many nodes in the search tree may be considerable. (Of
course, for^ nodes where no inconsistency is detected, each constraint of 0* is checked once and
C(gBT k Xk clp) = | ipk | irrespective of the order used for checking the constraints in 0*.) In figure 2-
4 for example, changing from family 02 — ^3 = (2 4 1 3) to family ^2 ^ Ms = (3 1 4 2) reduces the
total number of checks from 44 to 18. Using instantiation order X = (zx zz z2) and constraint-order fam¬
ily 02 = (3 2), 03 = (1 4) of figure 2-3 further reduces the total number of checks performed to 11. As
mentioned, this factor of 4 reduction from 44 to 11 checks is representative of much larger reductions
(both relatively and absolutely) that are often possible for more complex instances. Similar effects will be
seen in section 2.3.2 for algorithm gFC, where instance clp0 is again used as the test case.

Equation (34) expresses the total number of nodes in a gBT search tree in terms of the number at
each level. It will prove useful to refine this a little further, expressing the number of nodes at a level in
terms of the number at each node site at that level. This latter number, which is of course simply either
0 or 1, we denote using the following indicator function

S(gBT k Xk clp) »

1 if gBT generates a node at site Xk
when solving instance clp

0 otherwise

In terms of this we may express the number of nodes generated at level k as

MrBT t dp) - £ SfeBT t X, dp) <391

and hence the total number of nodes generated by gBT given in (34) may be expressed as
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AT(gBT dp) = £ £ S(gBT * c/p)
Xl t£>v (40)

Similarly, to indicate whether (7^ „ the i-th checkable constraint at level k is actually checked by
gBT at node site Xk when solving instance c/p, we introduce

if gBT checks C f at site Xk

when solving instance dp

otherwise

Remember that some constraints in $k may not be checked at Xk because of jin inconsistency detected at
that node when checking an earlier constraint in \l?k, or because the node at Xk is not even generated —

and it is in these cases that the above_indicator function takes on value 0. In terms of (41), the number of
constraint checks performed at node Xk can be expressed as

I*'
C7(gBT k Xk dp) =* £ 6{gBT * i Xk dp) (42)

1—1

so that using this together with (35) and (37), we have for the total number of checks performed by gBT
in solving instance dp

4gBT k i Xk dp)

C(gBT c/p)- £ _£
Xk cDx

I* I
£ 4gBT * I Xk dp)
»—i

(43)

Quantities N(gBT clp) and C(gBT dp) are specific to the given instance dp and as such are effectively
intractable. Their expected values art tractable however, as will be seen in section 3.1 where equations
(40) and (43) provide the starting points for the respective analyses.

2.2.3. More on gBT Constraint Seta
Table 2-4 defines two additional constraint (index) sets for gBT that will be useful in section 3.1.

Examples of these new sets and the earlier constraint sets for gBT are given in table 2-5. Lastly, table 2-6
presents without proof some simple relationships between these sets. From now on we use 4^ as an
abbreviation for Vxk-
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Table 2-4: Constraint-related definitions for algorithm gBT

Symbol Defined as Defined for

1>k{<) | { i>i ip? • • 1-1} / 2<»< \tt |
0<*<n,j i=lotk = Qt j

**(<») U UV't(<»)
kmaO

0<k<n, !<»'< | tl>t |

In words, these new constraint sets are as follows:
• t/>k (<i) denotes the first i-l constraints checkable at level k.
• ♦*(<*) i8 ^ a sense a cumulative version of 0*(<*). It contains those constraints that are check¬

able at some level prior to level k or are one of the first i-l checkable at level k.

Table 2-5 should prove useful in developing familiarity with these and the earlier constraint sets tpk
and ♦ k for gBT. Both table 2-5 and its analogue, table 2-10 for gFC, use the example of a full and sim¬
ple A-2Lty CLP instance having n = 5 variables and constraints of maximum arity A = 4. As defined in
section 1.2, such instances have exactly one constraint corresponding to each combination of A ' variables,
2<A' <A. This is convenient here because when not more than one constraint exists having any given
set of variables as arguments (as by definition is the case for all simple instances) we may use the argu¬
ment set itself, instead of the less informative constraint indices 1 < j < c, to uniquely index the constraints
— and such argument-set-indexing is more transparent for the purposes of the present example. If the
constraint over argument set {x2 x& x6} were say C7 then the list (x2 xs) may be used in place of the
index 7 to denote the constraint. In tables 2-5 and 2-10 such lists are further abbreviated to just the con¬
catenation of their subscripts so that (x2 x3 x6) becomes simply 235. Note however that the 235 stands for
(j2 zs) and not (z2 x6), i.e. indices are given with respect to instantiation order not name order of
the variables. This allows the example to be interpreted more generally since it is valid for arbitrary
instantiation order X = (xx x2 . . xb). If indices were interpreted as being with respect to name order
then it would be a valid example only for the particular instantiation ordering X = (zx z2 . . zn ).

For a full and simple 4-ary instance on n = 5 variables, a column of table 2-5 for a given k shows
all the indices (using the above argument-set-indexing convention) in rl>k, the index set of checkable con¬
straints at level k. Their order from top to bottom denotes the intended constraint-check order at each
level. Of course for each k there are | | ! such orderings possible, of which we chose to show the one
corresponding to the natural, lexographical ordering of the argument-set indices of the constraints.

Table 2-6 presents, without proof, some simple relationships between constraint index sets for gBT.
They follow more or less directly from the definitions. The results shown for pure and simple A-ary
instances should be quite easy to understand using the example of table 2-5, although the latter is for full
and simple (rather than for pure and simple) instances. The related discussion in [22] may be helpful.

2.3. Generalised Forward Checking (gFC)
Paralleling the above section on gBT, this section develops the generalized Forward Checking algo¬

rithm gFC, based on an alternative recursive function for the solution set T of a CLP instance. The algo¬
rithm is a version of the Forward Checking algorithm of [11] which also appears anonymously in [16].
However, the version treated here is generalized so as to explicitly allow arbitrary instantiation ordering
and constraint-check ordering and to be able to handle any problem of the general type defined in section
1.1 — including instances which, amongst other things, may have constraints corresponding to an arbi¬
trary family of arities and an arbitrary family of argument sets. It should be noted that the Forward
Checking algorithm on which gFC is based, was found second-best out of seven CLP algorithms studies
empirically in [11]. The algorithm found best was a version of Forward Checking which we will study in
generalized form below. Several examples are given here of the use of gFC, again emphasizing the effect
of instantiation-order and constraint-check order upon problem-solving complexity.
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Table l-5» Example constraint-check orders and some induced constraint index-sets
for gBT solving a full and simple 4-ary instance with n — 5 variables using the generic

instantiation order X = ( zx x2 xi z4 x6 ). See text for details.

(Compare with tables 2-10, 2-11 and 2-12.)

2

*2
1

*S
3

4

*4
7

5

x6
14

i i>z) *i) jy
1 12 13 14 15

2 23 24 25

3 ♦A 123 34 35

4 124 45

5 *4(<OK 134 125

6 234 135

7 1234 145

8 235

9 245

10 345

11 1235

12 1245

13
-N. 1345

14 2345

04(<6) =

♦4(<6) =

{ 14 24 34 124 134 }

ti U V's U V>4(<6) — { 12 } U { 13 23 123 } U { 14 24 34 124 134 }

{ 12 13 123 14 24 34 124 134 }
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Table 2-Of Relations between Constraint Index Sets for gBT
Arbitrary instances*

= *t-i U (*i = *o = 0) (44)
k

*t = U (45)

*, - U *k = { 1 2 . . c } (46)

*t(«)-*»-iU^(<») (47)

♦*(<1)=**., (48)

I ^t(<0 I = »'-l (49)

I ** I ™ S I I (50)
ha

I *« I — E I tk I = e (51)
h

Pure and Simple A-ary Instances (A > 2):

1 *•1 - (i-'i) <s2>

1 *' i -si*. i - i(tl)-(x)-(/i)=(x)
AoO hmmO

(53)

I *« I " c = (A) (54)

2.3.1. Development of the Algorithm
Backtracking is notoriously prone to thrashing — the repetitive instantiation of a variable to a

value that will fail to satisfy the constraints again and again for the same reason [7], [11], [15]. For exam¬
ple, in figure 2-1 the fifth node at level 3 fails for the same reason as the first node at that level. Back¬
tracking has no ability to learn from its mistakes. Several algorithms have been developed in an attempt
to incorporate some kind of memory into the Backtrack search process — see for example the algorithms
of [7] and [11]. Perhaps the simplest and yet most effective of these is the Forward Checking algorithm of
[16] and [11]. Whereas Backtracking checks the current instantiation at a node against past instantia¬
tions, Forward Checking checks the potential future instantiations against those made to-date at the
node. If a violation of a relevant problem constraint is found then the offending future-variable value is
filtered out of the corresponding domain, never to be checked or instantiated again in the search below
that node. To make this explicit we first introduce

dfk = { 7 I T ti, and Z}(Xt || J)tT, j t »XtU{/) } C 4, (55)
the domain of future variable / e Fk filtered with respect to the Instantiations Xk. In words,
this is the subset of values / from the original domain df that may be used to extend Xk to a consistent
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labeling Xk \\ /. Thus (55) might also be called the set of consistent /-extensions of Xk. Of course

if Xk is itself inconsistent then dfk must be empty, since no value in the original df can be used to
extend an inconsistent labeling to a consistent one. The list of all future variable domains filtered with
respect to Xk is denoted

dXk = (d*k dsXk . . dXk)v z*+l r*+2 *■ ' (56)

Anticipating the 4-queens example in figure 2-5 below, the value of this list at say the rightmost node
shown at level 2, where Xk = X2 = (2 4), is

dXt = d<2<> = (d7<*<> df**) = ( {1} {1 3} ) (57)

In terms of filtered domains, the set of all consistent labelings of Z that are extensions of a given
labeling Xk of Xk can be expressed by the following recursive function

F2(Xk k) =

0 if Xk is inconsistent

{ Xk } if Xk is consistent and k = n

0 if Xk is consistent, k < n and 0 id k

U- F2(Xk \ \ xk+x k+1) otherwise

(58)

1+1

This is very much like the recursive function Fl of (26) on which gBT is based, except for the following
two differences.

(i) The union of consistent labelings that are extensions of Xk+x = AT^ 11 zk+x is only over values xk+x in
dx k C dx rather than over all values in the original domain d, . These are the only values thatzk+1 — x*+l ° x*+l _ J
need be considered for zk+x since by definition they are the only ones that allow itself to be
consistent.

(ii) If for any future variable f e Fk the domain filtered with respect to Xk is empty then no consistent
completion is possible and the empty set is returned.

Paralleling (27) the solution set T for an instance can be expressed as

T = F2(0 0) (59)
But since F 2 extends the labeling Xk only with values guaranteed to lead^to a consistent labeling of Xk^}
it follows by induction that when computing T in this way, no c3l\_F2(Xk k) is ever made for which Xk
is inconsistent. Thus for computing T, checking for consistency of Xk may be avoided on the right side of
(58) giving the simpler version

{ Xk } if k =* n

F2(Xk k) =
0 if k < n and 0 e d '

U- F 2(Xk 11 xk+1 fc+1) otherwise

(60)

1+1
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The right side of (60) makes use of d *. Anticipating its usefulness at the next level of recursion we
x

include it as an explicit argument of F2 — passing along d * on the right side of (60) and receiving its
previous level counterpart d t_l on the left. We thus obtain the modified version of F2

{Xt } if k = n

F2(Xk d**"1 k) =
0 if jfc < n and 0 6 d"**

liJ_ F 2(Xk 11 xt+i d*' A+l) otherwise
Xl , dfk*+l *k+l

(61)

In computing the solution set T, for the initial call where k = 0 and Xk = X0 = 0 it is convenient to
use

d^1 = d*1 = (0 iIx rfta . .

which is the list d of the original, unfiltered domains for the variables, prefixed with a dummy element
0. This prefixing of 0 will allow a uniform implementation of function F 2 as discussed below.

Paralleling figure 2-1, figure 2-5 shows half of the symmetrical search tree when using F 2 to solve
4-queens. As in figure 2-1, we are again using for the instantiation order the standard name order given in
(28). A node is drawn in the search tree for each recursive call to F2. The node corresponding to call
F2(Xk d k~l k) is called_the node at Xk, or simply node Xk. Each node Xk of the tree shows the
corresponding value of Xk using the same convention as described for figure 2-1. However, an important
addition is that for each future variable / e Fk (or unplaced queeg in the present case) the corresponding
row of a node Xk is not left empty but is used to show the set dfk of still viable values for / given the
current instantiations Xk .1S In the present case these give the still viable positions for each unplaced
queen when the first k queens have been placed on the board as given by Xk. Values not yet filtered from
the original domain df are indicated with a check. Filtered values have the corresponding square left
blank. For filtered domains that become empty, dfk = 0, a wavy line is shown through the correspond¬
ing row. This is called a domain wipe-out.

