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1 .INTRO~UCTI~N 

The equations of gas dynamics have been studied by several authors, 
(e.g., [1, 3, 6-8, 13, 14, 16, 171) but always in regions bounded away from a 
vacuum. In this paper, we investigate some properties of solutions contain- 
ing the vacuum state. For simplicity, we assume that the gas is isentropic, 
so that the dynamics are modeled by the following equations in Eulerian 
coordinates: 

Pr + (PU), = 07 

(WI, + (PU2 +P(P)), = 0, -cm<x<oo,l>o. (1) 

Here p = p( X, t) and u = u(x, r) denote respectively, the density and speed 
of the gas, and p, the pressure, is a given function of p. We assume that p 
satisfies 

p(0) =p’(O) = 0, and p’ > 0,p” > 0 in P > 0. (4 

For example, one can take p(p) = py, y > 1. 
By definition, a vacuum state is any portion of the x - t plane in which 

p = 0. In Section 2 we show that a vacuum state must be bounded by 
rarefaction waves. We then study the ways in which it is possible to go 
from a nonvacuum to a vacuum state (see [IS]). There are, in fact two 
distinct types of vacuums which we call compression and rarefaction 
vacuums; the compression vacuums differ from the rarefaction vacuums in 
that they give rise to compression waves which eventually form shock 
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waves. Having considered these notions, we solve the Riemann problem 
when the initial data contains a vacuum, and we show that our solution is 
stable with respect to perturbations of the initial data. In Section 4, we 
observe some distinct new qualitative features of the solutions in the 
presence of a vacuum. Thus, for initial data consisting of a vacuum in a 
neighborhood of x = - 00, we show by examples that eventually, only a 
single rarefaction wave bordering the vacuum survives, and all other shock 
waves of any strength, disappear; indeed, some even in finite time. Finally, 
we observe that due to the existence of bounded invariant regions in p - u 
space, the Glimm difference scheme [2] for approximate solutions is 
globally defined. However, we are unable to prove the convergence of the 
approximate solutions, due to the fact that near a vacuum state, wave 
interactions produce such strong nonlinear effects that Glimm’s existence 
theorem cannot be applied-the main estimate simply fails. Indeed, we 
believe that a resolution of this difficulty will be a major step in solving (1) 
with “big” initial data. 

2. PRELIMINARIES 

We shall begin our study of the vacuum state by first showing that a 
shock wave cannot enter into a vacuum region; i.e., that a vacuum cannot 
be adjacent to a shock wave. In order to see this, we consider the 
Rankine- Hugoniot jump conditions for (1): 

4P, - P) = POUO - Pu,4Pou, - PU) = (PO4 - PU2 + P(Po) - P(P))? 

(3) 

where (I is the shock speed. If we assume that pa # 0 and p = 0, then, if 
) u ] < 00, the equations become u = ua and up,u, = poug + p( po), sop( po) 
= 0, and thus from (2) p. = 0. It follows that ]uJ = co; that is, the shock 
curve can never meet the line p = 0. 

We next consider the rarefaction-wave curves. To compute them, we set 
u = pu in (1) to get 

pt + v, = 0, 0, + (v’p-’ + p(p)), = 0. 

If we let F = (v, v’p-’ + p(p)), then 

dF= 

0 1 1 [ 0 1 
- v’p-’ +p’ 2vp-' = -d+p’ 2u 1 

and so dF has eigenvalues 

A, =u*m, 
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with corresponding (right) eigenvectors 

r* = (19 f $zF$ 

The rarefaction-wave curves, are, by definition, integral curves of the 
vector fields rf . Thus, they satisfy the ordinary differential equations 

d(w) -=u, p(p) 
dp Fy 

whose solutions are 

Now in order that these curves meet the line p = 0, we make the assump- 
tion (see [ 151) 

(4) 

for any pa > 0.’ Then the R -c rarefaction-wave curves are those points in 
p 2 0 which satisfy 

R-:u-u,= - 
Pl - 

I d 
- p’(x) dx, 

PO x 
pa 2 P 2 0. (5) 

Thus, we see at once that the vacuum can be connected to a rarefaction 
wave of either family, provided that (4) holds. In this case, the vacuum 
must be on the “right” of an R- rarefaction wave and on the “left” of an 
R, rarefaction wave. 

