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We analyze a subgroup constructed by Thompson inside Es(c) and give a 
new proof that it has a subgroup D which is a nonsplit extension of GL(5, 2) by 
F?“. We also obtain a proof that Auf(D, 0 D, c D8)’ splits over Inn(D8 0 D, 0 D8), 
which corrects an earlier claim of the author. 

I. INTRODUCTION AND STATEMENT OF RESULTS 

Recently there has developed some evidence for the existence of four 
new finite simple groups, the largest of which, called “the monster,” involves 
the other three as sections [7, 10, 191. One of these was suspected by 
Thompson to be related to subgroups of groups of type E8 over various 
fields. In the course of his investigation, he observed that Es(@) contains a 
finite subgroup G such that 

Q = O,(G) is a special group of order 2r5 

with Q’ = a(Q) = Z(Q) elementary of rank 5, 

Q = C,(Q’) and G/Q g GL(5,2). 

Furthermore, G can be factorized 

G = QD, Q n D = Q’. (*I 

Here, D is called the Dempwolff group [5] and is part of a nonsplit short 
exact sequence 

1 + (FZ5+ Dd GL(5,2)+ 1. (**) 

This factorization has been established by P. Smith [16] with the aid of a 
computer. It is the purpose of this paper to give a different argument that 
G can be factorized as in (*) (we do not make use of computers). It follows 
from Section 3 that (**) is nonsplit and from [5] that the isomorphism type 
of D is uniquely determined. 
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For the sake of completeness, we sketch Thompson’s construction of G 
inside Es(C). Let H be a Cartan subgroup, H g ny @X, and let T =: 
(X E: H / x2 = 1). Then T is elementary abelian of rank 8. We have that 
iV = N(H) satisfies IV/Hz W, the Weyl group of type E, . Recall that 
Z, g Z(W) :< w’, W/Z(W) z 0+(8,2), I W 1 = 21435527. We may regard 
T as the “standard module” for 0(8,2). In the action of Oi(8,2) on Ty, 
there are two orbits, represented by, say, z (a “singular vector”) and t 
(a “nonsingular vector”). Every involution in E8(c) is conjugate to either t 
or z (see Sect. 2, Lemma 3). In the 248dimensional representation on the 
Lie algebra 2, x has trace -8 and t has trace 24. Choose a “maximal totally 
singular” subspace 1 of T. Then 1 I / = 16 and Cz(l) is a Cartan subalgebra. 
Let j be an involution of N which inverts H. Then H(j> := C(I). Set 
Z = 1((i). Then C = C(Z) lies in N, C n H = T and CH/H( jj may 
be identified with O,(P), where P is the maximal parabolic subgroup of 
P(8,2) stabilizing 1. We have 1 O,(P)1 = 26 and P/O,(P) g GL(4,2). 
Thus, 1 C / = 2 15. Clearly, N*(Z) induces on Z a group of automorphisms 
isomorphic to 5, 4 GL(4,2). But every involution of Z is conjugate in 
Es(@) to z. One next considers a hyperplane I, f I of Z and sees that 
N(1,,) n N(Z) induces a group of automorphisms on Z isomorphic to 
IF,4 . GL(4,2). It follows that N(Z)/C s GL(5,2). Our group G is N(Z). 

We now discuss the results of this paper. 

THEOREM. The group G < E,(C) of order 21S 1 GL(5,2)1 can be factorized 
G = O,(G). D, D n O,(G) = Z(O,(G)) z Fz5, where D is the Dempwolff 
group. 

COROLLARY 1. Let E be an extra special group of order 2’, type -(-, i.e., 
E s D, 0 D, 0 D, . Then Inn(E) g [Fz6, Out(E) z 0+(6,2) z 2s and the 
exact sequence 

1 - Inn(E) 4 Aut(E)’ ---f Out(E)’ - 1 

is split. 

The proof of Corollary 1 may be extracted from the analysis in Section 3. 
In [9], we erroneously asserted that Aut(E)’ was not split over Inn(E). 