Note that in figure_2-5 (but not in later such search trees) we indicate in the above manner the
(fully) filtered domain d/k for each future variable / e Fk at a node Xk . In practice however, at a node
where some future variable has a domain_wipe-out, this wipe-out would normally be detected before the

x x
computation of all the filtered domains df k from the inputs df k~l was fully completed — with filtering of

x
the inputs df k~x possibly not having even been started for some future variables. In such a case all further
filtering at that node may be avoided, and dfk need not necessarily be fully determined for all future
variables. (This is one of the reasons for the dependence, discused below, of problem-solving complexity
on constraint-check order used.)

There is a significant difference in the number of nodes generated by gBT and gFC in figures 2-1
and 2-5. However, this does not provide a meaningful comparison between the two algorithms, since
while gFC generates less nodes than gBT does, gFC in general does far more constraint checks at a

node.14 We now consider the details of this constraint-checking process for gFC.
x

As implied above, the filtered domains of d * used on the right side of (61)_may be obtained from
X X x

those of d k~k input on the left side. Vector d * consists of the filtered domains dfk for each future_vari-
x

able / e Fk at node Xk . For each of these variables (and for in addition) the filtered domain df k~l is
X XX

available from d *~1. The question is then how to obtain dfl from <f/i_1 for a variable f e Ft. By
x

13 Note that the filtered domains input to a node Xk are actually df These are nq£ shown in the rows of node Xk but
rather in the rows of the parent node of Xk . In other words, the rows of node Xk show dfk which are the input domains after
filtering at that node rather than before filtering.

14 Moreover, a meaningful comparison must consider the behavior over different families of search ordering*, since a good fam¬
ily of search orderings for one algorithm may be bad for the other algorithm.
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Fig. 2-5i Half of the symmetrical search tree generated by Forward Checking
in solving the 4-queens problem. (Compare with figure 2-1.)
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definition, we have from (55) that

*?" = {T I T edf and Z,(Xk || J )« T, V / « U{/} } (62)

d?" - { / I / « <*/ ^d Z,( Xk.k || / ) e T; V J « *xt_lU{/} } (63)
XX

From these we see that dfk C dfk~l so that only values / from the latter filtered domain need be
considered in computing the former domain. Furthermore, for these values much of the condition
required in (62) has already been satisfied by the condition in (63). A little thought shows that for values
in df k~l, the condition of (62) can be ensured by checking consistency of Xk \ \ f only with respect to the
reduced set of constraints *j^U{/} " ^xk jU^} — d^erence °f the two index sets used in (62) and
(63) respectively. In addition, at any node Xk where such a computation is being performed, we have
mentioned above that Xk itself is known to be consistent and hence by definition satisfies all constraints

x
in 4^. Thus these constraints need also not be rechecked in obtaining djk. Finally then, (62) can be
expressed in terms of (63) as

d?' ={T I / e df" and Z}( Xk || / ) £ T, V / e tkf } (64)

where <f>k, - *xtU{/> - *jrMu{/} - *1, (65)

= { j | j e J[ and {xk f }QZ] Q Xk U {/ } } (66)

Thus the only constraints that need be checked in filtering the domain of variable / e Fk at a level
k node Xk are those whose argument set contains both variables / and xk and which otherwise contains
only variables of Xk, the variables instantiated to date. These, in other words, are the constraints for
which the current variable xk is an argument and its instantiation leaves only one more argument vari¬
able to instantiate. This is analogous to the situation for gBT where the checkable constraints at level k
where those for which xk was an argument variable and its instantiation left no more variables to instan¬
tiate. The constraints with indices in <t>kf we call the constraints forward-checkable against variable
/ at level k. Table 2-7 shows for our running example clp & the sets <f>kf for each level k and each
future variable / e Fk at that level. As with the sets V* of checkable constraints for gBT, the sets <t>kf
of forward-checkable constraints are a function of the instantiation order used. And as in table 2-3, results
are shown for each of the 3! = 6 instantiation orders possible for the 3 variables of dp0.

Note that as in this example, for any CLP instance each of the c constraints is forward-checkable
against exactly one future variable at exactly one level from 0 to n. The <f>kf thus constitute a partition
of the set of integers 1 to c, so that

U U <t>u — { 1 2 . . c } and £ £ | <pkf | = c (67)
k*rn 0 ftFk 0 fcFt

There are actually never any constraints to forward-check at level 0 since we are assuming that all con¬
straints involve at least two argument variables. Also, there are never any constraints to forward-check
at level n — all constraints have already been forward-checked at prior levels, and any labeling Xk gen¬
erated at level k = n is known to be consistent without need for further checking, as shown in (60) and
(61). We thus have 0O/ = = 0 for all future variables / at levels 0 and n respectively (there are in
fact no future variables at level n). At levels 1 through n-1, sets <f>kf will in general contain more than
one constraint. It therefore becomes relevant to consider the order in which constraints are selected for
forward-checking from each set $kf as well as the order in which the sets themselves are chosen. How¬
ever even this still assumes we are using a specialized scheme of constraint checking, which we call / -

exhaustive, where all constraints of a given set <frkf are forward-checked before forward-checking those
corresponding to a different future variable. In other words an /-exhaustive ordering <f>k is some
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Table 2-7i Sets <f>kSt and <j>k at each level k
for each of the 6 possible instantiation orders X for instance clp0.

X <t>Qxi ^ii2 <t>ii3 fai9 fa fa

(*1 *2 *s) 0 0 0 {1} {2 3} {4} 0 {12 3} {4}

(zi zs z 2) 0 0 0 {2 3} {1} {4} 0 {12 3} {4}

(z2 Zt Z8) 0 0 0 {1} 0 {2 3 4} 0 {1} {2 3 4}

(z2 Zl) 0 0 0 0 {1} {2 3 4} 0 {1} {2 3 4}

{zs z 1 Z2) 0 0 0 {2 3} 0 {14} 0 {2 3} {14}

(zs Z2 Z i) 0 0 0 0 {2 3} {14} 0 {2 3} {14}

concatenation

<t>k — <t>kfn 11 4>kiki || • • || (68)
of (possibly empty) orderings (f>kf of constraints forward-checkable at level k against the various future
variables / e Fk. These future variables may however be chosen in any order, and as in (68) we use f kt
to denote the Nth such variable chosen in forming the /-exhaustive ordering <t>k. Examples of /-
exhaustive orderings appear for k = 3 in table 2-10 below. Only /-exhaustive orderings were treated in
our earlier paper (22]. The expected gFC complexities of section 3.2.4.1 assume /-exhaustive orderings.
But the other subsections of section 3.2 give results for the fully general ordering scheme which we now
introduce.

x — . . x
Forming the list d k of Filtered domains at a level k node Xk requires the computation of df k for

each future variable / e Fk and in total this requires the checking of all constraints in the union

fa = U <t>k, = { 3 I 3 tJ'i and 3 / € Fk s.t. {xk f } C Z, C X* U {/ } } (69)

This union we call the set of constraints forward-checkable at level k (against some future variable).
Besides the sets <t>kj , table 2-7 also shows the corresponding unions <t>k. Note that paralleling the situa¬
tion for the sets 4>kf , we have that <j>0 = <f>% = 0. And also by inheritance from the <f>kf from which they
are formed, the sets 4>k always constitute a partition of the full set of constraint indices, so that parallel¬
ing (67) and (31) we have

= {12..c} and £ | | = « (70)
k—0

The members of a set <j>k may very well be checked in any order, even a non /-exhaustive order
that interleaves constraints from different sets <pkf for a given i. As with varying the instantiation order
X, we will see that variations in the constraint-check orders at the different levels can also have a signifi¬
cant effect on problem-solving complexity. To model this we therefore consider set <f>k of (69) to have
some arbitrary order imposed on it

*. - (*1 ■ ■ *!''') i7')
the i-th component <f>k being the index of the constraint that is the t-th to be forward-checked at a level k
node. Such an ordering we call a constraint-check ordering at level k. It is the analog of the
constraint-check order for gBT given in (32). There are of course | <j>k | ! such orderings possible for a
given set <pk, and one is to be chosen by the user at each level k of the search tree. For example, for any
n-queens problem there are (n-k)! possible constrainNcheck orderings at level k, since at that level there
are n-k constraints to check — one between the current (or i-th) queen and each of the n-k other queens
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that are yet to be placed on the board. Each such future queen must have its remaining viable positions
tested for consistency with that just chosen for the current queen (see figure 2-5), and the order of pairing
the current queen with future queens for this position-compatibility test is arbitrary.

The natural constraint-check ordering <t>k at each level is that where constraints C; are
checked in increasing order of index j. (Of course, the (j>k themselves, as sets, depend first of all on the
instantiation order X, as seen in the example of table 2-7.) The vector of constraint-check orderings
for gFC at the various levels we denote by

Note that, as for gBT, although we allow an arbitrary instantiation order X and arbitrary
constraint-check orders 4>k at the various levels, we do still require for gFC that the same variable zk be
instantiated at all nodes of level k (so that the same instantiation order X applies to all paths through the
search tree) and that constraint-check ordering <f>k be the same at all nodes of level k. Actually, an
analysis of this globally-fixed search-ordering case can also be used to provide guidance for the locally-
determined case — as seen in section 9.2 of [21].

Knowing that a constraint is from <f>kf makes it clear that the constraint is to be used in filtering
the domain of future variable / e Fk at level k. However it is less clear what is the future variable fil¬
tered by constraint <f>k since all sets <f>kf for f t Fk are merged and the result permuted in some way in
forming the constraint-check order <f>k. However from (66) we see that the future variable corresponding
to constraint <j>kt which we denote as f k or as / ^can be recovered as

of future variables / e Fk and it is in this order that the latter are chosen to have their domains filtered.
We call Gk the induced domain-filtering order for future variables at level Jfc. For example

would be a valid domain-filtering order corresponding to a CLP instance where six constraints are
forward-checked at level k. Note that not all future variables f e Fk are necessarily represented in Gk
whereas some may appear more than once, but not necessarily consecutively. In terms of domain filter¬
ing, this means that not all future variables necessarily have their domains filtered at the nodes of a given
level, while some may be selected for domain filtering multiple times possibly with other variables having
their domains filtered in between. This will all depend on the sets <f>k induced at the various levels and
on the orderings chosen for them. Table 2-8 shows some of the possible constraint-check orders 4>k (per¬
mutations of the sets <f>k in table 2-7) together with their induced domain-filtering orders Gk at each level
for our running example clpo

The above considerations lead us finally to the generalised Forward-Checking algorithm or gFC
presented in figure 2-6 using a Pascal-like language. As for gBT in section 2.2, gFC is generalized in that
it allows arbitrary instantiation order X, arbitrary constraint-check order 4>k at each level, and is able to
solve, arbitrary instances of the very general type in section 1.1. Note that function Filter uses a copy d

x x
of d This is simply to avoid using d as the name of a variable whose value (once filtering is under¬
way) does not agree with the definitions in (55) and (56). In practice this copying need not be done and
the filtering can be performed directly with the components of the input vector d k~l.

At line 20, algorithm gFC checks the consistency of value / with respect to constraint given
the prior instantiations Xk. As for gBT it should be remembered that the test Z} t Tj is in general just a
convenient shorthand for a test performed by a subroutine that represents constraint C3 intensively,
rather than indicating a test of membership in an extensive representation of set T}. The call
Update(d d f ) at line 24 replaces the previous filtered domain for variable / in d with its (generally) new
version df formed in the FOR loop at lines 17 to 22. Note that df is being used to denote the current

15 The right-hand side of (73) is really a singleton set containing variable / k rather than variable / k itself.

^ — (^0 ^1 ^2 • • ^*-1 tn ) 5=8 ^1 • • 4>n-1 (72)

Gk "" ( Jt+3 x*+1 Jt+1 1 8 xk+S ) (75)
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Table 2-8: Some possible constraint-check orders and their induced domain-filtering orders
for instance dp0 at each level for three different instantiation orders X.

