Finite Groups with Standard Components of Lie Type over Fields of Characteristic Two

Robert H. Gilman* and Robert L. Griess, Jr. ${ }^{\dagger}$
*Department of Mathematics, Stevens Institute of Technology, Hoboken, New Jersey 07030 and
${ }^{\dagger}$ Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Communicated by W. Feit
Received August 17, 1981

0. Introduction

The purpose of this paper is to classify the finite simple groups which arise as groups of standard type in the Trichotomy Theorem of Gorenstein and Lyons [33]. We prove

Theorem I. Let G be a finite simple group of characteristic 2-type in which all proper subgroups are K-groups and $e(G) \geqslant 4$. If G is of standard type with respect to some $(B, x, L) \in \mathscr{S}^{*}(p)$ for some prime $p \in \beta_{4}(G)$, then $G \in \operatorname{Chev}(2)$.

The definitions relevant to Theorem I and the statement of the Trichotomy Theorem referred to above appear in the next section. If G is not of standard type but satisfies the other hypotheses of Theorem I, then the Trichotomy Theorem says roughly that either G contains a 2 -local subgroup M with $O_{2}(M)$ of symplectic type or G possesses a strongly p-embedded maximal 2 local subgroup for various odd primes p. Proving the Trichotomy Theorem is a major step in classifying finite simple characteristic 2-type groups G with $e(G) \geqslant 4$.

The techniques of proof in this paper have appeared before in the solution of odd standard component problems. The articles $[23,35]$ survey the literature on odd standard component problems and the methods involved. In particular Finkelstein, Frohardt, and Solomon [17-22] have treated almost all the cases of Theorem I in which L is a group of Lie type defined over a field of order 2. We originally intended to restrict ourselves to the remaining cases. However it turned out that this dichotomy was artificial, and so we give a proof of Theorem I which is independent of the work cited above.

[^0]Much of that work is more general than required for the proof of Theorem I: in many cases the hypothesis that all proper subgroups of G be K-groups is avoided.

1. The Main Theorem of Gorenstein and Lyons

The material in this section is taken from [33]. Standard definitions and notations may be found in $[27,28,31]$.

The known simple groups are discussed in [28, Chap. II $]$. A K-group is a finite group all of whose simple sections are known. Let X be a finite group. H is a 2-local subgroup of X if $H=N_{X}(T)$ from some 2 -group $T \subseteq X, T \neq 1$. X is of characteristic 2-type, if $C_{X}(H) \subseteq O_{2}(H)$ for every 2-local subgroup H of X. By definition
$e(X)=\max \left\{m_{2 . p}(X) \mid p\right.$ ranges over all odd primes $\}$, where for any odd prime p

$$
m_{2, p}(X)=\max \left\{m_{p}(H) \mid H \text { ranges over all 2-local subgroups of } X\right\}
$$

and

$$
m_{p}(H) \text { is the maximal rank of an abelian } p \text {-subgroup of } H .
$$

Further

$$
\begin{aligned}
& \beta_{k}(X)=\left\{p \mid p \text { an odd prime, } m_{2, p}(X) \geqslant k\right\} \\
& z^{p}(X)=\text { the set of elementary abelian } p \text {-subgroups of } X, p \text { an odd }
\end{aligned}
$$ prime:

$$
\begin{aligned}
& \mathscr{E}_{k, p}(X)=\left\{A \in \mathscr{E}^{p}(X) \mid m_{p}(A)=k\right\} \\
& \mathscr{B}_{\max }(X ; p)=\left\{B \mid B \in \mathscr{E}^{p}(X), m_{p}(B)=m_{2, p}(X), \text { and } B\right. \text { lies in a 2-local }
\end{aligned}
$$ subgroup of $X\rangle$.

We now define the notion standard type. Let G be a finite group and p an odd prime. $\Varangle^{*}(p)$ is the set of triples (B, x, L) where $B \in \mathscr{H}_{\text {max }}(G, p)$, $x \in B^{*}$, and L is a component of $C_{G}(x)$ with the property that $C_{G}(L)$ has cyclic Sylow p-subgroups. Define $\hat{\mathscr{F}}(p)$ to be set of triples $\left(B, x^{*}, L^{*}\right)$ with B as before, $x^{*} \in B^{*}$, and L^{*} a p-component of $C_{G}\left(x^{*}\right)$ with the property that $C_{G}\left(L^{*} / O_{p^{\prime}}\left(L^{*}\right)\right)$ has cyclic Sylow p-subgroups.

If $(B, x, L) \in \dot{f}^{*}(p)$, a standard subcomponent of (B, x, L) is a pair (D, K) such that $x \in D \in \mathscr{E}_{2}(B), K=L\left(C_{L}(D)\right.$) is a single component, and $D=C_{B}(K)$, with the additional restriction that if $p=3$ and there exists a pair (D_{1}, K_{1}) satisfying these conditions with $K_{1} \nsubseteq U_{4}(2)$ or A_{6}, then necessarily $K \nsupseteq U_{4}(2)$ or A_{6}.

This last condition involves a minor technical point and avoids certain generational difficulties.

If $(B, x, L) \in \mathscr{S}^{*}(p)$, and $\left(B, x^{*}, L^{*}\right) \in \hat{\mathscr{S}}(p)$, we call $\left(B, x^{*}, L^{*}\right)$ a neighbor of (B, x, L) in G provided the following conditions hold:
(1) (D, K) is a standard subcomponent of (B, x, L), where $D=\left\langle x, x^{*}\right\rangle$ and $K=L\left(C_{I}(D)\right)$;
(2) $L^{*} \subseteq\left\langle K^{J}\right\rangle, J=L_{p}\left(C_{G}\left(x^{*}\right)\right)$;
(3) x does not centralize $L^{*} / O_{p},\left(L^{*}\right)$
(In the situation in which this notation is used, K will be a subgroup of $L_{p}\left(C_{G}\left(x^{*}\right)\right)$.) We say that $\left(B, x^{*}, L^{*}\right)$ is a neighbor of (B, x, L) with respect to (D, K), if these conditions hold.

In the definition of standard type, L and L^{*} will be covering groups of Chevalley groups (including twisted groups) defined over $G F\left(2^{n}\right)$ and the integer p will divide either $2^{n}-1$ or $2^{n}+1$. To describe precisely which of these two integers p divides, we need two further definitions.

Let p be an odd prime, and \hat{J} be a covering group of a Chevalley group J defined over $G F\left(2^{n}\right)$ for some n. (We consider twisted groups to be defined over the fixed field of the field automorphism involved in the twist.) We say that p is a splitting prime for \hat{J} or p splits \hat{J}, if and only if one of the following holds:
(1) J is untwisted and $p \mid 2^{n}-1$; or
(2) J is twisted and $p \mid 2^{n}+1$; or
(3) $J={ }^{2} D_{l}\left(2^{n}\right)$ or ${ }^{3} D_{4}\left(2^{n}\right)$, and $p \mid 2^{n}-1$; or
(4) $n=1$ and $p=3$.

