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Abstract 
General cognitive ability (GCA) refers to a trait-like ability that contributes to 
performance across diverse cognitive tasks. Identifying brain-based markers of GCA 
has been a longstanding goal of cognitive and clinical neuroscience. Recently, 
predictive modeling methods have emerged that build whole-brain, distributed 
neural signatures for phenotypes of interest. In this study, we employ a predictive 
modeling approach to predict general cognitive ability based on fMRI task activation 
patterns during the N-back working memory task as well as six other tasks in the 
Human Connectome Project dataset (n=967), encompassing 15 task contrasts in 
total. We found tasks are a highly effective basis for prediction of GCA: The 2-back 
versus 0-back contrast achieved a 0.50 correlation with GCA scores in ten-fold cross-
validation, and 13 out of 15 task contrasts afforded statistically significant 
prediction of GCA. Additionally, we found that task contrasts that produce greater 
fronto-parietal activation and default mode network deactivation—a brain 
activation pattern associated with executive processing and higher cognitive 
demand—are more effective in prediction of GCA. These results suggest a picture 
analogous to treadmill testing for cardiac function: Placing the brain in a more 
cognitively demanding task state significantly improves brain-based prediction of 
GCA.  
 
 
1 Introduction 
 
In addition to particular abilities associated with individual cognitive tasks, there is 
substantial evidence for an overarching general ability involved in performance 
across a diverse range of tasks.1–5 Test batteries composed of diverse tasks can yield 
accurate estimates of this general ability, which we here refer to as general cognitive 
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ability (GCA).6,7 GCA is a fundamental dimension of individual differences and is a 
key contributor to a number of important academic, occupational, health, and well-
being-related outcomes.8–13 There is thus substantial interest in understanding the 
neural basis of GCA as well as the nature of inter-individual neural differences.  
 
Functional imaging studies of brain activation patterns during cognitive tasks have 
yielded important insights into the neural basis of GCA14–17. In one key line of 
investigation, researchers identified a multiple demand network that activates 
across an array of cognitive tasks18–21. This network is hypothesized to support 
domain-general functions such as working memory22,23 and cognitive control24–26 
that contribute to performance across tasks irrespective of their specific content. 
Subsequent work found activation in key regions of this network, including dorsal 
lateral prefrontal cortex and superior parietal regions, are correlated with measures 
of GCA or closely related constructs14,15,27,28. 
 
A notable feature of many of these previous task-based studies is that they are 
mainly concerned with localization and correlation: they mainly seek to identify 
specific brain regions whose activation correlates with GCA. Recently, however, 
another important goal has emerged in cognitive neuroscience: prediction29–31. 
Unlike mass univariate approaches that are especially good for localization, 
predictive modeling approaches use multivariate methods that identify distributed 
patterns across the brain (“neurosignatures”). These distributed neurosignatures 
are often substantially more strongly related to phenotypes of interest than 
individual features because the neurosignatures aggregate information from across 
the entire brain32. However, because multivariate methods for constructing these 
distributed neurosignatures are highly parametrized, they are prone to overfitting. 
Predictive models are thus typically assessed by how well they predict unseen data, 
usually through the use of cross-validation33,34.  
 
Predictive modeling has been employed with a number of imaging modalities, 
including structural maps35 and resting state connectomes36–39, to predict GCA or 
closely related constructs. A notable feature of these studies is that they mainly 
examined relatively stable, enduring features of the brain—features that are largely 
independent of the person’s current cognitive state, and in particular their actual 
exercise of the cognitive abilities that are relevant to GCA. An alternative approach 
for building predictive models of GCA, which appears to be relatively less utilized 
(cf. 40,41), employs a rationale similar to that for cardiac treadmill testing. This 
approach attempts to first place the brain in an activated state that engages the 
cognitive abilities associated with GCA. By activating the brain in this way, 
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individual-differences in the neural basis of GCA may be rendered more “visible” for 
a predictive model to detect (see 42 for a suggestion along these lines).  
 
In the current study, we adopted this second approach. Utilizing the Human 
Connectome Project’s (HCP) 1200 release, we began by constructing a highly 
reliable measure of GCA from 10 measures from the NIH Toolbox and Penn 
Neurocognitive Battery37. We then used a predictive modeling framework to 
examine prediction of GCA from contrast maps derived from the N-back working 
memory task as well as six other fMRI tasks (15 task contrasts in total). We 
demonstrate two things. First, task-based brain activation patterns allow highly 
reliable prediction of GCA, with performance appreciably higher than that typically 
reported in other neuroimaging modalities. Second, tasks that produce greater 
fronto-parietal activation and default mode network deactivation, which is 
associated with higher cognitive demand, are more effective at GCA prediction.  
 
 
2 Methods 
 
2.1 Subjects and Data Acquisition 
All subjects and data were from the HCP-1200 release43,44 and all research was 
performed in accordance with relevant guidelines and regulations. Subjects 
provided informed consent, and recruitment procedures and informed consent 
forms, including consent to share de-identified data, were approved by the 
Washington University institutional review board. Subjects completed two runs 
each of seven scanner tasks across two fMRI sessions, using a 32-channel head coil 
on a 3T Siemens Skyra scanner (TR = 720ms, TE = 33.1ms, 72 slices, 2mm isotropic 
voxels, multiband acceleration factor = 8) with right-to-left and left-to-right phase 
encoding directions. Comprehensive details are available elsewhere on HCP’s 
overall neuroimaging approach43,45 and HCP’s task fMRI dataset46.  
 
For the construction of a GCA factor, all subjects with available data were included. 
This analysis included 1,192 subjects. For the brain imaging analysis, subjects were 
eligible to be included if they had available task data in MSMAll format (information 
about both folding as well as function are used for cross-subject alignment47) for 
both runs of all seven tasks, had full behavioral data, and no more than 25% of their 
volumes in each run exceeded a framewise displacement threshold of 0.5mm. These 
exclusions resulted in a sample of 967 subjects. 
 
2.2 Data Preparation 
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Data was preprocessed through the HCP minimally preprocessed pipeline, which is 
presented in detail by Glasser et al.48 Briefly, the pipeline includes gradient 
unwarping, motion correction, fieldmap distortion correction, brain-boundary 
based linear registration of functional to structural images, non-linear registration 
to MNI152 space, and grand-mean intensity normalization. Data then entered a 
surfaced-based preprocessing stream, followed by grayordinate-based processing, 
which involves data from the cortical ribbon being projected to surface space and 
combined with subcortical volumetric data.  
 
2.3 FMRI Tasks  
We used contrasts from seven HCP tasks, described in brief in Table 1 (detailed 
descriptions are available elsewhere44,46). 
 
At the single subject-level, fixed-effects analyses were conducted using FSL’s FEAT 
to estimate the average effects across runs within-participants, using 2mm surface 
smoothed data. Some tasks permitted multiple contrasts beyond the standard 
experimental versus control condition (e.g., N-back allows additional contrasts 
based on all four stimulus types). To reduce the complexity of the analysis and avoid 
loss of power from smaller number of trials, we focused on the standard contrasts 
associated with these tasks. The Language Task and Emotion Task lacked fixation 
blocks. Thus we included the main condition contrasts (e.g., math-story and faces-
shapes), but we did not include each of these conditions versus baseline. A full list of 
filenames of the contrast maps used can be found in the Supplement, Table S1.  
 
2.4 Constructing a GCA Factor 
We conducted an exploratory factor analysis utilizing the strategy and associated 
code made available by Dubois and colleagues 
(https://github.com/adolphslab/HCP_MRI-behavior), who recently investigated 
prediction of GCA from resting state fMRI in the HCP dataset37. Unadjusted scores 
from ten cognitive tasks for 1181 HCP subjects were included in the analysis 
(subjects with missing data or MMSE < 26 were excluded), including seven tasks 
from the NIH Toolbox (Dimensional Change Cart Sort, Flanker Task, List Sort Test, 
Picture Sequence Test, Picture Vocabulary Test, Pattern Completion Test, Oral 
Reading Recognition Test) and three tasks from the Penn Neurocognitive Battery 
(Penn Progressive Matrices, Penn Word Memory Test, Variable Short Penn Line 
Orientation Test), with additional details supplied in37.  
 
We applied Dubois and colleagues’ code to this data, which uses the omega function 
in the psych (v 1.8.4 ) package49 in R (v3.4.4). In particular, the code performs 
maximum likelihood-estimated exploratory factor analysis (specifying a bifactor 
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model), oblimin factor rotation, followed by a Schmid-Leiman transformation50 to 
find general factor loadings.  
 
To assess reliability, in a separate analysis, we re-ran the factor analysis excluding 
46 subjects that had Test/Retest sessions available. We then estimated factor scores 
for both sessions for these subjects and calculated test/retest reliability via 
intraclass correlation (we used ICC(2,1) in the Shrout and Fleiss scheme51). 
 
