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Abstract 
The economy for artisanal products such as Navajo rugs or Pashmina shawls are often 
threatened by mass-produced fakes. We propose the use of AI-based authentication as one 
part of a larger system that would replace extractive economies with generative circulation. In 
this case study we examine initial experiments towards the development of a cell phone based 
authentication app for kente cloth in west Africa. We describe the context of weavers and cloth 
sales; an initial test of a machine learning algorithm for distinguishing between real and fake 
kente, and an outline of the next stages of development. 
 
 
Keywords: human-machine collaboration; machine learning; artisanal economy; generative 
justice; industrial symbiosis; ethnocomputing  



2 

2 

Declarations 

Funding 

This research is supported by National Science Foundation (NSF) grant #1640014 and Mcubed 
grant #8330 

Conflicts of Interest 

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the 
contents of the manuscript and there is no financial interest to report. 

Availability of data and material 
Data used within this work is available at https://github.com/robinsonkwame/kente-cloth-
authentication 

Code Availability 
Code used within this work is available at https://github.com/robinsonkwame/oc-svm 
 
  



3 

3 

Introduction 
Mass production economies have introduced many ills into social life, including high rates of 
mental and physical illness from dull repetitive jobs; high rates of environmental degradation; 
and a “junk food” approach to both physical and informational over-consumption (Michelsen and 
Bildt, 2003; Coccia 2017; Hunt et al 2018). Artisanal fabrication, in contrast, tends to embody 
the opposite effect. Artisans often report that they are drawn to their craft because it is an 
enjoyable and rewarding form of labor. Traditional fabrication methods often use locally sourced 
and sustainable supply chains. And (at least traditionally) artisanal items were purchased in 
more thoughtful ways, often establishing a personal relationship between buyer and seller. In 
our prior work (Eglash et al 2019), we suggested that AI, robotics and other forms of 
automation, if properly designed and implemented, could gradually scale these beneficial 
systems towards the development of an artisanal economy. One small step in that direction 
might be AI guides that help connect consumers with artisanal producers. In this paper we 
explore a prototype, Authente-Kente, to help guide consumers toward selection of authentic 
hand-woven kente cloth, and thus diminish income loss due to mass produced fake cloth.  
 

The Problem Context 
Traditional artisanal items often compete with mass-produced fakes. M’Closkey (2010) 
estimates that out of roughly 2 billion in annual sales of “Native American” goods, about 50% is 
not actually of Native origin. Similar problems arise elsewhere: for example, Mehra (2019) 
reports that due to competition from mass produced fakes, the number of Pashmina shawl hand 
weavers had dropped from over 100,000 in 2007 to about 10,000 in 2017. The artisanal product 
of concern in our case study is Kente cloth, a traditional fabric from the West African nation of 
Ghana. Kente is of great symbolic importance as a symbol of African heritage, not only in 
Ghana but also abroad.  African American students often wear a kente stole at graduation. In 
January 2018 members of the Congressional Black Caucus wore kente cloth wraps and scarves 
to the State of the Union Address to protest the rising racism in populist politics (figure 1).  
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Figure 1: Members of the Congressional Black Caucus wearing kente on Jan 30, 2018. 

 
As in other cases of artisanal production, authentic hand-made kente cloth is in competition with 
lower cost imported fakes. Howard et al (2016) note the steep decline in Ghana’s textile industry 
due to fake imports: from about 25,000 employed in 1977 to under 3,000 by 2005. Revenue loss 
from fake imports of all products (including textiles) is now estimated to be over $1 billion in 
Ghana (Boateng 2019). On the positive side, Ghana’s tourism industry contributed $2.7 billion, 
or 6.2% of the national GDP, in 2017 (Oxford Business Group, 2019). If tourism could be tied to 
selective purchase of authentic, locally produced textiles, declines for that industry could be 
reversed. Thus a cell-phone based AI guide for directing tourists towards purchasing authentic 
textiles seemed like a promising prototype for experimentation in this area.  
 
