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1. INTRODUCTION 

The object of this paper is to prove the following result. 

THEOREM. Suppose p is a prime, A is an elementary Abelian p-subgroup 
of a finite group G, m(A) = 3, and 8 is a near solvable A-signalizer functor 
on G. Then 8 is complete. 

Non-solvable signalizer functors were first treated by Gorenstein and 
Lyons (see [ 111). They identified certain “unbalancing” problems in their 
work. These problems can be traced to the existence of certain nontrivial 
subgroups; if X is such a subgroup and 8 is an A-signalizer functor then 
C,(A) is solvable. This situation occurs in the extreme when 8(C(A)) is 
solvable. Our main theorem fixes on this case. It provides a means to pass 
from the solvable theorems, as treated in [6, 7, 9, IO] and culminating in [5], 
to general signalizer functor theorems (see [ 141). 

By [2, 51 it is sufficient to treat only odd primes in the main theorem. We 
shall assume in the sequel that p is a fixed odd prime. All groups treated are 
assumed to be finite. Notation for groups of Lie type agrees with [ 11, other 
notation is taken from [5, 6, 8, and 121. For the convenience of the reader 
we shall repeat some of this notation. The notation of associated set of 
signalizers is altered to suit the problem. 

DEFINITION. (1) The group G is near p-solvable means that G is a p’- 

group and any non-abelian simple section of G is isomorphic to ~&(2~), 
.C$(3p), SZ(~~), or U,((2”)*). 
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(2) The statement G is near A-solvable means that A is an elementary 
abelian p-group acting on the near p-solvable group G, and that C,(A) is 
solvable. 

(3) The statement “0 is an A-signalizer functor on G” means that A is 
an abelian r-subgroup of the group G for some prime r, and that for each 
a E A# there is defined an A-invariant r’-subgroup B(C,(a)) of C,(a) such 
that 

Wa> n &C,(b)) E e(C&)) foralla,bEA#. (*I 

The property (*) is called balance. 0 is said to be a near solvable A- 
signalizerfunctor, if in addition O(C,(a)) is near A-solvable for all a E A#. 

(4) The associated set of A-signalizers is the set of all near A-solvable 
subgroups X of G having the property that C,(a) !Z O(C,(a)) for all a E A#. 
It is denoted M,(A). The set of maximal elements of W,(A) under inclusion is 
denoted by M,*(A). 

(5) Let WI = LAX GYG(4) and 181 = CaeA# I W&)>l~ 
(6) For s E n(0) let &,(A; s) be the set of all s-groups in PI,(A), and 

let Mg(A; s) be the set of maximal elements of M,(A; s). The elements of 
M,*(A;,s) are called S,(A)-subgroups of G. 

(7) We say 0 is complete if G contains a unique maximal element of 
I&(A) under inclusion. The element is then denoted 8(G). 

(8) We say 8 is locally complete if for every non-identity element X of 
Pi,(A), NJX) contains a group @r,(X)) which is the unique maximal 
element of M,(A) contained in NG(X). In this case we set B(C,(A)) = 
cum n w3. 

(9) For every non-identity subgroup B of A, let 

fxG(B)) = n, f%G(b)). 
bsB 

(10) A group is semi-simple means that G is the direct product of its 
normal non-abelian simple groups. A group is perfect if it is its own derived 
subgroup. A group G is an E-group if G is perfect and G/Z(G) is semi- 
simple. Given any group H, E(H) is the unique maximal normal E-subgroup 
of H, P(H) is the fitting subgroup of-H, and F*(H) = E(H) F(H) is the 
generalized fitting subgroup of H. 

(11) The solvable radical of a group G is the unique maximal solvable 
normal sugroup of G. It is denoted Sol(G). 

(12) Let G be a group. The components of G, P(G), is the set of 
subnormal non-abelian simple subgroups of G. P(G) = {G} when G is 
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solvable. When G is nonsolvable L?(G) is the set of all subgroups X of G 
which contain Sol(G) and satisfy X/Sol(G) E LP(G/Sol(G)). 

(13) K(G) 2 Sol(G) and K(G)/Sol(G) = E(G/Sol(G)). 
(14) R(G) = (-) {NG(X)IX E @p(G)}. 

In definitions (15) to (24), A is a p-subgroup of a group G, 19 is a near 
solvable A.-signalizer functor on G, and D = B(C,(A)). 

(15) A,(A)= (XE M,(A)IXD =X}. 
(16) &&I)= {XE M,(A)(D!GX}. 

(17) P(0) is the set of all pairs (X, , X,) satisfying: 
(a) Xi Z PI,(A) for i = 1 or 2. 
(b) X, a X, and X,/X, is a chief factor of X,DA. 

(cl CX,DW,/XJ = x2 * 
(18) D(e)= {DnX,I(X,,X,)EW)}. 
(19) For each YE D(0) and XE I&(A) 

I’(& Y) = {(X, , X,) E f’(e)1 X, n D = Y), 

w, Y, XI = I (4, w E w, r)l x, E 4, 

qe, Y) = {x E i4i,(kgqe, Y, x) z 01, 

qe, Y) = {Z E tli,(A)I(YZ) n D = Y}, 

up, Y, x) = {z E u(e, Y)IZ E xl, 

qe, Y) = {Z E pI,(A)IZ n D = Y), 

E(e, Y, x) = {z E qe, VIZ G x). 

(20) For each YE D(O) and X E n&4) define 

e,(x) = (~(4 y, -9). 

(21) For each YE D(0) and X E C(& Y) define 

e;(x) = we, y, m), 

e:(x) = (x,1(x,, x,) E w, y, xc 

e;(x) = (x, 1(x,, x2) E p(e, Y, x)). 

(22) For each YE D(0) define 

e:(G) = Mow E cm m, 

e;(c) = (e;(xyx E c(e, 9). 
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(23) For each XE I&,(A) 

8,,,(X) = (2 E I?,(A)] 2 c X; 2 is solvable). 

(24) Suppose r = B:, Or, OL, 8,, or OS,,, , and X is an A-invariant 
subgroup of G such that O(X) and Z(e(X)) are defined. Then we write 
r(x) = r(e(x)). 

(25) Suppose X and N are subgroups of a group G, and 
G = N x C,(N). Then Proj,(X) is the projection of X on N where projections 
are taken with respect to the pair (N, C,(N)). 

Glauberman conjectured that es,, is a solvable signalizer functor whenever 
8 is a signalizer functor. We shall show this when 0 is a near solvable A- 
signalizer functor (see Lemma 3.1). This subfunctor furnishes Frattini type 
arguments which simplify proofs (see Theorem 2.1 l(c)). In [ 141, es,, is 
nested inside another subfunctor O,,,. . Combining these ideas it can be seen 
that the above conjecture is valid in a large class of signalizer functors. 

Remarks on the proof: The proof pivots on showing that Bv is a 
signalizer functor for all YE D(B). Assume 8 is a minimal counterexample. 
Then & is complete and 8 is locally complete. Since Ok(G) E B,(G) E II@(A) 
it follows first that 8:(G) E W,(A) and then 8:(G) E NJ&(G)). By local 
completeness 8;(G) E II,(A) or B;(G) = 1. 

First suppose that B:(G) & M,(A) for some YE D(O). Then the structure 
of AB(C,(a)) for all a E AX is obtained. The structure of e(G) readily follows 
and leads to a contradiction. 

Next suppose By(G) E M,(A) for all YE D(O). Then for any 
X, Z E ai,(A), such that X n Z is nonsolvable, there is a YE D(8), which 
depends on X n Z, such that (K(X), K(Z)) c (O;(X), e;(Z)) s 8;(G) E 
&(A). It is then almost enough to obtain a non-solvable WE n@(A) 
satisfying: K( IV) s U E n,(A) implies Us W. Subgroups with such 
properties are treated in Section 4. 

The principal idea, used in this paper and in [14], is illustrated in 
[S, Lemma 2.11 and Theorem 4.51. This technique focuses on subfamilies of 
n@(A). In this paper we are keying on families each of whose members 
intersect O(C,(A)) in a fixed subgroup. 

2. PRELIMINARY LEMMAS 

LEMMA 2.1. Suppose the abelian p-group A acts on the PI-group X. Then 
X = (C,(AJ A/A,, is cyclic). 

Proof: See [ 6, Lemma 2.11. 
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LEMMA 2.2 (Glauberman). Suppose the n-group A acts on the Y-group 
K. Suppose K is generated by A-invariant subgroups K,, Kt,..., K,, and 
K,K/ = KiK, for all 1 < i, j < n. Then 

C,(A) = G,(A) C&U s-e C&O 

Proof See [ 11, Lemma 2.11. 

LEMMA 2.3. Suppose 8 is an A-signalizer on a group G, P E &(A; r), 
and B is a non-cyclic subgroup of A. Then the following statements are 
equivalent : 

(1) PE MB@; r), 
(2) C,(b) is an S,-subgroup of B(C(b)) for all b E BY 

Proof See [6, Lemma 3.21. 

LEMMA 2.4. Let G be a group and G= G/Sol(G). Then the functors 
F*, K, E, and Sol satisfy: 

(a) Sol(G) = i. 
(b) C,(F*(G)) E F*(G). 

(c) K(G)= K(G) = E(G) = F*(G) is semi-simple. 

Proof. (a) follows directly from the definition of Sol. (b) is well known. 
(c) is an immediate consequence of (a) and the definition of F*. 

LEMMA 2.5. Suppose the elementary abelian p-groups A acts on the p’- 
group G, m(A) > 3, and C,(a) is abelian for all a E A”. Then G is abelian. 

Proof 0(&(a)) = Co(a) for all a E AX is a solvable A-signalizer 
functor on GA. By Lemma 2.1 and [5], G is solvable. Let G/M be a chief A 
factor, and let B = C,(G/M). By induction we may suppose M is abelian. 
Since G/M is solvable, Lemma 2.1 implies that A/B is cyclic. Lemma 2.1 
implies that C,(B) centralizes M. Hence G = MC,(B) is abelian. 

LEMMA 2.6. Suppose the group G acts faithfully on the set a, G has a 
Sylow r-subgroup S acting transitively on 0, and O*(G) = O,,(G). Then 
G = S. 

Proof: Let a E 0. Then G,S = G, whence 

O*(G)Gn {G,laEI2}= 1. 
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LEMMA 2.1. Suppose the elementary abelian p-group A acts on the p’- 
group X. Suppose the outer automorphism group of each chief section of each 
characteristic section of X has cyclic sylow p-subgroups. Let B be a subgroup 
of A. Let W = (C,(E)(E x B = A), and Z = C,(B). Then 

(a) If X is a chief XA factor, it follows that X = W or X = Z. 