We performed the preceding factor analysis on the entire dataset to characterize the 
factor structure (see Results §3.1). But importantly, we in addition repeated the 
factor analysis multiple times, each time within a fold of a 10-fold cross-validation 
analysis (see §2.6). This was to ensure the complete separation of train and test 
datasets during cross-validation. 
 
2.5  Brain Basis Set Modeling  
Our aim was to predict each subject’s GCA scores from each of 15 task contrasts. To 
accomplish this, we used Brain Basis Set (BBS) modeling, previously described in 
detail52 and presented here in brief (Figure 1). Note that BBS was applied separately 
to each of the 15 task contrasts, and thus the steps that follow are performed 
separately for each contrast. 
 
BBS assumes a train/test split of the dataset (see §2.6 below). In the train dataset, 
each subject’s task contrast was vectorized and then concatenated yielding an n  
subjects x m voxels matrix. This matrix was then submitted to principal components 
analysis using the pca function in MATLAB (2015b), yielding n-1 components 
ordered by descending eigenvalues, of which we retained the top 75 components.  
 
We selected 75 as the number of components to retain based on prior analysis in 
which we estimated the number of intrinsic dimensions associated with each task 
contrast. This was accomplished by submitting each of the task contrast matrices to 
the dimensionality estimation procedure of Levina and Bickel53. This is a maximum 
likelihood estimation method based on distance between close neighbors, which we 
previously successfully applied to HCP resting state data54. Dimensionality 
estimation found a mean of 72 dimensions across the 15 task contrasts.  Because 
prior studies by our group52 showed small differences in the number of components 
make little difference in classifier performance, and to increase comparability with 
recent studies that used 75 components38,52, we chose to use 75 components for 
each task.  
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Next, in the training dataset, we calculate the expression scores for each of the 
components for each subject by projecting their data onto the 75 principal 
components. We then fit a linear regression model with these expression scores as 
predictors and the phenotype of interest (i.e., GCA) as the outcome, saving B, the 75 
x 1 vector of fitted coefficients, for later use. In a test dataset, we again calculate the 
expression scores for each of the 75 components for each subject. Our predicted 
phenotype for each test subject is the dot product of B learned from the training 
dataset with the vector of component expression scores for that subject.  We 
assessed performance of BBS-based prediction of GCA by calculating the correlation 
between predicted versus actual GCA in the test sample. 
 
2.6  10-Fold Cross-Validation 
To assess of the performance of BBS-based prediction models, we used 10-fold 
cross-validation. Because there is family structure in the HCP dataset, we ensured 
that family members always appeared within a single partition (and thus in no cases 
was the BBS classifier trained on a member of a family and tested on another 
member of that family).  
 
To ensure complete separation of the train and test datasets, in each fold of the 
cross-validation, we did the following in the train dataset: First, a PCA was 
performed on the task contrast yielding a 75-component basis set. Second, the 
exploratory factor analysis described in §2.2 was performed yielding GCA scores for 
each train subject. In addition, the betas representing factor loadings for each 
behavioral task were applied to the test dataset, yielding GCA scores for the test 
subjects.  
 
2.7  Accounting for Covariates in a Cross-Validation Framework 
In each fold of cross-validation, BBS models were trained in the train partition with 
the following covariates (similar to37): age, age squared, handedness, gender, brain 
size, multiband reconstruction algorithm version number (HCP variables: 
Age_In_Yrs, Handedness, Gender, FS_BrainSeg_Vol, fMRI_3T_ReconVrs), and mean 
framewise displacement (mean FD; task-specific values were used) and mean FD 
squared. Thus, our generative model for the data had the following form: 

(1) 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡β + 𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡γ +  ε 

where 𝒚𝒚𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = train set response variable, 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = train set brain features design 
matrix, 𝛃𝛃 = train set brain features regression coefficients, 𝒁𝒁𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = train set 
covariate design matrix, 𝛄𝛄 = train set covariate regression coefficients, and ε is 
Gaussian mean zero error. 
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When this model is estimated, we are particularly interested in the relationship 
between the following two terms:  

(2) 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡− 𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡γ� 

(3) 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡β� 
 
where, 𝛄𝛄�  = estimated train set covariate regression coefficients and  𝛃𝛃� = estimated 
train set brain features regression coefficients. Term (2) represents the response 
variable adjusted for the estimated effects of the nuisance covariates, while term (3) 
represents the prediction of this covariate-adjusted response variable based on 
brain features. To be clear, 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝛃𝛃� is a prediction of the covariate-adjusted response 
because 𝛃𝛃� is learned in a model with covariates.  
 
To assess this same relationship in the test dataset, we compute quantities 
analogous to (2) and (3) in the test dataset. But to maintain the strict separation 
between train and test datasets needed in cross-validation, we compute these 
quantitates using the coefficients learned in the train dataset. Thus we examine the 
relationship between:  

(4) y𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡− 𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡γ� 

(5) 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡β� 

where 𝒁𝒁𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = test set design matrix, and 𝛄𝛄�  = covariate regression coefficients 
learned from the train dataset, 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = test set brain features design matrix, and 𝛃𝛃� = 
brain features regression coefficients learned from the train dataset. 
 
2.8 Evaluation of Cross-Validation Performance 
Overall performance across the 10-fold cross-validation was assessed in three ways. 
Our primary measure is based on correlation between observed covariate-adjusted 
outcome variable and predicted outcome variable: 
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑦𝑦�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 
 
where  𝑦𝑦�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is term (4) above, i.e., the test set response variable adjusted for 
covariates based on coefficients learned in the train dataset, and 𝑦𝑦�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is term (5) 
above, i.e., the predicted covariate-adjusted response variable for the test set. 
Correlations were computed for each fold. To obtain the average correlation across 
folds, the per-fold correlations were Fisher r to z transformed, the transformed 
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correlations were averaged across all folds, and then this average was z to r 
transformed. Confidence intervals were estimated as 95% t intervals based on the 
mean and standard deviation over cross-validation folds. 
 
In addition, we report cross-validated coefficient of determination 𝑹𝑹𝒄𝒄𝒄𝒄𝟐𝟐  and mean 
square error (MSE), which are calculated as follows: 

𝑅𝑅𝑐𝑐𝑐𝑐2 = 1 −
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1

𝑛𝑛 − 1
� (𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 

where 𝒚𝒚�𝒊𝒊 = covariate-adjusted response variable for the test set for subject i, 𝒚𝒚�𝒊𝒊 = 
predicted covariate-adjusted response variable for the test set for subject i, 𝒚𝒚� = 
mean value of the response variable for the train set, and n = the number of test set 
subjects. We calculate these values for each fold and then average across folds. 
 
2.9  Permutation Tests  
To assess the statistical significance of BBS models, we used non-parametric 
permutation methods. The distribution under chance of correlations between BBS-
based predictions of neurocognitive scores and observed neurocognitive scores was 
generated by randomly permuting the subjects’ neurocognitive scores 10,000 times. 
At each iteration, we performed the 10-fold cross validation procedure described 
above, which includes refitting BBS models at each fold of the cross-validation. We 
then recalculated the average correlation across folds between predicted versus 
actual neurocognitive scores. The average correlation across folds that was actually 
observed was located in this null distribution in terms of rank, and statistical 
significance was set as this rank value divided by 10,000.  
  
Since the BBS models fit at each iteration of the permutation test included 
covariates, the procedure of Freedman and Lane was followed55. In brief, a BBS 
model was first estimated with nuisance covariates alone, residuals were formed 
and were permuted. The covariate effect of interest was then included in the 
subsequent model, creating an approximate realization of data under the null 
hypothesis, and the statistical test of interest was calculated on this data (see FSL 
Randomise http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/Theory for a 
neuroimaging implementation).  
 
2.10 Consensus Predictive Maps for Visualization 
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We used BBS with 75 whole-brain components to make predictions about GCA. To 
help convey overall patterns across the entire BBS predictive model, we constructed 
“consensus” predictive maps. We first multiplied each component map with its 
associated beta from the fitted BBS model. Next, we summed across all 75 
components yielding a single map, and z scored the entries. 
 
2.11 Analysis of Resting State Connectomes 
To help contextualize results from predictive modeling applied to task contrast data, 
we applied this same predictive modeling stream to resting state connectomes. Data 
used was from the HCP-1200 release43,44. Four runs of resting state fMRI data (14.4 
minutes each; two runs per day over two days) were acquired using the same 
acquisition sequence described above in §2.1. Processed volumetric data from the 
HCP minimal preprocessing pipeline including ICA-FIX denoising were used. Full 
details of these steps can be found in Glasser45 and Salimi-Korshidi56.  
 
Data then went through a number of resting state processing steps, including a 
motion artifact removal steps comparable to the type B (i.e., recommended) stream 
of Siegel et al.57. These steps include linear detrending, CompCor to extract and 
regress out the top 5 principal components of white matter and CSF58, bandpass 
filtering from 0.1-0.01Hz, and motion scrubbing of frames that exceed a framewise 
displacement of 0.5mm. We next calculated spatially-averaged time series for each 
of 264 4.24mm radius ROIs from the parcellation of Power et al.59. We then 
calculated Pearson’s correlation coefficients between each ROI. These were then 
were transformed using Fisher’s r to z transformation.  
 
