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Transgenic mice for the establishment of

histidinol-resistant embryonic fibroblast feeder

layers
REBECCA M. TUCKER AND DAVID T. BURKE’
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ABSTRACF Gene targeting in mouse embryonic
stem cells generates mutations by replacing an endo-
genous chromosomal region with a copy disrupted by
a selectable genetic marker. The most commonly
used selectable marker is the bacterial ne& gene,
which confers resistance in mammalian cells to the
antibiotic G418. Use of an alternative selectable
marker, the Salmonella typhimurium gene hisD,
should provide expanded applications for gene tar-
geting. The hi.sD gene encodes the protein histidinol
dehydrogenase, which catalyzes the conversion of
histidinol to the amino acid histidine. Histidinol is
toxic to mammalian cells, while histidine is an essen-
tial mammalian amino acid. Consequently, growth
selection in cultures with media containing histidinol
in place of histidine occurs by both histidine starva-
tion and histidinol poisoning. The hisD selection is
being tested for potential use in gene targeting ex-
periments with mouse embryonic stem (ES) cells.
Currently, most successful gene targeting experi-
ments use primary embryonic fibroblast feeder lay-
ers, which assist in the maintenance of the
pluripotential state of the embryonic stem cells. To
support ES cell stability under histidinol selection,
mice transgenic for the S. typhimurium hisD gene
have been produced and used to generate embryonic
fThroblast feeder cells. The transgenic embryonic
fibroblasts survive under a wide range of histidinol-
containing growth conditions and support growth of
ES cell cultures.-Tucker, R. M., Burke, D. T.
Transgemc mice for the establishment of histidinol-
resistant embryonic fibroblast feeder layers. FASEB
J. 10, 1641-1645 (1996)

Key Words: embryonic stem cells . gene targeting selectable

marker

THE USE OF TARGETED GENE modification via homologous
recombination in mouse embryonic stem (ES)2 cells has

greatly expanded the power of the mouse as a model ex-
perimental system. Initial gene targeting experiments util-
ized mutations in endogenous selectable genes as

methods for eliminating nontargeted cells (1, 2). The de-
velopment of bacterial drug resistance genes as mammal-
ian selectable markers has increased the applicability of

this technology to allow for targeting any DNA sequence
(3-6). The most widely used of these is the neomycin re-
sistance gene, aminoglycosidase phosphotransferase
(neor), from the bacterial transposon Tn5. Theneo gene
product confers resistance in mammalian cells to the

drug G418. However, there are instances when an alter-
native dominant selectable marker is needed. For exam-
ple, an alternative selection is essential when theneor
gene is already present in the ES cell line and an addi-
tional recombination event is attempted (7-10) or more
than one selectable marker is needed to increase the effi-
ciency of selection of the recombination event.

An alternative selective scheme uses the replacement

of L-histidine (his) with L-histidinol (hol) in the growth
media of normal cells. The replacement of histidine with
histidinol is toxic to mammalian cells by two mecha-

nisms. Because histidine is an essential amino acid in
mammals, its removal results in rapid cell starvation (11).
Second, the presence of histidinol prevents histidine in-
corporation during protein synthesis by directly compet-
ing for the histidyl-tRNA synthetase (12). Both lethal

effects can be relieved by intracellular expression of the
bacterial biosynthetic protein histidinol dehydrogenase
(Salmonella typhimurium, hisD, EC 1.1.1.23). The htsD

gene is the final step of the histidine biosynthetic path-
way and is essential for the NAD+dependent conversion

of histidinol to histidine. When originally described, the
hisD growth selection was tested by transfection into
three mammalian cell lines and selective growth in a his-
tidine-free, histidinol-containing media (13). It has since
been used in DNA transfer experiments (14-18), and was
tested as a selectable marker in recombination experi-
ments in a rat fibroblast cell line (19). However,hi.sD has
yet to be tested for its suitability as a selective marker in
embryonic stem cells.