(b) WZ=ZW=X. 

Proof, (a) The subgroups W, Z are unaffected if we replace (A, B) by 
(A/D, BD/D) where D = C,(X). H ence we may first suppose that C,(X) = 1, 
and then suppose that X is non-solvable. The hypothesis applies to (C,(a), 
A, C,(a), C,(a)) replacing (X, A, W, Z) whenever a E A# and (a) acts semi- 
regularly on P(X). By induction C,(V) z W or C,(v) E Z whenever V is a 
non-identity subgroup of A acting semi-regularly on 2?(X). 

Suppose first that we can find I’, , I’,, V, E &?,(A) all distinct and such 
that Vi acts semi-regularly on 9(X). Then by permuting the indices we may 
suppose (C,V,), C,#,)) G L w h ere L = W or L = Z. However, C,y( Vi) is a 
maximal A-invariant subgroup of X, and C,( V,) # C,( V,). Hence X = W or 
x=z. 

We may therefore suppose that there is at most one element of g,(A) not 
acting semiregularly on 9(X). We may suppose that 1 #A is cyclic. If 
B = 1, then X = Z. If B = A, then X = W. Hence (a) holds. 

(b) Let X/Y be a chief XA section. By induction Y = (Y f7 I+)( Y n Z). 
By (a) applied to X/Y, it follows that X= YZ or X= WY. Hence 
x= wz=zw. 

Our next theorem is very important. It lists most of the common 
properties of simple near p-solvable groups needed to prove the main 
theorem. 

THEOREM 2.8. Suppose G is a non-abelian simple near p-solvable group. 
Let f be an automorphism of G of order p. Let C = Co(f), C, = F(C), 
C, = C,(C/C,), and M = No(F(C)). Then all of the following hold: 

(a) f exists. 
(b) Aut(G) has cyclic sylow p-subgroups. 

Cc> C,,,,,,(C) is a P-grow 
(d) M is the unique maximal subgroup of G containing C, . 

(e) C, , C and M are frobenius groups with abelian frobenius kernels 
F(C), F(C) and F(M), respectively. 

(f) F(M) = C,(F(C)) and M = F(M) C. 

(g) Any p’-automorphism of G centralizing M/F(M) is an inner 
automorphism induced by an element of M. 
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(j) F(C) is the unique minimal normal subgroup of C. 

(k) Let X be a proper C-invariant subgroup of G. Then F(C) G X or 
Xc [F(W,fl = P&f]. 

(m) Let X be a nilpotent C-invariant subgrouup of G. Then X E F(M). 

(n) The class of subgroups of G isomorphic to M is a conjugacy class 
of subgroups of G. 

(0) n(G) - n(M) # 0. Moreover, if r E A(G) - 7c(M), then G has an 
abelian sylow r-subgroup. 

Proox (a) and (b) follow by [ 15; 16, Theorem 111. Hence by (b) and 
sylow theorems we may suppose f is a field automorphism. Now a count (see 
[ 1, 9.4.10 and 14.3.21) shows that F(C) is a sylow subgroup of G. So (n) 
holds. The sylow r-subgroups of SL(3, 2”) are abelian for r # 2 or 3. Hence 
by [16, Theorem 9; Lemma 15.1.11, (0) holds. By (e), F(M) = 
[F(M), f ] x F(C). Since F(C) is a sylow subgroup of F(M), (k) is a conse- 
quence of (f) and (‘j). Part (m) is a consequence of (e) and (k). So it remains 
to prove (c), (d) ,..., (j). 

First suppose G z L,(3p) or U3((2p)2). By [3, Sects. 8.4 and 8.51, C is a 
maximal subgroup of G and (d) holds. Hence M = C. Hence (e), (f) and (‘j) 
follow directly from the structure of C. By [IS], Aut(G) = Inn(G) CAutcGl(f); 
so NAUtco(C) = CAutcGjdf). Moreover OP(CAUuGj(f)) g Aut(C). Both (c) and 
(g) follow directly from the structure of Aut(C). 

Suppose then G g L,(2p) or SO. By [ 15, 161, OP(Aut(G)) = Inn(G). 
Hence (c) is a consequence of (e), (g) is a consequence of (d), and (j) holds 
by inspection. So it is enough to verify (d), (e), and (f). The results for 
G E L,(2p) are well known. The results for G g SZ(~~) are given by [ 16, 
Theorem 91. 

LEMMA 2.9. Suppose the abelian group A acts on the group 
G=G,xG,x.-- x G,. Suppose A acts on {G, , G, ,..., G,}, via the induced 
action of A on subgrouups. Then 

Pr~.i&&W = C,i(NA(Gi)) 

when projections are taken with respects to {G, , G, ,..., G,}. 

Proof. Let S= {(Gf)li= 1,2,...,n}. Then C,(A)=x (C,(A)JXES}. 
Hence by induction we may suppose A acts transitively on {G,, G?,..., G,}. 
Let B = N,(G,). Since A is abelian and acts transitively on {G,, Gz,..., G,}, 
it follows that B is independent of i. Hence we may suppose first that 
B = C,(G) and then B = 1. So it suffices to treat the case when A acts 
regularly on (G, , G, ,..., G,}. This is straightforward. 
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THEOREM 2.10. Suppose the elementary abelian p-group A acts on the 
near p-solvable non-abelian semisimple group G. Suppose D = Co(A) is 
solvable. Let M= N&C&F(D))). For each JE 9(G), let MJ =Mn J, 
K., = N,(C,(F(C,(N,(J))))), and J@ = (J”) n D. Let X, Y be DA-invariant 
subgroups of G. Then all of the following hold: 

(a) M=x (M,]JEip(G)}=x {K,IJEIP(G)}. 
(b) M is the unique maximal solvable subgroup of G containing D. 
(c) F(M) is abelian, and F(M) = C,(F(D)). 
(d) Suppose Q is an automorphism of G. Then there is an inner 

automorphism i of G such that M” = M. 
(e) Suppose X is solvable and contains D. Then 

M = N,(C,(F(X))) 2 X. 

(f) If X is nilpotent, then X E F(M). 
(g) Suppose Proj,(X) is nonsolvable. Then Proj,(X) = J and J@ s X. 
(h) Suppose Proj,(X) is not nilpotent. Then F(J@) c X. 
(j) Suppose F(J@) &X. Then 

XnDsC,(J@)=x {K@IKE9(G),K@#J@}. 

(k) Let S be the set of all DA-invariant subgroups of G which 
intersect D trivially. Then [F(M), A] is the unique maximal element of S 
under inclusion. 

(m) Let V = F(J@). Suppose X a Y, Y is solvable, V & X, but V c Y. 
Then Proj,(C,( Y/X)) is abelian. 

Proof Let A, = NA(J)/CA(J) and C, = C,(A,) for each J E 9(G). Since 
D is solvable, Theorem 2.8(b) implies that A,r Zp for all J. Now 
D = x {J@lJE P(G)}, and J@ + Proj,(J@) is an isomorphism; whence, by 
Lemma 2.9, Proj,(D) = C,(A,) = C, g J@ and Proj,(F(D)) = Proj,(F(J@)) = 
F(C,). Let K = x {KJ] J E Y(G)}. Theorem 2.8(e) implies that K is solvable 
and F(K) is abelian. Now let X be a solvable DA-invariant subgroup of G 
which contains D. Then Proj,(X) is a solvable Proj,(D) = C, invariant 
subgroup; hence Proj,(X) s KJ by Theorem 2.8(d). In particular, 
F(K) n XC F(X). Now Proj,(F(X)) is a nilpotent C, invariant subgroup. By 
Theorem 2.8(m), F(X) = X n F(K). Since F(D) = D n F(K) g F(K), it 
follows that 1 # F(C,) E Proj,(F(X)) E F(K,) for all J. Theorem 2.8(e) 
implies that F(K) = C,(F(X)). Theorem 2.8(d) implies that K = N&F(K)). 
We have shown (a), (b), (c), (e) and (f). 
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Next we show (h). So suppose Proj,(X) is not nilpotent. Let G, = (J”) and 
X, = Proj,,(X). If F(J@) c X,, then 

F(P) = [F(J@), J@] G [X, ) Jo] = [X, J@] G [X, D] G x. 

Hence by induction G = G, and D =J@. Since J@ E C,, Theorem 2.8(j) 
implies that F(J@) is the unique minimal normal subgroup of J@ = D. Hence 
F(J@) z X or D n X = 1. By (f), X & F(M). By Lemma 2.1, there is a hyper- 
plane B of A such that C,(B) &F(M). Let 2 = C,(B). By (f), Z is not 
nilpotent. Theorem 10.2.1 of [8] implies that C,(A(B) = C,(A) = C,(A) # 1. 
So D n X # 1. Hence F(J@) s X as required. 

Next we show (g). So suppose Proj,(X) is non-solvable. Let G, = (J”) and 
X, = Xn G, . By (h), Proj,(X,) 2 Proj,(F(J@)) # 1. Theorem 2.8(d) implies 
that J= Proj,(X) D Proj,(X,) # 1. Hence Proj,(X,) = J. Hence by induction 
we may assume G = (J”), D = J@, and Proj,(X) = K for all K E p(G). We 
may suppose C,(G) = 1. By Lemma 2.1 and Theorem 2.8(d), we may 
suppose that C,(X) = B is a hyperplane of A. Let E = A n f(GA). 
Theorem 2.8(b) implies that Zp z E and that C,(E) is solvable. So 
E x B = A. In particular, B acts regularly on 9(G). Hence X s C,(B) g J = 
Proj,(X) for any J E Y’(G). So X = C,(B) 2 .I@. 

To prove 6) we may suppose XC_ D, and J@ n X = 1. Then [X,J@] E 
xn J@= 1 which proves (j). 

Let S be as in (k). By (f) and (h), each Z E S satisfies [Z, A] c [F(M), A]. 
Part (c) and [8, Theorem 5.2.31 imply that [F(M), A] E S. Hence (k) holds. 

Theorem 2.8(n) implies (d). It remains to prove (m). Suppose X, Y, J, and 
V are as in part (m). We may and do assume Y = XV. Let G, = (J”), 
G, = C,(G,) and X, = ProjG1(X). As in (h) we get VnX, = 1. Since 
C,(XV/X) G C,(X, V/X,) = G, x C,,(X, V/XI), we may suppose G, = G. 
Then Xn D = 1. By (f) and (h), Xc F(M). Let T = C&XV/X) and 
U = C,(T). To complete (m), it suffices to show C,(U) <F(M). By (c) and 
Theorem 2.8(e), F(M) is abelian and has order relatively prime to the order 
of T/F(M). Since Xf XV, it follows that 1 # C,,,,(T/F(M)) = C,,,,(T) < U. 
So 1 # U= x {C,(Proj,(T))]JE (G)) =X {UnJ]JEY(G)}. Since U is 
also A-invariant, it follows that 1 # Un J for any J E Y(G). Also 
U = C,(T) Q C,(F(M)) = F(M). So U n F(M) n J # 1 for any J E Y(G). 
By Theorem 2.8(e), C,(U) = X{C,,(UnK,) 1 JE Y(G)} = x{F(K,) ] 
J E Y(G)} = F(M). We are done. 

