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ABSTRACT Protoporphyria is a metabolic disease that
causes excess production of protoporphyrin IX (PP-IX),
the final biosynthetic precursor to heme. Hepatic PP-IX
accumulation may lead to end-stage liver disease. We tested
the hypothesis that systemic administration of porphyrin
precursors to zebrafish larvae results in protoporphyrin
accumulation and a reproducible nongenetic porphyria
model. Retro-orbital infusion of PP-IX or the iron chelator
deferoxamine mesylate (DFO), with the first committed
heme precursor a-aminolevulinic acid (ALA), generates
high levels of PP-IX in zebrafish larvae. Exogenously in-
fused or endogenously produced PPIX accumulates pref-
erentially in the liver of zebrafish larvae and peaks 1 to
3 d after infusion. Similar to patients with protoporphyria,
PPIX is excreted through the biliary system. Porphyrin ac-
cumulation in zebrafish liver causes multiorganelle protein
aggregation as determined by mass spectrometry and
immunoblotting. Endoplasmic reticulum stress and
induction of autophagy were noted in zebrafish larvae
and corroborated in 2 mouse models of protoporphyria.
Furthermore, electron microscopy of zebrafish livers from
larvae administered ALA + DFO showed hepatocyte auto-
phagosomes, nuclear membrane ruffling, and porphyrin-
containing vacuoles with endoplasmic reticulum distortion.
In conclusion, systemic administration of the heme pre-
cursors PP-IX or ALA + DFO into zebrafish larvae provides
a new model of acute protoporphyria with consequent
hepatocyte protein aggregation and proteotoxic multi-
organelle alterations and stress.—Elenbaas, J. S., Maitra,
D., Liu, Y., Lentz, S. I., Nelson, B., Hoenerhoff, M. J.,
Shavit, J. A., Omary, M. B. A precursor-inducible zebrafish
model of acute protoporphyria with hepatic pro-
tein aggregation and multiorganelle stress. FASEB ].
30, 1798-1810 (2016). www.fasebj.org

Abbreviations: ALA, a-aminolevulinic acid; DDC, 3,5-dicarbe-
thoxy-1,4-dihydrocollidine; DFO, deferoxamine mesylate; eGFP,
eukaryotic green fluorescent protein; EPP, erythropoietic proto-
porphyria; ER, endoplasmic reticulum; FECH, ferrochelatase; MS,
mass spectrometry; PDI, protein disulfide isomerase; PP-IX, pro-
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Porphyrias are metabolic disorders that arise from imbal-
ance in the heme biosynthesis pathway, often from a mu-
tation affecting an enzyme involved in heme synthesis. The
porphyrias are categorized as hepatic or erythropoietic,
depending on the tissue that generates the excess por-
phyrins, and as either acute or cutaneous, depending on
the disease presentation (1). Protoporphyria is a cutane-
ous erythropoietic porphyria that is subdivided into
erythropoietic protoporphyria (EPP) and X-linked pro-
toporphyria (XLP). Both diseases are characterized by
elevated levels of circulating protoporphyrin IX (PP-IX)
(2—4), the last precursor in the heme biosynthetic pathway.

Ferrochelatase (FECH) is the enzyme responsible for
metabolizing heme from PP-IX and iron (5) and is the
most frequently mutated enzyme in protoporphyria, with
approximately 95% of patients having reduced FECH ac-
tivity, resulting in EPP (6-8). Mutation of FECH may result
in EPP; while approximately 2% of patients with proto-
porphyria develop XLP because of a gain of function
mutation in ALAS2 (9), the enzyme that catalyzes the pro-
duction of a-aminolevulinic acid (ALA, the first committed
precursor in the pathway) from glycine and succinyl-CoA
(10). In both EPP and XLP, PP-IX accumulates in tissues
such as blood, skin, and especially the liver (2), with hepatic
PP-IX levels increasing by over 20,000fold compared with
normal levels (11). Hepatic manifestations of proto-
porphyria are observed in less than 5% of patients (2), but
up to 25% of patients may present with cholestasis (11, 12).
Patients with XLP or biallelic FECH mutations have a
greater risk of developing liver complications (8). The
incomplete penetrance of protoporphyria in different
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families (13, 14) suggests the existence of undiscovered
genetic modifiers.