The maintainance of totipotent ES cells is known to be
enhanced by factors secreted from mitotically inactivated
primary mouse embryonic fibroblast (MEF) feeder layers
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2Abbreviations: ES, embryonic stem; MEF, mouse embryonic fi-
broblast; his, L-histidine; hol, L-histidinol; RT-PCR, reverse transcrip-
tion-polymerase chain reaction; PFG, pulsed-field gel.
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(20, 21). The feeder layers must survive any subsequent
selection strategy performed on the ES cells. Conse-
quently, in the histidinol selection method, feeder fi-
broblasts must be isolated from embryos that express the
hisD gene. To this end, we have produced mice trans-
genic for the hisD gene under the control of a mammalian
promoter. We have tested embryonic fibroblasts from
these mice for their ability to live in histidine-depleted,
histidinol-containing media (DMEM-his+hol) and to sup-
port normal and selected ES cell growth.

METHODS

Generation and analysis of transgenic mice

Transgenic mice were produced by the method of Hogan et al. (22) The

3.3 kilobase DNA fragment used for microinjection of mouse pronuclei

was generated by an AccI/EcoRI restriction digest of plasmid pSV2his
(kindly provided by S. Hartman) (Fig. 1). The fragment was isolated
from a preparative gel of low-melt agarose (SeaPlaque, FMC), and puri-

fied on a Nucleobond AX cartridge (The Nest Group) and resuspended
in injection buffer (10 mM Tris, pH 7.4, 0.25 mM EDTA) at a concen-

tration of 1 ng/ml. Microinjection was performed on 350 single cell
embryos recovered from superovulated C57BI/6 x SJL females mated
with C57BI/6 x SJL males. After culturing overnight, 250 embryos were

transferred to pseudopregnant BALB/c females who had been mated to
vasectomized males (obtained from Charles River Laboratories, Wil-

mington, Mass.).
Sixty candidate pups were screened for presence of the transgene by

a polymerase chain reaction (PCR) assay performed on DNA extracted

from tail cuttings (23). The PCR assay is specfic for thehisD gene and
used the following primers: 5’-GCTGATGAAATCCTCTATGC-3’ (Fl),
S’TAGCAGTATAGCCATAGCTCG-3’ (Ri). Reactions were performed

in a Biometra UNO thermocycler with the following cycling conditions:

94#{176}C5 mm, then 30 cycles of 94#{176}C30s, 60#{176}C30s, 72#{176}C30s, followed
by a 10 mm extension at 72#{176}C.PCR products were resolved on a 1.2%

agarose, 0.5x TBE gel to assay for the expected 634 bp band. Two of
the 60 pups were positive forthe hi.sD sequence. These positive founder
mice and representative transgenic progeny were further analyzed by
hybridization analysis of genomic DNA (24). Transgene copy number

was determined by comparison of hybridization intensity to pSV2his

plasmid in C57B116J mouse DNA at a calculated molar equivalent of 1,
10, or 100 copies. Based on the plasmid size of 5.6 kb, 9.6 pg of plasmid
DNA was added to 10 mg of C57B116J mouse DNA for each genome

equivalent.

RNA hybridization analysis and reverse transcription-PCR (RI-
PCR) was performed on RNA extracted from tissues dissected from a
typed heterozygous line A offspring. Total RNA was prepared by a
standard RNAsol protocol (Tel-Test). PolyA RNA was purified from
150-250 mg total RNA by use of Oligo dTex columns (Qiagen,

Chatsworth, Calif.) and was runon a 1% agarose/methyl mercury dena-
turing gel (25). RT-PCR was performed on 1mg total RNA with the
following primers and cycling conditions: 5’CTGTGGTGTGA-
CATAATFGG-3’ (F2), 5’-GATCAGTFCCGTGATATGTAG-3’ (R2);
PCR conditions: 94#{176}C5 mm, 35 cycles of 94#{176}C30 s, 55#{176}C30 s, 72#{176}C
30 a. Resulting PCR products were analyzed on a5% acrylamide gel.
Because this second primer pair spans an intron, genomic DNA should

yield a product of 587 bp while reverse transcribed RNA should give a

result of 517 bp.