We say that p is a half-splitting prime for \hat{J}, or p half-splits \hat{J}, if and only if one of the following holds:
(1) p splits \hat{J}; or
(2) $J=B_{l}\left(2^{n}\right), D_{l}\left(2^{n}\right), F_{4}\left(2^{n}\right), E_{7}\left(2^{n}\right)$, or $E_{8}\left(2^{n}\right)$, and $p \mid 2^{n}+1$; or
(3) $J={ }^{2} A_{5}\left(2^{n}\right)$ or ${ }^{2} E_{6}\left(2^{n}\right)$ and $p \mid 2^{n}-1$; or
(4) $J=A_{5}(4)$ or $E_{6}(4), Z(\hat{J})=1$, and $p=5$; or
(5) $J=A_{8}(2)$ and $p=7$; or
(6) $J=E_{6}(2)$ and $p=7$.

Finally, if G is a group, p is an odd prime. and $(B, x, L) \in f^{*}(p)$, we say that G is of standard type with respect to (B, x, L) if and only if the following conditions hold:
(1) L is a covering group of a Chevalley group of characteristic two:
(2) p is a splitting prime for L;
(3) every element of B induces an inner • diagonal automorphism on L :
(4) B does not centralize every B-invariant 2 -subgroup of $C_{G}(x)$;
(5) for every neighbor ($B, x^{*} . L^{*}$) of (B, x, L) in G. B normalizes L^{*}, L^{*} is a covering group of Chevalley group of characteristic two, and either p half-splits L^{*} or else x induces a nontrivial field automorphism on $L^{*} / Z\left(L^{*}\right)$;
(6) for every standard subcomponent (D, K) of (B, x, L), there exists a neighbor (B, x^{*}, L^{*}) of (B, x, L) with respect to (D, K). Moreover for all $d \in D^{\star},\left[K, O_{p^{\prime}}\left(C_{G}(d)\right)\right]$ has odd order.

We now state the Trichotomy Theorem of Gorenstein and Lyons [33].

Trichotomy Theorem. Let G be a finite simple group of characteristic 2 type in which all proper subgroups are K-groups and $e(G) \geqslant 4$. Then one of the following holds:
(I) G is of type $G F(2)$;
(II) G is of standard type with respect to some $(B, x, L) \in \mathscr{S}^{*}(p)$ for some prime $p \in \beta_{4}(G)$; or
(III) G is of uniqueness type with respect to $\sigma(G)$.

The deffinitions we have omitted can be found in [33].

2. Properties of Groups of Lie Type in Characteristic 2

Throughout this paper, we shall assume that the reader is acquainted with the basic theory of the groups of Lie type, particularly the B, N-structure and the commutator relations $[12,54,55]$. It will also be necessary to view groups of Lie type as classical groups from time to time (e.g., $A_{n}(q) \cong \operatorname{PSL}(n+1, q)$, ${ }^{2} A_{n}(q) \cong P S U(n+1, q) ;$ see $\lfloor 12,54]$.

In this section we list a number of results about groups over a field F algebraic over \mathbb{F}_{2}. The finiteness of \mathbb{F} is not important in many cases.

Notation. Suppose that G is a group of Lie type over \mathbb{F}, but not type ${ }^{2} C_{2},{ }^{3} D_{4},{ }^{2} G_{2}$ or ${ }^{2} F_{4}$. We let Σ be the associated root system. For each $\alpha \in \Sigma$, there is an associated root group $X_{\alpha} \leqslant G$. Let \mathbb{E} be a quadratic extension of \mathbb{F}. Then X_{a} consists of elements $x_{a}(t)$ or $x_{a}(t, u)$ which satisfy one of the following sets of relations
(i) $x_{a}(t) x_{a}(u)=x_{a}(t+u), t, u \in \mathbb{F} ;$
(ii) $x_{a}(t) x_{a}(u)=x_{a}(t+u), t, u \in \mathbb{E}$;
(iii) $x_{a}\left(t_{1}, u_{1}\right) x_{a}\left(t_{2}, u_{2}\right)=x_{a}\left(t_{1}+t_{2}, u_{1}+u_{2}+\bar{t}_{1} t_{2}\right), t_{1}, t_{2} u_{1}, u_{2} \in \mathbb{E}$ and $t_{i} \bar{i}_{i}=u_{i}+\bar{u}_{i}$ for $i=1,2$. (note that $x_{a}(t, u)^{-1}=x(t, \bar{t} t+u$) and $\left|x_{\alpha}\left(t_{1}, u_{1}\right), x_{\alpha}\left(t_{2}, u_{2}\right)\right|=x_{a}\left(0, t_{1} \bar{t}_{2}+\bar{i}_{1} t_{2}\right)$.

If the roots α and β are in the same orbit under the Weyl group, then the same relation is associated to X_{α} and X_{β}. Recall that two roots are in the same orbit if and only if they have the same length.

The appropriate relations above are called Steinberg relations of type (A). The commutator relations among elements of distinct root groups are called relations of type (B) and they have one of the following shapes:

$$
\begin{aligned}
{\left[x_{a}(t), x_{\beta}(u)\right] } & =1 \\
& =x_{\alpha+\beta}(t u) \\
& =x_{\alpha+\beta}(t \bar{u}+\bar{t} u) \\
& =x_{\alpha+\beta}(t u) x_{\alpha+2 \beta}(t u \bar{u}) \\
& =x_{\alpha+\beta}(t u) x_{2 \alpha+\beta}(t \bar{u} u) \\
& =x_{\alpha+\beta}(0, t \bar{u}+\bar{t} u), \\
{\left[x_{\alpha}(t, u), x_{\beta}(v, w)\right] } & =x_{1 / 2(\alpha+\beta)}(t v), \\
{\left[x_{\alpha}(t, u), x_{\beta}(v)\right] } & =1 \\
& =x_{\alpha+\beta}(\bar{u} v) x_{\alpha+23}(t v, u v \bar{v}), \\
{\left[x_{\alpha}(t), x_{B}(u, v)\right] } & =1 \\
& =x_{\alpha+\beta}(\bar{v} t) x_{2 \alpha+\beta}(t u, v t \bar{t})
\end{aligned}
$$

for various $\alpha, \beta \in \Sigma, t, u, v, w \in \mathbb{E}$ or \mathbb{F}. See [54] for a more thorough discussion and for the detailed list of relations for each group. The elements $x_{a}(t, u)$ occur only in ${ }^{2} A_{n}, n$ even. Note that the annoying plus or minus signs vanish in characteristic 2.

