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REPRESENTATION-SELECTION FOR CONSTRAINT SATISFACTION PROBLEM

A CASE STUDY USING n-QUEENS

ABSTRACT

The purpose of this paper is three-fold: (i) to emphasise that a given real-world problem can often be
represented as a Constraint Satisfaction problem in a variety of ways, (ii) to show how our recently
developed complexity results for Constraint Satisfaction problem-solving may be used to provide quantitv
tive guidance in selecting between such alternative representations, and (iii) to provide a case study of a
general new approach to the development of theory-based heuristics, and in particular of instance-specific
theory-based heuristics. These three topics are discussed respectively in sections 3, 4 and 5 below.

1. INTRODUCTION

It is well known that one of the major opportunities, as well as bottlenecks, in improving prob >
solving efficiency lies in the choice of an appropriate problem-solving representation. This issue has ig
been of interest in Artificial Intelligence, as exemplified by the work of Amarel [l] and others [3], [6], )].
However, previous studies have considered the problem only qualitatively, by studying the various alte ac¬
tive representations that are possible. The present paper gives initial results on what appears to be le
first quantitative approach for choosing between problem representations.

Our results refer to the Constraint Satisfaction or Consistent Labeling Problem1 CLP, which i If
has received much attention in Artificial Intelligence [2], [5j, (7), [8|. However, the general methc is
applicable to arbitrary problem-domains, and to types of problem-solving guidance other than st
representation selection. Basically, the approach is to derive analytic expressions capable of gi ig=
problem-solving complexity as a function of whatever problem-solving parameter the user is intereste in
making choices over. One can employ such an expression as a guide to problem-solving decision-ma ig
simply by making that choice which minimizes complexity as predicted by the expression. If the ch< es

range over algorithms, this approach provides a theory-based algorithm selection heuristic. If the chc es
range over search-orderings then one obtains a theory-based search-order selection heuristic. These 'o
uses of our complexity results have been studied in [14], [15] and [10].

We consider here for the first time a third type of decision-making guidance available from our c >

plexity expressions: advice on choosing good problem-solving representations. That is, we use our res ts
to provide a theory-based representation selection heuristic. This third use depends heavily on 'o
features of our analyses: (i) precision and (ii) generality. Without precision it would be impossible to c >
pare individual alternative CLP instances that provide differing formulations of the given problen sf
interest. Without generality it would not be possible to compare all the widely differing alterna 'e

representations in CLP that arise for a given problem.2 We have attained precision by incorporatii a
new parameter into the analysis: constraint satisfiability or looseness. We have attained generality >y
dropping the many unnatural restrictions that are usually assumed in analyses of CLP, such as the res c-
tion to binary constraints, domains of equal size, etc.s

Section 2 discusses the Consistent Labeling Problem. Section 3 shows how the well-known n-qu« is
problem may be represented by a variety of different CLP instances. Section 4 shows how our comple ;y
expressions (due to their precision and generality) can accurately predict problem-solving complexit of
these widely differing, individual CLP instances, and hence can provide an accurate, formal mean :>f

1 We use problem to denote an actual problem-situation (i.e. one for which a specific answer can be given) and Proble to
denote a class of problemt. We also use the term Problem instance or simply instance for a problem. Analogously, the Const nt
Satisfaction Problem or CLP is a class of instances, the generic one being denoted clp.

2 For a given real-world problem, good representations may of course exist using frameworks other than CLP — say us a
Theorem Proving formulation. Handling this would then require an even greater "generalisation'1 of the problem class so that i e-
comes the union of all target problem classes, with a separate analysis for each component class. However, one of the main poin of
this paper is that CLP alone may very well provide a rich set of alternative representations, and their relative merit needs to. id
can now, be understood.

3 Of course this precision and generality are also advantageous in algorithm selection and search order selection. But the re

absolutely essential for representation selection, since one is by definition comparing individual alternative instances which r e-
over, are virtually always of widely differing type.
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ranking alternative representations within CLP. Section 5 discusses these issues at a more general level.