Cell culture

MEFs were prepared as follows (26). Two transgenic femalemice were

bred with one transgenic male littermate and checked for vaginal plugs

daily. A control breeding of C57B1J6mice was also performed. At14
days after observation of vaginal plug, females were killed and embryos

were removed. Nine transgenic-derived embryos were collected and
pooled, and 10 control embryos were collected separately into sterile

phosphate-buffered saline (PBS). Whole embryo carcasses were minced
and treated with 0.05% trypsin (Gibco, Gaithersburg, Md.) until cells

were dispersed as visualized under a microscope. Cellswere plated into
DMEM, 10% fetal bovine serum (FBS) for two passages. After the
second passage, 5x i04 cells were plated into DMEM-his (Gibco,

custom formulation), 10% FBS, that wassupplemented with either his-
tidine to standard concentration levels (i.e., complete media) or varying

concentrations of histidinol (Sigma Chemical Co., St. Louis, Mo.). After
24 h, media was replaced with fresh media of same histidinol concen-

tration, and after 3 days the total cell number was determined by count-
ing live cells on a hemocytometer in the presence ofTrypan blue.

RESULTS

Transgene copy number

The copy number of thehrsD transgene was determined
by Southern hybridization analysis using thehisD gene
fragment 1 as a probe (Fig. 1 and Fig. 2). Internal diges-
tion of a tandem array of pSV2his integrants results in a
3.3 kb band. The 7.2 kb band in founder A and A-line
progeny represents a unique junction fragment. Three of

PCR primers Ft

Probes

.R1 F2 -..R2

2SObp

2

Figure 1. A map of thehisD transgene expression construct. The construct was isolated as

a 3.3 kb AccIJEcoRI fragment from pSV2his. Probe 1 was used for DNA hybridization
analysis. Probe 2 was used for mRNA hybridization analysis. PCR primer pair Fl and Ri

was used for screening genomic DNA for transgenic progeny. PCR primer pair F2 and R2

was used for reverse transcnption-PCR analysis ofRNA. The spliced region in the inter-
vening sequence (IVS) is 70 bp and lies between the F2and R2 primers.
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. To confirm this result and to test for transcription at a
8 higher sensitivity, RT-PCR analysis of total RNA from

the same tissues and liver was performed. All tissues
tested, except liver, showed the presence of a RT-PCR
product specific for hi.sD transcription (Fig. 4).
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Figure 2. Southern analysis of BamHI-digested DNA from transgenic

founder and heterozygousprogeny.After resolution of restriction enzyme-
digestedDNA samples (10mg each)on a 1% agarose,0.5x TBE gel,DNA

was transferredtoa nylon membrane forhybridization. Negative controls

include a nontransgenic littermate of founder A and a CS7BI/6J female.

Copy number controlsare C57B116J genomic DNA mixed with 1,10, or

100 gene equivalentsof pSV2his plasmid. Using probe 1 (Fig.i),the

digestionofa tandem arrayof integratedpSV2his fragments results in a

common 3.3 kb band. The 7.2 kb band inA-linemice represents a unique
junctionfragment.The 5.6 kb band in the copy number controllanes is

the sizeof the linearized pSV2his plasmid.

the four bands seen in founder B are not transmitted to
subsequent litters, while a unique 3.4 kb junction frag-
ment is found in B-line progeny (Fig. 2 and data not
shown). The 5.6 kb band in the copy number control
lanes is the size of the linearized pSV2his plasmid. By
comparison of the experimental hybridization intensity
with the known copy number controls, it was estimated
that approximately three to five copies of the injected
DNA integrated into the mouse genome in transgene line
A, and eight to ten copies integrated into transgene line
B. The copy number estimation was confirmed by addi-
tional Southern hybridization analysis using pulsed-field
gel (PFG) examination of line A DNA digested with four
restriction enzymes that do not digest within the trans-

gene. On the PFG hybridization, the smallest single band
was a 13.5 kb EcoRI fragment, indicating that four full
copies of pSV2his at most had integrated in a tandem ar-

ray (data not shown). The B line was not examined by
PFG and received no further analysis in this study.