Subjects consisted of those subjects included in the main task contrast analysis who 
had 4 complete resting state fMRI runs (14m 24s each). In addition, subjects with 
more than 10% of resting state frames censored were excluded. This resulted in 903 
subjects who entered a BBS predictive modeling analysis for prediction of GCA 
scores using the same BBS approach that is described above.  
 
3 Results 
 
3.1. Constructing a GCA Factor from Ten HCP Behavioral Tasks 
We began by fitting a bifactor model to the behavioral data for the entire dataset. 
Similar to the findings of Dubios and colleagues37 who examined a largely 
overlapping set of subjects, this model fit the data very well (CFI=0.989; 
RMSEA=0.036; SRMR=0.0200; BIC=0.782). The solution, which included a general 
factor and four group factors, is depicted in Figure 2. Similar to Dubois and 
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colleagues, we interpret the four group factors as: 1) Crystallized Ability; 2) 
Processing Speed; 3) Memory; and 4) Visuospatial Ability.  
 
The general factor, which we refer to throughout as the GCA factor and which is the 
focus of this report, accounts for 58.6% of the variance (coefficient omega 
hierarchical ω60), while group factors account for 18.0% of the variance. Based on 
the 46 subjects in the retest dataset for HCP, test-retest reliability for GCA was found 
to be 0.78, which is conventionally classified as very good (we used ICC(2,1) in the 
Shrout and Fleiss scheme51). 
 
3.2 Contrasts associated with the N-Back task are highly effective at 
predicting GCA. 
Because working memory has been strongly and consistently linked with GCA48,61,62, 
we first investigated prediction of GCA based on the N-back working memory task. 
We used BBS modeling with 75 components and a 10-fold cross-validation 
procedure. The average correlation across folds between predicted GCA and actual 
GCA was 0.50, which was highly statistically significant (permutation-based p < 
0.0001, observed correlation was higher than all 10,000 in the permutation 
distribution).  
 
Figure 3 shows the top three components based on statistical significance displayed 
so that greater expression of these components predicts higher GCA. These 
components include large activations in supplementary motor area (SMA), 
precuneus, and dlPFC, as well as deactivations in anterior default mode network 
(DMN). To convey “average” patterns across all 75 components, we constructed 
consensus predictive maps (see Methods) and they are displayed in Figure 3. These 
show additional patterns predictive of GCA, including deactivation of posterior 
cingulate cortex and fronto-polar cortex. 
 
We next trained additional BBS models on the 2-back vs. baseline and 0-back vs. 
baseline contrasts. The correlation across folds of the 10-fold cross-validation 
procedure between predicted GCA and actual GCA was 0.48 and 0.35, respectively. 
The consensus predictive maps, shown in Figure 4, revealed an interesting change 
in directionality across these contrasts.  For example, pre-SMA strongly predicts 
higher GCA in the 2-back contrast vs. baseline but the reverse is true in the 0-back vs. 
baseline contrast. Additionally, less activation (i.e., deactivation) of the anterior DMN 
predicts higher GCA in the 2-back vs. baseline contrast, but the reverse is true in the 
0-back vs. baseline contrast. 
 

This article is protected by copyright. All rights reserved.



 11 

3.3 Looking across all 15 task contrasts, tasks involving more executive 
processing and higher cognitive demand are more effective in predicting GCA 
We next examined the remaining 12 contrasts from the other six HCP tasks. As with 
the N-back task, we constructed BBS models predicting GCA scores from each 
contrast, and assessed performance of these models in 10-fold cross-validation 
analysis. 
 
Results are shown in Figure 5 and Table 2. Using permutation-based statistical 
testing with 10,000 permutations, we found that 13 out of the 15 task contrasts 
produced statistically significant predictions of GCA (shown in blue and orange in 
Figure 5). The 2-back vs. 0-back contrast was the most effective single task contrast 
for GCA prediction, achieving a 0.50 correlation with GCA scores in 10-fold cross-
validation. Other tasks involving executive processing were top performers, 
including the 2-back vs. 0-back contrast from the N-back task, the relational vs. 
match contrast from the relational processing task, and the math vs. story contrast 
from the language processing task. Resting state connectomes yielded prediction 
accuracy of r=0.26. In comparison, 13 out of 15 task contrasts performed better. 
 
3.4  Mean activation levels of FPN and DMN predict which task contrasts are 
effective for GCA prediction 
 
A number of studies have observed that tasks that are cognitively demanding 
produce activation in regions of frontoparietal network (FPN)18,25,26,63 and 
deactivation of regions of default mode network (DMN)64–67. Building on these 
observations, we hypothesized that more cognitively demanding task contrasts 
(operationalized in terms of activation levels of FPN and DMN) should be more 
effective in predicting GCA. We extracted mean activation across the seven networks 
in Yeo and colleagues’ parcellation68 and examined correlations with accuracy of 
GCA prediction across the 15 task contrasts (prediction accuracy is measured with 
the cross-validated correlation between observed and predicted GCA scores). We 
found that FPN activation was indeed strongly and statistically significantly related 
to accuracy of GCA prediction (r=0.68, p=0.006, 95% CI 0.25-0.88). DMN activation 
was also (inversely) related to accuracy of GCA prediction (r=-0.20), but the 
correlation did not reach statistical significance. We also created a regression model 
in which both FPN and DMN activation jointly predict accuracy of GCA prediction. 
The correlation across task contrasts between fitted predictions from the regression 
model and actual accuracy in predicting GCA was r=0.82 (p = 0.001; Figure 6). None 
of the other five Yeo networks were statistically significantly related to GCA 
prediction.   
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3.5. Across the 15 task contrasts, activation signatures of GCA are spatially 
distributed and task-specific 
We next compared the consensus predictive maps associated with the 15 contrasts 
(five maps are shown in Figure 4, and the remaining maps are shown in 
Supplemental Figure S1). Signatures for predicting GCA associated with each task 
were highly distributed, with notable variation in these signatures across tasks. 
Prominently represented regions include: superior parietal cortex (reward vs. 
baseline, punishment vs. baseline), dlPFC (math vs. story), anterior insula (relational 
v. match), fronto-polar cortex (math vs. story), pre-SMA (relational vs. match), and 
visual cortex (relational vs. match, reward vs. baseline, punishment vs. baseline).  
 
Of note, consensus predictive maps for all BBS models associated with each of the 
15 task contrasts have been shared on BALSA, the Human Connectome Projects’ 
website for sharing and hosting neuroimaging datasets, and can be accessed here: 
https://balsa.wustl.edu/study/show/MZPv.  
 
4 Discussion 
Task-based imaging provides a promising route for constructing brain-based 
predictive models of general cognitive ability (GCA) because tasks can potentially 
selectively activate brain regions responsible for effective cognitive performance. 
Thus, we systematically assessed neuroimaging-based prediction of GCA from 15 
fMRI task conditions in the HCP dataset. Our first main finding is that whole-brain 
task activation patterns are a highly effective basis for prediction of GCA, with a 
model trained on activation during the N-back working memory task (2-back vs. 0-
back contrast) achieving a 0.50 correlation with GCA scores in 10-fold cross-
validation. Our second main finding is that more cognitively demanding tasks that 
more vigorously activate FPN and deactivate DMN are particularly effective for GCA 
prediction. These results highlight the utility of placing the brain in a cognitively 
demanding, activated task state for improved brain-based prediction of GCA.  
 
Role of executive regions in prediction of GCA 
The importance of FPN, as well as related executive regions (e.g., dorsal anterior 
cingulate), for GCA has been highlighted in previous work, especially in Jung and 
Haier’s influential fronto-parietal integration theory69. In a similar vein, Duncan, 
Owen, Fedorenko, and colleagues have proposed that “multiple demand” cortex—
regions of the brain that activate across a broad range of cognitively demanding 
tasks18–21—are a primary substrate of GCA14. The present study extends these 
findings using a multivariate predictive modeling framework that identifies 
distributed neurosignatures across the brain that are predictive of GCA. We showed 
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that executive regions are important in these distributed neurosignatures in three 
complementary ways. 
 
First, in looking across the set of 15 contrasts derived from seven HCP tasks, we 
found that tasks that tap executive processes were more predictive of GCA (e.g., N-
back 2-back vs. 0-back contrast, relational reasoning relational vs. match contrast, 
and math vs. story contrast). Second, we found that FPN activation and DMN 
deactivation, highly associated with the cognitive demandingness of task 
conditions18,25,26,63–67, predicts which task contrasts will be effective for GCA 
prediction. Third, within highly predictive contrasts, such the 2-back vs. 0-back 
contrast and math vs. story contrast, activation patterns in executive regions were 
prominent among regions predictive of GCA.  
 
