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ABSTRACY

Theoretical support for the existence of a boundary layer
theory, similar to the classical boundary Jaycer theory for }i«‘
nearly viscous fluids, is offered in the case of the non-
Newtonian fluid of second grade. It is also pointed out that
unless certain assumptions are made regarding the flow, assump-
tions which are not alluded to in earlier work in this area, in
addition to the assumptions usually made in the case of the
linearly viscous fluid, the theory so developed might have in-

herent flawvs.
1. Introduction
The incompressible homogeneous Rivlin-Ericksen fluid of second grade

has been studied in detail by both experimenialists and theoreticians
interested in understanding the non-Newtonian behavior of fluids. The Cauchy

stress I and the fluid motion, in such a fluid, are assumed to be related

as follows:
- 2
To= - pLtuhy oghy Hophy (.1,
where
51 = grad v + (grad {)T . (1.1)2
and
Ay = Ay + A grad v + (grad !JT Ay (1.1)3
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The *pl in equation (1.1), denotes the constitutively indeterminate spherical
stress due to the constraint of incompressibility, u is the viscosity, and

oy and o, the normal stress moduli. The dot in equation (1.1}3 denotes

the material time derivative and v denotes the velocity field. The kinematical
tensors 5] and 52 are the Rivlin-Ericksen tensors of order 1 and 2,
respectively.

While the constitutive relation (1.1} can be considered as the second
order approximation of a simple fluid, in the sense of retardation, (Coleman
and Noll {11}, since the relation (1.1} is properly invariant, it could
also be thought of as an exact model for some fluid. A detailed study of
the thermodynamics of a fluid modeled exactly by equation (1.1) has been
carried out by Dunn and Fosdick [2]. While they dealt with questions
regarding the dynamic and thermodynamic stability and the uniqueness of a certain
class of flows of such fluids, and provided a detailed sccount of the same,
they did not address themselves to a variely of questions analogous to
those in tne theory of Mewtonian fluids.

In this analysis, we would like to consider flows of fluids modeled
exactly by {1.1) where inertial effects are significant. We wish to develop
a boundary layer theory* similar to the classical boundary layer theory for
a viscous fluid, in the case of a non-Newtonian fiuid which can be modeled
by equation {1.1}.

It is found that the equations of motion of a second grade fluid are
satisfied by an irrotational flow, very similar to the equations of motion
of a Newtonian fluid. Of course, such a flow would never satisfy the
boundary condition. However, that an irrotational flow satisfies the
equations of motion of a fluid modeled by equation (1.1} is a remarkable

property it shares with a MNewtonian  fluid, from amongst the class of

Considerable attention has been paid to formulating a boundary layer theory
for non-Newtonian fluids [3], [4], and [5], wherein the constitutive relation
for the fluid is similar to the equation {1.1). While the authors of these
papers assume the existence of a boundary layer and carry out an analysis
similar to that of the classical boundary layer analysis for the Navier-

Stokes theory, they do not offer any theoretical support as to why such a
boundary layer should be expected. More importantly, they do not emphasize the
assumptions which ought to be made in order to be consistent with the
assumption of the existence of a boundary layer for such fluids.
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fluids of grade n. It can be very easily shown that the equations of motion,
for instancz, of the third grade fluid will not be satisfied by an irrotational
flow%. However, the fluids of second grade exhibit the following con-

trasting behavior, when compared to the Newtonian fluids. While for plane

flows in the theory of Newtonian fluids, it can be shown that the vorticity
can never atiain a maximum in the interior of the flow domain, no such resylt can

be established in the theory of fluids of second grade. The above similarities and
dissimilarities have relevance in establishing a boundary layer theory.
Also, an important question in the theory of the fluids of form (1.1)?*
is the kind of boundary condition which has to be prescribed, the usual no
slip condition being insufficient.*

Finally, if equation (1.1) is considered to be an exact model, one
could gainfully employ the results that can be obtained from the thermo-
dynamics of such fluids. In fact, it has been shown [6] that non-compliance
with the restrictions based on the thermodynamics leads to behavior which
is not to be expected in fluids of rheological interest. Also, while a
"slow" flow approximation could yet lead to a boundary layer theory, the
assumption that the fluid model is exact eliminates the possibility of a contra-

diction between the constitutive assumption and the assumption of a high Reynolds
number flow.

