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We discuss proton decay in supersymmetric theories We fred that it is possible to obtain rates wtuch are comparable 
wtth those of standard SU(5). In the presence ol a discrete symmetry which occurs m an SU (5) supersymmetnc unified 
model ~ve obtain a definite prediction for the dominant decay mode, I e p ~ K+~u and n ~ K°~#. 

1. Introduction. Supersymmetry has recently been 
proposed as a possible solution to the gauge hierarchy 
problem [1 ] .  It  has been shown that  in supersymme- 
tric unified models (SUM) the unification scale moves 
up to 1016- 17 GeV [2] .  Thus the standard processes 
leading to proton decay via tree diagrams result in un- 
observably small rates. Recently,  Weinberg has shown 
that one-loop effects can dominate over tree results 
leading to larger baryon-number violating amplitudes 

[31. 
In this paper we discuss proton decay in SUMs. In 

section 2 we discuss the general framework on which 
our results are based. In section 3 we discuss proton 
decay in models containing a discrete symmetry which 
occurs in an SU(5) SUM [4] .  In this class of  models 
we obtam a definite predict ion for the dominant  decay 
modes of  the proton and neutron,  i.e. p ~ K+~, and 
n ~ K0~#. The rates for these processes depend on 
the unknown masses of  the gluino and scalar quarks. 
Reasonable v',dues for these masses can yield lifetimes 

i Present address" Harvard University, Cambridge, MA 02138, 
USA. 

on the order ~1030 yr. In section 4 we discuss proton 
decay in a more general context.  We find that both 
the rates and final states for proton decay are then 
very model dependent.  These cases, however, exhibit 
the interesting decay modes p ~ phot ino + X and p 

goldstino + X. 

2. General considerations. We consider SUMs in 
which the gauge symmetry between 1017 GeV and 
300 GeV is the standard SU(3)® SU(2)® U(1). We 
shall assume that  the low-energy particles in the 
theory are the ordinary quarks and leptons, two Higgs 
doublet  scalars, the gauge bosons; and their supersym- 
metric partners. In addition we allow for the possibil- 
ity of  having SU(3) ® SU(2) ® U( I )  singlet supermul- 
tiplets. 

We shall use the following superfield notation, cI~ is 
a left-handed chiral superfield which can be written in 
the component  form 

q, = 2 - 1 / 2 ¢  + Off + 2-- 1/2FO0, (2.1) 

where ~b, f and F are the scalar, fermion and auxiliary 
fields, respectively. We then have the states 
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i 
(I,~, ,P&, ,I)a, (P~, ,I~i+, (2.2) 

where q and ~ denote the quark and lepton doublets 
and i = 1,2,  3 is a family index. We ",also have Higgs 
superfields eOh, ~I)~ where h and 1~ are the Hlggs' with 
hypercharge +1 and - 1 ,  respectively, q)0 will denote 
singlet superfields. 

In such theories there is a baryon-number violating 
dimension-four operator which will lead to an extreme- 
ly short proton lifetime Thus this operator must be 
forbxdden by additional global symmetries. The dan- 
gerous dimension-four operator is 

f d20 ...t ~Z.,.k ,v~ <Pal ,i, d. (2.3) 

As Weinberg has pointed out, in theories where this 
operator is forbidden by global symmetries, there can 
still exist dimension-five baryon-number violating op- 
erators [3]. These operators are 

f d20 d)t d~J ~ka~m f d20 .~i ~.l.,.k_,.m ,i,~ ~Ph,Pd w e + ~ q - ~ q T q ~ Q  , 

(2.4a,b) 

f d20 , , , k _  fd20 , / k (bq'-i)q(] qfPh,  (I)~ ('p a qb~ (1) 0 , 

(2.4c,d) 

f d20 do z ~/~+ --q --q--gt " 
(2.4e) 

3. Family Reflection Symmetry (FRS). The fam- 
ily reflection symmetry defined by 

i_+ i t i l i q'q --¢q,  q"u -+ --'l)~, 'I~-+ - -q~ ,  

(I}~ -> - ~ ,  *i÷ ~ -q)i+ , (3.1) 

is a natural discrete symmetry in an SU(5) SUM [4]. 
It forbids the dimension-four operator of eq. (2.3). In 
addition it eliminates the dtmensmn-five operators of 
eqs. (2 .4c-e) .  Thus the only dtrnension-five operators 
which contribute to proton decay are those of eqs. 
(2.4a, b). 