Porphyrins cause hepatic protein aggregation of the nu-
clear lamins and the cytoplasmic keratin intermediate fila-
ment proteins (15). Protein aggregation of the intermediate
filament cytoskeleton, in particular, is associated with several
human diseases (16, 17). For example, human and mouse
hepatocytes may develop and accumulate Mallory-Denk
bodies, which consist of intracellular protein aggregates
comprising mostly keratins, as a result of several molecular
alterations, including transamidation of keratins (18, 19).In
mice, long-term ingestion of porphyrinogenic toxins such as
5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) also leads
to Mallory-Denk body formation (20). In addition to the
phototoxicity of porphyrins, oxidative stress also occurs in
the absence of light. For example, treating cultured cells
with PP-IX increases intracellular levels of HoOo (21-23).
In addition, porphyrins have been reported to generate
electronrich anion radicals by a microsomal enzymatic
system without light activation (24, 25). The mechanism by
which porphyrins increase oxidative stress and cause pro-
tein aggregation is unclear, as are the effects of protein
aggregation on disease etiology in the context of porphyrias.

The endoplasmic reticulum (ER) serves as the major site
of protein folding and refolding in the cell. A greater load
of unfolded or aggregated proteins than the ER has the
capacity to refold may cause ER stress (26). In cases of ER
stress, the unfolded protein response (UPR) may be acti-
vated (27). The UPR is an adaptive response to ER stress
and may induce degradation of misfolded or unfolded
proteins by autophagy and other pathways (27). ER stress is
associated with a plethora of diseases (28,29), butits role in
porphyria-induced damage is unclear.

Genetic models of EPP (30), variegate porphyria (31),
and hepatoerythropoietic porphyria (32) have been gen-
erated in zebrafish, but their utility may be somewhat lim-
ited by the necessity to breed the recessive mutant alleles
into new genetic backgrounds. Raising affected zebrafish
to reproductive age also presents a challenge because the
mutants display severe sensitivity to light. Given the genetic
tractability and drug-screening potential of zebrafish to
study liver diseases (33), an inducible model of proto-
porphyria provides a potentially powerful system to dis-
cover genetic modifiers and screen for therapeutic and
exacerbating agents.

Here we present inducible zebrafish models of EPP
and XLP by infusing heme precursors, which result in
the accumulation of PP-IX in the liver of zebrafish larvae
and consequent hepatic stress. These techniques may be
adapted to develop additional inducible porphyria models
by infusing agents that inhibit different steps of the heme
biosynthesis pathway or various heme precursors. In-
ducible manipulation of the heme biosynthetic pathway
provides an important adjunct to the zebrafish porphyria
models to improve our understanding of the genetic and
molecular aspects of porphyrias in vivo.

MATERIALS AND METHODS
Fish lines and husbandry, and mice

All fish experiments were conducted using wild-type zebrafish
(Danio rerio) larvae from a cross of AB and TL adult zebrafish
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(ABTL) or transgenic ABTL zebrafish with eukaryotic green
fluorescent protein (eGFP)-tagged fibrinogen 3 [A19line (34)]. It
is noteworthy that the expression of eGFP in Al9 larvae is liver
specific (34). Transgenic FECH (3-5 mo old) and DDCHed (5 d,
0.1% DDC) mice were used as described previously (15, 35). An-
imal care guidelines were followed as approved by the University of
Michigan Animal Care and Use Committee and per recommen-
dations in the Guide for the Care and Use of Laboratory Animals from
the National Institutes of Health (Bethesda, MD, USA).

Infusions, drug treatments, and lysosome staining

Zebrafish larvae were retro-orbitally infused with approximately
2 nl of the indicated solution at the indicated time before
analysis. Control larvae were infused with carrier (DMSO for PP-
IX infusions and HoO otherwise). After infusion, larvae were
placed in a dark incubator for the indicated times. Infused PP-
IX (1 mg/ml) was prepared in DMSO from a 10 mg/ml stock
solution in N,N-dimethylacetamide; deferoxamine mesylate
(DFO), 5-aminolevulinic acid hydrochloride (ALA) and succi-
nylacetone (SA) were prepared in HyO at final concentrations
of 50, 50, and 25 mg/ml, respectively. All chemicals were
obtained from Sigma-Aldrich (St. Louis, MO, USA). Zebrafish
larvae were treated with a 100-fold dilution of LysoTracker
Yellow HCK-123 (Life Technologies, Carlsbad, CA, USA) for 1 h
and were washed twice, microdissected in PBS, mounted in
glycerol, and imaged with a Zeiss AXIO Imager.M2 (Carl Zeiss,
Oberkochen, Germany) with Texas Red and LysoTracker Yel-
low HCK-123 channels. The number of puncta per liver was
counted and classified as low (0-10), medium (11-50), or high
(>50). A X2 test was used to determine statistical significance
(n=13-17).