X to/Go <Pi / G i tz / G 2

(z i 2j z2) 0/0
0/0
0/0

(12 3)/ (z2 zs z3)
(3 12)/ (23 22 23)
(2 13)/ (23 22 23)

(4) / (*2)
(4) / (*2)
(4) / (*2)

(*2 *l) 0/0
0/0

(l)/(*i>
(l)/(«t>

(2 4 3)/ (2X 2x 2 j)
(3 4 2) / (2X 2 J 2X)

(*3 *2 *l) 0/0 (3 2) / (2 j 2 j) (4 1) / (*i *i)

(generally filtered) set of viable values for variable /, as opposed to df which denotes the initial domain
of /. At line 26, tail(d) is the list d with its first element removed. This first element is the filtered
domain for variable xk and is not needed at the next (or lower) levels of the the search tree since xk has
already been instantiated at level £. To allow a uniform implementation in the case k = 0, it is con-

— x
venient in the initial call gFC(X0 d 0) to use

dti dl2. . dtj
where we prefix a dummy entry 0 before the list of initial unfiltered domains for the variables. In this way
the initial call to Filter at k = 0 will cause tail(d) to return (dSi d%2 . . ) which is the required value of
d °. Note that it is implicit in gFC that sets df are represented directly as lists of their component ele¬
ments. This will not be so for algorithm gwFC of section 2.4, where a bit vector representation is used for
sets df .

2.3.2. Some Examples Using gFC
Paralleling section 2.2.2 for gBT, this section shows several examples of using the gFC algorithm of

figure 2-6. Again our running example clp0 is used as the test case, and is solved using a variety of instan¬
tiation orders X and constraint-check orders <pk. And again, the choices of ordering are seen to have a
significant effect on the problem-solving complexity of gFC. For more realistic CLP instances much
greater variation is possible. For pure and simple binary CLP instances, our earlier paper [21] provides
theory-based heuristics for choosing these gFC search orderings and empirically studies the studies the
savings that may result from their use. An analogous study appears for gBT in chapter 8 of [18]. Note
that the complete data for solving clp0 using gFC (and gBT) under all possible instantiation orders and
constraint-check orders appears in chapter 6 of [18].

Figures 2-7 and 2-8 represent the tree of recursive calls to gFC when solving clp0 with the instantia¬
tion orderings X=(zlzsz2) and X = (z2 z* zx) respectively. Essentially the same conventions as
described for figure 2-5 are used here. The two families of sets <f>kf and (f>k induced by each instantiation
order used here can be seen in the corresponding row of table 2-7. As for gBT, the node structure of a
search tree is determined only by the instantiation order X and not by the choice of constraint-check ord¬
erings imposed on the induced sets <f>k of forward-checkable constraints at each level. The number of
nodes generated at each level k when solving instance clp using gFC is denoted N(gFC k clp), and these
are shown in the table associated with each figure. Also shown in these tables, at the bottom of the
N(gFC k dp) column, are the sums

JV(gFC clp) = £ N(gFC k dp) (76)
*—i

giving the total number of nodes generated (excluding the root node). Note that the total number of
nodes generated is 5 or 10 depending on the instantiation order used. Again, as for gBT, we see a factor of
two difference. But note that in absolute terms, gFC is generating considerably fewer nodes in these
examples than did gBT in figures 2-3 and 2-4 where the same instance was being solved. It is easy to
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PROCEDURE gFC( Xk d*'1 k );
IF k = n THEN priiit( Xk ) ELSE

BEGIN

X ,rr X,

Fig. 2-6t Algorithm gFC and its subroatine Filter.

: Enter node Xk

d ' *- Filter(X* d w Jfc)
IF d* ^ (0) THEN

FOR ALL zt+i « dzk DO

Dummy call at fc = 0

dzk+l from dX*
gFC( Xt 11 2t+1 d"*4 ib+1); : Generating node Xt+1 = Xk 11 xt+1

END;

END;

FUNCTION Filter( Xk d*'1 k );
d «- d^
FOR i — 1 TO | | DO

BEGIN

i *- fit;
S *-z, ~xk-,
df «- current domain for / in d;
FOR ALL / c i' DO

BEGIN

Z, +-Z,(Xk || / );

WZ,iT,
THEN i' - d< -( 7 );

END;
IF d ' — 0 THEN RETURN (0)

ELSE d *- Update( d df ); : Update domain of / in d
END;

RETURN tail (d); : Filter (Xk d*41 k) = d*4
END;

Initial calls

gFC(0(0rf,1dIa..dIJO)
Global Instance parameters:

n, T = ( rx r2 . . Tc ), Z = ( Zx Z2 . . Ze )
Global algorithm parameters!

( 01 02 • • ^»-l )

: Filters domains in tail of d

: | | shb 0 for k = 0 (and n)

: Index of constraint to check

: Determining f {eFk whose domain will be filtered

: Filter domain d1

; Projection onto arguments of C.,

Checking constraint C ^

; Filtering / from df

A domain wipe-out has occurred
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*
show that gFC never generates more nodes than gBT on a given instance with a given instantiation ordering.18 But this is not the whole story, since gFC in general performs more checks per node.

As mentioned, an instantiation order completely determines the set <j>k of constraints forwardcheckable at each level k of the search, but the constraint-check order at a given level may be any permutation of this set — and these orders may have a considerable influence on the number of constraintchecks performed. Both figures 2-7 and 2-8 show numbers of constraint-checks performed using two different families of constraint-check orderings — permutations (appearing in table 2-8) of the correspondingsets <f>k shown in table 2-7. Each such family of orderings heads a separate column in the table associated with the figure. In each such column appear the corresponding numbers C(gFC k clp) of constraintchecks performed at each level k of the search tree. These C(gFC k dp) values are of course the sum oithe number of constraint-checks performed at each node at level ky so that

C(gFC k clp) - £ <7(gFC k Xt clp)
Xt <DXt I77)

where C(gFC k Xk dp) is the number of constraint-checks performed by gFC at node Xk in solvinginstance dp. As for equation (35), this sum is over all node sites Xk e DXk at level k, rather than onlyover nodes actually generated, with the understanding that C(gFC k Xk dp) = 0 at a node site where nonode is generated. The number of such node sites at level k for a gFC search tree is again as given in(36). For the case of the first (leftmost) family of constraint-check orders <f>k appearing in the^ associatedtable, figures 2-7 and 2-8 label the arc leading to a node by the number of checks C(gFC k Xk clp) per¬formed at that node. This latter quantity is itself just the sum of the numbers of constraint-checks per¬formed at that node for each of the corresponding forward-checkable constraints. Thus
I'*'

C(gFC k Xk dp) - g C{gFC k i Xk dp) (78)»—i

where C{gFC k % Xk clp) is the number of checks of the $-th forward-checkable constraint C4, performedby gFC at node-site Xk when solving instance clp. As before, C(gFC k % Xk clp) = 0 at a node-site Xkat which no node is actually generated, or at which forward-checking of constraint C^, is not reached dueto an earjier domain wipe-out at that node. These constraint-specific numbers of checksC(gFC k i Xk clp) that make up the number of checks at a node, can be conveniently indicated on gFCsearch tree diagrams such as figures 2-7 and 2-8, by showing their values alongside the node row associ¬ated with the corresponding future variable f k being filtered by constraint C^,. This is done in figures2-7 and 2-8 for the first family of constraint-check orders tabulated in each figure.
In these figures, if more than one forward-checked constraint filters the same future variable (seetable 2-8), the corresponding numbers of checks for these constraints are shown beside that variable's rowas a sum whose summands correspond to the various constraints checked — with the order of summands,left to right, being that of the chronological order of the checking of their corresponding constraints.Thus for example, in figure 2-7, at the right son Xx = (1) of the root node, using constraint-check order<l>i = (3 1 2), C& then C2 (the first and third of the forward checkable constraints respectively) areforward-checked to filter the domain of the same future variable f x = / x =» (as shown in table 2-8)with constraint Cx beings used between them to filter_variable f x = z2. The corresponding numbers ofchecks are C(gFC k 1 Xk clp) ==_3 and C(gFC k 3 Xk clp) = 1 and these values appear in the sum3 + 1 beside the zs row of node Xx = (1).

These last-mentioned constraint-specific numbers of checks at a node add, as in (78), to give thetotal number of checks at a node (and these totals label the arc leading to the node concerned). Thenumbers of checks performed at the nodes of a level add, as in (77), to give the number of checks per¬formed at that level. And finally, the number of checks at a level add, as below, to give C(gFC clp) theoverall total number of constraint-checks performed by gFC when solving clp

C(gFC clp) - U C(gFC k clp) (79)kmm1

Note that the k = 0 and k =* n summands are excluded here since gFC never has any constraints to
16 Since £ given node Xk is gejprated by gBT iff Xk„x is consistent bnt it is generated by gFC iff the stronger condition issatisfied that Xk is consistent and dfk~lj£0 for each / € Fk .
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Fig. J-7i Solving c/p0 by gFC using a best instantiation-order, X = (z i zs z 2),
with a best (and a worst) set of constraint-check orders <p2} for that X.

(Compare with figures 2-3, 2-4, 2-8)
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Fig. 2~8s Solving elp 0 by gFC using a worst instantiation-order, X = (z2 *a z t

with a worst (and a best) set of constraint-check orders {^x 4>2) for that X.
(Compare with figures 2-3, 2-4, 2-7)
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forward check at those levels. The total numbers of checks performed are shown at the bottom of the
corresponding C(gFC k clp) columns in the tables. We see that as for gBT, changing the family of
constraint-check orders may have a considerable effect on the number of constraint-checks performed.
This is possible for two reasons. Firstly, the constraint-check order determines at what stage any domain
wipe-outs occurring at a node are discovered. As soon as such a wipe-out is detected, the termination con¬

dition 0 e d k is satisfied and further processing at that node is unnecessary.17 Note that for nodes Xk
where not only no wipe-out occurs, but where no inconsistency at all is detected (so that no values are fil-

x
tered), the i-th constraint of i>k is checked | ^ f"1 I times. In this case, irrespective of the order used for
checking the constraints in <f>k, we have that

C(gFC k Xt clp) — | |
»—l k

A domain wipe-out is not the only reason that the <pk order can effect the number of constraint-
checks at a node. The second reason18 is because the constraint-check order at a level determines at what

— x
stage a given value / is eliminated (if it is eliminated) from a given input domain dfk~l. Once it is
removed, later constraints in <(>kf C ^ need not check it again. The pattern of these removals at a node
Xk is determined by the order <t>k and over a whole search tree the cumulative effect of using different
families of constraint-check orderings may result in large variations in the number of constraint-checks
performed in solving a given instance. In figure 2-8 for example, changing from the family of orderings
<f>x = (1), fa = (2 4 3) to the family <f>x = (1), = (3 4 2) reduces the total number of checks from 31 to
17 — even though the instantiation order is of course the same, X = (z2 *i). Using the instantiation
order X = (zx zs z2) and constraint-order family ^ = (31 2), (f>2 = (4) of figure 2-7 further reduces the
total number of checks performed to 11. This figure, 11 (attained also for gBT in figure 2-3), is in fact for
both algorithms gBT and gFC, the minimum number of constraint-checks possible in solving clp0. Thus
as long as the appropriate search orderings are chosen, we see that there exist CLP instances for which
gBT is just as efficient (in terms of constraint checks) as gFC in solving a given instance. In fact there
are instances for which gBT has a lower minimum over orderings than does gFC.

As done in section 2.2.2 _for gBT, we also introduce here two indicator functions in terms of which
iV(gFC k dp) and C(gFC k i Xk dp) can be be further expanded. The first is

if gFC generates a node at site Xk
when solving instance clp

otherwise

S(gFC k Xk clp) =

in terms of which we may express the number of nodes generated at level k as

N(gFC k clp) = J] S(gFC k Xk clp)
Xi tDXk I81'

The total number of nodes generated by gFC given in (76) may then be expressed as

17 Figures 2-7 and 2-8 show (for the cue of the first family of constraint-check orders in each figure) filtered domains and the
corresponding number of constraint-checks performed only up until the discovery of a domain wipe-out, at nodes where such wipe-
outs occur.