Our attention was drawn to this by Yoshida in a letter. He provided generators 
for a subgroup of Aut(E) isomorphic to A, g 52+(6,2) (these are reproduced 
in Sect. 4). Furthermore, a recent letter from G. E. Wall informs the author 
that [2] deals with many of the questions considered in [9], though from 
a different viewpoint. In particular, the authors correctly assert that Aut(E)’ 
does split over Inn(E) and they describe generators for a complement. 
Recently, G. Bell has announced the result H2(Q+(6, 2), F,6) = 0. On the 
other hand, Corollary 3 below tells us that H2(0+(8, 2), lFz6) J; 0. 
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COROLLARY 2. Let F s D, o D, o Z, be of symplectic type and order 26. 
Then Out(F) g Sp(4,2) x Z, . Let C, = C,,,(,)(Z(F)) and let C, be the 
other subgroup of index 2 in Aut(F) with O,(C,) = O,(C,). Then 

1 + Inn(F) -+ Ci - Sp(4,2) -+ 1 

splits for i = 0 and does not split for i = 1. 

The first assertion follows from Corollary 1. Namely, take F as a maximal 
subgroup of E. Then C, becomes the stabilizer in Aut(E)’ of F and we 
intersect C,, with a complement to Inn(E) in Aut(E)’ to get the splitting 
for i = 0. As for the nonsplitting when i = 1, we refer to [9, Corollary 31. 

COROLLARY 3. With E~D,~D,oD,, 

1 --f Inn(E) + Aut(E) --f Out(E) + 1 

is nonsplit. 

If false, the argument of the last paragraph could be used to get a splitting 
of the sequence in Corollary 2 for i = 1. 

COROLLARY 4. Let D be the Dempwolfl group and A a hyperplane of 
O,(D). Set M = N,(A). Then M contains a normal subgroup W s ??Ia4, 
W = C,(W), such that M/W E A^, , the covering group of A, . Furthermore, 
M does not split over W but does contain a perfect subgroup III0 such that 
O,(D) = A x Z(MJ and M,,/Z(M,J is a nonsplit extension of GL(4, 2) by IFz4. 

Again, this is not a new result, just a new proof. 
Finally, we mention that the existence of D shows LP(GL(5,2), [Fz5) # 0. 

This nonvanishing was an unsettled case in Dempwolff’s work [5, 61. One 
now has the complete result: dirnEz H*(GL(n, 2), Esn) = 1 precisely when 
12 = 3, 4, 5 and is 0 otherwise (see [5, 61 for more details). 

We thank John Thompson for explaining the construction of G and for 
pointing out an error in our original proof. 

2. PRELIMINARY RESULTS 

\Ve present some lemmas which are needed to prove the main theorem. 
Our notation is standard and follows [8]. In addition, we use Z,“, IF,” and 
2l+” to denote, respectively, the direct product of s copies of Z,, , an s-dimen- 
s;onal If,-vector space and an extra special group of order 2ss-t1, type 
c=+,- (see [9] for a discussion). 
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LEMMA 1 (D. G. Higman [l I] or Alperin, Gorenstein [l]). For V any 
faithful 4-dimensional [F,GL(4,2)- module, H’(GL(4,2), V) = 0. Consequently, 
any exact sequence of If,-modules 0 4 V + W + [F, + 0, 0 - IF, - W - 
77 --f 0 is split. 

The next lemma is slightly stronger than what we need later. 

LEMMA 2. Let V be an n-dimensional vector space over IF, and let G _ 
GL( V) =- GL(n, 2). Then A”(V) is an irreducible G-module and, for n >,: 3, 
V @ V is a uniserial G-module with composition factors isomorphic to AZ(V), 
V, il’( V), in that order. 

Proof. We show that A2(V) is irreducible by induction on n. For n 5: 3, 
this is easily verified, so we assume n > 4,aTake a basis z’i ,..., z’,,~ for I,-. 
Then {vi A z j / 1 -:I i < j ..- n} is a basis for /l”(V). Let W = (vl ,..., 7.tne1: 

and let H = (g E G 1 W -= WV, v, =: v,“} ‘li GL(n - I, 2). Set A 
<vi A 7’, 1 I :-I i :< n - I ‘-, B=(a,r\7r,jl:.~i<j~~n~i). Then 
A*( I’) : A a B is an H-decomposition. By induction, B is H-irreducible 
and il is H-irreducible since A is the standard module for H. Since n )- 4, 
dim /l ~- n /‘- (“2) : dim B, whence iz C$ B. Thus, any proper G-sub- 
module of /l’(V) lies in ,4 or B. On the other hand, g E G defined by 
g: zi e a’i , 1 < i :< n -- 2, g: 2),-r tj vn , g: vo, M 2’,,- r satisfies tl” #- .d, 
Bg # B. Therefore, /l’(V) is irreducible. 