If G has type ${ }^{3} D_{4}$ over \mathbb{F} and \mathbb{E} is a degree 3 extension field of \mathbb{F}, then X_{α} (as above) consist of elements $x_{\alpha}(t)$ satisfying relations (i) or (ii) above. The commutator relations are of the form

$$
\begin{aligned}
{\left[x_{a}(t), x_{\beta}(u)\right]=} & 1 \\
= & x_{a+b}(t u) \\
= & x_{\alpha+b}(t \overline{\bar{u}}+\bar{t} u+\overline{\bar{t}} \bar{u}) \\
= & x_{\alpha+\beta}(t \bar{u}+\bar{t} u) x_{a+2 \beta}(t \bar{u} \overline{\bar{u}}+\bar{t} \overline{\bar{u}} u+\overline{\bar{t}} u \bar{u}) \\
& \cdot x_{2 a+\beta}(\bar{t} \overline{\bar{t}} u+\overline{\bar{t}} \bar{u}+t \bar{t} \overline{\bar{u}}) \\
= & x_{\alpha+\beta}(t u) x_{\alpha+2 \beta}(t u \bar{u}) x_{\alpha+3 \beta}(t u \bar{u} \bar{u}) x_{2 a+3 \beta}\left(t^{2} u \bar{u} \overline{\bar{u}}\right) .
\end{aligned}
$$

We shall use the following conventions for root systems. When passing from an untwisted group to a Steinberg variation, the root system changes as follows (see [54|):

$$
\begin{aligned}
& A_{n} \rightarrow C_{1(n+1) / 21}, \\
& D_{n} \rightarrow B_{n-1}, \\
& E_{6} \rightarrow F_{4}, \\
& D_{4} \rightarrow G_{2} .
\end{aligned}
$$

In the left column, there is one root length, while in the right column, there are two. Following Steinberg [54], a root in the right column shall be a set $R=\{r\},\{r, \bar{r}\}\{r, \bar{r}, \overline{\bar{r}}\}$ or $\{r, \bar{r}, r+\bar{r}\}$ of distinct roots r, \bar{r}, \ldots, where the overbar denotes a symmetry of the Dynkin diagram extended to the root system $\left(\{r, \bar{r}, \bar{r}\}\right.$ occurs only for D_{4} and $\{r, \bar{r}, r+\bar{r}\}$ occurs only for A_{n}, n even, and when it does, sets of the form $\{s\}$, where $s=\bar{s}$, are not considered roots in the twisted system). A root of the form $R=\{r, \bar{r}\}$ or $\{r, \bar{r}, \overline{\bar{r}}\}$ is considered short, and the others are considered long.

The Steinberg relations for twisted groups are trickier than those for untwisted groups; compare [36| and [55]. We point out that the Chevalley commutator relations for untwisted groups look like

$$
\left[x_{t}(t), x_{s}(u)\right]=\prod_{i, j>0} x_{i r+j s}\left(t^{i} u^{j}\right)
$$

whereas the analogue of the relations for twisted groups looks like

$$
\left[x_{R}, x_{S} \mid=\prod_{\substack{i, i \geqslant 0 \\ i+j>0 \\ i, j \in 1 \cdot 2 Z . i+j \in=}} x_{i k+j s}\right.
$$

Let G be a simple group of Lie type perhaps extended by diagonal automorphisms and defined over a finite field \mathbb{F}_{q} of characteristic 2. When we write $G=C_{n}(q)$ for example, we mean that $O^{2}(G)$ is isomorphic to $C_{n}(q)$. We never consider $G=A_{1}(q),{ }^{2} C_{2}(q)$, or ${ }^{2} F_{4}(q)$. We adopt the convention that if Σ is a root system with all roots the same length, then a long root or a short root of Σ means just a root of Σ.

We need information on the 2 -local structure of G. Much of the next few lemmas is in [16, Lemma 4.8]. The lemmas follow from the commutator relations above, or one can compute in $A_{2}(q), C_{2}(q),{ }^{2} A_{3}(q),{ }^{2} A_{4}(q)$.

Lemma 2.1. If $\alpha+\beta$ is not a root, $\left[X_{\alpha}, X_{\beta}\right]=1$ except for the case α, β long in ${ }^{2} A_{l}(q), l$ even.

Lemma 2.2. If $\alpha, \beta, \alpha+\beta$ all have the same length, then
(i) $1 \neq\lfloor g, h]$ for $g \in X_{a}^{\#}, h \in X_{B}^{\#}$;
(ii) if $G \neq{ }^{3} D_{4}(q),\left[g, X_{\beta}\right]=X_{\alpha+\beta}$ for $g \in X_{a}^{*}$;
(iii) if $G={ }^{3} D_{4}(q)$, and $\alpha, \beta, \alpha+\beta$ are long, then the equation in (ii) holds, while if $\alpha, \beta, \alpha+\beta$ are short, then $\left[X_{\alpha}, X_{\beta}\right]=X_{\alpha+\beta} X_{\alpha+2 \beta} X_{2 a+\beta}$.

Lemma 2.3. If $\alpha, \alpha+\beta$ are short, and β is long, $g \in X_{a}^{\#}$ and $h \in X_{\beta}^{\#}$, then
(i) If $G \neq{ }^{3} D_{4}(q)$, then

$$
1 \neq|g, h| \in X_{\alpha+B} X_{2 \alpha+B}-\left(X_{a+B} \cup X_{2 a+B}\right)
$$

(ii) if $G={ }^{3} D_{4}(q)$, then

$$
\begin{aligned}
1 \neq[g, h] \in X_{\alpha+\beta} X_{2 a+\beta} X_{3 a+\beta} X_{3 a+2 \beta}- \\
\left(X_{a+\beta} \cup X_{2 a+\beta} \cup X_{3 a+\beta} \cup X_{3 \alpha+2 \beta}\right) ;
\end{aligned}
$$

(iii) $\left[X_{a}, X_{\beta}\right]=X_{\alpha+\beta} X_{2 \alpha+\beta}$ unless $G={ }^{3} D_{4}(q)$ or G is is untwisted and $q=2$:
(iv) $\left[X_{a}, X_{\beta}\right]=X_{\alpha+\beta} X_{2 \alpha+\beta} X_{3 \alpha+\beta} X_{3 \alpha+2 \beta}$ if $G={ }^{3} D_{4}(q)$;
(v) $\left[X_{a}, Z\left(X_{\beta}\right)\right]=X_{a+\beta} Z\left(X_{2 \alpha+\beta}\right)$.

Lemma 2.4. If α, β are short and $\alpha+\beta$ is long, then
(i) $\left[X_{\alpha}, X_{\beta}\right]=1$ if G is untwisted;
(ii) $\left[g, X_{\beta}\right]=Z\left(X_{\alpha+\beta}\right)$ for $g \in X_{\alpha}^{\#}$ if G is twisted.

Lemma 2.5. If G has type ${ }^{2} A_{n}(q), n$ even, α, β are long and $\frac{1}{2}(\alpha+\beta)$ is short, then $\left[g, X_{\beta}\right]=X_{a+\beta}$ for $g \in X_{a}-Z\left(X_{a}\right)$ and $\left[Z\left(X_{\alpha}\right), X_{\beta}\right]=1$.

Let H be a Cartan subgroup corresponding to our choice of root groups for G. Possibly $H=1$.