Prior work on automated authentication of artisanal textiles has not focused on the tourist trade. 
Rather they are typically made for professional export industries. One exception is the case of 
Pashmina shawls: the Kashmir government set up a six million dollar testing facility to ensure 
that the fibers are purely composed from hair of the Pashmina goat (Capra hircus), and issued a 
microchip-enabled authentication seal (Parvaiz 2017). However these are mainly serving large 
high-end tourist shops, where shawls are sold for as much as $1000 each. Even then, decoding 
the chip requires an infrared light reader before its code can be checked with an online 
database. On the whole, the system is somewhat akin to visiting a diamond merchant and 
asking for authentication of the gem’s intrinsic value with respect to provenance and crystalline 
composition. 
 
On the one hand top-down authentication systems are very helpful in two circumstances. Firstly, 
in cases of high intrinsic value. Diamonds have a laser-etched serial number if they have been 
certified (Carl 2016). Individual diamonds are worth thousands or millions. Secondly, for a highly 
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regulated industry. Pharmaceuticals may be low cost as individual packets, but the industrial 
wealth and the power of medical institutions are such that they can afford to maintain and 
manage a highly regulated system of suppliers and retailers. 
 
Kente cloth weavers, on the other hand are in neither category. Their individual weavings sell 
for relatively low cost and as a group they are neither regulated nor wealthy. Thus preventing 
someone from appropriating a barcode meant to be used by weavers and applying it to factory 
fakes would be very difficult. Indeed one of the best known modern texts on kente cloth is titled 
"That Copyright Thing Doesn't Work Here" (Boateng 2011). 
 
Kente cloth, in contrast, is generally created by low-income communities in Ghana and sold at 
relatively low prices. The confusion for tourists comes primarily not from duplicate weavings, but 
rather kente prints. Mass-produced in factories at very large scales, it replicates the geometric 
patterns and colors as an image printed on ordinary cloth. We will refer to these as “fake” kente, 
because from a weaver’s perspective it is marketing a phoney version of their craft for lower 
prices than they can compete with.1 What motivates tourists to take efforts to guarantee the 
authenticity of weaving in the case of Pashmina--the perception of a high intrinsic value due to 
specific types of fibers and process--is clearly not present in the case of kente prints, at least in 
the context of large markets where we have observed this confusion first hand.  
 
On the other hand, tourists in the presence of a weaver clearly value the cloth for its hand-made 
character, even when the fake print version is also available at lower cost. Communities 
devoted primarily to kente weaving have had some significant success. For example, Edusei 
and Amoah (2014) examined the labor demographics for the Kwabre East District of Ghana, 
which includes the villages best known for kente weaving. Out of 27,000 households, an 
estimated 10,000 jobs were in the textile industry (which includes  weavers as well as thread 
suppliers, tailors, retail vendors, etc.). While we tend to think of tourists visiting a weaver as 
somewhat artificial or contrived, such personal encounters between maker and buyer are 
arguably closer to the Indigenous economic tradition than, say, shopping at Ghana’s Accra mall 
(which is modeled on American malls, including food courts, security guards and so on). In the 
original Indigenous economy, value circulated in the form of collaborative labor groups, rituals of 
gift exchange, a shared resource commons, and other elements of what is sometimes referred 
to as “relational economies”. Curry and Koczberski (2012), examining how aspects of relational 
economies still exist today alongside commodity economies, note:  
 

In these transactions, an intrinsic relation exists between the item of exchange and its 
donor, in that the exchange item can be conceptualised as constituting ‘parts of persons’ 
themselves.... From this perspective, the gift contains the embodiment of the donor and 
is never fully alienated from the person as in commodity transactions. 
 

                                                
1 A case can be made that the print is not intended to be mistaken for handwoven, and therefore 
legitimately sold. But we have observed tourists failing to grasp the distinction, so the impact on weavers 
is the same. There are also distinctions between “authentic prints” made in Ghana, and those produced in 
foreign countries and smuggled across the border, but that is beyond the scope of this paper.  