THEOREM 2.11. Suppose the elementary abelian p-group A acts on the 
near p-solvable group G. Suppose D = Co(A) is solvable. Let X be any DA- 
invariant subgroup of G. Let Y(X) be the set of all subgroups of X which 
are (X n D) A invariant and solvable. Then all of the following hold: 
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(a) Suppose G is semi-simple. Then (Y(G)) = N,(C,(F(D))) is 
solvable. 

(b) (Y(X)) = (F(G)) n X is solvable. 

(c) Suppose N is a normal subgroup of GA in G. Then 
G = N(N,((cY(N)))). A4 oreover, ifX n N is solvable, then Xc N&(9‘(N))). 

(4 NAV‘W)) = W’“(X)). 

Proof: Theorem 2.10(b) implies (a). Suppose N is a non-trivial normal 
subgroup of GA in G. By induction on 1 G 1, (c) holds with respect to this N if 
Sol(N) # 1. Suppose then Sol(N) = 1. Let K be a minimal normal subgroup 
of GA in N. Let M = N,(C,(F(D f7 K))). Theorem 2.10(d) implies that 
G = KN,(M) and N = KN,(M). Theorem 2.10(e) implies that X E XD c 
N,(M) if X n K is solvable. Hence (c) follows by induction on 1 G 1. 

Next consider (b). D permutes Y(X), whence DA normalizes (9’(X)). 
Hence it suffices to assume (.Y(X)) is solvable, for all DA invariant X @ G 
and show (Y(G)) is solvable. We may suppose G = (Y(G)) and 
Sol(G) = 1. Hence by (a) and (c), G = 1. 

It remains to prove (d). By (b) it suffices to treat the case 1 = (Y‘(G)). 
Then Sol(G) = D = 1. By (a), F*(G) = 1. Then G = 1 and (d) is trivially 
true. 

LEMMA 2.12. Suppose the elementary abelian p-group A acts on the near 
p-solvable group G, D = C,(A) is solvable, Sol(G) = 1, E(G) is a minimal 
normal subgroup of G, and G = E(G) D. Then there is a subgroup B of A 
such that 

(a) A/B is cyclic and 

(b) C&B) is a non-solvable minimal normal subgroup of AC,(B) = 
ADC,(,,(B). Moreover Sol(C,(B)) = 1. 

Prooj We may and do suppose C,(K(G)) = 1. Let F = A f7 @GA) and 
let B be a complement for F in A. Since AD is transitive on Y(G), it follows 
that F = NA(J) z Z, for each J E Y(G). Hence B acts regularly on J” for all 
JE Y(G). Hence Jg (J”) n C(B) E Lf(C,(B)) for all JE Y(G), and 
C,,,,(B) = x {(J”) n C(B)1 J E Y(G)} = x Y(C,(B)). Clearly, D acts tran- 
sitively on ip(C,(B)). So E(C,(B)) 0 dAC,(B) = ADC,,,,(B). Let 
S = Sol(C,(B)). Let K = (J”) n C(B) for some JE Y(G). Then S 
centralizes K. Hence S normalizes K. Hence S normalizes C,,,,(C,,,,(K)) = 
(J”). Let N= n{N,,(Je)le E A}. Then, replacing (G, S, 0) by 
(AS/AS f7 N, A/A n N, JA) in Lemma 2.6, it follows that S normalizes J. 
Hence S centralizes Proj,(K) = J. Since J E Y(G) was chosen arbitrarily, it 
follows that S c C,(K(G)) = 1. 
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LEMMA 2.13. Suppose the elementary abelian p-group A acts on the near 
p-solvable group G. Suppose D = Co(A) is solvable and Sol(G) = 1 # G. Let 
K = K(G). Let W be a perfect DA-invariant subgroup of K. Let K, = C,(W), 
K, = CK(K,), and Di = D n Ki. Then 

(a) K=K, xK,. 
(b) DnK=D,xD,andD,=DnW. 
(c IfK, = 1, then C,(W) = 1. 
(d) Suppose Z,, Z are DA-invariant subgroups of G, Z, a Z, and 

Z, n K n D = D, . Then Z normalizes K, . 

Proof: Let J E M(G). Theorem 2.10(g) implies that Proj,(W> = 1 or J. 
Hence (a) holds, and D n K = D, x D,. To complete (b) we may suppose 
K, = 1. Then Theorem 2.10(g) implies D n K = x (J@] JE F(G)} z W. 
Hence (b) holds. 

(c) Suppose K, = 1. Let S = C&V). By (b) and Lemma 2.6, 
S g K(G). Hence S centralizes Proj,(W) = J for all J E Y(G). So 
S c C,(K(G)) = 1, proving (c). 

(d) We take projections of subgroups of K with respect to internal 
direct products of K. Let N be the product of all components J of K 
satisfying Proj,(Z, n K) is nilpotent. Theorem 2.10(b) implies that N = K, . 
Hence K, and consequently K, admits Z. 

LEMMA 2.14. Suppose the elementary abelian p-group A acts on the 
near p-solvable semi-simple group X, C,(a) is solvable for some a E A#, and 
W is a subgroup of C,(a) admitting AC,(a). Suppose C,(A) = 1. Then 
w= 1. 

Proof: Let J E g(X), K = C,( a ), and Z = Proj,(W). Then Z is a normal 
subgroup of K. Theorem 2.8e, j imply that Z = 1 or F(K) & Z, and 
F(K) = [F(K), K]. Suppose F(K) 2 Z. Then P(K) c [Z, K] = [ W, K] G W. 
Hence 1 # (P(K)A) n D c W. This is false, whence Proj,(W) = 1 for all 
JE Y(X). So W = 1 as required. 

LEMMA 2.15. Suppose G is a group and K(G) s X c G. Then K(G) = 
K(X)- 

ProoJ We may and do suppose Sol(G) = 1. Then C,(K(G)) = 1. 
Now [Sol(X), K(G)] s Sol(X) n K(G) c Sol(K(G)) = Sol(G) = 1, whence 
Sol(X) = 1. Hence K(X) = K(G) X C,,,,(K(G)) = K(G). 

LEMMA 2.16. Suppose G is near A-solvable, Sol(G) = 1 # G. Let 
D = C,(A), K = K(G), and S be the unique maximal solvable DA-invariant 
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subgroup of G. Let S, = S n K, D, = D n S, = D n K, D, = F(D,), and 
S, = F(S,). Finally let D, = Ct,(DO/D,) and S, = C,&S,/S,). Suppose Z is 
any DA-invariant subgroup of G. Then all of the following hold: 

(a) S, c_ C,JD2S,/S,) c k(G). 

@I S, = C,(W,IS,), 
(c) If ZnK,<S,, then Z<S,, 

(d) ZfZnKnD= 1, then Z<S,. 

Proof. (a) Let W = C,(D,S,/S,). Then W is DA-invariant. Let 
J E g(G) and J@ = (J”) f7 D. Then W normalizes J‘%,. Hence W 
normalizes C,((C,(@S,))“) = (JA). By Lemma 2.6, W normalizes J. So (a) 
holds. Combine this with Theorem 2.8(g) to get (b). 

(c) By Theorem 2.1 l(c), Z < NG(SO). Hence [Z, D,] < Z n K < S,. 
Now (c) follows from (b). 

(d) This follows from Theorem 2.100 and part (b). 

3. SUBFUNCTORS 

In this section G is a group, A is a non-identity elementary abelian p- 
subgroup of G, 0 is a near solvable A-signalizer functor on G, and D = 
e(C,(A 1). 

LEMMA 3.1. esO, is a solvable A-signalizer functor on G. Moreover, if 
m(A) > 3, then 0 is complete. 

Proof: Theorem 2.11 (b) implies es,,, is a solvable A-signalizer functor on 
G. Now apply the main theorem of [5] to finish. 

THEOREM 3.2. Suppose YE D(e) and (X,, X,) E P(0, Y). Then there 
are subgroups Zi sXi such that (Z,, Z,) E P(l3, Y), Z, is solvable and 
A/C, (Z, /Z,) is cyclic. 

Proof We may suppose X, DA = G. By Theorem 2.1 l(c, d) we may 
suppose X, is solvable. We may then reduce to X, = 1 and apply 
Lemma 2.12 to finish. 

THEOREM 3.3. Let YE D(O), and X, Z E C(f9, Y). Then all of the 
following hold: 
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(a) &(ly) E UP, K 9. 
@I K’Vh 64-V E WA Y, x). 
(4 KQ E mm. 
(4 em E ae, Kx). 
69 em = 403 = exx) = wa. 
(f) e;(x) f-7 z = X n e;(z). 
(g) e,(x) n z = xn e,(z). 
(h) Suppose a, b E A#, X = B(C,(u)), and Z = O(C,(b)). Then 

e;(x) n z = X n e;(z). 

Proof: (a) By induction we may first suppose G =X,4, then X= O:(X), 
and finally 

whenever N-4 XA, NcX, and NnDc Y, then N= 1. (3.1) 

By Theorem 3.2, choose (X,, X,) E P(& Y) with X, solvable. Suppose It4 
is any normal subgroup of XA in X satisfying il4n X, c X,. Then 
[MnD,X,]cMnX,. Hence MnDcC,(X,/X,)= Y. By (3.1), M= 1. 
In particular, Sol(X) = 1 and X, n K(X) &X2. Let W= (X, n K(X))“O. 
Then X, = W x X, and W is a perfect DA-invariant subgroup of K(X). Let 
Z E U(O, Y, X) and Z, = (Y”). By definition of U(O, Y, X), Z, n D = Y. 
Hence 

z, n K(X) n 4 = Y n K(X) = C,(X, /X2) n K(X) 

= CD(w) n Kc*) = c,,,,(w) n D. 

By Lemma 2.13(d), C,JIV) admits Z. Since X = O:(X), it follows that 
C,,,,(w) is normal in G. But D n C.~&w) G Y, whence C,,,,(w) = 1. 
Lemma 2: 13(c) implies Y = D n X2 E C,(w) = 1. Hence X E U(O, Y, X) 
proving (a). 

