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Theoretical support for the existence of a boundary layer 

theory, similar to the classical boundary ‘layttr ~l.hcory for I j- 

nearly t,iscous fluids, is offered in the case of‘ the non- 

Newtonian fluid of second grade. It 1 s also pointed out that 

unless ce,--iain assumptions are made regarding the flow, assump- 

tions mhic!l are not alluded to in earlier work in thi.s area, in 

addition ;c‘ the assumptions usually made jn the case of the 

linearly ~~iscous fluid, the theory SO tcvcl aped might have in- 

herent fia\!-s. 

1. Introduction 

The incompressible homogeneous Rivlin-Ericksen fuid of second grade 

has been studied in detail by both experimentalists and theoreticians 

interested in understanding the non-Newtonian behavior of fluids. The Cauchy 

stress T and the fluid motion, in such a fluid, are assumed to be related 

as fOl?OWj: 

T = - P& 'lJ$ + 742 + cL2$ , 

where 

_A1 = grad v + fgradvIT , 

and 

A2 
= A, t e, grad v + (grad vlT Al - 

875 

w1, 

(1 .1J3 
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The -pl in equation (l.l), denotes the constitutively indeterminate spherical 

stress due to the constraint of incompressibility, u is the viscosity, and 

o., and o. 2 the normal stress moduli. The dot in equation fl.lf, denotes 

the material time derivative and v denotes the velocity field. The kinematical 

tensors A, and A2 are the Rivlin-Ericksen tensors of order 1 and 2, 

respectively. 

While the constitutive relation (1.1) can be considered as the second 

order approximation of a simple fluid, in the sense of retardatilln,(Coleman 

and No11 [l]),since the relation (1.1) is properly invariant, it could 

also be thought of as an exact model for some fluid. A detailed study of 

the thermodynamics of a fluid modeled exactly by equation (1.1) has been 

carried out by Dunn and Fosdick [Z]. While they dealt with questions 

regarding the dynamic and thermodynamic stability and the uniqueness of a certain 

class of flows of such fluids, and provided a detailed account of the same, 

they did not address themselves to a variety of questions analoyous to 

those in the theory of Newtonian fluids. 

In this analysis, we would like to consider flows of fluids modeled 

exactly by (1.1) where inertial effects are significant. We wish to develop 

a boundary layer theory* similar to the classical boundary layer theory for 

a Viscous fluid, in the case of a non-Newtonian fluid which can be modeled 

by equation (1.1). 

It is found that the equations of motion of a second grade fluid are 

satisfied by an irrotational flow, very similar to the equations of motion 

of a Newtonian fluid. Of course, such a flow would never satisfy the 

boundary condition. However, that an irrotational flow satisfies the 

equations of motion of a fluid modeled by equation (1.1) is a remarkable 

property it shares with a Newtonian fluid, from amongst the class of 

Considerable attention has been paid to formulating a boundary layer theory 
for non-Newtonian fluids [S], [4], and [5], wherein the constitutive relation 
for the fluid is similar to the equation (1.1). While the authors of these 
papers assume the existence of a boundary layer and carry out an analysis 
similar to that of the classical boundary layer analysis for the Navier- 
Stokes theory, they do not offer any theoretical support as to why such a 
boundary layer should be expected. More importantly, they do not emphasize the 
assumptions which ought to be made in order to be consistent with the 
assumption of the existence of a boundary layer for such fluids. 
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number flow. 

2. Equations of Motion 

The system of field 

fluid of second grade is 

and 

fluids of grade n. It can be very easily shown that the equations of motion, 

for instance, of the third grade fluid will not be satisfied by an irrotational 

flo2. However, the fluids of second grade exhibit the following con- 

trasting behavior, when compared to the Newtonian fluids. White for plane 

flows in the theory of Newtonian fluids, it can be shown that the vorticity 

can never attain a maximum in the interior of the flow domain, no such result can 

beestablished in the theory of fluids of second grade. The above similarities and 

dissimilarities have relevance in establishing a boundary layer theory. 

