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By using complex variable methods (steepest descent and residues) to asymptotically 
evaluate the coefftcient integrals, the numerical analysis of Hermite function series is 
discussed. There are striking similarities and differences with the author’s earlier work on 
Chebyshev polynomial methods (J. Comp. Phys. 45 (1982), 45-49) for infinite or semi-infinite 
domains. Like Chebyshev series, the Hermite coefficients are asymptotically given by the sum 
of two types of terms: (i) stationary point (steepest descent) contributions and (ii) residues at 
the poles off(z), the function being expanded as a Hermite series. The stationary point term 
is determined solely by the asymptotic behavior of f(z), i.e., how rapidly J(z) decays as 

, z + co along the real axis. Unlike Chebyshev series, however, it is necessary to perform a 
separate analysis for functions which decay faster or slower than the Gaussian function 
exp[-Ar’]. Singular functions, too, fall into two categories. Those that decay rapidly with z 
have asymptotic Hermite coefficients which are dominated by the singularity, but functions 
which decay as slowly as sech(z) or slower have Hermite coefficients dominated by the 
stationary point terms, and the singularity is irrelevant. The end product of the analysis is the 
same as in the earlier work: simple, explicit formulas to optimize the efiiciency of Hermite 
methods and estimate a priori how many degrees of freedom are needed, provided one knowns 
at least crudely: (i) the asymptotic behavior off(z) and (ii) its singularity nearest the real 
axis. Rather surprisingly, one finds Hermite functions superior to Chebyshev polynomials for 
some classes of functions when the computational domain is infinite. 

1. INTRODUCTION 

Recently, the author [ 1 ] applied the method of steepest descent to obtain the 
asymptotic Chebyshev polynomial coefficients for different ways of representing 
functions on an infinite or semi-infinite interval. This made it possible to determine (i) 
which technique, domain truncation or mapping, was most efficient for a given class 
of function and (ii) how to choose the optimum domain size or mapping parameter. 

The goal of this present work is to explore a third alternative for an infinite 
domain: Hermite function series. Although the mechanics of Hermite spectral 
methods are slightly more complicated than for Chebyshev polynomials, there is a 
very close parallel between them. The use of Hermite functions is particularly 
appealing because they are often the exact unperturbed eigenfunctions (examples: the 
harmonic oscillator in quantum mechanics and equatorial waves in dynamic 
meteorology and oceanography) or the limiting asymptotic eigenfunctions (Mathieu 
functions, prolate spheroidal wave functions) for many problems of physical interest. 
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The end products of this investigation are simple asymptotic formulas for the 
Hermite coefficients for general functions. It is only necessary to know (i) how 
rapidly the function decays along the real axis and (ii) the location of its singularity 
nearest the real axis, and the rest is trivial. 

There is a purely mathematical fascination with seeing how it all works out, with 
understanding what determines the rate at which the series converges. 
Mathematicians have been intensively studying orthogonal polynomials for over a 
century. Much is known about exotic polynomials and about exotic means of 
summing the poorly converging series of the familiar polynomials when the function 
being expanded is discontinuous or otherwise pathological, but little attention has 
been paid to the rate of convergence of the series for smooth, non-pathological 
functions-such as usually arise in engineering and physics problems-though this is 
the only question of interest to a numerical analyst. The present work thus fills a 
significant gap in the existing theory of Hermite functions. 

From the viewpoint of numerical analysis, these asymptotic formulas are useful in 
solving differential equations using spectral or pseudospectral methods with Hermite 
functions as the basis functions. The philosophy is the same as in the author’s earlier 
work [ 1 ] : The analysis is limited to asymptotic formulas for the Hermite coefficients 
of a known functionf(z), and no differential equations are actually solved here. This 
would seem to be rather restrictive, but it is well known that the errors in approx- 
imately calculating Hermite coefficients via some algorithm for solving a differential 
equation are of the same order of magnitude as those made by truncating the exact 
Hermite series of the exact solution after the same number of terms. In other words, 
the best way to obtain an accurate solution f(z) to a differential equation as an 
approximate sum of N Hermite functions is to adjust the parameters of the problem 
so that the N + 1 st and higher Hermite coefficients off(z) are as small as possible. 

How can one make this adjustment whenf(z) is unknown? The answer is that the 
formulas derived here depend only upon the asymptotic behavior of f(z). The 
asymptotic behavior of the solution to a differential equation can usually be 
obtained-by the WKB method, for example--without explicitly computing an exact, 
numerical solution to the differential equation first. It will be assumed that the reader 
can obtain descriptions of how to use series of orthogonal functions, which include 
Hermite functions as a particular case, to solve differential equations from works like 
that by Gottlieb and Orszag [2]. The focus here is not on the algorithms, but rather 
on their numerical analysis, i.e., on how well the algorithms work and how one can 
optimize their efficiency. 

The plan of the paper is as follows. Section 2 gives some basic definitions and 
reviews what is already known about Hermite series from the many papers of Einar 
Hille [3-61 and an earlier work of the author’s [7]. It is necessary to separately 
consider functions which decay more rapidly than a Gaussian (“super-Gaussian”) or 
more slowly than a Gaussian (“Sub-Gaussian” such as sech(z)), so Sections 3 and 4 
deal with the former while Section 5 discusses the latter. Section 3 derives the 
“regular” asymptotic Hermite coefficients in which the width of the functions is kept 
fixed as one takes the limit n + co. To obtain best results with a given finite number 
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of Hermite functions, however, it is necessary to vary the width of the Hermite 
functions relative to that off(z), the function being expanded, as N, the number of 
Hermite functions kept in the truncation, is varied. Section 4 therefore derives the 
“uniform” asymptotics for “super-Gaussians” in which both N and the width are 
increasing to infinity together. 

Section 5 derives the “regular” asymptotic coefftcients for “sub-Gaussian” 
functions. The “uniform” asymptotics are not derived here, however, because the 
author has not yet figured out how to do it. 

For singular functions, Section 6 shows that there are two contributions: (i) a 
steepest descent term and (ii) a residue at the pole of f(z). Section 6 evaluates the 
residue term; the steepest descent contribution is the same as for entire functions with 
the same rate of decay along the real axis and is evaluated in Sects. 3, 4, and 5 for 
the various cases. 

The emphasis on asymptotic results, i.e., formulas for large numbers of Hermite 
functions, can be misleading because it is often possible to use Hermite methods 
effectively even with very low truncations to obtain analytical as opposed to 
numerical results. (Recall the remark made earlier: A single Hermite function is a 
good approximate solution in the appropriate parameter regime for many problems of 
physical interest.) Section 7 provides a simple example: An approximate, analytic 
solution to the quartic anharmonic oscillator of quantum mechanics is obtained by 
using Galerkin’s method with just two Hermite functions and solving the resulting 
quadratic equation for the eigenvalue. The perturbation series for this case is only 
asymptotic and is ineffective except for very weak perturbations, but the N = 2 
Hermite spectral solution is accurate even for moderately large values of the coupling 
constant. 

The final section is a summary and prospectus. 

2. BASIC PROPERTIES OF HERMITE FUNCTIONS 

The normalized Hermite functions h,(z) are defined by 

h,(z) G (2”n! 7~~‘*)-“~ e -w2)zZHn(z) P-1) 

where the H,(z) are the usual (unnormalized) Hermite polynomials. The normalized 
Hermite functions satisfy the bound [8] 

l/z,(z)1 Q 0.816 for all n and all real z (2.2) 

This is a fairly tight bound in the sense that (5.2) below shows that (2.2) 
overestimates max ) h,(z)] by less than a factor of two for all II < 2 16. This bound in 
turn implies 

(2.3) 
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for all real z, where 

i 

co 
a, = -,sw h”(Z) dz 

is the n th coefficient in the Hermite series of f(z). Equation (2.3), which in words 
states that the error in truncating a Hermite series after N terms is bounded by the 
sum of the absolute values of all the neglected coefftcients, is extremely useful. 
Normally, of course, one does not know the neglected coefficients exactly, but if one 
knows the asymptotic form of the coefficients-as will be derived in the rest of the 
paper-then (2.6) can be approximately evaluated to give a fairly tight bound on the 
truncation error. For smooth functions, the exponential decrease of ]a, ] with n 
implies the infinite sum in (2.3) is dominated by the first term so that 

(2.5) 

where, to be conservative (and also to be consistent with the truncation error E,(N) 
as defined in [ 11) aN+ 1 has been replaced by aN. Thus, the problem of bounding the 
errors in a truncated Hermite series reduces to that of simply estimating the coef- 
ficients for large N. 