13 This effect has no analogue in gBT, where only one inconsistency is sufficient to terminate processing at a node. It also does
not arise in gFC if (as is the case in most studies, where simple (and usually also pure) binary instances are used) there is no more
than one constraint in each set (f>kf .
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N(gFc el,) - £ £ a(gFC * X, c/p) (82)

Whereas for gBT, a given constraint C^, is checked at most once at a level k node, for gFC a con¬
straint C ., may be checked up to m,, times — once for each of the m,. initial domain values for the

*k it Ik
variable f k which is by definition the future variable whose domain is filtered by C Accordingly, it is
useful to introduce an indicator function for whether constraint C^t is checked exactly t times, for
0 < t < m,ik

if gFC checks C ^ exactly t times at site Xk
when solving instance clp

otherwise

In terms of this, the number of checks of constraint C ,• can be expressed as

_

C(gFC k i Xk clp) = £ t 5(gFC k i t Xk clp) (84)
Note the inclusion of t as a factor of the summed terms. Combining this with the above equalities (77),
(78) and (79), gives

5(gFC ki tXk dp) =

n-l I*k\ "fk
C(gFC clp) = £

_ £ £ £ < %FC kitXk dp) (85)
*-»l Xk iDXt '—1

for the total number of checks performed by gFC in solving instance clp. The expected values of the
total number of nodes generated and of constraint checks performed by gFC in solving an instance are
derived in section 3.2 where equations (82) and (85) provide the starting points for the respective analyses.
One last indicator function that will be useful in section 3.2 can be defined in terms of that in (83). It is

<5(gFC * » >1 Xk clp) mm 1 - fi(gFC k i 0 Xk clp) = £ k i t Xk clp) (86)
tmm 1

Clearly this equals 1 if gFC performs at least one check of constraint (7^, at node Xk when solving
instance dp, and equals 0 otherwise.

2.3.3. More on gFC Constraint Sets
Table 2-9 defines several additional constraint (index) sets for gFC that will be useful in section 3.2.

Examples of these new sets and the earlier constraint sets for gFC are given in tables 2-10, 2-11 and 2-12.
Lastly, table 2-13 presents without proof some simple relationships between these sets. This section paral¬
lels section 2.2.3 for gBT, and tables 2-9 to 2-13 here correspond tables 2-4 to 2-6 for gBT.
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Table S-Qt Constraint-related definitions for algorithm gFC

Symbol Defined as Defined for

U 4>»f
hwm 0

0< n-1, / eFk

U 4k
kmmO

0<k<n-l

Sets induced by imposing constraint-check orders on the <f>k

<t>k (<») | iti 4?.. tr1} J 2<»< \<t>k |
0<k< n-1, y »=si or ir == 0, n

(<*) <t>u n <t>* (<») 0<*<n-l, 1<»< | <f>k | , / tFk

♦»(«)
kmm 0

0< fc< n-1, 1< t< | <f>k |

♦*/ (<») U**/ UAM<»)
A —0

0< k< n-1, 1 < »< | <(>k | , f eFk

In words, the new constraint sets in table 2-9 are as follows:
• $k and are cumulative versions of <f>k and 4>kf respectively in the same way that Vk is a

cumulative version of ipk — see (45). Thus $k is the set of constraints forward-checkable at some
level at or before the it-th and is the set of constraints forward-checkable against variable / at
some level at or before the i-th.

• i* the analogue of ^*(<i) for gBT. It denotes the first i-1 constraints forward-checkable at
level it.

• $*(<*) is a cumulative version of ^*(<*)> and is to <£*(<>) as ♦*(<») was to 0*(<i) for gBT.
$*(<}') contains those constraints that are forward-checkable at some level prior to k or that are
amongst the first i-1 forward-checkable at level fc.

• bkf (<>#) denotes the set of constraints forward-checkable against variable / from amongst the first
t-1 forward-checkable constraints at level Jfc. Note that it does not mean the first t-1 constraints
forward-checkable against / at level it.

• $*/ (<l) is a cumulative version of <f>kj (<i), as ♦*(<*) was for <^(<i). It contains the constraints
forward-checkable against / at some level prior to k or forward-checkable against / from amongst
the first t-1 forward-checkable constraints at level k.

Tables 2-10 to 2-12 should prove useful in developing familiarity with these and the earlier con¬
straint sets <f>k and <j>kf for gFC. The tables refer to a full and simple 4-ary CLP instance on n = 5 vari¬
ables, as did table 2-5, and they use the same convention for indexing constraints as used in table 2-5.
Table 2-10 shows the partitioning of the problem constraints into sets <f>kf of (indices of) constraints
forward-checkable against variable / at level k, and shows how these are combined to form the sets 4^
and $kf (the former being as given in (29) for gBT). Table 2-11 emphasizes the alternate partitioning of
constraints into the sets <f>k of constraints forward-checkable at level k, and their combination into sets
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Table J-10: Constraint-index sets and ♦ * for a full and simple 4-ary instance
with n = 5 variables when using the generic instantiation order X * (x! x2 xs x4 x8).

(Compare with table 2-5.)

»' $1 I

1

2
3
4

1
O

3
4

5
6

1
2
3
4

5
6
7
8

1
2
3

4
5
5
7

12
13
14

15

23
24
25

123
124
125

34
134
234

1234
35

135
235

1235

45
145
245
345

1245
1345
2345

X o

12

$ it*

Si

13

571 23

123

14

<{> 1*4

E7
24

124

$

34

134
234

1234

$31.

15

35
135
235

1235

<P

EP
45

145
245
345

1245
1345
2345



Table 2-lli A repeat of the table 2-10 situation showing constraint-index sets fit/ , <pt and
(Compare with table 2-5.)
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Table 2-111 A repeat of the table 2-10 situation showing constraint-check-order-dependent
sets <j>t (<»), 4>tf (<0. (<») defined in table 2-9.

(Compare with table 2-5.)

* I 4>i | ' 4>i | <t>kf I

1 12
2 13
3 14
4 15

1
2
3
4

23
24
25

123

5 124
6 125

"£\

12

M<sr

13

23

123

14

M<51

24

124

15

25

125

^<5)

^(<5) — { 23 24 25 123 }

*2(<5) fc(<5) — { 12 13 14 15 } U { 23 24 25 123 } - { 12 13 14 15 23 24 25 123 }

M<5) H *s(<5) - { 23 123 } f| { 23 24 25 123 } - { 23 123 }

^„(<5) =» fc(<5) - { 24 124 } f| { 23 24 25 123 } = { 24 }

^s(<5) - ^.D <M<5) - { 25 125 } (1 { 23 24 25 123 } - { 25 }

M<5) - *»«. ^^,(<5) - { 13 } U { 23 123 } - { 13 23 123 }

♦2,4(<S) - +ut U ^4(<5) - { 14 } U { 24 } - { 14 24 }

*2Is(<5) - U ^s(<5) - { 15 } U { 25 } - { 15 25 }
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Table 2-l3i Relations between Constraint Index Sets for gFC

Arbitrary inataneess

{ 1 2 . . c } - u u fa, - U ^ - *.-1 = U fa = *„ (87)
immQ / eFt *—0

km*}

(88)

(88)

♦*/ = U ^i/ (*0/ — fa, — <t>nf — 0)

= $*_1 U <t>k (*0 — fa — 4>n — 0)

(<») = $t-l U <t>k (<»') (*«»(<»") = MKi) = fa (<») = 0) (90)

**/ (<l) = W faf (<l) (*o/ (<*) = faf (<»') = faf (<l) = 0) (91)

**/ (<X) = *W./ (82)

*^1+1 = ^*+1 (93)

I M<0 I — »-l (94)

k

I $*/ I 5=8 E I "A*/ I — I **"1./ I + I tkf | (95)

I ♦*/ (<*) I — E I ^*/ I + I ^*/ (<l) I = I I + I faf iKi) I (96)

8 3u/.,„ («)M A—O N1

** I — E I I (98)
A«0

*. I — S I ^**4+1 I — c (99)
*■■0
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Table 2-13t Continued

Pure and Simple A-ary Instances (A > 2):

I I = (^-2) im

I h I = (^-2) (101)

I *if I — E I *»/ I — 2 (a-2) = (a-i) (102)
kmmO A""0

I *tl (<t) I ™ I +1-1,/ I + i +1/ (<•") I — {J4I1) + I (<1) I (103)

1*. 1 - 2 1+0 -2 (x*i)-(A)-(^-I) = (*) (l01)
M A"0

I *• I 5=8 c" (a) (106)
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Note that in both these tables, an underlying constraint-check ordering is intended at each level k
for the constraints in the corresponding set <j>k — and this is the top-to-bottom ordering of constraints
given in the <f>k column as the index i increases. Such a constraint-check ordering underlies the defini¬
tions in table 2-9 of the sets ^*(<t)> <t>kf (<*)> <^t(<0 aQd (<*)• Examples of these sets for the table
2-10 situation are given in table 2-12.

Note that in table 2-10 (and 2-11), is aa f-exhaustive constraint-check ordering, defined in sec¬
tion 2.3.1, where all constraints relevant to a given future variable are employed before proceeding to use
those for a different future variable. Such orderings receive special consideration in section 3.2.4.1. The
ordering of <j>2 on the other hand might be called f-cycllc since successive constraints filter the domains
of different future variables till all variables / eFk have been filtered by one constraint, with this cycle of
domain filtering then repeating till all constraints of <f>k have been employed.

Table 2-13 presents, without proof, some simple relationships between constraint index sets for gFC.
They follow more or less directly from the definitions. The results shown for pure and simple A-ary
instances should be quite easy to understand in the context of tables 2-10 to 2-12, although the latter are
for full and simple (rather than for pure and simple) instances. The related discussion in [22] may be
helpful.

2.4. Generalised word-wise Forward Cheeking (gwFC)
In this section we describe a version of gFC adapted to perform multiple constraint-checking in

parallel by exploiting the computer's parallel bit-handling capabilities. Being based on gFC, but being
able to check a whole "machine-word-full" of domain values at once, we call the algorithm generalized
word-wise Forward Checking or gwFC. A less general version appears in [16] and in [11] where it is
called bit-parallel Forward Checking.

One can adapt gFC to perform multiple constraint-checking in parallel by using a bit-vector
representation for domains and constraints of a CLP instance. In gFC, the current filtered domain dj of
a future variable / is represented directly as a list of all its member values, and forward checking is per¬
formed against each of these values in turn. In gwFC on the other hand, df is represented in terms of a
machine word with one bit corresponding to each value of the initial domain df . Set df C d) is
represented by setting the i-th bit of the machine word to 1 iff the corresponding value of df is in df .

This is a standard way of representing sets, and is treated for example in [1], where it is called the charac¬
teristic vector representation. We assume for the moment that each domain is small enough to require no
more than one machine word. That is, if there are b bits in a machine word, we assume m, < b for all
problem variables.

Besides the domains, gwFC also represents the CLP instance constraints in bit-vector form. In
filtering the domain of a variable /, parallel constraint-checking is achieved by machine anding an
appropriate bit-vector from the constraint representation with the bit vector representing df . The follow¬
ing makes this more explicit.

As given in (73), to each constraint C, = (Z; T,) and instantiation order X, there corresponds a
unique future variable f 3 e Z} whose domain is filtered by that constraint.18 At the stage when C} is
forward-checked, all its argument variables except this /; have been instantiated. We denote this instan-
tiated subset of arguments by Zj - f}, and a list of instantiations of this subset we denote by Z, - / ,.

Algorithm gwFC requires that each relation T} be stored as an array indexed by value-tuples Z; - / ;

For a given such value-tuple, the array contains T; (Z; -fj), a machine word representing, in characteris¬
tic vector form, the set of values /; acceptable for variable f} with respect to constraint C, given the
instantiations in Z; - f} for the other arguments of the constraint. In other words, T; (Z; - /; ) is the
machine word representing the set of values

{ Tj I 7, « d,t and Z,-f, || J} tT, )
With these machine words available, the loop from lines 17 to 22 of function Filter in figure 2-6 can

be replaced by a single machine and as follows

19 Since this variable /; is a function of X, the structure of the gwFC bit-vector representation for constraints — described
below — is also a function of X. Use of a different instantiation order will require a reconfiguration of the data structure represent¬
ing problem constraints.
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d> «— and( d1 T}(Z~77)) (106)
which is the generalized form of Haralick's expression on page 271 of [11]. The number of ands performed
by gwFC is thus never greater than the number of constraint-checks performed by gFC since a single and
is performed by gwFC iff at least one check is performed in gFC in the loop at lines 17 to 22 of figure 2-6.

However, as mentioned, we have assumed that no initial domain has more members than there are

bits in a machine word — so that one machine word suffices to represent any of its subsets. More gen¬
erally however, if domain dJf has size mX| and if a machine word contains b bits then

= K/61 (107)
machine words are required to represent the subsets of i2 . The loop over / values in Filter is then
replaced not by a single and as in (106), but by the following loop over machine words

FOR it; = 1 TO Wf DO (108)

df(w) 4- and( df(w) Tj{Z3-fj w) )
where w is being used to index the Wf separate words required to represent df and the corresponding
constraint information.