6 

6 

This helps us see what is happening when hand-woven kente is selected by tourists in areas 
where they see it made, in contrast to the commodity transaction with cheaper kente prints in 
places like Accra’s National Center for Culture, which is Ghana’s largest tourist market. Unlike 
Pashmina, which can claim value in the material properties (as a commodity), exporting hand-
made kente to sites of mass consumption like a mall breaks the relational link that was (and is) 
a crucial source of its value. Thus it makes sense to seek an authentication process that can 
operate in more generative modes. To merely distinguish between real and fake might be 
appropriate for commodity marketing, but if AI is to play a role in the transition to a generative 
economy, it needs to facilitate a richer set of producer/consumer relationships. 
 
If we think about the commodity-based, mass manufacturing system as something that has 
broken relationships, then a system for more generative forms of authentication might be 
understood metaphorically as a kind of prosthetic for replacing missing parts and restoring 
functionality to the social organism. To this end we envision a system in which artisans can use 
cell phones (ubiquitous in Ghana) to upload making-in-action videos, conversations with elders, 
comments on favorite weaving patterns, symbolic meanings of colors and shapes, or other 
media representations that tell their story from the production side. From the buyer side, 
automated identification of a textile would enable locating a best guess for its point of origin, 
access to the producer’s media (including identification of the pattern’s symbolic meanings), and 
perhaps even opportunities for two way communication (“please be a guest speaker in my 
class”, “my wife wants to show you the beadwork she sells”, etc.). And there is no reason this 
must be restricted to textiles; any purchase could be approached in this way, allowing more 
insightful and purposeful buying and selling. 
 
Setting aside for the moment this ambitious vision of what generative authentication might 
become, a basic functionality for distinguishing real handwoven versus fake printed patterns 
seemed like the most fundamental first step. Below we describe our initial experiments using an 
Authente-Kente task specific machine learning pipeline to make this basic distinction. 
 

Overview 
In selecting the AI method, we began with the observation that the problem of distinguishing 
between authentic handwoven and fake (printed) kente patterns is broadly related to anomaly or 
fraud detection (Hodge and Austin 2004). There are many possible approaches to automated 
anomaly detection (Das 2009); we narrowed our choice by taking into account two constraints. 
 
First, we can expect the proportion of authentic to fake instances will vary greatly by site. 
Typically, tourists would encounter far more instances of printed kente in the Accra mall than 
would in the village of Asonomaso, within the Kwabre East District, where authentic kente is 
ubiquitous. In other cases the ratio may be closer to 1:1. Thus it is important that Authente-
Kente perform well against both authentic and fake instances of kente cloth, independent of 
authenticity prevalence. This raises an unusual challenge in that most statistical anomaly 
derivations assume a fixed ratio of anomalous/normal cases derived from a static application 
domain (Das 2009). Our framework for generative authentication, in contrast, requires that 
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solutions work across a variety of contexts with varying and unknown ratios of anomalous 
cases. Thus we began prioritizing success metrics by assuming equal prevalence, keeping in 
mind that re-assessing this assumption might be needed as data comes in from real-world 
deployment. 
 
Second, as a practical matter we had a limited number of authentic kente cloths available as 
samples. Extensive field work might slowly accumulate more, but nothing like the thousands of 
cases required if we wanted to use whole cloths as the samples. The relatively high number of 
sample cases is typical in machine learning, particularly Deep Learning (LeCun, Bengio, and 
Hinton 2015), where convolutional neural networks (CNNs) have facilitated empirical success 
for complex visual recognition tasks. Some strategies have reduced the training set size: in 
Yadav and Jadhav (2019) for example, automated medical image classification for rare disease 
diagnosis out-performed trained doctors, using only 5,232 training images. However that is still 
magnitudes of order greater than our sample size of a dozen or so cloths. To resolve this issue 
we created many local samples of each cloth; we refer to these as “swatches.” This was 
facilitated by the visual complexity of kente, which has a wide variety of geometric design 
elements, grouped in particular arrangements, and organized in arrangement patterns. We 
followed exactly the same process with fake whole cloths, deriving sample swatches from them 
in the same experimentally controlled manner. Finally, we note that in a real-world situation, 
tourists will likely find it easier to casually take cell phone photos of folded cloth (swatches) than 
ask that each cloth be fully unfolded and extended. 
 

