X-ray diffraction studies of GaN p-I-n structures for high power electronics
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Introduction

Although Si-based electronics are used to power light-emitting diodes and
electric venhicles, their utility in high power applications Is limited by a low
breakdown voltage. The most promising alternative power devices consist of
vertical GaN devices, which often require regrown active regions. Here, we
report on x-ray diffraction studies of the crystallinity of the GaN p-I-n structures
prepared with and without ex-situ ambient exposure and/or chemical etching.
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Threading Dislocations (TDs)
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How can we guantify screw- and edge-type dislocation densities?

High Resolution X-ray Diffraction (HRXRD)
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Pseudo-Voigt Analysis of HRXRD
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Regrowth Interface at p-n Junction
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Symmetric and Asymmetric Scans
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Structure & Electronic Properties Correlation
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Regrowth Interface In UID Layer

GaN Substrate ICP ICP + TBCI TBCI
>um UID GaN N .I(:.P.e:c;;d. I _ICP etch;+ TBCI etched . _TBCEched_ o
H . 2um UID GaN 2um UID GaN 2um UID GaN
=
Regrown ICP Regrowth ICP + TBCI Regrowth TBCI Regrowth
Active Region .’
; ICP etched ICP etched + TBCI etched TBCl etched
2um UID GaN 2um UID GaN 2um UID GaN

300nm UID GaN

300pum n-GaN 300pum n-GaN 300pum n-GaN



Symmetric Scans Only

symmetric

ICP + TBCI

: | !
. 15
_ TBCI
l L ! Ili.l-” . ‘ ‘
. II .
! | |
| |
| : ‘

SUbstrate

Log X-ray Intensity

B> i€

-1000 -500 0 o000 1000 1000 -500 0 o000 1000
Aw (arcsec) Aw (arcsec)



Probing the structure with XRD & RBS
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Abstract

Although Si-based electronics are used to power light-emitting diodes and
electric venhicles, their utility in high power applications Is limited by a low
breakdown voltage. The most promising alternative power devices consist of
vertical GaN devices, which often require regrown active regions. Here, we
report on x-ray diffraction studies of the crystallinity of the GaN p-I-n structures
prepared with and without ex-situ ambient exposure and/or chemical etching.
The full width at half max (FWHM) of phi and omega scans were used to
guantify the mosaicity and threading dislocation (TD) densities at the p-I
Interfaces. The lowest screw-type and highest edge-type TD densities are
observed for the “in-situ”™ GaN structure, which also produces the highest
Interfacial near-band edge (NBE) and donor-acceptor pair (DAP)
cathodoluminescence (CL) emissions. Interestingly, elastic recoil detection
analysis (ERDA) and Rutherford backscattering spectroscopy reveal the lowest
Interfacial [H] but the highest fraction of displaced Ga atoms, suggesting
efficient incorporation of Mg, In the In-situ structure. On the other hanaq, for the
ex-situ structures, minimal Interfacial [H] Is also observed, but the lowest
Interfacial NBE and DAP CL emission Is apparent as well as the highest screw-
type TD density. The relationship between Interfacial [H|, displaced Ga, CL
emission features, and screw- and edge-type dislocation densities will be
discussed.



Pseudo-Voigt Analysis of HRXRD

The Pseudo-Voigt function, P(x), approximates the convolution of Cauchy, C(x),and
Gaussian, G (x), profiles and is given by equations (1):

P(x) = Iy[nC(x) + (1 —n)G(x)]
and 0 < n <1, where n Is a fitting parameter [6]. The lateral correlation length, L, and tilt

angle, a,,, can then be calculated using equations (2) and (3), respectively:
0.91

B,(0.017475 + 1.50048n — 0.53415612)sin(6g)
a, = 6w[0.184446 + 0.812692(1 — 0.998497n)1/2 — 0.659603n + 0.44554n2]

where A Is the x-ray wavelength, ow I1s the FWHM of the Aw rocking curve, and 65 Is the
Bragg angle [6].
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