2. Equations of Motion

The system of field equations governing the motion of an incompressible

fluid of second grade is given by

div E +pb = pg (2.]}}
and

divv = 0 (2.1)2

+ See Section 2.

Tt C.f. section 2.

Such a problem does not arise in the "slow" flow approximation theory
relating to equation (1.1}, wherein a perturbation approach is usually
employed. The usual adherence condition is found te be sufficient. However,
in the general case of a fluid with memory, (e.g. viscoelastic fluids),
since the stress is a non-Tinear function of the history of the deformation
gradient, one would have to employ a boundary condition which would reflect
this history.
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The equation (2.1)2 is a consequence of requiring all possible motions be

isochoric. We shall assume henceforth that the body force b is conservative.

On entering equation (1.1} in equation (2.1)1 we obtain after a lengthy but

straight-forward manipulation, that

uhy +oogly, 4 x](iyx!} + (a1 + 02} {A]Iﬁx

+ 2 div{[grad g] [grad gf} SRV T PO XY = grad P, (2.2)1
vihere

Po=op- oy yAy—C/WZ% +ayiﬁlz+ﬁ/&ﬂgﬁ +eb 5 (2.2),
and @ Focurly ,

A is the Laplacian operator in three dimensions, Ve denotes the partial derivative

of v with respect to time, IQ]IZ the usual trace norm of Ay. and where b = grad ¢.

If an incompressible fluid of second grade is tc undergo motions which are
compatible with thermodynamics in the sense that the Clausius-Duhen inequality

and the assumption the the specific Helwholtz free energy be a minimum when the
fluid is locally at rest* be met, it then fullows that [2],

u>0, oy >0, and ay ta, = 0. (2.3}f
On making use of (2.3), one can further simplify (2.2), to the form

PV, Ay o+ a1AXt + a](AQ x Y) = grad P, (2.4)

where @ and P are as defined in {2.2) . On operating with the curl on both
2,3

sides of the equation (2.4}, one obtains that [8]:
Puy phw + Gl(ﬁ9)t + oy cur}(Ag X E)

~pcurl {wxy) = 0 {2.5)

————————————

* This of course does not preclude the possibility that for some simple fluid
a second order approximation in the sense of the form (1.1) could hold with ay < 0

and a1+a2f0,

i i i i 5 i hich are compatible
* 1f an incompressible fluid of second grade ungrgoe> motion w
with the C]ausiusgnuhem inequality, then the specific Helmholtz free energy has

the form [2]: A - - 2
b= U(B.ALA)) = B(eA) = B(8,0) +oglAlS ‘ .
In fact, for a general incompressible Rivlin-Ericksen fluid of complexity n, it
has been established }hat [71
z (A, Apse.A) = T(8, Asaa A ). )
By the statemeng thatwthe §$ecifiEnHe]mho1t freL energp 3f a second grade fluid be a
minimum when the fluid in locally at rest, we mean

$(0,0) < 9(8, Ay)
for every traceless tensor 51.
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One observes that equation (2.5) would be satisfied by w = g 0f course
such a flow would not satisfy the boundary condition. However, the fact that
w = 0 satisfies (2.5) suggests a theory similar to that of the boundary layer
theory for the Newtonian fluid may be appropriate. However, for a fluid of
grade three which is undergoing motions compatible with thermodynamics, it can be

showithat the equations of motion reduce to the following form [9]:

MY o by g (e xv) + (ag +ap) Ay 4

2 div ([grad v] Torad vI1)} + 8,001 (grad (A, 3)

¥ 831A1|2 AV - pb - th - p(@ x !) = area¢ P, (2.6)
where

. . 2 12

Po= p-aviby -(1/4)(m1 ta,) [A1S +(/2blvl s 0o
It follows in this case, that an irrotational motion w = 0, does not satisfy for
instance the curl of the equation (2.6).