Pipeline Overview 
As noted above, our initial prototype addresses the problem of guiding a tourist towards 
authentic hand-woven kente cloth as a socio-technical decision problem to be supported by an 
efficient machine learning pipeline. The problem domain defined by this envisioned future 
application, illustrated in Figure 2, shows the user taking a close up photo of  a whole kente 
cloth--i.e. a swatch--and getting back an authentic/fake classification from the application. In our 
laboratory mockup, we begin with a whole cloth, which is broken into swatch images (artificially 
creating what real-world users would do) and provide the swatch to the machine learning 
pipeline. Training on swatch samples for both authentic and fake cloths then produces a reliable 
classification system using a CNN. We experimentally investigated the success of the pipeline 
on randomly generated swatch images as described in later sections.  
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Figure 2: Current Experimental Problem Domain 

 
 
Whole Cloth Validity 
We generated swatches from 16 whole kente cloth samples, given in Figure 3: eight authentic, 
and eight fake (i.e. machine printed), and represented in Figure 4: sample grid and tonal color 
distribution of fake and authentic swatches. Authentic cloths included 7 museum pieces, and 
one collected by one of the authors in the village of Bonwire in 2011. The fake samples were 
sourced from a variety of manufacturers. The typical whole cloth sample was imaged at least 
2000 x 2000 pixels, with the smallest sample spanning 633 x 633 pixels (museum, authentic) 
and the largest sample spanning 2981 x 2981 pixels (in-hand, fake). Environmental lighting 
conditions for fake whole cloth photos were kept similar to that of the authentic whole cloths 
through omnidirectional lighting without occlusions. All whole cloth samples were square. Table 
1 contains the whole cloth specifications. 
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Figure 3: Eight whole kente cloth samples in each group (fake and authentic) 

 
 

  Environmental Conditions Sample Size 

Source Type Lighting Occlusion Dates & 
Times of 

Day 

Whole 
Cloths 

Swatches By Type 

Museum Authentic Omni* None Varied 7 875 1000 

In-hand Authentic Omni* None 1/23/2020 @ 
~ 5pm 

1 125 
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 Fake Omni* None 5/1, 5/15 & 
6/18 2020 @ 

~5 pm 

8 1000 1000 

Table 1: Sample environmental condition and sizes 
* Omni refers to omnidirectional natural lighting without lighting hotspots 

 
 
Swatch Construct Validity 
Figure 4.A and Figure 4.B radially lay out2 swatches in a mosaic from lighter to darker tones 
without replacement starting from the center. In Figure 4.C the red, green and blue (RGB) 
swatch tonal histogram of both authentic and fake swatches share similar shapes although the 
fake swatch color is more peaked at the mid-dark tones. Taking a standard model of human 
color perception into account, in Figure 4.D, the LAB3 histograms also indicate similar shapes. 
The LAB differences include a peak in L* (lightness) values for fake swatches as compared to 
authentic swatches, wider a* (green/red) distribution in fake swatches and a sharper b* 
(blue/yellow) distribution in authentic swatches. In Figure 4.E, as a simplified cylindrical volume, 
fake and authentic swatches are virtually the same. Only the center of mass differs and mainly 
along the L* component. 
 
In aggregate, these differences are visually identifiable as in Figure 4.A and Figure 4.B as 
authentic swatches having less “saturation” relative to the artificial inks of fake swatches and 
that fake swatches have darker inks that are somewhat darker than authentic swatches. In 
addition, we can see that the range in 4.A is relatively smooth, while that of 4.B changes by 
discrete steps. Adherence to traditional patterns (4.B) versus introduction of invented patterns 
(4.A) may be causing this effect.  Another possible cause is that weavers are purchasing thread 
from similar supply chains, and these threads tend to be offered in relatively discrete categories 
(the 6 primary and secondary colors). In contrast textile inks are marketed to manufacturers in a 
continuous range of colors.  We have endeavored to ensure that these color range differences 
are not accidentally added by lighting, camera angle or other external factors, as noted in our 
Whole Cloth Validity section above. 
 