2. CLP instances

A CLP instance consists of variables, values, constraints and a goal. More specifically, there is a set
Z = { zx | 1 < * < n } of n variables zx. Each variable may take on values from its finite domain
rf = { ztj | 1 < j < mx } of m7 values . There is a set C = { Cj | 1 < ; < c } of c constraints. Each
constraint C, specifies which value-tuples for the constraint argument variables "satisfy" the constraint,
where each value for a variable is chosen only from that variable's domain. Thus each constraint C;
specifies some subset T} C D} of satisfying value-tuples from Dj = X j.tz- the cartesian product of
the domains of the constraint's argument variables. (We call Tj the relation induced by constraint C}.
Its size Sj = | Tj | we call the constraint looseness or satisfiability. The potential size of a constraint
Cj is the product A/; = 7i of the domain sizes of its arguments. i?; =» S; /A/; is the looseness
or satisfiability ratio of a constraint Cj, and lies between 0 and 1. The number of arguments of a con¬
straint is Aj = | Zj | , the constraint arity. Examples of these quantities are shown in table 1) The goal
in solving a CLP instance is to find all ways of assigning values to the n problem variables from their
respective domains so that each constraint is satisfied.

Note that the above formulation is very general. It allows CLP instances with differing numbers of
candidate values for different variables. Constraints may each individually be over arbitrary argument
sets Z} C Z, and hence may certainly each individually have arbitrary arity A, < n. Moreover, a given
set of problem variables may very well have one constraint, many constraints or no constraints at all, over
it.

For determining N(clp), the number of nodes generated or C(clp)t the number of constraint checks
performed in solving a given CLP instance clp by the algorithms of interest here, all that counts is the
number n of variables, the number m9 of values in the domain of each variable zf, and the argument set

Zj and relation T, of each constraint Cj. We have obtained expectations of both N(clp) and C{clp) as a
function of all these parameters except that instead of incorporating the full constraint-relation informa¬
tion Tj for each constraint, we use the corresponding satisfiabilities S; = | Ty | . The equivalence-
classes induced by our analysis parameters we call small-classes. They have empirically been found to be
quite homogeneous in that most subsumed instances of a given small-class have similar complexities of
solution. The important consequence is that small-class expected-case complexities (we take instances to
arise uniformly in a small-class) can thus provide good approximations to the exact-case complexity of
most individual instances in the corresponding small-class.

Expected complexities of CLP problem-solving, in terms of both nodes and checks, have been
derived for the fully general case in [l0]-(l2j over small-classes4 for three different CLP algorithms: gBT,
gFC and gwFC, which are generalized versions respectively of the traditional Backtracking algorithm, and
of the Forward Checking and the word-wise (or bit-parallel) Forward Checking algorithms appearing in
[4]. Use of specialized versions of these results for both (virtually instance-specific) theory-based
algorithm-selection and search-order selection has been considered in our earlier papers [14] and [15]. Here
we consider their use for what appears to be the first example of theory-based problem-representation
selection.

3. Alternative CLP Representations of n-Queens
The n-queens problem provides an intuitively clear example by which to demonstrate the range of

CLP instances that may be used to represent a given real-world problem. We will talk of the g-queens
problem to avoid confusion with n, the number of variables of a CLP instance. The g-queens problem is
to find all ways to place q (indistinguishable) queens on a q X q chess board so that no two queens attack
each other. Six alternative CLP formulations of this problem are presented below. Figure 1 presents these
alternatives schematically for the case of the 4-queens problem, showing also the two solution vectors in
each case.

Representation Q1 (Row-Based): If there is any solution to the g-queens problem, a little thought
shows that it must place exactly one queen in each row of the q X q chess board. It thus remains to find
in which column the queen of each row is to be placed. The standard CLP representation of g-queens
thus associates a CLP variable z, with row : of the chess board, letting each variable take its values from

4 As well as over big-claaet — which are not directly relevant for our present purposes.

March 27, 1980



3

the same domain dJ( = { 1 2 . . g } where value j for variable z, denotes that the queen cf row i is in
column j.

The interpretation here given to variables z, itself ensures that no two queens are in the same row.
For queens not to attack each other it remains then only to ensure that no two queens be in the same
column or diagonal. This is expressed mathematically as

(*. * ) A ( I * - *j I ¥• J ~ ') V »' < / < {l 2 . • q } (l)
For the specific case of 4-queens, the above constraints are shown in canonical form C; = (Z; T}) in
table 1. The two solutions (consistent labelings) for 4-queens under this representation are (2 4 1 3) and
(3 14 2). These are shown respectively by the positions of the Q's in the left and right top two boards of
figure 1. To express the above, and later, constraints more transparently we introduce the four functions
r(z,), c(z,), rd(z,) and ld(z,) giving respectively the row, column, right-diagonal and left-diagonal5
corresponding to the value of variable z,. In terms of these, constraints (1) become

c(z,)^c{z}) A rd(*.) ^ rd(z;) \ ld(z,) ^ ld(z;) V * < i « U 2 . . j} (2)

Representation Ql' (Column-Based): Note that in the CLP instance resulting from representation
Q1 above, all variables z, have the same domain dr but no two variables may take on the same value.
For such CLP instances a natural transformation would be to consider the domain values as variables and
the original variables as the new domain values. In the g-queens case, this alternative formulation
amounts to associating variables with board columns instead of with rows, and associating domain values
with rows instead of with columns. Due to the symmetry of the g-queens situation this alternative version
is isomorphic to representation Ql above. However in general this will not be so, and the transformed
CLP instance where variables become values and vice versa may provide an improved representation and
should be considered.