The simplest bound on the Hermite coefficients is provided by the following. 

THEOREM. Zff(z) is such that d’fdz’(z) and zif(z) (and all lower derivatives) 
are bounded and integrable on [-co, 001 for all real z, then 

lim nj’* [anI =d 
"+CC (2.6) 

where d is a constant independent of n. Iff( z is infinitely differentiable and decays ) 
exponentially fast, i.e., faster than any finite inverse power of z, as ] z ] + co for real z, 
then the la,J decrease faster than any finite inverse power of n and the series is said 
to possess the property of “exponential” or “infinite order” convergence. The 
condition that z’?(z) be integrable demands that f(z) decay at least as fast as 
lizi+ 1 te, where E > 0. 

Proof. Repeated integration-by-parts of the coefficient integral (2.4) using the 
indefinite integral 

=fi(z)dz= %+I(‘) 
(2n + 2)“2 ’ (2.7) 

where I?,(z) is the n th normalized Hermite polynomial is all that is needed. For 
example, one integration-by-parts gives 
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a, =f(z) eCc1’2)zzEii,+ 1(z) m 
(2n + 2y2 -w 

-(l/2)2’ dz 
Iff(z) is merely bounded at infinity, then the exp[-( l/2) z’] factor will ensure that 
the boundary term will vanish, leaving the integral in (2.8). Since it is assumed 

1 dz=M 

where M is a finite constant-this is what is meant by “integrable on [-co, co]” in 
the theorem-and since the Hermite functions satisfy the bound (2.2) which is 
independent of n, it follows (by replacing H,+,(z) e-(1’*)Z2 in (2.8) by its bound 
0.816) that 

(2.10) 

which proves the theorem for j = 1. A second integration-by-parts shows 
a,, - O(n-I), a third that a,, - O(nP3’*) and so on. Iff(z) is infinitely differentiable 
and exponentially decaying as ]z I+ co, then one can integrate-by-parts an arbitrary 
number of times, which implies a,, decreases faster than any finite inverse power of IZ. 
If, on the other hand, some finite derivative of f(z) is unbounded, then one can 
integrate-by-parts only a finite number of times and there will exist a maximum value 
ofj, not necessarily an integer or half-integer, such that lim,,, n’ IanI is finite. (This 
maximum is the “algebraic index of convergence.“) 

This theorem is not the sharpest possible, but it will suffice for present purposes 
because most solutions to problems in physics and geophysics do not exhibit jump 
singularities or other pathologies but instead are infinitely differentiable. (Shocks and 
caustics are exceptions, of course, but usually require special treatment anyway.) The 
rest of this paper (except Sect. 7) will therefore deal only with exponential con- 
vergence. 

This Hermite theorem is a close parallel of others known and used for many years 
with Fourier series and Chebyshev polynomials [2], but it has not been explicitly 
given before to the author’s knowledge. It is striking that each integration-by-parts for 
Fourier and Chebyshev functions brings in a factor of l/n while for Hermite only a 
factor of l/fi. We will explain why at the end of the section. 

Two definitions already employed in [l] will also be useful here. 

DEFINITION. The exponential index of convergence r of a sequence {a,) is 

lim logI1ogOa”l)l = r. 
n-w log (n> ’ 

(2.11) 



HERMITE FUNCTION SERIES 387 

equivalently, it is the least upper bound r of those p for which 

a, - O(~Z-~“~) (2.12) 

for some constant p as n -+ co. 
In Boyd [ 11, (2.11) was used and the exponential convergence index was called the 

“exponential convergence order.” Substituting “index” for “order” in (2.11 j(2.12) 
seems preferable because “order” has been traditionally used to describe the behavior 
off(z) itself as in the definition of the “order ” of an entire function. The motive for 
defining the exponential index of convergence is that a,, = exp [+“I has “exponential 
convergence” for any I > 0, but in practice, it is obviously very important whether 
r = 0.001 or r = 1.0. The reason for the nested logarithms in (2.11) and the “least 
upper bound” in (2.12) is to accomodate forms like a, - n exp[-n1’2] which have an 
algebraic function of n multiplying the exponential. As in [l], such algebraic factors 
of IZ will usually be ignored because they are only of secondary importance in 
choosing the best spectral algorithm for a given problem. 

DEFINITION. The order of real axis decay k is the least upper bound of j for 
which 

f(z) - O(e-P’z’j) (2.13) 

for some constant p as 1 z 1 + co along the real axis. The function is said to be “sub- 
Gaussian” or “super-Gaussian,” respectively, if 

k<2 [“sub-Gaussian”] (2.14) 

or 

k>2 [“super-Gaussian”] (2.15) 

In practice, the order of real axis decay is, for entire functions, equal to the “order” 
of the entire function as it is usually defined. One can, however, contrive examples 
like f (x) = cos(z”) exp(-z4) which has entire function order p = 6 but real axis decay 
order k = 4. In the rest of this paper, it will be implicitly assumed that p = k although 
the extension to p # k is trivial. 

Armed with these concepts, it is possible to give the following summary of what 
was previously known about the convergence of Hermite function series: 

(i) (Hille [3]) The domain of convergence of a Hermite series is the infinite 
strip about the real axis bounded by the lines 

Im(z) = l w (2.16) 
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(ii) (Hille [4]) The width w is 

co [entire functions, k > 1 ] 

I z 
[singular functions, k > 1 ] 

min [P, 71 [singular functions, k = 1 ] 

[entire functions, k < l] 

0 [singular functions, k < 1 ] 

[functions with finite algebraic 

(2.17) 

index of convergence] 

where r > 0 is the perpendicular distance from the real axis of that singularity off(x) 
which is nearest the real axis and where p is the constant in the asymptotic behavior 
f(z) * O([ ] ePplri), where [ ] denotes irrelevant algebraic factors of z. A width of 0 
means that the Hermite series converges to f(z) only on the real z axis. It is 
noteworthy that k, the order of real axis convergence, is dominant over singularities 
off(z) [except those on the real axis] when k < 1; this is never true for power series 
convergence which is why the concept of “order” has been applied only to entire 
functions in the past. 

(iii) (Hille [4]) If the width w is finite, the exponential convergence index r = 4 
and 

a, N O@(n) e-w(2n+ l)“‘) (2.18) 

where A(n) is a previously unknown algebraic factor of n which is computed for the 
first time in Sect. 6 (and shown to be O(C”~)). 

(iv) (Boyd [7]) For entire functions 

k 
“2(k-1) 

(“Super-Gaussian,” k > 2) (2.19) 

k 
r<-- 

2 
(“sub-Gaussian,” k < 2) (2.20) 

The difference between (2.19) and (2.20) strongly suggests that different treatments 
are needed for the “sub-Gaussian” and “super-Gaussian” cases; this is indeed true, so 
these classes will be discussed in separate sections. 

Turning from convergence rate to the Hermite functions themselves, the h,(z) 
oscillate between the turning points 

IztJ = q/zGT (2.2 1) 
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and decay exponentially as exp(-[ l/2] z’) for 1 z ( > (zt ] . For small values of z, one 
can use the ordinary asymptotic expansions 

h (z)w (-1)” m 
n 7F42”n! 

cos [(2n + 1)]‘2 z - nlr/2] (2.22) 

for n even and a similar expression involving the sine function for n odd. When 1 z ( is 
O(\/znTi), however, one must replace (2.22) by more accurate approximations as 
done in Sections 4 and 5. 

