X-ray diffraction studies of GaN p-i-n structures for high power electronics

Alexandra Zimmerman¹, Jiaheng He¹, GuanJie Cheng¹, Davide del Gaudio¹, Jordan Occena¹, Fabian Naab², Mohsen Nami³, Bingjun Li³, Jung Han³, Rachel Goldman¹

¹Materials Science and Engineering, ²Michigan Ion Beam Laboratory, University of Michigan, Ann Arbor, MI 48109, USA ³Department of Electrical Engineering, Yale University, New Haven, CT 06520, USA

Introduction

Although Si-based electronics are used to power light-emitting diodes and electric vehicles, their utility in high power applications is limited by a low breakdown voltage. The most promising alternative power devices consist of vertical GaN devices, which often require regrown active regions. Here, we report on x-ray diffraction studies of the crystallinity of the GaN p-i-n structures prepared with and without ex-situ ambient exposure and/or chemical etching.

GaN for High Power Electronics

- •Blue: LEDs and electric vehicles utilize silicon-based power electronics [1].
- Yellow: Power transmission and distribution require alternative approaches [1].

GaN outperforms Si, SiC with low on-resistance and high breakdown voltage [2].

Breakdown voltage (V)

Threading Dislocations (TDs)

How can we quantify screw- and edge-type dislocation densities?

High Resolution X-ray Diffraction (HRXRD)

Pseudo-Voigt Analysis of HRXRD

Screw TD density $2\pi \boldsymbol{b}_{S}^{2}\ln 2$

Edge TD Density

 $\sqrt{2\pi ln2} |\boldsymbol{b}_E| L_{\parallel}$

- P(x) Pseudo-Voigt function Cauchy profile
- Gaussian profile
- Fitting parameter
- Lateral correlation length
- $\Delta\omega$ rocking curve FWHM X-ray wavelength
- Mosaic tilt angle
- Screw TD Burger's vector Mosaic twist angle
- Edge TD Burger's vector

Regrowth Interface at p-n Junction

Structure & Electronic Properties Correlation

Sample	δω (arcsec)	η (from $\Delta\omega$)	α_{ω} (10 ⁻⁴ rad)	<i>N_s</i> (10 ⁶ cm ⁻²)	<i>L</i> _∥ (µm)	$\delta \phi = \alpha_{\phi}$ (10 ⁻⁴ rad)	N _E (10 ⁸ cm ⁻²)
In-situ	52	0.428	1.5	1.9	1.7	528	47.5
Ex-situ	68	0.033	3.2	8.6	11	454	6.4
ICP Etched	59	0.229	2.2	4.2	2.4	102	6.2
Substrate	50	0.222	1.9	3.1	3.0	108	6.3

Probing the structure using XRD:

- Ex-situ and ICP Etched had the largest screw-type TD densities
- In-situ had the lowest screw-type TD density and the highest edge-type TD density

Probing electronic properties using cathodoluminescence

- Donor acceptor pair emission (DAP) near the surface is lowest for Ex-situ and ICP Etched
- DAP emission at the regrowth interface is enhanced for ICP etched

Ambient air exposure worsens crystallinity and electronic properties, but ICP etching can partially restore the electronic properties.

Regrowth Interface in UID Layer

Probing the structure with XRD & RBS

Sample	β_{ω} (arcsec)	η (from $\Delta\omega$)	$lpha_{\omega}$ (10 ⁻⁴ rad)	N _S (10 ⁶ cm ⁻²)	L_{\parallel} (µm)	$ \beta_{\phi} = \alpha_{\phi} N_E $ (10 ⁻⁴ rad) (10 ⁸ cm ⁻²)
ICP + TBCI	70	0.059	3.2	8.5	6.6	Future XRD work:
ICP + TBCl Regrowth	47	0.287	1.6	2.3	2.5	 Conduct (10-15)
TBCI Regrowth	37	0.372	1.2	1.1	2.6	 phi scans Calculate twist angle Calculate edge-
	36	0.547	0.9	0.7	1.9	
	53	0.322	1.8	2.7	2.0	
ICP Regrowth	89	0.117	3.8	12.2	2.9	type TD density
Substrate	48	0.201	1.9	3.0	3.3	

Probing the structure using XRD:

 ICP and ICP Regrowth had the largest screw-type TD densities

Rutherford backscattering (RBS)

- RBS channeling maps allow us to determine the fraction of displaced Ga and N atoms
- ICP and ICP Regrowth had the largest fraction of displaced Ga and N atoms

XRD and RBS reveal ICP Etching lowers crystal quality overall.