Transcriptional analysis

Six days after fertilization, Al9 larvae were anesthetized and
microdissected in PBS using 29-gauge insulin syringes after the
indicated hours after infusion. Livers (12-20 per condition) were
collected and pipetted into chilled RNAlater (Life Technolo-
gies), followed by RNA extraction using Qiagen RNeasy micro
or microplus kits (Qiagen, Venlo, Limburg, Netherlands). The
RNA concentration was determined using NanoDrop (Thermo
Fisher Scientific, Waltham, MA, USA), and cDNA was reverse-
transcribed using the TagMan Reverse Transcription Kit (Life
Technologies). Quantitative PCR was performed using Eppen-
dorf realplex” (Eppendorf, Hamburg, Germany) and SYBR
Green Supermix (Bio-Rad Laboratories, Hercules, CA, USA) with
the primers (36, 37) listed in Table 1. Two independent experi-
ments were performed, each with 3 biologic replicates for the
control and experimental groups per time point. The amplifica-
tion of target genes was compared to the reference gene, rppO
(37). Expression relative to control larvae was calculated by the
AAC, method and reported with error bars representing SE. Sig-
nificance was determined by Student’s ¢ test comparing the ex-
pression of control and experimental samples unique to each
time point.

Immunoblotting, proteomic analysis, and
porphyrin quantification

Dissected tissues were placed in chilled radioimmunoprecipitation
assay buffer (Thermo Fisher Scientific) containing protease
inhibitors and then homogenized by sonication. Samples were
pelleted to remove insoluble material, and protein levels were
determined using a bicinchoninic acid assay (Thermo Fisher
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TABLE 1. Study primers

Transcript Forward primer Reverse primer
atf3 CTGTCCCAGAGGAGAACGAC TGGTTCTTCAGCTCCTCGAT
atf4bl TTAGCGATTGCTCCGATAGC GCTGCGGTTTTATTCTGCTC
al;f6 CTGTGGTGAAACCTCCACCT CATGGTGACCACAGGAGATG
atg5 AGAGAGGCAGAACCCTACTATC CCTCGTGTTCAAACCACATTTC
atglo6ll AATTCGTTCAGCTCGTCTCC CAGCGTTCACTTCTCCATCA
becn GATCATGCAATGGTGGCTTTC CCTCCTGTGTCCTCAATCTTT
bi[) AAGAGGCCGAAGAGAAGGAC AGCAGCAGAGCCTCGAAATA
chop AAGGAAAGTGCAGGAGCTGA TCACGCTCTCCACAAGAAGA
perk TGGGCTCTGAAGAGTTCGAT TGTGAGCCTTCTCCGTCTTT
rpp0 CTGAACATCTCGCCCTTCTC TAGCCGATCTGCAGACACAC
xbpls TGTTGCGAGACAAGACGA CCTGCACCTGCTGCGGACT

Scientific). Samples were then dissolved in reducing Laemmli
sample buffer and separated by SDS-PAGE. Proteins were
transferred to Immobilon-P Membranes (EMD Millipore,
Darmstadt, Germany), followed by immunoblotting and visu-
alization by chemiluminescence (Thermo Fisher Scientific).
Antibodies were obtained from Santa Cruz Biotechnology
(Dallas, TX, USA) (mouse anti-ubiquitin, rabbit anti-ATF4),
Abcam (Cambridge, MA, USA) (rabbit anti-lamin B1), Aviva
Systems Biology (San Diego, CA, USA) (rabbit anti-protein
disulfide isomerase [PDI]), and Cell Signaling (Danvers, MA,
USA) (mouse anti-CHOP, rabbit anti-LC3B). Equal loading was
confirmed using Ponceau S staining (Sigma-Aldrich). For mass
spectrometry (MS) analysis, a gradient SDS—polyacrylamide
gel (after protein separation under reducing conditions)
was stained with Coomassie Blue dye, and the high-molecular-
weight regions of the gel were excised from lanes containing
control and ALA + DFO-infused larval liver protein homoge-
nates. Gel strips were digested with trypsin, then analyzed by
MS. Aggregated proteins were defined as the polypeptides that
were detected >150 kDa but have a known monomeric mo-
lecular mass of <125 kDa, and were found in the treated but not
the control samples. Porphyrin quantification was described
previously (35).