Set M :: V @ I/-, M0 == 0, MI = (x @ y + y @ x 1 x, y E V>, MA := 
ix @ s j x t V\, Ma =: M. One can easily see that M,,.,/M, , i = 0, 1, 2, 
are isomorphic to, respectively, fl”( V), V, A’(V), and so are irreducible. 
Hence, WC: must show that the composition series M0 < ilfi < M, < XC3 
is the only composition series. It suffices to show that Mi,2/1Vfi is indecom- 
posable for G, i - 0, 1. But each of these module extensions 0 --f Mi+r/Mi -+ 
lvi+z/Mi -+ Mi+~z/Mi+, --f 0 is nonsplit under the action of (g), where 
g E G induces a transvection on I’ (an easy exercise). This completes the 
proof. 

LEMMA 3 (Jacobson [ 141). An automorphism of finite order on a complex 
Lie algebra of type E8 centralizes a Cartan subalgebra, hence is conjugate in 
E,(C) to an element of a Cartan subgroup. 

LEMMA 4. Let E z 22”‘. Say E --I L and C,(E) = Z(E). Assume that 
L has normal elementary abelian subgroups B, and B, so that E = BIB,, 
BJE’ is a faithful module for LIE and B,/E’ is its dual module. Then L contains 
a subgroup L, such that L = EL, and E n L, == E’. 

Proof. Let (i,j) = {l, 2). I n t h e action of Bi on Bj, BJE’ permutes 



THE DEMPWOLFF GROUP 275 

regularly the hyperplanes of Bj not containing E’. Let D, be a hyperplane 
of B, with E’ n D, = I, k = 1,2. Then L, = NL(D1) n N,(D,) does the job. 

LEMMA 5. Aut(Zi”), n > 2, does not contain a subgroup isomorphic to 
A, in which an element of order 3 acts fixed point freely on Z4?’ and which 
is faithful on the Frattini factor of iz,“. In particular, 1 + .@” ---L Aut(Zin) - 
GL(2n, 2) - 1 is nonsplit for n > 2. 

Proof. We may suppose the existence of S < Aut(W), W z Zi”, to 

violate our conclusion. Let I’ = O,(S) and let h E S, 1 h / = 3. Then, h 
operates fixed point freely on WV, whence WV has class at most 2 [15]. 
On the other hand, if x E V#, x is an involution, whence x inverts any [w, x], 
w E W. Since [W, X] has exponent 4, WV cannot have class 2, contradiction. 

The interested reader should see G. Higman [12], who shows that 
SL(2,2”), n > 2, cannot act faithfully on a 2-group in such a way that 
elements of order 3 are fixed point free, unless the 2-group is elementary 
abelian. Since GL(2n, 2) contains a copy of SL(2,2”), Lemma 5 follows 
from this result. 

3. PROOF OF THE MAIN THEOREM 

Let G and Q be as in Section 1. Recall that Q’ and Q/Q’ are irreducible 
modules for G/Q z GL(5,2), Q’ and Q/Q’ are elementary abelian of ranks 5 
and 10, respectively. \Ve wish to prove that 

I + Q/Q’ --f G/Q’ ---f G/Q -+ 1 (1) 

is the split extension. 
Let I be a hyperplane of Q’. Set N = No(I). Then N > Q and N/Q 

is a split extension IFs4 . GL(4,2). Take Y < N, Y > Q so that I’ n 
O,(N) = Q and Y. O,(N) = N. Then Y/Q g GL(4,2). It suffices, by 
Gaschiitz’ theorem [ 13, I. 17.41 to prove that 

1 --z Q/Q’ 4 N/Q’ + N/Q + 1 (2) 

is the split extension. From the discussion in Section 1 on the construction 
of G, we get that (in the notation of Sect. 1) 

the subgroup U = T(j) contains Z = Q’ = I(j) ; 
as a module for N, Q/Z has composition series 
1 < U/Z < Q/Z; furthermore, U/Z s 2s4, 
Q/U e Zz6 and Q/I z 2,4 x 2y6. (3) 