Also, an important question in the theory of the fluids of form (l.l)?'f 

is the kind of boundary condition which has to be prescribed, the usual no 

slip condition being insufficient.* 

Finally, if equation (1.1) is considered to be an exact model, one 

could gainfu?fy employ the results that can be obtained from the thermo- 

dynamics of such fluids. In fact, it has been shown [6j that non-compliance 

with the restrictions based on the thermodynamics leads to behavior which 

is not to be expected in fluids of rheological interest. Also, while a 

"slow" flow approximation could yet lead to a boundary layer theory, the 

assumption that the fluid model is exact eliminates the possibility of a contra- 

diction between the constitutive assumption and the assumption of a high Reynolds 

equations governing the motion of an incompressible 

given by 

div T + ob = o3 (2.11, 

div v = 0 f2.1)2 

* See Section 2. 

tt C.f. section 2. 

* 
Such a iproblem does not arise in the "slow" flow approximation theory 

relating to equation (l.l), wherein a perturbation approach is usually 
employed. The usual adherence condition is found to be sufficient. However, 
in the general case of a fluid with memory, (e.g. viscoelastic fluids), 
since the stress is a non-linear function of the history of the deformation 
gradient, one would have to employ a boundary condition which would reflect 
this history. 
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The equation (2.1)2 is a consequence of 

isochoric. We shall assume henceforth 

requiring all possible motions be 

that the body force b is conservative. 

On entering equation (1.1) in equation (Z.t), we obtain after a lengthy hut 

straight-for~*~ard manjpulation, that 

+ 2 div([grad v] [grad vjT) - "yt - p:, x v = grad P , ~ c (2.2), 

where 

and 

A is the Laplacian operator in three dimensions, _t v denotes the partial derivative 

of v with respect to time, jA,j' the usual trace norm of Al, and where b s grad $. 

If an incompressible fluid of second grade is to undergo motions which are 

compatible with thermodynamics in the sense that the Clausius-&hem inequality 

and the assumption the the specific Helmholtz free energy be a minimum when the 

fluid is locally at rest* be met, it then it~llol;rs tliai. [.2], 

t! 2 0 , CY., 2 0 , and CY~ + u2 = 0. (2.3)i 

On making use of (2.31, one can further simplify (2.?), to the form 

-pxt f 'IA_Y + olA_vt + o,(Af x _v) = grad P , (2.4) 

Where o and P are as defined in I (2.2) 
2,3' 

On operating with the curl on both 

sides of the equation (2.4), one obtains that [B]: 

-?ft + F"A~ + a,(A?), + o.1 curl(Aw x v) 
_ _ 

-Pcurl (wxv) = 0 _ _ (2.5) 

r This of course does not preclude the possibility that for some simple fluid 
a second order approximation in the sense of the form (1.1) could hold with CX, <O 
and al+o2#0. 

* If an incompressible fluid of second grade undergoes motion which are compatible 
with the Clausius-Buhem inequality, then the specific Helmholtz free energy has 

the form [2]: 
JI = ;;(",fll,A2) = $(e,t),) = $(n,O) +~llA1\2- 

Ih fact, for a general incompressible Rivlin-Ericksen fluid of complexity n, it 
has been established _that (71 

JI z +(n, A ,....A ) = T(8, A ,...,A ). 
By the statement that the Z&ecifi?"Helmholt fre -& energy-if a second grade fluid be a 

minimum when the fluid in locally at rest, we mean 

ij79,O) < No, _A11 
for every traceless teiisor Al. 
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One observes that equation (2.5) would be satisfied by o = 0. Of course 

such a flow would not satisfy the boundary condition. However, the fact that 

w = 0 satisfies (2.5) suggests a theory similar to that of the boundary layer 

theory for the Newtonian fluid may be appropriate. However, for a fluid of 

grade three ,which is undergoing motions compatible with thermodynamics, it can be 

shohnthat the equations of motion reduce to the following form [g]: 

1pL.v + a Av + nl(Aw x v) + ?_t, -- (a 
1 

+ a,)bJ,Av + 

2 div ([grad ;I [grad v_IT)I + B~I$I (grad(lA,b) 

+B3jA,12AW+‘t- _ _ P(W x v) = orzd P' , (2.6) 
. _ 

where 

p' = p - al!.A_v - (l/4)(7a, + ~2) I!,[* +(l/7)#2+ PO. 