The dissimilarity of Figure 4.A and Figure 4.B may give the impression that it will be easy to  
identify a particular swatch as in either the fake or authentic category. But these are showing us 
the aggregate characteristics. Any single swatch, as a user would examine in a market, is a 
single realization of color variables drawn from largely overlapping distributions. Viewed 
statistically, the overlapping distributions induce similar mean and variance statistics that 
prevent LAB components and tone from being discriminative enough to achieve high 
classification accuracy. This discriminative difficulty is mirrored by our original problem 

                                                
2 Using a mosaic layout algorithm by dvdtho available at https://github.com/dvdtho/python-photo-mosaic 
3 The CIE L*a*b* color space model, abbreviated as LAB, is a non-linear model based on human 
color perception and expresses color in terms of L*, lightness, from black (0) to white (100), a* from 
green to red and b* from blue to yellow. 
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motivation that tourists, using color alone, are not reliably able to determine if a cloth is 
authentic or fake. This suggests that a more powerful model is needed.  
 
 

 

 
Lighter Tone Darker Tone 
 

(A) Sample fake kente swatches 

 

 
Lighter Tone Darker Tone 

 
(B) Sample authentic kente swatches 

 
(C) Histogram of sample tonal intensity 

 
(D) Histogram of LAB components 
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(E) Approximate LAB volume extents and center of mass for kente swatch samples4 

Figure 4: Sample grid, tonal color, LAB color histograms, sphere of fake and authentic swatches 
 
In addition to the challenge of making the fake/authentic distinction from these sets of swatches, 
we can expect that tourists casually taking images will introduce many sources of natural 
variation. Data augmentation (Shorten and Khoshgoftaar 2019) provides a controlled method for 
post-processing to be consistent with sources of natural variation. We endeavored to replicate 
the natural image variation through data augmentation that randomly applies minor image 
transformations to each of the 2,000 swatches. These mimicked  the real-world variability in the 
angle of the photo, the type of phone, and the environmental lighting.  
 
Unless the user’s wrist holds the phone perpendicularly the resulting swatch will be oblique to 
the camera lens. Therefore we randomly rotate a swatch along three dimensions (the axes 𝜃, ɸ, 
𝛄). The rotation of the plane formed by axes 𝜃 and ɸ simulate rotation parallel to the kente cloth 
and the rotation along the axis 𝛄 simulates cell phone camera forward rotation formed by the 
natural tit of the wrist. The image sensor in the phone has a unique color profile such that 
swatch color can subtly differ across phones. We randomly and slightly perturb the red, green 
and blue color channels of the swatch image to induce variations in color. Finally, the user 

                                                
4 Photo Reference Credit “About Color Management,” Sony. 2020. Accessed: 
https://www.sony.co.uk/electronics/support/about-color-management 
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location creates the possibility of shadows falling on the swatch. Each swatch image has a 
randomly projected shadow on it ranging intensity from 0% (invisible) to 10% in lightness. 
Source code for generating this dataset from scratch5 is openly available. We account for these 
expected sources of natural visual variation through data augmentation. Figure 4 lays out 
swatches from lighter to darker. The red, green and blue (RGB) swatch color distribution of both 
authentic and fake swatches share similar shapes although the fake swatch color is more 
saturated (e.g. vivid). That the tonal color distributions largely overlap another means that color 
(including hue , lightness and saturation) alone is not discriminative enough to distinguish 
between authentic and fake kente. 

 

Dataset Generation 
We took care to create a balanced dataset of authentic and fake kente swatches. From each 
whole cloth 125 swatches are generated, per Swatch Construct Validity. Swatches of size 224 
by 224 pixels are randomly extracted from whole cloth samples to create a balanced dataset of 
1000 authentic and 1000 fake swatches. The data are split into training (750 cases), validation 
(750 cases) and evaluation (500 cases) datasets. Experimental Data Evaluation discusses the 
partitioning of the dataset in additional detail. 
 