Lemma 2.6. Suppose $x \in Z\left(X_{a}\right)^{\#}$ for some $\alpha \in \Sigma$; and if α is short, suppose G is not twisted. Define

$$
\begin{aligned}
& Q=\left\langle X_{\beta} \mid(\alpha, \beta)>0\right\rangle \\
& L=\left\langle X_{\beta} \mid(\alpha, \beta)=0\right\rangle .
\end{aligned}
$$

The following conditions hold:

(i) Q is a 2-group;
(ii) L normalizes Q;
(iii) H normalizes Q and L;
(iv) L is a central product of groups of Lie type, or $L=1$;
(v) $Q=O_{2}(H L Q)$;
(vi) $L Q=O^{2}(H L Q)$;
(vii) if $g \in G$, and $x^{g} \in Z\left(X_{a}\right)^{*}$, then $g \in H L Q$;
(viii) $\quad N_{G}\left(Z\left(X_{a}\right)\right)=H L Q$:
(ix) $\quad C_{G}(x)=C_{H}(x) L Q=C_{G}\left(Z\left(X_{a}\right)\right)$.

Proof. Conditions (i)-(iii) follow from the commutator relations and the fact that H normalizes every root group. Likewise $\left[L Q, Z\left(X_{\alpha}\right)\right]=1$ and $H L Q \leqslant N_{G}\left(Z\left(X_{a}\right)\right)$ whence (vii) implies (viii) and (ix). Further, (iv) is a consequence of the Steinberg-Curtis-Tits presentations discussed above and in Proposition 2.27, and (vi) holds because H has odd order.

It remains to prove (v) and (vii). Pick a fundamental system Π for Σ such that α is the highest root of its length in Σ with respect to Π. Observe that $(\alpha, \gamma) \leqslant 0$ for every $\gamma \in \Pi$. Let U and V be the Sylow 2 -subgroups of G corresponding to the positive and negative roots, respectively. Note $U \leqslant L Q$. Every $g \in G$ has a unique representation

$$
g=u h n_{w} u^{--}
$$

and one consequence of this fact is $U \cap V=1$. Check that Π contains a fundamental system for the root system corresponding to L. As a consequence $U \cap L, V \cap L \in \operatorname{Syl}_{2}(L)$ which together with $(U \cap L) \cap(V \cap L)=1$ forces $O_{2}(L)=1$. Now (v) must hold.

To check (vii) suppose g is as above and for some $y \in Z\left(X_{\alpha}\right)^{*}, y g=g x$. Reduce $g x$ to standard form and notice that $y g=g x$ forces $w(\alpha)=\alpha$. By [12, Corollary 2.5.4] w is a product of reflections corresponding to roots orthogonal to α. Thus $n_{w} \in H L$. Since $U \subseteq L Q$, we have $g \in(L Q)(H)(H L)$ $(L Q)=H L Q$.

The method of proof of the preceding lemma works also for the next two lemmas.

Lemma 2.7. Suppose $x \in X_{a}^{\#}$ for some short root $\alpha \in \Sigma$ and $G={ }^{2} A_{n}(q)$. Let $\{\gamma,-\gamma\}$ be the unique pair of roots such that γ is short and $\gamma+\alpha$ is long. Define

$$
\begin{aligned}
& Q=\left\langle X_{B} \mid(\alpha, \beta)>0\right\rangle \\
& L=\left\langle X_{\beta} \mid(\alpha, \beta)=0, \beta \neq \pm \gamma\right\rangle
\end{aligned}
$$

$L_{1}=\left\langle X_{\gamma}, X_{-\gamma}\right\rangle=A_{1}\left(q^{2}\right)$ and there is an involution $n \in N_{L_{1}}(H)$ such that n inverts $H \cap L_{1} \cong \mathbb{Z}_{q^{2}-1}, n$ normalizes X_{α}, n permutes X_{γ} and $X_{-\gamma}$, and n induces a field automorphism on $\left\langle X_{a}, X_{-a}\right\rangle \cong A_{1}\left(q^{2}\right)$. Further, the following conditions hold:
(i) Q is a 2-group;
(ii) L normalizes Q;
(iii) H normalizes Q and L;
(iv) $L / Z(C) \cong{ }^{2} A_{n-2}(q)$;
(v) $|n, L|=1$ and $[n, Q \mid \leqslant Q$;
(vi) $Q=O_{2}(\langle n\rangle H L Q)$;
(vii) if $g \in G$ and $x^{p} \in X_{\alpha}$, then $g \in\langle n\rangle H L Q$;
(viii) $N_{G}\left(X_{a}\right)=\langle n\rangle H L Q$;
(ix) $C_{G}\left(X_{a}\right)=C_{H}\left(X_{a}\right) L Q$;
(x) there is a subgroup $E \subseteq X_{\alpha}, E \cong E_{q}$, such that for $x \in E^{*}$, $C_{G}(x)=\langle n\rangle C_{H}(x) L Q=C_{G}(E)$.

Lemma 2.8. Suppose $x \in X_{a}^{*}$ for some short root $\alpha \in \Sigma$ and $G={ }^{2} E_{6}(q)$. Define

$$
\begin{aligned}
& \left.Q=\left\langle X_{B} \mid(\alpha, \beta)\right\rangle 0\right\rangle ; \\
& \left.L=\left\langle X_{\beta}\right|(\alpha, \beta)=0 \text { and } \beta \text { is long }\right\rangle .
\end{aligned}
$$

For any γ such that $(\alpha, \gamma)=0$ and γ is short, $L_{1}=\left\langle X_{\gamma}, X_{-\gamma}\right\rangle=A_{1}\left(q^{2}\right)$, and there is an involution $n \in N_{L_{1}}(H)$ such that n inverts $H \cap L \cong \mathbb{Z}_{q^{2}-1}, n$ normalizes X_{a} and n induces a field automorphism on $\left\langle X_{a}, X_{-a}\right\rangle=A_{1}\left(q^{2}\right)$. Further the following conditions hold:
(i) Q is a 2-group;
(ii) L normalizes Q;
(iii) H normalizes L and Q;
(iv) $L / Z(L) \cong A_{3}(q)$;
(v) $|n, Q| \leqslant Q,[n, L] \leqslant L$, and n induces a graph automorphism on L;
(vi) $Q=O_{2}(\langle n\rangle H L Q)$;
(vii) if $g \in G$ and $x^{g} \in X_{a}$, then $g \in\langle n\rangle H L Q$;
(viii) $N_{G}\left(X_{a}\right)=\langle n\rangle H L Q$;
(ix) $\quad C_{G}\left(X_{a}\right)=C_{H}\left(X_{a}\right) L Q$;
(x) there is a subgroup $E \leqslant X_{a}, E \simeq E_{q}$, such that for $x \in E^{*}$, $C_{G}(x)=\langle n\rangle C_{H}(x) L Q=C_{G}(E)$.

Lemma 2.9. Let α be a root in Σ with α long if $G={ }^{3} D_{4}(q),{ }^{2} D_{m}(q)$, or ${ }^{2} E_{6}(q)$. If $x \in Z\left(X_{n}\right)^{* /}$, then $C_{G}(x) / L Q$ is cyclic.