Under this representation, with variables and values associated with columns and rows in the
manner shown for Ql' in figure 1, the two consistent labelings (2 4 13) and (3 14 2) of Ql become
respectively (3 14 2) and (2 4 1 3). The two solutions for Ql have thus been mapped into each other,
reflecting the fact that the two corresponding physical board configurations are related by a reflection in
the main diagonal of the board.
Representation Q2 (Queen-Based): Rather than specifying a solution in terms of which column the
queen of each row is in, we might just as well give it in terms of which square each of the queens is in.
Therefore, associate a variable zf with each of the q queens, and let each variable take a value indicating
the square in which it will be placed. Labeling the squares in some way from 1 to g2, the domains are thus
d^ = {1 2 . . g2}, the same for each variable.

Table 1: Parameter values for the c = ( * ) 5=8 ® constraints Cj of the Ql representation of 4-queens.

j h T, M, Si *,

1 {zi *2} {(13) (14) (24) (31) (41) (42)} 2 16 6 6/16

2 {zi zs} {(12) (14) (21) (23) (32) (34) (41) (43)} 2 16 8 8/16

3 {*1 **} { (12) (13) (21) (23) (24) (31) (32) (34) (42) (43) } 2 16 10 10/16

4 {*2*3} {(13) (14) (24) (31) (41) (42)} 2 16 6 6/16

5 {*2*J {(12) (14) (21) (23) (32) (34) (41) (43)} 2 16 8 8/16

6 {z 3 -4} {(13) (14) (24) (31) (41) (42)} 2 16 6 6/16

5 A right-diagonal is one that falls as it is traversed from left to right. A left-diagonal rises from left to right.
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Fig. 1: Schematic of six CLP representations, with corresponding solutions, for the 4-queens problem.

Ql: Row-Based Ql': Column-Based

1 2 3 4 *1 * 2 z» z i

*1 Q 1 Q

z2 Q 2 Q

Zi Q 3 Q

Z* Q 4 Q

= {1 23 4} = {1 23 4}

(2 4 13) (3 14 2) (3 1 4 2) (2 4 13)

Q2: Queen-Based Q3: Binarization of Ql

Q1 — t i, Q2 33 22I Q3 5=3 Zi, Q4 = z4 U 1 « 2 «'S u 4 " 6 « b

1 2 3 4 - - -

5 6 7 8 - -

9 10 11 12 • -

13 14 15 IS -

{1 23 4 . . 15 16} *.■-- T, of table 1

(2 8 9 15) (3 5 12 14) ((24)(21)(23)(41)(43)(13))
((31)(34)(32)(14)(12)(42))

Q4: Square-Based Q5: Diagonal-Based

Z 4

\
2b 2b

V

z7

2l 2 2 2b z* z 3
\\XXX

zb 2b 2 7 Z 9
z 2

\\XXX
Zg 210 2 11 2 12

z 1
\NNXX

2 lb 214 2 lb 2 lb \\XX

d>,= {0 1}
<•,-

<■>=

■ i,7 = {0 1}
. d,t ={0 12}
■ = {0 1 2 3}
»{0 1 23 4}

(0100000110000010) (0010100000010100) (0 1 30 1 20) (02 1 03 1 0)
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Unlike under representation Ql, a queen may here a* priori be on any square of the board. To
ensure that no two queens attack each other we thus augment each of the ( * ) constraints of (2) to
include explicit avoidance of the same row, giving constraints