Now for later use, we shall compute the shock-wave curves. They satisfy 
the Rankine-Hugoniot conditions (3), and are thus given by 

u-u()= Ir d (PPCOP - PdMP) -P(Pd * 

In order to satisfy the “entropy inequalities” the S, shockwave curves are 

‘Note that if p(p) = pT, then (3) holds provided that y > 1. 
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FIGURE 1 

those points in p > 0 which satisfy the following: 

s+:u-Ito= - 

d 

(P(P) -P(PoMP - PO) po L p > o 

9 

PPO 

Is- : w - u. = -{yp2po>o. (6) 

Using (5) and (6), we can depict the shock and rarefaction wave curves 
as in Fig. 1. 

3. COMPRESSION AND RAREFACTION VACUUMS 

Our objectives in this section are to describe the possible vacuum states 
which are bounded by nonvacuum states, and to solve the Riemann 
problem when one state contains a vacuum. 

That there are two different types of vacuums is due to the fact that in 
Eulerian coordinates, in the presence of a vacuum, it is possible that the 
“head” of an R + rarefaction wave can travel slower than the “tail” of an 
R- rarefaction wave. Thus, suppose that a vacuum p = 0 appears in a 
region a < x I b, and that there is no vacuum in both a - e < x < u and 
b < x < b + e, for some c > 0. Then the relative velocities at x = a - 0 
and x = b + 0, determine the two types of vacuums, in the sense of the 
following definition. 

DEFINITION. A vacuum state in a region a I x I b (with p # 0 in both 
a - e < x < a and b < x < b + E for some e > 0) is called a compression 
vacuum if u(u - 0) > u(b + 0); otherwise it is called a rurefuction oucuum. 

The two distinctly different types of vacuums are illustrated in Figs. 2 
and 3 below. 

The above notions of compression and rarefaction vacuums make sense 
only when the vacuum state is bounded by nonvacuum states. In any case, 
the values of u need not be specified for a vacuum state since obviously 
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FIG. 3. Rarefaction vacuum. 

P = 0 is always a solution of (I), no matter how the velocity u is defined. 
Furthermore, there is clearly no physical significance in speaking of the 
“speed” u of the gas in the vacuum region. 

Keeping these notions in mind, we shall show how to solve the Riemann 
problem when one state is a vacuum. Thus we, consider the initial value 
problem for the system (1) with initial data consisting of two constant 
states 

(u,(x), PO(X)) = (u,, Plh x < 0, 
= (u,,O), X>O> (7) 

with pI > 0. To solve this problem, we first construct the R- curve through 
(u,, pr), and denote by (U, 0), the point where this curve meets p = 0. Now 
there are two cases to consider; namely if U > U, or if ii I u,. If U > u,, 
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u-p phne 

FIGIJW 4 

then the solution is denoted in Fig. 4. The interesting feature in this 
solution is that the R- rarefaction wave enters into the vacuum region with 
speed ii, and the line having this speed separates the two vacuum states 
(U, 0) and (u,, 0) from each other. This choice of solution is forced upon 
us, if we want the solution to depend continuously on the initial data. 
Thus, if we perturb the state (z+, 0), to a state (u, p), where p > 0, near 0, 
and u is near u,, we see that the Riemann problem for (1) with data (u,, p,) 
in x < 0, and (u, p) in x > 0 is solved by an R- rarefaction wave, 
followed by an S, shock; see Fig. 5. Now it is easy to see that as 
(u, p) + (u,,O), (u’, p’) + (U, 0). Moreover, the speed u of the S, shock 
connecting (a’, p’) to (u, p) satisfies the equation a(p - p’) = p u - p’u’. 
Hence we have 

(I--u= 
P’(U’ - u) > u, _ u 

P’ - P 

since p’ > p and U’ > u. Thus (I > u’. But the Lax stability condition [5] 

implies that U’ + p’(p’) > u > u + $T. Thus, in the limit, as p’ and 
p tend to zero, we have u’ + E and u + u,, and u tends to a limit u* which 
satisfies both ii 2 IS* 2 u, and (I, 2 ii; hence u* = ii. 

Next, consider the case where U I u,. Here we obtain the solution 
depicted in Fig. 6. In the region U < x/t 2 ur, we define u(x, t) = x/t, 
and of course, p(x, t) = 0. This choice of solution is again forced upon us 
by stability considerations, as is illustrated in Fig. 7. 

x-1 pIone u-p pIone 

FIGURE 5 
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u-p pble 

FIGURE 6 

x-t plone 

FIGURJZ 7 

Note that we have tacitly assumed here that u, > U; in the case where 
U, = ii, the (illusory) rarefaction wave disappears, and the solution consists 
of an R- rarefaction wave connecting the state ( uI, pr) to the state (~7, 0). 