Proof. Let $R=Z\left(X_{a}\right)$ and recall $C_{G}(x) \leqslant N_{G}(R)=H L Q$. It suffices to show that $C_{H}(t) / H \cap L$ is cyclic. If $G=A_{n}(q)$ or ${ }^{2} A_{n}(q)$, use matrix representations. In the remaining cascs L has a root system of rank one less than that of G. Further, except for $G=E_{6}(q),{ }^{2} E_{6}(q) L$ admits no outerdiagonal automorphisms whence $H=(H \cap L) \times C_{H}(L)$ and the result follows. In the case $G=E_{6}(q)$ use the representations of H as characters on $Z \Phi$ and calculate directly that $\left|C_{H}(r): H \cap L\right|=1$ or 3 . Finally use the usual embedding of ${ }^{2} E_{6}(q)$ in $E_{6}\left(q^{2}\right)$ to prove the same result for $G={ }^{2} E_{6}(q)$.

A consequence of the last lemma is the following:
Lemma 2.10. If $x \in Z\left(X_{a}\right)^{*}$ for some $\alpha \in \Sigma$, with α long if $G={ }^{3} D_{4}(q)$ or ${ }^{2} D_{n}(q)$, then
(i) $\quad C_{G}(x) \subseteq\left\langle X_{B} \mid(\alpha, \beta) \geqslant 0\right\rangle C_{H}(x)$.
(ii) If $a \in \operatorname{Aut}(G)$ with $R \cap R^{a} \neq 1$, then $R^{a}=R$.

Proof. The first assertion is clear, and we know the second holds if a is inner. Since $\operatorname{Aut}(G)=\operatorname{Inn}(G) N_{\text {Aut }(G)}(R)$, (ii) is valid for a.

Lemma 2.11. Let $R=Z\left(X_{a}\right)$ for some $\alpha \in \Sigma$. Take α to be long if G is any twisted group. Let $Q=O_{2}\left(N_{G}(R)\right)$ and $J=\left\langle R, Z\left(X_{-a}\right)\right\rangle$. The following conditions hold:
(i) $|Q, Q| \subseteq R \subseteq Z(Q) ;$
(ii) $\quad N_{G}(R)$ has no central factors on Q / R unless $G=A_{2}(2)$;
(iii) $O^{2}(G)=\langle J, Q\rangle$;
(iv) if $G \subseteq A \subseteq \operatorname{Aut}(G)$, then $O_{2}\left(N_{4}(R)\right) \subseteq Q$;
(v) if $r \in R^{*}$ and $G \subseteq A \leqslant \operatorname{Aut}(G)$, then $C_{4}(r) \subseteq N_{4}(R)$ and $\left|R . O_{2}\left(C_{1}(r)\right)\right|=1$.

Proof. Condition (i) follows from the commutator relations and preceding lemmas which describe the generation of Q. Likewise in the notation of the preceding lemmas, $N_{G}(R)=\langle Q, L, H\rangle$ is a maximal parabolic in G whence $\langle Q, L, H, J\rangle=G$. But $H L$ normalizes Q and J whence $\langle Q, J\rangle \triangleleft G$ and (iii) holds.

To verify (iv) suppose $a \in O_{2}\left(N_{A}(R)\right)-G$ with $a^{2} \in G$. Since q is even, a is a field or graph automorphism. Assume that α is the highest root of its length with respect to some fundamental system $I I \subseteq \Sigma$ and take σ to be the standard automorphism (with respect to Π) for which $d=\sigma^{-1} a$ is an innerdiagonal automorphism of G. If $G=C_{2}(q)$ or $F_{4}(q)$ with σ a graph
automorphism, then d maps R to a root group X_{β} with β and α of different lengths. But using the decomposition

$$
d=u h n u_{1}
$$

one sees that d cannot act on G in such a way. Otherwise σ normalizes R, whence d does too. Since $a \in O_{2}\left(N_{4}(R)\right)$, it follows that σ induces an innerdiagonal automorphism on $L Q / Q$ and centralizes $H L Q / Q$. Examination of cases yields (iv).

For $G=A_{n}(q),{ }^{2} A_{n}(q)$, or $C_{n}(q)$ use matrix representations to prove (ii). (Note that $L(G)$ simple implies $G \neq{ }^{2} A_{2}(2)$.) In the remaining cases use the results and methods of [16, Sects. 3 and 4$]$.

The first part of (v) is a consequence of Lemma 2.6(viii) and $A=G N_{A}(R)$. From Lemma 2.6 (ix) we deduce $O^{2}\left(N_{A}(R)\right) \subseteq C_{A}(r) \subseteq N_{A}(R)$ whence $O_{2}\left(C_{1}(r)\right) \subseteq O_{2}\left(N_{4}(R)\right)$. Now the second assertion of (v) follows from (i) and (iv) except when $G=A_{2}(2), A_{3}(2)$, or $A_{2}(4)$. In the first two cases $R=\langle r\rangle$ and the assertion is immediate, while in the last case it may be checked directly.

Lemma 2.12. Assume the notation of the preceding lemma, and take $G={ }^{2} E_{n}(q)$ or ${ }^{2} A_{n}(q)$, and α. short
(i) $\langle[Q, Q], R\rangle \subseteq Z(Q)$;
(ii) $N_{G}(R)$ has no central factors on Q / R;
(iii) $O^{2}(G)=\langle J, Q\rangle$;
(iv) if $G \subseteq A \subseteq \operatorname{Aut}(G)$, then $O_{2}\left(N_{G}(A)\right) \subseteq Q$;
(v) if $r \in R^{*}$ and $G \subseteq A \subseteq \operatorname{Aut}(G)$, then $C_{A}(r) \subseteq N_{4}(R)$.

Proof. A proof similar to the preceding one works. In this case $N_{G}(R)$ is not a maximal parabolic, but one can show that $\left\langle N_{G}(R), J\right\rangle$ contains a maximal parabolic containing $N_{G}(R)$.

The next four lemmas are proved by matrix calculations and the methods of [16. Sects. 3 and 4].

Lemma 2.13. Let $R=Z\left(X_{a}\right)$ for some $\alpha \in \Sigma$ with α long if Σ has roots of two lengths. Let $Q=O_{2}\left(N_{G}(R)\right)$. Then Q / R is a nontrivial irreducible $N_{G}(R)$-module except when $G=A_{n}(q)$ or $F_{4}(q)$.

Lemma 2.14. Let $G={ }^{2} E_{6}(q),{ }^{2} A_{n}(q), n \geqslant 3$, or $C_{n}(q), n \geqslant 2$, and take $R=X_{a}$ with α short. Let $Q=O_{2}\left(N_{G}(R)\right)$; then Q has a unique subgroup U with $R \subset U \subset Q$ and $U \triangleleft N_{G}(R)$. Also $U=Z(Q)$ and U is generated by R together with the two root groups X_{β} for which α and β have different lengths and $(\alpha, \beta)>0$.

Lemma 2.15. Let $G=A_{n}(q), R=X_{\alpha}$, and $Q=O_{2}\left(N_{G}(R)\right)$. Assume $n>3$ or $q>2$. There are two subgroups U such that $R \subset U \subset Q$ and $U \triangleleft N_{G}(R)$. Both subgroups are generated by various root groups corresponding to roots β with $(\alpha, \beta)>0 . U / R$ and Q / N are nontrivial irreducible $N_{G}(R)$-modules.