TUt) * riz]) A c(z>) * c(z}) A r*(z,) t4 rd(z;) A ^ ) (3)
for each combination of i and j from the integers 1 to q. Assuming the row-wise numbering of squares
shown for Q2 in figure 1, the two solution tuples are (2 8 9 15) and (3 5 12 14). However, constraints (3)
also allow as solutions any permutations of the above two solutions, such as (9 2 15 8) and (14 3 12 5).
(In other words they do not correspond to indistinguishable queens as required.) One way to avoid permu¬
tations is to augment each constraint of the form in (3) with the extra requirement that lower-numbered
queens be placed in lower-numbered squares; formally, one adds to (3) the additional conjunct z% < z; (for
i < j) to give ( g ) binary constraints of the form

r(zt) T4 r(zj) A c(2') J4 c(2j) A rd(*.) J4 «•(*/ ) A ) J4 w(*;) A z> < zj

Representation Q3 (Group-of-rows-Baaedj Binarization of Ql): There is an important transforma¬
tion applicable to any CLP instance, that we call (arity) binarization since the constraints of the resulting
instance all have arity of two. This transformation is in fact implicit in Waltz' formulation of the line
labeling problem in machine vision [16], in that he labels lines only indirectly by actually labeling junc¬
tions. Other examples of binarization appear in [10] in the context of solving Satisfiability problems and
problems of join-formation in relational databases.

The idea behind the binarization transformation is a simple one. Instead of labeling the variables zx
of some CLP instance with candidate values from their associated domains d2 subject to appropriate (not
necessarily binary) constraints, we label the constraint argument sets Z, with candidate value tuples from
the constraint relations Tj, subject to the binary constraints that each pair of argument sets must be
labeled so that any common variable receives the same value.

Formally, this amounts to a transformation to a new CLP instance in which the constraint argu¬
ment sets Zj of the original instance become new CLP variables ti,. The old constraint relations T;
become the domains dU( of the new variables — which of course may require preprocessing to make the
original T; available in extensive form so that they can be used in instantiating the new variables u, .*
Note that the number of constraints c in the original instance equals the number of variables n in the
new version and that the constraint satisfiabilities Sj of the original become the domain sizes of the
new version. For each pair of original argument sets Z; that have one or more variables zt in common,
there is a binary constraint in the new instance between the corresponding new variables ut. This con¬
straint is simply that two value tuples (from the corresponding T;) labeling the new u, must assign the
same values to any variables zx common to the two ti,.

The Q3 section of figure 1 indicates the case for 4-queens where new variable ut corresponds to
argument set Zt of table 1. Accordingly, the new domain du. equals relation T, of table 1. For example,
since in the original instance the argument sets Zx = {zx z2) and Z 4 = {z2 23} have variable z2 in com¬
mon, there is a binary constraint in the new instance between the corresponding new variables tix and u4.
The constraint relation of this new binary constraint would be the following subset of Tx X T 4

{((13)(31)) ((14)(41)) ((14)(42)) ((24)(41)) ((24)(42)) ((31)(13)) ((31)(14)) ((41)(13)) ((41)(14)) ((42)(24))}

As required, the value of the common z2 component of each pair of pairs is the same. Note that under
this binarized version of representation Ql, the two 4-queens solutions become ((24)(21)(23)(41)(43)(13))
and ((31)(34)(32)(14)(12)(42)) where these are now value-tuples (tTj u2 . . ue) whose component values
are pairs of values of the original representation Ql. Binarization need not be applied only to representa¬
tion Ql. New representations of 4-queens may just as well be obtained by binarization of any initial
representation, including the present already-binarized representation Q3.
Representation Q4 (Square-Based): A solution for 4-queens can also be expressed in terms of whether
or not a queen is present for each square of the board. We thus associate a variable zt with each square

0 On the other hand, a slightly different binarixed version, that avoids the need for preprocessing, results by letting D}, rather
than their subsets T}, be the domains in the new instance. The new binary constraints in this case would then need to incorporate
an additional check that any valne-tuple being assigned to a Z) also satisfies the corresponding constraint C}. This avoids the need
for preprocessing to extract T}, but incurs extra cost during problem-sohring due to the more complex form of constraint checking.

March 27/1080
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1 < i < g2, allowing each variable to take values from dt. = {0 1}, with 1 indicating the presence, and 0
the absence, of a queen on the corresponding square.7 Under this representation the constraints that no
two queens attack each other, become that no two squares on a common row, column or diagonal, may
both contain a queen. We thus have the binary disjunctive constraints (zt = 0) \J (zj = 0) for each
(unordered) pair of variables zx, that correspond to squares in the same row, column or diagonal. Note
that for 4-queens there are 75 pairs of such squares — and hence 75 binary constraints of the above form.
These constraints all have the same constraint relation Tj = {(0 0) (0 1) (1 0)}, and differ only in their
arguments sets Z3.