To carry out the method of steepest descents, it is necessary to decompose 

h,=h,t +h, (2.23) 

where 

h; - 
e*i(2n+1)1/2z 

71’/*2nu4 
(2.24) 

for even IZ and the same multiplied by fi for odd n and we have employed the 
asymptotic form of the factorials in (2.22). G. N. Watson [9] shows that the h:(z) 
can be written without approximation in terms of parabolic cylinder functions of 
complex argument and Hille [4] gives their WKB approximations. 

These asymptotic forms explain much of the difference between the convergence 
rate of Hermite functions on the one hand and Fourier and Chebeyshev series on the 
other; specifically, why each additional order of differentiability improves Fourier 
convergence by n -’ but Hermite only by n -1’2 and also why the Fourier coefficients 
of a singular function are O(e-““) while the Hermite coeffkients decrease only as 
O(ewqn”‘) for some constants p and q. The reason is that Hermite functions must 
vary in two competing ways as n increases. First, they must oscillate more and more 
rapidly with z to provide increased resolution near the origin. Second, the width of 
the region of oscillation must increase with n because the Hermite functions must 
resolve the whole real axis as n --f co. The result is that whereas Fourier terms 
cos(nx) and sin(nx) have wavelengths proportional to l/n, Hermite functions have 
local wavelengths proportional to l/\/i; (see (2.22)) because the interval between the 
turning points is increasing as fi also as shown by (2.21). Because the Hermite 
series must serve two masters, fi must replace n in the Hermite analogues of 
convergence theorems for Fourier and Chebyshev series on a fixed, finite interval. 

Naively, one might suppose that Chebyshev expansions would always be superior 
to Hermite functions. Boyd (11 shows, however, that when Chebyshev polynomials 
are applied to an infinite interval, one must rescale the width of the Chebyshev 
polynomials to mimic the natural expansion-of-oscillation-interval-with-the-truncation 
which is built into the Hermite functions. 
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3. REGULAR ASYMPTOTIC COEFFICIENTS FOR “SUPER-GAUSSIANS" 

For simplicity, consistent with the philosophy of Boyd [ 11, the application of the 
steepest descent method to evaluate the Hermite coefficients a, as n -+ co will be 
initially confined to model functions of the form 

f(z) = epAzk 

where k is an even integer greater than 2. This seems terribly restrictive, but is made 
only to postpone a discussion of some fussy technical details whose solution is almost 
obvious once one has seen how it goes for functions like (3.1). The method is actually 
quite general and will ultimately bear fruit for functions with singularities, with 
asymptotic forms like (3.1) but of non-integral k, and for functions in which the 
exponential in (3.1) is multiplied by more slowly varying exponential or algebraic 
factors of z. 

The method of steepest descent applies to integrals of the form 

I(n) = ( g(z) em”*“’ dz 
Jc 

where c is some contour in the complex plane (which in our case is the whole real 
axis). The key step is to deform the contour of integration into a new “steepest 
descent” path such that the integral is dominated, as n + co, by the contributions 
from the neighborhoods of the stationary points zS(n) which are defined to be the 
solutions of 

Then as n -+ co, the integral is approximately 

(3.3) 

where the sum is over all the stationary points on the new contour of integration and 
where the double prime denotes the second derivative with respect to z. 

The stationary points are functions of n; if ]zJn)] --) co as n -+ co, then it is 
legitimate to approximate f(z) by its asymptotic approximation (3.1) in evaluating 
(3.3) and (3.4). If the stationary points grow more slowly with n than the turning 
points zI of the Hermite functions, then it is equally legitimate to replace the Hermite 
functions by their asymptotic approximations (2.22), (2.24). In order to put the 
integral into the form of (3.2), however, it is necessary to replace the usual Hermite 
functions h,(z), which asymptotically are sines and cosines, by the sum of hi(z) and 
h;(z) whose asymptotics are complex exponentials. Thus, 
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a, = 
I a (z) &t(z) dz 

-co 

=I,‘+&- 

where 

I,’ =I” f(z) h:(z) dz 
-a, 

- g(n) y- w’2 ,@ 

1L’/22n’/4 L-i (-#9’/2 

where 

g(n)= Gi I 
n even 
n odd 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

where the sum is over all stationary points on the steepest descent contour with 

$ = -Azk f i(2n + 1)1’2 z (3.10) 

By explicit differentiation, the equation that determines the stationary points is 

-Akzk-’ f i(2n + 1)“2 = 0 (3.11) 

with the solution 

z = Tein,(2k-ljl [ (2n ;““‘I “(k-l) 

This has multiple solutions, but one can show by substituting (3.12) into (3.8) that 
the contributions from the pair nearest the real axis will be exponentially large in 
comparison to those from the other stationary points. The other stationary points 
may not be missed by the steepest descent contour, but the pair nearest the real axis 
lie in that half-plane where hi(h;) is decaying. The deformed contour will run along 
the real axis until z is sufficiently small that the decay of h,+(z)(h;) takes over and 
forces the contour into the upper (lower) half-plane to pass through the pair of 
stationary points with smallest imaginary parts. Fig. 1 shows the contours for k = 4 
and k = 6. 

The numerical values calculated here depend only on the local behavior off(z) and 
h:(z) at the relevant stationary points, but there is an essential, implicit assumption: 
that a steepest descent contour equivalent to integration along the real axis exists. It 
is plausible that one always exists at least for single-valued f(z), but the author is 
aware of no rigorous theory to prove this, so it will be left as an assumption. In 
specific cases, of course, the existence of the steepest descent contour can be proved 
by numerically calculating it as done to create Fig. 1. 
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k:4 
a 

Re (z) 

-2.0 -1.0 1.0 2.0 
Re(z) 

PIG. 1. Steepest descent paths for (a)f(z) exp [-Az4] and (b) exp (--Az6]. Only the path for hi(z) 
is shown; that-for h;(z) is the reflection with respect to the real axis of the contour illustrated. The 
stationary points are marked by “2 inside a circle. Note that the path for exp [-Az6] passes through 
three stationary points, but the contribution from the stationary point on the imaginary axis is exponen- 
tially small in comparison to the contributions from the two stationary points closest to the real axis. 

For a symmetricf(z) such as the model functions (3.1), the contributions from the 
two stationary points in upper half-plane are complex conjugates and similarly for the 
stationary points in the lower half-plane. One finds as n + 03 with A fixed 

e-O cos (0 - 8/2) (3.13) 



HERMITE FUNCTION SERIES 393 

where, letting v = dm 

R = ,+-2)/(k-l)(k _ l)(Ak)‘/‘k-1’ (3.14) 

.=“kl(k-l)(k~)-ll(k-l) (k- ljcos 

e=~ (k-2) 
2 (k- 1) 

(3.17) 

The form (3.13) is exact only for f(z) = exp [-Azk] with k an even integer. 
However, the analysis is the same for functions like Ai(z2), which is asymptotically 
of the form (3.1) with k = i. The precise form of f(z) may multiply (3.13) by a 
constant or by an algebraically varying factor of it, but examining the stationary 
point condition (3.11) and noting that Iz, ] 4 1 for IZ % 1, one sees that it is only the 
order of real axis decay k which determines the dependence of z, on n. This in turn is 
sufftcient to completely determine the exponential index of convergence which, 
recalling v = (2n + 1)1’2, is from (3.15) 

k 
‘= 2(k- 1) 

This is the upper limit of the bound on the index of convergence for entire functions 
obtained by Boyd [7]. 