In fact, from a more general point of view if we wite down the balance of

momentun Tor an incompressible fluid in the absence of body forces, one obtains

py = ~grad p + div T, (2.7)
where T is the deviatoric part of the stress tensor. One can easily show that
in the case of a Newtonian fluid undergoing irrotational flow
div T o= 0
so that the inviscid solution is also a solution of the Navier-Stokes equation.
The physical significance of this is that, in an irrotational flow of a Newtonian
fluid, the resultant force of the stresses on a closed surface is zero, the stresses
themseives rot being zero. Also, in a perfect fluid, div T = 0 trivially
because there is no viscosity present. However, in the case of a non-Newtonian
fluid, whatever its constitutive relation might be, it is not necessary that the
resultant force due to the stresses on a closed surface be zero in the case of
an irrotational flow. Hence div 1 need not vanish and thus the irrotational
flow need not satisfy the equations of motion.
For the rest of this section, let us restrict our attention to the plane

flow of second grade fluids. In this case (2.5) reduces to

Q oy

1
Azw + —‘p—'(Azw)t + —rs—{l/;grad (Azw)}

A 3

D‘C’

= vw'grad o, (2.8)

where v is the velacity. The vorticity o in this casc is given by

w = wk ,
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and A2 denotes the two-dimensional Laplacian operator. Let us consider the

equation {(2.6) in detail. If oy = 0, which by virtue of (2.3)3 means o,

then the eguation (2.6) reduces to the equations of motion for the Navier-Stokes

:0’

fluid. 17 zhe flow is steady, then

_ 3 3
(W/p)dyw = ugg + viy , (2.9)

where v = uj + vj. It is clear form equation (2.7) that it is impossible for the
vorticity to be a maximum in the interior [10]. However if o # 0, in the case

of steady flow, equation (2.6) reduces to

a
{u/o)h,m +__lhﬁ}AZQ +V3(A2“% - T dw

o 5% 3y > 5y (2.10)

The equaticn {2.10) does not necessarily rule out the possibility of the vorticity
« being a maximum in the interior.

It should be noted that in shear flows of a fluid of second grade, normal
stress differences arise in addition to tangential forces. Thus, if a boundary
layer is to exist in flows of such fluids, it is necessary that not only the ratio
of the inertial forces to the forces due to the tangential stresses be large,
but also the ratio of the inertial forces to the forces due to the normal stresses should
be large. In the case of a Newtonian fluid, the condition that the inertial forces
are much larger than the forces due to the tangential stresses implies that the
Reynolds number Re (based on a characteristic Jength scale in the flow) should be
very large. 1In a viscoelastic fluid, such as a second grade fluid, the ratio of
the forces due to the normal stresses to the inertia forces is given by the ratio

of the non-dimensional parameter We and the Reynolds number Re where

o,V
Re = YRy o ] (2.11)
u ies
In the above definition (2.11), V. &, u, u]and p denote a characteristic

velocity, a characteristic length, the viscosity, the normal stress modulus
and the density, respectively. Now, it is well-known that in a Newtonian
fluid, the boundary layer theory is valid when Re >> 1, so that the flow is
everywhere inviscid except in a thin layer near the boundary. In a visco
elastic fluid, one would therefore expect such a theory to hold if