 
A Brief Background on Convolutional Neural Networks (CNNs) 
Progress on ImageNet (Russakovsky et al. 2014), a classic computer vision object recognition 
challenge involving thousands of objects in natural settings, had largely stalled in the field of 
computer vision in early 2010. However, convolutional neural networks (CNNs), first used by 
Alex Krizhevsky et al. (2012), showed the potential to dramatically improve state of the art 
performance (in their case on the ImageNet Object recognition task). CNNs are a type of deep 
learning modelled after the human visual cortex and achieve their high performance by mapping 
pixels to hidden neuron layers. The hidden layers provide a variety of convolutions 
(subsampling processes to generate a set of data driven features). Finally, it correlates those 
features to class probabilities (e.g. classification decisions) within the final layer. Massive 
numbers of samples and stochastic gradient descent are techniques required for efficient 
learning of what features correlate to class probabilities in deep learning, including CNNs. 
 
Using an already trained CNN, one can take advantage of the initial layers, which have already 
learned to extract visual features such as edges and textures, and limit training for the particular 
case at hand to its task-specific needs. One advantage of that is reducing training time; another 
is environmental. Typically, hardware acceleration in the form of graphical processing units 
(GPUs) are utilized, and GPUs require significant amounts of power while running the 
backpropagation neural network training process over many iterations (Strubell, Ganesh, and 
Mccallum 2019). We therefore used an already trained CNN, MobileNet v2 (Howard et al. 
2017), designed for efficient real time prediction within mobile phones.  

                                                
5 See https://github.com/robinsonkwame/kente-cloth-authentication 
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Specifically, we carry out an indirect form of transfer learning by using the MobileNet object 
classification likelihoods as a feature vector passed to the next stage of Authente-Kente, 
principal component analysis. The feature vector is the output layer of the MobileNet CNN and 
has 1280 * 7 * 7 = 62,627 feature vector variables that take on particular values (e.g. predicted 
object likelihoods) for a given 224 x 224 pixel subsection presented at the input layer. We 
discuss how the feature vector is reduced in the following section. 
 
Dimensionality Reduction 
Given that we only have 2,000 kente swatches the feature vector size exceeds the number 
samples and presents an ill-posed statistical learning problem (e.g. p >> n) that requires a 
reduction of the feature vector size. We apply the standard practice of principal component 
analysis (PCA), a statistical technique that orthogonally transforms a larger matrix into a smaller 
matrix of linearly uncorrelated components called principal components. In our case we have 
1,500 samples across the training and validation dataset (see Experimental Data Evaluation). 
We opt to reduce the feature vector to a standard 𝑛/2 principal components that together 
explain 77% of the total variance. The component eigenvalues are all larger than 1 so we retain 
them as is standard. The PCA decomposition explains a large percentage of the input feature 
vector variance while reducing the input matrix to dimensions that present a well posed 
statistical problem. 
 
Logistic Regression 
Logistic regression is a common statistical model for binary outcomes and is used to model the 
decision of whether a subsection is from fake or authentic kente cloth (e.g. -1 for fake kente, 1 
for authentic kente). In our formulation we use the PCA decomposition of the MobileNet feature 
vector as independent variables from which to learn a logistic regression model. Regression is 
particularly applicable in an applied setting because it is computationally efficient to evaluate. 
Regression models are learned by statistically fitting model coefficients through an optimization 
process that uses a loss function to numerically express the difference between predicted 
outcomes and actual outcomes (e.g. error). Domain specific loss functions often better 
generalize fitted model coefficients by controlling for known sources of error in the problem 
domain. 
 