As noted in the introduction, one is normally interested in using Hermite functions 
to obtain an approximate series solution to a differential equation. Consequently,f(z) 
is not known exactly anyway, so it is pointless to worry about the miscellaneous 
constants and fractional powers of n embodied in R, 0, and 19 in (3.13). One cannot 
hope to estimatef(z) that closely beforehand. The exponential dependence upon n as 
represented by Q in (3.13) and by the index of convergence r is a different story: 
Upon it hinges the success or failure of the Hermite spectral method. The point of 
this work is that if one can estimate f(z) asymptotically-which is usually fairly 
easy-so as to obtain the order of real axis decay k, then the exponential index of 
convergence r follows immediately from (3.18). 

Equations (3.13) and (3.15) actually give information considerably more specific 
than r, but also imply a paradox: by resealing f(z) so as to make A + 0, one can 
seemingly make the Hermite coefftcients decrease arbitrarily fast. The resolution of 
this contradiction is the same as for the Chebyshev series on an unbounded interval 
discussed in Boyd [ 1 ] : For best results with a given number N of Hermite functions, 
one must rescalef(z) in an N-dependent manner. Unfortunately, this requires deriving 
a “uniform” steepest descent approximation which is accurate in the simultaneous 
limit N+ co, A(N) + 0. For Hermite functions, one finds 1 z, ] is no longer small in 
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comparison to the turning points of the Hermite function, so it is necessary to replace 
hi - exp [ fi(2n + 1)“’ z] by more accurate WKB approximations to the Hermite 
functions as done in the next section. 

4. “UNIFORM" ASYMPTOTICS FOR "SUPER-GAUSSIANS" 

When the stationary points z, are 0[(2n + l)l”]. i.e., of the same order of 
magnitude as the turning points zt, it is necessary to replace the regular asymptotic 
approximations to hi given by (2.24), which apply when n + co for fixed z, with 
WKB approximations that apply when both n and z are large. If one writes the 
parabolic cylinder equation in the form 

d2h 
$+QWh,=O (4.1) 

where 

Q(z)=2n+ 1-z’ (4.2) 

then 

hi = [constant] Q(z)-“” efiP@) 

P(z)+,/~dz’ 

(4.3) 

(4.4) 

Boyd [ 1 ] showed that for entire functions with suitable resealing, one could obtain 
“geometric” convergence-i.e., an exponential index of convergence r = 1. The same 
is true for Hermite functions. Define A via 

A 
‘4 = @y + 1)‘k/2- 1) 

where N is the degree of the highest Hermite function that will be retained in the trun- 
cation. With the change of variable 

z’= z/(2n + 1)“2, (4.6) 

the phase function $ in the steepest descent method can be written (for hNf) 

$=(m+ l+(A/k)ix f il’&-?dzj 

Thus, the N-dependence can be factored out, and the problem of optimizing Hermite 
convergence for entire functions reduces to that of finding the best A, which is a 
function of k only. 
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Numerically, this is trivial, but along the lines of Boyd [I] one can show 
analytically that writing 

fs = peir (4W 

one finds 

7l 
P’=x (4.9) 

p=JI& 
A = 1/pk-2 

(4.10) 

(4.11) 

Table I shows /1 and the real part of d divided by N evaluated at the stationary point 
for various k. For large N, the algebraic factors of N implicit in the Q-““(x) in (4.3) 
and the steepest descent factor of (-qV’)1’2-together, they divide uN by 
O(N-“*)--make only a negligible contribution to the asymptotic ratio of EN/E,v+I 
(where E = absolute error) which is also shown in the table. 

Clearly, convergence becomes poorer as one moves away from k = 2 to larger 
values. As shown in the next section, convergence also becomes increasingly poor as 
k moves away from k = 2 for k < 2. In the intermediate case, k = 2 exactly, it is 
known from examples (the expansion of exp ]-AZ’], whose exact coefficients are 
known in closed form) that a,,/~,+, may be arbitrarily large. 

For comparison purposes, the corresponding Chebyshev results (“domain trun- 
cation”) from Boyd ]I ] are also given. One sees that Hermite polynomials are 
superior to Chebyshev polynomials for k < 2 < 5. 

Table II gives selected Hermite coeflicients for exp(-Az4) for various A. The coef- 
ficients do not decrease monotonically with n but rather as a damped oscillation, The 
oscillation is responsible for the large and variable errors in part (b) of the table. This 

TABLE I 

Optimum Parameters for “Super-Gaussians,I’ as Predicted by the “Uniform Asymptotics of Section 4 
(k is the Order off(z)) 

k A G[Hermite] G[Chebyshev] 

3 1.00 1.93 1.53 
4 1.43 1.55 1.49 
5 2.04 1.40 1.46 
6 2.91 1.32 1.43 

For comparison, the ratio 6 = EN/EN+, is given for both Hermite series and for Chebyshev series with 
the latter taken from [ 11, where E, = 1 an,] is the approximate absolute error (as in [ 11) in discarding 
h,+,(z) and all higher Hermite functions. Is defined by Eq. (4.5). 

501/54/3-3 
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TABLE II 

Hermite Coefficients for a “Super-Gaussian,“f(z) = exp(-Az4) 

N A = 0.0017 A = 0.0087 A = 0.0059 A = 0.004 1 A =0.0035 

lo e 2.65E - 3 6.24E- 2 1.33E - 1 1.99E - 1 
20 (1 l.l5E-4 -3.4OE - 4 4.06E - 6 
30 -2.636 - 5 -4.43E - 7 riziicq -1.58E - 6 1.83E - 6 
40 -1.29E - 7 1.48E - 8 -1.14E - 8 I-8.45~- 101 2.84E- 9 
50 1.14E-8 -8.23E- 11 8.07E - 11 1.78E - 10 I-1.52E- lo] 

N log 1 aN / [predicted] log uN [actual] Relative Error (%) 

10 -4.38 -5.13 14.6 
20 -8.77 -9.58 8.5 
30 -13.1 -13.6 3.7 
40 -17.5 -20.9 16.3 
50 -21.9 -22.6 3.0 

In the top table, selected coefficients aN are listed for five different values of A, which are optimum 
according to Eqs. (4.5) and (4.11) for values of N = 10, 20, 30, 40, and 50, respectively. The five coef- 
ficients in boxes should decrease in magnitude like the terms of a geometric series; the lower table 
compares the logarithms of the predicted and actual ]uN] , where the latter are the boxed numbers of the 
top table. 

oscillation is prediction by (3.13), but the optimal formulas of this section ignore it 
because the phase of the oscillation is much more sensitive to the specific&) which 
is being expanded than is the decreasing amplitude of the coefftcients. Nonetheless, 
the general trend is clearly as predicted. The first column of part (a) uses a value of A 
which is predicted to be optimal for N= 10 while the fifth column employs 
A,,, (N= 50). One can clearly see that using A,,, (N= 50) produces la,,, a hundred 
times smaller than using A Opt (N = lo), but A.,,, (N = 50) is clearly a poor choice 
when only a few Hermite functions are used because this value also makes 1 a i0 1 thirty 
times larger than the corresponding value in the first column. Varying A with the 
truncation N is essential for numerical efficiency. 

Part (b) of the table shows that by using (4.1 l), one can make the logarithm of the 
error increase linearly with N-a geometric process. The table also shows that the 
simple formula 

log Ia,1 --Nlog6 (4.12) 

where 6(k) is a constant given in Table I consistently overestimates the error. The 
reason is that (4.12) incorporates only the exponential dependence of uN on N 
generated by exp[-#(zS)j. The full steepest descent evaluation gives an expression of 
the form 

loi3 l%l ---Nlog&k)-flogN+logq (4.13) 
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where log q is a constant independent of iV, but wholly dependent on the specificf(z) 
which is being expanded. The correction -($) log N is independent off(zjeven of 
the order k off(z)-and arises from the l/d- factor. Equation (4.13) removes 
most of the error overestimate, but from a practical numerical analysis standpoint, 
(4.12) is better. It is simpler, and in an actual Galerkin’s or pseudospectral solution 
of a differential equation, one cannot cut the a priori error estimate too close and still 
obtain a believable result. For an estimate like (4.12) to be a little conservative is not 
a bad thing. 