Re >> 1 and Re/We >> 1 , (2.12)
or equivaiantly

Re >> max (1, We) (2.13)
Since Re can be thought of as the ratio of two length scales 2 and (u/pV), it

follows that the boundary layer theory in a Newtonian fluid would hold in the
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presence of two disparate length scales. The inequality (2.12) however suggests
that in a second grade fluid more than two disparate length scales must exist

to warrant z boundary layer. It is not inconceivable, therefore, to have a
boundary iavar with a two-deck structure such that in one deck the tangential
forces and the inertial forces are of the same order, while in the other deck
the inertis and pressure forces balance the forces due to the normal stresses.
Thus in addition to a conventional viscous boundary layer, we may have an
‘elastic' boundary layer within which the normal stresses are large. Comparison
of the inertia forces and the forces due to the normes stresses in a two dimen-
sional boundary layer of such a fluid gives the elastic boundary layer thickness

dE as

1/2)_

§g~ 0 ((*1/0) (2.14)

Clearly SE/Q is very small in view of the second inequality in (2.12). Thus,
when (2.12) holds, a thin boundary layer with a two-deck structure exists with
an effectively inviscid flow outside. If the number We is 0(1), the
normal stress effects would not be important and we retrieve the conventional

viscous boundary layer.

3. Dimensional Analysis

In the Navier-Stokes theory, since the terms involving a4 do not appear
in the equations of motion, the basic non-linearity is due to the accelerating
term. Howzver, for fluids of second grade, non-linearity due to terms involving
o appear. To determine the relative importance of these non-linearities, we
shall proceed to non-dimensionalize the equation (2.5) in the manner outlined
in [8]}. Introducing a characteristic length 2, and a characteristic speed V,

we obtain a dimensionless space co-ordinate and velocity
*
X = Xy = v
When the coefficients y and ay are both non-zero, we obtain from (2.5), that

Re
T

Re

~Rew* + A*g + T

(a%a*), + curl*{A*g*xv*)
-Recurl*(why*) = 0, (3.1)

where the Peynolds number Re and the absorption number I are given through

881
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= BV - _pL¢
RE = u s T2 u1 » (3_2)*
where w* = cur]*!*, and where the operators A* and curl* are the dimensionless

counterparts of A and curl. It should be clear from (3.2) that, even if * is
considered to be small, the ratio R/T could be large. Of course, since oy = -0y,
by virture of equation (2.3)3, we see that neglecting terms involving % would
imply that we are in effect considering a Navier-Stokes fluid. More importantly,
since R/T multiplies terms involving the highest derivatives in equation (3.1}.
one would obtain a singular perturbation problem for small R/T and hence dropping
the terms dinvolving o might lead to erroneous’resu1ts. Thus, the boundary

layer due to the flow of a second grade fluid would be different from that of
the Navier-Stokes fluid, contrary to the observations of Frater [12], due to
the terms involving the coefficient*®R/T. That the terms involving oy can
considerably change the character of the diffusion of velocity and vorticity
from a boundary has been already pointed out by Truesdell [13].
4. Conclusion

Having establisheda motivation for expecting a boundary layer for fluids
of second grade, namely that w = 0 satisfies the equations of motion of a second
grade fluid, and having outlined the Timitations and tacit assumptions which
ought to he made so that we might have a consistent theory, we could go ahead
and obtain the boundary layer equations as outlined in [4], [5]. However, it
is important to realize that there could be inherent inconsistensies in formu-
lating boundary layer theories for general non-Newtonian fluids.

While [4] for instance points out that earlier work in the area of boundary
layer theories for non-Newtonian fluids do not justify boundary layer approximations,
it itself fails to justify the presence of a boundary layer for such non-Newtonian

fluids.

Acknowledgement: The authors would like to thank Professor C. S. Yih for the
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*The non-dimensional number defined through (3.2)2 is es§entia11y the
same as that obtained by Walters [W1]. It follows from equat1ons.(2.11) and
(3.2) that, T=Re/We. Thus, it follows from equation (2.12) that if a boundary
layer theory is to hold I'>>1. This however does not imply that the ra§1o Re(r
can be neglected. In fact it would be erroneous to neglect the terms involving
Re/T for we would then be essentially ignoring the non-Newtonian nature of the

fluid.
A% Yalters [N ] makes a similar observation. However, since he views the

model as an approximation, he has to contend with justifications for neglecting
higher order terms which appear in his equations of motion.
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