Introduction

Although Si-based electronics are used to power light-emitting diodes and electric vehicles, their utility in high power applications is limited by a low breakdown voltage. The most promising alternative power devices consist of vertical GaN devices, which often require regrown active regions. Here, we report on x-ray diffraction studies of the crystallinity of the GaN p-i-n structures prepared with and without ex-situ ambient exposure and/or chemical etching.

GaN for High Power Electronics

- •Blue: LEDs and electric vehicles utilize silicon-based power electronics [1].
- •Yellow: Power transmission and distribution require alternative approaches [1].

GaN outperforms Si, SiC with low on-resistance and high breakdown voltage [2].

Threading Dislocations (TDs)

How can we quantify screw- and edge-type dislocation densities?

High Resolution X-ray Diffraction (HRXRD)

Pseudo-Voigt Analysis of HRXRD

$$P(x) = I_0[\eta C(x) + (1 - \eta)G(x)]$$

$$L_{\parallel} = \frac{0.9\lambda}{\beta_{\omega}(0.017475 + 1.50048\eta - 0.534156\eta^2)\sin(\theta_B)}$$

$$\alpha_{\omega} = \beta_{\omega}[0.184446 + 0.812692(1 - 0.998497\eta)^{1/2} -0.659603\eta + 0.44554\eta^2]$$

Screw TD density

$$N_S = \frac{\alpha_\omega^2}{2\pi b_S^2 \ln 2}$$

Edge TD Density

$$N_E = \frac{\alpha_{\phi}}{\sqrt{2\pi ln2} |\boldsymbol{b}_E| L_{\parallel}}$$

- P(x) Pseudo-Voigt function
 - C(x) Cauchy profile
- G(x) Gaussian profile
 - η Fitting parameter
- L_{\parallel} Lateral correlation length
- β_{ω} $\Delta\omega$ rocking curve FWHM
- λ X-ray wavelength
- α_{ω} Mosaic tilt angle
- $\boldsymbol{b}_{\mathcal{S}}$ Screw TD Burger's vector
- α_{ϕ} Mosaic twist angle
- \boldsymbol{b}_E Edge TD Burger's vector

Regrowth Interface at p-n Junction

GaN Substrate

2μm UID GaN

300μm n-GaN

In-situ Regrowth

300 nm p-GaN

2μm UID GaN

300μm n-GaN

Ex-situ Regrowth

300 nm p-GaN

Ex-situ air exposure

2µm UID GaN

300μm n-GaN

ICP Regrowth

300 nm p-GaN

ICP etched 2μm UID GaN

300μm n-GaN

Symmetric and Asymmetric Scans

Structure & Electronic Properties Correlation

Sample	$\delta\omega$ (arcsec)	η (from $\Delta \omega$)	α_{ω} (10 ⁻⁴ rad)	N_S (10° cm $^{-2}$)	L_{\parallel} (µm)	$\delta \phi = \alpha_{\phi}$ (10 ⁻⁴ rad)	$N_E \over (10^8 \text{ cm}^{-2})$
In-situ	52	0.428	1.5	1.9	1.7	528	47.5
Ex-situ	68	0.033	3.2	8.6	11	454	6.4
ICP Etched	59	0.229	2.2	4.2	2.4	102	6.2
Substrate	50	0.222	1.9	3.1	3.0	108	6.3

Probing the structure using XRD:

- Ex-situ and ICP Etched had the largest screw-type
 TD densities
- In-situ had the lowest screw-type TD density and the highest edge-type TD density

Probing electronic properties using cathodoluminescence

- Donor acceptor pair emission (DAP) near the surface is lowest for Ex-situ and ICP Etched
- DAP emission at the regrowth interface is enhanced for ICP etched

Ambient air exposure worsens crystallinity and electronic properties, but ICP etching can partially restore the electronic properties.

Regrowth Interface in UID Layer

GaN Substrate

2μm UID GaN

300μm n-GaN

ICP

ICP etched 2μm UID GaN

300μm n-GaN

ICP + TBCI

ICP etched + TBCl etched 2μm UID GaN

300μm n-GaN

TBCI

TBCI etched 2μm UID GaN

300μm n-GaN

Regrown Active Region

15nm p+ GaN

200nm p-GaN

300nm UID GaN

ICP Regrowth

ICP etched 2μm UID GaN

300μm n-GaN

ICP + TBCI Regrowth TBCI Regrowth

ICP etched + TBCl etched 2μm UID GaN

300μm n-GaN

TBCl etched 2μm UID GaN

300μm n-GaN

Symmetric Scans Only

Probing the structure with XRD & RBS

Sample	eta_{ω}	η (from $\Delta\omega$)	α_{ω} (10 ⁻⁴ rad)	<i>N_S</i> (10 ⁶ cm ⁻²)	L_{\parallel} (µm)	$eta_{\phi} = lpha_{\phi} N_{E}$ (10 ⁻⁴ rad) (10 ⁸ cm ⁻²)
ICP + TBCI ICP + TBCI Regrowth TBCI TBCI Regrowth ICP ICP Regrowth Substrate	70 47 37 36 53 89 48	0.059 0.287 0.372 0.547 0.322 0.117 0.201	3.2 1.6 1.2 0.9 1.8 3.8 1.9	8.5 2.3 1.1 0.7 2.7 12.2 3.0	 6.6 2.5 1.9 2.0 2.9 3.3 	 Future XRD work: Conduct (10-15)