4 
Now, consider the action of Y on Z(Q/1), elementary of rank 5. Since 
IQ/I) covers U, Z(Q/I)/(Q’/J) may be regarded as the standard module 
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for Y/Q E GL(4,2). By Lemma 1, Z(Q/l) is completely reducible for I-. 
In fact, we may even assume that T/I complements Q’/I by taking T7 to 
lie in N,(T). Eow consider Y/T. Since T ‘& Q’ mm= 2, Q/T is nonabelian. 
Since I7 operates irreducibly on Q/U, Q/T is extraspecial. As in Section I, 
Y/CT ma); be identified with the parabolic subgroup P of P&2). Since 
P splits over O,(P), there is K < H so that KQ = I’, K n Q =- U and K 
is decomposable on T (Corollary I now follows). 

\i’e wish to produce a subgroup 17” of O?(N) such that K normalizes 
AT,, , n:,, covers O,(N)/Q and N,, n Q = I;. Namely, K normalizes I and T, 
hence also H(j> (the centralizer in Es(@) of T). Using the fact that K 
normalizes Z, this means that K normalizes S = (X E [i(j) 1 [x, Z] ::< I$. 
Since j inverts H and C,(j) ~: T( j> 7 C:, it is not hard to see that &u/r7 
is elementarv of order 16, so that N,, X works. 

We now look at images modulo I. Let ~- denote the quotient map N --f 
IV = N/I. Since the K-module A’(l) d oes not have a quotient isomorphic 
to I, l\‘(,/Z is abelian (see Lemma 2). Since the K-chief factors of N,,/Z are 
isomorphic to 1 and I* (&I), No/Z is elementary abelian. Now, cr == :Vih’O( T), 
whence 5, 1s extra special of order 2g, t ype -. Since Out(nh) g 0+~(8,2) 
and since Iv/X0 acts faithfully on the Frattini factor of N,, (as the parabolic 
subgroup of S (8, 2) stabilizing the maximal isotropic subspace o), we 
observe that there is a complement to O,(N/N”) == QN,/N, in iVN,, , sa! 
L,‘N,, g GL(4,2), which normalizes a complement, say N, , in fl, to the 
maximal abelian subgroup C:. Let iV1 be the preimage of Iv, in N. Then, 
N1 has order 2g, N1 > Z and [Z, NJ = I. Taking L to be as above, we 
use Lemma 4 to produce a subgroup L, of L such that L == IV,~L, and 
N, n L, == Z. The group S&, satisfies N = QN,L, and Q n N&, z-mm %, 
i.e., the sequence (2) splits. 

Since we now have (1) a split extension, take D < G so that G : 011, 
Q n I> m-m Z. It remains to show that 

1 -> Z - D 4 GL(5,2) -+ 1 (4) 

is not the split extension to finish the proof of the Main Theorem. The 
argument can be extended to prove Corollary 4. Namely, we also prove that 

if 111 -= N,(A), where d is some hyperplane of Z, 
iI1 contains a normal subgroup W 7~ C,(W) E Z,” 
such that iVZ/ W E JR , the covering group of A, z GL(4,2), 
and M does not split over W. (5) 

Our argument relies very heavily on the ideas in [18]. Let .d denote 
the set of hyperplanes of Z. By previous remarks, 9, == C&A) is a Cartan 
subalgebra of 9’. Since 9 = (9’ 1 A E &‘), : .d 1 =-. 3 1 and dim P<, = 8, 
9 is actually a direct sum of the Fyj . 
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Consider how M acts on $pA . Let v # 1 be a constituent and let W be 
the kernel of the action. Now, Z 4 W, but if WZ < O,(M), then A = ker(v) 
and M/jiz has a noncentral normal abelian subgroup, whence 93 is induced 
[4, 50.71. Since M/O,(M) z GL(4,2) and every noncentral chief factor 
of M in O,(M) is the standard module, this means ~(1) >, 15, against 
dim-U; = 8. We now have that WZ = O,(M) and it remains to show 
that M/W z as and W is homocyclic of exponent 4. 