(c) This is much the same as (a). We may suppose G = XA, X = K(X) 
S;(X), and Sol(X) = 1. If K(X) n D E, Y, then (X, K(X), X,X(X)) E 
P(0, Y, X). So we may suppose K(X) n X, @X1. Then, as in (a) using 
Lemma 2.13, it follows that (K(X) C,( IV), CK,,,,(w)) E P(O, Y, X) where 
w = (x, n K(Xy. 

(b), (d), and (e). By (a) we may suppose X = O;(X) E U(O, Y, X). We 
may again assume (3.1). In particular, Y z (Y”“) = 1. With (X, ,X,) as 
before we have [Sol(X) n D,X,] GX,. So Sol(G) = 1. As in part (a), 
X, =X2 x W where W= (X, n K(X))“O. Also as in part (a), C,,,,(w) is 
normal in G and intersects D trivially. By (3.1), C,,,,( IV) = 1. Lemma 2.13 
implies C,( IV) = C,(K(X)) = 1. Now W = x {(J”) n WIJ E L&(X)}. Hence 
D acts transitively on {(J”)(JE P(X)). Hence K(X) is a minimal normal 



194 PATRICKPASCHALMCBRIDE 

subgroup of K(X) DA and C,(K(X)) = 1 = Y. So (K(X), 1) E P(@, Y, X). 
Hence (8:(X), 8,(X)) = (K(X), 1) E P(R K -0 Let M = N,(,,(C,(,, 
V’(D n W)))), and R = [F(M), A]. Let T E E(8, 1). Lemma 2.16(d) 
implies that T c_ K(M). Theorem 2.10(k) implies that By(X) = 
R E E(B, Y, X). This proves (b), (d), and (e). 

(f), (g). These follow directly from the definitions and parts (a) and 
(4. 

(h) Observe that this follows directly from the definitions and (b) if 
Xn 2 E C(0, Y). Hence we suppose C ~l;~~:.db) and Gr;l~~.da) are 
both solvable. Let M = e;(Z), M, = e:(Z), M, = e:(Z) and M = M/M,. 
Let W = f?;(X) n C(b_) and-W, = e:.(X) A C(b). gy (f>l W-= C,(a). Since 
W0 u W we have W,, a W = C,(a) and D n W, = Y = 1. In particular, 
W, nti, a AC,-,(a), 11?, is semi-simple, and C,,(a) is solvable; so 
Lemma 2.14 implies W,, nli?, = 1. By (e), W,, = 1. Hence e:(X) n Z = 
W, s X n et(Z). The symmetric inclusion completes (h) and the theorem. 

THEOREM 3.4. Suppose (X,, X,) E P(0). Let Di = D n Xi. Then 
F(D,/D,) = F(D/D,) is the unique minimal normal subgroup of D/D,. 

Proof By induction we may suppose G = X, DA and X, = 1. By 
Theorem 3.2 we may suppose C,(X,) is a hyperplane of A. Consequently A 
normalizes each component, D acts transitively on the components, and 
D, = x {C,(A)]JE y(G)}. Theorem 2.8fj) implies that F(D,) is the unique 
minimal normal subgroup of D in D,. Hence it suffices to show F(D) = 
F(D,). Lemma 2.16 (b) does this. 

THEOREM 3.5. Suppose D, E D(8) and X E C(0, DJ. Let D* 3 D, be 
such that D*/D, = F(D/D,). Suppose N, L, R are subgroups of X which 
satisfy: 

(a) N, L, and R are normal in (R, D, A) = RDA, 

(b) N c L c R, and L/N is a chief RDA factor, 

(c) AR centralizes L/N, and 

(d) R n D = D*, D n N G D, , and D*N/N = (Dz N/N) x (L/N). 

Then it follows that R has an RDA invariant subgroup B such that 
BnD=D, andBD*=R. 

Proof. Suppose false. Choose a counterexample G of least possible order. 
Subject to this restriction choose one with L of least possible order. By 
Theorem 3.2 there is a pair (X, ,X,) E P(t9, D,) with X, solvable. Fix such a 
pair with X, of least possible order. 
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First we observe some structure of G. The requirements are satisfied by 
(Xi, R, D, A). So X= (X,, R, D) and G = XA. Suppose M is any normal 
subgroup of G in X such that M n D s D, . If M # 1, a short argument 
assisted by Lemma 2.2 yields a subgroup B, of RM, which contains M, is 
normal in RMDA, intersects D in D,, and satisfies B, D* = RM. The 
subgroup B, n R satisfies the conclusion. This is false, whence M = 1. Let V 
be any minimal normal subgroup of G in X. Let W= (X, n I’)“. Suppose 
VnX,sX,. Then Vn D s C,(X,/X,) = D,. This is false. So 
Vf7 X, &X,. Since Vn X, 4 X,, it follows that X, = X,(Vn X,). Hence 
X, =X, x W= D, X W, and W= Xy. Since all minimal normal subgroups 
of G in X contain W, it follows that K(X) is the unique minimal normal 
subgroup of G in X. Let K = K(X). Now X = KRD. 

Let K, = C,(w>, K, = C,(K,), E = Dn K,, and E* =F(E)? 
S, = C,(E*), and S = NK(Sz). We shall first show K, = 1 = D,, then 
L c S,, then R n K E S, is abelian, and finally R E S, . 

Since NnKnD<D,nK<K,, Lemma 2.16(d) implies that 
N < S, C,(K,). Hence Proj,(Nn K) is nilpotent if J E .P(K,). Since 
(D, n K) = C,,(A) < N, it follows that Proj,(N) is not nilpotent for any 
JE iP(K,). Hence K, a G and K, n D <N. Hence K, = 1 and 
D, = C,(W) = C,(K,) = 1. 

Now N n E = 1, so N < S, by Lemma 2.16(d). Now E * is the unique 
minimal normal subgroup of DA, and N n D = 1. Hence L = NE* = 
NxE*<S,. 

Now apply Theorem 2.10(m) with L in the role of Y, N in the role of X, 
and V in the role of E* to conclude R E S,. In particular R is abelian. By 
(8, Theorem 5.2.31, R = [R,A] x C,(A)= [R,A] X E*. Then [R,A] is 
obviously a suitable candidate for B, a contradiction. 

THEOREM 3.6. Suppose that m(A) > 3. Suppose X E ai,( Xi are DA- 
invariant subgroups of X for i = 1,2, and X,/X, is a non-solvable chief 
X, DA-factor. Let YE D(e). Suppose that X, n D G Y. Then one of the 
following occurs: 

(a) X,nDz Y, 

(b) W,, X,) E f’(e, Y). 

ProoJ: Suppose false. Let G be a counterexample of least possible order. 
By Theorem 3.2 there is a hyperplane B, of A such that O(C,(B,)) E C(t9, Y). 
After the fashion of Theorem 3.2 there is a hyperplane B of A such that 
Cx,,x,(B) is a chief non-solvable (C,,(B)) DA-factor. Were C,(B) E C(e, Y), 
then X E C(e, Y) would hold. Hence we may and do suppose B = C,(X). Let 
E=BnB, and W=O(C,(E)). S ince Xc WE C(e, Y), it follows that 
G= WA. 
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Fix (Z,, Z,) E C(t9, Y) with Z, of least possible order. By Theorem 3.2, 
Z, is solvable. Now G has no nontrivial normal subgroups in W which 
intersect D in a subgroup of Y. This leads to: K = K(W) is the unique 
minimal normal subgroup of G in W, Z, = Y, Z, = Y x (Z, n K)“O = 
YXZY, and W= KX,D. Suppose that X, f7 K c X,. Then [DnX,, 
DnZF]&XznDnZ;DzYnZy= 1. Hence DnX,cC,(DnZy)= Y. 
This is false, whence X, =X,(X, n K). Now D n ((D n X,)(X, n K)) = 
D n X, $ Y. Hence we may suppose X, = (D n X,)(X, n K). In particular, 
KD = W. By Lemma 2.13, (K, 1) = (Or(G), O:(G)) and Y = 1. Now X, f? K 
is non-solvable. Since Proj,(X, 0 K) admits Proj,(D n K) for J E p(w) and 
D is transitive on y(W), we have Proj,(X, f7 K) = J for all .I E y(W) (see 
Theorem 2.8(d)). Hence X, n K is semi-simple, X, n K = 1, and 
X, s C,(X, n K) = 1. So X, = I, and (X,, 1) E P(O, Y), a contradiction. 

THEOREM 3.1. Assume the hypotheses of Theorem 3.6. Assume also that 
X E C(O, Y). Then 

(a) X, c e:(x), and 

(b) either X, n D s Y 01 (X, D n B;(X), X, D n Ok(X)) E P(B, Y). 

Proof: Theorem 3.3(d, e) imply both conditions if X, n D s Y. So 
suppose X, n D & Y. By Theorem 3.6(b), (X, ,X,) E P(0, Y). Now the result 
follows by Theorem 3.3(b). 

Hypothesis A (applied to a vector (G, H, A, D, D,, D,) of groups): 

A 1: A is a p-group and H is near A-solvable. 
A2: G=HA. 

A3: D = C,(A). 

A4: Di are normal subgroups of D such that 

(4 &ck 
(b) D,/D, is the unique minimal normal subgroup of AD/D, in 

D/Q 9 
(cl CAD,/&) = DI e 

A5: Suppose X, is any subgroup of H admitting DA, X,/X, is a chief 
nonsolvable X, DA-factor, and X, n D E D, . Then X, n D E D, . 

A6: Suppose N, L, and R are subgroups of H which satisfy the 
following conditions: 

(a) N, L, and R admit DA. 

(b) LsR, and L/N is a chief RDA factor. Moreover, RA 
centralizes L/N. 
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(c) RnD=D, and DnNcD,. 

(d) D, N/N = @&N/N) x (LN/N). 

Then it follows that R has an RDA invariant subgroup B such that 
BnD=D, and R=BD,. 

THEOREM 3.8. Suppose (G, H, A, D, D, , D2) satisfies hypothesis A. 
Define Y’(H) = {M/M s H; M is a DA-invariant; and Mn D = D2}. Then 
Y(H) has a unique maximal element under set inclusion. 

Proof: Let ,Y = Y(H). Suppose by way of contradiction that the 
conclusion is false. Choose a counterexample G of least possible order. The 
hypotheses inherit to ((Y) DA, (9) D, A, D,, D,). Hence 

and 

G=(Y)DA (3.2) 

(Y)# 1. (3.3) 

Let N be a minimal normal subgroup of G contained in H. By (3.3) such 
an N exists. Suppose D n N c D,. For each subgroup X of G let x = XN/N. 
Hypothesis A inherits to (G, I?, 2, fi, D,, &). Write 
Y(H) = {XIX E Y(H)}. By Lemma 2.2, F(H) = .4*‘(H). Hence 
(<Y(H)) E Y(H). This is false. Hence 

DnN@D,. (3.4) 

Next suppose that N is nonsolvable. Then N = N, x N, x --- x Nk where 
each Ni is a minimal normal subgroup of NDA. By A5, Ni n D s D, for 
1 < i < k. Lemma 2.2 implies that Nn D s D,, against (3.4). Hence 

N is solvable. 