When more than one word is required to represent a given domain, the possibility arises that gFC
may perform less checks than gwFC does ands in solving a given instance.20 In forward checking a con¬
straint against a variable / whose current filtered domain is df C df , gFC performs | df | constraint-
checks (at lines 17 to 22 of figure 2-6). Algorithm gwFC on the other hand will perform Wf machine ands
in the loop of (108), independent of the size of the current filtered domain df . So the relative efficiency
of the two algorithms depends in part on the size of a machine word relative to the sizes of the various fil¬
tered domains d ' encountered throughout the search tree. At lower nodes (larger value of k) in the tree,
df will tend to be small, so that Wf > | df | . The relative inefficiency of gwFC in such cases may very
well offset the savings gained by that algorithm at the the higher nodes, where tvf < | df | . (This sug¬
gests a hybrid algorithm, using the gwFC approach at higher nodes and the gFC approach at lower
nodes.)

For certain instances with domains for which more than one word is required, it is therefore conceiv¬
able that gFC is preferable to gwFC. The gwFC analysis of section 3.3 allows this possibility to be stu¬
died theoretically, since the analysis is for domains and machine words of arbitrary size. Simplified ver¬
sions of these algorithms are compared in our earlier paper [21].

Whether or not gwFC proves superior to gFC in terms of the respective complexity measures of ands
and checks, it should be noted that gwFC incurs what may be a significant extra overhead in setting up
the above-mentioned bit-vector representation of the constraints. This preprocessing is not required by
gFC. On the other hand, if gFC is to incorporate the heuristics of the type developed in [21], which make
use of constraint satisfiability values 5;, it may be necessary to apply an equivalent amount of prepro¬
cessing to extract the 5; values. This will depend on the form of the constraints for the problem and on
which extraction methods are applicable from those discussed in section 2.6 of [19].

20 Haralick in [ll] found word-wise Forward Checking to be better than Forward Checking, but he used domain sizes small
enough to require only a single word.

January 10, 1086



47

3. EXPECTED COMPLEXITIES of CLP ALGORITHMS

In this section we derive the expected complexity of solving a CLP instance via each of the algo¬
rithms gBT, gFC and wgFC of the previous section. For each algorithm, expectations are obtained over
both the generic big-class and over the generic small-class (see section 1.2) under the associated probabil¬
ity models 0, 1 and 2 (see section 1.3). In each case, results are given for two measures of complexity:
number of nodes generated and number of constraint-checks performed (with number of machine ands
relacing the latter measure for algorithm gwFC). Table 3-1 summarizes the various expected quantities
derived in this section. The notation used in the table and below, is a specialization of that in (15) to (17).
Note that this section uses the algorithm-independent results of the previous section to obtain algorithm-
dependent results.

Note that our small-class expectations provide more precise information about the complexity of
problem-solving within CLP than do the big-class expectations, by virtue of the fact that the partition of
CLP into small-classes is a refinement of that into big-classes. Moreover, the homogeneity of small-classes
makes small-class expectations particularly important in that they can be used to approximate the
corresponding exact-case values for individual subsumed instances — so that the precision becomes effec¬
tively the maximum possible. Big-class expectations do not have this virtue, due to the inhomogeneity of
big-classes. However (as explained in section 3.5.1 of [19]) big-class expectations, besides being interesting
as expectations per se., are also useful for our purposes in that they can act as good approximations for
small-class quantities, and hence indirectly may be used to approximate exact-case values.

Note that the results here are for the fully arbitrary big-class CLP^rz m c Z) and small-class
CLP^n m c Z S). They therefore model instances having arbitrary and not necessarily equal domain
sizes, constraints of arbitrary and not necessarily equal arities, constraints over an arbitrary family of
argument sets, multiple constraints on the same argument set, etc. Moreover the results also model the
arbitrary instantiation order and arbitrary constraint-check order allowed in our three algorithms. The
fully general results are presented under a sequence of successive specializations, allowing ultimately a
comparison with the results for the highly specialized case studied by Haralick in [11]. Our specialized
results will be seen to agree with those of Haralick, except as noted in section 3.2.4.2 where we find a sub¬
tle error in Haralick's expression for the expected number of constraint-checks performed by gFC.

The results here extend and generalize those in our earlier papers [20] and [21] which treated only
the pure and simple binary case, and in [22] which treated the uniform degree-m, pure and simple A-ary
case. Moreover the derivation methods differ. The results in [21] are based on a recursive (Markov
chain) analysis whereas here we use a more natural, direct (non-recursive) approach.

Table 3-1: Expected complexities derived in this section

^probability
x. space

Algorithm^

Big-class, model-0
n;

Big-class, model-1
n,1

Small-class, model-2

gBT jv,°(gBT) tf,°(gBT) iv/UBT) C/(gBT) jv,2(gBT) C*(gBT)

gFC jv,°(gFC) Cf(gFC) jv^gFC) C/(gFC) iV2(gFC) C,2(gFC)

gwFC jv,°(gwFC) I,°(gwFC) N}(gwFC) A}(gwFC) jv2(gwFC) I*(gwFC)
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3.1* Expected-Complexity of gBT
This section derives the expected numbers of nodes generated and constraint-checks performed in

solving a CLP instance by the gBT algorithm of section 2.2. The expectations are obtained both over

big-classes and over small-classes under the corresponding probability models 0, 1 and 2 of section 1.3.
Much of the analysis can be presented in a model-independent manner21, with specialization to individual
models required only towards the end. Therefore the sample space Q below is to be taken as referring to
either the generic big-class m e Z) = CLP^n m c Z) or the generic small-class
fla(n m c Z S) = CLP^n m c Z S).

3.1.1. Class- and Model-Independent Expressions
In section 2.2.2, the number of nodes generated and the number of constraint checks performed by

gBT in solving instance clp were expressed respectively as

AT(gBT clp) = £ £ 6{gBT k Xt clp) , v
*-1

n I I
_

C(gBT dp) = £ _£ £ S(gBT k i Xk dp) (no)
*=2 Xk iDx^ »™l

These are in terms of the indicator functions fl(gBT k Xk dp) and d(gBT k i Xk clp) defined in (38) and
(41). The former function has value 1 if gBT generates a node at the level-i node site Xk when solving
clp, and otherwise has value 0. The latter indicator function has value 1 if gBT checks constraint C . , at

— *k
site Xk in solving clp, and otherwise has value 0. The two expressions (109) and (110) obtain the total
number of nodes and checks by simply adding up over the whole search tree, the 1 values indicating the
occurrence of a node or a constraint-check.

In these summations, instance clp is kept fixed and we vary the values of k, Xk and i which index
respectively levels, nodes and constraints. One may however fix the latter values and let the instance clp
vary. This is done in defining the sample-space subsets given in table 3-2. These are respectively the set
of instances in Q for which gBT generates a node at site Xk and the set of instances for which gBT checks
constraint C^, at site Xk. These sets are defined directly in terms of the behavior of algorithm gBT
itself. They can however be expressed in a more useful form as follows, in terms of properties of the
instances themselves. For this we make use of the constraint-based sets defined in table 1-3.

Table 3-2: Some gBT-dependent subsets of fl = Clp(n m c Z) or mcZS)

Symbol Defined as Defined for

,E(gBT kXt) { clp | £(gBT k Xk clp) = 1 } 1 < i< n

E(gBT kiXt) { clp | 5(gBT * » Xt clp) = 1 } 2<k<n, !<«'< | Vt |

21 As wxs seen in * simpler context when finding the expected number of solutions of in instance, in section 3.5.2 of [19|.

January 19, 1988



40

£(gBT ***) = £(¥*_! Xt) 1 <k<n (111)

E(&BTkiXk ) = E(*k(<i) *t) 2 <k<n (112)

£(gBT kXi) =» E(gBT HXt) 2 <k<n (113)

(111) holds since gBT generates node X when solving an instance iff for that instance all constraints of
are satisfied by the instantiations of Xk. This is so since is^the set of all constraints

checked by gBT at Ievelsj>rior to level k, the level at which node site Xk occurs. If all these con¬
straints are satisfied by Xk, there can not have been a constraint violation at any ancestor node of
Xk and node Xk is therefore generated.

(112) is an extension of the previous result. It holds since gBT checks constraint C7 , at site Xk when
solving an instance iff for that instance all constraints of ¥*(<»') are satisfied by Xk. This is true,
since Vk (<>) = i>k (<*) is the set of all constraints checked at levels to k plus those up to
(but not including) the i-th checkable at level it. If alljhese are satisfied_by Xk, there can not have
been a constraint violation at any ancestor node of Xkf nor at node Xk before constraint <7 , is

checked, and the latter constraint is therefore checked at node Xk.

(113) holds since clearly a node is generated by gBT at site Xk iff the first constraint checkable at that
level is actually checked at that site. However, this result cannot be used at level k = 1 where there
are no constraints to check (remember all constraints are assumed to have arity 2 or more). Note
that (113) can also be derived from (111), (112) and (48), since from these we have

E(gBT k lXk) = E(*k_x Xk) = E{gBT k Xk)

With these preliminary results we can now derive the expected value of iV(gBT clp) and of
C(gBT dp) as follows. Note that, as mentioned in section 1.3, we use P{ax . . am) to denote the proba¬
bility of the parameterized event E(ax . . am ).

iV(gBT) = £ N(gBT clp) P{clp) by (11)
clptQ

- S S _£ %BT k Xk clp) P(clp) by (109)
clpeQ kwml xk cDx^

E E E *(«bt * xk dp) p(dP)
*—1 XkcDx clp til

-E £ P(&TkXt) by (13)
t-i jct<DXk

E E by (111)

E E II ) by Tj independence
t-i xkcDXt

114)

115)

116)

117)

118)

119)
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C(gBT) - £ <7(gBT dp) P(dp) (11) <120>

1*1
a S E .E E ^(gBT k i Xt clp) P(dp) by (110) fl2l)

dp(Cl t—2 Xk cDx^ '—1
I I

-E E E E %BT k i Xt dp) P{dp) (122)
*■■2 Xk iDx »"-l clp cQ

(123)
1*1

-E E E IjBT kixk) by (13)
*—2 jrt (Dx^ i

I I

-E E E «>y (112) (124)

1*1
= E _E E II Hi Xt) by T, independence /12gx

t-«2 Jf't(Dx I-«1 /<*(<»)

= E _E [ n p0 ^*)][ E n i;*)] by (47) (126)
t-axttDx^ 1 11 '—i ;<*(<') J

Note that in this last expression we could just as well have used

k ' = Min{ k | 2<k<n such that | j>t | ^0 } ^227)

as the lower value for k, instead of k = 2. This simply corresponds to the fact that no constraint-checks
are performed at any level k of the tree for which there are no constraints to check. Formally, this is
valid because for k at which | tpk | =0 in (126) the sum over i is degenerate with value 0. The
corresponding summand in the sum over k is therefore also 0. By definition of k ' we have that

| rpk | =0for2<&</b'so these values of k need not be considered. There may of course be other lev¬
els k > k '+1 for which no constraints exist to be checked, and their corresponding summands will also
contribute zero to the overall sum.

Expressions (119) and (126) for N(gBT) and C(gBT) both require for their completion only an
expanded form of the probability P(j AT*). This term is dependent on the probability model used, and
the following subsections complete the derivations for each model individually as appropriate. Note that
the sums over AT* in (119) and (126) in general introduce an undesirably large number of terms — see
(36). Fortunately under each model used, we find that these sums can be collapsed because P(j AT*) is
independent of AT*.

3.1.2. Small-Classes Under Model-2

The gBT expected complexitiesJ119) and (126) contain P(j AT*), the probability that constraint <7;
is satisfied by the instantiations of Xk. From table 1-4 we see that for a small-class CLP^n mcZS)
under model^ this probability becomes P?(j AT* ) = R} = S3 /M}, and this is independent of whkh
value-tuple AT* we consider from the cartesian product DXk. This independence allows the sums over A'*
in (119) and (126) to be collapsed by use of (36) to obtain respectively

January 19,1986



51

iV/(sBT)= ± [ n-n, If n R, ]
t—1 L siXt J L J(%_t J

^2(«bt)= ± [ n^ ][ n r, If e" n r, ]k^L L xiX^ L )t*k-l lmml Jl^k(<t)
(129)

(128)

3.1.3. Big-Classes Under Modei-1
From table 1-4 we see that for a big^lass CLP^(n m c Z]_ under modei-1 with satisfiability-rates

vector p = (p i p2 • • Pc)» probability P(j Xk) becomes Pp(iJCk ; p) = p}. As in the above model-2
situation, this probability is independent of which value-tuple Xk we consider from the cartesian product
Dxk • Thus again the sums over Xk in (119) and (126) may be collapsed by use of (36), giving

Of course these are just the same as their model-2 counterparts (128) and (129), except that the
satisfiability ratios R} characterizing the small class have been replaced by the satisfiability rates p;
characterizing the modei-1 probability model itself. Thus using p = R as suggested in section 3.5.1 of
[19], in this case allows the model-1 results to agree exactly with their model-2 counterparts, as opposed
to just providing good approximations. A similar situation occurred for the model-1 and model-2 expres¬
sions for the expected number of solutions, derived in section 3.5.2 of [19]. For gFC expected complexities
below, the relationship between the model-1 and model-2 expressions are not this simple, and the asymp¬
totic limit used in (113) of [19] must be invoked before exact equality of expectations is achieved. How¬
ever, even for gFC the model-1 expectations have always been found to provide excellent approximations
to their model-2 counterparts. (See chapter 6 of [18].)