Overall, the N-back 2-back vs. 0-back contrast performed best in GCA prediction. 
This is consistent with the finding that working memory is highly related to GCA 
48,61,62. However, the differences in performance between the three main executive 
task contrasts—i.e., 2-back vs. 0-back, math vs. story, and relational vs. match—were 
modest. Future studies with larger sample sizes should investigate whether all 
executive tasks are similarly effective with respect to GCA prediction, which would 
align well with the multiple demand network hypothesis. Or alternatively, there are 
subtle differences across executive tasks in affording GCA prediction. 
 
Interestingly, for certain regions, the directionality of prediction of GCA exhibited 
some variability across task contrasts in a way suggestive of moderation by task 
difficulty (for example, see pre-SMA in 0-back compared to 2-back and in match 
compared to relational; we discuss moderation by cognitive load in these tasks 
further in72). These observations are consistent with a neural efficiency model of 
GCA proposed by Neubauer and Fink73. They propose that higher GCA is associated 
with greater processing efficiency in elementary cognitive tasks (leading to less 
activation in higher GCA individuals) but greater processing capacity in demanding 
cognitive tasks (leading to greater activation in higher GCA people), thus potentially 
explaining the flipped directions of activation observed across the easy and hard 
conditions of the N-back and other tasks.  
 
While activation patterns in executive regions clearly play an important role in 
explaining the success of our task-based approach to GCA prediction, there is still 
clear evidence for discriminative information about GCA located outside executive 
regions. This is apparent in looking at the consensus predictive maps for each of the 
15 task contrasts in Figure 4 as well Figure S1 in the Supplement. Non-executive 
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regions, such as lateral temporal cortex and temporal pole, are found in several of 
these consensus maps, indicating they too are important for the prediction of GCA.  
 
Comparison of task-based prediction with other modalities 
Previous studies have examined correlations between GCA and structural brain 
imaging features including  cortical thickness74,75 and white matter structure76, for 
reviews see 17,69,77.  It is notable that the correlations reported with these modalities 
tend to be modest. For example, the correlations with brain volume, one of the most 
studied variables, are typically reported to be between 0.1 to 0.378,79. In terms of 
functional MRI, recent studies have examined resting state connectivity patterns36–

38,52. In the present study, we found resting state connectomes, which entered the 
same BBS prediction pipeline as our task-based contrast maps, achieved a 
correlation of 0.26 with GCA (broadly similar to the results from our recent study 
using BBS modeling to predict neurocognition from resting state connectomes in 
2,013 youth38). These results, however, are appreciably smaller than the 0.50 
correlation we found when applying BBS predictive modeling to the 2-back vs. 0-
back task contrast in the present study. 
 
There are two interrelated reasons why task-based fMRI might potentially offer 
more reliable prediction of GCA than other imaging modalities. The first appeals to 
the “treadmill testing” idea already mentioned: actively engaging in cognitive tasks 
has the potential to unmask critical GCA-relevant features of the brain that are 
otherwise invisible in other modalities such as structural or resting state brain 
imaging41,42. A second potential advantage of task-based methods is specificity. 
Tasks are constructed by their designers to target specific psychological processes, 
often with control conditions that subtract away contributions from auxiliary 
processes of no interest. This will tend to make classification more accurate as the 
feature set is culled of a sizable number of uninformative features. 
 
Future Directions 
While we found strong predictivity of GCA from fMRI task contrasts, even the 
strongest performing task contrast explained only 28% of the variance (Rcv) in GCA 
scores. Thus, the majority of variance in GCA scores remains to be explained, which 
raises the question of how we might improve performance in future studies. In 
considering this question, it is notable that we used the set of imaging tasks that 
were included in the HCP dataset. These imaging tasks, in turn, were selected based 
on diverse considerations (see 46), but maximizing prediction of GCA was not among 
them. Thus, it is plausible that one can do still better: It should be possible to 
intentionally design and optimize an imaging task battery to yield even more 
accurate task-based prediction of GCA.  
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Given our observation that tasks that more vigorously activate FPN and deactivate 
DMN afford better prediction of GCA, a natural approach is to focus on highly 
demanding tasks that produce this activation profile. One natural candidate is an N-
back task with increased cognitive load (e.g., a 3-back80,81 or 4-back task) Other 
executive function tasks, such as tasks involving response inhibition, task switching, 
or higher-order reasoning, are also plausible. Moreover, it is possible that task 
contrasts from an executive task battery, as opposed to a contrast from a single task, 
could afford still better GCA prediction. 
 
In sum, this study firmly establishes the effectiveness of task-based fMRI for 
prediction of GCA and demonstrates that tasks that that are more cognitively 
demanding are associated with better prediction accuracy. 
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Figure Captions 
 
Figure 1: Main Steps of Brain Basis Set (BBS) Modeling. BBS is a multivariate 
predictive modeling method. It utilizes dimensionality reduction with principal 
components analysis (PCA) to construct a basis set for predicting phenotypes of 
interest. 
 
Figure 2: Bifactor Model of General Cognitive Ability. We performed bifactor 
exploratory factor analysis on ten behavioral tasks in the Human Connectome Project 
(HCP) dataset. The resulting model consisted of a general factor (“GCA”) and four 
group factors and exhibited excellent fit with the data.  C=Crystallized Cognitive 
Ability, S=Processing Speed, M=Memory, V=Visuospatial Ability.  
 
Figure 3: Visualization of the Three Components From the 2-Back vs. 0-Back 
Task Contrast Most Predictive of General Cognitive Ability (GCA). We found the 
2-back vs. 0-back contrast was highly effective for GCA prediction, achieving a 0.50 
correlation with GCA scores in 10-fold cross-validation. From a 75-component brain 
basis set model trained to predict GCA scores, the three most statistically significant 
components are shown above. 
 
Figure 4: Consensus Predictive Maps for Five Task Contrasts Highly Predictive 
of General Cognitive Ability (GCA). We found 13 out of 15 task contrast maps 
yielded highly statistically significant predictions of GCA in 10-fold cross-validation 
analysis. For the five most predictive task contrasts, we constructed consensus 
predictive maps that display brain activation patterns that were most predictive of 
GCA. Rel=Relational 
 
Figure 5: Prediction of General Cognitive Ability (GCA) Across 15 Task 
Contrasts. We used the brain basis set (BBS) predictive modeling approach to predict 
GCA from each of 15 Human Connectome Project (HCP) task contrasts. The y-axes in 
the figure refers to accuracy of these BBS models in predicting GCA, as measured by 
the correlation between observed and predicted GCA scores in 10-fold cross-validation. 
For comparison, we additionally plot accuracy of GCA prediction using BBS methods 
applied to another modality: resting state connectomes. Error bars represent the 95% 
confidence interval; Blue = permutation-based p < 0.0001, observed correlation was 
higher than all 10,000 in the permutation distribution; Orange = permutation-based p-
value < 0.05; Red = permutation-based p-value is not significant; TOM=Theory of Mind; 
Rel=Relational. 
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Figure 6: FPN and DMN Activation Patterns and Effectiveness of Task 
Contrasts in Predicting General Cognitive Ability (GCA). We hypothesized that 
placing the brain in an activated, cognitively demanding state improves prediction of 
GCA. We thus calculated FPN and DMN activation levels, which are thought to index 
cognitive demandingness, for each of the 15 task contrasts. We in addition calculated 
each of the 15 task contrast’s accuracy in predicting GCA, as measured by the 
correlation between observed and predicted GCA scores in 10-fold cross-validation. In 
multiple regression analysis, we found that FPN/DMN activation levels for the 15 
contrasts (x-axis) were indeed strongly related to the contrasts’ accuracy in predicting 
GCA (y-axis). That is, contrasts that activated FPN/deactivated DMN more afforded 
higher accuracy in predicting GCA. Red dashed lines represent the 95% confidence 
interval.  
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Abstract 
General cognitive ability (GCA) refers to a trait-like ability that contributes to 
performance across diverse cognitive tasks. Identifying brain-based markers of GCA 
has been a longstanding goal of cognitive and clinical neuroscience. Recently, 
predictive modeling methods have emerged that build whole-brain, distributed 
neural signatures for phenotypes of interest. In this study, we employ a predictive 
modeling approach to predict general cognitive ability based on fMRI task activation 
patterns during the N-back working memory task as well as six other tasks in the 
Human Connectome Project dataset (n=967), encompassing 15 task contrasts in 
total. We found tasks are a highly effective basis for prediction of GCA: The 2-back 
versus 0-back contrast achieved a 0.50 correlation with GCA scores in ten-fold cross-
validation, and 13 out of 15 task contrasts afforded statistically significant 
prediction of GCA. Additionally, we found that task contrasts that produce greater 
fronto-parietal activation and default mode network deactivation—a brain 
activation pattern associated with executive processing and higher cognitive 
demand—are more effective in prediction of GCA. These results suggest a picture 
analogous to treadmill testing for cardiac function: Placing the brain in a more 
cognitively demanding task state significantly improves brain-based prediction of 
GCA.  
 