Histology and transmission electron microscopy

Larvae were anesthetized as described previously (38) and placed
in 4% buffered paraformaldehyde. Larvae were mounted in
Histogel (Thermo Fisher Scientific), embedded in paraffin, cut
into 4 wm sections, and stained with hematoxylin and eosin. For
ultrastructural analysis, larvae at 4 days after fertilization were
infused on 2 consecutive days with HoO or ALA + DFO, anes-
thetized, and fixed for 2 h in 2% paraformaldehyde and 2%
glutaraldehyde in PBS. After two 10 min washes in PBS, larvae
were postfixed in 1% osmium tetroxide for 45 min. The samples
were dehydrated though a graded ethanol series and mounted in
propylene oxide. Samples were infiltrated with increasing ratios
of EPON (Miller-Stephenson Chemical, Danbury, CT, USA) to
propylene oxide as follows: 1:3, 1:1, 3:1, 1:0. Larvae were then
embedded in flat molds. Sections were made with a Leica EM
UCT7 ultramicrotome (Leica Camera, Wetzlar, Germany), stained
for 10 min with 5% aqueous uranyl acetate, washed, stained with
lead citrate, and examined with a JEOL JEM 1400 plus trans-
mission electron microscope (JEOL USA, Peabody, MA, USA).

Imaging of zebrafish livers and histologic sections

Zebrafish livers were microdissected, mounted in glycerol, and
imaged with a Zeiss Axio Imager. M2 (Texas Red and eGFP
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filters). Fluorescence intensity was determined using Image]
software (Image Processing and Analysis in Java; U.S. National
Institutes of Health). Polarization microscopy was used to visual-
ize birefringence of hepatic pigment deposits. Zebrafish larvae
tissue sections were illuminated with polarized and brightfield
light on a Leica BM6000 microscope. White balanced images
were captured with a X63 [1.2 numerical aperture (N.A.)] water
immersion objective and a Leica DFC450C 5-megapixel CCD
color camera.

Confocal microscopy of live zebrafish

Zebrafish were anesthetized with tricaine and immobilized in
0.8% low-melting-point agarose. An Olympus Fluoview 500 laser
scanning confocal microscope (Olympus, Tokyo, Japan) was
used to capture z-series through the liver with a X10 (0.4 N.A.)
objective. eGFP was visualized by excitation with a 488 nm argon
laser and emissions between 505 and 525 nm, and PP-IX was
visualized by excitation with a 405-nm laser diode and emissions
above 560 nm.

RESULTS

PP-IX accumulates in livers of larvae infused with PP-
IX or coinfused with ALA and DFO

Models for EPP and XLP were generated by retro-orbital
infusion of PP-IX alone or a combination of ALA and
DFO. DFO is a potent iron chelator that prevents the
insertion of iron into the PP-IX ring, while ALA is the first
committed precursor in the heme biosynthesis pathway.
Similar to patients with protoporphyria and other
porphyria animal models, fluorescent porphyrins ac-
cumulated in the livers of larvae infused with PP-IX or
ALA + DFO but not in larvae infused with the carriers
DMSO or HyO (Fig. 14). Larvae exposed to light had a
high rate of mortality and therefore were shielded from
light after infusion in all subsequent experiments. Ac-
cumulation of fluorescent porphyrins was observed as
early as 5 h after infusion and was observed in other tissues,
including neural and endothelial tissues (Fig. 1A). The
intestine was also brightly fluorescent in larvae infused
with PP-IX and ALA + DFO (Fig. 1A%, ¢') but to a much
lesser extent in larvae infused with DMSO (Fig. 1Aa’). We
focused on the ALA + DFO model in the remainder of our
studies because it provided a more robust and consistent
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Figure 1. PP-IX accumulates in livers of zebrafish larvae after infusion with PP-IX or ALA + DFO. A) Larvae (6 d after fertilization)
were infused with DMSO (control) (a, a'), PPIX (b, ¥'), or ALA + DFO (¢, ¢') and imaged by brightfield light (a—c) or PP-IX
immunofluorescence (a'-¢') 5 h after infusion. Larvae infused with PP-IX or ALA + DFO showed strong fluorescence from PP-IX in
the liver (single arrows and dashed outline) and intestine (double arrows). Scale bar, 200 wm. At least 10 larvae were observed for each
infusion condition. B) Larvae were infused with HoO (control) (a, a') or ALA + DFO (b, ') and imaged by brightfield (a, b) or
polarized light (a’, 4'). Histologic sections from larvae infused on 2 consecutive days with ALA + DFO contained several pigmented
deposits (arrow and inset, ) that were birefringent under polarized light. Maltese crosses (arrow and inset, '), characteristic of
protoporphyria, were observed. Scale bar, 20 wm. C) PP-IX accumulates in the livers of larvae infused with ALA + DFO but not in tail
tissue. Control livers and tail tissue from larvae infused with ALA + DFO contained trace levels of PP-IX. D) Kaplan-Meier survival
curves for control and ALA + DFO-infused larvae. Larvae were shielded from light during the experiment. P < 0.01 for 96 h after
infusion time point (x? test), n = 73-77/time point per condition.