Next, we note that if the initial data is of the form 

(%(X)7 PO(X)) = (U,> P,), x < 0, 
P = 0, x > 0, 

then the solution is given in Fig. 4; namely, we connect (u,, p,) to the 
vacuum state by the complete rarefaction wave starting at (u,, p,) and 
ending at (U, 0). Lastly, if the data on the left of x = 0 is (u,, 0), then the 
solution of the Riemann problem is similar to the one we have discussed; 
merely replace the R- curves by R, curves and S, curves by S- curves. 

We shall now briefly describe the interaction of rarefaction waves in the 
presence of a compression vacuum (see Fig. 1.) Here again there are two 
cases to consider; namely the strong compression vacuum (u, > u,), and 
the weak compression vacuum, (u, 5 u,). It is clear that the R- and R, 
rarefaction waves interact with each other at a finite time T > 0. The 
problem consists of obtaining the solution for times t 2 T. This problem is 
quite difficult, and does not seem to be solvable by any of the known 
methods, (see Section 4). Thus, we shall merely give a plausability argu- 
ment describing the dominant waves in the solution. In this argument, we 
shall use Glimm’s technique (see [2]). 

Thus, first consider the case of a strong compression vacuum, where 
u, >> u,. Then referring to Fig. 2, if we choose “Riemann-type” data, - - (ii,,&), (i&p,), where (u,,p,) lies on the R- curve between p = p, and 
p = 0, and (ii;, 5,) lies on the R, curve between p = p, and p = 0, then we 
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x-t plmw u-p pIone 

FIGURE 8 

see that this Riemann problem is solved by an S- shock followed by an 
S, shock. That is, every approximating solution contains two strong shock 
waves. It is thus reasonable to expect that the asymptotic state to which the 
solution approaches as t -+ + cc will contain two shock waves moving 
away from each other. 

In the case of a strong compression vacuum with u, > u,, but u, close to 
ur, we can only say that it is plausable to expect that the asymptotic state 
of the solution will contain an S- shock wave; this follows since some of 
the approximating solutions will consist of an S- shock wave and an R, 
rarefaction wave; see Fig. 8. 

Finally, if we consider the case of weak compression vacuums, it is easy 
to see that the initial interaction is approximated by either an (S- , R, ) 
solution, or an (R- , R, ) solution. Thus it seems reasonable to expect that 
the solution will contain an R, rarefaction wave. 

4. SOME EXAMPLES 

In this section we shall discuss two examples; our point is to illustrate 
rigorously the sharp differences in the behavior of solutions which contain 
vacuum states, as opposed to the usually considered solutions away from a 
vacuum. Thus, as we saw in Section 2, if the gas contains a vacuum, say to 
the left of x = M, then the solution of the Riemann problem consists of a 
single rarefaction wave. We now give an example of initial data giving rise 
to strong shock waves, which also contain a vacuum, say to the left of 
some point, whose solution of the initial-value problem tends in finite time, 
to a single rarefaction wave. That is, the vacuum cancels shocks of any 
strength in finite time. On the other hand, the asymptotic behavior of the 
solution is still governed completely by the extreme states (~a( 2 co), 
po(+ co)); see [9, lo]. 

Thus, consider piecewise constant initial data (z+,(x), p,(x)), which can 
be resolved into a finite number of R + rarefaction waves and S- shock 
waves in x > M, while to the left of x = M, the data is a vacuum p = 0. 
From our results in the last section, we know that the first wave bordering 
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P=i 

FIGURE 9 

the vacuum is an R, rarefaction wave. We shall show now, using the 
Glimm difference scheme, that a solution to the initial-value problem 
exists. By investigating the elementary wave interactions (see [4, 17]), the 
Glimm approximate solutions consist of only R, rarefaction waves, and 
S- shock waves; see Fig. 9. It follows at once that for the approximate 
solutions, the total variation of the density p is a constant; namely 
PC0 = lim x+mp,,(~). It remains to show that the total variation of the 
velocity u, of the approximate solutions are also uniformly bounded.* 
To this end, we first note that the limiting values (u-~, 0) z 
lim,,-,(q,(x), p,(x)), and (urn, P,) - limx-,oo(~o(xh PO(x)> of the ap- 
proximate solutions at x = rf: cc remains unchanged for all time. Since the 
velocity increases across R, rarefaction waves, and decreases across S- 
shock waves, we need only show that the strength of S- shock waves in 
the approximate solutions remains bounded for all time. This is true since 
the total variation is majorized by twice the decreasing variation plus the 
difference in the limits U, - U-,. 