Under this representation, with variables associated with squares as shown for Q4 in figure 1, the
two 4-queens solutions become (0 1000001 1000001 0) and (0 01010000001010 0). How¬
ever, the constraints above ensure only that no two queens attack each other, and do not ensure that
there are in fact q queens on the board. Thus other tuples (such as the tuple with all elements equal 0)
besides the two given above will also result as solutions. One (weak) way to ensure that only solutions
involving g-queens are found, is to incorporate the single additional g2-ary constraint: £ zx = g.

l<t <q2
Representation Q5 (Diagonal-Based): We consider here our final example of an alternative CLP
representation for the g-queens problem. It is analogous to representation Ql, but variables correspond to
diagonals rather than rows. Representation Ql resulted from the fact that a g-queens solution must have
exactly one queen per row, and can thus be given in terms of the column position of the queen in each
row. Analogously, g-queens solutions must have at most one queen per right diagonal and can thus be
given in terms of the position of the queen within each diagonal, allowing however for each diagonal the
possibility that no queen is present.

This suggests using a representation like that shown for Q5 in figure 1. A variable zx is associated
with each of the 2g - 1 right diagonals, and each takes its values over the squares of the corresponding
diagonal. An extra candidate value is included for each variable to allow for the absence of a queen in the
corresponding diagonal. The resulting domains dare of course of unequal size. Using the convention (as
shown for Q5 in figure 1) that integer i denotes the i-th square in a diagonal from the top left, while 0
denotes the absence of a queen, the two 4-queens solutions are then (0 1 30 1 20) and (0 2 1 03 10).

The interpretation here given to variables zx itself ensures that no two queens are in the same right
diagonal — in the same way that the interpretation given to the zx in representation Ql ensured that no
two queens were in the same row. For queens not to attack each other, it remains then only to ensure
that no two queens be in the same row, column or left diagonal. The necessary constraints under
representation Q5 are therefore

t(z,)^t(zj) A c(z,)^c(*;) A ld(z,) 7^ ld(*;) V * <i € {12 . .2?-l}
Note there are now ( 2,~1 ) binary constraints, rather than the ( ' ) in representations Ql and Q2. But,
analogously to the case for representation Q4, we also require here an extension of the above constraints
to ensure that there are in fact q queens on the board. One possibility is to add the single constraint:

£ S(zx) = g, where S(zx) equals 1 if zx > 0, and equals 0 otherwise.
1< i <2^-1

4. Theory-Based Problem-Representation Selection
We have now presented five alternative CLP representations for g-queens problems. These differ in

the number n of CLP variables involved, the set of domain sizes m2 for the variables, c the number of
constraints, and the families of argument sets Zj, arities A, and constraint-satisfiabilities (or degrees of
looseness) 5; of their constraints. All these factors have strong effects on problem-solving complexity.
All else being equal, one can expect that a CLP instance is easier to solve if it has less variables, smaller
domains for its variables, more and tighter constraints, and constraint argument sets such that
constraint-checking can be done at earlier levels in the search tree.

Unfortunately, "all else is never equal" in practice. That is, it is usually the case that in comparing
two alternative representations, each alternative has its own advantages in one or more of the above
respects. How the representations compare in such a case is far from obvious. However, all these

7 Note that if queens were to be considered distinguishable, we wonld allow variables to take values from 4t = {0 1 2 . . g},
with 0 indicating no queen on a square, and the non-xero values indicating the different queens that may be on a square.

March 279 1086
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potentially conflicting factors have been incorporated into our complexity analyses, and the resulting com¬
plexity expressions provide a formal means of predicting how these influences combine in any given
instance to effect its complexity of solution, and hence its complexity of solution relative to a competing
alternative representation.

Figure 2 shows how this applies in choosing a representation for the 4-queens problem above. The
figure shows for three of the representations, the theoretical and empirical complexity of solving the
corresponding CLP instance using the gFC algorithm, where complexity is measured in terms of the
number of constraint-checks performed. The empirical results in figure 2 are exact-case complexities
found by solving the specific individual CLP instances concerned. The theoretical results are expected-
case complexities from [10] or [12] for the small-class to which the corresponding instance belongs. (Note
that analogous comparisons to those in figure 2 could have been made in terms of the number of nodes
generated by gFC or for nodes or checks of the two other algorithms gBT and gwFC, since all
corresponding complexity expressions are available in the above-mentioned papers.)