phenotype than infusion of PP-IX. Another advantage is
that both ALA and DFO are carried in a less toxic solvent
(HoO) than PPIX (DMSO). To determine whether por-
phyrin was deposited in the liver, cross-sections of larvae
infused with ALA + DFO were prepared and analyzed.
Few deposits were noted in larvae receiving a single in-
fusion of ALA + DFO, but larvae infused on 2 consecutive
days developed several pigmented deposits in the liver.
These deposits were birefringent under polarized light,
yielding Maltese crosses (Fig. 1B) that are characteristic
of porphyrin deposits in liver biopsy samples of patients
with EPP (2, 39).

ZEBRAFISH MODEL OF PROTOPORPHYRIA

Because the heme precursor ALA was used to induce the
production of porphyrins, HPLC was used to determine
which porphyrins are produced in the zebrafish. Liver and
tail tissue (used as an extrahepatic control tissue) of larvae
infused with HoO or ALA + DFO were microdissected,
pooled, and homogenized. Analysis by HPLC revealed
massive accumulation of PP-IX in the livers of larvae in-
fused with ALA + DFO (Fig. 1C). Basal levels of PP-IX were
noted in control livers but not tails, and a slight increase in
PP-IX was noted in tail tissue of larvae infused with ALA +
DFO (Fig. 1C), perhaps as aresult of circulating porphyrins
or limited accumulation in cutaneous tissue. Similar to
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patients with EPP, PP-IX was the predominant porphyrin
that accumulated in the liver, although slightly increased
levels of uroporphyrin and coproporphyrin were also de-
tected (data notshown). Lethality was assessed in larvae for
the first 96 h after infusion with HyO or ALA + DFO. Sig-
nificantly higher mortality was observed (~15%) in larvae
infused with ALA + DFO wversus control larvae infused with
HsO (Fig. 1D).

Porphyrin accumulation peaks at 24 h followed by
excretion into fish water

To determine the time course of porphyrin accumula-
tion, zebrafish larvae that express eGFP-tagged fibrino-
gen B were imaged at 5, 24, 72, and 144 h after ALA +
DFO infusion or at 24 and 144 h after infusion with HyO.
Larvae were microdissected and the porphyrin levels
quantified in liver and tail tissues at each time point.
Significant porphyrin fluorescence was observed 5 h
after infusion but was highest 24 h after infusion (Fig.
24). Fluorescence was virtually undetectable at 72 and
144 h after infusion (Fig. 2A4), thereby suggesting that
the porphyrins were excreted or metabolized to heme,
which is not fluorescent. Control larvae infused with
H,O did not show significant fluorescence at any time
point assessed (Fig. 1Ad”, ¥"). Close inspection of livers
from larvae at 72 h after infusion revealed a significant
number of pigmented deposits (data not shown), pre-
sumed to be PP-IX crystals. Homogenized livers from
larvae infused with ALA + DFO contained a significant
amount of PP-IX 5 h after infusion (275 pmol/mg pro-
tein) that peaked from 24 to 72 h (3815-4000 pmol/mg
protein, respectively) (Fig. 2B). Porphyrin levels then fell
to half of peak levels (1781 pmol/mg protein) at 144 h
after infusion (Fig. 2B). The gallbladders of larvae in-
fused with ALA + DFO often contained large pigmented
crystalline deposits (Fig. 2C), similar to those reported in
patients with EPP (2, 40), suggesting that the porphyrins
are cleared through the biliary system. To determine
which porphyrins were being excreted, the fish water of
infused larvae was collected and analyzed by HPLC. As
expected, PP-IX was the primary excreted porphyrin (Fig.
2D), but limited levels of coproporphyrin were also de-
tected (data not shown). It is noteworthy that increased
levels of urinary coproporphyrin have been noted in cases
of liver damage in patients with EPP (11). The highestlevel
of porphyrin excretion was after the first 24 h afterinfusion,
but it continued through 96 h after infusion (Fig. 2D).