It follows in this case, that an irrotational motion OJ = 0, does not satisfy fat _ _ 

instance the curl of the equation (2.6). 

In fact, from a more general point of view if we ,#ite down the balance of 

momentu- for an incompressible f!uid in the absence of body forces, one obtains 

PV = -grad p + div T, (2.7) 

where 7: is the deviatoric part of the stress tensor. One can easily show that 

in the case of a Newtonian fluid undergoing irrotational flow 

divT = 0 

so that the inviscid solution is also a solution of the Navier-Stokes equation. 

The physical significance of this is that, in an irrotational flow of a Newtonian 

fluid, the resultant force of the stresses on a closed surface is zero, the stresses 

themsel':es cot being zero. Also, ir: a perfect fluid, div T = 0 trivially 

because there is no viscosity present. However, in the case of a non-Newtonian 

fluid, AhateJer its constitutive relation might be, it is not necessary that the 

resultant force due to the stresses on a closed surface be zero in the case of 

an irrotational flow. Hence div T need not vanish and thus the irrotational 

flow need not satisfy the equations of motion. 

For the rest of this section, let us restrict our attention to the plane 

flow of second grade fluids. In this case (2.5) reduces to 

-tit + k A2m + +32u)t + F{v.grad (A20)l -’ 

= v *grad oi, (2.8) 

where v is the velocity. The vorticity OJ in this cas(: is given IJY 
.” 

w = wk , 
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and A2 denotes the two-dimensional 

equation (2.6) in detail. If ix, = 

then the ecbation (2.6) reduces to 

Laplacian operator. Let us consider the 

0, which by virtue of (2.3)3 means o2 = 0, 

the equations of motion for the Navier-Stokes 

fluid. !i rjle flow is steady, then 

(U/P)C2W = 
aw aw 

uz+vs 2 (2.9) 

where v = ui + vj. It is clear form equation (2.7) that it is impossible for the 
- - _ 

vorticity to be a maximum in the interior [lo]. However if al # 0, in the case 

of steady flow, equation (2.6) reduces to 

(2.10) 

The equation (2.10) does not necessarily rule out the possibility of the vorticity 

; being a maximum in the interior. 

It should be noted that in shear flows of a fluid of second grade,normal 

stress differences arise in addition to tangential forces. Thus, if a boundary 

layer is to exist in flows of such fluids, it is necessary that not only the ratio 

of the inertial forces to the forces due to the tangential stresses be large, 

but also the ratio of the inertial forces to the forces due to the normal stresses should 

be large. In the case of a Newtonian fluid, the condition that the inertial forces 

are much larger than the forces due to the tangential stresses implies that the 

Reynolds number Re(based on a characteristic length scale in the floW) should be 

very large. In a viscoelastic fluid, such as a second grade fluid, the ratio of 

the forces due to the normal stresses to 

of the non-dimensional parameter We and 

_!2!% Re= lJ, 

the inertia forces is given by the ratio 

the Reynolds number Re where 

clV 
We = L 

Pi 
(2.11) 

In the above definition (2.11), V. R, u, eland 0 denote a characteristic 

velocity, a characteristic length, the viscosity, the normal stress modulus 

and the density, respectively. Now, it is well-known that in a Newtonian 

fluid, the boundary layer theory is valid when Re >> 1, so that the flow is 

every-here inviseid except in a thin layer near the boundary. In a visco 

elastic fluid, one would therefore expect such a theory to hold if 

Re >z 1 and Re/We >> 1 , (2.12) 

0 r e q ?; i 'i a 'an:ly 

Re >> max (1, We) (2.13) 

Since Re can be thought of as the ratio of two length scales !Z. and (p/pV), it 

follows thaT the boundary layer theory in a Newtonian fluid would hold in the 
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presence of two disparate length scales. The inequality (2.12) however suggests 

that in a second grade fluid more than two disparate length scales must exist 

to warrant a boundary layer. It is not inconceivable, therefore, to have a 

boundary lj_/ar with a two-deck structure such that in one deck the tangential 

forces and the inertial forces are of the same order, while in the other deck 

the inertia and pressure forces balance the forces due to the normal stresses. 