 
1 Introduction 
 
In addition to particular abilities associated with individual cognitive tasks, there is 
substantial evidence for an overarching general ability involved in performance 
across a diverse range of tasks.1–5 Test batteries composed of diverse tasks can yield 
accurate estimates of this general ability, which we here refer to as general cognitive 
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ability (GCA).6,7 GCA is a fundamental dimension of individual differences and is a 
key contributor to a number of important academic, occupational, health, and well-
being-related outcomes.8–13 There is thus substantial interest in understanding the 
neural basis of GCA as well as the nature of inter-individual neural differences.  
 
Functional imaging studies of brain activation patterns during cognitive tasks have 
yielded important insights into the neural basis of GCA14–17. In one key line of 
investigation, researchers identified a multiple demand network that activates 
across an array of cognitive tasks18–21. This network is hypothesized to support 
domain-general functions such as working memory22,23 and cognitive control24–26 
that contribute to performance across tasks irrespective of their specific content. 
Subsequent work found activation in key regions of this network, including dorsal 
lateral prefrontal cortex and superior parietal regions, are correlated with measures 
of GCA or closely related constructs14,15,27,28. 
 
A notable feature of many of these previous task-based studies is that they are 
mainly concerned with localization and correlation: they mainly seek to identify 
specific brain regions whose activation correlates with GCA. Recently, however, 
another important goal has emerged in cognitive neuroscience: prediction29–31. 
Unlike mass univariate approaches that are especially good for localization, 
predictive modeling approaches use multivariate methods that identify distributed 
patterns across the brain (“neurosignatures”). These distributed neurosignatures 
are often substantially more strongly related to phenotypes of interest than 
individual features because the neurosignatures aggregate information from across 
the entire brain32. However, because multivariate methods for constructing these 
distributed neurosignatures are highly parametrized, they are prone to overfitting. 
Predictive models are thus typically assessed by how well they predict unseen data, 
usually through the use of cross-validation33,34.  
 
Predictive modeling has been employed with a number of imaging modalities, 
including structural maps35 and resting state connectomes36–39, to predict GCA or 
closely related constructs. A notable feature of these studies is that they mainly 
examined relatively stable, enduring features of the brain—features that are largely 
independent of the person’s current cognitive state, and in particular their actual 
exercise of the cognitive abilities that are relevant to GCA. An alternative approach 
for building predictive models of GCA, which appears to be relatively less utilized 
(cf. 40,41), employs a rationale similar to that for cardiac treadmill testing. This 
approach attempts to first place the brain in an activated state that engages the 
cognitive abilities associated with GCA. By activating the brain in this way, 
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individual-differences in the neural basis of GCA may be rendered more “visible” for 
a predictive model to detect (see 42 for a suggestion along these lines).  
 
In the current study, we adopted this second approach. Utilizing the Human 
Connectome Project’s (HCP) 1200 release, we began by constructing a highly 
reliable measure of GCA from 10 measures from the NIH Toolbox and Penn 
Neurocognitive Battery37. We then used a predictive modeling framework to 
examine prediction of GCA from contrast maps derived from the N-back working 
memory task as well as six other fMRI tasks (15 task contrasts in total). We 
demonstrate two things. First, task-based brain activation patterns allow highly 
reliable prediction of GCA, with performance appreciably higher than that typically 
reported in other neuroimaging modalities. Second, tasks that produce greater 
fronto-parietal activation and default mode network deactivation, which is 
associated with higher cognitive demand, are more effective at GCA prediction.  
 
 
2 Methods 
 
2.1 Subjects and Data Acquisition 
All subjects and data were from the HCP-1200 release43,44 and all research was 
performed in accordance with relevant guidelines and regulations. Subjects 
provided informed consent, and recruitment procedures and informed consent 
forms, including consent to share de-identified data, were approved by the 
Washington University institutional review board. Subjects completed two runs 
each of seven scanner tasks across two fMRI sessions, using a 32-channel head coil 
on a 3T Siemens Skyra scanner (TR = 720ms, TE = 33.1ms, 72 slices, 2mm isotropic 
voxels, multiband acceleration factor = 8) with right-to-left and left-to-right phase 
encoding directions. Comprehensive details are available elsewhere on HCP’s 
overall neuroimaging approach43,45 and HCP’s task fMRI dataset46.  
 
For the construction of a GCA factor, all subjects with available data were included. 
This analysis included 1,192 subjects. For the brain imaging analysis, subjects were 
eligible to be included if they had available task data in MSMAll format (information 
about both folding as well as function are used for cross-subject alignment47) for 
both runs of all seven tasks, had full behavioral data, and no more than 25% of their 
volumes in each run exceeded a framewise displacement threshold of 0.5mm. These 
exclusions resulted in a sample of 967 subjects. 
 
2.2 Data Preparation 
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Data was preprocessed through the HCP minimally preprocessed pipeline, which is 
presented in detail by Glasser et al.48 Briefly, the pipeline includes gradient 
unwarping, motion correction, fieldmap distortion correction, brain-boundary 
based linear registration of functional to structural images, non-linear registration 
to MNI152 space, and grand-mean intensity normalization. Data then entered a 
surfaced-based preprocessing stream, followed by grayordinate-based processing, 
which involves data from the cortical ribbon being projected to surface space and 
combined with subcortical volumetric data.  
 
2.3 FMRI Tasks  
We used contrasts from seven HCP tasks, described in brief in Table 1 (detailed 
descriptions are available elsewhere44,46). 
 
At the single subject-level, fixed-effects analyses were conducted using FSL’s FEAT 
to estimate the average effects across runs within-participants, using 2mm surface 
smoothed data. Some tasks permitted multiple contrasts beyond the standard 
experimental versus control condition (e.g., N-back allows additional contrasts 
based on all four stimulus types). To reduce the complexity of the analysis and avoid 
loss of power from smaller number of trials, we focused on the standard contrasts 
associated with these tasks. The Language Task and Emotion Task lacked fixation 
blocks. Thus we included the main condition contrasts (e.g., math-story and faces-
shapes), but we did not include each of these conditions versus baseline. A full list of 
filenames of the contrast maps used can be found in the Supplement, Table S1.  
 
2.4 Constructing a GCA Factor 
We conducted an exploratory factor analysis utilizing the strategy and associated 
code made available by Dubois and colleagues 
(https://github.com/adolphslab/HCP_MRI-behavior), who recently investigated 
prediction of GCA from resting state fMRI in the HCP dataset37. Unadjusted scores 
from ten cognitive tasks for 1181 HCP subjects were included in the analysis 
(subjects with missing data or MMSE < 26 were excluded), including seven tasks 
from the NIH Toolbox (Dimensional Change Cart Sort, Flanker Task, List Sort Test, 
Picture Sequence Test, Picture Vocabulary Test, Pattern Completion Test, Oral 
Reading Recognition Test) and three tasks from the Penn Neurocognitive Battery 
(Penn Progressive Matrices, Penn Word Memory Test, Variable Short Penn Line 
Orientation Test), with additional details supplied in37.  
 
We applied Dubois and colleagues’ code to this data, which uses the omega function 
in the psych (v 1.8.4 ) package49 in R (v3.4.4). In particular, the code performs 
maximum likelihood-estimated exploratory factor analysis (specifying a bifactor 
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model), oblimin factor rotation, followed by a Schmid-Leiman transformation50 to 
find general factor loadings.  
 
To assess reliability, in a separate analysis, we re-ran the factor analysis excluding 
46 subjects that had Test/Retest sessions available. We then estimated factor scores 
for both sessions for these subjects and calculated test/retest reliability via 
intraclass correlation (we used ICC(2,1) in the Shrout and Fleiss scheme51). 
 
We performed the preceding factor analysis on the entire dataset to characterize the 
factor structure (see Results §3.1). But importantly, we in addition repeated the 
factor analysis multiple times, each time within a fold of a 10-fold cross-validation 
analysis (see §2.6). This was to ensure the complete separation of train and test 
datasets during cross-validation. 
 
2.5  Brain Basis Set Modeling  
Our aim was to predict each subject’s GCA scores from each of 15 task contrasts. To 
accomplish this, we used Brain Basis Set (BBS) modeling, previously described in 
detail52 and presented here in brief (Figure 1). Note that BBS was applied separately 
to each of the 15 task contrasts, and thus the steps that follow are performed 
separately for each contrast. 
 
BBS assumes a train/test split of the dataset (see §2.6 below). In the train dataset, 
each subject’s task contrast was vectorized and then concatenated yielding an n  
subjects x m voxels matrix. This matrix was then submitted to principal components 
analysis using the pca function in MATLAB (2015b), yielding n-1 components 
ordered by descending eigenvalues, of which we retained the top 75 components.  
 