AILA + DFO-mediated porphyrin accumulation is
inhibited by coinfusion of SA

Previous studies have shown that administering metal
chelators, such as EDTA and DFO, may increase the
production of PP-IX (41, 42) because metalloporphyrins
may negatively regulate the heme biosynthetic pathway
through feedback inhibition (43). Infusion of HsO or
DFO alone does not cause significant porphyrin fluo-
rescence in the liver of zebrafish larvae; however, in-
fusion of ALA alone results in noticeable porphyrin
fluorescence (Fig. 3). This liver fluorescence increases
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dramatically when DFO is coinfused with ALA and more
porphyrin deposits become visible (Fig. 3Ad). Coinfusing
SA, which prevents utilization of ALA for the production
of porphyrins by inhibiting ALA dehydratase activity
(44), with ALA + DFO results in decreased liver fluores-
cence intensity in the infused larvae (Fig. 3Ac"-¢"; B).
These results further support the specificity of the phe-
notype we observed and are similar to heme biosynthesis
regulation that has been reported in humans and murine
models (41-44).

Porphyrin accumulation causes hepatic protein
aggregation and ultrastructural alterations

Previous reports demonstrated that nuclear lamins are a
sensitive marker for porphyrin-induced protein aggrega-
tion in mice with genetic (/ECHmutation) or DDC-induced
porphyria (15). We tested the hypothesis that lamins
would aggregate in the livers of larvae infused with ALA +
DFO but not in tail tissues as a result of the tissue-specific
accumulation of PP-IX in the liver. Livers and tails were
pooled from larvae that had been infused with HoO or
ALA + DFO, followed by immunoblotting with anti-lamin
Bl antibody. Larvae infused with ALA + DFO showed
prominent high-molecular-weight lamin B1 reactivity in
liver tissue compared to controls (Fig. 4A4). No significant
differences were noted in protein aggregation of tail tis-
sue homogenates.

We then asked whether additional aggregated proteins
could be detected by MS analysis of liver tissue protein
isolates. Notably, proteins from various subcellular com-
partments in the liver aggregated upon ALA + DFO ad-
ministration (Fig. 4B, Supplemental Table S1). Several of
the strongest readouts were of proteins known to be lo-
cated in the ER. We validated the aggregation of the ER
protein PDI (Fig. 4C), which was detected by MS analysis.

Given the biochemical evidence for multiorganelle
protein aggregation, we used transmission electron mi-
croscopy and ultrastructural analysis to test whether ALA
+ DFO treatment caused alterations that might be simi-
lar to what is observed in human porphyria. As shown in
Fig. 5, nuclear membrane ruffling, electron-dense de-
posits, and autophagosomes were prominent in livers
of ALA + DFO-infused larvae. Hepatocytes with di-
lated rough ER were also noted (data not shown).
These ultrastructural alterations support a porphyria-
mediated proteotoxic effect, probably because of
protein aggregation.

Porphyria-associated protein misfolding causes ER
stress and activation of autophagy

The ER proteins PERK, ATF6, and IRE1 are capable of
sensing aggregated or misfolded proteins in the context of
ER stress (45). IRE1 and ATF6 may then splice XBPI
mRNA and induce its transcription, respectively (46).
Spliced XBPI is necessary for activating the UPR (46). As
soon as 4 h after infusion of larvae with ALA + DFO, we noted
increased levels of spliced xbpI mRNA (xbpIs), chop, and atf3
transcripts (Fig. 6A4). These transcripts represent early-phase
responses and are regulated by different signaling pathways
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Figure 2. Time-dependent porphyrin accumulation and excretion. A) Larvae were infused with HoO (control) (a—b") or ALA + DFO
(c—f") and imaged by brightfield light (a—f) or eGFP (¢'-f") or PP-IX immunofluorescence (d¢'-f") for 5 h (¢—¢"), 24 h (a—a", d-d"),
72 h (e—¢"), or 144 h (b-b", f~f"). Larvae infused with ALA + DFO showed significant fluorescence by 5 h and peaked at 24 h, with PP-IX
concentrating in liver (arrows) and intestine (double arrows). Fluorescence was virtually undetectable at 72 and 144 h after infusion.
No significant changes in liver size were noted. Scale bar, 200 pm. At least 10 larvae were observed for each time point. B) Liver and
tail tissue of larvae infused with HyO or ALA + DFO was dissected, homogenized, and porphyrin content was quantified. PP-IX was
nearly undetectable in the livers of control larvae, but livers of larvae infused with ALA + DFO accumulated PP-IX as soon as 5 h after
infusion. Porphyrin content was highest at 24 and 72 h after infusion, and fell 144 h after infusion. No significant changes in porphyrin
content of tail tissues between control and ALA + DFO-infused larvae were observed (n = 3 groups). C) Porphyrin deposits
(arrowhead) were noted in the gallbladder of hematoxylin and eosin—stained cross sections of larvae infused with ALA + DFO, but not
in control larvae. D) PP-IX was detected in fish water of larvae infused with ALA + DFO. Excretion was undetectable 15 min after
infusion (not shown) and peaked during the first 24 h after infusion. Excretion decreased 48-96 h after infusion but was still greater
than control larvae. n = 3 wells per time point. **P < 0.01, ***P < 0.001 (2-tailed Student’s  test); error bars indicate SE.