Thus in addition to a conventional viscous boundary layer, we may have an 

'elastic' boundary layer within which the normal stresses are large. COiIIpariSOn 

of the inertia forces and the forces due to the normes stresses in a two dimen- 

sional boundary layer of such a fluid gives the elastic boundary layer thickness 

hE I 0 (("l/P)"2). (2.14) 

Clearly SE/R is very small in view of the second inequality in (2.12). Thus, 

when (2.12) holds, a thin boundary layer with a two-deck structure exists with 

an effectively inviscid flow outside. If the number We is O(l), the 

normal stress effects would not be important and we retrieve the conventional 

viscous boundary layer. 

3. Uimensional Analysis 

In the Navier-Stokes theory, since the terms involving o, do not appear 

in the equations of motion, the basic non-linearity is due to the accelerating 

term. Hozver, for fluids of second grade, non-linearity due totermsinvolving 

al appear. To determine the relative importance of these non-linearities. we 

shall proceed to non-dimensionalize the equation (2.5) in the manner outlined 

in [8]. Introducing a characteristic length R, and a characteristic speed V, 

we obtain a dimensionless space co-ordinate and velocity 

* 
Y = x/a ,v = v/v. 

When the :oefficients u and o, are both non-zero, we obtain from (2.5), that 

-Reo* + A*oj + F (a*w*), + + curl*(A*ti%v*) 
_ I 

-Recurl*(w%v*) = 0, _ -_ (3.1) 

where the Reynolds number Re and the absorption number r are given through 
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(3-z)* 

Whet-2 o* = curlY*, and where the operators A* and curl* are the dimensionless 

counterparts of A and curl. It should be clear from (3.2) that, even if a, is 

considered to be small, the ratio R/T could be large. Of course, since a, = -a2, 

by virture of equation (2.3)3, we see that neglecting terms involving a, would 

imply that we are in effect considering a Navier-Stokes fluid. More importantly, 

since R/T multiplies terms involving the highest derivatives in equation (3.1). 

one would obtain a singular perturbation problem for small R/r and hence dropping 

the terms involving n, might lead to erroneous results. Thus, the boundary 

layer due to the flow of a second grade fluid would be different from that of 

the Navier-Stokes fluid, contrary to the observations of Frater [12], due to 

the terzs involving the coefficient**R/T. That the terms involving a, can 

considerably change the character of the diffusion of velocity and vorticity 

from a bol,ndary has been already pointed out by Truesdell [13]. 

4. Conclusion 

Having establish&a motivation for expecting a boundary layer for fluids 

of second grade, namely that w = 0 satisfies the equations of motion of a second 

grade fluid, and having outlined the limitations and tacit assumptions which 

ought to be *:~de SC) that we might have a consistent theory, we could go ahead 

and obtain the boundary layer equations as outlined in [4], [5]. However, it 

is important to realize that there could be inherent inconsistensies in formu- 

lating boundary layer theories for general non-Newtonian fluids. 

While [4] for instance points out that earlier work in the area of boundary 

layer theories for non-Newtonian fluids do not justify boundary layer approximations, 

it itself fails to justify the presence of a boundary layer for such non-Newtonian 

fluids. 
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*The non-dimensional number defined through (3.2)2 iS essentially the 

same as that obtained by Walters [ill. It follows from equations (2.11) and 

(3.2) that, r=Re/We. Thus, it follows from equation (2.12) that if a boundary 
layer theory is to hold r>>l. This however does not imply that the ratio Re/I 

can be neglected. In fact it would be erroneous to neglect the terms involving 
Re/I for we would then be essentially ignoring the non-Newtonian nature of the 
fluid. 

**Walters [ll] makes a similar observation. However, Since h2 views the 
model as an approximation, he has to contend with justifications for neglecting 
higher order terms which appear in his equations of motion. 
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