Tissue distribution of hisD RNA transcript

Northern blot analysis and hybridization with thehi.sD

gene probe 2 of polyA-purified RNA demonstrates the
presence of a transcript of the predicted size (1.5 kb) in
kidney, heart, and brain (Fig. 3). No signal is detected
in lung or spleen. The spleen RNA sample was too de-
graded to give a reliable result and the lung sample was
underloaded relative to the other samples. The bands at

Growth of transgenic primary embryonic
fibroblasts in selective media

Transgenic embryonic fibroblasts were prepared from em-
bryos of two heterozygous transgenic female that were

bred to a heterozygous male. Three-quarters of the em-
bryos will maintain the transgene in such matings. A non-
transgenic mating of C57B1/6J mice produced control
embryos. Embryonic cellswere grown in eithercomplete

growth media or selective media (DMEM-his) containing
varying histidinol concentrations (0.125 to 8 mM) in
place of histidine. Cell count was determined after 3 days

on triplicate samples at each growth condition and rela-
tive cell survival (RCS) was calculated by dividing the
number of cells that grew in selective media by the
number that grew in complete media (histidine-supple-
mented DMEM, DMEM-his+his) (Fig. 5). Nontransgenic
C57B1/6J cells are almost completely absent after 3 days
in media containing histidinol concentrations of 0.5 mM
or greater. Transgenic-derived cells grow within 80% of

>10kb

1.5kb

Figure 3. Confirmation of hLSD transcription in transgenic animals by
Northern blot analysis of polyA RNA. For each tissue, polyA RNA was
prepared from 250mg total RNA, except lung, in which iSO mgwas used.
The entire poly A-purified sample was loaded onto a 1.5% agarose-methyl
mercury gel, transferred to nylon membrane, and hybridized with probe
2 (Fig. 1). The 1.5kb band represents full-length transcription of thehisD

gene from the SV4O promoter. The bands at > 10 kb result from
cross-hybridization with genomic DNA, which copurified with the mRNA
sample.
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Figure 4. Confirmation of hi.sD transcription in transgenic animals by

reverse transcription-PCR analysis. The 517 bpproduct is from reverse

transcribed mRNA, while the587 bp product is derived from genomic
DNA. PCR primers used were F2 and R2 shown in Fig. 1. Control samples
include: 1) “RT-no template,” reverse transcription in the absence of
RNA, 2) ‘mouse DNA + pSV2his plasmid,” positive PCR amplification
control (100 ng C57BI/6J DNA and 1 ng pSV2his plasmid), and3) “mouse
DNA,” negative PCR amplification control (100ng C57B116J DNA). The

marker samples are pBluescript DNA digested withSau3A (marker 1)
and pBluescript DNA digested withMspl (marker 2).

normal levels in ranges of 0.5 to 4 mM histidinol. This
small drop is presumed to be a result of approximately
one-quarter of the cells being nontransgenic. The slightly
poorer growth of transgenic fibroblasts in 0.125 mM his-
tidinol could be the result of hrsD-mediated conversion of
histidinol to histidine not reaching a threshold concentra-
tion for cell survival.