(46-48). The increased transcription of aff3at 4 and 12 h

Increased expression of aif6 (Fig. 6A) was only observed
after infusion was not observed 24 h after infusion, further

24 h after infusion, perhaps indicating an additional role

suggesting that it plays a role in the early-phase stress re-
sponse. Increased expression of chopwas observed at 4 and
12 h after infusion (Fig. 6A), as might be expected based
on previous reports of CHOP induction by ATF3 (48).

ZEBRAFISH MODEL OF PROTOPORPHYRIA

in the late-phase response to ER stress. Cleavage of the
ATF6 protein in the early-phase response has been well
characterized as an upstream indicator and plays an im-
portant role in the activation of the UPR (36, 49, 50).
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One possible mechanism to reduce the number of mis-
folded or aggregated proteins is through degradation by
autophagy. Increased expression of atg5and atgl6l1 were
noted 24 h after infusion (Fig. 6A4), consistent with the
upstream role of ER stress and the UPR in activating
autophagy. These genes code for proteins involved in
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autophagosome formation and are induced by the tran-
scription factors chop and atf4, respectively (51, 52).
Transcription of becnl, a gene that codes for beclinl, a
protein involved in the formation of the autophagosome,
was notsignificantly altered between the controland ALA +
DFO groups at any of the time points measured (Fig. 6A).
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Figure 4. Porphyrin accumulation causes multiorganelle
protein aggregation. A) Liver tissue, but not tail tissue, of
larvae infused with ALA + DFO contained high-molecular-
weight aggregates of lamin B1 as determined by immunoblot-
ting. B) MS identified 38 proteins that were aggregated
in livers of larvae infused with ALA + DFO but not with
HyO. Most proteins were in the cellular compartments of
cytoplasm, mitochondria, nucleus, and ER (Supplemental
Table S1). Most highly aggregated proteins tended to reside
in ER (with identification using UniProt data set; http://
www.uniprot.org). C) Immunoblotting with specific rabbit
antibody to PDI was used to confirm the MS results. Only
livers of larvae infused with ALA + DFO showed significant
high-molecular-weight species reactivity.

We used the LysoTracker dye, which has been used in
zebrafish, to detect changes in autophagic flux by accu-
mulating in acidic compartments such as autophago-
somes (53). Larvae were stained with the LysoTracker dye
24 h after infusion of ALA + DFO. The stained livers had

ZEBRAFISH MODEL OF PROTOPORPHYRIA

significantly greater numbers of positive puncta than
controls (Fig. 6B), thereby supporting the induction of
autophagy. There was no direct colocalization between
positive lysosomal puncta and porphyrin deposits. These
findings are consistent with the autophagosomes we ob-
served by transmission electron microscopy (Fig. 5D),
which are similar to what has been previously described in
mammalian systems (54).

The ER stress and autophagy-induction findings in
zebrafish were validated in 2 mouse models of porphyria:
the FECH knockout model and a subacute porphyria
model that involves 5 d of DDC feeding. In both models,
porphyrin accumulation (Fig. 6C) was associated with in-
creased nuclear CHOP and ATF4, as well as increased
LC3B-I levels (relative to LC3B-I) (Fig. 6D).