Lemma 2.16. Let $G=F_{4}(q), R=X_{a}$, and $Q=O_{2}\left(N_{G}(R)\right)$. There is unique subgroup U of Q such that $R \subset U \subset Q$ and $U \triangleleft N_{G}(R) . U$ is generated by X_{a} together with the root groups X_{B} for which $(\alpha, \beta)>0$, and α and β have different lengths.

Lemma 2.17. Let $R=Z\left(X_{a}\right)$ with α long if G is twisted. Define Q as in Lemma 2.6. If J is a summand of L, then $Q=[Q, J] R$.

Proof. Let $U=[Q, J] R$ and suppose $U \subset Q$. By Lemma 2.11(i), $|Q, Q| \subseteq R$, and it follows that $U=[Q, J Q] R$. As $J Q \triangleleft N_{G}(R), U \triangleleft N_{G}(R)$ also. The possibilities for U are listed in the preceding lemmas, and it is straightforward to find in each case a root group of G which lies in J and acts nontrivially on Q / V, contradicting $[Q, J] \leqslant V$. In many cases we already know that J must equal L and that Q / R is an irreducible L-module.

The group G may be described as the fixed points of a standard algebraic endomorphism σ of an adjuint algebraic group \widetilde{G} defined over the algebraic closure \mathbb{K} of our finite field. Here $C_{\tilde{\delta}}(\sigma)$ includes all the diagonal automorphisms of G. Let $\tilde{\Sigma}$ be a root system for \tilde{G} with root groups $\tilde{X}_{\tilde{\alpha}}$, $\tilde{\alpha} \in \tilde{\Sigma}$. Given a fundamental system $\tilde{\Pi}$ for $\tilde{\Sigma}$, the choices for σ are listed in [8, Table $1 \mid$. In each case σ corresponds to a certain symmetry of the Dynkin diagram and the root system, and also to isomorphisms of the root lattice and the Weyl-group \tilde{W}. We denote all these maps by σ.
$C_{\tilde{W}}(\sigma)$ is the Weyl group of G; and with an adjustment when $G={ }^{2} A_{n}(q)$, n even, the orthogonal projection of $\tilde{\Sigma}$ onto the fixed points of σ on $\mathbb{R} \tilde{\Sigma}$ gives Σ, the root system of G. With the same exception, root groups of G correspond to orbits of root groups of \tilde{G} under $\langle\sigma\rangle$.

The method of Burgoyne and Williamson [10] is useful in answering questions about classes and centralizers of elements of G of order prime to q (where \mathbb{F}_{q} is the field of definition of G). We give a sketch of the method.

Denote by Γ the dual lattice to $\mathbb{Z} \tilde{\Sigma}$. Each element $\eta \in \Gamma$ defines a homomorphism $\mathbb{K}^{*} \rightarrow T, T$ a fixed Cartan subgroup of \widetilde{G}, which sends $\lambda \in \mathbb{K}^{*}$ to $t(\eta, \lambda) \in T$. The element $t(\eta, \lambda)$ is itself defined by giving its corresponding character χ

$$
\begin{gathered}
\chi: \mathbb{Z} \tilde{\Sigma} \rightarrow \mathbb{K}^{*}, \\
\chi(\alpha)=\lambda^{\eta(\alpha)}, \quad \alpha \in \tilde{\Sigma} .
\end{gathered}
$$

Fix a primitive p th root of unity $\lambda \in \mathbb{K}^{*}$ for some p with $(p, q)=1$; and let $t(\eta)=t(\eta, \lambda)$. Every element of T of order p is $t(\eta)$ for some $\eta \in \Gamma$.

The Weyl group \tilde{W} of $\tilde{\Sigma}$ acts on Γ by

$$
w \eta(\alpha)=\eta\left(w^{-1} \alpha\right)
$$

and the semidirect product \tilde{W}. $p \Gamma$ acts by

$$
(w, p \mu) \eta=w \eta+p \mu
$$

The conjugacy classes of elements of order p in \bar{G} correspond to orbits of $\tilde{W} . p \Gamma$ on Γ. If $[\eta]$ denotes the orbit of η, then the corresponding class intersects the finite group G if and only if $[\eta]=[\sigma \eta] . G \cap[\eta]$ is a union of G-classes each corresponding to a pair $[\eta, v \sigma]$ with $v \in \tilde{W}$ and $v \sigma u-u \in p \Gamma$. For any such pair $t(\eta)$ centralizes $I_{v} \sigma$, where I_{v} is any inner automorphism of \tilde{G} defined by some element of the coset of $N_{\tilde{G}}(T) / T$ corresponding to v. By Lemma $2.33 I_{v} \sigma$ is conjugate to σ by an inner automorphism of \tilde{G}. Thus, $G \cong C_{\tilde{G}}\left(I_{v} \sigma\right)$, and in fact the centralizer in G of an element of $[\eta, v \sigma]$ is isomorphic to $C_{\tilde{\sigma}}(t(\eta)) \cap C_{\tilde{\sigma}}\left(I_{r} \sigma\right)$. For example when $p \mid q+1$, it turns out that the classes of p-elements of G which intersect B^{*}, an elementary abelian p-group of G of maximum rank, are $[\eta, w \sigma]$ where w interchanges positive and negative roots of $\tilde{\Sigma}$.

If $t(\eta) \in[\eta, v \sigma]$, then $G_{0}=O^{2}\left(C_{\sigma}(t(\eta))\right)$ is a central product of groups of Lie type defined over \mathbb{F}_{q} (the field of definition of G) or finite extensions of $\mathbb{F}_{q} . G_{0}$ can be recognized from the action of $v \sigma$ on $\tilde{\Sigma}_{0}=\{\tilde{\alpha} \mid \eta(\tilde{\alpha})=1\}$. If $v=1$, then the orbits of $\langle\sigma\rangle$ on $\tilde{\Sigma}_{0}$ give a system of root groups for G_{0} which correspond to a root system $\Sigma_{0} \subseteq \Sigma$. In general G_{0} does not have a root system which is a subsystem of Σ.

Lemma 2.18. Using the notation introduced above, let σ be a standard algebraic endomorphism of \tilde{G} with $O^{2^{\prime}}\left(C_{\overparen{G}}(\sigma)\right) \subseteq G \subseteq C_{\tilde{G}}(\sigma)$, and let $\rho=l_{r} \sigma$. Suppose $\tilde{\Sigma}_{0}$ is a root system such that

$$
\begin{gathered}
\tilde{\Sigma}_{0} \subseteq \tilde{\Sigma}, \\
\langle\rho, \sigma\rangle \operatorname{acts} \text { on } \tilde{\Sigma}_{0},
\end{gathered}
$$

and such that the restriction of v to $\tilde{\Sigma}_{0}$ is in the Weyl group of $\tilde{\Sigma}_{0}$. Further suppose that if $\tilde{\alpha}, \tilde{\beta} \in \tilde{\Sigma}_{0}$ and $\left[\tilde{X}_{\tilde{a}}, \tilde{X}_{\tilde{\beta}}\right] \neq 1$, then all linear combinations of $\tilde{\alpha}$ and $\tilde{\beta}$ in $\tilde{\Sigma}$ lie in $\tilde{\Sigma}_{0}$.

