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There have been numerous studies on the photoreduction of iron complexes 

which proceed generally by electron transfer to the metal from a ligand. 1 

Peculiar among these are reports of the photodissociation of iron(III)- 

alcohol complexes which are reported to produce alkoxy radicals and eventual 

alcohol oxidation via Scheme I. 2 Support for this scheme comes from the 

Scheme I 

Fe++- :-C-R &Fe++ ': f 6-C-R c> R-CRC + Pe++ 

observation of radicals 2b such asjin the esr and the isolation of carbonyl 

products. There has appeared as yet no direct evidence for an alkoxy radical 

and in particular no report of a most typical alkoxy radical reaction, y- 

hydrogen abstraction. 

Photolysis of an acetonitrile solution of 2-cyclohexylethanol &) in the 

presence of anhydrous ferric perchlorate with a Hanovia 450-watt lamp through 

a Pyrex filter led to complete reduction of iron(II1) to iron(I1) after 4 hr 

(quantum yield ~0.1). Concentration of the reaction mixture and analysis of 

the products after distillation afforded cyclohexyl acetaldehyde (&) and c& 

and trans-perhydrobenzofuran (J, anda (Table I, Scheme II). 

The first-order interpretation of these results is that an alkoxy radical 

(2, initially formed upon photodissociation of an iron(III)-2-cyclohexyl 

ethanol complex [J_ + Fe(III)J, undergoes intramolecular y-hydrogen abstraction 

in a manner analogous to the family of Barton-type reactions. 5 
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Scheme II 
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Table I 

Reaction Conditions Yield ($1 

L?I z A ,3/e 
a) 9.25 g Fe(C104)3 + 1.28 g2, hv 4 hr 16e 4 17 8.24 

b) 3.25 g LTA, 1.0 g&, reflux 8 hr 35 27 7 3.9 

C) As in b with 1.5 g CU++(RF~)~ 7 5.5 25 0.22 

d) As in b with 1.5 g Fe"+(C104)3 19 23 11.5 2.0 

e) Increased to 64% with Fe+++(C104)3.6H20. Cf. Ref. 12. 

At this stage of detail the mechanism outlined in Scheme II is identical 

to currently prevailing ideas regarding the mechanism of cyclic ether forma- 

tion by the lead tetraacetate oxidation of alcohols. 6 However, treatment of 

&with lead tetraacetate in refluxing benzene-acetonitrile mixtures produces 

a profound difference in the stereochemistry of the ether products (2 = 3.9). 

Accordingly, there must be a divergent fate of the organic radicalLdepending 

on the nature of the metal oxidant. Significantly, the LTA oxidation favors 

the more stable cis-isomerA, 
4,6e 

while the strained trans-isomer (4J is 

equally predominant in the iron photoreduction. 

Both iron and lead would be expected 2 priori to involve electron transfer 

oxidation but a-convenient explanation for the marked difference in cis/trans -- 
ratios of cyclic ether formation would be a change in the mechanism of radical 

oxidation by one of the two metals. 7,8,9 To probe this possibility, we have 

observed the distribution of ether products in the LTA oxidation of &as a 

function of added transition metal. Added ferric perchlorate caused a small 

but distinct increase in the amount of &and added cupric fluoroborate led to 

predominant formation of the trans-isomer $_in analogy to the iron(II1) photo- 

reduction result (Table I). 
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Since cupric ion is known to be an extremely efficient oxidant of organic 

radicals, we conclude that the intermediate carbon radical (L) produced from 

the LTA oxidation of& is intercepted by copper(I1) and to a lesser extent by 

iron(II1) and that copper(I1) oxidation and iron(II1) oxidation ofb_produces 

predominantly trans stereochemistry. The proposed intermediacy of alkylcopper 

intermediates provides a satisfying explanation for the observed stereochemical 

preferences. Models indicate the need to considerably distort carbonium ionz 

in order to produce 4. Accordingly, we propose that electron transfer oxida- 

tion of 5by lead leyds toJwhich cyclizes to give predominantly the less 

strained cis-ether A. In contrast, if oxidation of& by copper(I1) leads to 

an alkylcopper and if, in acetonitrile, the hydroxyl group is also a ligand of 

copper, two stereochemically distinct bicyclic alkylcopper intermediates 

(&andz) are possible. 

Most rudiments of conformational analysis would predict that2 would be 

lower in energy than 2. Oxidative substitution of8_with retention of con- 

figuration at the copper-bound carbon would of necessity afford the less stable 

trans-ether (4_)." By analogy, 2 may be oxidized by iron(II1) in acetonitrile 

via a similar process. 

Also significant in these oxidative cyclizations is the lack of olefinic 

products expected for oxidative elimination of complexes such asA. Indeed, 

the Fe++/Cu++ promoted decomposition of 2-hexylhydroperoxide in acetonitrile 

has been reported to yield equal amounts of elimination and substitution 

products (olefin and ether)." This difference would be well accounted for 

by the conformational rigidity of complex&if oxidative elimination has 

geometrical structures since the methyl protons in g are free to adopt any 

preferred conformation. These factors are under current study. 12 
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