By (3.4) and A4 there follows 

D, = D2(D, n N). 

(3.5) 

(3.6) 

Suppose there is ME Y such that NMDA = G. Then Mn N a G. So 
MnN= 1 or N. By (3.6), MnN= 1. Also MD,nNaG. So 
MD, n N = N by (3.6). Hence MDA = (MD,) DA = NMDA = G. Hence 
Ma G. By (3.4), 1 = M. Hence G = DA. Hence 9 = { 1 }. This is false, 
whence 

NMDA # G for any M E 9. (3.7) 
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For each ME 9 let M* be the unique maximal element of Y(NMD). 
This is well defined by (3.7). Next we show 

M*nN=DfnN for any M E Y‘. (3.8) 

Clearly, Df GM* for any ME .Y. Hence N n Df E N n M*. Conversely, 
M* n N admits DA, whence (M* n N) D, E DC. So (3.8) holds. By (3.2) 
and (3.8), DF n NQ G. Now (3.4) and (3.8) yield 

MnN= 1 for all M E Y. (3.9) 

Let ME .4”‘. Then [M, D n N] E Mn N = 1 by (3.9). By (3.2) and (3.6), 
l#D,nNNG. Hence NX D,=D, and (Y(H)) s C,(N). Let 
R = C,(N). By A4, R n D = D,. Applying A6, with (R, N, 1) in place of 
(R, L, N), yields a subgroup B normal in RDA = G such that BD, = R and 
BnD=D,. By (3.4), B= 1. Hence D,= 1 and G=RDA=D,DA=DA. 
So .4c = { 1 }, a contradiction. 

LEMMA 3.9. Suppose (G, H, A, D, D,, D2) satisfies hypotheses Al, A2, 
A3, A4, and A5. Suppose E is a subgroup of A of rank 2 such that A6 is 
satis+=’ by (C,(e), C,(e), A, D, D,, D&f or all e E E’. Suppose further that 
ifp = 3, D,/D, is a 5-group. Then (G, H, A, D, D,, D,) satisfies hypothesis 
A. 

Proof: Suppose false and let G be a counterexample of least possible 
order. Then there are subgroups N, L, and R of H satisfying the conditions 
but not the conclusion of A6. Then (RDA, RD, A, D, D, , D,) is a counterex- 
ample to this lemma; so G = RDA. 

Suppose Mn D s D, for some normal subgroup M of G contained in H. 
Let G = G/M. The conditions of the lemma apply to (G, @, 2, 0, 0, , DJ. 
Hence M = 1. In particular 

N=l and D,=D*xL=C,(L). (3.10) 

A direct consequence of (3.10) is 

L is a minimal normal subgroup of G in H. 

By (3.10) we may and do assume 

(3.11) 

R = C,(L). (3.12) 

Next let K be a normal extension of L in G, which is maximal subject to 
the condition that KD, be a proper subgroup of R. Since D, is proper in R 
such a K exists. The hypotheses apply to (KDA, KD, A, D, D,, D,). Since 
KDA # G, there is a subgroup B in KD, which is normal in KDA, and which 
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satisfies BD, = KD, and B n D = D,. Hence KD, = BD, = B(D,L) = BL = 
B x L. Hence @(K) c @(KD,) = @(B x L) = Q(B); hence Q(K) n D E 
B f7 D = D,. Since Q(K) is normal in G we must have Q(K) = 1. By (3.1 l), 
L is an r-group for some prime r. O,,(K) n D E O’(D,) c D,, whence 
O,,(K) = 1. This implies 

K is an elementary abelian r-group. (3.13) 

Let K,/K be a chief G factor in R. Then R = K, D,. Let E, = C,(K,/K). 
Since G = K, DA it follows that E, = C,(G/K). So [K, E,] is normal in G. 
By (3.13), [K, E,] n D = 1, whence [K, E,] = 1. Hence E, s Z(G)n E = 1. 
In particular, K,/K is non-solvable. Since KC,(e) # G for any e E Es, 
hypothesis A applies to (KC,(e), KC,(e), A, D, D,, D,) for any e E E#. 
Then KC,(e) = U, x L, where U, -=I KC,(e) and U, n D = D, for all 
eEP. Let W=[K,A] and Z=C,(A). Then W=[K,A]GK~ 
[LxU,,A]EK~U,. Hence KnU,= Wx(ZnU,)= Wx(KnD,) is 
independent of e E E#. By Lemma 2.1, W x (K n D2) a G. Hence 

K=L. (3.14) 

By A5 and (3.14), K, is perfect. Let J be a component of K,/L. Hence r is 
a prime divisor of the schur multiplier of J. Hence the conditions of the 
lemma imply that p > 5. There are only two possibilities: either J g 92(3p) 
and r = 2, or Jz UJ((2p)2) and r = 3. Let S be the unique maximal solvable 
subgroup of H containing D. Theorems 2.1O(c, b) and 2.1 l(a, b), imply that 
S is well defined and that S contains a sylow r-subgroup of K,. The 
conditions of the lemma apply to (SA, S, A, D, D,, D,). Since SA # G, 
hypothesis A6 applies and implies that L has a complement in S n R. Hence 
L has a complement in a sylow r-subgroup of K, . By [4], AK, splits over L. 
Hence, K, = KY x L, a contradiction. 

THEOREM 3.10. Suppose YE D(0) and m(A) > 3. Then 19~ is an A- 
signalizer functor on G. 

Proof: It sufIices to show e,(C,(a)) E E(8, Y, &C,(a))) for all a E A#. 
Theorem 3.3(d) implies this whenever O(C,(a)) E C(B, Y). Let us fix 
X= O(C,(a)) @ C(e, Y) and prove the result for this X. By Theorem 3.2 we 
may and do fix (X, , X,) E P(B, Y) such that C,(X,/X,) has a subgroup E of 
rank 2. Rename Y = D n X, = D,. Let D, = D n X, and D, 2 D, satisfy 
D,/D, = F(D,/D,). By Theorem 3.4, (XA, X, A, D, D, , D2) satisfies 
hypotheses Al, A2, A3 and A4. By Theorem 3.6, X satisfies A5. By 
Theorem 3.5 (CXA(e), Cx(e), A, D, D,, D,) satisfies A6 for all e E E#. 
Moreover, if p = 3, then X,/X, E nSz(8) whence D,/D, E F(n Frob(20)) = 
nZ,. Theorem 3.8 and Lemma 3.9 yield the conclusion. 
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THEOREM 3.11. Suppose m(A) = 3 and 8, is complete. Then 

(a> et(G) E &(A), and 

@I G’(G) c W%(G)). 

Proof: (a) This is a direct consequence of Theorem 3.3(e). 
(b) Let w = e:(G), S = {B E &(A)(B(C,(B)) E C(0, Y)}, and 

T= {a E A”jO(C,(a)) E C(8, Y)). Let (X,, X,) E C(8, Y). Let E be the 
largest subgroup of A which normalizes each component of X,/X,, and let 
F = C, (X,/X,). Let E, be a complement to F in E. Extend E, to a 
complement A, of F in A. Let U = {F X YI Y is a complement of E, in A,}. 
Then U c S. Substituting (A,, E,) for (A, B) in Lemma 2.7 yields 
Xl = (X2, Cx,(v)l VE u> and X, = (Cx2(d)ld E I?#) for any B E U. There 
follows 

X, c (W, WC,(B))lB E U) for any (X, ,X,) E qe, Y) (3.15) 

and 
w = (e:(c,(t)j t E T). (3.16) 

Now let B E U. Let W, = (f?~(C,(b))~b E B#) and X = &!!(C,(B)). By 
(3.15) it suffices to show X G NG( IV). We shall do this by showing 
XcN,( W,) and W, = W. NOW XE &!(C,(b)) c N&(C&))) for all 
b E B# (see Theorem 3.3(b)). Hence XG NG( W,). Let t E T. By 
Theorem 3.3(h), eL(C,(t)) n Co(b) s W, for any b E B#. Hence by (3.16) 
and Lemma 2.1, it follows that W c W,. Hence by (3.16), W, = W. This 
completes the proof of Theorem 3.11. 

4. A FAMILYOFSUBGROUPS 

The goal of this section is to prove: 

THEOREM 4.1. Suppose 8 is a locally complete near solvable A-signalizer 
functor on G. Suppose t3 is not solvable. Then there is an X E n@(A) which 
satis.es : 

(a) X is non-solvable. 

(b) Suppose 2, U E n,(A) satisfies Z Sol(X) = K(X), and Z c U. 
Then Z Sol(U) = K(U). 

(c) Suppose K(X) c U E &&(A). Then U c X. 

(d) Suppose Z, T E ate(A), Z Sol(X) = K(X), T is solvable, and 
Sol(X) c T. Then Sol(X) is the unique maximal subgroup of T normalized by 
Z. 
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DEFINITION. Suppose G is a group. deg,(G) is the least integer n for 
which G has a faithful permutation representation of degre n. 

deg(G) = 0 if G is solvable 

= deg,(G/Sol(G)) otherwise. 

9(G) is the set of all subgroups X of G for which K(X) = X holds. Let T 

be a subset of 9(G). 

3’,(T) = {X E TIdeg(X) > deg( Y) for any YE T}, 

%(T) = FE ~,(T)IIWW~)l > I YISWI for any YE 9,(T)}, 

9*(T) = {XE 23#)lXl> I YI for any YE .9&r)}. 

We write 9*(G) = 9*(9(G)). Suppose 0 is an A-signalizer functor on G. 
Then 9(13) = U {3’(X)(XE n,(A)} and s*(e) = 9*(.9(19)). 

Hypothesis B. G is a simple nonabelian group. Let X be any perfect 
member of .@(Aut(G)). Then deg(X) < deg(G) if X& Inn(G). 

Hypothesis C. G is a group. Each non-abelian simple section of G 
satisfies hypothesis B. 

Let G be a permutation group on a set R. Let A be a subset of R and let S 
be a set of subsets of Q. We define 

GA=f-l {G,laEAJ, 

G’={gEGIg(A)=A}, 

G,=n (G’IAES}, 

G”={gEGIg(A)ESforallAES}, 

G(S) = GS/G, and G(A) = GA/GA. 

We consider G(S) and G(A) as permutation groups on S and A respectively 
in the natural way. 