We selected 75 as the number of components to retain based on prior analysis in 
which we estimated the number of intrinsic dimensions associated with each task 
contrast. This was accomplished by submitting each of the task contrast matrices to 
the dimensionality estimation procedure of Levina and Bickel53. This is a maximum 
likelihood estimation method based on distance between close neighbors, which we 
previously successfully applied to HCP resting state data54. Dimensionality 
estimation found a mean of 72 dimensions across the 15 task contrasts.  Because 
prior studies by our group52 showed small differences in the number of components 
make little difference in classifier performance, and to increase comparability with 
recent studies that used 75 components38,52, we chose to use 75 components for 
each task.  
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Next, in the training dataset, we calculate the expression scores for each of the 
components for each subject by projecting their data onto the 75 principal 
components. We then fit a linear regression model with these expression scores as 
predictors and the phenotype of interest (i.e., GCA) as the outcome, saving B, the 75 
x 1 vector of fitted coefficients, for later use. In a test dataset, we again calculate the 
expression scores for each of the 75 components for each subject. Our predicted 
phenotype for each test subject is the dot product of B learned from the training 
dataset with the vector of component expression scores for that subject.  We 
assessed performance of BBS-based prediction of GCA by calculating the correlation 
between predicted versus actual GCA in the test sample. 
 
2.6  10-Fold Cross-Validation 
To assess of the performance of BBS-based prediction models, we used 10-fold 
cross-validation. Because there is family structure in the HCP dataset, we ensured 
that family members always appeared within a single partition (and thus in no cases 
was the BBS classifier trained on a member of a family and tested on another 
member of that family).  
 
To ensure complete separation of the train and test datasets, in each fold of the 
cross-validation, we did the following in the train dataset: First, a PCA was 
performed on the task contrast yielding a 75-component basis set. Second, the 
exploratory factor analysis described in §2.2 was performed yielding GCA scores for 
each train subject. In addition, the betas representing factor loadings for each 
behavioral task were applied to the test dataset, yielding GCA scores for the test 
subjects.  
 
2.7  Accounting for Covariates in a Cross-Validation Framework 
In each fold of cross-validation, BBS models were trained in the train partition with 
the following covariates (similar to37): age, age squared, handedness, gender, brain 
size, multiband reconstruction algorithm version number (HCP variables: 
Age_In_Yrs, Handedness, Gender, FS_BrainSeg_Vol, fMRI_3T_ReconVrs), and mean 
framewise displacement (mean FD; task-specific values were used) and mean FD 
squared. Thus, our generative model for the data had the following form: 

(1) 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡β + 𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡γ +  ε 

where 𝒚𝒚𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = train set response variable, 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = train set brain features design 
matrix, 𝛃𝛃 = train set brain features regression coefficients, 𝒁𝒁𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = train set 
covariate design matrix, 𝛄𝛄 = train set covariate regression coefficients, and ε is 
Gaussian mean zero error. 
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When this model is estimated, we are particularly interested in the relationship 
between the following two terms:  

(2) 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡− 𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡γ� 

(3) 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡β� 
 
where, 𝛄𝛄�  = estimated train set covariate regression coefficients and  𝛃𝛃� = estimated 
train set brain features regression coefficients. Term (2) represents the response 
variable adjusted for the estimated effects of the nuisance covariates, while term (3) 
represents the prediction of this covariate-adjusted response variable based on 
brain features. To be clear, 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝛃𝛃� is a prediction of the covariate-adjusted response 
because 𝛃𝛃� is learned in a model with covariates.  
 
To assess this same relationship in the test dataset, we compute quantities 
analogous to (2) and (3) in the test dataset. But to maintain the strict separation 
between train and test datasets needed in cross-validation, we compute these 
quantitates using the coefficients learned in the train dataset. Thus we examine the 
relationship between:  

(4) y𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡− 𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡γ� 

(5) 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡β� 

where 𝒁𝒁𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = test set design matrix, and 𝛄𝛄�  = covariate regression coefficients 
learned from the train dataset, 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = test set brain features design matrix, and 𝛃𝛃� = 
brain features regression coefficients learned from the train dataset. 
 
2.8 Evaluation of Cross-Validation Performance 
Overall performance across the 10-fold cross-validation was assessed in three ways. 
Our primary measure is based on correlation between observed covariate-adjusted 
outcome variable and predicted outcome variable: 
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑦𝑦�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 
 
where  𝑦𝑦�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is term (4) above, i.e., the test set response variable adjusted for 
covariates based on coefficients learned in the train dataset, and 𝑦𝑦�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is term (5) 
above, i.e., the predicted covariate-adjusted response variable for the test set. 
Correlations were computed for each fold. To obtain the average correlation across 
folds, the per-fold correlations were Fisher r to z transformed, the transformed 
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correlations were averaged across all folds, and then this average was z to r 
transformed. Confidence intervals were estimated as 95% t intervals based on the 
mean and standard deviation over cross-validation folds. 
 
In addition, we report cross-validated coefficient of determination 𝑹𝑹𝒄𝒄𝒄𝒄𝟐𝟐  and mean 
square error (MSE), which are calculated as follows: 

𝑅𝑅𝑐𝑐𝑐𝑐2 = 1 −
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1

𝑛𝑛 − 1
� (𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 

where 𝒚𝒚�𝒊𝒊 = covariate-adjusted response variable for the test set for subject i, 𝒚𝒚�𝒊𝒊 = 
predicted covariate-adjusted response variable for the test set for subject i, 𝒚𝒚� = 
mean value of the response variable for the train set, and n = the number of test set 
subjects. We calculate these values for each fold and then average across folds. 
 
2.9  Permutation Tests  
To assess the statistical significance of BBS models, we used non-parametric 
permutation methods. The distribution under chance of correlations between BBS-
based predictions of neurocognitive scores and observed neurocognitive scores was 
generated by randomly permuting the subjects’ neurocognitive scores 10,000 times. 
At each iteration, we performed the 10-fold cross validation procedure described 
above, which includes refitting BBS models at each fold of the cross-validation. We 
then recalculated the average correlation across folds between predicted versus 
actual neurocognitive scores. The average correlation across folds that was actually 
observed was located in this null distribution in terms of rank, and statistical 
significance was set as this rank value divided by 10,000.  
  
Since the BBS models fit at each iteration of the permutation test included 
covariates, the procedure of Freedman and Lane was followed55. In brief, a BBS 
model was first estimated with nuisance covariates alone, residuals were formed 
and were permuted. The covariate effect of interest was then included in the 
subsequent model, creating an approximate realization of data under the null 
hypothesis, and the statistical test of interest was calculated on this data (see FSL 
Randomise http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/Theory for a 
neuroimaging implementation).  
 
2.10 Consensus Predictive Maps for Visualization 
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We used BBS with 75 whole-brain components to make predictions about GCA. To 
help convey overall patterns across the entire BBS predictive model, we constructed 
“consensus” predictive maps. We first multiplied each component map with its 
associated beta from the fitted BBS model. Next, we summed across all 75 
components yielding a single map, and z scored the entries. 
 
2.11 Analysis of Resting State Connectomes 
To help contextualize results from predictive modeling applied to task contrast data, 
we applied this same predictive modeling stream to resting state connectomes. Data 
used was from the HCP-1200 release43,44. Four runs of resting state fMRI data (14.4 
minutes each; two runs per day over two days) were acquired using the same 
acquisition sequence described above in §2.1. Processed volumetric data from the 
HCP minimal preprocessing pipeline including ICA-FIX denoising were used. Full 
details of these steps can be found in Glasser45 and Salimi-Korshidi56.  
 
Data then went through a number of resting state processing steps, including a 
motion artifact removal steps comparable to the type B (i.e., recommended) stream 
of Siegel et al.57. These steps include linear detrending, CompCor to extract and 
regress out the top 5 principal components of white matter and CSF58, bandpass 
filtering from 0.1-0.01Hz, and motion scrubbing of frames that exceed a framewise 
displacement of 0.5mm. We next calculated spatially-averaged time series for each 
of 264 4.24mm radius ROIs from the parcellation of Power et al.59. We then 
calculated Pearson’s correlation coefficients between each ROI. These were then 
were transformed using Fisher’s r to z transformation.  
 
Subjects consisted of those subjects included in the main task contrast analysis who 
had 4 complete resting state fMRI runs (14m 24s each). In addition, subjects with 
more than 10% of resting state frames censored were excluded. This resulted in 903 
subjects who entered a BBS predictive modeling analysis for prediction of GCA 
scores using the same BBS approach that is described above.  
 
3 Results 
 
3.1. Constructing a GCA Factor from Ten HCP Behavioral Tasks 
We began by fitting a bifactor model to the behavioral data for the entire dataset. 
Similar to the findings of Dubios and colleagues37 who examined a largely 
overlapping set of subjects, this model fit the data very well (CFI=0.989; 
RMSEA=0.036; SRMR=0.0200; BIC=0.782). The solution, which included a general 
factor and four group factors, is depicted in Figure 2. Similar to Dubois and 
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colleagues, we interpret the four group factors as: 1) Crystallized Ability; 2) 
Processing Speed; 3) Memory; and 4) Visuospatial Ability.  
 
The general factor, which we refer to throughout as the GCA factor and which is the 
focus of this report, accounts for 58.6% of the variance (coefficient omega 
hierarchical ω60), while group factors account for 18.0% of the variance. Based on 
the 46 subjects in the retest dataset for HCP, test-retest reliability for GCA was found 
to be 0.78, which is conventionally classified as very good (we used ICC(2,1) in the 
Shrout and Fleiss scheme51). 
 