5. “SUB-GAUSSIAN" FUNCTIONS 

Naive calculation of the stationary points in the method of steepest descents using 
the uniform, WKB asymptotic approximations to the Hermite functions show that for 
“sub-Gaussian” functions, i.e., those with exponent of real axis decay k < 2, 

(5.1) 

In words, the two stationary points for the coefficient integral a, are approximately at 
the turning points zt where the corresponding nth Hermite function makes the tran- 
sition from oscillatory behavior (lz 1 < 1 zt ]) t o monotonic exponential decay. Unfor- 
tunately, this is precisely the neighborhood where the WKB approximations are not 
accurate, but at least one knowns that this region is of decisive importance in 
evaluating the integral. 

A local approximation to the normalized Hermite function in the vicinity of a 
turning point can be looked up in the “NBS Handbook of Functions” [8] (“Darwin’s 
expansions,” specialized to the immediate neighborhood of z~) to obtain 

1 
hn(z) N ~2~ + 1)1/d Ai(nIz -zll) (5.2) 

where 

A G 21'3(2n + 1)“6 (5.3) 

subject to the restrictions of (i) small ]z -z,J and (ii) n $ 1. Equation (5.2) is valid 
for both turning points provided that the sign of (z - zt) is reversed when zI < 0; for 
clarity, we shall focus on the positive turning point in the rest of the section. 

Outside the turning point, both the Hermite function and f(z) are exponentially 
decaying. Consequently, the breakdown of the Airy approximation for large z - zt is 
irrelevant because the region where the Airy approximation is poor makes only an 
exponentially small contribution to the integrand so that one can safely replace h,(z) 
by the Airy function for all z > zI. Furthermore, L is growing with n so that the Airy 
function is falling off more and more steeply as n + co. It follows that sincef(z) is 
independent of n, it is legitimate to let f(z) -f(Jm) for n + 1 since the Airy 
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function will be very small where this approximation breaks down. Therefore, 
defining 

(5.4) 

one has 

O” A,[nxl A dx 
II ~w-+l)j-o p + 1)1/4 (5.5) 

I J(m) 
’ 3(2n + 1)1’4 (5.6) 

using the known value for the integral of the Airy function. 
For 1 z 1 < ] zt ] , both Hermite function and the Airy approximation to it are 

oscillatory, but one can now exploit the functions h: and h; defined earlier. Figure 2 
shows the pattern of “Stokes lines” for the Hermite functions in the complex plane as 
given in the monograph on WKB theory by J. Heading [lo]. Along these curves, the 
two WKB solutions to the parabolic cylinder equation exponentially grow or decay 

FIG. 2. Steepest descent paths for “sub-Gaussian” functions. These are independent off(z) [unlike 
the contours for “super-Gaussians” shown in Fig. l] and follow the so-called “Stokes lines” of the WKB 
approximations to the Hermite functions. For h:(z), the path is S, - S, - S, - S, , in that order while 
for h;(r) it is the reflection of this path with respect to real P axis, i.e., S, - S, - S, - S, . Note that all 
the Stokes lines extend to infinity. An “9 inside a circle denotes the turning points of h:(z), 
z = k(2n + l)“‘, where three Stokes lines intersect at equal angles of 120” and also where the Hermite 
functions h,(z) change from oscillatory to exponentially decaying behavior along the real axis. 
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without change of phase. It follows that in the upper half-plane, hi decays exponen- 
tially away from the two turning points. In the vicinity of a turning point where the 
Stokes’ curves run together, the WKB approximation breaks down, but it is again 
possible to match the WKB solution to the appropriate Airy function, which then 
gives the local approximation in the vicinity of the turning point. “Appropriate” 
means that the Airy function must decay exponentially away from the turning point 
along the same Stokes curve as the function it is matched to. 

This suggests the decomposition of 

(6.7) I 
\/2n+1 

Jr -~ f(z) W) d.2 (5.7) 

into the sum 

(6.8) J = I2 + I, (5.8) 

where 

(6.9) 
I= A= 

2 
i 

-Ji;;;i f(z) C(z) Liz (5.9) 

I 
\lr;;Ti 

(6.10) I, = -Ji;;;T f(z) K(z) cf.2 (5.10) 

If the path for integration for lz is deformed so as run to ioo along the Stokes line S, 
(and S, on the other side of the imaginary axis), then this will be a steepest descent 
path since hi(z) is decaying exponentially away from both turning points. A similar 
argument-with the contour of integration deformed into the lower half- 
plane-applies to Is. Then I2 and I3 can be handled in the same way as I, : by 
replacing f(z) by its value at the appropriate turning point and by replacing the 
Hermite function by its local Airy approximation and extending the limits of 
integration to co. 

The Airy identity [8] 

A~(~) = ,-2&3Ai(Ze-2nV3) _ e2ni/3Ai(Ze2ni/3) (5.11) 

gives the required Airy functions. That on the left of (5.11) matches to h,(z) while 
the two on the right match to hi(z) and h;(z), respectively. Note that the Stokes’ 
curve S, is at angle of 120”, i.e., a rotation through exp [2rri/3], relative to the 
positive real axis so that the first term on the right in (5.11) does indeed decay 
exponentially on S, as it should. Thus 

I =f(m) 

2 (2n + 1)1’4 1 
fi -,-2nil3u .(A[~ -z 1 ,-Znil3) dz + [ 1 I t (5.12) 
ia, 

&.f(@=) oOA (x)dx+ [ ] 
(2n + l)“4 I i 0 

(5.13) 
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where [ ] denotes the contribution from negative z and the other turning point and 
where (5.12) follows from (5.13) by changing the integration variable to 
x = exp [-2~i/3] L(z - zI), extending the limit of integration to infinity, and reversing 
the direction of the integration (away from the turning point instead of towards it, 
which eliminates the minus signs in (5.11) and (5.12)). Comparing (5.13) with (5.5), 
one finds that the positive term makes an identical contribution to each of I,, I,, and 
I,. Since the definite integral of the Airy function is f, adding together I,, I,, and I, 
gives finally 

a, - fmm +f(-d=) 
(2n + 1)“4 

(5.14) 

The author proved earlier [7] that the exponential index of convergence r was 
bounded by r < k/2, where k is the exponent of real axis decay. Substituting f (z) - 
exp(-p ]z]“) for ]z] S 1 into (5.14) gives 

2 
an ‘v (2n + l)i’4 e 

-p(zn + l)k/2 (5.15) 

which shows that 

r=k/2 (5.16) 

exactly for all functions for which this steepest descent argument can be justified. 
For “super-Gaussian functions, i.e., k > 2, the argument given here does not apply 

because “super-Gaussians” blow up exponentially in certain sectors of the complex 
plane faster than the hi(z) decay. This implies that the integrands for I, and I, are 
unbounded when deformed away from the real axis onto the Stokes lines. 