LEMMA 4.2. Suppose G = K(G) is a group. Then deg,(G) > deg(G). 

Proof: Suppose false. Choose a counterexample G of least possible order. 
Let Q be a set of order deg,(G) on which G acts faithfully. 

First suppose G is not transitive on 0. Let 0 be the disjoint union of non- 
empty sets R, and a,, both of which admit G. Let H, = G,,, and 
H, = C,(H, Sol(G)/Sol(G)). Let HF = H,/H, n H,, and H = Hf x H,. 

Then H/Sol(H) r G/Sol(G). Hence deg(H) = deg(G). Now H: c G(f2,) and 
H, acts faithfully on 0,) whence deg(H7) < deg,(HT) < Ia, I and deg(H,) < 
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deg,Wd < I Q2 I. Hence deg(G) = deg(H) < deg(HT) + deg(H,) < IQ, 1 + 
1 a, 1 = deg,(G). This is false, whence G is transitive on R. 

Next suppose Sol(G) acts transitively on Q. Let a E Q. Then 
G = G, Sol(G), G, # G, and G,/Sol(G,) z G/Sol(G). Hence deg(G) = 
deg(G,) < deg,(G,) < deg,(G). This is false. Let 5’ be the set of orbits of 
Sol(G) on R. Then S is a system of imprimitivity for G. 

Let K=G, and 2 = C,(K/Sol(G)). Then G/Sol(G) E K/Sol(K) x 
Z/Sol(Z). Now Z/Z n K c G(S), whence deg(Z) = deg(Z/Z n K) < 1 S 1. 
Let A and TE S. Then K, a K. Hence (Kd Sol(G))O” = KF. However, 
K, Sol(G) 4 G and G is transitive on S. Hence Kr = (Kd Sol(G))O” = 
(K, Sol(G))O” = KF. Hence Kp c G, = 1. Thus K, s Sol(K). So 

deg(K) = degW/K,) < de&, W/K,) < I A 1. 

) A /I S I= c@,(G) < h(G) Q deg(K) + deg(Z) 

<IAl + ISI. 

This is false since 2 < min (/ A I,1 S I }. This completes the proof of Lemma 4.2. 

LEMMA 4.3. Suppose G = K(G) is a group. Then 

deg(G) = L (deg(J)IJ E Y(G/Sol(G))}. 

Proof: We may and do assume Sol(G) = 1 and G is not simple. Choose 
a set Q of order deg(G) on which G acts faithfully. Suppose G acts 
primitively on 0. Then G = G, x G,, G, r G, is simple, and IQ/ = /G, I. Let 
N be a maximal subgroup of G,. Then deg(G) < 2 deg(G,) < 2/G,: NI = 
10 1(2/l NI). Hence I NI < 2. This is false. 

Now suppose G is transitive on 0. Let S be a system of imprimitivity for 
G.LetK=G,,Z=C,(K),AES,andH=K,.ThenG=KxZ.NowKis 
isomorphic to a subgroup of G(S) and so deg(K) < ISI. Since H a G, G 
acts on the fixed points of H; so H = 1. Hence K g K(A). Hence Ifi I = 
I A 11 S I = deg(G) < deg(K) + deg(Z) < I A I + IS 1. This is also false. 

We have shown that G is not transitive. Let Q be the disjoint union of 
nonempty sets .R,, Q2, both of which are fixed blocks of G. Let H, = GnI 
and H, = C,(H,). Then G = H, x H,, and Hi acts faithfully on Oi. Hence 
deg(H,) = I Ri I. The result follows by induction. 

COROLLARY 4.4. Suppose G = K(G) is a group. Suppose N a G. Then 
deg(G) = deg(N) + deg(G/N). 
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-- 
Proof: Let c = G/Sol(G). Then (G/N)/Sol(G/N) z G/N, N/Sol(N) E fl, -- 

and GE (G/N) x 1. Hence we may suppose Sol(G) = 1. In this case the 
result is a direct consequence of Lemma 4.3. 

LEMMA 4.5. Suppose G satisfies hypothesis C. Suppose X is a perfect 
element of 9,(9(G)). Then X E K(G). 

Proof: Suppose false. Choose a counterexample G of least possible order. 
Then Sol(G) = 1, and G = K(G) X. 

Let K = K(G). Suppose K = K, x K,, K, # 1, and Ki a G. Then 
1 G/C&K,)1 < / GJ . Hence 

deg(X/CAKi)) = deg(XC,(K,)/C,(K,)) < deg(KA 

since K, z K(G/C,(K,)). By Corollary 4.4, 

deg(C,(K,)) = deg(X) - deg(X/C,(K, )) > deg(X) - deg(K,) 

= deg(X) - (deg K - deg(K,)) 

= deg(K,) + (de@) - deg K) > deg(K,). 

Hence (C,(K,))O” s K,. Hence deg(C,(K,)) = deg(K,). Hence 
deg(X/C,(K,)) = deg(X) - deg(K,) > deg(K,). Hence X induces only inner 
automorphisms on K,. By symmetry, X induces only inner automorphisms 
on K,. Hence Xc K. This is false. So X acts transitively on 9(G). 

Let Y= K(G) n X. Then X/Y acts faithfully on g(G). So deg(X/Y) < 
/_V(G)I. Let J E 9(G), and W = C,(J). Then W” = (Sol(X) Y)a, 4 X. 
Since X acts on the components of G centralized by W”O, it follows that 
woo=l. Hence W is solvable. Hence deg(Y) = deg(Y/W) = 
deg(YC,,(J)/C,,(J)) < deg(J) by Hypothesis C. By Corollary 4.4, 
deg(X) Q I Y(G)/ + deg(J). Now deg(K) = I y(G)1 deg(J) > deg(X). Hence 
Ill = 1. Put differently, K(G) is simple. Hypothesis C implies that 
Xc K(G), a contradiction, 

THEOREM 4.6. Suppose G satisfies Hypothesis C. Then 

(a) K(G) =X Sol(G)jbr any X E .&(9(G)), and 

(b) 9*(G) = {K(G)I. 

Proof: (a) We may and do suppose Sol(G) = 1. Let X E .92(9(G)). By 
Lemma 4.5, Xm z K(G). Hence Xm = K(G). Hence X = Sol(X) X 
K(G) = K(G). This proves (a). 

(b) This follows directly from (a). 
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THEOREM 4.1. Suppose 8 is a near solvable A-signalizer finctor on G. 
Suppose 8 is not solvable. Let X E S*(e). Then 

(a) X is non-solvable. 

(b) Suppose Z, U E &(A), Z Sol(X) = X, and Z E U. Then Z 
Sol(U) = K(U). 

(c) Suppose XC_ U E n,(A). Then K(U) = X. 

Proof. (a) This is a direct consequence of 0 being non-solvable. 
(b), (c) Let Z, U be as in (b). Then deg(X) = deg(Z) < deg(K(U)) by 

Theorem 4.6. By definition, deg(Z) > deg(K(U)). Hence K(Z)a, s K(U) by 
Lemma 4.5. Now IWT”/SoW(Z))=‘l= IWW)l < IWWol(U)l. 
Hence K(U) E 9&8’(Q). Hence Z E .9&3(U)). Now (b) holds by 
Theorem 4.6(a). So suppose X = Z. Then Xc_ K(U), whence K(U) E S*(8). 
Hence 1 XI = IX(U)\ and (c) follows from (b). 

Proof of Theorem 4.1. Let WE A%‘*(e) and X = 8(iV&V)). By local 
completeness X E &(A). Theorem 4.7 implies X satisfies parts (a), (b), and 
(c) of Theorem 4.1. It remains to show (d). Let Z and T be as in part (d). 
Let M be the unique maximal subgroup of T normalized by Z. Since Z and 
T admit DA so does M. Hence K(X) = Sol(X) Z c MZ E fie(A). By (c), 
MZ s X. By Theorem 4.7(c), MZ = K(X). Hence M = Sol(X) as required. 

5. THE MINIMAL COUNTEREXAMPLE 

Henceforth in this paper we shall assume that the main theorem is false 
and that G is a counterexample of minimal order. Subject to this restriction, 
we assume that l/3] is minimal. 

When convenient we shall write H, = @C,(B)) if B is a non-trivial 
subgroup of A. We also write H, = H(a) for a E A and D = HA. 

THEOREM 5.1. Suppose YE D(0). All of the following hold: 

(a) 8 is non-solvable, 

(b) 0 is locally complete, 

(cl G = W,(A))4 

(d) Z(G%(A))) = 1, 
(e) 0, is complete, and 

(f) either &!!(G) E H,(A), or 0:(G) = 1. 

Proof See [5] for (a). See [6, Lemmas 2.6(l) and 5.11 for (b) and (c). 
Theorems 3.10, 3.11, 3.3(e), and parts (a) (b) of this theorem yield (e) and 
(f). It remains to show (d). 
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Suppose (d) is false. Let W= (B,(A)). Let Z, be a minimal normal 
subgroup of G contained in Z(w). Then Z, is an r-group for some prime r. 
Suppose first that r#p. The procedure of 16, Lemma 2.6(2)], applied to 
G/Z,, yields Z, C,(a) = Z, O(C!,(a)) f or all a E A, and W is a PI-group. 
Z, n e(C&)) a G for all UEA” and Z, 6? M,(A) whence 
Z,ne(C,(u))= 1 for all a EA *. By (a) and Lemma 2.1, a sylow r- 
subgroup of W splits over Z,. By [4], Z, has an A-invariant complement 
W,,. Let &,(C,(U)) = O(C,(a))n W,. NOW O,(C,(a)) 4 O(C&)), and 8, is 
complete. Hence for any B E &(A), 8(C,(B)) c N,((O,,(C,(b))l b E B#)) = 
NG(O,,(w)). So by (c), B,(G) 4 G. By (b), B,(G) = 1. Hence 8 is solvable, 
contrary to (a). Hence r =p. Since C,&A) # 1 it follows that Z, E Zp and 
Z, s Z(G). Then 

mw,w)) n cmi a/z,) = ww4) n cm 

= z, ~(C,((~~ b))) 

for a, b E AX. The argument of [6, Lemma 2.6(2)] again applies, and yields 
W= Z, x O,,(W). Hence W= (B,(A)) c O’(W) = O,,(W) # W, a con- 
tradiction. 

THEOREM 5.2. Suppose X E II,(A). Then 

(a) There is an a E AX such that K(H,) @ X. 
(b) There is a B E &(A) such that K(H,) &X. 

