Near Solvable Signalizer Functors on Finite Groups

Patrick Paschal McBride*
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Communicated by W. Feit

Received November 4, 1981

1. Introduction

The object of this paper is to prove the following result.

Theorem. Suppose p is a prime, A is an elementary Abelian p-subgroup of a finite group $G, m(A)=3$, and θ is a near solvable A-signalizer functor on G. Then θ is complete.

Non-solvable signalizer functors were first treated by Gorenstein and Lyons (see [11]). They identified certain "unbalancing" problems in their work. These problems can be traced to the existence of certain nontrivial subgroups; if X is such a subgroup and θ is an A-signalizer functor then $C_{X}(A)$ is solvable. This situation occurs in the extreme when $\theta(C(A))$ is solvable. Our main theorem fixes on this case. It provides a means to pass from the solvable theorems, as treated in $[6,7,9,10]$ and culminating in [5], to general signalizer functor theorems (see [14]).

By $[2,5]$ it is sufficient to treat only odd primes in the main theorem. We shall assume in the sequel that p is a fixed odd prime. All groups treated are assumed to be finite. Notation for groups of Lie type agrees with [1], other notation is taken from [5, 6, 8, and 12]. For the convenience of the reader we shall repeat some of this notation. The notation of associated set of signalizers is altered to suit the problem.

Definition. (1) The group G is near p-solvable means that G is a p^{\prime} group and any non-abelian simple section of G is isomorphic to $\mathscr{L}_{2}\left(2^{p}\right)$, $\mathscr{L}_{2}\left(3^{p}\right), S z\left(2^{p}\right)$, or $U_{3}\left(\left(2^{p}\right)^{2}\right)$.

* Partially supported by NSF Grant MCS76-06626.
(2) The statement G is near A-solvable means that A is an elementary abelian p-group acting on the near p-solvable group G, and that $C_{G}(A)$ is solvable.
(3) The statement " θ is an A-signalizer functor on G " means that A is an abelian r-subgroup of the group G for some prime r, and that for each $a \in A^{\#}$ there is defined an A-invariant r^{\prime}-subgroup $\theta\left(C_{G}(a)\right)$ of $C_{G}(a)$ such that

$$
\begin{equation*}
C_{G}(a) \cap \theta\left(C_{G}(b)\right) \subseteq \theta\left(C_{G}(a)\right) \quad \text { for all } a, b \in A^{\#} \tag{*}
\end{equation*}
$$

The property (*) is called balance. θ is said to be a near solvable A signalizer functor, if in addition $\theta\left(C_{G}(a)\right)$ is near A-solvable for all $a \in A^{\#}$.
(4) The associated set of A-signalizers is the set of all near A-solvable subgroups X of G having the property that $C_{X}(a) \subseteq \theta\left(C_{G}(a)\right)$ for all $a \in A^{*}$. It is denoted $И_{\theta}(A)$. The set of maximal elements of $И_{\theta}(A)$ under inclusion is denoted by $И_{\theta}^{*}(A)$.
(5) Let $\pi(\theta)=\bigcup_{a \in A \#} \pi\left(\theta\left(C_{G}(a)\right)\right.$ and $|\theta|=\sum_{a \in A^{\#}}\left|\theta\left(C_{G}(a)\right)\right|$.
(6) For $s \in \pi(\theta)$ let $U_{\theta}(A ; s)$ be the set of all s-groups in $И_{\theta}(A)$, and let $И_{\theta}^{*}(A ; s)$ be the set of maximal elements of $И_{\theta}(A ; s)$. The elements of $И_{\theta}^{*}(A ; s)$ are called $S_{s}(A)$-subgroups of G.
(7) We say θ is complete if G contains a unique maximal element of $И_{\theta}(A)$ under inclusion. The element is then denoted $\theta(G)$.
(8) We say θ is locally complete if for every non-identity element X of $И_{\theta}(A), N_{G}(X)$ contains a group $\theta\left(N_{G}(X)\right)$ which is the unique maximal element of $И_{\theta}(A)$ contained in $N_{G}(X)$. In this case we set $\theta\left(C_{G}(A)\right)=$ $\theta\left(N_{G}(X)\right) \cap C_{G}(X)$.
(9) For every non-identity subgroup B of A, let

$$
\theta\left(C_{G}(B)\right)=\bigcap_{b \in B} \theta\left(C_{G}(b)\right)
$$

(10) A group is semi-simple means that G is the direct product of its normal non-abelian simple groups. A group is perfect if it is its own derived subgroup. A group G is an E-group if G is perfect and $G / Z(G)$ is semisimple. Given any group $H, E(H)$ is the unique maximal normal E-subgroup of $H, F(H)$ is the fitting subgroup of H, and $F^{*}(H)=E(H) F(H)$ is the generalized fitting subgroup of H.
(11) The solvable radical of a group G is the unique maximal solvable normal sugroup of G. It is denoted $\operatorname{Sol}(G)$.
(12) Let G be a group. The components of $G, \mathscr{L}(G)$, is the set of subnormal non-abelian simple subgroups of G. $\tilde{\mathscr{L}}(G)=\{G\}$ when G is
solvable. When G is nonsolvable $\tilde{\mathscr{L}}(G)$ is the set of all subgroups X of G which contain $\operatorname{Sol}(G)$ and satisfy $X / \operatorname{Sol}(G) \in \mathscr{L}(G / \operatorname{Sol}(G))$.
(13) $K(G) \supseteq \operatorname{Sol}(G)$ and $K(G) / \operatorname{Sol}(G)=E(G / \operatorname{Sol}(G))$.
(14) $\hat{K}(G)=\bigcap\left\{N_{G}(X) \mid X \in \tilde{\mathscr{L}}(G)\right\}$.

In definitions (15) to (24), A is a p-subgroup of a group G, θ is a near solvable A-signalizer functor on G, and $D=\theta\left(C_{G}(A)\right)$.
(15) $\hat{\mathrm{h}}_{\theta}(A)=\left\{X \in И_{\theta}(A) \mid X^{D}=X\right\}$.
(16) $\tilde{\mathrm{h}}_{\theta}(A)=\left\{X \in И_{\theta}(A) \mid D \subseteq X\right\}$.
(17) $P(\theta)$ is the set of all pairs $\left(X_{1}, X_{2}\right)$ satisfying:
(a) $X_{i} \subseteq \widehat{\bigcap}_{\theta}(A)$ for $i=1$ or 2 .
(b) $X_{2} \triangleleft X_{1}$ and X_{1} / X_{2} is a chief factor of $X_{1} D A$.
(c) $C_{X_{1} D}\left(X_{1} / X_{2}\right)=X_{2}$.
(18) $D(\theta)=\left\{D \cap X_{2} \mid\left(X_{1}, X_{2}\right) \in P(\theta)\right\}$.
(19) For each $Y \in D(\theta)$ and $X \in \tilde{\mathrm{H}}_{\theta}(A)$

$$
\begin{aligned}
P(\theta, Y) & =\left\{\left(X_{1}, X_{2}\right) \in P(\theta) \mid X_{2} \cap D=Y\right\}, \\
P(\theta, Y, X) & =\left\{\left(X_{1}, X_{2}\right) \in P(\theta, Y) \mid X_{1} \subseteq X\right\}, \\
C(\theta, Y) & =\left\{X \in \widetilde{И}_{\theta}(A) \mid P(\theta, Y, X) \neq \varnothing\right\}, \\
U(\theta, Y) & =\left\{Z \in \tilde{И}_{\theta}(A) \mid\left\langle Y^{Z}\right\rangle \cap D=Y\right\}, \\
U(\theta, Y, X) & =\{Z \in U(\theta, Y) \mid Z \subseteq X\}, \\
E(\theta, Y) & =\left\{Z \in \bigcap_{\theta}(A) \mid Z \cap D=Y\right\}, \\
E(\theta, Y, X) & =\{Z \in E(\theta, Y) \mid Z \subseteq X\}
\end{aligned}
$$

(20) For each $Y \in D(\theta)$ and $X \in \tilde{\Pi}_{\theta}(A)$ define

$$
\theta_{Y}(X)=\langle E(\theta, Y, X)\rangle
$$

(21) For each $Y \in D(\theta)$ and $X \in C(\theta, Y)$ define

$$
\begin{aligned}
& \theta_{Y}^{u}(X)=\langle U(\theta, Y, X)\rangle \\
& \theta_{Y}^{l}(X)=\left\langle X_{2} \mid\left(X_{1}, X_{2}\right) \in P(\theta, Y, X)\right\rangle \\
& \theta_{Y}^{m}(X)=\left\langle X_{1} \mid\left(X_{1}, X_{2}\right) \in P(\theta, Y, X)\right\rangle
\end{aligned}
$$

(22) For each $Y \in D(\theta)$ define

$$
\begin{aligned}
& \theta_{Y}^{l}(G)=\left\langle\theta_{Y}^{l}(X) \mid X \in C(\theta, Y)\right\rangle \\
& \theta_{Y}^{m}(G)=\left\langle\theta_{Y}^{m}(X) \mid X \in C(\theta, Y)\right\rangle
\end{aligned}
$$

$$
\begin{equation*}
\text { For each } X \in \tilde{\mathrm{Q}}_{\theta}(A) \tag{23}
\end{equation*}
$$

$$
\left.\theta_{\text {sol }}(X)=\left\langle Z \in \bigcap_{\theta}(A)\right| Z \subseteq X ; Z \text { is solvable }\right\rangle .
$$

(24) Suppose $\Gamma=\theta_{Y}^{u}, \theta_{Y}^{m}, \theta_{Y}^{l}, \theta_{Y}$, or $\theta_{\text {Sol }}$, and X is an A-invariant subgroup of G such that $\theta(X)$ and $\Gamma(\theta(X))$ are defined. Then we write $\Gamma(X)=\Gamma(\theta(X))$.
(25) Suppose X and N are subgroups of a group G, and $G=N \times \mathrm{C}_{G}(N)$. Then $\operatorname{Proj}_{N}(X)$ is the projection of X on N where projections are taken with respect to the pair ($N, C_{G}(N)$).

Glauberman conjectured that $\theta_{\text {sol }}$ is a solvable signalizer functor whenever θ is a signalizer functor. We shall show this when θ is a near solvable A signalizer functor (see Lemma 3.1). This subfunctor furnishes Frattini type arguments which simplify proofs (see Theorem 2.11(c)). In [14], $\theta_{\text {sol }}$ is nested inside another subfunctor $\theta_{\text {n.s. }}$. Combining these ideas it can be seen that the above conjecture is valid in a large class of signalizer functors.

Remarks on the proof. The proof pivots on showing that θ_{Y} is a signalizer functor for all $Y \in D(\theta)$. Assume θ is a minimal counterexample. Then θ_{Y} is complete and θ is locally complete. Since $\theta_{Y}^{\prime}(G) \subseteq \theta_{Y}(G) \in И_{\theta}(A)$ it follows first that $\theta_{Y}^{\prime}(G) \in И_{\theta}(A)$ and then $\theta_{Y}^{m}(G) \in N_{G}\left(\theta_{Y}^{\prime}(G)\right)$. By local completeness $\theta_{Y}^{m}(G) \in И_{\theta}(A)$ or $\theta_{Y}^{l}(G)=1$.

First suppose that $\theta_{Y}^{m}(G) \notin И_{\theta}(A)$ for some $Y \in D(\theta)$. Then the structure of $A \theta\left(C_{G}(a)\right)$ for all $a \in A^{*}$ is obtained. The structure of $\theta(G)$ readily follows and leads to a contradiction.

Next suppose $\theta_{Y}^{m}(G) \in И_{\theta}(A)$ for all $Y \in D(\theta)$. Then for any $X, Z \in \tilde{\mathrm{~h}}_{\theta}(A)$, such that $X \cap Z$ is nonsolvable, there is a $Y \in D(\theta)$, which depends on $X \cap Z$, such that $\langle K(X), K(Z)\rangle \subseteq\left\langle\theta_{Y}^{m}(X), \theta_{Y}^{m}(Z)\right\rangle \subseteq \theta_{r}^{m}(G) \in$ $И_{\theta}(A)$. It is then almost enough to obtain a non-solvable $W \in \breve{И}_{\theta}(A)$ satisfying: $K(W) \subseteq U \in \hat{\mathrm{~h}}_{\theta}(A)$ implies $U \subseteq W$. Subgroups with such properties are treated in Section 4.

The principal idea, used in this paper and in [14], is illustrated in [5, Lemma 2.11 and Theorem 4.5]. This technique focuses on subfamilies of $\hat{\mathrm{O}}_{\theta}(A)$. In this paper we are keying on families each of whose members intersect $\theta\left(C_{G}(A)\right)$ in a fixed subgroup.

2. Preliminary Lemmas

Lemma 2.1. Suppose the abelian p-group A acts on the p^{\prime}-group X. Then $X=\left\langle C_{X}\left(A_{0}\right)\right| A / A_{0}$ is cyclic \rangle.

Proof. See [6, Lemma 2.1].

Lemma 2.2 (Glauberman). Suppose the π-group A acts on the π^{\prime}-group K. Suppose K is generated by A-invariant subgroups $K_{1}, K_{2}, \ldots, K_{n}$, and $K_{i} K_{j}=K_{j} K_{i}$ for all $1 \leqslant i, j \leqslant n$. Then

$$
C_{K}(A)=C_{K_{1}}(A) C_{K_{2}}(A) \cdots C_{K_{n}}(A)
$$

Proof. See [11, Lemma 2.1].

Lemma 2.3. Suppose θ is an A-signalizer on a group $G, P \in И_{\theta}(A ; r)$, and B is a non-cyclic subgroup of A. Then the following statements are equivalent:
(1) $P \in И_{\theta}^{*}(A ; r)$,
(2) $C_{P}(b)$ is an S_{r}-subgroup of $\theta(C(b))$ for all $b \in B^{*}$.

Proof. See [6, Lemma 3.2].

Lemma 2.4. Let G be a group and $\bar{G}=G / \operatorname{Sol}(G)$. Then the functors F^{*}, K, E, and Sol satisfy:
(a) $\operatorname{Sol}(\bar{G})=\overline{1}$.
(b) $C_{G}\left(F^{*}(G)\right) \subseteq F^{*}(G)$.
(c) $\overline{K(G)}=K(\bar{G})=E(\bar{G})=F^{*}(\bar{G})$ is semi-simple.

Proof. (a) follows directly from the definition of Sol. (b) is well known. (c) is an immediate consequence of (a) and the definition of F^{*}.

Lemma 2.5. Suppose the elementary abelian p-groups A acts on the p^{\prime} group $G, m(A) \geqslant 3$, and $C_{G}(a)$ is abelian for all $a \in A^{*}$. Then G is abelian.

Proof. $\theta\left(C_{G A}(a)\right)=C_{G}(a)$ for all $a \in A^{*}$ is a solvable A-signalizer functor on $G A$. By Lemma 2.1 and [5], G is solvable. Let G / M be a chief A factor, and let $B=C_{A}(G / M)$. By induction we may suppose M is abelian. Since G / M is solvable, Lemma 2.1 implies that A / B is cyclic. Lemma 2.1 implies that $C_{G}(B)$ centralizes M. Hence $G=M C_{M}(B)$ is abelian.

Lemma 2.6. Suppose the group G acts faithfully on the set Ω, G has a Sylow r-subgroup S acting transitively on Ω, and $O^{p}(G)=O_{p}(G)$. Then $G=S$.

Proof. Let $a \in \Omega$. Then $G_{a} S=G$, whence

$$
O^{p}(G) \subseteq \bigcap\left\{G_{a} \mid a \in \Omega\right\}=1
$$

Lemma 2.7. Suppose the elementary abelian p-group A acts on the p^{\prime} group X. Suppose the outer automorphism group of each chief section of each characteristic section of X has cyclic sylow p-subgroups. Let B be a subgroup of A. Let $W=\left\langle C_{X}(E) \mid E \times B=A\right\rangle$, and $Z=C_{X}(B)$. Then
(a) If X is a chief $X A$ factor, it follows that $X=W$ or $X=Z$.
(b) $W Z=Z W=X$.

Proof. (a) The subgroups W, Z are unaffected if we replace (A, B) by $(A / D, B D / D)$ where $D=C_{A}(X)$. Hence we may first suppose that $C_{A}(X)=1$, and then suppose that X is non-solvable. The hypothesis applies to $\left(C_{X}(a)\right.$, $\left.A, C_{W}(a), C_{Z}(a)\right)$ replacing (X, A, W, Z) whenever $a \in A^{\#}$ and $\langle a\rangle$ acts semiregularly on $\mathscr{L}(X)$. By induction $C_{X}(V) \subseteq W$ or $C_{X}(V) \subseteq Z$ whenever V is a non-identity subgroup of A acting semi-regularly on $\mathscr{L}(X)$.

Suppose first that we can find $V_{1}, V_{2}, V_{3} \in \mathscr{E} \mathscr{F}_{1}(A)$ all distinct and such that V_{i} acts semi-regularly on $\mathscr{C}(X)$. Then by permuting the indices we may suppose $\left\langle C_{X}\left(V_{1}\right), C_{X}\left(V_{2}\right)\right\rangle \subseteq L$ where $L=W$ or $L=Z$. However, $C_{X}\left(V_{i}\right)$ is a maximal A-invariant subgroup of X, and $C_{X}\left(V_{1}\right) \neq C_{X}\left(V_{2}\right)$. Hence $X=W$ or $X=Z$.