3.1.4. Big-Classes Under Model-0
Probability model-0 is just a special case of model-1 where all satisfiability rates p; are equal to the

same value p. Note also that | 0*(<*) | = i-1, from the definition of ^*(<i) in table 2-4. Thus, for
the model-0 case over a big-class CLP^(n m c Z), the gBT expected complexities (130) and (131) can be
simplified to give respectively

(130)

Cfitbt ; p) - e [ n 1 [ n pj 1 [ e n ^ 1a L scxk J L J 1 *=i
(131)

(132)

*;(«bt;,)- e [ nm, Hf1*-1' ][ E" p"1]k—4 1 xcXk J L J *> iwml J
(133)

Special cases:

JV,°(gBT ; p) = t [ II "»* 1
1 L xcXk J

N?(gBT ; p) - £ [ II 1
kwm1 L XtXk J

(134)

(135)
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(136)

P = 1:

P =0:

1 °(gBT ; p) = 2 [ II m* 1 I
kmmk ' L XCjft J

<7,°(gBT ; p) = ft «.
xiXl. -

(137)

(138)

(134) just says that every possible node is generated. This is expected, since for p = 1 each instance con¬
straint is always satisfied by any combination of values of its arguments. Thus no constraint viola¬
tion can occur to prevent a node from propagating successors and all mk possible nodes given in
(36) are generated at each level. Formally, (134) follows from (132) since Is = 1, whether x equals
0 or not.

(135) says that all nodes are generated through to level k ', the first level at which checkable constraints
exist; see (127). This is of course also as expected, since when p = 0 each constraint is never satisfi-
able, no matter what values are assigned to its arguments. Thus as soon as there exists even a single
constraint to check at a node, it will be found violated and that node will not propagate descendent
nodes in the tree. Formally, (135) follows from (132) by use of (45). From the latter it follows that
**-1 = 0 for k<k' so that p ' =* 0° =* 1. For k>k', *t_l7^0 so that
p = 01 **"l 1 = 0.

(136) and (137) are obtained by analytically summing the geometric series in (133) for the corresponding
two cases of p. When p = 1 every possible node is generated — as seen in (134) — and (137) agrees
with the requirement that at each of these nodes each of the checkable constraints at that level is
checked once, since no constraint violation can have occurred previously to prevent it being
checked.

(138) can also be readily seen to give the required result as follows. When p = 0, every possible node is
generated through to the first level k ' at which there are checkable constraints — as mentioned in
regards to (135). At each node of that level, exactly one constraint check occurs since it always
results in a constraint violation and further constraint checking at those nodes is thus not per¬
formed. Result (138) is then the correct expected total, since no more checking occurs at later lev¬
els, and certainly none occurred at earlier levels where by definition no checkable constraints
existed. Formally, (138) is obtained from (133) via the following three cases.
k < k ' The contribution to (133) is 0 since by definition of k ', for these k we have V* =0- The

sum over i in (133) is then degenerate with value 0.
k > k ' The contribution to (133) is again 0 since ♦lt_1^0 and hence p ' **~1' =o' **~1' =0.
1 = ♦*_1 = 0, so that p =0°= 1. Also 7^0» so that the sum over « has value 0°=1

(corresponding to s=l).
Thus (138) follows since the only non-zero contribution to the sum (133) occurs for k — k '.

Note that even for an individual instance c/p, the number of nodes generated by either algorithm
gBT or gFC is independent of the respective constraint-check_orders \pk or <f>k used — as exemplified in
figures 2-3, 2-4, 2-7 and 2-8. All expectations N(gBT) and N(gFC) above and below are therefore cer¬
tainly independent of these orderings. On the other hand, the number of constraint-checks to solve an
instance is a function of these orders for the two algorithms — as seen in figures 2-3, 2-4, 2-7 and 2-8.
The expectations C(gBT) and C(gFC) thus both inherit this constraint-check order dependence in gen¬
eral. For gBT it expresses itself analytically in (129) and (131) through the products over jti>k(<i).
Note however that the specialization _to the model-0 case of this section is sufficient to remove the
constraint-check order dependence of C(gBT), even though the big-class concerned is still left arbitrary.
We will see that for gFC below, significantly more specialization is required in the type of big-class before
the constraint-check order no longer effects the expected number of checks performed.

Note also that since (128) and (129) have the same form as (130) and (131), they may also be spe¬
cialized in the same way as the latter two were in this section, in the formally similar case of a small class
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whose satisfiability ratios have the same value R} = R for all constraints. The results would just be the
expressions of this section with p replaced throughout by R.

3.1.4.1* Uniform Degree-m9 Pure Sl Simple A-ary Big-Classes

From table 2-6, we have that for pure and simple A-ary CLP instances | | = ( ^ ) and
( 1 \

| ipk | = ( ^ ^ J. When the instances are also of uniform domain size m, equations (132) to (138) reduce
to

jV,°(gBT;p) = (139)
kwm 1

( - ^ ^ )
C;(gBT;p)= £ m* /V) g p,-i (140)

kwmA ill

Special cases:

P-l: tf,°(gBT (141)
1

P =0: Np(gJ&T ; p)« J] m' (142)
t—l

p^l: C,°(gBT ; p) = £ m» p^ ^ 1 '/ ^ ^ (143>
t—^ 1 ~ P

P = 1; Cp°(gBT ;p)= £ m* ( *"* ) (144)
*-1

" V
i—A

p- 0: C,°(gBT;p)= (145)

3.I.4.2. Uniform Degree-m, Pure & Simple Binary Big-Classes
Results for the uniform degree-m, pure and simple binary CLP under model-0 follow by using

A = 2 in (139) to (145).

- « ( M)
JV,°(gBT;p)= pK 2' (146)

*—1

tf/(gBT ; p) = £ "1 (147)
iai 1—1
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Special cases:

P — 1: /^°(gBT ; p) = £ m* (148)
*=*1

P=0: ;7°(gBT;p)= £ m» (149)

p^l:

p = 1:

P — 0:

* f t-O i „ *-i
• = V - * 2 / 1 ~PC;(gBT;p)= $>* J>

kmm2

n

1 -p

C,°(gBT ;/>) = X>* (*"!)
1—2

C$(gBT ; p) = m2

(150)

(151)

(152)

It was this special uniform degree-m, pure and simple binary case that Haralick analyzed in [11] for both
Backtracking and Forward Checking. Our results here agree with his. However, due to an error in
Haralick's analysis of the gFC algorithm, we will see below that our gFC analog of (147) does not agree
with that of Haralick.

3.2. Expected-Complexity of gFC
Paralleling the previous section on gBT, this section derives the expected numbers of nodes gen¬

erated and constraint-checks performed in solving a CLP instance by the gFC algorithm of section 2.3.
These expectations are obtained both over big-classes and over small-classes under the corresponding pro¬
bability models 0, 1 and 2 of section 1.3. Again we find that much of the analysis can be presented in a
model-independent manner, with specialization to individual models required only towards the end. As
for gBT then, the sample space Q below is to be taken as referring to either the generic big-class
n^(n m c Z) = CLP^n m c Z) or the generic small-class fla(n m c Z S) = CLP^n m c Z S).

3.2.1. Class- and Model-Independent Expressions
In section 2.3.2, the number of nodes generated and the number of constraint checks performed by

gFC in solving instance dp were expressed respectively as

Table 3-3: Some gFC-dependent subsets of fl = Clg(n m c Z) or D„(n m c Z S).

Symbol Defined as Defined for

E(gFCkXk) { elP 1| i(gFC k Xk dp) _ 1 } 1 <k<n

E(gFC k it Xk) { C'P 1| %FC kitX„ dp) = 1 } l<k<n-l, 1 <»< | 4>t | ,

0< < < m,,
't

E(gFC * i >1**) { c/P 1| %FC k i >1 Xk dp) = 1 } l<k<n-l, 1 <»< | <f>k |
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(153)

*-i \*t\ f{
C[gFC c/p) = £

. E E E < fl(«FC kit Xk dp) (154)

These are in terms of the indicator functions 6(gFC Jfc Xk dp) and £(gFC k % t Xk dp) of (80) and (83).
The former function takes on value 1 if gFC generates a node at site Xk when solving dp, and otherwise
has value 0. The latter indicator function has value 1 if gFC checks constraint C exactly t times at site

Xk in solving dp, and otherwise has value 0.
In (153) and (154) the instance dp is fixed and the values of k, Xk, i and t are varied. One may

however fix the latter values and let the instance dp vary. This is done in defining the sample-space sub¬
sets in table 3-3. The first two of these are respectively the set of instances in Q for which gFC generates
a node at site Xk and the set of instances for which gFC checks constraint C ^, exactly t times at site Xk.
The other set is_defined in terms of a third indicator function 5(gFC k i >1 Xk c/p), given in (86), so that
E(gFC k i >1 Xk) is the set of instances for which gFC checks constraint at least once at site Xk.
These sets of instances are defined directly in terms of the behavior of algorithm gFC itself. They can
however be expressed in a more useful form as follows, in terms of properties of the instances themselves.
For this we make use of the constraint-based sets defined in table 1-3.

E(gFC * Xt) - E(*t Xt) R , ...
ScFl v '

E(gFC kitXk) = E(*t Xk) R E(*kr ,(<») fitxk) R E(*k, («) g> I Xk) (1&6)
gcFk -f i

£(gFC k x >1 Xk) - £(¥* Xt) R E(*k, (<») g>lXk) (15?)

(158)

! t Ft

E(gFC k Xk) - £(gFC k l>lXk)

(155) says that an instance has node X generated by gFC iff for that instance
(a) is a consistent labeling of Xk (so that all applicable constraints — those in tyk — are satis¬

fied) and
(b) each future variable g t Fk has at least one value that allows an extension of Xk that is con¬

sistent with respect to the constraints of •

As mentioned in obtaining (60), if gFC generates_a node Xk in solving a given instance then X± is
consistent. The instance thus belongs to E(Vk Xk) and we have that £(gFC k Xk) C E(Vk Xk).
Moreover, if a node is generated at Xk then each future variable g c Fk must have at least one still
viable value at the end of all constraint checking at its parent node, otherwise the child node Xk
would not have been generated due to an earlier domain wipe-out. The constraints checked against
variable j to the end of checking at level i-1 are those in $k_and thus
f?(gFC k Xk) Q P[gcFkE($k-if9 g >1 Xk). Combining the above two results we have

E(gFC kXk) C £(♦* Xk) R g >1 Xk) (159)
}cFt K '

In the other direction, if an instance is such that Xt is a consistent labeling and each future variable
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g t Fk has at least one value that provides an extension of Xk that is consistent with respect to the
constraints in then &FC generate node Xk for that instance because at each ancestor
node of Xk there can be no reason for any domain wipe-outs. We therefore have that

E(gFC k Xk) D E(*t Xk) R g >1 X„) (lgQ)

Together, (159) and_(160) establish (155). Note that since_F* = 0 for fc==n, then at level n (155)
becomes F(gFC n Xn) = E(*n Xn) and hence F(gFC nXn)=* P(*n Xn ).

(156) extends (155) slightly. It says that an instance has constraint C , checked by gFC exactly t times at
site Xk iff for that instance
(a) Xk is consistent (part of the condition for node Xk to be generated) and
(b) just before checking constraint C^ „ the corresponding future variable / k to be filtered has

exactly t still viable values, and
(c) all other future variables have at least one still viable value left (otherwise a domain wipe-out

would already have occurred, thus preventing the checking of C ^, from being reached). The
proof for 1 < t < mf , is similar to that of (155). For t = 0 equation (156) is not valid, since
for example an instance may be in F(gFC k i 0 Xk) simply because no node was generated at
site Xk.