Of course, CLP problem-solving complexity is usually a strong function of the particular order iH
which variables are assigned values and of the order in which constraints are checked at each level of the
search tree. In fact, as mentioned, since our analytic results capture these effects, another major use for
them is in predicting good search orderings, as seen in [14] and [10). For the particular experiments in
figure 2, in the interests of saving space, the reader is referred to chapter 8 of (10) for details on the par¬
ticular instantiation orderings and constraint-check orderings used.

In any case, we see from figure 2 that our analytic results are capable of providing accurate predic¬
tions of the complexity of solving the individual CLP instances that correspond to alternative formular
tions of 4-queens, and hence can be used to choose between these alternative representations. In particular
(for the algorithm and search orderings used in the experiments) both theory and experiment agree that

Fig. 2: Empirical exact-case complexities C(gFC clp) and theoretical
small-class expected complexities Cj (gFC) for three alternate CLP representations of 4-queens.

i • C(gFC clp)
X C/UFC)

1000

800 '

600 "

400 "

200

0

Q1 Q2 Q3 Representation
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representation Q1 (the traditional one) is better than Q3, which is better than Q2. We have found similar
agreement between theory and experiment in ranking problem representations for solving Satisfiability
problems, Line-Labeling problems and Join-Formation problems in relational databases [10].

5* General Issues regarding Theory-Based Heuristics
This section summarizes and generalizes the above. At one level, this has been a discussion of

representation-selection for n-queens. At a higher level it is a case-study of the ability of our analytic
complexity expressions to provide a quantitative basis for selecting good problem-representations within
CLP. And at a still higher level it exemplifies a new approach for the derivation of theory-based
problem-solving heuristics. Specifically, the approach suggested here is to carry out a complexity analysis
of problem-solving as a function of the decision parameter of interest and to use the derived expression to
predict the complexity-minimizing decision. Theory-based guidance may thus be obtained for algorithm
selection, search-order selection, and (given instance-specificity) for representation selection.

Several points deserve mention. First, it is important that the analysis be precise in the sense that
predictions are accurate for individual instances. Most expected-case, worst-case or best-case complexity
analyses do not have this instance-specificity, and are useful only with respect to whole sub-classes of
problems (which are usually quite irrelevant in practice). But, as with our results, precision can be had
even from one of the above three types of analysis, if the analysis parameters used induce sub-classes each
of which is homogeneous in the complexity measure of interest. Then class-average results for example,
can be used as good approximations for the exact-case complexity of most individual subsumed instances
of the class. In our case, these homogeneous sub-classes are CLP small-classes, induced by employing in
the analysis the new parameter constraint satisfiability. Analogous precision or instance-specificity can be
achieved in other domains if a "homogenizing set" of parameters can be found in terms of which an

analysis is tractable.
Secondly, generality of the assumed problem class is also important because theory-based guidance is

then by definition available for a larger class of instances. But for meaningful theory-based representation
selection, generality and instance-specificity are both essential since a single initial real-world problem
corresponds to a set of individual CLP instances, usually of widely differing type, all of which must be
compared. This has been one of the driving forces behind the successive generalizations introduced in our
work from [13] to [14] to [15] to [10] and [12].

Thirdly, note that we have used our results here to provide theory-based guidance in the most
straight-forward way: by comparing the computed complexities over individual competing (representation)
decisions. An exhaustive approach like this is acceptable for representation selection and for algorithm
selection, since there are usually only a handful of alternatives to compare in such cases. For other types
of decisions, such as search-order selection, there are too many alternatives to allow explicit exhaustive
comparison via the theory. In such cases analytic minimization (analogous to using calculus to find the
condition under which a smooth function attains its minimum) rather than exhaustive numerical minimi¬
zation becomes necessary. Analytic minimization was used in the formal derivation of search-order selec¬
tion conditions for gFC in [14] and for gBT in [10]. As seen there, powerful new decision rules may result,
or one may be able to rederive familiar old heuristics with the added benefit that the conditions under
which they are valid is necessarily made explicit in the derivation. In [10] for instance, we show when it
is valid to use such common Backtracking algorithm search-ordering heuristics as (i) instantiating vari¬
ables in order of least number of candidate values, and (ii) checking constraints in order of decreasing
tightness.

Finally, note that the potential for savings is greater than implied by the 4-queens example above.
Figure 2 shows a complexity variation of an order of magnitude over the representations. In fact often
variations of many orders of magnitude are possible as a result of varying the problem-representation, the
algorithm or the search order used. The concomitant large savings possible by making an accurate
complexity-minimizing choice show the importance of a formal, theory-based approach to decision-making
such as used here rather than making problem-solving decisions based essentially on educated guess-work.
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