We may therefore suppose that there is at most one element of $\mathscr{E}_{1}(A)$ not acting semiregularly on $\mathscr{L}(X)$. We may suppose that $1 \neq A$ is cyclic. If $B=1$, then $X=Z$. If $B=A$, then $X=W$. Hence (a) holds.
(b) Let X / Y be a chief $X A$ section. By induction $Y=(Y \cap W)(Y \cap Z)$. By (a) applied to X / Y, it follows that $X=Y Z$ or $X=W Y$. Hence $X=W Z=Z W$.

Our next theorem is very important. It lists must of the common properties of simple near p-solvable groups needed to prove the main theorem.

Theorem 2.8. Suppose G is a non-abelian simple near p-solvable group. Let f be an automorphism of G of order p. Let $C=C_{G}(f), C_{0}=F(C)$, $C_{1}=C_{C}\left(C / C_{0}\right)$, and $M=N_{G}(F(C))$. Then all of the following hold:
(a) f exists.
(b) Aut(G) has cyclic sylow p-subgroups.
(c) $C_{\text {Aut }(G)}(C)$ is a p-group.
(d) M is the unique maximal subgroup of G containing C_{1}.
(e) C_{1}, C and M are frobenius groups with abelian frobenius kernels $F(C), F(C)$ and $F(M)$, respectively.
(f) $\quad F(M)=C_{G}(F(C))$ and $M=F(M) C$.
(g) Any p^{\prime}-automorphism of G centralizing $M / F(M)$ is an inner automorphism induced by an element of M.
(j) $F(C)$ is the unique minimal normal subgroup of C.
(k) Let X be a proper C-invariant subgroup of G. Then $F(C) \subseteq X$ or $X \subseteq[F(M), f]=[M, f]$.
(m) Let X be a nilpotent C-invariant subgrouup of G. Then $X \subseteq F(M)$.
(n) The class of subgroups of G isomorphic to M is a conjugacy class of subgroups of G.
(o) $\pi(G)-\pi(M) \neq \varnothing$. Moreover, if $r \in \pi(G)-\pi(M)$, then G has an abelian sylow r-subgroup.

Proof. (a) and (b) follow by [15; 16, Theorem 11]. Hence by (b) and sylow theorems we may suppose f is a field automorphism. Now a count (see [1, 9.4.10 and 14.3.2]) shows that $F(C)$ is a sylow subgroup of G. So (n) holds. The sylow r-subgroups of $S L\left(3,2^{p}\right)$ arc abclian for $r \neq 2$ or 3 . Hence by [16, Theorem 9; Lemma 15.1.1], (o) holds. By (e), $F(M)=$ $[F(M), f] \times F(C)$. Since $F(C)$ is a sylow subgroup of $F(M)$, (k) is a consequence of (f) and (j). Part (m) is a consequence of (e) and (k). So it remains to prove (c), (d),..., (j).

First suppose $G \cong L_{2}\left(3^{p}\right)$ or $U_{3}\left(\left(^{p}\right)^{2}\right)$. By [3, Sects. 8.4 and 8.5$], C$ is a maximal subgroup of G and (d) holds. Hence $M=C$. Hence (e), (f) and (j) follow directly from the structure of C. $\operatorname{By}[15], \operatorname{Aut}(G)=\operatorname{Inn}(G) C_{\text {Aut }(G)}(f)$; so $N_{\text {Aut }(G)}(C)=C_{\text {Aut }(G)}(f)$. Moreover $O^{\rho}\left(C_{\text {Aut }(G)}(\mathrm{f})\right) \cong \operatorname{Aut}(C)$. Both (c) and (g) follow directly from the structure of $\operatorname{Aut}(C)$.

Suppose then $G \cong L_{2}\left(2^{p}\right)$ or $S z\left(2^{p}\right)$. By [15, 16], $O^{p}(\operatorname{Aut}(G))=\operatorname{Inn}(G)$. Hence (c) is a consequence of (e), (g) is a consequence of (d), and (j) holds by inspection. So it is enough to verify (d), (e), and (f). The results for $G \cong L_{2}\left(2^{p}\right)$ are well known. The results for $G \cong S z\left(2^{p}\right)$ are given by [16, Theorem 9].

Lemma 2.9. Suppose the abelian group A acts on the group $G=G_{1} \times G_{2} \times \cdots \times G_{n}$. Suppose A acts on $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$, via the induced action of A on subgrouups. Then

$$
\operatorname{Proj}_{G_{i}}\left(C_{G}(A)\right)=C_{G_{i}}\left(N_{A}\left(G_{i}\right)\right)
$$

when projections are taken with respects to $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$.
Proof. Let $S=\left\{\left\langle G_{i}^{A}\right\rangle \mid i=1,2, \ldots, n\right\}$. Then $C_{G}(A)=\times\left\{C_{X}(A) \mid X \in S\right\}$. Hence by induction we may suppose A acts transitively on $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$. Let $B=N_{A}\left(G_{i}\right)$. Since A is abelian and acts transitively on $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$, it follows that B is independent of i. Hence we may suppose first that $B=C_{A}(G)$ and then $B=1$. So it suffices to treat the case when A acts regularly on $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$. This is straightforward.

THEOREM 2.10. Suppose the elementary abelian p-group A acts on the near p-solvable non-abelian semisimple group G. Suppose $D=C_{G}(A)$ is solvable. Let $M=N_{G}\left(C_{G}(F(D))\right)$. For each $J \in \mathscr{L}(G)$, let $M_{J}=M \cap J$, $K_{J}=N_{J}\left(C_{J}\left(F\left(C_{J}\left(N_{A}(J)\right)\right)\right)\right)$, and $J^{\star}=\left\langle J^{A}\right\rangle \cap D$. Let X, Y be $D A$-invariant subgroups of G. Then all of the following hold:
(a) $M=\times\left\{M_{J} \mid J \in \mathscr{L}(G)\right\}=\times\left\{K_{J} \mid J \in \mathscr{L}(G)\right\}$.
(b) M is the unique maximal solvable subgroup of G containing D.
(c) $F(M)$ is abelian, and $F(M)=C_{G}(F(D))$.
(d) Suppose ϕ is an automorphism of G. Then there is an inner automorphism i of G such that $M^{\Phi i}=M$.
(e) Suppose X is solvable and contains D. Then

$$
M=N_{G}\left(C_{G}(F(X))\right) \supseteq X
$$

(f) If X is nilpotent, then $X \subseteq F(M)$.
(g) Suppose $\operatorname{Proj}_{J}(X)$ is nonsolvable. Then $\operatorname{Proj}_{J}(X)=J$ and $J^{\otimes} \subseteq X$.
(h) Suppose $\operatorname{Proj}_{J}(X)$ is not nilpotent. Then $F\left(J^{\otimes}\right) \subseteq X$.
(j) Suppose $F\left(J^{\otimes}\right) \nsubseteq X$. Then

$$
X \cap D \subseteq C_{D}\left(J^{\otimes}\right)=\times\left\{K^{\otimes} \mid K \in \mathscr{L}(G), K^{\otimes} \neq J^{\otimes}\right\}
$$

(k) Let S be the set of all DA-invariant subgroups of G which intersect D trivially. Then $[F(M), A]$ is the unique maximal element of S under inclusion.
(m) Let $V=F\left(J^{\star}\right)$. Suppose $X \triangleleft Y, Y$ is solvable, $V \nsubseteq X$, but $V \subseteq Y$. Then $\operatorname{Proj}_{J}\left(C_{G}(Y / X)\right)$ is abelian.

Proof. Let $A_{J}=N_{A}(J) / C_{A}(J)$ and $C_{J}=C_{J}\left(A_{J}\right)$ for each $J \in \mathscr{L}(G)$. Since D is solvable, Theorem 2.8(b) implies that $A_{J} \cong Z_{p}$ for all J. Now $D=\times\left\{J^{\otimes} \mid J \in \mathscr{L}(G)\right\}$, and $J^{\otimes} \rightarrow \operatorname{Proj}_{J}\left(J^{\star}\right)$ is an isomorphism; whence, by Lemma 2.9, $\operatorname{Proj}_{J}(D)=C_{J}\left(A_{J}\right)=C_{J} \cong J^{\otimes}$ and $\operatorname{Proj}_{J}(F(D))=\operatorname{Proj}_{J}\left(F\left(J^{\otimes}\right)\right)=$ $F\left(C_{J}\right)$. Let $K=\times\left\{K_{J} \mid J \in \mathscr{L}(G)\right\}$. Theorem 2.8(e) implies that K is solvable and $F(K)$ is abelian. Now let X be a solvable $D A$-invariant subgroup of G which contains D. Then $\operatorname{Proj}_{J}(X)$ is a solvable $\operatorname{Proj}_{J}(D)=C_{J}$ invariant subgroup; hence $\operatorname{Proj}_{J}(X) \subseteq K_{J}$ by Theorem 2.8(d). In particular, $F(K) \cap X \subseteq F(X)$. Now $\operatorname{Proj}_{J}(F(X))$ is a nilpotent C_{J} invariant subgroup. By Theorem 2.8(m), $F(X)=X \cap F(K)$. Since $\quad F(D)=D \cap F(K) \subseteq F(K), \quad$ it follows that $1 \neq F\left(C_{J}\right) \subseteq \operatorname{Proj}_{J}(F(X)) \subseteq F\left(K_{J}\right)$ for all J. Theorem 2.8(e) implies that $F(K)=C_{G}(F(X))$. Theorem 2.8(d) implies that $K=N_{G}(F(K))$. We have shown (a), (b), (c), (e) and (f).

Next we show (h). So suppose $\operatorname{Proj}_{J}(X)$ is not nilpotent. Let $G_{1}=\left\langle J^{A}\right\rangle$ and $X_{1}=\operatorname{Proj}_{G_{1}}(X)$. If $F\left(J^{\star}\right) \subseteq X_{1}$, then

$$
F\left(J^{\otimes}\right)=\left[F\left(J^{\star}\right), J^{\otimes}\right] \subseteq\left[X_{1}, J^{\otimes}\right]=\left[X, J^{\otimes}\right] \subseteq[X, D] \subseteq X .
$$

Hence by induction $G=G_{1}$ and $D=J^{\otimes}$. Since $J^{\otimes} \cong C_{J}$, Theorem 2.8(j) implies that $F\left(J^{\star}\right)$ is the unique minimal normal subgroup of $J^{\star}=D$. Hence $F\left(J^{\otimes}\right) \subseteq X$ or $D \cap X=1$. By (f), $X \nsubseteq F(M)$. By Lemma 2.1, there is a hyperplane B of A such that $C_{X}(B) \nsubseteq F(M)$. Let $Z=C_{X}(B)$. By (f), Z is not nilpotent. Theorem 10.2.1 of [8] implies that $C_{Z}(A / B)=C_{Z}(A)=C_{X}(A) \neq 1$. So $D \cap X \neq 1$. Hence $F\left(J^{\otimes}\right) \subseteq X$ as required.

Next we show (g). So suppose $\operatorname{Proj}_{j}(X)$ is non-solvable. Let $G_{1}=\left\langle J^{A}\right\rangle$ and $X_{1}=X \cap G_{1}$. By (h), $\operatorname{Proj}_{J}\left(X_{1}\right) \supseteq \operatorname{Proj}_{J}\left(F\left(J^{\otimes}\right)\right) \neq 1$. Theorem 2.8(d) implies that $J=\operatorname{Proj}_{J}(X) \triangleright \operatorname{Proj}_{J}\left(X_{1}\right) \neq 1$. Hence $\operatorname{Proj}_{J}\left(X_{1}\right)=J$. Hence by induction we may assume $G=\left\langle J^{A}\right\rangle, D=J^{\otimes}$, and $\operatorname{Proj}_{K}(X)=K$ for all $K \in \mathscr{L}(G)$. We may suppose $C_{A}(G)=1$. By Lemma 2.1 and Theorem $2.8(\mathrm{~d})$, we may suppose that $C_{A}(X)=B$ is a hyperplane of A. Let $E=A \cap \hat{K}(G A)$. Theorem 2.8(b) implies that $Z_{p} \cong E$ and that $C_{G}(E)$ is solvable. So $E \times B=A$. In particular, B acts regularly on $\mathscr{L}(G)$. Hence $X \subseteq C_{G}(B) \cong J=$ $\operatorname{Proj}_{J}(X)$ for any $J \in \mathscr{L}(G)$. So $X=C_{G}(B) \supseteq J^{\otimes}$.

To prove (j) we may suppose $X \subseteq D$, and $J^{\otimes} \cap X=1$. Then $\left[X, J^{\otimes}\right] \subseteq$ $X \cap J^{(\mathcal{A}}=1$ which proves (j).

Let S be as in (k). By (f) and (h), each $Z \in S$ satisfies $[Z, A] \subseteq[F(M), A]$. Part (c) and [8, Theorem 5.2.3] imply that $[F(M), A] \in S$. Hence (k) holds.

Theorem $2.8(\mathrm{n})$ implies (d). It remains to prove (m). Suppose X, Y, J, and V are as in part (m). We may and do assume $Y=X V$. Let $G_{1}=\left\langle J^{A}\right\rangle$, $G_{2}=C_{G}\left(G_{1}\right)$ and $X_{1}=\operatorname{Proj}_{G_{1}}(X)$. As in (h) we get $V \cap X_{1}=1$. Since $C_{G}(X V / X) \subseteq C_{G}\left(X_{1} V / X_{1}\right)=G_{2} \times C_{G_{1}}\left(X_{1} V / X_{1}\right)$, we may suppose $G_{1}=G$. Then $X \cap D=1$. By (f) and (h), $X \subseteq F(M)$. Let $T=C_{G}(X V / X)$ and $U=C_{G}(T)$. To complete (m), it suffices to show $C_{M}(U) \leqslant F(M)$. By (c) and Theorem 2.8(e), $F(M)$ is abelian and has order relatively prime to the order of $T / F(M)$. Since $X \neq X V$, it follows that $1 \neq C_{F(M)}(T / F(M))=C_{F(M)}(T) \leqslant U$. So $1 \neq U=\times\left\{C_{J}\left(\operatorname{Proj}_{J}(T)\right) \mid J \in(G)\right\}=\times\{U \cap J \mid J \in \mathscr{L}(G)\}$. Since U is also A-invariant, it follows that $1 \neq U \cap J$ for any $J \in \mathscr{L}(G)$. Also $U=C_{G}(T) \leqslant C_{G}(F(M))=F(M)$. So $U \cap F(M) \cap J \neq 1$ for any $J \in \mathscr{L}(G)$. By Theorem 2.8(e), $\quad C_{M}(U)=\times\left\{C_{K_{J}}\left(U \cap K_{J}\right) \mid J \in \mathscr{L}(G)\right\}=\times\left\{F\left(K_{J}\right) \mid\right.$ $J \in \mathscr{L}(G)\}=F(M)$. We are done.

Theorem 2.11. Suppose the elementary abelian p-group A acts on the near p-solvable group G. Suppose $D=C_{G}(A)$ is solvable. Let X be any $D A$ invariant subgroup of G. Let $\mathscr{S}(X)$ be the set of all subgroups of X which are $(X \cap D) A$ invariant and solvable. Then all of the following hold:
(a) Suppose G is semi-simple. Then $\langle\mathscr{S}(G)\rangle=N_{G}\left(C_{G}(F(D))\right)$ is solvable.
(b) $\langle\mathscr{H}(X)\rangle=\langle\mathscr{\mathscr { L }}(G)\rangle \cap X$ is solvable.
(c) Suppose N is a normal subgroup of GA in G. Then $G=N\left(N_{G}(\langle\mathscr{S}(N)\rangle)\right)$. Moreover, if $X \cap N$ is solvable, then $X \subseteq N_{G}(\langle\mathscr{\mathscr { F }}(N)\rangle)$.
(d) $\quad N_{X}(\langle\mathscr{S}(X)\rangle)=\langle\mathscr{S}(X)\rangle$.

Proof. Theorem 2.10(b) implies (a). Suppose N is a non-trivial normal subgroup of $G A$ in G. By induction on $|G|$, (c) holds with respect to this N if $\operatorname{Sol}(N) \neq 1$. Suppose then $\operatorname{Sol}(N)=1$. Let K be a minimal normal subgroup of $G A$ in N. Let $M=N_{K}\left(C_{K}(F(D \cap K))\right.$). Theorem 2.10(d) implies that $G=K N_{G}(M)$ and $N=K N_{K}(M)$. Theorem 2.10(e) implies that $X \subseteq X D \subseteq$ $N_{G}(M)$ if $X \cap K$ is solvable. Hence (c) follows by induction on $|G|$.

Next consider (b). D permutes $\mathscr{S}(X)$, whence $D A$ normalizes $\langle\mathscr{\Psi}(X)\rangle$. Hence it suffices to assume $\langle\mathscr{G}(X)\rangle$ is solvable, for all $D A$ invariant $X \nsubseteq G$ and show $\langle\mathscr{F}(G)\rangle$ is solvable. We may suppose $G=\langle\mathscr{F}(G)\rangle$ and $\operatorname{Sol}(G)=1$. Hence by (a) and (c), $G=1$.