ProojI Let a E A” and a E B E &(A). Then C,(B) n K(H,) c K(H,). 
Hence 

Hence it suffices to prove (a). 
Suppose that (a) is false. Choose X E M,(A) such that K(H,) G X for all 

a E AX. Let B E Z&4). By Lemma 2.15, C,,,,(b) c K(H,) for all b E B*. Let 
W = (K(HJ b E B”). Th en K(X) s WEX and H, sN,(K(W)). By 
Lemma 2.15, K(w) = K(X). Hence H, c N&(x)). Local completeness of 8 
now yields a contradiction. 

THEOREM 5.3. D(B) = { 1) and By(G) @ I$#). 

Proof: Let S = B,,,(G). By Theorems 4.1 and 5.1 there is a subgroup W 
such that: 

(a) WE f&&4). 
(b) W is non-solvable 
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(c) Suppose K(W) = Z Sol(W), Z s a&4), and Z E UE n&4). 
Then K(U) = Z Sol(U). 

(d) Suppose K(W) s U E fit@). Then U 5 W. 

(e) Suppose Z E. &,(A) and Z Sol(W) = K(W). Then Sol(W) is the 
unique maximal subgroup of S normalized by Z. 

Suppose B;(G) E M,(A) for all YE D(0). Let R = (E E 8,(A)IHE n W is 
nonsolvable} and T = k?,(A) - R. Let E E R. By (a), there is (X, ,X,) E P(0) 
such that X, s H, n W. Let Y = D n X,. Then W, HE E C(B, Y). Let 
V= T(G). By assumption and Theorem 3.3(c), (K(W), K(H,)) c 
VE H,(A). By (d), K(H,) g I/E W. Hence 

K(H,)c W for all E E R. (5.1) 

There follows by Theorem 5.2(a) 

Tf0. (5.2) 

Let A * = (T). By (5.2), A * # 1. Each member of T fixes each component 
of K( W)/Sol(W). H ence A * E 8( WA). Hence W = K( w> C&A *). Since 
C,(A*) is solvable there follows by (5.1) 

W/K(W) is solvable and K(H,)‘O c K(W) for all E E R. 

For each B E if*(A) define 

(5.3) 

W,=((K(H,))“OlEER andEcB). 

By Lemma 2.15 and (5. l), K(C,(E)) = K(H,) for all E E R. Hence by (5.3), 
(K(H,))” = (C,,,,(E))m for all E E R. Hence 

W, = ((K(W) n C(b))m 1 b E B#). 

Hence by Lemma 2.7 applied to each B orbit of 9( W/Sol( W)) 

W, E %(A) and W, Sol(W) = K(W) for all B E &(A). (5.4) 

By the initial definition of W, there follows 

e(C,W) c_ ~W,W,)) for all B E &(A). (5.5) 

By (e) and (5.5), C,(B) 5 N,(Sol( W)) for all B E &(A). Lemma 2.1 and 
Theorem 5.1(b) implies that S c W if Sol(W) # 1. By (5.5), (5.4), and local 
completeness we have, 

Sol(w) # 1. 
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Hence 

SG w. (5.7) 

By Theorem 5.2(b) there is a B E 8’*(A) such that K(H,) & W. Fix this B 
and let L, = @(N&W,)). By (5.5), (H,, W,) EL, E f&,(A). Let L;/M be a 
chief factor of LFDA. Let Y = C&F/M), and (X, ,X,) = (LB” Y, MY). 
Then (Xi, X,) E P(B) and Y= X, n D. Hence X, E B;(G) E M,(A). Let 
D, = D n Sol( IV). Then by (c), 

D, E C,(K(W)ISol(W)) = C,W’,IWWd) 

= C,(K(L,)/Sol(L,)) E Y. 

Hence Sol( IV) c Sol( IV) YE B,(G) c B;(G). By (d), B;(G) c W. Hence 
(HB)m E (LB)“O E X, c B;(G) c W. By (5.7), H, = (H,)m (HB I? S) c W, a 
contradiction. Hence 

G(G) @ WA) for some YE D(B). (5.8) 

Fix YE D(0) such that By(G) & M,(A). Theorem 5.1(f) implies that 
8:(G) = 1. In particular, Y = 1. Let a E A#. Suppose H, E C(O, l), then 
tYy(H,) = K(H,) is semi-simple. In particular, (S n H,) 0y(H,) is a group. 
Define O,(C,(a)) = (S n H,) ey(H,). Let b E A. Suppose Hb b$ C(0, 1). 
Define B,(C,(b)) = Hb n S. An application of Lemma 2.2 and Theorem 3.3 
shows that 8, is an A-signalizer functor. Since 8, cannot be complete, it 
follows that 101 = 10, I. H ence B = 8,. This proves the result. 

LEMMA 5.4. Suppose X is a subgroup of G generated by some elements 
of M,(A). Then either 

(i) X contains every element of M,(A) or 

(ii) X E II,(A). 

ProoJ: See [5, Lemma 5.41. 

6. THE STRUCTURE OF 0 

We continue use of S = f&,,(G). For the convenience of the reader, we 
summarize in Theorems 6.1 and 6.2 all the significant structural features of 8 
established in this section. 

First we shall introduce some important new notation which we shall fix 
for the rest of the paper. 

481/78/l-14 
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KS = K(H,) for any B <A, 

R={BIl#BcA,H,EC(8,1)}, 

Ri= (BERlm(B)=i} for i= 1 or 2, 
D, = D n K, for any B E R (see Lemma 6.6), 

D, = W,), 

Finally, let 

e*(w)) = KXH, n s*> forany aEA#. 

THEOREM 6.1. There is a distinguished E E g,(A) and a simple group J 
such that all of the following hold: 

(a) HE is solvable. 

(b) Let f E A -E. Then K/zpJ, (E, f) = A n K(HfA), H, = K(H,), 
and HfIKr is a (2, 3 }-group. 

(c) SupposefEA-E,XEB,(A)andK,~X. ThenXGH,. 

(d) D, and D, are Frobenius groups with common Frobenius kernel 
D,. 

(e) Suppose E c B E gz(A). Let E x F= B. Then S,n H, = 
x(JnS,nH,lJEiP(H,)}zpD,. 

THEOREM 6.2. Let E be as in Theorem 6.1. There is an r E z(t?) and an 
S,(A)-subgroup V which satisfies: 

(a) V&S, 
(b) V is abelian, 

(c) 1 # C,(f) is a sylow r-subgroup of Hffor all f E A -E. 

(d) Let f E A -E and F= (E,f). Then 

(Cvdf)~ HF n s,> = KY- 

LEMMA 6.3. Suppose B is a non-trivial subgroup of A such that H, is 
non-solvable. Then 

(a) HB/K(HB) is solvable, and 

(b) K(H,) is the unique minimal normal subgroup of K(H,) DA. 
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Proof: Theorems 5.1(f) and 5.3 yield 8:(G) = 1 and D(0) = ( 1 }. The 
conclusion of the lemma is simply a more appropriate formulation of these 
facts. The details follow directly from Theorem 3.3(a, c). 

LEMMA 6.4. Suppose B E R,. Let W = (K(H,)I b E B#). Then W = 

G%(A))- 

ProoJ LetfE A# such that H, is non-solvable. By Lemma 6.3, By(H,) = 
K(Hf) = ((K(H,) n C(b))m lb E B#) c W. Hence by Theorem 5.3, W 6? 

H,(A). Now Lemma 5.4 implies the conclusion. 
Theorem 3.2 yields 

LEMMA 6.5. Suppose FE R, . Then there is a B E R, which contains F. 
In particular, R z # 0. 

LEMMA 6.6. D, is well defined. 

Proof. Let E, FE R. Write E -F if and only if DnK(H,)= 
DnK(H,). Then - is an equivalence relation. Clearly E-F if E c F. 

Hence by Lemma 6.5, R is an equivalence class. 

LEMMA 6.7. Suppose BER. Let H=H,, K=K,, and M=SnK. 
Then 

(a) C,(D,) = F(M) is abelian, 

(b) M E C,(D, F(M)/F(M)) G K(H), and 

(c) C,(D,F@f)/F@f)) G M. 

Proof. By Theorem 2.10(c), C,(D,) = F(M). Now (a) follows by Lemma 
2.16(c). Part (b) is a direct consequence of Lemma 2.16(a). Part (c) results 
from Lemma 2.16(b). 

LEMMA 6.8. Suppose B E R. Let J E Y(H,). Suppose J 2 L,(3p). Then 

(a) There is an involution in D, which acts fixed point freely on D, . 

(b) Suppose t is any involution which satisfies (a). Then t acts fixed 
point freely on S n K(H,). 

Proof. For each K E ip(H,) let KS = (KA) n D. Let A, = A n K(AH,), 
and A, = C,(K(H,)). Then Zp z A,/A, induces an automorphism group of 
order p on K E Y(H,). By Lemma 2.9, K@z C,(A,/A,). D, = 
x {K@lK E Y(Ht,)}. By Theorem 2.8, an involution t of D, acts fixed point 
freely on D, if and only if t = t, t, a.. t,, l#tiEUiand{K@IKE~(H,)}= 

1 u, , u, ,..., U,}. Hence it suffkes to show that if d is an involution on K@, 
then C(d) n (KA) nS = 1. This is implied by Lemma 2.9 and 
Theorem 2.8(e, f). 
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LEMMA 6.9. Suppose B E R. Let JE Y(H,). Suppose Jz L,(37. Then 
F(K(H,) n S) is the unique minimal normal subgroup of (Ht, n S) A. 

Proof In the proof of Theorem 2.8 we showed that S n J F Alt(4) the 
alternating group on four letters. By Lemma 6.3(b), F(K(H,) f7 S) is the 
unique minimal normal subgroup of (H, n S) A in K(H,). Now Lemma 
6.7(a) implies the conclusion. 

LEMMA 6.10. Suppose E, FE R. Suppose J E Y(HL;) and K E Y(HF). 
Then J z K. 

Proof: Define an equivalence relation - on R by: U - Z if and only if 
H,, and H, have isomorphic components. Then U - Z if U G Z. Lemma 6.5 
implies that R is an equivalence class. 

LEMMA 6.11. Suppose E E R. Then S, f? HE = F(K(H,) n S). 

Proof: This is a direct consequence of Lemma 2.16(c). 

THEOREM 6.12. S, is abelian. 

Proo$ Suppose first that J z L,(37 whenever E E R and J E Y(H,). By 
Lemma 6.5 choose B E R,. Now fix a minimal normal subgroup Z of SA in 
S. By Lemma 2.1, there is a b E B” ‘such that C,(b) # 1. By Lemma 6.9, 
C,(b) = F(K(H,) n S). Hence C,(B) # 1. Then C,(e) = F(K, fY S) for all 
e E B#. Lemmas 2.1 and 6.11 imply Z = S, . Hence S, is abelian. 