Now given any S- shock wave, (ui, p,; u2, p2), we find the unique point 
(u,, p,) on the R, rarefaction wave curve through (u,,p,) and define the 
strength of this shock wave to be U, - uc > 0; see Fig. 10. With this 
definition of the strength of S- shock waves, it is easy to see (by investigat- 
ing the elementary interaction of S shock waves, and R, rarefaction 
waves) that the total strength of S_ shock waves in the approximate 
solutions in fact stay constant, and thus bounded. This establishes the 
existence of the solution (see [2,8]). 

We now investigate the asymptotic behavior of the solution. We shall 
first consider the case when there is only a single S- shock wave to the 
right of the R, rarefaction wave bordering the vacuum. These two waves 
must interact with each other in finite time, say t = r,. Furthermore, the 

2Note that near p = 0, the jump in u need not be majorized by the jump in p. 
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Ftoum IO 

shock penetrates the rarefaction wave, producing no other waves, and the 
shock is a smooth curve, across which the solution has limits satisfying the 
usual jump conditions (see [4]). Indeed, we shall show that the shock wave 
passes through the rarefaction wave and disappears in finite time; see Figs. 
11 and 12. Note too that the speed of the characteristic bordering the 
vacuum state changes abruptly at the instant the shock wave disappears. 

Referring to Figs. 11 and 12, for any f > T, for which the shock exists, 
we denote by (u- (t),p- (t)) and (u, (t),p+ (t)) the limits of the solution 
on both sides of the shock. We will derive an ordinary differential equation 
for p- (t), and show that p- (t) becomes zero in finite time. It will then 
follow that the shock must disappear in finite time; see Section 2. The 
reason behind this is due to the fact that the shock always makes a positive 
angle with the characteristics in the rarefaction wave. However, near the 
vacuum state, the characteristic speed and the shock speed both approach 
the speed of the gas. Since the shock speed tends to u’ (see Section 3) and 
the characteristic speed bordering the vacuum is ueoo, the shock meets this 

x:M X=N 

FIGURE 11 

FIGURE 12 
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Fmum 13 

characteristic of speed uern in finite time, since u-, > u’. Moreover, the 
position of the shock can be explicitly calculated with the aid of the 
differential equation for p- (t). We proceed with the details. 

Let t > T, and for At > 0, we consider the horizontal distance D in the 
R, rarefaction wave determined by the S- shock at times t and t + At; 
see Fig. 13. (For brevity, we use the notation (u, (t),p, (t)) = (u, ,p+ ).) 
We have Ap < 0, Au < 0, and u = u- +p+ (u, -u- )(p+ -p- )-I, X = 

u- + c- p (p- ) , so that from the x-t plane, we have 

D = (A - o)At = $(p-, - ‘+ ;I+-;;- ) ) At. (8) 

On the other hand, D is an x distance, at fixed time t + At, so using the 

properties of rarefaction waves, we have D = (t + At)(u- + $GX - 
(t + At)(u- +Au + &w). Hence, up to first order in At, we 
have 

.=t(-Au+$m-$w) 

= t( -A u - ;Ap- (p’(p- ))-“2p”(~- )). 

But, from (5), 

Au = PI’ (p’(p- ))“‘Ap- . 

Thus (9) and (10) imply that, up to first order 

D= -t&e. (p-j66 + f(p’(p- ))-“2p”(p- )). 

Combining this with (8), we get 

AP- - 1 es- @G-Y + P+ (u- -u+ )/ (P+ -P- ) 
At t 

P-‘jhGT + $f(P- )Y’P”(P- 1 

(9) 

(10) 

(11) 

(12) 
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At this point, we need the following lemma. 

LEMMA. p+/p- -+ OD as p- 40. 

Proof. We have, from the jump condition, (u, -u- )* = (p(p- ) - 
P(P+ NP;’ - p;‘), so that 

(u+ -u-)2 = (1 - 5)(; - I)p’(b), (13) 

where iS E (p- , p+ ). Note that p+/p- > 1, and that (u, -u- ) tends to 
the finite positive number (u’ - u- ,) as p- tends to zero. Now if p+ /p- 
is bounded for a sequence pi/p’- , where pi- tends to zero, then (13) 
shows that p’(&) must be bounded away from zero; i.e., p’(&) 2 k > 0. 
Thus p“ > 0 implies that p’(p) 2 k for all p in some interval, 0 < p 5 6, 
6 > 0. But this violates (4) and completes the proof. 

It follows then, that the numerator of (12) tends to the constant u’ - u-~, 
as p- tends to zero. If we set 

cp(P- ) = PI’j&K-y + @(P- )-“*PYP- ) (14) 

s 

P 

then (4) implies that +( p- ) dp- converges. Moreover, the differential 
0 

equation for p _ (t ) is 

dp- 1 c --=-- 
dt t HP- ) ’ 

where C = C(p- ) = &G-y+ P+ (u- -u+ )(P+ -P- )-I* Thus 

lnt=j - PO @J(x) dx 
P- C(x) ’ 

(14) 

and the finiteness of the integral as p- + 0 implies that p- (t) tends to 
zero in finite time. This is our desired result. 