It remains to prove (d). By (b) it suffices to treat the case $1=\langle\mathscr{F}(G)\rangle$. Then $\operatorname{Sol}(G)=D=1$. By (a), $F^{*}(G)=1$. Then $G=1$ and (d) is trivially true.

Lemma 2.12. Suppose the elementary abelian p-group A acts on the near p-solvable group $G, D=C_{G}(A)$ is solvable, $\operatorname{Sol}(G)=1, E(G)$ is a minimal normal subgroup of G, and $G=E(G) D$. Then there is a subgroup B of A such that
(a) A / B is cyclic and
(b) $C_{E(G)}(B)$ is a non-solvable minimal normal subgroup of $A C_{G}(B)=$ $A D C_{E(G)}(B)$. Moreover $\operatorname{Sol}\left(C_{G}(B)\right)=1$.

Proof. We may and do suppose $C_{A}(K(G))=1$. Let $F=A \cap \hat{K}(G A)$ and let B be a complement for F in A. Since $A D$ is transitive on $\mathscr{L}(G)$, it follows that $F=N_{A}(J) \cong Z_{p}$ for each $J \in \mathscr{L}(G)$. Hence B acts regularly on J^{A} for all $J \in \mathscr{L}(G)$. Hence $J \cong\left\langle J^{A}\right\rangle \cap C(B) \in \mathscr{L}\left(C_{G}(B)\right)$ for all $J \in \mathscr{L}(G)$, and $C_{K(G)}(B)=\times\left\{\left\langle J^{A}\right\rangle \cap C(B) \mid J \in \mathscr{L}(G)\right\}=\times \mathscr{L}\left(C_{G}(B)\right)$. Clearly, D acts transitively on $\mathscr{L}\left(C_{G}(B)\right)$. So $E\left(C_{G}(B)\right) \circ \triangleleft A C_{G}(B)=A D C_{E(G)}(B)$. Let $S=\operatorname{Sol}\left(C_{G}(B)\right)$. Let $K=\left\langle J^{A}\right\rangle \cap C(B)$ for some $J \in \mathscr{L}(G)$. Then S centralizes K. Hence S normalizes K. Hence S normalizes $C_{K(G)}\left(C_{K(G)}(K)\right)=$ $\left\langle J^{A}\right\rangle$. Let $\quad N=\cap\left\{N_{A G}\left(J^{e}\right) \mid e \in A\right\}$. Then, replacing (G, S, Ω) by ($A S / A S \cap N, A / A \cap N, J^{A}$) in Lemma 2.6, it follows that S normalizes J. Hence S centralizes $\operatorname{Proj}_{J}(K)=J$. Since $J \in \mathscr{L}(G)$ was chosen arbitrarily, it follows that $S \subseteq C_{G}(K(G))=1$.

Lemma 2.13. Suppose the elementary abelian p-group A acts on the near p-solvable group G. Suppose $D=C_{G}(A)$ is solvable and $\operatorname{Sol}(G)=1 \neq G$. Let $K=K(G)$. Let W be a perfect DA-invariant subgroup of K. Let $K_{1}=C_{K}(W)$, $K_{2}=C_{K}\left(K_{1}\right)$, and $D_{i}=D \cap K_{i}$. Then
(a) $K=K_{1} \times K_{2}$.
(b) $D \cap K=D_{1} \times D_{2}$ and $D_{2}=D \cap W$.
(c If $K_{1}=1$, then $C_{G}(W)=1$.
(d) Suppose Z_{0}, Z are $D A$-invariant subgroups of $G, Z_{0} \triangleleft Z$, and $Z_{0} \cap K \cap D=D_{1}$. Then Z normalizes K_{1}.

Proof. Let $J \in \mathscr{L}(G)$. Theorem $2.10(\mathrm{~g})$ implies that $\operatorname{Proj}_{J}(W)=1$ or J. Hence (a) holds, and $D \cap K=D_{1} \times D_{2}$. To complete (b) we may suppose $K_{1}=1$. Then Theorem $2.10(\mathrm{~g})$ implies $D \cap K=\times\left\{J^{\otimes} \mid J \in \mathscr{L}(G)\right\} \subseteq W$. Hence (b) holds.
(c) Suppose $K_{1}=1$. Let $S=C_{G}(W)$. By (b) and Lemma 2.6, $S \subseteq \hat{K}(G)$. Hence S centralizes $\operatorname{Proj}_{j}(W)=J$ for all $J \in \mathscr{L}(G)$. So $S \subseteq C_{G}(K(G))=1$, proving (c).
(d) We take projections of subgroups of K with respect to internal direct products of K. Let N be the product of all components J of K satisfying $\operatorname{Proj}_{J}\left(Z_{0} \cap K\right)$ is nilpotent. Theorem 2.10(b) implies that $N=K_{2}$. Hence K_{2} and consequently K_{1} admits Z.

Lemma 2.14. Suppose the elementary abelian p-group A acts on the near p-solvable semi-simple group $X, C_{X}(a)$ is solvable for some $a \in A^{*}$, and W is a subgroup of $C_{X}(a)$ admitting $A C_{X}(a)$. Suppose $C_{W}(A)=1$. Then $W=1$.

Proof. Let $J \in \mathscr{L}(X), K=C_{J}(a)$, and $Z=\operatorname{Proj}_{J}(W)$. Then Z is a normal subgroup of K. Theorem $2.8 \mathrm{e}, \mathrm{j}$ imply that $Z=1$ or $F(K) \subseteq Z$, and $F(K)=[F(K), K]$. Suppose $F(K) \subseteq Z$. Then $F(K) \subseteq[Z, K]=[W, K] \subseteq W$. Hence $1 \neq\left\langle F(K)^{A}\right\rangle \cap D \subseteq W$. This is false, whence $\operatorname{Proj}_{J}(W)=1$ for all $J \in \mathscr{L}(X)$. So $W=1$ as required.

Lemma 2.15. Suppose G is a group and $K(G) \subseteq X \subseteq G$. Then $K(G)=$ $K(X)$.

Proof. We may and do suppose $\operatorname{Sol}(G)=1$. Then $C_{G}(K(G))=1$. Now $[\operatorname{Sol}(X), K(G)] \subseteq \operatorname{Sol}(X) \cap K(G) \subseteq \operatorname{Sol}(K(G))=\operatorname{Sol}(G)=1$, whence $\operatorname{Sol}(X)=1$. Hence $K(X)=K(G) \times C_{K(X)}(K(G))=K(G)$.

Lemma 2.16. Suppose G is near A-solvable, $\operatorname{Sol}(G)=1 \neq G$. Let $D=C_{G}(A), K=K(G)$, and S be the unique maximal solvable $D A$-invariant
subgroup of G. Let $S_{0}=S \cap K, D_{0}=D \cap S_{0}=D \cap K, D_{1}=F\left(D_{0}\right)$, and $S_{1}=F\left(S_{0}\right)$. Finally let $D_{2}=C_{D_{0}}\left(D_{0} / D_{1}\right)$ and $S_{2}=C_{S_{0}}\left(S_{0} / S_{1}\right)$. Suppose Z is any DA-invariant subgroup of G. Then all of the following hold:
(a) $S_{0} \subseteq C_{G}\left(D_{2} S_{1} / S_{1}\right) \subseteq \hat{K}(G)$.
(b) $S_{2}=C_{G}\left(D_{0} S_{1} / S_{1}\right)$,
(c) If $Z \cap K \leqslant S_{1}$, then $Z \leqslant S_{2}$,
(d) If $Z \cap K \cap D=1$, then $Z \leqslant S_{1}$.

Proof. (a) Let $W=C_{G}\left(D_{2} S_{1} / S_{1}\right)$. Then W is $D A$-invariant. Let $J \in \mathscr{L}(G)$ and $J^{\otimes}=\left\langle J^{A}\right\rangle \cap D$. Then W normalizes $J^{\otimes} S_{2}$. Hence W normalizes $C_{K}\left(\left(C_{K}\left(J^{\otimes} S_{2}\right)\right)^{\infty}\right)=\left\langle J^{A}\right\rangle$. By Lemma 2.6, W normalizes J. So (a) holds. Combine this with Theorem $2.8(\mathrm{~g})$ to get (b).
(c) By Theorem $2.11(\mathrm{c}), Z \leqslant N_{G}\left(S_{0}\right)$. Hence $\left[Z, D_{0}\right] \leqslant Z \cap K \leqslant S_{1}$. Now (c) follows from (b).
(d) This follows from Theorem $2.10(\mathrm{f})$ and part (b).

3. SUBFUNCTORS

In this section G is a group, A is a non-identity elementary abelian p subgroup of G, θ is a near solvable A-signalizer functor on G, and $D=$ $\theta\left(C_{G}(A)\right)$.

Lemma 3.1. $\quad \theta_{\text {sol }}$ is a solvable A-signalizer functor on G. Moreover, if $m(A) \geqslant 3$, then θ is complete.

Proof. Theorem $2.11(\mathrm{~b})$ implies $\theta_{\text {Sol }}$ is a solvable A-signalizer functor on G. Now apply the main theorem of [5] to finish.

Theorem 3.2. Suppose $Y \in D(\theta)$ and $\left(X_{1}, X_{2}\right) \in P(\theta, Y)$. Then there are subgroups $Z_{i} \subseteq X_{i}$ such that $\left(Z_{1}, Z_{2}\right) \in P(\theta, Y), Z_{2}$ is solvable and $A / C_{A}\left(Z_{1} / Z_{2}\right)$ is cyclic.

Proof. We may suppose $X_{1} D A=G$. By Theorem 2.11(c,d) we may suppose X_{2} is solvable. We may then reduce to $X_{2}=1$ and apply Lemma 2.12 to finish.

Theorem 3.3. Let $Y \in D(\theta)$, and $X, Z \in C(\theta, Y)$. Then all of the following hold:
(a) $\theta_{Y}^{u}(X) \in U(\theta, Y, X)$.
(b) $\quad\left(\theta_{Y}^{m}(X), \theta_{Y}^{l}(X)\right) \in P(\theta, Y, X)$.
(c) $K(X) \subseteq \theta_{Y}^{m}(X)$.
(d) $\theta_{Y}(X) \in E(\theta, Y, X)$.
(e) $\theta_{Y}^{l}(X) \subset \theta_{Y}(X) \subset \theta_{Y}^{m}(X) \subset \theta_{Y}^{u}(X)$.
(f) $\theta_{Y}^{u}(X) \cap Z=X \cap \theta_{Y}^{u}(Z)$.
(g) $\theta_{Y}(X) \cap Z=X \cap \theta_{Y}(Z)$.
(h) Suppose $a, b \in A^{*}, X=\theta\left(C_{G}(a)\right)$, and $Z=\theta\left(C_{G}(b)\right)$. Then $\theta_{r}^{l}(X) \cap Z=X \cap \theta_{V}^{l}(Z)$.

Proof. (a) By induction we may first suppose $G=X A$, then $X=\theta_{Y}^{u}(X)$, and finally

$$
\begin{equation*}
\text { whenever } N \triangleleft X A, N \subset X \text {, and } N \cap D \subseteq Y \text {, then } N=1 \text {. } \tag{3.1}
\end{equation*}
$$

By Theorem 3.2, choose $\left(X_{1}, X_{2}\right) \in P(\theta, Y)$ with X_{2} solvable. Suppose M is any normal subgroup of $X A$ in X satisfying $M \cap X_{1} \subseteq X_{2}$. Then $\left[M \cap D, X_{1}\right] \subseteq M \cap X_{1}$. Hence $M \cap D \subseteq C_{D}\left(X_{1} / X_{2}\right)=Y$. By (3.1), $M=1$. In particular, $\operatorname{Sol}(X)=1$ and $X_{1} \cap K(X) \nsubseteq X_{2}$. Let $W=\left(X_{1} \cap K(X)\right)^{\infty}$. Then $X_{1}=W \times X_{2}$ and W is a perfect $D A$-invariant subgroup of $K(X)$. Let $Z \in U(\theta, Y, X)$ and $Z_{0}=\left\langle Y^{Z}\right\rangle$. By definition of $U(\theta, Y, X), Z_{0} \cap D=Y$. Hence

$$
\begin{aligned}
Z_{0} \cap K(X) \cap D & =Y \cap K(X)=C_{D}\left(X_{1} / X_{2}\right) \cap K(X) \\
& =C_{D}(W) \cap K(X)=C_{K(X)}(W) \cap D .
\end{aligned}
$$

By Lemma 2.13(d), $C_{K(X)}(W)$ admits Z. Since $X=\theta_{Y}^{u}(X)$, it follows that $C_{K(X)}(W)$ is normal in G. But $D \cap C_{K(X)}(W) \subseteq Y$, whence $C_{K(X)}(W)=1$. Lemma 2.13(c) implies $Y=D \cap X_{2} \subseteq C_{X}(W)=1$. Hence $X \in U(\theta, Y, X)$ proving (a).
(c) This is much the same as (a). We may suppose $G=X A, X=K(X)$ $\theta_{Y}^{u}(X)$, and $\operatorname{Sol}(X)=1$. If $K(X) \cap D \subseteq Y$, then $\left(X_{1} K(X), X_{2} K(X)\right) \in$ $P(\theta, Y, X)$. So we may suppose $K(X) \cap X_{1} \nsubseteq X_{2}$. Then, as in (a) using Lemma 2.13, it follows that $\left(K(X) C_{D}(W), C_{K(X) D}(W)\right) \in P(\theta, Y, X)$ where $W=\left(X_{1} \cap K(X)\right)^{\infty}$.
(b), (d), and (e). By (a) we may suppose $X=\theta_{Y}^{u}(X) \in U(\theta, Y, X)$. We may again assume (3.1). In particular, $Y \subseteq\left\langle Y^{X A}\right\rangle=1$. With (X_{1}, X_{2}) as before we have $\left[\operatorname{Sol}(X) \cap D, X_{1}\right] \subseteq X_{2}$. So $\operatorname{Sol}(G)=1$. As in part (a), $X_{1}=X_{2} \times W$ where $W=\left(X_{1} \cap K(X)\right)^{\infty}$. Also as in part (a), $C_{K(X)}(W)$ is normal in G and intersects D trivially. By (3.1), $C_{K(X)}(W)=1$. Lemma 2.13 implies $C_{X}(W)=C_{X}(K(X))=1$. Now $W=\times\left\{\left\langle J^{A}\right\rangle \cap W \mid J \in \mathscr{L}(X)\right\}$. Hence D acts transitively on $\left\{\left\langle J^{\boldsymbol{A}}\right\rangle \mid J \in \mathscr{L}(X)\right\}$. Hence $K(X)$ is a minimal normal
subgroup of $K(X) D A$ and $C_{D}(K(X))=1=Y$. So $(K(X), 1) \in P(\theta, Y, X)$. Hence $\quad\left(\theta_{Y}^{m}(X), \quad \theta_{Y}(X)\right)=(K(X), 1) \in P(\theta, Y, X)$. Let $\quad M=N_{K(X)}\left(C_{K(X)}\right.$ $(F(D \cap K(X)))$), and $R=[F(M), A]$. Let $T \in E(\theta, 1)$. Lemma 2.16(d) implies that $T \subseteq K(M)$. Theorem 2.10(k) implies that $\theta_{Y}(X)=$ $R \in E(\theta, Y, X)$. This proves (b), (d), and (e).
$(\mathrm{f}),(\mathrm{g})$. These follow directly from the definitions and parts (a) and (d).
(h) Observe that this follows directly from the definitions and (b) if $X \cap Z \in C(\theta, Y)$. Hence we suppose $C_{\theta_{Y}^{m}(X) / \theta_{Y}^{\prime}(X)}(b)$ and $C_{\theta_{Y}^{m}(Z) / \theta_{r}^{l}(Z)}(a)$ are both solvable. Let $M=\theta_{Y}^{u}(Z), M_{1}=\theta_{Y}^{m}(Z), M_{2}=\theta_{Y}^{l}(Z)$ and $\vec{M}=M / M_{2}$. Let $W=\theta_{Y}^{u}(X) \cap C(b)$ and $W_{0}=\theta_{Y}^{l}(X) \cap C(b)$. By (f), $W=C_{M}(a)$. Since $W_{0} \triangleleft W$ we have $\bar{W}_{0} \unlhd \bar{W}=C_{\bar{M}}(a)$ and $\bar{D} \cap \bar{W}_{0}=\bar{Y}=\overline{1}$. In particular, $\bar{W}_{0} \cap \bar{M}_{1} \triangleleft A C_{\bar{M}_{1}}(a), \bar{M}_{1}$ is semi-simple, and $C_{\bar{M}_{1}}(a)$ is solvable; so Lemma 2.14 implies $\bar{W}_{0} \cap \bar{M}_{\mathrm{I}}=\overline{1}$. By (e), $\bar{W}_{0}=1$. Hence $\theta_{Y}^{\prime}(X) \cap Z=$ $W_{0} \subseteq X \cap \theta_{Y}^{\prime}(Z)$. The symmetric inclusion completes (h) and the theorem.