Authentication error can be characterized by the cost and type of misclassification. A type of 
kente may be misclassified as a false positive or a false negative, with related statistical 
measures sensitivity and specificity. In a random marketplace the prevalence of fraud is 
unknown and so we assume an equal cost of misclassification to avoid bias. To control for equal 
misclassification cost and type we use the F1-macro loss function to induce a logistic regression 
model that equally minimizes and balances error. Here we assume that authentic and fake 
kente are equally likely and their misclassification equally costly. 
 
Experimental Data Evaluation 
Experimental evaluation in machine learning situations is complicated by the difficulty of 
estimating the standard error of a model. The standard approach is to use cross validation to 
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estimate appropriate model parameters and performance, using a training dataset for training 
the machine learning model and using a separate dataset, the validation dataset, to validate 
chosen model parameters. A third, separate dataset of unseen whole cloths, the evaluation 
dataset, is used to estimate the out of sample model error (Kohavi 1995). To maximize external 
and internal validity we separate the data into training (750 cases), validation (750 cases), and 
evaluation (500 cases) datasets. The training and validation swatch datasets are generated 
from the same whole cloth images. The evaluation swatch dataset is generated from a different 
set of whole cloth images; no swatch in the evaluation dataset has been seen by the proposed 
model derived from the training and validation datasets. Source code for generating our dataset 
from scratch and running the machine learning experiment6 is openly available. 
 
To claim significance we evaluate our pipeline along a gamut of standard binary classification 
metrics: precision, recall, macro-F1 and weighted-F1 and accuracy (Tharwat 2018). We use 
precision, recall, macro-F1 and weighted-F1 to support our claims of significance and set 
purposively low thresholds a priori as given in Table 2 since the problem of visual kente 
authentication has not been addressed in the literature. We answer the experimental question of 
whether it is possible to significantly and efficiently decide if a swatch belongs to an authentic or 
fake kente whole cloth. This is done through a computer science experiment involving training, 
validation and evaluation datasets, as detailed in Table 3. Computational efficiency is supported 
by using a pretrained MobileNet (Howard et al. 2017) model, a CNN specifically designed for 
use on cell phones, and logistic regression as our decision algorithm, which reduces to matrix 
multiplication with coefficients. Several efficient algorithms for PCA are commonly available. 
 
 

A Priori Metric A Priori Threshold 

Per Class Precision 0.60 

Per Class Recall 0.60 

Macro F1 0.60 

Weighted F1 0.60 
Table 2: Threshold criteria for establishing significance  

 
 

Dataset  

Unseen Cases Shared Cases Experimental Step 

Evaluation Validation Training  

                                                
6 See https://github.com/robinsonkwame/oc-svm 
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  Fit PCA on Training 1 Run PCA(375 dim) 

PCA(Eval) → EvalPCA PCA(Val) → ValPCA  PCA(Train) → TrainPCA 2 Transform datasets 

  CrossValidation(TrainPCA, LR) → 
LRtrain 

3 Train, cross-validate 
Logistic Regression 

 LRtrain(ValPCA) → PredVal 
4 Predict against 
validation swatches 

 Significance(PredVal) > A Priori Thresholds 5 Examine significance 
metrics, proceed 

 
CrossValidation(ValPCA+TrainPCA, LR) → LRtrain+val 

6 Train, cross-validate 
Logistic Regression on 
all shared cases 

LRtrain+val(EvalPCA) → PredEval 
7 Predict against 
evaluation swatches 
(never before seen 
cases) 

Significance(PredEval) > A Priori Thresholds 8 Examine significance 
metrics, report any 
results exceeding 
thresholds 

Table 3: Initial Authente-Kente Experimental Steps 

Results 

Following the experimental setup given in Table 3, a logistic regression model was first cross 
validated against the training dataset and results were observed to exceed the a priori 
threshold. Then those parameters were used to re-train the same logistic regression model on 
the combined training and validation dataset. The re-trained model was then evaluated on the 
evaluation dataset, as indicated in step 7 of Table 3 and the resulting predictions scored as 
indicated in step 8 with all metrics exceeding the a priori threshold. A summary of results is 
given in Table 4. The training and validation datasets had 750 cases each and the evaluation 
dataset had 500 cases. The number of true cases per class is indicated in the support column. 
There are 250 fake and authentic cases within the evaluation dataset. 