Observe that the strength of the shock u- -u+ appears in the 
denominator of the integrand in (14) so that weaker shocks actually 
survive for longer times; strong shocks penetrate the rarefaction wave 
more rapidly. Finally we note that if the initial data can be resolved into a 
finite number of S- shocks and R, rarefaction waves, then only a finite 
number of S- shock waves can meet the R, rarefaction wave which 
bounds the vacuum. Each such shock wave then must disappear in finite 
time. 

As a second example, we consider the interaction of an R, rarefaction 
wave bounding the vacuum state, with an S, shock wave. The asymptotic 
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behavior of the solution can be investigated using the methods in [9, lO].3 
In this case the asymptotic state is again a single R, rarefaction wave. To 
see this, we observe that each S- shock wave, which is generated by the 
formation of compression waves (see [3, 111) must disappear, as in the 
previous case, in finite time. The original S, shock wave is cancelled by 
the R, rarefaction wave, and it decays at the rate t-‘12; see [lo]. 

5. COUNTEREXAMPLE TO GLIMM’S ESTIMATES NEAR THE VACUUM 

We assume here that the initial data curve (z+(x), pe(x)), - cc < x < co, 
lies in a bounded region A in the u - p plane. Let I2 (respectively, I’,), 
denote the R, (respectively R- ) rarefaction wave curve which bounds A 
on the left (respectively right), and let Q denote the region between I, and 
I2 (see Fig. 14). Our assumption (4) implies that I, and I2 both intersect 
p = 0, so that s2 is a bounded region in the u - p plane. In Lagrangian 
coordinates, the basic dependent variables are I) = p-’ and U. In these 
coordinates, it is well known ([4,17]) that the corresponding region d = 
{(u,u):(u,v-l 
data lies in fi, 

) E a} is an invariant region in the sense that if the initial 
then so does the solution, for all t > 0. Now since the 

transformation (u, u) + (u, p) is bijective for p # 0, we see that 52 is also 
an invariant region. Note, however, that 52 is a bounded region, while d is 
not. Thus, the Glimm approximate solutions can be defined for all time, 
and these approximate solutions are uniformly bounded. We are unable to 
prove the convergence of the approximate solutions, however. The reason 
for this is due to the fact that even if we assume that the initial data is such 
that the invariant region Q is small (and thus all waves are weak), the 
interaction of waves of strengths cx and p may produce waves having 
strengths which differ from that of (x and /3 by an amount greater than a 
quadratic term O(l)@. In other words, near the vacuum, waves do not 
interact linearly, modulo terms of the form O(l)@ and the Glimm 
estimates are no longer valid. We shall illustrate this explicitly by investi- 
gating the interaction of R, rarefaction waves with S- shock waves; see 
Fig. 15. Let CY and & denote the strengths of the R, rarefaction waves 
connecting states 1 to 2, and 4 to 3, respectively, and let /? and p’ denote, 
respectively, the strengths of the S- shock waves connecting 2 to 3 and 1 
to 4. We will take ( p, - p4 1 < ] p2 - p, 1, and for simplicity, we will assume 
that states 4 and 1 are the vacuum states p = 0; see Fig. 16. We shall 
compare the strength of the S- shock 2-3, with that of l-4. We draw 
through 2 the horizontal line which meets the R, rarefaction curve at 5. 

3Note that in [9] it is not required that the solutions have small total variation. 
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FIGURE 14 

x-t plane u-p plone 0 

p=o 

FXGURIZ 15 

FIGURE 16 

FIGURE 17 

Then, because the curves 5-4 and 2-l are congruent we have 

ci - a = (5,3), 

B - j3 = ($2) - (3,2). 

Now keep 1 and 2 fixed, and move 3 toward 2; i.e., let j? 3 0. Then the 
region bounded by points 5, 3 and 2 becomes almost an isosceles triangle 
since the S- shock curve 2-3 gets close to an R _ rarefaction curve, and 
the R _ rarefaction curves is a reflection of the R + rarefaction curve about 
the line u = constant; see Fig. 17. Thus & - (Y gets close to j3, a linear, 
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rather than a quadratic term, @. Thus the Glimm estimates simply fail 
near the vacuum. For the other types of interactions, similar things occur, 
and thus no regular transformations of coordinates can cure this difficulty. 
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