Let $\tilde{G}_{0}=\left\langle\tilde{X}_{\tilde{a}} \mid \tilde{\alpha} \in \tilde{\Sigma}_{0}\right\rangle$ and $G_{0}=O^{2}{ }^{\prime}\left(C_{\tilde{G}_{0}}(\rho)\right)$. The following conditions hold:
(i) \tilde{G}_{0} is a central product of Chevalley groups defined over K and corresponding to the orthogonal summands of $\tilde{\Sigma}_{0}$;
(ii) there is an inner automorphism of \tilde{G} which carries $C_{G}(\sigma)$ to $C_{G}(\rho)$ and $C_{G_{10}}(\sigma)$ to $C_{G_{11}}(\rho)$;
(iii) $\quad G_{0}$ is a central product of groups of Lie type defined over \mathbb{F}_{q} or its finite extensions;
(iv) G_{0} has a root system $\Sigma_{0} \subseteq \Sigma$, and any choice of root groups for G_{0} corresponding to Σ_{0} extends to a system of root groups for G with the convention that when $G={ }^{2} A_{n}(q), n$ even, an abelian root group of G_{0} may become the center of a nonabelian root group of G.

Proof. It suffices to find $z \in \tilde{G}$ such that $\left(I_{z}\right)^{-1} \rho I_{z}=\sigma$ and I_{z} normalizes \tilde{G}_{0}.

Let $\tilde{\Sigma}_{1}$ consist of all roots in $\tilde{\Sigma}$ orthogonal to $\tilde{\Sigma}_{0}$, and let $\tilde{G}_{1}=\left\langle\tilde{X}_{\tilde{B}} \mid \beta \in \tilde{\Sigma}_{1}\right\rangle . \tilde{G}_{1}$ is a central product of Chevalley groups over K, and $\left\lfloor\tilde{G}_{0}, \tilde{G}_{1}\right\rfloor=1$. Choose v_{0} in the Weyl group of $\tilde{\Sigma}_{0}$ so that v restricts to v_{0}. By |12, Corollary 2.5.4|, $\left(v_{0}\right)^{-1} v=v_{1}$ for some v_{1} in the Weyl group of $\tilde{\Sigma}_{1}$. By Lang's theorem choose $y \in \tilde{G}_{0} \tilde{G}_{1}$ such that $\left(I_{y}\right)^{-1} \rho I_{y}=I_{x} \sigma$ for some $x \in T C_{\tilde{G}}\left(\widetilde{G}_{0} \widetilde{G}_{1}\right)=T$.

It is a consequence of Hilbert's Theorem 90 that for any $q=2^{m}$ and $\lambda \in K^{*}$ there exists $\mu \in K^{*}$ with $\mu \mu^{-a}=\lambda$. It follows in a straightforward way that there exists $v \in T$ such that $\left(I_{r}\right)^{-1} I_{x} \sigma I_{v^{\prime}}=\sigma$, whence we may take $z=y h$.

As an application of the preceding lemma suppose $\tilde{\Sigma}_{0}=\{ \pm \tilde{\alpha}\}$ for some $\tilde{\alpha} \in \tilde{\Sigma}$ with $\rho(\tilde{\alpha})= \pm \tilde{\alpha}, \sigma(\tilde{\alpha})=\tilde{\alpha}$. We see that every root group of

$$
C_{\left\langle\tilde{r}_{\tilde{n}}, \tilde{X}_{-\tilde{a}}\right\rangle}(\rho)
$$

is a root group of G. When $\rho=I_{w} \sigma$ and w is the element of the Weyl group \tilde{W} of \tilde{G} which interchanges positive and negative roots, then $C_{\bar{W}}(\rho)$ is transitive on the set of roots $\tilde{\alpha}$ of a fixed length with $\tilde{\rho}(\tilde{\alpha})=-\tilde{\alpha}$. In fact we may take $\tilde{\alpha}$ to be the highest root of its length whence $\sigma(\tilde{\alpha})=\tilde{\alpha}$ automatically.

LEMMA 2.19. Let $\rho=I_{n} \sigma$ with w interchanging the positive and negative roots of $\tilde{\Sigma}$. If $\rho(\tilde{\alpha})=-\tilde{\alpha}$, then any root group of

$$
C_{\left\langle x_{\tilde{a} \cdot} \cdot{ }_{-\bar{a}}\right\rangle}(\rho)
$$

is the center of a root group of G corresponding to a root $\alpha \in \Sigma$. When $\tilde{\Sigma}$ or Σ has roots of two lengths, the possibilities are as follows:

\tilde{G}	G	$\tilde{\alpha}$	α
A_{n}	${ }^{2} A_{n}(q)$	long	long
C_{n}	$C_{n}(q)$	short	short
C_{n}	$C_{n}(q)$	long	long
D_{n}	${ }^{2} D_{n}(q)$		long
D_{4}	${ }^{3} D_{4}(q)$		long
E_{6}	${ }^{2} E_{6}(q)$		long
F_{4}	$F_{4}(q)$	short	short
F_{4}	$F_{4}(q)$	long	long

We make one more application of Lemma 2.18 to the cases $G=E_{6}(2)$ and $E_{8}(2)$ with $p=7$. Choose extended fundamental root systems of type E_{6} and E_{8} as follows:

where α_{*} is the lowest root in both cases. Let w_{i}^{\prime} and w_{*}^{\prime} be the involutions of the Weyl group corresponding to roots α_{i} and α_{*}, respectively. Define v in the Weyl group of E_{6} by

$$
\begin{aligned}
v^{\prime} \alpha_{1} & \rightarrow \alpha_{*} \\
\alpha_{2} & \rightarrow \alpha_{6} \\
\alpha_{3} & \rightarrow \alpha_{3} \\
\alpha_{4} & \rightarrow \alpha_{2} \\
\alpha_{5} & \rightarrow \alpha_{1} \\
\alpha_{6} & \rightarrow \alpha_{\downarrow} \\
\alpha_{*} & \rightarrow \alpha_{5}
\end{aligned}
$$

Define the endomorphism ρ of the corresponding algebraic groups $E_{6}(\mathbb{K})$ and $E_{8}(\mathbb{K})$ by $\rho=I_{v} \sigma_{2}$ and $\rho=I_{w} \sigma_{2}$, respectively. Here $I_{v} \in E_{6}(\mathbb{K})$ corresponds to v and $I_{w} \in E_{8}(\mathbb{K})$ corresponds to $w=w_{7} w_{*}$. We consider elements of order 7 in the groups $E_{6}(2)$ and $E_{8}(2)$. In the notation of Burgoyne and Williamson [10], $\left[2 \eta_{1}+\eta_{5}, \rho\right]$ denotes a conjugacy class in $E_{6}(2)$ each of whose elements has centralizer isomorphic to

$$
{ }^{3} D_{4}(2) \times Z_{7},
$$

while $\left|n_{6}+n_{7}, p\right|$ is a class in $E_{8}(2)$ with corresponding centralizers

$$
E_{6}(2) \times \mathbb{Z}_{7} .
$$

Let $\tilde{G}=E_{8}(\mathbb{K})$ or $E_{6}(\mathbb{K})$ and $G=C_{G}(\rho)$.
Lemma 2.20. In terms of the definitions above, if x is a root group of \tilde{G} corresponding to α_{3}, then $C_{\tilde{X}}(\rho)$ is a root group of G.