Theorem 3.4. Suppose $\left(X_{1}, X_{2}\right) \in P(\theta)$. Let $D_{i}=D \cap X_{i}$. Then $F\left(D_{1} / D_{2}\right)=F\left(D / D_{2}\right)$ is the unique minimal normal subgroup of D / D_{2}.

Proof. By induction we may suppose $G=X_{1} D A$ and $X_{2}=1$. By Theorem 3.2 we may suppose $C_{A}\left(X_{1}\right)$ is a hyperplane of A. Consequently A normalizes each component, D acts transitively on the components, and $D_{1}=\times\left\{C_{J}(A) \mid J \in \mathscr{L}(G)\right\}$. Theorem $2.8(\mathrm{j})$ implies that $F\left(D_{1}\right)$ is the unique minimal normal subgroup of D in D_{1}. Hence it suffices to show $F(D)=$ $F\left(D_{1}\right)$. Lemma 2.16 (b) does this.

Theorem 3.5. Suppose $D_{2} \in D(\theta)$ and $X \in C\left(\theta, D_{2}\right)$. Let $D^{*} \supset D_{2}$ be such that $D^{*} / D_{2}=F\left(D / D_{2}\right)$. Suppose N, L, R are subgroups of X which satisfy:
(a) N, L, and R are normal in $\langle R, D, A\rangle=R D A$,
(b) $N \subset L \subset R$, and L / N is a chief $R D A$ factor,
(c) $A R$ centralizes L / N, and
(d) $R \cap D=D^{*}, D \cap N \subseteq D_{2}$, and $D^{*} N / N=\left(D_{2} N / N\right) \times(L / N)$.

Then it follows that R has an $R D A$ invariant subgroup B such that $B \cap D=D_{2}$ and $B D^{*}=R$.

Proof. Suppose false. Choose a counterexample G of least possible order. Subject to this restriction choose one with L of least possible order. By Theorem 3.2 there is a pair $\left(X_{1}, X_{2}\right) \in P\left(\theta, D_{2}\right)$ with X_{2} solvable. Fix such a pair with X_{2} of least possible order.

First we observe some structure of G. The requirements are satisfied by $\left\langle X_{1}, R, D, A\right\rangle$. So $X=\left\langle X_{1}, R, D\right\rangle$ and $G=X A$. Suppose M is any normal subgroup of G in X such that $M \cap D \subseteq D_{2}$. If $M \neq 1$, a short argument assisted by Lemma 2.2 yields a subgroup B_{1} of $R M$, which contains M, is normal in $R M D A$, intersects D in D_{2}, and satisfies $B_{1} D^{*}=R M$. The subgroup $B_{1} \cap R$ satisfies the conclusion. This is false, whence $M=1$. Let V be any minimal normal subgroup of G in X. Let $W=\left(X_{1} \cap V\right)^{\infty}$. Suppose $V \cap X_{1} \subseteq X_{2}$. Then $V \cap D \subseteq C_{D}\left(X_{1} / X_{2}\right)=D_{2}$. This is false. So $V \cap X_{1} \nsubseteq X_{2}$. Since $V \cap X_{1} \triangleleft X_{1}$, it follows that $X_{1}=X_{2}\left(V \cap X_{1}\right)$. Hence $X_{1}=X_{2} \times W=D_{2} \times W$, and $W=X_{1}^{\infty}$. Since all minimal normal subgroups of G in X contain W, it follows that $K(X)$ is the unique minimal normal subgroup of G in X. Let $K=K(X)$. Now $X=K R D$.

Let $\quad K_{1}=C_{K}(W), \quad K_{2}=C_{K}\left(K_{1}\right), \quad E=D \cap K_{2}, \quad$ and $\quad E^{*}=F(E)$, $S_{2}=C_{K}\left(E^{*}\right)$, and $S=N_{K}\left(S_{2}\right)$. We shall first show $K_{1}=1=D_{2}$, then $L \subseteq S_{2}$, then $R \cap K \subseteq S_{2}$ is abelian, and finally $R \subseteq S_{2}$.

Since $\quad N \cap K \cap D \leqslant D_{2} \cap K \leqslant K_{1}$, Lemma 2.16(d) implies that $N \leqslant S_{2} C_{G}\left(K_{2}\right)$. Hence $\operatorname{Proj}_{J}(N \cap K)$ is nilpotent if $J \in \mathscr{L}\left(K_{2}\right)$. Since $\left(D_{2} \cap K\right)=C_{K_{1}}(A) \leqslant N$, it follows that $\operatorname{Proj}_{J}(N)$ is not nilpotent for any $J \in \mathscr{L}\left(K_{1}\right)$. Hence $K_{1} \triangleleft G$ and $K_{1} \cap D \leqslant N$. Hence $K_{1}=1$ and $D_{2}=C_{D}(W)=C_{D}\left(K_{2}\right)=1$.

Now $N \cap E=1$, so $N \leqslant S_{2}$ by Lemma 2.16(d). Now E^{*} is the unique minimal normal subgroup of $D A$, and $N \cap D=1$. Hence $L=N E^{*}=$ $N \times E^{*} \leqslant S_{2}$.

Now apply Theorem $2.10(\mathrm{~m})$ with L in the role of Y, N in the role of X, and V in the role of E^{*} to conclude $R \subseteq S_{2}$. In particular R is abelian. By [8, Theorem 5.2.3], $R=[R, A] \times C_{R}(A)=[R, A] \times E^{*}$. Then $[R, A]$ is obviously a suitable candidate for B, a contradiction.

Theorem 3.6. Suppose that $m(A) \geqslant 3$. Suppose $X \in \bar{И}_{\theta}(A), X_{i}$ are $D A$ invariant subgroups of X for $i=1,2$, and X_{1} / X_{2} is a non-solvable chief $X_{1} D A$-factor. Let $Y \in D(\theta)$. Suppose that $X_{2} \cap D \subseteq Y$. Then one of the following occurs:
(a) $X_{1} \cap D \subseteq Y$,
(b) $\quad\left(X_{1}, X_{2}\right) \in P(\theta, Y)$.

Proof. Suppose false. Let G be a counterexample of least possible order. By Theorem 3.2 there is a hyperplane B_{1} of A such that $\theta\left(C_{G}\left(B_{1}\right)\right) \in C(\theta, Y)$. After the fashion of Theorem 3.2 there is a hyperplane B of A such that $C_{X_{1} / X_{2}}(B)$ is a chief non-solvable $\left(C_{X_{1}}(B)\right) D A$-factor. Were $C_{X}(B) \in C(\theta, Y)$, then $X \in C(\theta, Y)$ would hold. Hence we may and do suppose $B=C_{A}(X)$. Let $E=B \cap B_{1}$ and $W=\theta\left(C_{G}(E)\right)$. Since $X \subseteq W \in C(\theta, Y)$, it follows that $G=W A$.

Fix $\left(Z_{1}, Z_{2}\right) \in C(\theta, Y)$ with Z_{2} of least possible order. By Theorem 3.2, Z_{2} is solvable. Now G has no nontrivial normal subgroups in W which intersect D in a subgroup of Y. This leads to: $K=K(W)$ is the unique minimal normal subgroup of G in $W, Z_{2}=Y, Z_{1}=Y \times\left(Z_{1} \cap K\right)^{\infty}=$ $Y \times Z_{1}^{\infty}$, and $W=K X_{1} D$. Suppose that $X_{1} \cap K \subseteq X_{2}$. Then $\mid D \cap X_{1}$, $D \cap Z_{1}^{\infty} \mid \subseteq X_{2} \cap D \cap Z_{1}^{\infty} \subseteq Y \cap Z_{1}^{\infty}=1$. Hence $D \cap X_{1} \subseteq C_{D}\left(D \cap Z_{1}^{\infty}\right)=Y$. This is false, whence $X_{1}=X_{2}\left(X_{1} \cap K\right)$. Now $D \cap\left(\left(D \cap X_{1}\right)\left(X_{1} \cap K\right)\right)=$ $D \cap X_{1} \nsubseteq Y$. Hence we may suppose $X_{1}=\left(D \cap X_{1}\right)\left(X_{1} \cap K\right)$. In particular, $K D=W$. By Lemma $2.13,(K, 1)=\left(\theta_{Y}^{m}(G), \theta_{Y}^{\prime}(G)\right)$ and $Y=1$. Now $X_{1} \cap K$ is non-solvable. Since $\operatorname{Proj}_{J}\left(X_{1} \cap K\right)$ admits $\operatorname{Proj}_{J}(D \cap K)$ for $J \in \mathscr{L}(W)$ and D is transitive on $\mathscr{L}(W)$, we have $\operatorname{Proj}_{J}\left(X_{1} \cap K\right)=J$ for all $J \in \mathscr{L}(W)$ (see Theorem 2.8(d)). Hence $\quad X_{1} \cap K \quad$ is semi-simple, $\quad X_{2} \cap K=1$, and $X_{2} \subseteq C_{W}\left(X_{1} \cap K\right)=1$. So $X_{2}=1$, and $\left(X_{1}, 1\right) \in P(\theta, Y)$, a contradiction.

Theorem 3.7. Assume the hypotheses of Theorem 3.6. Assume also that $X \in C(\theta, Y)$. Then
(a) $X_{1} \subseteq \theta_{Y}^{m}(X)$, and
(b) either $X_{1} \cap D \subseteq Y$ or $\left(X_{1} D \cap \theta_{Y}^{m}(X), X_{2} D \cap \theta_{Y}^{\prime}(X)\right) \in P(\theta, Y)$.

Proof. Theorem 3.3(d, e) imply both conditions if $X_{1} \cap D \subseteq Y$. So suppose $X_{1} \cap D \nsubseteq Y$. By Theorem 3.6(b), $\left(X_{1}, X_{2}\right) \in P(\theta, Y)$. Now the result follows by Theorem 3.3(b).

Hypothesis A (applied to a vector (G, H, A, D, D_{1}, D_{2}) of groups):
A1: A is a p-group and H is near A-solvable.
A2: $G=H A$.
A3: $D=C_{H}(A)$.
A4: D_{i} are normal subgroups of D such that
(a) $D_{2} \subset D_{1}$,
(b) D_{1} / D_{2} is the unique minimal normal subgroup of $A D / D_{2}$ in D / D_{2},
(c) $\quad C_{D}\left(D_{1} / D_{2}\right)=D_{1}$.

A5: Suppose X_{1} is any subgroup of H admitting $D A, X_{1} / X_{2}$ is a chief nonsolvable $X_{1} D A$-factor, and $X_{2} \cap D \subseteq D_{2}$. Then $X_{1} \cap D \subseteq D_{2}$.

A6: Suppose N, L, and R are subgroups of H which satisfy the following conditions:
(a) N, L, and R admit $D A$.
(b) $L \subseteq R$, and L / N is a chief $R D A$ factor. Moreover, $R A$ centralizes L / N.
(c) $R \cap D=D_{1}$ and $D \cap N \subseteq D_{2}$.
(d) $D_{1} N / N=\left(D_{2} N / N\right) \times(L N / N)$.

Then it follows that R has an $R D A$ invariant subgroup B such that $B \cap D=D_{2}$ and $R=B D_{1}$.

Theorem 3.8. Suppose $\left(G, H, A, D, D_{1}, D_{2}\right)$ satisfies hypothesis A. Define $\mathscr{S}(H)=\left\{M \mid M \subseteq H ; M\right.$ is a $D A$-invariant; and $\left.M \cap D=D_{2}\right\}$. Then $\mathscr{S}(H)$ has a unique maximal element under set inclusion.

Proof. Let $\mathscr{S}=\mathscr{S}(H)$. Suppose by way of contradiction that the conclusion is false. Choose a counterexample G of least possible order. The hypotheses inherit to $\left(\langle\mathscr{S}\rangle D A,\langle\mathscr{S}\rangle D, A, D_{1}, D_{2}\right)$. Hence

$$
\begin{equation*}
G=\langle\mathscr{S}\rangle D A \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle\mathscr{S}\rangle \neq 1 . \tag{3.3}
\end{equation*}
$$

Let N be a minimal normal subgroup of G contained in H. By (3.3) such an N exists. Suppose $D \cap N \subseteq D_{2}$. For each subgroup X of G let $\bar{X}=X N / N$. Hypothesis A inherits to $\left(\bar{G}, \quad \bar{H}, \quad \bar{A}, \quad \bar{D}, \quad D_{1}, \quad \bar{D}_{2}\right)$. Write $\overline{\mathscr{S}(H)}=\{\bar{X} \mid X \in \mathscr{S}(H)\} . \quad$ By \quad Lemma 2.2, $\quad \overline{\mathscr{F}(H)}=\mathscr{S}(\bar{H}) . \quad$ Hence $\langle\overline{\mathscr{S}(H)}\rangle \in \mathscr{S}(\bar{H})$. This is false. Hence

$$
\begin{equation*}
D \cap N \nsubseteq D_{2} \tag{3.4}
\end{equation*}
$$

Next suppose that N is nonsolvable. Then $N=N_{1} \times N_{2} \times \cdots \times N_{k}$ where each N_{i} is a minimal normal subgroup of $N D A$. By A5, $N_{i} \cap D \subseteq D_{2}$ for $1 \leqslant i \leqslant k$. Lemma 2.2 implies that $N \cap D \subseteq D_{2}$, against (3.4). Hence

$$
\begin{equation*}
N \text { is solvable. } \tag{3.5}
\end{equation*}
$$

By (3.4) and A4 there follows

$$
\begin{equation*}
D_{1}=D_{2}\left(D_{1} \cap N\right) . \tag{3.6}
\end{equation*}
$$

Suppose there is $M \in \mathscr{S}$ such that $N M D A=G$. Then $M \cap N \triangleleft G$. So $M \cap N=1$ or N. By (3.6), $M \cap N=1$. Also $M D_{1} \cap N \triangleleft G$. So $M D_{1} \cap N=N$ by (3.6). Hence $M D A=\left(M D_{1}\right) D A=N M D A=G$. Hence $M \triangleleft G$. By (3.4), $1=M$. Hence $G=D A$. Hence $\mathscr{S}=\{1\}$. This is false, whence

$$
\begin{equation*}
N M D A \neq G \quad \text { for any } M \in \mathscr{S} \tag{3.7}
\end{equation*}
$$

For each $M \in \mathscr{S}$ let M^{*} be the unique maximal element of $\mathscr{S}(N M D)$. This is well defined by (3.7). Next we show

$$
\begin{equation*}
M^{*} \cap N=D_{2}^{*} \cap N \quad \text { for any } M \in \mathscr{S} \tag{3.8}
\end{equation*}
$$

Clearly, $D_{2}^{*} \subseteq M^{*}$ for any $M \in \mathscr{S}$. Hence $N \cap D_{2}^{*} \subseteq N \cap M^{*}$. Conversely, $M^{*} \cap N$ admits $D A$, whence ($M^{*} \cap N$) $D_{2} \subseteq D_{2}^{*}$. So (3.8) holds. By (3.2) and (3.8), $D_{2}^{*} \cap N \triangleleft G$. Now (3.4) and (3.8) yield

$$
\begin{equation*}
M \cap N=1 \quad \text { for all } M \in \mathscr{S} \tag{3.9}
\end{equation*}
$$

Let $M \in \mathscr{S}$. Then $[M, D \cap N] \subseteq M \cap N=1$ by (3.9). By (3.2) and (3.6), $1 \neq D_{1} \cap N \triangleleft G$. Hence $\quad N \times D_{2}=D_{1} \quad$ and $\quad\langle\mathscr{S}(H)\rangle \subseteq C_{H}(N)$. Let $R=C_{H}(N)$. By A4, $R \cap D=D_{1}$. Applying A6, with (R, $\mathrm{N}, 1$) in place of (R, L, N), yiclds a subgroup B normal in $R D A=G$ such that $B D_{1}=R$ and $B \cap D=D_{2}$. By (3.4), $B=1$. Hence $D_{2}=1$ and $G=R D A=D_{1} D A=D A$. So $\mathscr{S}=\{1\}$, a contradiction.

Lemma 3.9. Suppose $\left(G, H, A, D, D_{1}, D_{2}\right)$ satisfies hypotheses A1, A2, A3, A4, and A5. Suppose E is a subgroup of A of rank 2 such that A6 is satisfied by $\left(C_{G}(e), C_{H}(e), A, D, D_{1}, D_{2}\right)$ for all $e \in E^{*}$. Suppose further that if $p=3, D_{1} / D_{2}$ is a 5-group. Then $\left(G, H, A, D, D_{1}, D_{2}\right)$ satisfies hypothesis A.

Proof. Suppose false and let G be a counterexample of least possible order. Then there are subgroups N, L, and R of H satisfying the conditions but not the conclusion of A6. Then ($R D A, R D, A, D, D_{1}, D_{2}$) is a counterexample to this lemma; so $G=R D A$.