DISCUSSION

We present 2 new acute zebrafish models of protoporphyria
that phenocopy many of the characteristics of proto-
porphyria in patients. These characteristics include light
sensitivity, accumulation of PP-IX in the liver with the
characteristic Maltese cross, excretion of PP-IX and
coproporphyrin through the biliary system, protein ag-
gregation, and ultrastructural alterations. In addition, we
describe the induction of the UPR and autophagy in
zebrafish and mouse models of protoporphyria. The
zebrafish models described herein, particularly the
ALA + DFO model, provide distinct advantages that com-
plement the previously described genetic zebrafish por-
phyria models (30-32). In practical terms, the model is
relatively simple given that it is induced by a single retro-
orbital infusion of the heme precursor ALA, the iron
chelator DFO, or the infusion of PP-IX alone. This model
system allows for flexibility in terms of designing experi-
ments and performing chemical and genetic screens. In our
hands, at least 250 larvae may be infused per hour, thereby
making it a high-throughput model system. Genetic (55)
and inducible murine models (56, 57) of porphyrias exist,
but zebrafish larvae enable large-scale chemical and genetic
screens. The ease of imaging, high fecundity, and rapid and
external development and relatively low financial cost are
known benefits for zebrafish models (58, 59), which make
zebrafish a particularly useful model organism.

We describe 2 protoporphyria zebrafish models: XLP
through infusion of ALA + DFO and EPP by infusion of PP-
IX (Fig. 74). The XLP model is more robust and less vari-
able than the PP-IX infusion model; we speculate that this
may be due to the relative insolubility of PP-IX once it is
introduced systemically. A similar approach may be taken
to produce other porphyrias by infusing different heme
precursors or compounds that inhibit enzymes in the
heme biosynthesis pathway. As an example, a zebrafish
model for ALA-dehydratase deficiency porphyria could be
produced by infusing ALA with SA, a small molecule that
blocks the catalytic activity of ALA-dehydratase (44). This
would be expected to result in high circulating levels of
ALA, as described in patients with ALA-dehydratase de-
ficiency porphyria (60). This flexibility, combined with
the fluorescent nature of porphyrins, renders inducible
zebrafish porphyria models ideal systems to identify
porphyrin transport proteins and characterize additional
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Figure 5. Ultrastructural analysis of livers from larvae infused with HyO or ALA + DFO. Transmission electron micrographs were
prepared from livers of zebrafish infused on 2 consecutive days with HoO or ALA + DFO. A) Control hepatocytes show distinct
rough ER with no ultrastructural abnormalities; scale bar, 3 pm. B) Hepatocytes from larvae infused with ALA + DFO showed
high proportion of distorted nuclei (82% for ALA + DFO infused vs. 30% for HO infused, P < 0.001, 2-proportion z test) (arrow)
and high levels of electron-dense amorphous material (28% vs. 2% P < 0.001, 2-proportion z test) (double arrow). Scale bar,
3 wm, n = 87-107 cells from 3 different larvae per condition. C) High magnification revealed the electron-dense material was
membrane bound (double arrow). Some cells contained large membrane-bound amorphous material (arrow); scale bar, 0.6 pm.
D) Numerous autophagosomes (arrows) were observed in hepatocytes of larvae infused with ALA + DFO; this was not observed in

control hepatocytes; scale bar, 0.6 pm.

genetic and molecular aspects of porphyrias. One poten-
tial limitation of our model is that it does not lead to
chronic disease because the PP-IX is efficiently cleared
(Fig. 2D).

Porphyrins are known to cause oxidative stress in the
absence of light (21, 22, 24, 61), but concomitant porphyrin-
mediated protein aggregation in mice and cell culture
systems has not been reported until recently (15, 35).
The effects of protein aggregation are not well known in
the context of porphyria-induced tissue damage. Pre-
vious reports have described porphyrin-associated ultra-
structural changes in the ER, mitochondria, and nucleus
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in mammalian systems (21, 62), consistent with our find-
ings of cytoplasmic and multiorganelle protein aggrega-
tion in the livers of the zebrafish larvae (Fig. 7B). The
ultrastructural alterations we observed are supported by
our detection of aggregated lamins, PDI, and other pro-
teins. Misfolded or aggregated proteins may cause ER
stress, which is associated with numerous diseases (28, 29),
but their pathophysiologic role in porphyria has not been
established. Ultrastructural analysis of liver samples from
patients with EPP has revealed dilated rough ER (63),
consistent with ER stress, although the potential presence
of protein aggregates in patient sample groups has not
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been tested. Future studies will be directed toward de-
fining the mechanism of aggregate clearance.
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