3.2 Contrasts associated with the N-Back task are highly effective at 
predicting GCA. 
Because working memory has been strongly and consistently linked with GCA48,61,62, 
we first investigated prediction of GCA based on the N-back working memory task. 
We used BBS modeling with 75 components and a 10-fold cross-validation 
procedure. The average correlation across folds between predicted GCA and actual 
GCA was 0.50, which was highly statistically significant (permutation-based p < 
0.0001, observed correlation was higher than all 10,000 in the permutation 
distribution).  
 
Figure 3 shows the top three components based on statistical significance displayed 
so that greater expression of these components predicts higher GCA. These 
components include large activations in supplementary motor area (SMA), 
precuneus, and dlPFC, as well as deactivations in anterior default mode network 
(DMN). To convey “average” patterns across all 75 components, we constructed 
consensus predictive maps (see Methods) and they are displayed in Figure 3. These 
show additional patterns predictive of GCA, including deactivation of posterior 
cingulate cortex and fronto-polar cortex. 
 
We next trained additional BBS models on the 2-back vs. baseline and 0-back vs. 
baseline contrasts. The correlation across folds of the 10-fold cross-validation 
procedure between predicted GCA and actual GCA was 0.48 and 0.35, respectively. 
The consensus predictive maps, shown in Figure 4, revealed an interesting change 
in directionality across these contrasts.  For example, pre-SMA strongly predicts 
higher GCA in the 2-back contrast vs. baseline but the reverse is true in the 0-back vs. 
baseline contrast. Additionally, less activation (i.e., deactivation) of the anterior DMN 
predicts higher GCA in the 2-back vs. baseline contrast, but the reverse is true in the 
0-back vs. baseline contrast. 
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3.3 Looking across all 15 task contrasts, tasks involving more executive 
processing and higher cognitive demand are more effective in predicting GCA 
We next examined the remaining 12 contrasts from the other six HCP tasks. As with 
the N-back task, we constructed BBS models predicting GCA scores from each 
contrast, and assessed performance of these models in 10-fold cross-validation 
analysis. 
 
Results are shown in Figure 5 and Table 2. Using permutation-based statistical 
testing with 10,000 permutations, we found that 13 out of the 15 task contrasts 
produced statistically significant predictions of GCA (shown in blue and orange in 
Figure 5). The 2-back vs. 0-back contrast was the most effective single task contrast 
for GCA prediction, achieving a 0.50 correlation with GCA scores in 10-fold cross-
validation. Other tasks involving executive processing were top performers, 
including the 2-back vs. 0-back contrast from the N-back task, the relational vs. 
match contrast from the relational processing task, and the math vs. story contrast 
from the language processing task. Resting state connectomes yielded prediction 
accuracy of r=0.26. In comparison, 13 out of 15 task contrasts performed better. 
 
3.4  Mean activation levels of FPN and DMN predict which task contrasts are 
effective for GCA prediction 
 
A number of studies have observed that tasks that are cognitively demanding 
produce activation in regions of frontoparietal network (FPN)18,25,26,63 and 
deactivation of regions of default mode network (DMN)64–67. Building on these 
observations, we hypothesized that more cognitively demanding task contrasts 
(operationalized in terms of activation levels of FPN and DMN) should be more 
effective in predicting GCA. We extracted mean activation across the seven networks 
in Yeo and colleagues’ parcellation68 and examined correlations with accuracy of 
GCA prediction across the 15 task contrasts (prediction accuracy is measured with 
the cross-validated correlation between observed and predicted GCA scores). We 
found that FPN activation was indeed strongly and statistically significantly related 
to accuracy of GCA prediction (r=0.68, p=0.006, 95% CI 0.25-0.88). DMN activation 
was also (inversely) related to accuracy of GCA prediction (r=-0.20), but the 
correlation did not reach statistical significance. We also created a regression model 
in which both FPN and DMN activation jointly predict accuracy of GCA prediction. 
The correlation across task contrasts between fitted predictions from the regression 
model and actual accuracy in predicting GCA was r=0.82 (p = 0.001; Figure 6). None 
of the other five Yeo networks were statistically significantly related to GCA 
prediction.   
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3.5. Across the 15 task contrasts, activation signatures of GCA are spatially 
distributed and task-specific 
We next compared the consensus predictive maps associated with the 15 contrasts 
(five maps are shown in Figure 4, and the remaining maps are shown in 
Supplemental Figure S1). Signatures for predicting GCA associated with each task 
were highly distributed, with notable variation in these signatures across tasks. 
Prominently represented regions include: superior parietal cortex (reward vs. 
baseline, punishment vs. baseline), dlPFC (math vs. story), anterior insula (relational 
v. match), fronto-polar cortex (math vs. story), pre-SMA (relational vs. match), and 
visual cortex (relational vs. match, reward vs. baseline, punishment vs. baseline).  
 
Of note, consensus predictive maps for all BBS models associated with each of the 
15 task contrasts have been shared on BALSA, the Human Connectome Projects’ 
website for sharing and hosting neuroimaging datasets, and can be accessed here: 
https://balsa.wustl.edu/study/show/MZPv.  
 
4 Discussion 
Task-based imaging provides a promising route for constructing brain-based 
predictive models of general cognitive ability (GCA) because tasks can potentially 
selectively activate brain regions responsible for effective cognitive performance. 
Thus, we systematically assessed neuroimaging-based prediction of GCA from 15 
fMRI task conditions in the HCP dataset. Our first main finding is that whole-brain 
task activation patterns are a highly effective basis for prediction of GCA, with a 
model trained on activation during the N-back working memory task (2-back vs. 0-
back contrast) achieving a 0.50 correlation with GCA scores in 10-fold cross-
validation. Our second main finding is that more cognitively demanding tasks that 
more vigorously activate FPN and deactivate DMN are particularly effective for GCA 
prediction. These results highlight the utility of placing the brain in a cognitively 
demanding, activated task state for improved brain-based prediction of GCA.  
 
Role of executive regions in prediction of GCA 
The importance of FPN, as well as related executive regions (e.g., dorsal anterior 
cingulate), for GCA has been highlighted in previous work, especially in Jung and 
Haier’s influential fronto-parietal integration theory69. In a similar vein, Duncan, 
Owen, Fedorenko, and colleagues have proposed that “multiple demand” cortex—
regions of the brain that activate across a broad range of cognitively demanding 
tasks18–21—are a primary substrate of GCA14. The present study extends these 
findings using a multivariate predictive modeling framework that identifies 
distributed neurosignatures across the brain that are predictive of GCA. We showed 
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that executive regions are important in these distributed neurosignatures in three 
complementary ways. 
 
First, in looking across the set of 15 contrasts derived from seven HCP tasks, we 
found that tasks that tap executive processes were more predictive of GCA (e.g., N-
back 2-back vs. 0-back contrast, relational reasoning relational vs. match contrast, 
and math vs. story contrast). Second, we found that FPN activation and DMN 
deactivation, highly associated with the cognitive demandingness of task 
conditions18,25,26,63–67, predicts which task contrasts will be effective for GCA 
prediction. Third, within highly predictive contrasts, such the 2-back vs. 0-back 
contrast and math vs. story contrast, activation patterns in executive regions were 
prominent among regions predictive of GCA.  
 
Overall, the N-back 2-back vs. 0-back contrast performed best in GCA prediction. 
This is consistent with the finding that working memory is highly related to GCA 
48,61,62. However, the differences in performance between the three main executive 
task contrasts—i.e., 2-back vs. 0-back, math vs. story, and relational vs. match—were 
modest. Future studies with larger sample sizes should investigate whether all 
executive tasks are similarly effective with respect to GCA prediction, which would 
align well with the multiple demand network hypothesis. Or alternatively, there are 
subtle differences across executive tasks in affording GCA prediction. 
 
Interestingly, for certain regions, the directionality of prediction of GCA exhibited 
some variability across task contrasts in a way suggestive of moderation by task 
difficulty (for example, see pre-SMA in 0-back compared to 2-back and in match 
compared to relational; we discuss moderation by cognitive load in these tasks 
further in72). These observations are consistent with a neural efficiency model of 
GCA proposed by Neubauer and Fink73. They propose that higher GCA is associated 
with greater processing efficiency in elementary cognitive tasks (leading to less 
activation in higher GCA individuals) but greater processing capacity in demanding 
cognitive tasks (leading to greater activation in higher GCA people), thus potentially 
explaining the flipped directions of activation observed across the easy and hard 
conditions of the N-back and other tasks.  
 
While activation patterns in executive regions clearly play an important role in 
explaining the success of our task-based approach to GCA prediction, there is still 
clear evidence for discriminative information about GCA located outside executive 
regions. This is apparent in looking at the consensus predictive maps for each of the 
15 task contrasts in Figure 4 as well Figure S1 in the Supplement. Non-executive 
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regions, such as lateral temporal cortex and temporal pole, are found in several of 
these consensus maps, indicating they too are important for the prediction of GCA.  
 