Probing the structure using XRD:

 ICP and ICP Regrowth had the largest screw-type TD densities

Rutherford backscattering (RBS)

- RBS channeling maps allow us to determine the fraction of displaced Ga and N atoms
- ICP and ICP Regrowth had the largest fraction of displaced Ga and N atoms

XRD and RBS reveal ICP Etching lowers crystal quality overall.

References

- 1. L.M. Tolbert, et al., "Power Electronics for Distributed Energy Systems & Transmission & Distribution Applications: Assessing the Technical Needs for Utility Applications." (Oak Ridge National Laboratory, 2005)
- 2. J.Y. Tsao et al., "Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges". Adv. Electronic Mat.
- 4, <u>1600501</u> (2018).
- 4. De Keijser, T., Mittemeijer, E. J. and Rozendaal, H. C., "The determination of crystallite-size and lattice-strain parameters in conjunction with the profile-refinement method for the determination of crystal structures." J. Appl. Cryst., 16: 309-316 (1983)
- 5. "Linear Defects Dislocations." NDT Resource Center, National Science Foundation
- 6. Metzger, T, et al. "Defect Structure of Epitaxial GaN Films Determined by Transmission Electron Microscopy and Triple-Axis X-Ray Diffractometry." Philosophical Magazine A, vol. 77, no. 4, Taylor & Francis Group, pp. 1013–25 (1998).
- 7. González-Viñas, Wenceslao & Mancini, Hector. (2003). Science of Materials: An Introduction (Pre-print).

Abstract

Although Si-based electronics are used to power light-emitting diodes and electric vehicles, their utility in high power applications is limited by a low breakdown voltage. The most promising alternative power devices consist of vertical GaN devices, which often require regrown active regions. Here, we report on x-ray diffraction studies of the crystallinity of the GaN p-i-n structures prepared with and without ex-situ ambient exposure and/or chemical etching. The full width at half max (FWHM) of phi and omega scans were used to quantify the mosaicity and threading dislocation (TD) densities at the p-i interfaces. The lowest screw-type and highest edge-type TD densities are observed for the "in-situ" GaN structure, which also produces the highest interfacial near-band edge (NBE) and donor-acceptor pair (DAP) cathodoluminescence (CL) emissions. Interestingly, elastic recoil detection analysis (ERDA) and Rutherford backscattering spectroscopy reveal the lowest interfacial [H] but the highest fraction of displaced Ga atoms, suggesting efficient incorporation of Mg_{Ga} in the in-situ structure. On the other hand, for the ex-situ structures, minimal interfacial [H] is also observed, but the lowest interfacial NBE and DAP CL emission is apparent as well as the highest screwtype TD density. The relationship between interfacial [H], displaced Ga, CL emission features, and screw- and edge-type dislocation densities will be discussed.

Pseudo-Voigt Analysis of HRXRD

The Pseudo-Voigt function, P(x), approximates the convolution of Cauchy, C(x), and Gaussian, G(x), profiles and is given by equations (1):

$$P(x) = I_0[\eta C(x) + (1 - \eta)G(x)]$$

and $0 \le \eta \le 1$, where η is a fitting parameter [6]. The lateral correlation length, L_{\parallel} , and tilt angle, α_{ω} , can then be calculated using equations (2) and (3), respectively:

$$L_{\parallel} = \frac{0.9\lambda}{\beta_{\omega}(0.017475 + 1.50048\eta - 0.534156\eta^{2})\sin(\theta_{B})}$$
194446 + 0.912602(1 + 0.009407m)\frac{1/2}{2} = 0.650602m + 0.44554m^{2}

 $\alpha_{\omega} = \delta\omega[0.184446 + 0.812692(1 - 0.998497\eta)^{1/2} - 0.659603\eta + 0.44554\eta^{2}]$

where λ is the x-ray wavelength, $\delta\omega$ is the FWHM of the $\Delta\omega$ rocking curve, and θ_B is the Bragg angle [6].

$$N_S = rac{lpha_{\omega}^2}{2\pi oldsymbol{b}_S^2 \ln 2}$$
 $N_E = rac{lpha_{\omega}^2}{\sqrt{2\pi ln 2} |oldsymbol{b}_E| L_{\parallel}}$