Suppose $M \cap D \subseteq D_{2}$ for some normal subgroup M of G contained in H. Let $\bar{G}=G / M$. The conditions of the lemma apply to $\left(\bar{G}, \bar{H}, \bar{A}, \bar{D}, \bar{D}_{1}, \bar{D}_{2}\right)$. Hence $M=1$. In particular

$$
\begin{equation*}
N=1 \quad \text { and } \quad D_{1}=D_{2} \times L=C_{D}(L) \tag{3.10}
\end{equation*}
$$

A direct consequence of (3.10) is

$$
\begin{equation*}
L \text { is a minimal normal subgroup of } G \text { in } H . \tag{3.11}
\end{equation*}
$$

By (3.10) we may and do assume

$$
\begin{equation*}
R=C_{H}(L) \tag{3.12}
\end{equation*}
$$

Next let K be a normal extension of L in G, which is maximal subject to the condition that $K D_{1}$ be a proper subgroup of R. Since D_{1} is proper in R such a K exists. The hypotheses apply to ($K D A, K D, A, D, D_{1}, D_{2}$). Since $K D A \neq G$, there is a subgroup B in $K D_{1}$ which is normal in $K D A$, and which
satisfies $B D_{1}=K D_{1}$ and $B \cap D=D_{2}$. Hence $K D_{1}=B D_{1}=B\left(D_{2} L\right)=B L=$ $B \times L$. Hence $\Phi(K) \subseteq \Phi\left(K D_{1}\right)=\Phi(B \times L)=\Phi(B)$; hence $\Phi(K) \cap D \subseteq$ $B \cap D=D_{2}$. Since $\Phi(K)$ is normal in G we must have $\Phi(K)=1$. By (3.11), L is an r-group for some prime r. $O_{r^{\prime}}(K) \cap D \subseteq O^{r}\left(D_{1}\right) \subseteq D_{2}$, whence $O_{r^{\prime}}(K)=1$. This implies

$$
\begin{equation*}
K \text { is an elementary abelian } r \text {-group. } \tag{3.13}
\end{equation*}
$$

Let K_{1} / K be a chief G factor in R. Then $R=K_{1} D_{1}$. Let $E_{1}=C_{E}\left(K_{1} / K\right)$. Since $G=K_{1} D A$ it follows that $E_{1}=C_{E}(G / K)$. So $\left[K, E_{1}\right]$ is normal in G. By (3.13), $\left[K, E_{1}\right] \cap D=1$, whence $\left[K, E_{1}\right]=1$. Hence $E_{1} \subseteq Z(G) \cap E=1$. In particular, K_{1} / K is non-solvable. Since $K C_{G}(e) \neq G$ for any $e \in E^{*}$, hypothesis A applies to $\left(K C_{G}(e), K C_{H}(e), A, D, D_{1}, D_{2}\right)$ for any $e \in E^{*}$. Then $K C_{R}(e)=U_{e} \times L$, where $U_{e} \triangleleft K C_{G}(e)$ and $U_{e} \cap D=D_{2}$ for all $e \in E^{*}$. Let $W=[K, A]$ and $Z=C_{K}(A)$. Then $W=[K, A] \subseteq K \cap$ $\left[L \times U_{e}, A\right] \subseteq K \cap U_{e}$. Hence $K \cap U_{e}=W \times\left(Z \cap U_{e}\right)=W \times\left(K \cap D_{2}\right)$ is independent of $e \in E^{*}$. By Lemma 2.1, $W \times\left(K \cap D_{2}\right) \triangleleft G$. Hence

$$
\begin{equation*}
K=L \tag{3.14}
\end{equation*}
$$

By A5 and (3.14), K_{1} is perfect. Let J be a component of K_{1} / L. Hence r is a prime divisor of the schur multiplier of J. Hence the conditions of the lemma imply that $p \geqslant 5$. There are only two possibilities: either $J \cong \mathscr{L}_{2}\left(3^{p}\right)$ and $r=2$, or $J \cong U_{3}\left(\left(2^{p}\right)^{2}\right)$ and $r=3$. Let S be the unique maximal solvable subgroup of H containing D. Theorems $2.10(\mathrm{c}, \mathrm{b})$ and $2.11(\mathrm{a}, \mathrm{b})$, imply that S is well defined and that S contains a sylow r-subgroup of K_{1}. The conditions of the lemma apply to ($S A, S, A, D, D_{1}, D_{2}$). Since $S A \neq G$, hypothesis A6 applies and implies that L has a complement in $S \cap R$. Hence L has a complement in a sylow r-subgroup of K_{1}. By [4], $A K_{1}$ splits over L. Hence, $K_{1}=K_{1}^{\infty} \times L$, a contradiction.

Theorem 3.10. Suppose $Y \in D(\theta)$ and $m(A) \geqslant 3$. Then θ_{Y} is an A signalizer functor on G.

Proof. It suffices to show $\theta_{Y}\left(C_{G}(a)\right) \in E\left(\theta, Y, \theta\left(C_{G}(a)\right)\right)$ for all $a \in A^{*}$. Theorem 3.3(d) implies this whenever $\theta\left(C_{G}(a)\right) \in C(\theta, Y)$. Let us fix $X=\theta\left(C_{G}(a)\right) \notin C(\theta, Y)$ and prove the result for this X. By Theorem 3.2 we may and do fix $\left(X_{1}, X_{2}\right) \in P(\theta, Y)$ such that $C_{A}\left(X_{1} / X_{2}\right)$ has a subgroup E of rank 2. Rename $Y=D \cap X_{2}=D_{2}$. Let $D_{0}=D \cap X_{1}$ and $D_{1} \supset D_{2}$ satisfy $D_{1} / D_{2}=F\left(D_{0} / D_{2}\right)$. By Theorem 3.4, $\left(X A, X, A, D, D_{1}, D_{2}\right)$ satisfies hypotheses A1, A2, A3 and A4. By Theorem 3.6, X satisfies A5. By Theorem $3.5\left(C_{X A}(e), C_{X}(e), A, D, D_{1}, D_{2}\right)$ satisfies A6 for all $e \in E^{*}$. Moreover, if $p=3$, then $X_{1} / X_{2} \cong n S z(8)$ whence $D_{1} / D_{2} \cong F(n \operatorname{Frob}(20))=$ $n Z_{5}$. Theorem 3.8 and Lemma 3.9 yield the conclusion.

Theorem 3.11. Suppose $m(A)=3$ and θ_{Y} is complete. Then
(a) $\theta_{Y}^{l}(G) \in И_{\theta}(A)$, and
(b) $\theta_{Y}^{m}(G) \subseteq N_{G}\left(\theta_{Y}^{l}(G)\right)$.

Proof. (a) This is a direct consequence of Theorem 3.3(e).
(b) Let $W=\theta_{Y}^{l}(G), \quad S=\left\{B \in \mathscr{E}_{2}(A) \mid \theta\left(C_{G}(B)\right) \in C(\theta, Y)\right\}$, and $T=\left\{a \in A^{*} \mid \theta\left(C_{G}(a)\right) \in C(\theta, Y)\right\}$. Let $\left(X_{1}, X_{2}\right) \in C(\theta, Y)$. Let E be the largest subgroup of A which normalizes each component of X_{1} / X_{2}, and let $F=C_{A}\left(X_{1} / X_{2}\right)$. Let E_{1} be a complement to F in E. Extend E_{1} to a complement A_{1} of F in A. Let $U=\left\{F \times Y \mid Y\right.$ is a complement of E_{1} in $\left.A_{1}\right\}$. Then $U \subseteq S$. Substituting $\left(A_{1}, E_{1}\right)$ for (A, B) in Lemma 2.7 yields $X_{1}=\left\langle X_{2}, C_{X_{1}}(V) \mid V \in U\right\rangle$ and $X_{2}=\left\langle C_{X_{2}}(d) \mid d \in B^{*}\right\rangle$ for any $B \in U$. There follows

$$
\begin{equation*}
X_{1} \subseteq\left\langle W, \theta_{Y}^{m}\left(C_{G}(B)\right) \mid B \in U\right\rangle \quad \text { for any } \quad\left(X_{1}, X_{2}\right) \in C(\theta, Y) \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
W=\left\langle\theta_{Y}^{\prime}\left(C_{G}(t)\right) \mid t \in T\right\rangle \tag{3.16}
\end{equation*}
$$

Now let $B \in U$. Let $W_{B}=\left\langle\theta_{Y}^{I}\left(C_{G}(b)\right) \mid b \in B^{*}\right\rangle$ and $X=\theta_{Y}^{m}\left(C_{G}(B)\right)$. By (3.15) it suffices to show $X \subseteq N_{G}(W)$. We shall do this by showing $X \subseteq N_{G}\left(W_{B}\right)$ and $W_{B}=W$. Now $X \subseteq \theta_{Y}^{m}\left(C_{G}(b)\right) \subseteq N_{G}\left(\theta_{Y}^{l}\left(C_{G}(b)\right)\right)$ for all $b \in B^{\# \prime} \quad$ (see Theorem 3.3(b)). Hence $X \subseteq N_{G}\left(W_{B}\right)$. Let $t \in T$. By Theorem 3.3(h), $\theta_{Y}^{l}\left(C_{G}(t)\right) \cap C_{G}(b) \subseteq W_{B}$ for any $b \in B^{*}$. Hence by (3.16) and Lemma 2.1, it follows that $W \subseteq W_{B}$. Hence by (3.16), $W_{B}=W$. This completes the proof of Theorem 3.11.

4. A Family of Subgroups

The goal of this section is to prove:
Theorem 4.1. Suppose θ is a locally complete near solvable A-signalizer functor on G. Suppose θ is not solvable. Then there is an $X \in \tilde{\mathrm{~h}}_{\theta}(A)$ which satisfies:
(a) X is non-solvable.
(b) Suppose $Z, U \in \hat{И}_{\theta}(A)$ satisfies $Z \operatorname{Sol}(X)=K(X)$, and $Z \subseteq U$. Then $Z \operatorname{Sol}(U)=K(U)$.
(c) Suppose $K(X) \subseteq U \in \hat{\mathrm{~h}}_{\theta}(A)$. Then $U \subseteq X$.
(d) Suppose $Z, T \in \hat{\cap}_{\theta}(A), Z \quad \operatorname{Sol}(X)=K(X), T$ is solvable, and $\operatorname{Sol}(X) \subseteq T$. Then $\operatorname{Sol}(X)$ is the unique maximal subgroup of T normalized by Z.

Definition. Suppose G is a group. $\operatorname{deg}_{p}(G)$ is the least integer n for which G has a faithful permutation representation of degre n.

$$
\begin{aligned}
\operatorname{deg}(G) & =0 & & \text { if } G \text { is solvable } \\
& =\operatorname{deg}_{p}(G / \operatorname{Sol}(G)) & & \text { otherwise. }
\end{aligned}
$$

$\mathscr{B}(G)$ is the set of all subgroups X of G for which $K(X)=X$ holds. Let T be a subset of $\mathscr{B}(G)$.

$$
\begin{aligned}
\mathscr{B}_{1}(T) & =\{X \in T \mid \operatorname{deg}(X) \geqslant \operatorname{deg}(Y) \text { for any } Y \in T\} \\
\mathscr{B}_{2}(T) & =\left\{X \in \mathscr{B}_{1}(T)| | X / \operatorname{Sol}(X)\left|\geqslant|Y / \operatorname{Sol}(Y)| \text { for any } Y \in \mathscr{B}_{1}(T)\right\},\right. \\
\mathscr{B}^{*}(T) & =\left\{X \in \mathscr{B}_{2}(T)| | X\left|\geqslant|Y| \text { for any } Y \in \mathscr{D}_{2}(T)\right\}\right.
\end{aligned}
$$

We write $\mathscr{B}^{*}(G)=\mathscr{B}^{*}(\mathscr{B}(G))$. Suppose θ is an A-signalizer functor on G. Then $\mathscr{B}(\theta)=\bigcup\left\{\mathscr{P}(X) \mid X \in \bigcap_{\theta}(A)\right\}$ and $\mathscr{B}^{*}(\theta)=\mathscr{B}^{*}(\mathscr{B}(\theta))$.

Hypothesis $B . \quad G$ is a simple nonabelian group. Let X be any perfect member of. $\mathscr{B}(\operatorname{Aut}(G))$. Then $\operatorname{deg}(X)<\operatorname{deg}(G)$ if $X \nsubseteq \operatorname{Inn}(G)$.

Hypothesis C. G is a group. Each non-abelian simple section of G satisfies hypothesis B.

Let G be a permutation group on a set Ω. Let Δ be a subset of Ω and let S be a set of subsets of Ω. We define

$$
\begin{aligned}
G_{\Delta} & =\bigcap\left\{G_{a} \mid a \in \Delta\right\}, \\
G^{\Delta} & =\{g \in G \mid g(\Delta)=\Delta\}, \\
G_{S} & =\bigcap\left\{G^{\Delta} \mid \Delta \in S\right\} \\
G^{S} & =\{g \in G \mid g(\Delta) \in S \text { for all } \Delta \in S\}, \\
G(S) & =G^{s} / G_{S} \quad \text { and } \quad G(\Delta)=G^{\Delta} / G_{\Delta}
\end{aligned}
$$

We consider $G(S)$ and $G(\Delta)$ as permutation groups on S and Δ respectively in the natural way.

Lemma 4.2. Suppose $G=K(G)$ is a group. Then $\operatorname{deg}_{p}(G) \geqslant \operatorname{deg}(G)$.
Proof. Suppose false. Choose a counterexample G of least possible order. Let Ω be a set of order $\operatorname{deg}_{p}(G)$ on which G acts faithfully.

First suppose G is not transitive on Ω. Let Ω be the disjoint union of nonempty sets Ω_{1} and Ω_{2}, both of which admit G. Let $H_{2}=G_{\Omega,}$, and $H_{1}=C_{G}\left(H_{2} \operatorname{Sol}(G) / \operatorname{Sol}(G)\right)$. Let $H_{1}^{*}=H_{1} / H_{1} \cap H_{2}$, and $H=H_{1}^{*} \times H_{2}$. Then $H / \operatorname{Sol}(H) \cong G / \operatorname{Sol}(G)$. Hence $\operatorname{deg}(H)=\operatorname{deg}(G)$. Now $H_{1}^{*} \subseteq G\left(\Omega_{1}\right)$ and H_{2} acts faithfully on Ω_{2}, whence $\operatorname{deg}\left(H_{1}^{*}\right) \leqslant \operatorname{deg}_{\rho}\left(H_{1}^{*}\right) \leqslant\left|\Omega_{1}\right|$ and $\operatorname{deg}\left(H_{2}\right) \leqslant$
$\operatorname{deg}_{p}\left(H_{2}\right) \leqslant\left|\Omega_{2}\right|$. Hence $\operatorname{deg}(G)=\operatorname{deg}(H) \leqslant \operatorname{deg}\left(H_{1}^{*}\right)+\operatorname{deg}\left(H_{2}\right) \leqslant\left|\Omega_{1}\right|+$ $\left|\Omega_{2}\right|=\operatorname{deg}_{p}(G)$. This is false, whence G is transitive on Ω.

Next suppose $\operatorname{Sol}(G)$ acts transitively on Ω. Let $a \in \Omega$. Then $G=G_{a} \operatorname{Sol}(G), \quad G_{a} \neq G, \quad$ and $G_{a} / \operatorname{Sol}\left(G_{a}\right) \cong G / \operatorname{Sol}(G)$. Hence $\operatorname{deg}(G)=$ $\operatorname{deg}\left(G_{a}\right) \leqslant \operatorname{deg}_{p}\left(G_{a}\right)<\operatorname{deg}_{p}(G)$. This is false. Let S be the set of orbits of $\operatorname{Sol}(G)$ on Ω. Then S is a system of imprimitivity for G.

Let $K=G_{S} \quad$ and $\quad Z=C_{G}(K / \operatorname{Sol}(G))$. Then $\quad G / \operatorname{Sol}(G) \cong K / \operatorname{Sol}(K) \times$ $Z / \operatorname{Sol}(Z)$. Now $Z / Z \cap K \subseteq G(S)$, whence $\operatorname{deg}(Z)=\operatorname{deg}(Z / Z \cap K) \leqslant|S|$. Let Δ and $\Gamma \in S$. Then $K_{\Delta} \triangleleft K$. Hence $\left(K_{\Delta} \operatorname{Sol}(G)\right)^{\infty}=K_{\Delta}^{\infty}$. However, $K_{\Delta} \operatorname{Sol}(G) \triangleleft G$ and G is transitive on S. Hence $K_{\Delta}^{\infty}=\left(K_{\Delta} \operatorname{Sol}(G)\right)^{\infty}=$ $\left(K_{\Gamma} \operatorname{Sol}(G)\right)^{\infty}=K_{\Gamma}^{\infty}$. Hence $K_{\Delta}^{\infty} \subseteq G_{\Omega}=1$. Thus $K_{\Delta} \subseteq \operatorname{Sol}(K)$. So

$$
\operatorname{deg}(K)=\operatorname{deg}\left(K / K_{\Delta}\right) \leqslant \operatorname{deg}_{p}\left(K / K_{\Delta}\right) \leqslant|\Delta| .
$$

Hence

$$
\begin{aligned}
|\Delta||S|=\operatorname{deg}_{p}(G) & <\operatorname{deg}(G) \leqslant \operatorname{deg}(K)+\operatorname{deg}(Z) \\
& \leqslant|\Delta|+|S|
\end{aligned}
$$

This is false since $2 \leqslant \min \{|\Delta|,|S|\}$. This completes the proof of Lemma 4.2.
Lemma 4.3. Suppose $G=K(G)$ is a group. Then

$$
\operatorname{deg}(G)=\Sigma\{\operatorname{deg}(J) \mid J \in \mathscr{L}(G / \operatorname{Sol}(G))\}
$$

Proof. We may and do assume $\operatorname{Sol}(G)=1$ and G is not simple. Choose a set Ω of order $\operatorname{deg}(G)$ on which G acts faithfully. Suppose G acts primitively on Ω. Then $G=G_{1} \times G_{2}, G_{1} \cong G_{2}$ is simple, and $|\Omega|=\left|G_{1}\right|$. Let N be a maximal subgroup of G_{1}. Then $\operatorname{deg}(G) \leqslant 2 \operatorname{deg}\left(G_{1}\right) \leqslant 2\left|G_{1}: N\right|=$ $|\Omega|(2 /|N|)$. Hence $|N| \leqslant 2$. This is false.