 

Evaluation Dataset Metric 

Class Precision Recall F1 Score Support 

Fake 0.88 0.88 0.88 250 

Authentic 0.88 0.88 0.88 250 

Accuracy Precision Recall F1 Score Support 
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Macro Average 0.88 0.88 0.88 500 

Weighted Average 0.88 0.88 0.88 500 
Table 4: Summary of Authente-Kente machine learning pipeline experimental results 

* all metrics exceed a priori threshold values 
 
Relative to the a priori metrics given in Table 2 the Authente-Kente machine learning pipeline 
exceeds the thresholds by large margins. Noticeably, a large majority (recall of 88%) of 
authentic swatch cases are identified and when authentic cases are identified they are 
accurately predicted to be authentic (precision of 88%). This balance between recall and 
precision is reflected in both macro and weighted averages of 88%. It is important to note that 
the precision and recall scores are the same. Per the Logistic Regression section, the loss 
function induces a learned model trained to equally minimize across error types. Precision and 
recall can be the same when the number of swatches that were actually authentic, false 
negatives, are the same as the number of swatches that are actually fake, false positives, as 
observed in Table 4. This is because precision and recall only differ in their denominator, using 
false positives and false negatives, respectively. 

Discussion & Future Work 
These results against a large number of unseen kente cloth swatches suggest that our 
implementation significantly captures part of the visual distinction between authentic and fake 
kente cloth. Although the results are significant, in future work the application needs to be 
connected to its larger social-technical context. One important social context is the local 
prevalence of fake kente where the application is in use. As an example, imagine 500 whole 
kente with a 5% counterfeit rate. In this case there are 25 fake whole cloths. In this low 
prevalence example, with a recall of 0.88 Authente-Kente would incorrectly identify 60 authentic 
whole kente as false. If the user received the authentication decision “likely fake'' there is only a 
29% chance that it was accurate in this example. An application that was connected to local 
artisans and regional data could continue to train as a way to improve accuracy, or selectively 
account for prevalence to improve overall decision reliability. By design the application makes 
no assumption and assumes the prevalence rate is equal. This can be addressed in future work 
with the mobile application that contains the machine learning pipeline. 
 
The components of this machine learning pipeline are computationally efficient and we expect a 
real world solution to run in real-time. The nearly 1/3 improvement over the a priori threshold 
provides an indication of experimental significance to the user and the possibilities for becoming 
one element in a larger platform connecting buyers and artisans. Another element for such 
platforms might be in STEM education, “whiteboxing” the system to provide an example for how 
AI can be of social benefit. Our prior work in Ghana shows statistically significant improvement 
in STEM lessons anchored in this kind of merger between computing and culture (Babbitt et al 
2015; for access to the culture-based learning software see https://csdt.org/). 
 
A third element might be kente pattern identification. There is a wealth of symbolic meanings, 
histories, aphorisms and other details woven into the cloths, but easily forgotten (if they were 
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communicated at all). Adding an AI application connecting, for example, a video clip of an elder 
explaining the meaning of a particular symbol, pattern or style would give such a platform value-
added significance. Further extensions could be obtained by ensuring the sustainability of raw 
material sources. We have explored this in our work on Ghanaian adinkra textiles 
(https://generativejustice.org/solar-dye-in-ghana/), and it could be further enhanced using GIS, 
IoT and other systems.  
 
A final element for consideration is enabling the sharing and collection of video recordings of 
textiles being created by artisans. The ability to connect to someone who creates the kinds of 
kente cloth and patterns just purchased creates a "value added" that benefits both consumer 
and producer. In future work, our envisioned system will enable partners in Ghana to directly 
collect images of kente cloth and patterns. Generally, AI and associated ICT could be utilized as 
a means to create an ecosystem of services that enhance unalienated labor, sustainable 
feedstocks and the expressive values of cultures past and future, as we have outlined 
elsewhere (Eglash et al. 2019). 
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