By Lemma 6.10, we may suppose that Jk L,(3p) whenever E E R and 
J E Y’(H,). By Lemma 6.8(a) choose an involution t E D, which acts fixed 
point freely on Dr. Then t acts on S,. Let U= C,,(t). Suppose U # 1. Fix 
B E R,. Then B normalizes U. Hence there is a b E BX such that C,,(b) = 
V# 1. By Lemma 6.11, VE F(K, n S) n C(t), contrary to Lemma 6.8(b). 
Hence C,,(t) = 1. So S, is abelian. 

LEMMA 6.13. Suppose B E R. Then K(H,) n S E N(S,). 

Proo$ Lemma 6.11 and Theorem 6.12 imply that S, = 
B(C,(F(K(H,) n S))). The result follows directly. 

LEMMA 6.14. Suppose B E R. Then KB n S E Hs n S, E K(H,). 

Proof: This follows from Lemma 6.13 and Lemma 6.7(b). 

THEOREM 6.15. 8=8*. 

Proof. Let a, b E A#, and B= (a, b). Suppose BE R. Then by 
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Lemma 3.6(b), K, n C,(b) 5 K,, whence Q*(C,(a)) n C,(b) = (K, n H,) 
(Ha n s,) n Hb) 5 Kb(Hb n s,) = 8*(C,(b)). 

Next suppose B G$ R. Then by Lemma 6.14, tl*(C,(a))n C,(b) I: 
S, n HB G O*(C,(b)). Hence f?* is an A-signalizer functor. 

Lemma 6.4 yields that t9* is not complete. Minimality of 181, among 
incomplete signalizer functors, forces 0 = 8*, as required. 

LEMMA 6.16. Let (a) E R,. Then HJK, is a { 2,3}-group. 

Proof. If J& U,((2p)2), then D, = D, and S, = S,. Then Lemma 6.7(c) 
implies that H, = K,. Hence suppose JZ U1((2p)2). By [ 151, the outer 
automorphism group of J is isomorphic to D, x Z,. The result now follows 
by Lemma 6.11 and Theorem 6.15. 

THEOREM 6.17. (a) There is u unique E E &Yl(A) - R , . 

(b) (E,f) = (@AH,)) n A for all f E A - E. 

Proof: Let A* = (81(A)-R,). Then (~,A*)E~(AH,) for all fE,4< 
Suppose first that A * = A. Then Theorem 6.15 and Lemma 6.3(b) imply that 
Kf is simple for any FE R. By Lemma 6.5, choose B E R,. Then H, = H, 
for all b E B#. But then H, = (M,(A)). This is false. Hence A * < A. Suppose 
next that m(A *) = 2. Then K, is simple for any fE A -A *. LetfE A -A *, 
and extend (f) to B E R, by Lemma 6.5. Then K, G KB for all b E B -A *. 
Hence K,,, * = (H&t)). This is also false, whence A * is cyclic. 

Let R’={FER,lK, is simple} and R’=R,-R”. Then since D is 
solvable, KF has p-components for each F E R ‘, For each F E R, let 
F, = C,(H,) and F,,,=f(AH,)nA. Suppose (R’) <A. Then by 
Lemma 6.5, there is a B E R, such that U = B n (R ‘) is cyclic. Then 
(HbI b E B#) equals HB if U = 1 and equals K, otherwise. This is false. 
Hence (R ‘) = A. Suppose that R” # 0. Fix an F E R” and L E R ’ such that 
L c A - F,. Then S, n HF n C(L) = D,. Since HLF is solvable, F G L,. 
Hence S, n C(F) n HL z pD,. Then balance yields D, = HF n C(L) n S, = 
C(F) n HL zpD # 1, a contradiction. Hence (b) holds. 

It remains to show R, # g,(A). Suppose by way of contradiction that 
R,=k?,(A). Fix F, LER, with FLER,. Then FdL, and LcfF,,,. Let 
B = FN n L,. Then FN = B, = L,, a contradiction. This completes the proof 
of Theorem 6.16. 

LEMMA 6.18. Let B E R and X E M,(A). Suppose X is solvable and X 
admits K, . Then X = 1. 

Proof: We may and do suppose B E R,. Let e E B’. Then C,(e) admits 
K,. Hence C,(e) n K, admits KB . Thus C,(e) n K, = 1. By Lemma 2.16, 
Cx(e)= 1. Hence X= 1. 
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Proof of Theorem 6.1. Lemma 6.16 and Theorem 6.17 yield 
Theorem 6.l(a, b). Parts (d) and (e) are direct consequences of (a), (b) and 
Lemma 6.6. It remains to show (c). 

Let fE A - E, and KY& X E M,(A). By Lemma 2.16, K,.’ K(X). If 
K(X) = KY, then fE C&K(X)) n No(X) = C,(X), whence Xc Hf. It is 
therefore sufficient to show if X = K(X), then X = K,. So suppose X = K(X). 
By Lemma6.18, Sol(X)=l. Let (f)=FcBER,. Let eEB-F. Now 
K, = HF n C,(e) c C,(e). However, K, is a maximal A-invariant subgroup 
of K,. Hence C,(e) n K, = K, or K, . By Lemma 6.4, C,(e) n K, = K, for 
some e E B - F. Hence X is simple or X rpK, z K,. Thus X is simple or 
X = Kf. If X is simple, then C,(X) = B, has rank at least 2 since X is near p- 
solvable. Thus X = C,(B n B,) g K,. This is ridiculous. Hence X = K, as 
required. 

Proof of Theorem 6.2. Assume the notation of Theorem 6.1. Then 
n(Hr) = z(J) for all f E A - E. By Theorem 2.8(o) and Theorem 2.10 there is 
an r E 7c(Hr) - $H,n S) for all f E A -E. Let V be an S,(A)-subgroup of 
G. Theorem 2.10(o) and Theorem 6.1 (b) implies 

Hrn V = Km V is abelian for all f E A - E. (6.1) 

Let B E R, . By choice of r it follows that (Vn HE) n C,(b) = 1 for any 
b E B. Hence Vn HE = 1; so Lemma 2.5 and (6.1) imply that V is abelian. 
Lemma 2.3 implies (c). 

It remains to show (d). Let L be a component of Hf. By Theorems 2.8d 
and 2.10, L n S is the unique maximal subgroup of L containing L n S, . By 
(c) and the choice of r, C,(f) n L !Z L n S. Hence L G (C,(f), Km S,). 
This completes the proof of (d) and Theorem 6.2. 

7. THE STRUCTURE OF G. 

For the remainder of the paper, let W = (R,(A)) and let E be the unique 
cyclic sugroup of A such that HE is solvable. 

THEOREM 7.1. Suppose B is a subgroup of A of rank 2 which contains 
E. Then W has subgroups Wi, 1 < i < p, such that all of the following hold: 

(a) W= W, X W, X 1.. X W,. 

(b) A permutes ( Wtl 1 < i <p} transitively, and B = NA( Wi) for 
each i. 

(c) Kt,=X(WinK,~l<i<p}forallbEB-E. 
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Proof Theorem 6.l(d, e) imply that H, n S, is the direct product of p 
unique indecomposable subgroups. Let 9 be the set of indecomposable 
subgroups. Hence for any b E B -E, 

9={1KnS,nHE1KELP(Hb)} (7.1) 

Let r E x(8) and V be an S,(A)-subgroup of G which satisfies the 
conclusion of Theorem 6.2. For each F E 9, let V, = n {C,,(H)/ H E 9, and 
H # F} and W, = (F, V,). Since I/ is abelian, there follows 

[W,, WH] = 1 if F+H. (7.2) 

Let @‘=(W,lFE9). Let bEB-E, KEY(H,,), and FEC~(E). By 
(7.1), Kn Vs V,. Hence C,(b) c I&’ by Theorem 6.2(c). Theorem 6.2(d) 
implies that K, E @. Theorem 6.1(c) and Lemma 5.4 imply that @ = W. 
Theorem 5.1(d) and (7.2) yield that W= x {W,IFES}. Now 
Theorem 6.2(d) yields (c). 

It remains to prove (b). B fixes each element of 9 and normalizes V, 
whence B normalizes W, for each FE 9. The set 9 is acted on transitively 
by A, and A normalizes V. Hence A acts transitively on { W,l F E A?}. This 
completes the proof of Theorem 7.1. 

THEOREM 7.2. G does not exist. 

Proof: Let B be a complement of E in A. Let B = F, F2 where each Pi is 
cyclic. Let Bi = F,E for i= 1, 2. By Theorem 7.1, there are sets 
.sj,= (Will < i <p}, j= 1 or 2, such that W= x Fj, Bj normalizes each 
W{, A is transitive on .51j, and KFj=x {W;nK,jll<i<p}. Let 
Wi,j = Wj’ n Wj for 1 < i, j <p. Since Fi fixes each member of si and acts 
transitively on .593 -(, it follows that B acts transitively on 
( Wi,jl 1 < i, j <p} = 9. Let Z = (9). Then 

By Theorem 6.4, W is generated by perfect subgroups, whence W is perfect. 
So Z = W. Clearly, [ Wi,j, W,,,] = 1 if (i, j) # (s, t). Hence 

w=x.9 (7.3) 

B acts regularly on 9 (7.4) 

Let K = K, and KFi = Ki for i = 1 or 2. By Theorem 6.1, K is simple and 
Ki =pK. Let W* = x {Proj.(H)I U E 9}. Then 

W* gp2K. (7.5) 



214 PATRICK PASCHAL MC BRIDE 

Let WF = W” n Wi. For subgroups U of W” let pi: iJ+ v be the 
projection map of U into WT. For subgroups V of W let pi: V-+ Wf be the 
projection map of V into W,f . Since K, = x {K, n Wi 11 < i <p}, and F, is 
transitive on 29, and K = K, n C(F,), it follows that K, = x (p’(K)1 1 < 
i <p}. Since F, is transitive on ( WF 11 < i <p} and H G C,,(F,), it follows 
that Kzpi(K) cp’(K) r K for 1 < i,<p. Hence K, G W*. Similarly, 
K, G W*. Lemma 5.4 and Theorem 6.1(c) now yield 

w*= w. (7.6) 

By (7.5) and (7.6), W is near p-solvable. Let b E B#. By (7.4), (7.5), (7.6), 
and Theorem 6.1, it follows that pK z K, E C,(b) =pK. Hence C,(b) = H, 
for all b E B”. Let a E A#. Then 

C,(a) = (C,(a) n C(b)1 b E B#) 

c (Hb n C&I)/ b E B#) c H,. 

Hence 13 is complete, a contradiction. This contradiction completes the proof 
of the main theorem of this paper. 
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