As a result of Bose statistics for these scalar super- 
fields it is easy to see that both these operators vanish 
if there is only one family. Therefore the only rele- 
vant operators for proton or neutron decay are the 
following 

fd20 (PueI)d~s~vu , (3.2a) 
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qb d U- :' 'f I --'~- - I V - ~  - - d  
i! 

V u -  ~" ~ - -  < . . . . .  • S 
% 

Fig l -llte dominant  graph contributing to proton decay m 
theories with family reflectmn symmetry .  The vertex on the 
left corresponds to the effectwe lagrangmn (3 3). The  fer- 
m m n  exchanged on the right is a g lumo The cross on the 
gluino line represents a chtrahty fhppmg Majorana mass 

f d20 (bu~bd(I)c~bu- , f d20 ¢bficb~b~<bu. , 
(3.2b,c) 

As a result we will conclude that strange-particle final 
states will be dominant. 

Let us consider the processes mediated by the op- 
erator of (3.2a). The effective lagrangian arising from 
this operator is 

Geff[udq~sq~vu + permutations 

+ qSu~bd~b~Fvu + permutations] . (3.3) 

The first term provides the dominant contribution to 
proton decay via the graph of fig. 1. This graph leads 
to the processes p -+ K+~u and n -+ K0~**. 

Let us now estimate the magnitude of this process 
and describe why we expect this to be the dominant 
mode. In our estimate we rely heavily on SU(5). In 
such a model the fermionic terms in the effective lagran- 
gian (3.3) come from an exchange of  a color triplet 
fermionic Higgs. As a result we find 

Geff ~ gugs/Mha , (3.4) 

where Mh3 is the mass of the color triplet Higgs and 
gu, gs are Yukawa couplings (see fig. 2). In the limit 
Mh3 >>/a >> mg (where/a is the scalar quark mass and 
mg the Majorana part of the gluino mass) we obtain 
the effective four-fermion operator 

GSU Muds v u (3.5) 

u - - ~  % - - - ~ q - - - ~ - - d  
111h3 I X  =9,u,nO 

v~-- , gs % 

r i g  2. The d o m i n a n t  graph con t r i bu t i ng  to  p r o t o n  decay m 
theories with famdy reflection symmetry .  The fermion ex- 
changed on the  left is a lermlomc lliggs color triplet, l 'he 
cros~ Is the Dlrac mass o f  this fermion lhggs 
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where 

GSU M = (gugs/Mh3) (mg/# 2) Oec/2rr. 

This is to be compared with the standard SU(5) result 

GGU T ~ 10 -30 GeV -2  (3.6) 

For reasonable values of the parameters in (3.5)" 

Mha ~ 1 0 1 7 G e V ,  / a ~ 6 0 G e V ,  m g ~ l G e V ,  

% ~ 0 . 1 ,  g u ~ 4 X  10--5, g s ~ 8 X  1 0 - 4 ,  (3.7) 

we find GSU M ,~ GGU T. 
Several comments are in order. Why is this the do- 

minant graph? 
(a) Note that each vertex on the left side of fig. 2 

contains transitions between members of the same 
family. Thus it is not Cabibbo suppressed. 

(b) The intermediate state contains two colored 
scalar quarks. Therefore they can interact with the ex- 
change of a strongly interacting gluino. 

(c) The graph of fig. 2 is proportional to Yukawa 
couplings because we have exchanged Higgs ferrnions. 
Naively one might expect that gauge fermions (e.g. the 
partner of the X or Y bosons) might give a larger result. 
However, an operator of the form 

fd20 ~4 (3.8) 

can only be obtained by the exchange of matter fer- 
mions since each vertex flips chirality. 