Whenf(z) has a singularity, one must add in the residue at the pole; if k > 1, this 
residue will far outweigh the turning point contribution and will determine the 
asymptotic Hermite coefficients. For k < 1, however, the turning point contribution is 
exponentially larger than the residue at the pole. In this case, r < i so that the 
Hermite series is convergent only on the real axis even iff(z) is entire and has no 
singularity at all. For k = 1, r = f and the strip of convergence is of finite width. If 
f(z) - exp(-p 1 z ]) and the singularity is a distance r from the real z-axis, then the 
width of the strip of convergence is 

w = min(p, r) (5.17) 

Equation (5.17) and the fact that the Hermite series of an entire function diverges 
everywhere except the real axis if k < 1 were known to Hille [4] although the exact 
form of the asymptotic coefficients was not. As an illustration of both (5.17) and 
(5.14), Table III compares the exact Hermite coefficients, found via numerical 
integration, with those given by (5.14) for f(z) = sech(z). Though this has poles at 
z = h//2, the slow decay along the real axis (sech(z) - exp(- ]z])) is the “rate- 
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TABLE III 

The Hermite Expansion Coefficients off(z) = sech(z) and Related Functions 

N 0" ,;syMp [Eq. 5.141 
Relative 
Error (%) 

0 1.40 1.30 7.1 
4 1.25E - 1 1.15‘?- 1 8.0 
8 3.326 - 2 3.19E- 2 4.0 

12 1.23E - 2 1.21E - 2 1.8 
16 5.366 - 3 5.34E - 3 0.4 
20 2.6 1E - 3 2.628 - 3 -0.4 
24 1.37E - 3 1.38E - 3 -0.8 
28 7.57E - 4 7.66E - 4 -1.1 
32 4.38E - 4 4.44E - 4 -1.3 
36 2.63E - 4 2.66E - 4 -1.4 
40 1.62E - 4 1.65E-4 -1.5 
44 1.03E - 4 1.04E - 4 -1.5 
48 6.636 - 5 6.73E - 5 -1.6 

4 
Relative 
Error (96) 

0.97 
1.05E - 1 
3.01E - 2 
1.15E - 2 
5.14E - 3 
2.53E - 3 
1.34E - 3 
7.46E - 4 
4.33E - 4 
2.60E - 4 
1.61E-4 
1.02E - 4 
6.60E - 4 

-33 0.324 
-9.2 1.94E - 2 
-6.0 3.13E- 3 
-4.6 7.46E - 4 
-3.8 2.21E - 4 
-3.4 7.56E - 5 
-3.0 2.86E - 5 
-2.7 l.l7E- 5 
-2.5 5.lOE-6 
-2.4 2.34E - 6 
-2.2 l.l2E-6 
-2.1 5.54E - 7 
-2.0 2.82E - 7 

Two competing influences struggle to limit the convergence of sech (z): (i) the poles at z = *ix/2 and 
(ii) the slow decay along the real axis,f(z) - O(exp - ]z]) for large ]z(. The real axis decay is stronger, 
so one can apply (5.14) with good results even though sech(z) is not an entire function. The non- 
monotonic behavior of the relative error with n, however, suggests that the poles are not completely 
negligible for moderate n. To confirm this, the coefficients {b,) of g(z) = sech(z) - nexp(a.5 
]z’ + n*/4])/(z’ + n’/4) are also given. This has the same rate of real axis decay as sech (z) (so 
btSYMP = u~“~’ according to (5.14)), but the worst singularities have been subtracted out. The column 
second from the right shows the errors in the asymptotic approximation decrease monotonically with n 
now that the poles have been removed. Another perspective is provided by the coeffkients (c,,) of t(z) = 
sech(z) exp( -0.5 (z* + n*/4)), which has the same poles and same residues as sech(z), but decays much 
faster along the real z axis. The c, decrease much more rapidly than the a,, showing that the real axis 
decay causes the relatively slow decrease with n of the coefficients of sech(z). 

determining” factor. The width of the strip of convergence w = 1, and the coefficients 
are accurately given by (6.14) alone for large n; the contributions of the singularities 
are asymptotically negligible. 

6. FUNCTIONS WITH SINGULARITIES 

For functions with poles, one can still apply the method of steepest descent, but 
since the stationary points are farther and farther from the real axis as 12 + co, it 
follows that for sufficiently large n, the pole nearest the real axis will be between the 
steepest descent contour and the original path of integration along the real axis. It 
follows that the asymptotic Hermite coefficients are the sum of two distinct 
contributions: (i) the stationary point contributions and (ii) the residues at the poles. 
When k > 1, the residues dominate; when k < 1, the stationary point contributions 
dominate, and for k = 1, either contribution may be dominant. 
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Hille [3] showed that the Hermite coefficients are O(exp [-r(2n + l)“‘]) when 
f(z) has a singularity (not necessarily a pole) a perpendicular distance 7 from the real 
z axis. In a moment, complete asymptotic Hermite coefficients will be given for a 
function whose strip of convergence is determined by a simple pole. First, however, it 
is useful to prove the following. 

LEMMA. If the strips of convergence of two functions f (z) and g(z) are limited by 
poles at the same location with the same residue, then if {a,,} and {b,} are the 
Hermite coeflcients off(z) and g(z), respectively, then 

a, - bn (6.1) 

as n + co, with an error which is exponentially small in n. 

Proof. Under the assumptions given in the lemma, 

d(z) zf (z) - g(z) (6.2) 

has a greater strip of convergence in the complex plane than f (z) and g(z). To be 
precise, let 7 be the absolute value of the imaginary part of the location of that 
common pole off(z) and g(z) which is nearest the real axis and let o be the absolute 
value of that more remote singularity of d(z) which is closest to the real z axis. From 
Hille’s work, letting {c,} denote the expansion coefficients of d(z), it follows that, 

a, =p, exp [-(2n + 1)“’ r] 

b, wp2 exp [-(2n + 1)“’ 71 

c, mp3 exp [-(2n + 1)“’ a] 

(6.3) 

(6.4 > 

(6.5 > 

for some constants pl, p2, and p3. Since u > 7, the only way (6.3)-(U) is consistent 
with (6.2) is if 

Pl ‘P2 (6.6) 

i.e., the proportionality constants for the asymptotic Hermite coefficients must be the 
same even if f (z) and g(z) have different orders k of real axis decay. 

The usefulness of the theorem is that it shows that if one calculates the asymptotic 
Hermite coefficients for one function, the same formula applies to all f (z) even if it is 
not possible to apply the method of steepest descent to all. For a model like 

(6.7) 

the steepest descent contours can be calculated explicitly. The results, combined with 
the lemma, prove the following. 
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THEOREM. For a function f (z) whose convergence is limited by simple poles at the 
roots of z2 = -y2 with residue R, the non-zero expansion coeflcients {a,,} off(z) as a 
series of normalized Hermite polynomials have magnitudes asymptotically given by 

I4 - 2 
5/4711/2~n-1/4e-Y’2”+“‘iZ 

Table IV illustrates the accuracy of (6.8) for a particular case. 
The extension to higher order poles is trivial; the direct proof of (6.8) and its 

generalizations is to simply evaluate the residuals of the product hnf (z) f (z) at the 
convergence-limiting singularities and then add them, assuming f (z) is such that the 
method of steepest descent can be applied. Since the poles are fixed while the turning 
points 1 zI ) of the Hermite functions tend to infinity as z -+ co, it follows that one can 
safely use the ordinary asymptotics of hi, (2.24), in evaluating the residuals. 

TABLE IV 

Comparison of the Exact and Asymptotic Hermite Coefftcients for a Typical Function Whose Series 
Convergence Is Determined by Its Singularities,f(z) = exp(45z’)/(l + z2/y2) 

Relative Relative 
N aEXACT ASYMP 

a, Error (%) lMPRO”ED 
” a, Error (%) 

10 0.0333 0.0347 4.1 0.0341 2.3 
20 0.0068 1 0.00697 2.4 0.00689 1.1 
30 0.00204 0.00208 2.3 0.00207 1.0 

y=n/2 

10 0.00398 0.00478 20 0.00415 4.3 
20 2.04E - 4 2.3OE - 4 13 2.08E - 4 2.1 
30 2.07E - 5 2.28E - 5 10 Z.lOE- 5 1.5 
40 3.02E - 6 3.28E - 6 8.5 3.05E - 6 1.0 

y=?t 

10 8.96E - 5 2.9OE - 4 223 9.37E - 5 4.6 
20 3.44E - 7 7.99E - 7 132 3.576 - 7 3.6 
30 4.36E - 9 8.68E - 9 99 4.48E - 9 2.8 
40 1.06E - 10 1.92E - 10 81 1.08E - 10 2.2 

This has simple poles at z = fyi with residue R = 0.5~ exp(0.5y2). The asymptotic formula is (6.8) 

atSYMP u (-1)“” 25’4n”2Rn-“4 exp[-y(2n + l)“‘]. 