Now suppose G is transitive on Ω. Let S be a system of imprimitivity for G. Let $K=G_{S}, Z=C_{G}(K), \Delta \in S$, and $H=K_{\Delta}$. Then $G=K \times Z$. Now K is isomorphic to a subgroup of $G(S)$ and so $\operatorname{deg}(K) \leqslant|S|$. Since $H \triangleleft G, G$ acts on the fixed points of H; so $H=1$. Hence $K \cong K(\Delta)$. Hence $|\Omega|=$ $|\Delta \| S|=\operatorname{deg}(G) \leqslant \operatorname{deg}(K)+\operatorname{deg}(Z) \leqslant|\Delta|+|S|$. This is also false.

We have shown that G is not transitive. Let Ω be the disjoint union of nonempty sets Ω_{1}, Ω_{2}, both of which are fixed blocks of G. Let $H_{2}=G_{\Omega_{1}}$ and $H_{1}=C_{G}\left(H_{2}\right)$. Then $G=H_{1} \times H_{2}$, and H_{i} acts faithfully on Ω_{i}. Hence $\operatorname{deg}\left(H_{i}\right)=\left|\Omega_{i}\right|$. The result follows by induction.

Corollary 4.4. Suppose $G=K(G)$ is a group. Suppose $N \triangleleft G$. Then $\operatorname{deg}(G)=\operatorname{deg}(N)+\operatorname{deg}(G / N)$.

Proof. Let $\bar{G}=G / \operatorname{Sol}(G)$. Then $(G / N) / \operatorname{Sol}(G / N) \cong \bar{G} / \bar{N}, N / \operatorname{Sol}(N) \cong \bar{N}$, and $\bar{G} \cong(\bar{G} / \bar{N}) \times \bar{N}$. Hence we may suppose $\operatorname{Sol}(G)=1$. In this case the result is a direct consequence of Lemma 4.3.

Lemma 4.5. Suppose G satisfies hypothesis C. Suppose X is a perfect element of $\mathscr{B}_{1}(\mathscr{B}(G))$. Then $X \subseteq K(G)$.

Proof. Suppose false. Choose a counterexample G of least possible order. Then $\operatorname{Sol}(G)=1$, and $G=K(G) X$.

Let $K=K(G)$. Suppose $K=K_{1} \times K_{2}, \quad K_{i} \neq 1$, and $K_{i} \triangleleft G$. Then $\left|G / C_{G}\left(K_{1}\right)\right|<|G|$. Hence

$$
\operatorname{deg}\left(X / C_{X}\left(K_{1}\right)\right)=\operatorname{deg}\left(X C_{G}\left(K_{1}\right) / C_{G}\left(K_{1}\right)\right) \leqslant \operatorname{deg}\left(K_{1}\right)
$$

since $K_{1} \cong K\left(G / C_{G}\left(K_{1}\right)\right)$. By Corollary 4.4,

$$
\begin{aligned}
\operatorname{deg}\left(C_{X}\left(K_{1}\right)\right) & =\operatorname{deg}(X)-\operatorname{deg}\left(X / C_{X}\left(K_{1}\right)\right) \geqslant \operatorname{deg}(X)-\operatorname{deg}\left(K_{1}\right) \\
& =\operatorname{deg}(X)-\left(\operatorname{deg} K-\operatorname{deg}\left(K_{2}\right)\right) \\
& =\operatorname{deg}\left(K_{2}\right)+(\operatorname{deg}(X)-\operatorname{deg} K) \geqslant \operatorname{deg}\left(K_{2}\right) .
\end{aligned}
$$

Hence $\quad\left(C_{X}\left(K_{1}\right)\right)^{\infty} \subseteq K_{2}$. Hence $\operatorname{deg}\left(C_{X}\left(K_{1}\right)\right)=\operatorname{deg}\left(K_{2}\right)$. Hence $\operatorname{deg}\left(X / C_{X}\left(K_{1}\right)\right)=\operatorname{deg}(X)-\operatorname{deg}\left(K_{2}\right) \geqslant \operatorname{deg}\left(K_{1}\right)$. Hence X induces only inner automorphisms on K_{1}. By symmetry, X induces only inner automorphisms on K_{2}. Hence $X \subseteq K$. This is false. So X acts transitively on $\mathscr{L}(G)$.

Let $Y=\hat{K}(G) \cap X$. Then X / Y acts faithfully on $\mathscr{L}(G)$. So $\operatorname{deg}(X / Y) \leqslant$ $|\mathscr{L}(G)|$. Let $J \in \mathscr{L}(G)$, and $W=C_{Y}(J)$. Then $W^{\infty}=(\operatorname{Sol}(X) Y)^{\infty} \triangleleft X$. Since X acts on the components of G centralized by W^{∞}, it follows that $W^{\infty}=1$. Hence W is solvable. Hence $\operatorname{deg}\left(Y^{Y}\right)=\operatorname{deg}(Y / W)=$ $\operatorname{deg}\left(Y C_{J Y}(J) / C_{J Y}(J)\right) \leqslant \operatorname{deg}(J) \quad$ by Hypothesis $\quad C$. By Corollary 4.4, $\operatorname{deg}(X) \leqslant|\mathscr{L}(G)|+\operatorname{deg}(J)$. Now $\operatorname{deg}(K)=|\mathscr{L}(G)| \operatorname{deg}(J) \geqslant \operatorname{deg}(X)$. Hence $|\mathscr{L}(G)|=1$. Put differently, $K(G)$ is simple. Hypothesis C implies that $X \subseteq K(G)$, a contradiction.

Theorem 4.6. Suppose G satisfies Hypothesis C. Then
(a) $K(G)=X \operatorname{Sol}(G)$ for any $X \in \mathscr{B}_{2}(\mathscr{B}(G))$, and
(b) $\mathscr{B}^{*}(G)=\{K(G)\}$.

Proof. (a) We may and do suppose $\operatorname{Sol}(G)=1$. Let $X \in \mathscr{B}_{2}(\mathscr{B}(G))$. By Lemma 4.5, $\quad X^{\infty} \subseteq K(G)$. Hence $\quad X^{\infty}=K(G)$. Hence $\quad X=\operatorname{Sol}(X) \times$ $K(G)=K(G)$. This proves (a).
(b) This follows directly from (a).

Theorem 4.7. Suppose θ is a near solvable A-signalizer functor on G. Suppose θ is not solvable. Let $X \in \mathscr{B}^{*}(\theta)$. Then
(a) X is non-solvable.
(b) Suppose $Z, U \in \hat{\mathrm{~A}}_{\theta}(A), Z \quad \operatorname{Sol}(X)=X$, and $Z \subseteq U$. Then Z $\operatorname{Sol}(U)=K(U)$.
(c) Suppose $X \subseteq U \in \hat{\mathrm{~h}}_{\theta}(A)$. Then $K(U)=X$.

Proof. (a) This is a direct consequence of θ being non-solvable.
(b), (c) Let Z, U be as in (b). Then $\operatorname{deg}(X)=\operatorname{deg}(Z) \leqslant \operatorname{deg}(K(U))$ by Theorem 4.6. By definition, $\operatorname{deg}(Z) \geqslant \operatorname{deg}\left(K(U)\right.$). Hence $K(Z)^{\infty} \subseteq K(U)$ by Lemma 4.5. Now $\left|K(Z)^{\infty} / \operatorname{Sol}\left((K(Z))^{\infty}\right)\right|=|X / \operatorname{Sol}(X)| \leqslant|K(U) / \operatorname{Sol}(U)|$. Hence $K(U) \in \mathscr{D}_{2}(\mathscr{B}(\theta))$. Hence $Z \in \mathscr{P}_{2}(\mathscr{B}(U))$. Now (b) holds by Theorem 4.6(a). So suppose $X=Z$. Then $X \subseteq K(U)$, whence $K(U) \in \mathscr{D}^{*}(\theta)$. Hence $|X|=|K(U)|$ and (c) follows from (b).

Proof of Theorem 4.1. Let $W \in \mathscr{B}^{*}(\theta)$ and $X=\theta\left(N_{G}(W)\right)$. By local completeness $X \in И_{\theta}(A)$. Theorem 4.7 implies X satisfies parts (a), (b), and (c) of Theorem 4.1. It remains to show (d). Let Z and T be as in part (d). Let M be the unique maximal subgroup of T normalized by Z. Since Z and T admit $D A$ so does M. Hence $K(X)=\operatorname{Sol}(X) Z \subseteq M Z \in \hat{\Pi}_{\theta}(A)$. By (c), $M Z \subseteq X$. By Theorem 4.7(c), $M Z=K(X)$. Hence $M=\operatorname{Sol}(X)$ as required.

5. The Minimal Counterexample

Henceforth in this paper we shall assume that the main theorem is false and that G is a counterexample of minimal order. Subject to this restriction, we assume that $|\theta|$ is minimal.

When convenient we shall write $H_{B}=\theta\left(C_{G}(B)\right)$ if B is a non-trivial subgroup of A. We also write $H_{a}=H_{\langle a\rangle}$ for $a \in A$ and $D=H_{A}$.

Theorem 5.1. Suppose $Y \in D(\theta)$. All of the following hold:
(a) θ is non-solvable,
(b) θ is locally complete,
(c) $G=\left\langle И_{\theta}(A)\right\rangle A$,
(d) $Z\left(\left\langle И_{\theta}(A)\right\rangle\right)=1$,
(e) θ_{Y} is complete, and
(f) either $\theta_{Y}^{m}(G) \in И_{\theta}(A)$, or $\theta_{Y}^{l}(G)=1$.

Proof. See [5] for (a). See [6, Lemmas 2.6(1) and 5.1] for (b) and (c). Theorems 3.10, 3.11, 3.3(e), and parts (a) (b) of this theorem yield (e) and (f). It remains to show (d).

Suppose (d) is false. Let $W=\left\langle И_{\theta}(A)\right\rangle$. Let Z_{0} be a minimal normal subgroup of G contained in $Z(W)$. Then Z_{0} is an r-group for some prime r. Suppose first that $r \neq p$. The procedure of [6, Lemma 2.6(2)], applied to G / Z_{0}, yields $Z_{0} C_{W}(a)=Z_{0} \theta\left(C_{G}(a)\right)$ for all $a \in A$, and W is a p^{\prime}-group. $Z_{0} \cap \theta\left(C_{G}(a)\right) \triangleleft G \quad$ for \quad all $a \in A^{*} \quad$ and $\quad Z_{0} \notin И_{\theta}(A) \quad$ whence $Z_{0} \cap \theta\left(C_{G}(a)\right)=1$ for all $a \in A^{*}$. By (a) and Lemma 2.1, a sylow r subgroup of W splits over Z_{0}. By [4], Z_{0} has an A-invariant complement W_{0}. Let $\theta_{0}\left(C_{G}(a)\right)=\theta\left(C_{G}(a)\right) \cap W_{0}$. Now $\theta_{0}\left(C_{G}(a)\right) \triangleleft \theta\left(C_{G}(a)\right)$, and θ_{0} is complete. Hence for any $B \in \mathscr{E}_{2}(A), \theta\left(C_{G}(B)\right) \subseteq N_{G}\left(\left\langle\theta_{0}\left(C_{G}(b)\right) \mid b \in B^{*}\right\rangle\right)=$ $N_{G}\left(\theta_{0}(W)\right.$). So by (c), $\theta_{0}(G) \triangleleft G$. By (b), $\theta_{0}(G)=1$. Hence θ is solvable, contrary to (a). Hence $r=p$. Since $C_{Z_{0}}(A) \neq 1$ it follows that $Z_{0} \cong Z_{p}$ and $Z_{0} \subseteq Z(G)$. Then

$$
\begin{aligned}
Z_{0}\left(\theta\left(C_{G}(a)\right)\right) \cap C_{G}\left(\left\langle b, Z_{0}\right\rangle / Z_{0}\right) & =Z_{0} \theta\left(C_{G}(a)\right) \cap C_{\sigma}(b) \\
& =Z_{0} \theta\left(C_{\sigma}(\langle a, b\rangle)\right)
\end{aligned}
$$

for $a, b \in A^{*}$. The argument of [6, Lemma 2.6(2)] again applies, and yields $W=Z_{0} \times O_{p^{\prime}}(W)$. Hence $W=\left\langle\mathrm{H}_{\theta}(A)\right\rangle \subseteq O^{P}(W)=O_{p^{\prime}}(W) \neq W$, a contradiction.

Theorem 5.2. Suppose $X \in И_{\theta}(A)$. Then
(a) There is an $a \in A^{*}$ such that $K\left(H_{a}\right) \nsubseteq X$.
(b) There is a $B \in \mathscr{E}_{2}(A)$ such that $K\left(H_{B}\right) \nsubseteq X$.

Proof. Let $a \in A^{*}$ and $a \in B \in \mathscr{E}_{2}(A)$. Then $C_{G}(B) \cap K\left(H_{a}\right) \subseteq K\left(H_{B}\right)$. Hence

$$
K\left(H_{a}\right)=\left\langle K\left(H_{a}\right) \cap C(B) \mid a \in B \in \mathscr{E}_{2}(A)\right\rangle \subseteq\left\langle K\left(H_{E}\right) \mid E \in \mathscr{E}_{2}(A)\right\rangle .
$$

Hence it suffices to prove (a).
Suppose that (a) is false. Choose $X \in И_{\theta}(A)$ such that $K\left(H_{a}\right) \subseteq X$ for all $a \in A^{*}$. Let $B \in \mathscr{E}_{2}(A)$. By Lemma 2.15, $C_{K(x)}(b) \subseteq K\left(H_{b}\right)$ for all $b \in B^{*}$. Let $W=\left\langle K\left(H_{b}\right) \mid b \in B^{*}\right\rangle$. Then $K(X) \subseteq W \subseteq X \quad$ and $\quad H_{B} \subseteq N_{G}(K(W))$. By Lemma 2.15, $K(W)=K(X)$. Hence $H_{B} \subseteq N_{G}(K(X))$. Local completeness of θ now yields a contradiction.

Theorem 5.3. $D(\theta)=\{1\}$ and $\theta_{1}^{m}(G) \notin И_{\theta}(A)$.
Proof. Let $S=\theta_{\text {sol }}(G)$. By Theorems 4.1 and 5.1 there is a subgroup W such that:
(a) $W \in \tilde{\mathrm{~h}}_{\theta}(A)$.
(b) W is non-solvable
(c) Suppose $K(W)=Z \operatorname{Sol}(W), Z \subseteq \widehat{И}_{\theta}(A)$, and $Z \subseteq U \in \widehat{\bigcap}_{\theta}(A)$. Then $K(U)=Z \operatorname{Sol}(U)$.
(d) Suppose $K(W) \subseteq U \in \hat{\mathrm{~h}}_{\theta}(A)$. Then $U \subseteq W$.
(e) Suppose $Z \in \hat{\mathrm{~h}}_{\theta}(A)$ and $Z \operatorname{Sol}(W)=K(W)$. Then $\operatorname{Sol}(W)$ is the unique maximal subgroup of S normalized by Z.