Now let us evaluate the contribution to proton de- 
cay coming from operators of the form 

Geff 4~u ~bd 4~ u F s (3.9) 

[see eq. (3.3)]. In fig. 3 we give an exchange which 
results in the operator (3.9). Now using the low-energy 
Yukawa couphng 

gs Fs q~; ~f~o (3.10) 

q ~ t  . . . . . .  ~" . . . . . . . . . .  "~ . . . .  qbd 

AFM 3 

t 
*,' q~fi3 
t 

~v~--- " . . . . .  ' . . . .  " . . . . .  rs 

Fig. 3. Five scalar operator contributing to proton decay. 

V , u ~  J S  

d ----- '~ '  % } ,~- ' -  ~-'-~--- d 
;< 

Fig. 4. How the five scalar operator of fig 3 contributes to 
proton decay. XZ is the zion or the superpartner of the Z- 
bosom 

we obtain the dtmension-five, 5 scalar operator 
+ + 

Geffg s C)u Od gPVla ~-g dp~ 0 , (3.11) 

This contributes to proton decay via the graph of fig. 
4. As a result we obtain the same effective four-fer- 
mion operator as in (3.5) with a new Fermi constant 

G~U M m (GeffV/I a2) (o%/27r) (ee2/2rr)g s (3.12) 

where V-= (q~o } and we have assumed that mzm o < #. 
It is easy to check that for a value of mg (the gluino 
mass) greater than ~1 MeV these graphs are not im- 
portant compared to the graph of fig. 2. 

Finally the operators of eqs. (3.2b,c) are unimpor- 
tant since they involve additional small couplings in 
order to take the charm quark into a strange quark. 

We thus conclude that in theories with the FRS 
and with only standard low-energy particles, the do- 
minant decay modes in baryon decay are 

p-+K+ + ~u , n-+K0 + ~u (3.13) 

We note, however, that in contrast to standard SU(5) 
the rate for these decay modes depends on unknown 
low-energy parameters of the theory e.g. mg and/1 
[see (3.5)]. 

4. Other discrete symmetries. It is easy to find 
other symmetries which forbid the disastrous dimen- 
sion-four operators of eq. (2.3) but allow the addition- 
al dimension-five operators of eqs. (2.4c-e). These 
operators can lead to different final states. Notice 
that they violate baryon number but not lepton num- 
ber. As a result there will be the new decay modes 

p -+ photino + X ,  p ~ goldstino + X ,  (4.1) 

which satisfy &B = 1 and &L = 0 (see fig. 5). We shall 
not even attempt to estimate the order of magnitude 
of these amplitudes since they depend essentially on 
unknown parameters of an unknown theory. 
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~O[:nO or 
q~d 6oldst qo 

s-  • ~ J 4 - - - ~  . . . . .  L 

Fig 5. Proton decay medmtcd by the operator (2 4c) 

We also observe that in a theory which includes the 

dimension-four operator 

fd20 gba Cbq • ~ (4.2) 

ably small. An example of such a symmetry is a new 
U ( l )  that appears naturally in E (6) and takes the same 

value on every member of a family. 

5. Conclusion. The above analysis shows that one 
can not make definite predictions for the final states 

m proton decay in a model independent way. However, 
if the decay modes p ~ K + + vu and n ~ K 0 + vu are 

observed to be the dominant modes in baryon decay, 
then this will provide evidence in favor of supersym- 
metric theories with the discrete faintly reflection 
symmetry. 

which satisfies ~ = 0, z2xL = 1 it is even possible to 
obtain a dimension-five operator which results in the 
standard dominant mode 

p ~ e + + 7r 0 (4.3) 

(see fig. 6). Finally we note that it is also possible to 
invent symmetries which forbid all the dimension-four 
and -five operators in eqs. (2.3), (2.4). Thus the domi- 
nant baryon violating operators in such a theory 
would be dimension-rex operators which are unobserv- 

~ ,  
q " -~ - - . , - -~  

Ftg. 6 Proton decay medtated by the operators (2.4e) and 
(4 2). 
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