Comparison of task-based prediction with other modalities 
Previous studies have examined correlations between GCA and structural brain 
imaging features including  cortical thickness74,75 and white matter structure76, for 
reviews see 17,69,77.  It is notable that the correlations reported with these modalities 
tend to be modest. For example, the correlations with brain volume, one of the most 
studied variables, are typically reported to be between 0.1 to 0.378,79. In terms of 
functional MRI, recent studies have examined resting state connectivity patterns36–

38,52. In the present study, we found resting state connectomes, which entered the 
same BBS prediction pipeline as our task-based contrast maps, achieved a 
correlation of 0.26 with GCA (broadly similar to the results from our recent study 
using BBS modeling to predict neurocognition from resting state connectomes in 
2,013 youth38). These results, however, are appreciably smaller than the 0.50 
correlation we found when applying BBS predictive modeling to the 2-back vs. 0-
back task contrast in the present study. 
 
There are two interrelated reasons why task-based fMRI might potentially offer 
more reliable prediction of GCA than other imaging modalities. The first appeals to 
the “treadmill testing” idea already mentioned: actively engaging in cognitive tasks 
has the potential to unmask critical GCA-relevant features of the brain that are 
otherwise invisible in other modalities such as structural or resting state brain 
imaging41,42. A second potential advantage of task-based methods is specificity. 
Tasks are constructed by their designers to target specific psychological processes, 
often with control conditions that subtract away contributions from auxiliary 
processes of no interest. This will tend to make classification more accurate as the 
feature set is culled of a sizable number of uninformative features. 
 
Future Directions 
While we found strong predictivity of GCA from fMRI task contrasts, even the 
strongest performing task contrast explained only 28% of the variance (Rcv) in GCA 
scores. Thus, the majority of variance in GCA scores remains to be explained, which 
raises the question of how we might improve performance in future studies. In 
considering this question, it is notable that we used the set of imaging tasks that 
were included in the HCP dataset. These imaging tasks, in turn, were selected based 
on diverse considerations (see 46), but maximizing prediction of GCA was not among 
them. Thus, it is plausible that one can do still better: It should be possible to 
intentionally design and optimize an imaging task battery to yield even more 
accurate task-based prediction of GCA.  
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Given our observation that tasks that more vigorously activate FPN and deactivate 
DMN afford better prediction of GCA, a natural approach is to focus on highly 
demanding tasks that produce this activation profile. One natural candidate is an N-
back task with increased cognitive load (e.g., a 3-back80,81 or 4-back task) Other 
executive function tasks, such as tasks involving response inhibition, task switching, 
or higher-order reasoning, are also plausible. Moreover, it is possible that task 
contrasts from an executive task battery, as opposed to a contrast from a single task, 
could afford still better GCA prediction. 
 
In sum, this study firmly establishes the effectiveness of task-based fMRI for 
prediction of GCA and demonstrates that tasks that that are more cognitively 
demanding are associated with better prediction accuracy. 
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Figure Legends 
 
Figure 1: Main Steps of Brain Basis Set (BBS) Modeling. BBS is a multivariate 
predictive modeling method. It utilizes dimensionality reduction with principal 
components analysis (PCA) to construct a basis set for predicting phenotypes of 
interest. 
 
Figure 2: Bifactor Model of General Cognitive Ability. We performed bifactor 
exploratory factor analysis on ten behavioral tasks in the Human Connectome Project 
(HCP) dataset. The resulting model consisted of a general factor (“GCA”) and four 
group factors and exhibited excellent fit with the data.  C=Crystallized Cognitive 
Ability, S=Processing Speed, M=Memory, V=Visuospatial Ability.  
 
Figure 3: Visualization of the Three Components From the 2-Back vs. 0-Back 
Task Contrast Most Predictive of General Cognitive Ability (GCA). We found the 
2-back vs. 0-back contrast was highly effective for GCA prediction, achieving a 0.50 
correlation with GCA scores in 10-fold cross-validation. From a 75-component brain 
basis set model trained to predict GCA scores, the three most statistically significant 
components are shown above. 
 
Figure 4: Consensus Predictive Maps for Five Task Contrasts Highly Predictive 
of General Cognitive Ability (GCA). We found 13 out of 15 task contrast maps 
yielded highly statistically significant predictions of GCA in 10-fold cross-validation 
analysis. For the five most predictive task contrasts, we constructed consensus 
predictive maps that display brain activation patterns that were most predictive of 
GCA. Rel=Relational 
 
Figure 5: Prediction of General Cognitive Ability (GCA) Across 15 Task 
Contrasts. We used the brain basis set (BBS) predictive modeling approach to predict 
GCA from each of 15 Human Connectome Project (HCP) task contrasts. The y-axes in 
the figure refers to accuracy of these BBS models in predicting GCA, as measured by 
the correlation between observed and predicted GCA scores in 10-fold cross-validation. 
For comparison, we additionally plot accuracy of GCA prediction using BBS methods 
applied to another modality: resting state connectomes. Error bars represent the 95% 
confidence interval; Blue = permutation-based p < 0.0001, observed correlation was 
higher than all 10,000 in the permutation distribution; Orange = permutation-based p-
value < 0.05; Red = permutation-based p-value is not significant; TOM=Theory of Mind; 
Rel=Relational. 
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Figure 6: FPN and DMN Activation Patterns and Effectiveness of Task 
Contrasts in Predicting General Cognitive Ability (GCA). We hypothesized that 
placing the brain in an activated, cognitively demanding state improves prediction of 
GCA. We thus calculated FPN and DMN activation levels, which are thought to index 
cognitive demandingness, for each of the 15 task contrasts. We in addition calculated 
each of the 15 task contrast’s accuracy in predicting GCA, as measured by the 
correlation between observed and predicted GCA scores in 10-fold cross-validation. In 
multiple regression analysis, we found that FPN/DMN activation levels for the 15 
contrasts (x-axis) were indeed strongly related to the contrasts’ accuracy in predicting 
GCA (y-axis). That is, contrasts that activated FPN/deactivated DMN more afforded 
higher accuracy in predicting GCA. Red dashed lines represent the 95% confidence 
interval.  
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We investigated prediction of general cognitive ability (GCA) based on fMRI task activation 
patterns with 15 task contrasts in the Human Connectome Project dataset. The 2 back versus 0 
back contrast achieved a 0.50 correlation with GCA scores in ten-fold cross-validation analysis. 
Additionally, we found that task contrasts that produce greater fronto-parietal activation and 
default mode network deactivation—a brain activation pattern associated with executive 
processing and higher cognitive demand—are more effective in GCA prediction.  
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N-back task Participants respond when the picture shown on the screen is the 

same as the one two trials back (=2-back condition) or the same as 
one shown at the start of the block (=0-back condition).  
 

Incentive 
Processing 

Participants guess whether the number on a mystery card will be 
more or less than 5 and win or lose money (reward condition = 
mostly wins; loss condition = mostly losses) 

Motor Participants move fingers, toes, and tongue 
Language Task Participants answer questions about Aesop’s fables (=story condition) 

or math problems (=math condition). 
Social Cognition 
Task 

Participants watch video clips of objects interacting in an agentive 
way (=theory of mind condition) or random way (=random condition). 

Relational Task Participants identify the dimension along which a cue pair of objects 
differs and determine if a target pair differs along same dimension 
(=relational condition). Or they determine if a cue object matches a 
member of a target pair along a given dimension (=match condition). 

Emotion Task Participants decide whether one of two presented faces match one at 
the top of the screen (=face condition) or else they perform the same 
task with shapes (=shape condition) 

 
Table 1: Seven Human Connectome Project (HCP) fMRI Tasks. 
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Task 𝑹𝑹𝒄𝒄𝒄𝒄𝟐𝟐  
Mean 

Squared 
Error (MSE) 

2back-0back 0.280 0.576 
2back 0.265 0.604 
Math-Story 0.227 0.623 
Rel-Match 0.195 0.639 
Random 0.172 0.658 
0back 0.172 0.659 
TOM 0.172 0.654 
Reward 0.165 0.662 
Rel 0.156 0.664 
Match 0.155 0.669 
Punish 0.132 0.686 
TOM-Random 0.130 0.692 
Faces-Shapes 0.127 0.691 
Motor 0.049 0.751 
Punish-Reward 0.033 0.763 
Resting Connectome 0.078 0.755 

 
Table 2: Prediction of General Intelligence Across 15 Task Contrasts. We used 
the brain basis set (BBS) predictive modeling approach to predict general intelligence 
from each of 15 HCP task contrasts. For comparison, we additionally include results 
from predicting general intelligence with resting state connectomes. The table shows 
model performance assessed with cross-validated r squared (𝑅𝑅𝑐𝑐𝑐𝑐2 ) and mean square 
error (MSE). TOM=Theory of Mind; Rel=Relational. 
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