As the poles are moved farther from the real axis (larger y), the asymptotic formula has small relative 
error only for very large n. Although even a 100% error is probably acceptable for purposes of 
optimizing the Hermite solution of a differential equation, it is still of at least academic interest to show 
that most of the error can be eliminated by expanding the WKB phase integral for the Hermite functions, 
I’ (2n + 1 - z’*)“* dz’, to next order. This gives a:MPRoVED = exp(-y’/(6[2n + l] I”)} atSYMP. 
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The theorem only applies to poles, but a singularity of the form (z’ + y’)’ for 
1 <j < 2 is worse than a simple pole, but less singular than a double pole, so one 
may expect the convergence of its series to be intermediate between those for simple 
and double poles. One may conjecture that for 

(6.9) 

a, N 0[n- 314tj/2e-y(2ntl)~I* 1 (6.10) 

even ifj is not an integer, but no formal proof will be attempted here. 
As in Boyd [ 11, optimum accuracy for a given finite number N of Hermite 

polynomials requires rescalingf(z) in such a way as to balance the stationary point 
and residual contributions. However, no detailed analysis of how to optimize 
convergence will be given here. 

7. ANALYTICAL APPLICATIONS OF HERMITE FUNCTIONS 

The preceding sections have done a thorough job of discussing the asymptotic 
behavior of the Hermite series for functions which decay exponentially on the real 
axis. To put this in perspective, it is important to note that Hermite functions are 
often useful analytically as well as numerically. When this is the case, the numerical 
analysis discussed may not be applicable because either (i) too few Hermite functions 
are used for the asymptotic approximations for large n to be accurate or (ii) the 
Hermite coefftcients may decrease only algebraically with n. Two examples will be 
given, one for each possibility. 

The first is the quartic anharmonic oscillator of quantum mechanics, which is the 
problem of finding the eigenvalues E of 

$+(E-z*-lz’)u=O 

When the coupling constant A = 0, the Hermite functions h,(z) are the exact eigen- 
functions and E = 2m + 1. This suggests perturbation theory, but the series for the 
ground state [ 111 

E,(A)= 1 +$-SP+SP+ . . . (7.2) 

is asymptotic and diverges for all ,I. For computational purposes, it is useless when 
11 > 0.4. 

Equation (7.1) has therefore been attacked by numerical methods, and the results 
are a ringing endorsement of the ideas explained in earlier sections. Birkhoff and Fix 
[ 121, for example, found that using Galerkin’s method with Heimite functions was 
very sensitive to the choice of scale factor, i.e., to the constant a when h&z) are used 
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as the spectral basis functions. While a = 1 gave the first 18 eigenvalues to only three 
decimal places, (for a particular A), a = 0.465 gave the same eigenvalues to 10 
decimal places-an increase of lo-’ in accuracy. The whole purpose of the earlier 
sections of this paper, of course, is to take the guesswork out of estimating a, which 
Fix and Birkhoff optimized through trial and error. 

Banerjee [ 13 ] took the scale factor in the form 

a = 4(0.5 + Bm”3P3)1’*, where m, an integer, is the mode number. (7.4) 

Since the constant B was found empirically, this formula again involved trial and 
error. It is, however, more sophisticated than the analysis of Sect. 4 in the sense that 
the latter would simply identify u(z) as an entire function of order k = 3, which 
corresponds to approximating (7.1) as 

By the WKB method, the solution of (7.5) has the asymptotic behavior 

u - [ ] ,-.I”Y1/3H43 (7.6) 

where the [ ] stands for an irrelevant algebraic function of z. In reality, both the 
eigenvalue E and the unperturbed term z ’ influence the asymptotic behavior, which 
for (7.1) is really 

u - [ ] ,-Jz\lE(m)-z2-lz4dr 
(7.7) 

When L @ 1, the quartic term is important in physical space only for 1 z] $ 1 and for 
the Hermite coefftcients only for very, very large n-perhaps much larger than the 
chosen truncation of the series. Thus, blindly applying the arguments of Section 4 to 
(7.1) is reasonable only for large 1 and small eigenmode number m. Banerjee’s 
empirical formula (7.4) is much more uniform in 1 and m. 

However, this does not detract from the usefulness of the steepest descent argument 
presented earlier because one can easily generalize it by using (7.7) instead of (7.6) in 
asymptotically evaluating the Hermite coefficient integrals. The result will be more 
complicated than the simple formulas of Sect. 4, but it will be a systematic formula 
rather than an empirical one. In particular, a formula based on steepest descent 
would allow the scale factor a to vary with the degree N of the truncation of the 
Hermite series-which (7.4) does not. 

These considerations are important, however, only if one is interested in high 
accuracy. Finlayson [ 141 has shown that spectral methods with other types of basis 
functions-chebyshev polynomials, Fourier series, and so on-can be accurate to 
within a few percent with as few as two basis functions. The same is true for Hermite 
functions: Recall that a single Hermite function is the unperturbed or limiting 
solution for many physical problems as discussed in the introduction. 
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The quartic oscillator has coefftcients which are symmetric about z = 0, so its 
eigenfunctions are all either symmetric about z = 0 [even modes including the ground 
state, m = 0] or antisymmetric about z = 0. Consequently, the computation can be 
drastically shortened by assuming a series of only even-numbered (symmetric) 
Hermite functions for the symmetric modes. Using 

(a, b) =J O”’ dza(z) b(z) (7.8) 
-co 

for any two functions a(z) and b(z), letting L denote the linear operator 

and truncating the expansion with just two Hermite functions, 

0 = ~,h,(Z) + a,h,(z), (7.10) 

Galerkin’s method replaces the differential equation (7.1) with the 2 x 2 algebraic 
eigenvalue problem 

(ho, Lho) (fb Lh2) Qo 
(47 Lho) (h29 Lb) ila,l =-E1:Y/ (7.11) 

which performing the integrals is 

1 + (3/4d) -E 

1(3/2) fi 
A(3/2)fi Qo =o 

/I 1 5+(39/4)1-E u2 
(7.12) 

The condition that the determinant of the matrix in (7.12) equals 0 gives a quadratic 
equation for E(A). Solving this and picking the root for which E(0) = 1 gives 

E,(A)= 3 + 5.25A-\j4 + 181+ 24.75A2 (7.13) 

Although (7.13) becomes inaccurate for large L, it has a wider range of usefulness 
than the perturbation series (7.2). Equation (7.13) gives E,(3, = 1) = 1.4126 versus 
the exact answer of 1.3924-an error of only 1.3%. The asymptotic series (7.2), in 
contrast, is useless for 12 0.4. Galerkin’s method has the additional virtue of giving 
the eigenfunction, too, in the (unnormalized) form 

u = h,(z) - 
-4 -9A + d16 + IU + 991’ 

3rz l/5 1 W) (7.14) 

Clearly, Hermite function series are useful for much more than brute force number 
crunching. 

This point is reiterated in equatorial oceanography. A number of problems ranging 
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from the 1959 paper of Yoshida’s [15] to the 1982 note of Cane and Moore [16] 
have been solved via infinite series of Hermite functions in latitude y whose coef- 
ficients decay only algebraically with n because the solutions themselves decay only 
as inverse powers of y-not exponentially with y - as ] y ] + co. Despite their poor 
convergence, such series have been extremely useful because (i) the coefficients can 
be determined in analytical closed form and (ii) the convergence can be enormously 
accelerated by using Abel’s summability method, a trick introduced by Moore [ 171. 