Suppose $\theta_{Y}^{m}(G) \in \Lambda_{\theta}(A)$ for all $Y \in D(\theta)$. Let $R=\left\{E \in \mathscr{E}_{1}(A) \mid H_{E} \cap W\right.$ is nonsolvable $\}$ and $T=\mathscr{E}_{1}(A)-R$. Let $E \in R$. By (a), there is $\left(X_{1}, X_{2}\right) \in P(\theta)$ such that $X_{1} \subseteq H_{E} \cap W$. Let $Y=D \cap X_{2}$. Then $W, H_{E} \in C(\theta, Y)$. Let $V=\theta_{Y}^{m}(G)$. By assumption and Theorem 3.3(c), $\left\langle K(W), \quad K\left(H_{E}\right)\right\rangle \subseteq$ $V \in \hat{\mathrm{H}}_{\theta}(A)$. By (d), $K\left(H_{E}\right) \subseteq V \subseteq W$. Hence

$$
\begin{equation*}
K\left(H_{E}\right) \subseteq W \quad \text { for all } \quad E \in R \tag{5.1}
\end{equation*}
$$

There follows by Theorem 5.2(a)

$$
\begin{equation*}
T \neq \varnothing \tag{5.2}
\end{equation*}
$$

Let $A^{*}=\langle T\rangle$. By (5.2), $A^{*} \neq 1$. Each member of T fixes each component of $K(W) / \operatorname{Sol}(W)$. Hence $A^{*} \subseteq \hat{K}(W A)$. Hence $W=K(W) C_{W}\left(A^{*}\right)$. Since $C_{W}\left(A^{*}\right)$ is solvable there follows by (5.1),

$$
\begin{equation*}
W / K(W) \text { is solvable and } K\left(H_{E}\right)^{\infty} \subseteq K(W) \text { for all } E \in R . \tag{5.3}
\end{equation*}
$$

For each $B \in \mathscr{E}_{2}(A)$ define

$$
\left.W_{B}=\left\langle\left(K\left(H_{E}\right)\right)^{\infty}\right| E \in R \text { and } E \subset B\right\rangle
$$

By Lemma 2.15 and (5.1), $K\left(C_{W}(E)\right)=K\left(H_{E}\right)$ for all $E \in R$. Hence by (5.3), $\left(K\left(H_{E}\right)\right)^{\infty}=\left(C_{K(W)}(E)\right)^{\infty}$ for all $E \in R$. Hence

$$
W_{B}=\left\langle(K(W) \cap C(b))^{\infty} \mid b \in B^{\#}\right\rangle .
$$

Hence by Lemma 2.7 applied to each B orbit of $\mathscr{L}(W / \operatorname{Sol}(W))$

$$
\begin{equation*}
W_{B} \in \mathscr{A}_{\theta}(A) \quad \text { and } \quad W_{B} \operatorname{Sol}(W)=K(W) \quad \text { for all } \quad B \in \mathscr{E}_{2}(A) \tag{5.4}
\end{equation*}
$$

By the initial definition of W_{B} there follows

$$
\begin{equation*}
\theta\left(C_{G}(B)\right) \subseteq \theta\left(N_{G}\left(W_{B}\right)\right) \quad \text { for all } \quad B \in \mathscr{E}_{2}(A) \tag{5.5}
\end{equation*}
$$

By (e) and (5.5), $C_{S}(B) \subseteq N_{G}\left(\operatorname{Sol}(W)\right.$) for all $B \in \mathscr{E}_{2}(A)$. Lemma 2.1 and Theorem $5.1(\mathrm{~b})$ implies that $S \subseteq W$ if $\operatorname{Sol}(W) \neq 1$. By (5.5), (5.4), and local completeness we have,

$$
\operatorname{Sol}(W) \neq 1
$$

Hence

$$
\begin{equation*}
S \subseteq W \tag{5.7}
\end{equation*}
$$

By Theorem $5.2(\mathrm{~b})$ there is a $B \in \mathscr{E}_{2}(A)$ such that $K\left(H_{B}\right) \nsubseteq W$. Fix this B and let $L_{B}=\theta\left(N_{G}\left(W_{B}\right)\right)$. By (5.5), $\left\langle H_{B}, W_{B}\right\rangle \subseteq L_{B} \in \tilde{\mathrm{H}}_{\theta}(A)$. Let L_{B}^{∞} / M be a chief factor of $L_{B}^{\infty} D A$. Let $Y=C_{D}\left(L_{B}^{\infty} / M\right)$, and $\left(X_{1}, X_{2}\right)=\left(L_{B}^{\infty} Y, M Y\right)$. Then $\left(X_{1}, X_{2}\right) \in P(\theta)$ and $Y=X_{2} \cap D$. Hence $X_{1} \subseteq \theta_{Y}^{m}(G) \in И_{\theta}(A)$. Let $D_{1}=D \cap \operatorname{Sol}(W)$. Then by (c),

$$
\begin{aligned}
D_{1} \subseteq C_{D}(K(W) / \operatorname{Sol}(W)) & =C_{D}\left(W_{B} / \operatorname{Sol}\left(W_{B}\right)\right) \\
& =C_{D}\left(K\left(L_{B}\right) / \operatorname{Sol}\left(L_{B}\right)\right) \subseteq Y .
\end{aligned}
$$

Hence $\operatorname{Sol}(W) \subseteq \operatorname{Sol}(W) Y \subseteq \theta_{Y}(G) \subseteq \theta_{Y}^{m}(G)$. By (d), $\theta_{Y}^{m}(G) \subseteq W$. Hence $\left(H_{B}\right)^{\infty} \subseteq\left(L_{B}\right)^{\infty} \subseteq X_{\mathrm{I}} \subseteq \theta_{Y}^{m}(G) \subseteq W$. By (5.7), $H_{B}=\left(H_{B}\right)^{\infty}\left(H_{B} \cap S\right) \subseteq W$, a contradiction. Hence

$$
\begin{equation*}
\theta_{Y}^{m}(G) \notin И_{\theta}(A) \quad \text { for some } Y \in D(\theta) . \tag{5.8}
\end{equation*}
$$

Fix $Y \in D(\theta)$ such that $\theta_{Y}^{m}(G) \notin И_{\theta}(A)$. Theorem $5.1(f)$ implies that $\theta_{Y}^{\prime}(G)=1$. In particular, $Y=1$. Let $a \in A^{*}$. Suppose $H_{a} \in C(\theta, 1)$, then $\theta_{1}^{m}\left(H_{a}\right)=K\left(H_{a}\right)$ is semi-simple. In particular, $\left(S \cap H_{a}\right) \theta_{1}^{m}\left(H_{a}\right)$ is a group. Define $\theta_{1}\left(C_{G}(a)\right)=\left(S \cap H_{a}\right) \theta_{1}^{m}\left(H_{a}\right)$. Let $b \in A$. Suppose $H_{b} \notin C(\theta, 1)$. Define $\theta_{1}\left(C_{G}(b)\right)=H_{b} \cap S$. An application of Lemma 2.2 and Theorem 3.3 shows that θ_{1} is an A-signalizer functor. Since θ_{1} cannot be complete, it follows that $|\theta|=\left|\theta_{1}\right|$. Hence $\theta=\theta_{1}$. This proves the result.

Lemma 5.4. Suppose X is a subgroup of G generated by some elements of $И_{\theta}(A)$. Then either
(i) X contains every element of $\mathrm{H}_{\theta}(A)$ or
(ii) $X \in И_{\theta}(A)$.

Proof. See [5, Lemma 5.4].

6. The Structure of θ

We continue use of $S=\theta_{\text {sol }}(G)$. For the convenience of the reader, we summarize in Theorems 6.1 and 6.2 all the significant structural features of θ established in this section.

First we shall introduce some important new notation which we shall fix for the rest of the paper.

```
\(K_{B}=K\left(H_{B}\right)\) for any \(B \leqslant A\),
    \(R=\left\{B \mid 1 \neq B \subseteq A, H_{R} \in C(\theta, 1)\right\}\),
\(R_{i}=\{B \in R \mid m(B)=i\}\) for \(i=1\) or 2 ,
\(D_{0}=D \cap K_{B}\) for any \(B \in R\) (see Lemma 6.6),
\(D_{1}=F\left(D_{0}\right)\),
\(D_{2}=C_{D_{0}}\left(D_{0} / D_{1}\right)\),
\(S_{1}=\theta\left(C_{G}\left(D_{1}\right)\right)\),
\(S_{2}=\theta\left(C_{G}\left(D_{2} S_{1} / S_{1}\right)\right)\),
\(S_{3}=\theta\left(C_{G}\left(D_{0} S_{1} / S_{1}\right)\right)\).
```

Finally, let

$$
\theta^{*}\left(C_{G}(a)\right)=H_{a}^{\infty}\left(H_{a} \cap S_{2}\right) \quad \text { for any } \quad a \in A^{*}
$$

Theorem 6.1. There is a distinguished $E \in \mathscr{E}_{1}(A)$ and a simple group J such that all of the following hold:
(a) H_{E} is solvable.
(b) Let $f \in A-E$. Then $K_{f} \cong p J,\langle E, f\rangle=A \cap \hat{K}\left(H_{f} A\right), H_{f}=\hat{K}\left(H_{f}\right)$, and H_{f} / K_{f} is a $\{2,3\}$-group.
(c) Suppose $f \in A-E, X \in И_{\theta}(A)$ and $K_{f} \subseteq X$. Then $X \subseteq H_{f}$.
(d) D_{0} and D_{2} are Frobenius groups with common Frobenius kernel D_{1}.
(e) Suppose $E \subset B \in \mathscr{E}_{2}(A)$. Let $E \times F=B$. Then $S_{3} \cap H_{B}=$ $\times\left\{J \cap S_{3} \cap H_{E} \mid J \in \mathscr{L}\left(H_{F}\right)\right\} \cong p D_{2}$.

Theorem 6.2. Let E be as in Theorem 6.1. There is an $r \in \pi(\theta)$ and an $S_{r}(A)$-subgroup V which satisfies:
(a) $V \nsubseteq S$,
(b) V is abelian,
(c) $1 \neq C_{V}(f)$ is a sylow r-subgroup of H_{f} for all $f \in A-E$.
(d) Let $f \in A-E$ and $F=\langle E, f\rangle$. Then

$$
\left\langle C_{V}(f), H_{F} \cap S_{3}\right\rangle=K_{f}
$$

Lemma 6.3. Suppose B is a non-trivial subgroup of A such that H_{B} is non-solvable. Then
(a) $H_{B} / K\left(H_{B}\right)$ is solvable, and
(b) $K\left(H_{B}\right)$ is the unique minimal normal subgroup of $K\left(H_{B}\right) D A$.

Proof. Theorems $5.1(\mathrm{f})$ and 5.3 yield $\theta_{1}^{\prime}(G)=1$ and $D(\theta)=\{1\}$. The conclusion of the lemma is simply a more appropriate formulation of these facts. The details follow directly from Theorem 3.3(a, c).

Lemma 6.4. Suppose $B \in R_{2}$. Let $W=\left\langle K\left(H_{b}\right) \mid b \in B^{*}\right\rangle$. Then $W=$ $\left\langle И_{\theta}(A)\right\rangle$.

Proof. Let $f \in A^{*}$ such that H_{f} is non-solvable. By Lemma 6.3, $\theta_{1}^{m}\left(H_{f}\right)=$ $K\left(H_{f}\right)=\left\langle\left(K\left(H_{f}\right) \cap C(b)\right)^{\infty} \mid b \in B^{*}\right\rangle \subseteq W$. Hence by Theorem 5.3, $W \notin$ $И_{\theta}(A)$. Now Lemma 5.4 implies the conclusion.

Theorem 3.2 yields
Lemma 6.5. Suppose $F \in R_{1}$. Then there is a $B \in R_{2}$ which contains F. In particular, $R_{2} \neq \varnothing$.

Lemma 6.6. $\quad D_{0}$ is well defined.
Proof. Let $E, F \in R$. Write $E \sim F$ if and only if $D \cap K\left(H_{E}\right)=$ $D \cap K\left(H_{F}\right)$. Then \sim is an equivalence relation. Clearly $E \sim F$ if $E \subseteq F$. Hence by Lemma 6.5, R is an equivalence class.

Lemma 6.7. Suppose $B \in R$. Let $H=H_{B}, K=K_{B}$, and $M=S \cap K$. Then
(a) $\quad C_{H}\left(D_{1}\right)=F(M)$ is abelian,
(b) $\quad M \subseteq C_{H}\left(D_{2} F(M) / F(M)\right) \subseteq \hat{K}(H)$, and
(c) $\quad C_{H}\left(D_{0} F(M) / F(M)\right) \subseteq M$.

Proof. By Theorem 2.10(c), $C_{K}\left(D_{1}\right)=F(M)$. Now (a) follows by Lemma 2.16(c). Part (b) is a direct consequence of Lemma 2.16(a). Part (c) results from Lemma 2.16(b).

Lemma 6.8. Suppose $B \in R$. Let $J \in \mathscr{L}\left(H_{B}\right)$. Suppose $J \not \not \nexists L_{2}\left(3^{p}\right)$. Then
(a) There is an involution in D_{0} which acts fixed point freely on D_{1}.
(b) Suppose t is any involution which satisfies (a). Then tacts fixed point freely on $S \cap K\left(H_{B}\right)$.

Proof. For each $K \in \mathscr{L}\left(H_{B}\right)$ let $K^{\otimes}=\left\langle K^{A}\right\rangle \cap D$. Let $A_{1}=A \cap \hat{K}\left(A H_{B}\right)$, and $A_{0}=C_{A}\left(K\left(H_{B}\right)\right)$. Then $Z_{p} \cong A_{1} / A_{0}$ induces an automorphism group of order p on $K \in \mathscr{L}\left(H_{B}\right)$. By Lemma 2.9, $\quad K^{(1)} \cong C_{K}\left(A_{1} / A_{0}\right) . \quad D_{0}=$ $\times\left\{K^{\otimes} \mid K \in \mathscr{L}\left(H_{B}\right)\right\}$. By Theorem 2.8, an involution t of D_{0} acts fixed point freely on D_{1} if and only if $t=t_{1} t_{2} \cdots t_{n}, l \neq t_{i} \in U_{i}$ and $\left\{K^{\otimes} \mid K \in \mathscr{L}\left(H_{B}\right)\right\}=$ $\left\{U_{1}, U_{2}, \ldots, U_{n}\right\}$. Hence it suffices to show that if d is an involution on K^{\otimes}, then $C(d) \cap\left\langle K^{A}\right\rangle \cap S=1$. This is implied by Lemma 2.9 and Theorem 2.8(e, f).

Lemma 6.9. Suppose $B \in R$. Let $J \in \mathscr{L}\left(H_{B}\right)$. Suppose $J \cong L_{2}\left(3^{p}\right)$. Then $F\left(K\left(H_{B}\right) \cap S\right)$ is the unique minimal normal subgroup of $\left(H_{B} \cap S\right) A$.

Proof. In the proof of Theorem 2.8 we showed that $S \cap J \cong \operatorname{Alt}(4)$ the alternating group on four letters. By Lemma 6.3(b), $F\left(K\left(H_{B}\right) \cap S\right)$ is the unique minimal normal subgroup of $\left(H_{B} \cap S\right) A$ in $K\left(H I_{B}\right)$. Now Lemma 6.7(a) implies the conclusion.

Lemma 6.10. Suppose $E, F \in R$. Suppose $J \in \mathscr{L}\left(H_{E}\right)$ and $K \in \mathscr{L}\left(H_{F}\right)$. Then $J \cong K$.

Proof. Define an equivalence relation \sim on R by: $U \sim Z$ if and only if H_{U} and H_{Z} have isomorphic components. Then $U \sim Z$ if $U \subseteq Z$. Lemma 6.5 implies that R is an equivalence class.

Lemma 6.11. Suppose $E \in R$. Then $S_{1} \cap H_{E}=F\left(K\left(H_{E}\right) \cap S\right)$.
Proof. This is a direct consequence of Lemma 2.16(c).
Theorem 6.12. S_{1} is abelian.
Proof. Suppose first that $J \cong L_{2}\left(3^{p}\right)$ whenever $E \in R$ and $J \in \mathscr{L}\left(H_{E}\right)$. By Lemma 6.5 choose $B \in R_{2}$. Now fix a minimal normal subgroup Z of $S A$ in S. By Lemma 2.1, there is a $b \in B^{\#}$ such that $C_{Z}(b) \neq 1$. By Lemma 6.9, $C_{Z}(b)=F\left(K\left(H_{b}\right) \cap S\right)$. Hence $C_{z}(B) \neq 1$. Then $C_{Z}(e)=F\left(K_{e} \cap S\right)$ for all $e \in B^{\#}$. Lemmas 2.1 and 6.11 imply $Z=S_{1}$. Hence S_{1} is abelian.

By Lemma 6.10, we may suppose that $J \nsubseteq L_{2}\left(3^{p}\right)$ whenever $E \in R$ and $J \in \mathscr{L}\left(H_{E}\right)$. By Lemma 6.8 (a) choose an involution $t \in D_{0}$ which acts fixed point freely on D_{1}. Then t acts on S_{1}. Let $U=C_{S_{1}}(t)$. Suppose $U \neq 1$. Fix $B \in R_{2}$. Then B normalizes U. Hence there is a $b \in B^{*}$ such that $C_{U \prime}(b)=$ $V \neq 1$. By Lemma 6.11, $V \subseteq F\left(K_{b} \cap S\right) \cap C(t)$, contrary to Lemma 6.8(b). Hence $C_{S_{1}}(t)=1$. So S_{1} is abelian.

Lemma 6.13. Suppose $B \in R$. Then $K\left(H_{B}\right) \cap S \subseteq N\left(S_{1}\right)$.
Proof. Lemma 6.11 and Theorem 6.12 imply that $S_{1}=$ $\theta\left(C_{G}\left(F\left(K\left(H_{B}\right) \cap S\right)\right)\right)$. The result follows directly.

Lemma 6.14. Suppose $B \in R$. Then $K_{B} \cap S \subseteq H_{B} \cap S_{2} \subseteq \hat{K}\left(H_{B}\right)$.
Proof. This follows from Lemma 6.13 and Lemma 6.7(b).
Theorem 6.15. $\theta=\theta^{*}$.
Proof. Let $a, b \in A^{\#}$, and $B=\langle a, b\rangle$. Suppose $B \in R$. Then by

Lemma 3.6(b), $K_{a} \cap C_{G}(b) \subseteq K_{b}$, whence $\theta^{*}\left(C_{G}(a)\right) \cap C_{G}(b)=\left(K_{a} \cap H_{b}\right)$ $\left.\left(H_{a} \cap S_{2}\right) \cap H_{b}\right) \subseteq K_{b}\left(H_{b} \cap S_{2}\right)=\theta^{*}\left(C_{G}(b)\right)$.