(157) is derived as follows:
F(gFC Jfc i >lXk)

m
,

'i
= U E(gFC itiJTt) = n- E(gFC kiOXk) by (86)

n'k
- £(¥* Xk ) R E(*k, (<») t >1 Xk) R [ U E(*tf ,(<») fi t Xk ) ] by (156)

= E(¥t Xk) R E(*k, (<») g>lXk)P\ E(*kf,(<i) fi > 1 Xk)
)irk-n k

= E(*k Xk) R £(*t,(<i)0>lXt)
g<Fk

(158) is the analog of (113) for gBT. It follows since a node is generated by gFC at a level-fc node site Xk
iff the first checkable constraint is actually checked (at least once) at that site. The equality how¬
ever is not valid at level i=n, where gFC has no constraints to check.22 Note that (158) can also
be obtained from (155), (157) and (92), since from these we have

E(gFC kl>lXk) = E(*t Xk) R E(*k.li} g >1 Xk) = E(gFC k Xk)
9 <■ Fk

With these preliminary results we can now derive the expected value of N(gFC dp) and of
C(gFC dp) as follows.

22 Unlike gBT, algorithm gFC has already performed nit constmint checking before level ft. However, also unlike gBT, algo-
rithm gFC does do constraint checking at level 1 — binary constraints are already checkable there because besides variable x a
future variable is also allowed is one of the arguments.
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N(gFC) = £ M«FC c/p) P(c/p) by (11) , ,
c/p<n v '

= E E _E S(gFC k Xk dp) P(ctp) by (153)
clpctt twml Xt cDx^

- E _E E *(«fc k xk dp) p{dP)
t—1 Xt (Dx^ ctpcCl

= E E /'(gFCiXt) by (13)
*-i xt idXi

C(!FC) = £ C(gFC dp) P{dp) by (11)
dp (CI

E E [ UPiix,)]...
k—lXtiDXilK+t J

JK
.

I I
_ /*

• • • f E n *(♦*(<») t>ixk)^t p{* (<i) fi t xk) 11 —* $trk-ti * J

by (156) and T} independence

(162)

(163)

(164)

- E E [ npuxt)] [ nm*-.., * ^ 1 (i65)
t—lXkcDx 1 J'*t J 1 ltFk 1

by (155) and T; independence

(166)

*-i Nt I !i _

— E E _E EE t k i t Xk dp)P(dp) by (154) (167)
dpcCl **1 Xk cDx^

,-i i *k i
- E _E E E ' E «(*fc k i t xk dp) p(dP) ties)

*=1 Xk cDx *«■*> dpcCl

«-i i i mt;
= E E E E < WC kitxk) by (13) (169)

i—1 Xk (DXi '—l <^>

n-1

(170)

Note that in this latter expression we could have used
k ' = Min { k | 1 < k < n-1 such that | <f>k | ^0 } (171)

as the lower value for kt instead of k =* 1. An analogous situation occurred for gBT where k ' of (127)
could have been used in (126). In both cases, use of the corresponding k ' simply reflects the fact that no
constraint-checks are performed at levels where there are no constraints to check. Note also that we have
used in (169) the expansion (156) even for the t = 0 case, whenjthe expansion is invalid. This use how¬
ever is justified because of the jnultiplication of P(gFC k i t Xk) by t in (169), so that at t = 0 the
erroneous form for -P(gFC k % t Xk) becomes irrelevant.
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^Expressions (165) and (170) for N(gFC) and C(gFC) require expanded forms of the probabilities
P(j Xk), P(J f t Xk) and P{J f >1 A*). These arc dependent on the probability model used, and the
following subsections complete the derivations for each model individually as appropriate. Note that as
for gBT above, we find in each case that the undesirable sum over A* inj[165) and (170) can be removed
because P(j Xk), P(J ft Xt) and P(J f >1 A* ) are all independent of A* .

3.2.2. Small-Classes Under Model-2

The gFC expected complexities (165) and (170) may be specialized for the case of a small-class
CLP^(n m c Z_S) under model-2 by use of the model-2 versions of P(j Afc), P(J f >lXt) and
^t P(J f t Xt) from table 1-4 and equation (19). Moreover, sincejthe substituted expressions are all
independent of the particular Xk involved, this allows the sums over A* in (165) and (170) to be collapsed
using (36). This is analogous to what happened for gBT above, but there only the expression for P(j Xk)
was needed. The resulting expected complexity expressions for gFC are then

*.2(gFC)- ± f n 1 f n 1 f n ph*^, # ^1 (172)
kwml «• t,Xt J 1 j(*k 1 1 }(Fk 1

C/(gFC) =

s [ n 1 [ n rj 1 [ e m!{ n r> n ^)] (173»J 1 —1 ;<♦,(<») f'Ff/i 1 y '

s (-«' (7) n("■:!)
where Pf(J / >1) = 1 - — (174)

n("')
jcl J

Note that the argument Xk has been dropped throughout since its value is not relevant. Expressions (172)
and (173) correspond respectively to the model-2 results (128) and (129) for gBT.

3.2*3. Big-Classes Under Model-1
The specialization of the gFC expected complexities (165) and (170) for the case of a big-class under

modej^l is analogous_to that above for small-classes under model-2. But now the model-1 versions of
P(j Xk), P(J f >llt) and t P{J ft Xk) are required, from table 1-4 and equation (18). (In obtain¬
ing the corresponding model-1 result for gBT above, only the first of these was needed.) Again, since each
of the substituted expressions is independent of the particular A* involved, the sums over A* in (165) and
(170) can be collapsed using (36). The resulting gFC expected complexities for a big-class CLP^n m c Z)
under model-1 with satisfiability-rates vector p = (p i p2 • • Pc) arc therefore

N0i(gFc; p) - £ f n "•» 1 f n p, 1 [ n * >i; P)1 (175)
*—1 1 ieXk J 1 J(*k 1 1 Itrk J

C/(gFC ; p) =

e [ n 1 [ upj 1 [ e m,< n Pi n (i76)J J L «—I * ,(<,•) icFk-li i K '

where />/(/ / >1 ; p) - 1 - [ 1 - U p, J*7 (177)

Note that again the argument Xk has been dropped throughout since its value is not relevant.
Expressions (175) and (176) correspond respectively to the model-1 results (130) and (131) for gBT. Due
to the differences between P}(J f >1 ; p) and P/(/ / ^1) in (177) and (174) respectively, the above
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model-l and model-2 expected complexities for gFC — unlike their counterparts for gBT — are not
related to each other by a simple interchange of parameters p; and R}. The model-2 expressions are in
fact considerably more complex to compute values for, due to the greater complexity of expression (174)
compared with its counterpart (177). This is why it is important to note that in the limit used in (113) of
[19), the latter two probability expressions give the same value when parameters p; are set equal to the
value of their corresponding f?;. The model-2 expected complexities (172) and (173) also therefore become
asymptotically equal to their respective model-l counterparts (175) and (176) — this being a special case
of the relationship between model-l and model-2 expectations discussed in section 3.5.1 of [19].

In fact, in practice we find that the above asymptotic convergence of the corresponding gFC com¬

plexities under models 1 and 2 is apparently quite fast, and setting p; = R, in the model-l result (175)
or (176) has always been found to provide an excellent approximation for the corresponding model-2 result
(172) or (173). (See for example chapter 6 of [18].) Since gFC model-l expressions are simpler to compute
with than the modei-2 expressions, their ability to approximate model-2 results becomes important when
(as in [21]), we consider augmenting gFC with theory-based heuristics. For gBT however, the model-2
and model-l expressions obtained earlier have the same structure and there is therefore no gain in compu¬
tational speed, nor for that matter any loss in accuracy, when model-l results are used to approximate
those of model-2.

3.2.4. Big-Classes Under Model-0
Probability model-0 is just a special case of model-l where all satisfiability rates p; are equal to the

same value p. For the model-0 case over a big-class CLP^(n m c Z), the gFC expected complexities (175)
and (176) can therefore be simplified to give respectively

jV„°(gFC ; p) — £ [ II 1 [ p [*k 1 1 f II pft*k-i,} 0 ; p) 1 (178)
*—1 1 xcXk J 1 J L gcFk J

C ftgFC ; p) —

»-i r i r i♦ i i r 1 I *w ■ (*0 i t
s n -.][**'][ e »,.•» 't—1 L xcXk J 1 J L «—1 *

where PftJ f >1 ; p) = 1 - [ 1 - p 1 ] '

II P/(»t#(«)f *l;p)l (179)

(180)

Special cases:

p-l: Nftg?C;p)= £ f II m* 1 (181)
km*1 L seXk J

NftgFC ; p) - £ [ n«*l (182)
i L x(Xk J

p=0:

\h I
P —1: c;(gFC;p)= £ [ U m, 1 [ £ m l (183)

kmmk ' L XlXk 1 L I—1 * J

p = 0: CftgFC ; p) = f II 1 (184)1 scXk. J *

(181) just says that every possible node is generated. This is correct for p = 1, since then each instance
constraint is always satisfied by any combination of values of its arguments and no constraint violar
tion ever occurs. Thus no domain wipe-out ever prevents any node from propagating successors and
all m* possible nodes given in (36) are generated at each level. Formally, (181) follows from (178)
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because Is = 1, whether x equals 0 or not.

(182) says that all nodes are generated through to the first level k ' at which forward checkable con¬
straints exist; see (171). This is of course also as expected, since when p = 0 each constraint is
never satisfiable, no matter what values are assigned to its arguments. Thus as soon as there exists
even a single constraint to forward check at a node, it will be found violated and that node will not
propagate descendent nodes in the tree. Formally, (182) is obtained from (178) in a manner analo¬
gous to that for obtaining (135) from (132) for gBT. It is necessary to note that for k < k

= 0 and =* 0 for all g e Fk. But for k > k ', ^ 0 for some g e Fk. See (50), (69)
and the definition of in table 2-9.

(183) can be seen to be correct for p ® 1 because in this case every possible node is generated — as impli¬
cit in (181) — and at each of these nodes each of the forward-checkable constraints C at that
level is checked once for each of the original candidate values in for the corresponding
future variable f k whose domain is being filtered. Each of the original values in df, is checked since
with p = 1, no constraint violation can have occurred previously to cause it to be filtered out. For¬
mally, (183) follows from (179) because 1* = 1, whether x equals 0 or not.

(184) is also readily seen to be correct. When p =* 0, every possible node is generated through to the first
level k ' at which there are forward-checkable constraints — as seen in (182). At each node of level
k ', the first forward-checkable constraint C. i is checked once for each of the m, i values in the

' fk '

corresponding domain being filtered. Since p = 0, all these values are found to violate the
constraint. They are thus all filtered out of their domain, resulting in a domain wipe-out at each
node straight after the first constraint has been forward-checked there and precluding any further
constraint checking at those nodes. Result (184) is then the correct expected total, since no more
checking occurs at later levels, and certainly none occurred at earlier levels where by definition no
forward-checkable constraints existed. Formally, (184) is obtained from (179) via the following three
cases.

k < k ' The contribution to (179) is 0 since by definition of k ' we have <j>k = 0. The sum over i
in (179) is then degenerate with value 0.

k >k' The contribution to (179) is again 0 since by (50) we have Vk ^ 0 and hence

I ^ I
it = k ' ♦jt =s 0 so that p k~l =0°= 1. Also (j>k ^ 0, so that the sum over i is non-zero with

value m^i , corresponding to i = 1 where both *^(<0 = 0 and ***(<0 = 0 f°r
gtFk - f k. For t > 1, at least one of these sets is non-empty, allowing no contribution to
the k = k ' case of (179) for these higher i values. See the definition of $kf (<i) in table
2-9.

Thus (184) follows since the only non-zero contribution to the sum (179) occurs for k = k '.

3.2.4.1. Uniform Degree-zn, Pure & Simple A-ary Big-Clawes

For a pure and simple A-ary instance we have from (53) or (104) that | | = ( * ). When
instances are also of uniform degree m, expressions (178) and (179) therefore become

( k)
N?(gFC ; p) = £ m» / P,«(♦»_,., g >1 ; p) (185)

*■■1 gtFk

n-l
... I ♦»..(**) I

C,°(gFC;,)- £ mwPU'[ £ P II Pfl**, (<•') J P) 1
k—A-1 1 i-l

(186)

where P?{J / >1 ; p) = 1 - [ 1 - p 1 ;| ]" (187)
Since from (102) we have that | <f>t/ | = ( * ), the same for all future variables f ( Ft, expression
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(185) becomes

( k) ( '~l)
N/(gFC ; p) = £ tnt p (1 — [l — P v4_1 ]*n )**—* (188)

kmm1

Special cases:

p = 1: jV°(gFC ; p) = £ m* (189)
t—1

P=0: N,(gFC ; p) = £ ml (190)
*—1

These latter two cases may be obtained directly from (188) in a manner analogous to that for
obtaining (181) and (182) from (178). Or, they may be obtained by further specialization of (181) and
(182) themselves. Either way, it should be noted that for the present case I ^ I = ( 1-2 fr0tn
(101), and therefore the smallest value of k for which | <f>k | ^ 0 is k = A-1.

