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Introduction
Although Si-based electronics are used to power light-emitting diodes and

electric vehicles, their utility in high power applications is limited by a low

breakdown voltage. The most promising alternative power devices consist of

vertical GaN devices, which often require regrown active regions. Here, we

report on x-ray diffraction studies of the crystallinity of the GaN p-i-n structures

prepared with and without ex-situ ambient exposure and/or chemical etching.



GaN for High Power Electronics

  

  

GaN outperforms Si, SiC 

with low on-resistance and 

high breakdown voltage [2].

•Blue: LEDs and electric vehicles utilize 

silicon-based power electronics [1].

•Yellow: Power transmission and distribution 

require alternative approaches [1].



Threading Dislocations (TDs)

How can we quantify screw- and edge-type dislocation densities?
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Screw TD density Edge TD Density

Pseudo-Voigt Analysis of HRXRD
𝑃 𝑥 = 𝐼0 𝜂𝐶 𝑥 + 1 − 𝜂 𝐺 𝑥

𝐿∥ =
0.9𝜆

𝛽𝜔 0.017475 + 1.50048𝜂 − 0.534156𝜂2 sin(𝜃𝐵)

𝛼𝜔 = 𝛽𝜔[0.184446 + 0.812692 1 − 0.998497𝜂 Τ1 2

−0.659603𝜂 + 0.44554𝜂2]

𝑃 𝑥 Pseudo-Voigt function

𝐶 𝑥 Cauchy profile

𝐺 𝑥 Gaussian profile

𝜂 Fitting parameter

𝐿∥ Lateral correlation length

𝛽𝜔 ∆𝜔 rocking curve FWHM

𝜆 X-ray wavelength

𝛼𝜔 Mosaic tilt angle

𝒃𝑆  crew TD Burger’s vector

𝛼𝜙 Mosaic twist angle

𝒃𝐸 Edge TD Burger’s vector
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Regrowth Interface at p-n Junction



Symmetric and Asymmetric Scans



Structure & Electronic Properties Correlation

Probing the structure using XRD:
• Ex-situ and ICP Etched had the largest screw-type 

TD densities

• In-situ had the lowest screw-type TD density and 

the highest edge-type TD density

Probing electronic properties using 

cathodoluminescence
• Donor acceptor pair emission (DAP) near the surface 

is lowest for Ex-situ and ICP Etched 

• DAP emission at the regrowth interface is enhanced 

for ICP etched

Ambient air exposure worsens crystallinity and 

electronic properties, but ICP etching can 

partially restore the electronic properties.

ICP 

Etched 

ICP 

Etched 



Regrowth Interface in UID Layer



Symmetric Scans Only



Probing the structure with XRD & RBS
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Probing the structure using XRD:
• ICP and ICP Regrowth had the largest 

screw-type TD densities

Rutherford backscattering (RBS)
• RBS channeling maps allow us to 

determine the fraction of displaced Ga and 

N atoms

• ICP and ICP Regrowth had the largest

fraction of displaced Ga and N atoms

XRD and RBS reveal ICP Etching 

lowers crystal quality overall.

Future XRD work:

• Conduct (10-15) 

phi scans

• Calculate twist 

angle

• Calculate edge-

type TD density
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Abstract
Although Si-based electronics are used to power light-emitting diodes and

electric vehicles, their utility in high power applications is limited by a low

breakdown voltage. The most promising alternative power devices consist of

vertical GaN devices, which often require regrown active regions. Here, we

report on x-ray diffraction studies of the crystallinity of the GaN p-i-n structures

prepared with and without ex-situ ambient exposure and/or chemical etching.

The full width at half max (FWHM) of phi and omega scans were used to

quantify the mosaicity and threading dislocation (TD) densities at the p-i

interfaces. The lowest screw-type and highest edge-type TD densities are

observed for the “ n-s tu” GaN structure, which also produces the highest

interfacial near-band edge (NBE) and donor-acceptor pair (DAP)

cathodoluminescence (CL) emissions. Interestingly, elastic recoil detection

analysis (ERDA) and Rutherford backscattering spectroscopy reveal the lowest

interfacial [H] but the highest fraction of displaced Ga atoms, suggesting

efficient incorporation of MgGa in the in-situ structure. On the other hand, for the

ex-situ structures, minimal interfacial [H] is also observed, but the lowest

interfacial NBE and DAP CL emission is apparent as well as the highest screw-

type TD density. The relationship between interfacial [H], displaced Ga, CL

emission features, and screw- and edge-type dislocation densities will be

discussed.



Pseudo-Voigt Analysis of HRXRD
The Pseudo-Voigt function, 𝑃 𝑥 , approximates the convolution of Cauchy, 𝐶 𝑥 ,and 

Gaussian, 𝐺 𝑥 , profiles and is given by equations (1):

𝑃 𝑥 = 𝐼0 𝜂𝐶 𝑥 + 1 − 𝜂 𝐺 𝑥

and 0 ≤ 𝜂 ≤ 1, where 𝜂 is a fitting parameter [6]. The lateral correlation length, 𝐿∥, and tilt 

angle, 𝛼𝜔, can then be calculated using equations (2) and (3), respectively:

𝐿∥ =
0.9𝜆

𝛽𝜔 0.017475 + 1.50048𝜂 − 0.534156𝜂2 sin(𝜃𝐵)

𝛼𝜔 = 𝛿𝜔[0.184446 + 0.812692 1 − 0.998497𝜂 Τ1 2 − 0.659603𝜂 + 0.44554𝜂2]

where 𝜆 is the x-ray wavelength, 𝛿𝜔 is the FWHM of the ∆𝜔 rocking curve, and 𝜃𝐵 is the 

Bragg angle [6].
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