Next suppose $B \notin R$. Then by Lemma 6.14, $\quad \theta^{*}\left(C_{G}(a)\right) \cap C_{G}(b)=$ $S_{2} \cap H_{B} \subseteq \theta^{*}\left(C_{G}(b)\right)$. Hence θ^{*} is an A-signalizer functor.
Lemma 6.4 yields that θ^{*} is not complete. Minimality of $|\theta|$, among incomplete signalizer functors, forces $\theta=\theta^{*}$, as required.

Lemma 6.16. Let $\langle a\rangle \in R_{1}$. Then H_{a} / K_{a} is a $\{2,3\}$-group.
Proof. If $J \not \not \not U_{3}\left(\left(2^{p}\right)^{2}\right)$, then $D_{2}=D_{0}$ and $S_{2}=S_{3}$. Then Lemma 6.7(c) implies that $H_{a}=K_{a}$. Hence suppose $J \cong U_{3}\left(\left(2^{p}\right)^{2}\right)$. By [15], the outer automorphism group of J is isomorphic to $D_{6} \times Z_{p}$. The result now follows by Lemma 6.11 and Theorem 6.15.

Theorem 6.17. (a) There is a unique $E \in \mathscr{E}_{1}(A)-R_{1}$.
(b) $\langle E, f\rangle=\left(\hat{K}\left(A H_{f}\right)\right) \cap A$ for all $f \in A-E$.

Proof. Let $A^{*}=\left\langle\mathscr{E}_{1}(A)-R_{1}\right\rangle$. Then $\left\langle f, A^{*}\right\rangle \subseteq \hat{K}\left(A H_{f}\right)$ for all $f \in A^{*}$. Suppose first that $A^{*}=A$. Then Theorem 6.15 and Lemma 6.3(b) imply that K_{F} is simple for any $F \in R$. By Lemma 6.5, choose $B \in R_{2}$. Then $H_{b}=H_{B}$ for all $b \in B^{*}$. But then $H_{B}=\left\langle И_{\theta}(A)\right\rangle$. This is false. Hence $A^{*}<A$. Suppose next that $m\left(A^{*}\right)=2$. Then K_{f} is simple for any $f \in A-A^{*}$. Let $f \in A-A^{*}$, and extend $\langle f\rangle$ to $B \in R_{2}$ by Lemma 6.5. Then $K_{b} \subseteq K_{y}$ for all $b \in B-A^{*}$. Hence $K_{B \cap A^{*}}=\left\langle И_{\theta}(A)\right\rangle$. This is also false, whence A^{*} is cyclic.

Let $R^{0}=\left\{F \in R_{1} \mid K_{F}\right.$ is simple $\}$ and $R^{1}=R_{1}-R^{0}$. Then since D is solvable, K_{F} has p-components for each $F \in R^{1}$. For each $F \in R$, let $F_{C}=C_{A}\left(H_{F}\right)$ and $F_{N}=\hat{K}\left(A H_{F}\right) \cap A$. Suppose $\left\langle R^{1}\right\rangle<A$. Then by Lemma 6.5, there is a $B \in R_{2}$ such that $U=B \cap\left\langle R^{1}\right\rangle$ is cyclic. Then $\left\langle H_{b} \mid b \in B^{*}\right\rangle$ equals H_{B} if $U=1$ and equals K_{U} otherwise. This is false. Hence $\left\langle R^{1}\right\rangle=A$. Suppose that $R^{0} \neq \varnothing$. Fix an $F \in R^{0}$ and $L \in R^{1}$ such that $L \subseteq A-F_{C}$. Then $S_{3} \cap H_{F} \cap C(L)=D_{2}$. Since $H_{L F}$ is solvable, $F \subseteq L_{N}$. Hence $S_{3} \cap C(F) \cap H_{L} \cong p D_{2}$. Then balance yields $D_{2}=H_{F} \cap C(L) \cap S_{3}=$ $C(F) \cap H_{L} \cong p D \neq 1$, a contradiction. Hence (b) holds.

It remains to show $R_{1} \neq \mathscr{E}_{1}(A)$. Suppose by way of contradiction that $R_{1}=\mathscr{E}_{1}(A)$. Fix $F, L \in R_{1}$ with $F L \in R_{2}$. Then $F \not \subset L_{N}$ and $L \not \subset F_{N}$. Let $B=F_{N} \cap L_{N}$. Then $F_{N}=B_{N}=L_{N}$, a contradiction. This completes the proof of Theorem 6.16.

Lemma 6.18. Let $B \in R$ and $X \in И_{\theta}(A)$. Suppose X is solvable and X admits K_{B}. Then $X=1$.

Proof. We may and do suppose $B \in R_{2}$. Let $e \in B^{*}$. Then $C_{X}(e)$ admits K_{B}. Hence $C_{X}(e) \cap K_{e}$ admits K_{B}. Thus $C_{X}(e) \cap K_{e}=1$. By Lemma 2.16, $C_{X}(e)=1$. Hence $X=1$.

Proof of Theorem 6.1. Lemma 6.16 and Theorem 6.17 yield Theorem 6.1(a, b). Parts (d) and (e) are direct consequences of (a), (b) and Lemma 6.6. It remains to show (c).

Let $f \in A-E$, and $K_{f} \subseteq X \in И_{\theta}(A)$. By Lemma 2.16, $K_{f} \subseteq K(X)$. If $K(X)=K_{f}$, then $f \in C_{G}(K(X)) \cap N_{G}(X)=C_{G}(X)$, whence $X \subseteq H_{f}$. It is therefore sufficient to show if $X=K(X)$, then $X=K_{f}$. So suppose $X=K(X)$. By Lemma 6.18, $\operatorname{Sol}(X)=1$. Let $\langle f\rangle=F \subset B \in R_{2}$. Let $e \in B-F$. Now $K_{B}=H_{F} \cap C_{G}(e) \subseteq C_{X}(e)$. However, K_{B} is a maximal A-invariant subgroup of K_{e}. Hence $C_{X}(e) \cap K_{e}=K_{B}$ or K_{e}. By Lemma 6.4, $C_{X}(e) \cap K_{e}=K_{B}$ for some $e \in B-F$. Hence X is simple or $X \cong p K_{B} \cong K_{f}$. Thus X is simple or $X=K_{f}$. If X is simple, then $C_{A}(X)=B_{1}$ has rank at least 2 since X is near p solvable. Thus $X=C_{X}\left(B \cap B_{1}\right) \cong K_{B}$. This is ridiculous. Hence $X=K_{f}$ as required.

Proof of Theorem 6.2. Assume the notation of Theorem 6.1. Then $\pi\left(H_{f}\right)=\pi(J)$ for all $f \in A-E$. By Theorem 2.8(o) and Theorem 2.10 there is an $r \in \pi\left(H_{f}\right)-\pi\left(H_{f} \cap S\right)$ for all $f \in A-E$. Let V be an $S_{r}(A)$-subgroup of G. Theorem $2.10(\mathrm{o})$ and Theorem 6.1(b) implies

$$
\begin{equation*}
H_{f} \cap V=K_{f} \cap V \text { is abelian for all } f \in A-E . \tag{6.1}
\end{equation*}
$$

Let $B \in R_{2}$. By choice of r it follows that $\left(V \cap H_{E}\right) \cap C_{G}(b)=1$ for any $b \in B$. Hence $V \cap H_{E}=1$; so Lemma 2.5 and (6.1) imply that V is abelian. Lemma 2.3 implies (c).

It remains to show (d). Let L be a component of H_{f}. By Theorems 2.8 d and $2.10, L \cap S$ is the unique maximal subgroup of L containing $L \cap S_{2}$. By (c) and the choice of $r, C_{V}(f) \cap L \nsubseteq L \cap S$. Hence $L \subseteq\left\langle C_{V}(f), K_{f} \cap S_{3}\right\rangle$. This completes the proof of (d) and Theorem 6.2.

7. The Structure of G.

For the remainder of the paper, let $W=\left\langle\Lambda_{\theta}(A)\right\rangle$ and let E be the unique cyclic sugroup of A such that H_{E} is solvable.

Theorem 7.1. Suppose B is a subgroup of A of rank 2 which contains E. Then W has subgroups $W_{i}, 1 \leqslant i \leqslant p$, such that all of the following hold:
(a) $W=W_{1} \times W_{2} \times \cdots \times W_{p}$.
(b) A permutes $\left\{W_{i} \mid 1 \leqslant i \leqslant p\right\}$ transitively, and $B=N_{A}\left(W_{i}\right)$ for each i.
(c) $K_{b}=\times\left\{W_{i} \cap K_{b} \mid 1 \leqslant i \leqslant p\right\}$ for all $b \in B-E$.

Proof. Theorem 6.1(d, e) imply that $H_{B} \cap S_{3}$ is the direct product of p unique indecomposable subgroups. Let \mathscr{B} be the set of indecomposable subgroups. Hence for any $b \in B-E$,

$$
\begin{equation*}
\mathscr{B}=\left\{K \cap S_{3} \cap H_{E} \mid K \in \mathscr{L}\left(H_{b}\right)\right\} \tag{7.1}
\end{equation*}
$$

Let $r \in \pi(\theta)$ and V be an $S_{r}(A)$-subgroup of G which satisfies the conclusion of Theorem 6.2. For each $F \in \mathscr{B}$, let $V_{F}=\bigcap\left\{C_{V}(H) \mid H \in \mathscr{B}\right.$, and $H \neq F\}$ and $W_{F}=\left\langle F, V_{F}\right\rangle$. Since V is abelian, there follows

$$
\begin{equation*}
\left[W_{F}, W_{H}\right]=1 \quad \text { if } \quad F \neq H \tag{7.2}
\end{equation*}
$$

Let $\hat{W}=\left\langle W_{F} \mid F \in \mathscr{P}\right\rangle$. Let $b \in B-E, K \in \mathscr{L}\left(H_{b}\right)$, and $F \subseteq C_{K}(E)$. By (7.1), $K \cap V \subseteq V_{F}$. Hence $C_{V}(b) \subseteq \hat{W}$ by Theorem 6.2(c). Theorem 6.2(d) implies that $K_{b} \subseteq \hat{W}$. Theorem 6.1(c) and Lemma 5.4 imply that $\hat{W}=W$. Theorem 5.1(d) and (7.2) yield that $W=\times\left\{W_{F} \mid F \in \mathscr{B}\right\}$. Now Theorem 6.2(d) yields (c).

It remains to prove (b). B fixes each element of \mathscr{B} and normalizes V, whence B normalizes W_{F} for each $F \in \mathscr{D}$. The set \mathscr{B} is acted on transitively by A, and A normalizes V. Hence A acts transitively on $\left\{W_{F} \mid F \in \mathscr{B}\right\}$. This completes the proof of Theorem 7.1.

Theorem 7.2. G does not exist.
Proof. Let B be a complement of E in A. Let $B=F_{1} F_{2}$ where each F_{i} is cyclic. Let $B_{i}=F_{i} E$ for $i=1,2$. By Theorem 7.1, there are sets $\mathscr{D}_{j}=\left\{W_{i}^{j} \mid 1 \leqslant i \leqslant p\right\}, j=1$ or 2 , such that $W=\times \mathscr{D}_{j}, B_{j}$ normalizes each W_{i}^{j}, A is transitive on \mathscr{B}_{j}, and $K_{F_{j}}=\times\left\{W_{i}^{j} \cap K_{F_{j}} \mid 1 \leqslant i \leqslant p\right\}$. Let $W_{i, j}=W_{j}^{1} \cap W_{j}^{2}$ for $1 \leqslant i, j \leqslant p$. Since F_{i} fixes each member of \mathscr{B} and acts transitively on \mathscr{B}_{3-i}, it follows that B acts transitively on $\left\{W_{i, j} \mid l \leqslant i, j \leqslant p\right\}=\mathscr{B}$. Let $Z=\langle\mathscr{B}\rangle$. Then

$$
[W, W]=\left[\left\langle\mathscr{D}_{1}\right\rangle,\left\langle\mathscr{B}_{2}\right\rangle\right]=\left\langle\left[W_{i}^{1}, W_{j}^{2}\right] \mid 1 \leqslant i, j \leqslant p\right\rangle \subseteq Z
$$

By Theorem 6.4, W is generated by perfect subgroups, whence W is perfect. So $Z=W$. Clearly, $\left[W_{i, j}, W_{s, t}\right]=1$ if $(i, j) \neq(s, t)$. Hence

$$
\begin{equation*}
W=\times \mathscr{B} \tag{7.3}
\end{equation*}
$$

$$
\begin{equation*}
B \text { acts regularly on } \mathscr{B} \tag{7.4}
\end{equation*}
$$

Let $K=K_{B}$ and $K_{F_{i}}=K_{i}$ for $i=1$ or 2 . By Theorem $6.1, K$ is simple and $K_{i} \cong p K$. Let $W^{*}=\times\left\{\operatorname{Proj}_{U}(H) \mid U \in \mathscr{B}\right\}$. Then

$$
\begin{equation*}
W^{*} \cong p^{2} K \tag{7.5}
\end{equation*}
$$

Let $W_{i}^{*}=W^{*} \cap W_{i}^{1}$. For subgroups U of W^{*} let $p_{i}: U \rightarrow W_{i}^{*}$ be the projection map of U into W_{i}^{*}. For subgroups V of W let $p^{i}: V \rightarrow W_{i}^{1}$ be the projection map of V into W_{i}^{1}. Since $K_{1}=\times\left\{K_{1} \cap W_{i}^{1} \mid 1 \leqslant i \leqslant p\right\}$, and F_{2} is transitive on \mathscr{D}_{1} and $K=K_{1} \cap C\left(F_{2}\right)$, it follows that $K_{1}=\times\left\{p^{i}(K) \mid 1 \leqslant\right.$ $i \leqslant p\}$. Since F_{2} is transitive on $\left\{W_{i}^{*} \mid 1 \leqslant i \leqslant p\right\}$ and $H \subseteq C_{W^{*}}\left(F_{2}\right)$, it follows that $K \cong p_{i}(K) \subseteq p^{i}(K) \cong K$ for $1 \leqslant i \leqslant p$. Hence $K_{1} \subseteq W^{*}$. Similarly, $K_{2} \subseteq W^{*}$. Lemma 5.4 and Theorem 6.1(c) now yield

$$
\begin{equation*}
W^{*}=W \tag{7.6}
\end{equation*}
$$

By (7.5) and (7.6), W is near p-solvable. Let $b \in B^{*}$. By (7.4), (7.5), (7.6), and Theorem 6.1, it follows that $p K \cong K_{b} \subseteq C_{w}(b) \cong p K$. Hence $C_{W}^{\prime}(b)=H_{b}$ for all $b \in B^{*}$. Let $a \in A^{\#}$. Then

$$
\begin{aligned}
C_{W}(a) & =\left\langle C_{W}(a) \cap C(b) \mid b \in B^{*}\right\rangle \\
& \subseteq\left\langle H_{b} \cap C_{W}(a) \mid b \in B^{*}\right\rangle \subseteq H_{a} .
\end{aligned}
$$

Hence θ is complete, a contradiction. This contradiction completes the proof of the main theorem of this paper.

References

1. R. Carter. Simple Groups of Lie Type, Wiley, New York, 1972.
2. W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.
3. W. Feit, "The Current Situation in the Theory of Finite Simple Groups," Yale Univ. Press, New Haven, 1971.
4. W. Gaschutz, Zur Erweiterungs Theorie Englicher Gruppen, J. Math. 190 (1952), 93-107.
5. G. Glauberman, On solvable signalizer functors in finite groups, Proc. London Math. Soc. (3) 33 (1976), 1-27.
6. D. Goldschmidt, Solvable signalizer functors on finite groups, J. Algebra 21 (1972), 341-351.
7. D. Goldschmidt, 2 -signalizer functors on finite groups, J. Algebra 21 (1972), 321-340.
8. D. Gorenstein, "Finite Groups," Harper and Row, New York, 1969.
9. D. Gorenstein, On the centralizers of involutions in finite groups I, II, J. Algebra II (1969), 243-277, 14 (1970), 350-372.
10. D. Gorenstein, The flatness of signalizer functors on finite groups, J. Algebra 13 (1969), 509-512.
11. D. Gorenstein and R. Lyons, Nonsolvable signalizer functors on finite groups, unpublished.
12. B. Huppert, "Endliche Gruppen I," Springer-Verlag, New York, 1967.
13. P. Martineau, Elementary abelian fixed point free automorphism groups, Quart. J. Math. Oxford Ser. 223 (1972), 205-212.
14. P.McBride, Nonsolvable signalizer functors on finite groups, in preparation.
15. R. Steinerg, Automorphisms of finite linear groups, Canad. J. Math. 12 (1960), 606-615.
16. M. Suzuki, On a class of doubly transitive groups, Ann. of Math. 75 (1962), 105-145.