Yoshida’s steady, wind-driven equatorial jet will serve as an example. For unit 
wind stress, the east-west current, north-south current, and pressure are, respectively, 

where 

co 
ZnMy) 

l4 = -2 E (4n + 3)(4n - 1) 

v=-2 c co - Znhm+,(y) n=O 4n+3 

p=- -f (4n + 1) 
n=O (4n + 3)(4n - 1) zHh2n(y) 

I, = ‘5’:::‘” \/o? 

are the Hermite coefficients of 1, i.e., 

1 = f’ Z,h,,(y) 
n=o 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

The asymptotic, large ] y 1 behavior of U, V, and p can be deduced from their 
governing equations. Letting {Us}, {v,), and {p,} denote the Hermite coeflicients in 
(7.15) through (7.19), one finds the following relationship between the asymptotic 
Hermite coefftcients and the asymptotic behavior of the function: 

1-1 for ] y] $ 1; Z, N O(n-1’4) (7.20) 

V(Y) ‘y l/Y for ]y]% 1; U” - O(n --3’4) (7.21) 

P(Y) - l/Y2 for 1 y( % 1; p, - O(n-5’4) (7.22) 

U(Y) - l/Y4 for (y]% 1; 24” N O(n -9’4) (7.23) 

The integration-by-parts argument of Section 2 correctly predicts that each additional 
inverse power of y adds an additional factor of l/\/t; to the asymptotic decay of the 
Hermite coefficients, but it completely misses the common factor of n -“4 in 
(7.20~(7.23) and underestimates the rate of decay by O(n-5’4). Clearly, something 
better is needed; Bain [ 181 gives some interesting new results for Hermite coefftcients 
with finite algebraic order of convergence. 
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8. SUMMARY 

The author’s earlier work [ 1] on applying Chebyshev polynomials on an 
unbounded domain is here extended to Hermite functions. Naively, one might 
suppose that Hermite functions are “obviously” superior to Chebyshev polynomials 
because use of the latter (on an infinite or semi-infinite interval) requires introducing 
a parameter L, which is either the width of the computational domain or a mapping 
parameter, while the Hermite functions are well defined without such a parameter 
since their natural domain of orthogonality is [-co, co]. One major theme of this 
work, however, is that this is a mirage. To obtain good results with series of Hermite 
functions, one must rescale either J(z) or equivalently, the argument of the Hermite 
functions, in a manner given by the explicit formulas above. For entire functions (or 
functions that decay as slowly with z as sech (z)), the resealing depends upon k, the 
“order of real axis decay,” and upon the truncation of the Hermite series. For 
singular functions which decay with sufficient rapidity (i.e., have k > 1), the location 
of the singularity nearest the real axis is also important. As is also true for 
Chebyshev series, the best scaling parameter for a given function f(z) when 10 
Hermite functions are used is different from that which is most efficient when 40 
degrees of freedom are kept. 

A noteworthy difference from the analogous Chebyshev results is that the Hermite 
theory for entire functions splits into two cases: “super-Gaussian functions” (k > 2) 
which decay more rapidly than exp(--AZ*) for any constant A, and “sub-Gaussian 
functions” which decay more slowly than any Gaussian function. The “super- 
Gaussian” series can be analyzed by applying the method of steepest descents to the 
integrals that define the coefficients of the Hermite series, just as for the Chebyshev 
case. However, the “sub-Gaussians” require a different technique exploiting the fact 
that Hermite functions in the vicinity of their turning points-which is the 
neighborhood that dominates the coefficient integrals for “sub-Gaussian” functions 
f(z)---can be approximated by Airy functions. For “sub-Gaussians,” it has not yet 
been possible to find “uniform” approximations to the Hermite coefficients which 
remain accurate when f(z) is resealed in an N-dependent way where N is the degree 
of the highest retained Hermite coefficient. 

For singular functions, this work gives the first complete asymptotic expression for 
the Hermite coefficients of a function whose series convergence is limited by simple 
poles. As in the Chebyshev case, the asymptotic coefficients are the sum of a steepest 
descent term (which is identical with that for an entire function with the same order 
of real axis decay) plus a term proportional to the residue of the pole. Here again, 
however, the Hermite theory splits into two cases. For Chebyshev polynomials, the 
convergence of the series for a singular function is always (unlessf(z) is resealed in 
an N-dependent way) determined entirely by the location and residue of the 
singularity. For Hermite series, this is true only if the order of real axis decay is 
greater than 1; if k < 1, the steepest descent term will dominante the residue term for 
large n. For a function like sech (z) for which k = 1, both terms may be important, as 
illustrated in Table III. 
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From a mathematical viewpoint, these results have an appealing unexpectedness 
and elegance. What is appealing from a numerical standpoint is that Table I shows 
that Hermite series are more efficient than Chebyshev series for at least some classes 
of functions. 

A confession is needed here: The author originally began to think about the 
asymptotic behavior of Hermite function series in hopes of understanding why early 
numerical experiments with them worked so poorly in comparison to what one is used 
to with Chebyshev series for problems on a finite interval. In part, the answer is that 
problems in an unbounded domain are harder than on a finite interval; Chebyshev 
methods on [-co, co] require many polynomials, too. A more important reason is 
that all Galerkin methods on an infinite interval are sensitive to the choice of scaling 
or map parameter. With Chebyshev methods, this scaling is explicit in the 
parameter L of the author’s earlier paper [ 11; with Hermite methods, it is implicit. 
Some choice of scaling, however, is inevitable, and everything hinges upon it. A poor 
choice of scaling was what frustrated the author’s early numerical experiments with 
Hermite series. 

A pure mathematician would argue that exp(-z4) and exp(-10z4) are the same 
function, but it is shown here that their Hermite series converge at wildly different 
rates. All representations of a given function are not equal; the purpose of this paper 
is to give some guidance on the one which is most efficient, assuming that one knows 
something about (i) the asymptotic behavior of the solutionf(z) along the real z axis 
and (ii) wheref(z) is singular. 

This paper has concentrated upon asymptotic results as IZ --t co for f(z) which 
decay exponentially fast as Jz] + co. To avoid creating the impression that all prac- 
tical uses of Hermite functions are covered by these results, Section 7 discusses use of 
very low order truncations to obtain analytical rather than numerical results and also 
some problems in oceanography that have been solved via Hermite series for 
functions which decay algebraically for large z. 

Several problems remain for the future. One is to improve the results given here for 
“sub-Gaussians”: is it possible to rescale them with N in such a way as to obtain 
geometric convergence, as is possible for “super-Gaussians” and for Chebyshev 
methods? A second is to tighten existing results for functions which decay as some 
finite inverse power of z for large ] z ] . A theorem proved in Sect. 2 shows that the 
Hermite coefficients must decrease algebraically rather than exponentially with n, but 
both that theorem and Bain’s stronger result [ 181 are far too pessimistic for the 
oceanographic examples given in Section 7. A third is to look more closely into 
Hermite functions for problems in spherical geometry. 

Hermite functions-on-a-sphere requires some explanation, but Hermite functions 
are the limiting eigenfunctions of the prolate spheroidal wave equation and also of the 
spherical wave equations in geophysical fluid dynamics [ 191. By transforming into 
so-called “Mercator” coordinates via 

sin [#] = tanh y (8.1) 

where 4 is latitude and y is the new coordinate, the finite interval in latitude is 
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mapped into [-co, co]. One can show that the eigenfunctions of zonal wavenumber s 
must decay in y like exp [-sy]. The complication, which shall not be addressed here, 
is that this asymptotic behavior is reached only for rather large ( y ] in the parameter 
regime in which the waves are “trapped” at low latitudes and are well approximated 
by a single Hermite function. A full treatment would require applying the ideas of 
Section 6 of this paper to the WKB approximations to the prolate spheroidal eigen- 
functions. The problem may someday need to be solved because such Hermite-like 
modes are part of the basis for so-called “Hough function” models for numerically 
forecasting the weather [ 191. 
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