DISCUSSION

We have produced transgenic mice carrying the S. ty-
phimunum hisD gene, and tested MEFs from these mice
for gene transcription and for their ability to grow in his-
tidine-deficient, histidinol-containing media. The results
demonstrate a large range of selective growth conditions
in which these cells survive. Transgenic MEF growth in
DMEM-his+hol media is vigorous and shows no indica-
tion of histdinol toxicity to at least 4 mM. Normal cells
die rapidly in histidine-deficient media supplemented
with histidinol at any concentration.

The hisD gene may prove to be of usein gene targeting
experiments where an alternative to theneor gene is
needed. ES cells in which one allele of a gene has been
inactivated by aneor gene insertion and the second allele
must be targeted with a different selectable marker is one
such example. More complex targeting reactions, such as
the “hit and run” (7) or the “plug and socket” (27) strate-
gies that introduce modifications via two recombination

events, may also benefit from this new selection scheme.
Targeted recombination events that use larger constructs
might be enhanced by having two simultaneous selections
that bracket the desired integration region. Finally, in
many experimental programs, the cost of the drug G418
may be prohibitive. The hisD selection significantly re-
duces the problem of selective media costs. Histidinol,
being an amino acid precursor, is inexpensive and readily
available from numerous sources. At the 4 mMhiND se-
lection level, the cost of histidinol is approximately
$0.85/i of media vs. $70/1 for G418 selection media.
Lowered cost of reagents will be important for experi-
ments involving large-scale screens for ES recombinant

clones.
The hisD transgenic mice may have uses beyond the

production of histidinol-resistant MEFs. Histidinol has
been previously shown to be a potent inibitor of protein
synthesis in mammalian cells. This, in turn, arrests cells
in the G0 phase of cell division. Certain tumor cells can
overcome histidinol-induced G0 arrest and continue to
proliferate. In vitro and in vivo tests have shown that

some chemotherapeutic agents that target proliferating
cells are more effective at removing the tumor cells from
the population when used in conjunction with histidinol
(28-30). Due to the arrest of the normal cells in their
quiescent state, these cells are protected from the toxicity
of the chemotherapeutic drug. Thehi.sD transgenic mice
have the capability to convert histidinol to histidine, po-
tentially circumventing the protective effects of histidinol
and providing an in vivo model system for histidinol tu-
mor inhibition studies.

I
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Figure 5. Relative cell survival of MEF cells from transgenic (Tg) or

C57B1/6J (non Tg) embryos. Triplicate samples of cells were cultured in
DMEM without histidine, supplemented with either histidine at 42 mg/l

(“control”) or a range of concentrations of histidinol. After 3 days growth,
cell count was determined and plotted relative to unselected survival in

complete media. Error bars represent the standard error.
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Other biochemical studies may also profit from the use
of hi.sD-containing cells. The mode of histidinol toxicity
to mammalian cells is known to be the reversible binding

of histidinol to the histidine tRNA-synthetase. Cell lines
that can convert histidinol to histidine may serve as use-
ful controls for analyzing the competition of amino acids
and their precursors for these tRNA charging enzymes.

It is expected that the development ofhi.sD as an ad-
ditional selective marker in ES cell experiments may in-

crease the applicability of such experimental strategies.
Hygromycin has recently been used as an alternative
marker in addition to the standard fleor selection (31).
The availabilty of these three selection schemes for ES
cell “knockout” experiments will certainly expand the
versatility of gene targeting.

Transgenic line A has been bred to homozygosity for
the hiD transgene locus. In addition, MEFs that are dou-
bly resistant to histidinol and G418 have been produced

by intercrossing transgenic line A with available neor
transgenic mice (32). These dual selection MEFs are also
able to support strong growth of mouse ES cells. ES cells
grown in selective media (DMEM-his+hol, 0.25 mM and
greater) are rapidly eliminated. Conversely, ES cells that
have been transfected with a recombinant plasmid
(pB875), derived from the promoter region of
pMClneopolA (2) and the hisD coding region from
pSV2his, grow at 42% RCS in selective media (DMEM-

his+hol, 0.25 mM).
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