To expand (186) in the analogous way to the above expansion of (185) requires the value of
I (<l) I • But, whereas | | in (185) did not depend on more than the numbers | <f>k | of the

forward checkable constraints at each level up to Jfc-1, we see from table 2-9 that the value of | (<i) |
depends not only on | <t>k | but also on the actual <f>k order used at level k. Thus further expansion of
(186) is not possible without making additional assumptions about the orderings <pk. Note that in the
analogous situation for gBT, in obtaining (143) from (136), the precise ordering of ipk was irrelevant since
(143) depended on ^k only through | | .

In sections 2.3.1 and 2.3.3 we discussed two extreme classes of constraint orderings <f>k — / -cyclic
and /-exhaustive orderings. For the situation of this section it can be shown that /-exhaustive orderings
result in the minimal number of expected checks, while /-cyclic orderings give the maximal number of
expected checks.28 We therefore consider here the case of /-exhaustive constraint orderings <f>k. In the
next section we specialize these results to pure and simple binary instances in which case the distinction
between / -exhaustive and / -cyclic orderings disappears as will be explained.

As described in sections 2.3.1 and 2.3.3, an /-exhaustive constraint-check ordering completes the
checking of all constraints of <f>kf relevant to a given future variable / before proceeding to check those
relevant to another future variable. And as given in (68), this means that an /-exhaustive ordering <pk is
some concatenation

= +tfn II **/„ II • • II *»/,,„.* (191)
of orderings <t>kf — the sets of constraints forward-checkable at level k against the various future vari¬
ables / c Fk. The future variables may however be chosen in any order, and / w denotes the t-th such
variable chosen in forming the /-exhaustive ordering (f>k. The /-th element in the f-th sub-ordering <pkfkt
of <f>k is denoted <t>^f . Hence the elements of <pk can be traversed in order from the first <f>k to the last

1^1 kt
<j>k * by varying / from 1 to | <t>kfki | for each t from 1 to n-k. Using this double indexing, (186) may
be rewritten as

C,VC;p)- £ £ £ p "» JJ P o(^# (<(j) , . p) (192)
A-l tmm 1 1

where $kf (<tj) is the double-index form of the previously used set $kf (<i). Explicitly, since $kf (<t) is
defined as

23 This is not true for expected number of checks in the general case and is the reason we have maintained fully general con¬
straint orderings till now. Nor is it true in general for individual instances of the present special-form big-class, but only in regards
to the expected complexity of this class.
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this means that

$kf (<0 8=1 U( 4>kf PI {<t>k • • <f>k *}

*k/ («;') = *m,/ U( +tf fl {4>t{kl ■ ■ Mi],})
From this we see that

I U *»/*. - *»./». if 1 < * < <-1*t-i,/to U0 = *w,/to if <+1 < « < n-fc
W { 4>kftt . . Mil ^ if » = <

Therefore, since | | = ( ^ ) from (102), we have

(A) if 1 5 » < 1-1

l*t/b(<0*)| = ' ( A-1 ) if <+1 < 8 < n-k

( A-1 ) + ; " 1 '

82

(193)

(194)

(195)

(196)

Using these together with | <t>n | = ( ) from (100), and substituting in from (187), we can express
(192) as

<7;(gFC ; p) =

-i ( * \J k~l ) ,(£)f if'p[E(1-|1-P''l-(1 -11 -P('l"].( A-l )lm \n-k-t (197)

Special cases:

p-1: tf,VC;,)- g «W ) (»-*) ("»)
t—ii-i *

p =0: C/(gFC ; p) = rnA (199)

0, 1: C^(gFC ; p) =

-l (* V '-1
k mmA-l

(198) is as required, since when p = 1 there is never any constraint violation and no values are filtered
from any domain. Thus there will always be m constraint checks made for each of the ( *~2 ) con¬
straints of <f>kf for each of the n-k future variables / e Fk at each of the mk nodes at level k —
and this occurs at each level from k = A-1, the first at which an A-ary constraint can be forward
checked, to k = n-1, the last for which there are any constraints to forward check. Note that (198)
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is valid independent of the earlier assumption of /-exhaustive constraint orderings. For p = 1 all
orderings are equivalent.

(199) is also as required, since for p = 0 there will be a domain wipe-out at each node straight after the
first constraint is forward-checked at that node. This occurs at each of the mA~l nodes at level
k = A-l since (as mentioned for the p = 1 case) level k = A-1 is the first level where A-ary con¬
straints can be forward-checked. At each of these nodes at level k = A-l the first constraint is
checked once for each of the m values of its corresponding future variable, resulting in a domain
wipe-out for that variable and termination of processing at that node. Thus mA = mA~l X m
constraint-checks are performed in all when p = 0. Note that like (198), (199) is valid independent
of the earlier assumption of /-exhaustive constraint orderings. For p = 0 all orderings are
equivalent.

(200) is obtained from (197) by analytically summing the geometric series given by the sum over j and

the one obtained from the sum over t after dividing its summand by (1 - [1 - pK A~lJ]m )* * 1 and
taking this factor out the front. Since p^O is assumed in (200), this latter division is legal for all
A-l<Jfc<n-l. Moreover, since (200) also assumes p^l, in both resulting geometric series the ratio
of successive terms does not equal 1 so that the usual summation formula can be applied.
Note that the results of this sub-section subsume those published earlier in [22], providing the com¬

pletion anticipated in that paper and agreeing of course with the results that appeared there.

3.2.4.2« Uniform Degree-m9 Pure & Simple Binary Big-Classes
The results of the previous section may be specialized to the binary case by setting the arity to

A = 2, in which case (188), (189), (190) and (197) to (200) become

( M
N p(gFC ; p) = £ m * p2'(l-[l-p *-I]m )"~* (201)

i

C?(&C;p) = g (202)
i t—I

Special cases:

p-l: tf,°(gFC (203)
1

p —0: Nj)(gFC ; p) =* m (204)

p = 1: Cf(gFC ; p) = £ mt+1 (n-k) (205)
* —i

p =0: <7,°(gFC ;p) = m2 (206)

p^0,1: C^(gFC •, p) =

i lm «"*

*-1 11 - (1 - pk'l\m J£ m *+1 p("'(W (1 - (1 - p "J" J"-*-1 y ' (207)
i—1

i [i-u-f'r iii-ii-p'-'i" J
The expected number of nodes generated by gBT or gFC is never a function of the constraint-check

order used, but this is generally not the case for the expected number of constraint-checks performed. In
fact (197) is valid only when gFC uses / -exhaustive orderings at each level. In spite of this, its binary ver¬
sion (and corresponding binary special cases) of this section are nevertheless valid for arbitrary constraint-
check orders at each level. This is so because for the pure and simple binary case we have at each level
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that | 4>k{ | = ( *~l2 ) = ( k~l ) =* 1 for each future variable f eFk. This means that not only does the
distinction between /-exhaustive and /-cyclic orderings disappear but in fact, every one of the possible

| <f>k | ! permutations of <f>k can then be considered a degenerate / -exhaustive order24 and (202) and its
special cases (205) to (207) are therefore applicable to any family of orderings <f>k whatsoever. For gBT,
we saw that independence from the constraint-check orders j;k was achieved under model-0 for arbitrary
big-class (see (133)) rather than requiring the highly specialized type of big-class of this section.

Note that Haralick in [11] analyzed the same situation as treated here, as well as its gBT analogue
treated above in section 3.1.4.2. His results agree with ours, apart from the expression for C °(gFC ; p).
The version in [11) incorrectly leaves out the 1 - [1 - p term in the numerator and denominator of
the fraction in (207) above.

3.3. Expected-Complexity of gwFC
This section analyses the complexity of solving CLP instances using algorithm gwFC, described in

section 2.4. As mentioned there, this algorithm is a form of gFC, modified to take advantage of the
computer's parallel bit-handling capabilities. The modification involved does not change the node struc¬
ture — nor, in particular, the number of nodes generated — in the search tree for any given^ instance.
Hence_the various expectations JV/(gFC) and Nj(gFC) derived in section 3.2 remain valid for 7V/(gwFC)
and Nj(gwFC) under the corresponding situations.

Rather than effect the node structure of a search tree, the modification of gFC to obtain gwFC
effects the amount of work performed at the various nodes. Machine-anding is used in gwFC to perform,
in parallel, multiple individual constraint-checks of gFC. Corresponding to gFC's complexity measure
C(gFC clp), the number of constraint-checks performed in solving an instance clp, we now have the meas¬
ure A(gwFC clp)y the number of machine and* performed by gwFC in solving dp.

As mentioned in section 2.4, we do not restrict ourselves to the case where the domain of each vari¬
able can be represented by a single machine word. We allow an arbitrary domain size m2 for each vari¬
able zx and an arbitrary number b of bits in a machine word. As given in (107), domain then requires
u/7 = |'m2Jb*\ machine words for its representation.

3.3.1. Class- and Model-Independent Expressions
Paralleling (154), the number of machine anda performed by wgFC in solving instance clp is given

by
m

n-1 /;

A(gwFC clp) = £ £ £ u>,. £ %FC k i t Xk clp) (208)/ '
*—1 XktDx «—1 * 1

n-1 I +k I
- E EE s&c k {x* c1p) (20Q)

1 XktDx

These are in terms of the indicator functions £(gFC k i t Xk clp) and £(gFC k i >1 Xk clp) of (83) and
(86). Although the latter functions are for algorithm gFC, their use is appropriate here for wgFC. The
above expressions for A(gwFC clp) say simply that, in forward checking a constraint at a node, so

long as at the corresponding stage in gFC there would be t > 1 values still viable from the domain of the
corresponding future variable f k, then gwFC will perform wf, anda in Altering that domain (rather than
the t individual checks that would be performed by gFC). Paralleling the sequence (166) to (170) we have
now

24 Note thai when ill \ <t>kf | = 1 for i given it, then there is i one-to-one correspondence between orderings (f>k ind
permntitions of Fk . This is why in [21], where only pure and simple binary instances were treated, it wis sufficient to use permu¬
tations of Fk to chiricteriie the constraint-check orderings of gFC. Similarly for gBT, it wis sufficient to use permntitions of the
past variibles Pk of table 2-1.
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/l(gwFC) = J] X(gwFC dp) P(dp) by (11)
clpeCi

65

(210)

n-1 I +k I
__

- S E E E u> «(gFCti>lXt c/?)P(c/P) by (209) (2n)
ciftn *—i jrt i—i

- E _E 'E «,< E 5(«FCi,->ixt c/p)P(c/P) (212)
k~lXkcDXt 1 ctpcn
n-l I M

- E E E «,,• -P(«FC i»>Ut) by (13) (213)
i-l * 17

- e s [ n^/*)] [ "e «/t. n *(♦*(<»•)*«*>] (214)J L 1—1 * f<#t J

by (157) and T} independence

3.3.2. Small-Classes Under Model-2

For the case of a CLP small-class CLP^n mcZS) under model-2, the expected number of
machine ands in solving an instance is given by the expression below — obtained from the model-
independent expression (214) in the same way that (173) was obtained from (170) for gFC.

j<f(gwFC)= £ [ n 1 f n ri 1 [ e n j,<?(+t#(<o* *i)l (215)
1 L tiXk J L ]i*k J L »—l * 9cFk J

As mentioned above, the expected number of nodes generated by gwFC is the same as that for gFC, and
hence for the present situation is as given in (172).

3.3.3. Big-Classes Under Model-1
For the case of a CLP big-class CLP^n mcZ) under model-1, the expected number of machine

ands in solving an instance is given by the expression below — obtained from the model-independent
expression (214) in the same way that (176) was obtained from (170) for gFC.

j/(gwFc)- £ [ n m* ] [ n Pi 1 [ e wi> n '*/(+»» (<o# ^)] m
I L scXk J 1 jc+k J L »—I * gtFk 1

Again, since the expected number of nodes generated by gwFC is the same as that for gFC, for the
present situation this quantity is as given in (175). Of course, the various expressions for expected
number of nodes generated by gFC under model-0, appearing in section 3.2.4, also apply for gwFC in the
corresponding situations. Moreover, the expected number of ands performed by gwFC in those model-0
situations is easily obtained by specialization of (216) in the same way as the various C^(gFC) of section
3.2.4 were obtained from (176).
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