Assume that W is not homocyclic of exponent 4. Since the standard 
module for GL(4,2) is not a quotient of its exterior square (Lemma 2), 
W is abelian, hence elementary abelian. Choose an involution i E W\Z. 
Then i acts as a transvection on Z and centralizes precisely one hyperplane 
of Z. Let i’ be any conjugate of i lying in M\Z. Since i’ induces a transvection 
on -4, i’Z lies in the center of a Sylow 2-group of M/Z. For any such i’, 
we claim that its trace on za is a fixed number, say s. If M/W E a, , this 
is clear, because A^, contains one class of involutions outside its center. 
If M/Z z A, x i& , the character table of A, shows that the 8-dimensional 
representation on 9” has trace the standard degree 8 permutation character, 
whence i’, being in the center of a Sylow 2-subgroup of M/W, has trace 0. 
The claim then implies that on all of 9, i’ has trace 8 + 3Os, which must 
equal -8 or 24. As no integer s has this property, we have our contradiction, 
and so W is homocyclic. 

It now follows from Lemma 5 that M/W E & . 
Finally, we must show that M does not split over W. It follows from 

the homocyclicity of W that 

two involutions of D\Z which centralize the 
same hyperplane do not commute. (6) 

Assuming M does split over W, we take a complement Mi s A^, . By 
Lemma 1, there is u E 2 so that Z = A @ (u), as Mi-modules. The covering 
group of GL(4, 2) has the property that transvections lift to involutions 
and furthermore that the subgroup centralizing a hyperplane of IF,” lifts 
to an elementary abelian group. Since Ml is completely reducible on Z, 
this clearly conflicts with (6). Th e nonsplitting, plus the fact that M/Z 
does split over W/Z, implies Corollary 4. 

The proofs of the Theorem and Corollaries 1 and 4 are now completed. 

4. AN EXPLICIT SPLITTING OF Aut(2y6)’ OVER Inn(2y6) 

We now reproduce Yoshida’s embedding of 52+(6,2) in Aut(E), where 
E N 21+6. We take E = (vi, z ) 1 < i < 6), where these generators are -+ 
involutions, x is central and [vi , uj] = x precisely when i + j = 7 and 
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[zji, nJ = 1 otherwise. Define automorphisms x, (V == 0, 1, 2, 01, 02, 012), 
W, (s = 0, 1, 2) of E as follows: for y == x, or w, , the (-y, Tli)-entry of the 
table below indicates the image of zji under y. 

x0 ’ 
x1 
X2 
X01 

X02 

x012 

w 0 

W 1 ~ 

w 
2 

One checks directly that each x, and w, is indeed an automorphism and 
furthermore has period 2. In addition, 

[xv ) x,,] --- 1) except for [x0 , x1] =-: xol , 

[x0 , %I = x02 , [12”1 , x0*1 T 2012 and [x2 Y xol] = XO12 , 

so that the x, generate a 2-group of order 2”, isomorphic to a Sylow 2-group 
of Q-(6, 2). We also have 

(wow1)3 = (wow,)3 _ (wlw*)” ~~ I) 

(woxo)3 = (w1x1)3 = (w2x2)3 = I, 

and, under conjugation, 

W 0: Xl ++ x01 WI: x0 f-t x01 7+: x0 c-) xuz 

x2 t+ x02 x2 is fixed xl is fixed 

xo12 is fixed -ro2 e+ x012 %l - Jo12 

Now set B = (x,. i Y -m= 0, I, 2,01,02, 012), N := (ws / s .-: 0, I, 2‘;. Then 
N is a Weyl group of type A, = D, , i.e., N g ,X4 . The above information 
implies that the set BNB is a group (this can be proven by formal arguments 
usually employed in the study of B, N pairs; see [3] or [17]). Since BNB 
is a union of double cosets BwB, for w E N, we can compute that j BNB ) :-- 
1 Q+(6,2)1. This means that BNB complements Inn(E) in Aut(E)‘, as claimed. 

Yoshida remarks that one can see the splitting by looking at the subgroup 
of the Weyl group of E, which maps onto the parabolic subgroup of Q’~(8,2) 
which stabilizes a singular vector. 
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