The following lemma is proved by the method of Burgoyne and Williamson.

Lemma 2.21. Let x be an element of order 7 in G with $L=L\left(C_{G}(x)\right)$ and $J=C_{G}(x) \cap C_{G}(L)$. For each G below we list L and J as x ranges over representations of each G-class of elements of order 7. We also give the corresponding class in the algebraic group. These classes do not split in G. The fundmental roots are labeled as above.

G	L	J	Class in \tilde{G}
$E_{6}(2)$	$A_{2}(2)$	\mathbb{Z}_{21}	$\eta_{1}+\eta_{2}+\eta_{4}+\eta_{5}$
	$A_{2}(2) \times A_{2}(2)$	\mathbb{Z}_{7}	$2 \eta_{1}+\eta_{2}+\eta_{3}$
	${ }^{3} D_{4}(2)$	\mathbb{Z}_{7}	$\eta_{1}+2 \eta_{5}$
$E_{\mathrm{N}}(2)$	${ }^{3} D_{4}(2)$	\mathbb{Z}_{7}	$2 \eta_{1}+\eta_{5}$
	$E_{6}(2)$	\mathbb{Z}_{7}	$\eta_{6}+\eta_{7}$
	${ }^{3} D_{4}(2) \times A_{2}(2)$	\mathbb{Z}_{7}	$\eta_{1}+\eta_{5}$

We mention some general results which are contained in [10, Sect. 5.2].
Lemma 2.22. If $y \in G$ has odd order, then $O^{2^{\prime}}\left(C_{G}(y)\right)$ is a central product of groups of Lie type defined over fields of characteristic 2, and $C_{G}(y) \cap C_{G}\left(O^{\prime}\left(C_{G}(y)\right)\right.$ has odd order.

Lemma 2.23. Suppose $y \in G$ has odd order and normalizes $R=Z\left(X_{a}\right)$ whose X_{a} is a root group of G with $G \neq{ }^{3} D_{4}(q),{ }^{2} E_{6}(q),{ }^{2} D_{m}(q)$ or ${ }^{2} A_{n}(q), n$ odd, if α is short. Then $O_{2}\left(C_{\left.N_{G}, R\right)}(y)\right) \leqslant O_{2}\left(N_{G}(R)\right)$.

Proof. This follows from the structure of $N_{G}(R)$ given in Lemma 2.6. The element y acts as an inner-diagonal automorphism on $N_{G}(R) / O_{2}\left(N_{G}(R)\right)$. Apply the preceding lemma.

For various computations we will need the following information.
Lemma 2.24. Let p be an odd prime and $q=2^{r}$.
(i) If $p^{a} \| q-\varepsilon, a \geqslant 1$ and $\varepsilon= \pm 1$, then $p^{a+1} \| q^{p}-\varepsilon$;
(ii) if $s=\Sigma a_{n} q^{n}$, and $\varepsilon= \pm 1$, then $(s, q-\varepsilon)=\Sigma \varepsilon^{n} a_{n}$;
(iii) if $\varepsilon= \pm 1, \tau= \pm 1$, then

$$
\begin{aligned}
\left(2^{a}-\varepsilon, 2^{b}-\tau\right) & =2^{(a . b)}-1 & & \text { if } \varepsilon=\tau=1 \\
& =2^{(a . b)}+1 & & \text { if } \varepsilon=(-1)^{a /(a . b)}, \tau=(-1)^{b /(a . b)} \\
& =1 & & \text { otherwise. }
\end{aligned}
$$

Proof. To prove (i) let $q-\varepsilon=b p^{a}, p \nmid b$ and expand $\left(b p^{a}+\varepsilon\right)^{p}=q^{p}$. Since p is odd, $\left.p \left\lvert\, \begin{array}{c}p \\ 2\end{array}\right.\right)$, and the only terms not divisible by p^{a+2} equal $c^{n}+\binom{p}{1} b p^{a} c^{p-1}=\varepsilon+b p^{a+1}$. Thus, $q^{p}-\varepsilon \equiv b p^{a+1}$ modulo p^{a+2}.

The last two assertions are proved by induction. The induction steps are

$$
(s, q-\varepsilon)=\left(s-a_{n} q^{n-1}(q-\varepsilon), q-\varepsilon\right)-\Sigma \varepsilon^{n} a_{n}
$$

and assuming $a \geqslant b$

$$
\begin{aligned}
\left(2^{a}-\varepsilon, 2^{b}-\tau\right) & =\left(2^{a}-\varepsilon-2^{a-b}\left(2^{b}-\tau\right), 2^{b}-\tau\right) \\
& =\left(2^{a-b} \tau-\varepsilon, 2^{b}-\tau\right) \\
& =\left(2^{a-b}-\tau \varepsilon, 2^{b}-\tau\right)
\end{aligned}
$$

Lemma 2.25. With q and p as above and $m \geqslant 2$
(i) $\left|A_{m-1}\left(q^{p}\right)\right| \nmid\left|A_{p m-2}(q)\right|$ if $p \mid q-1$, and
(ii) $\left.\right|^{2} A_{m-1}\left(q^{p}\right)|X|^{2} A_{p m-2}(q) \mid$ if $p \mid q+1$.

Proof. Let $\varepsilon=1$ if (i) fails, and $\varepsilon=-1$ if (ii) fails. Cancelling terms which appear in both order formulas and replacing $1 /\left(m, q^{p}-\varepsilon\right)$ with $1 /\left(q^{p}-\varepsilon\right)$, we obtain

$$
\begin{equation*}
r=\left.\frac{q^{m p}-\varepsilon^{m}}{q^{p}-\varepsilon}\right|_{\substack{j=2 \\ p \vdash j}} ^{p m-1}\left(q^{j}-\varepsilon^{j}\right) . \tag{*}
\end{equation*}
$$

Note that r is an integer by the preceding lemma. Likewise replace each factor ($q^{j}-\varepsilon^{j}$) in (*) by its greatest common divisor with $q^{m p}-\varepsilon^{m}$ and conclude that r divides some power of $q^{m}-\varepsilon^{m}$. Let

$$
\begin{equation*}
s=(\varepsilon q)^{m(p-1)}+(\varepsilon q)^{m(p-2)}+\cdots+1 . \tag{**}
\end{equation*}
$$

We have $s\left(q^{m}-\varepsilon^{m}\right)=q^{m p}-\varepsilon^{m}$ divides $q^{p}-\varepsilon$ times some power of $q^{m}-\varepsilon^{m}$. By Lemma 2.24(i, ii), $p \| s$ and $\left(s, q^{m}-\varepsilon^{m}\right)=p$. Note that $p \mid q-\varepsilon$ implies $p \mid q^{m}-\varepsilon^{m}$, so Lemma 2.24(i) is applicable.

Our conditions force $s \mid p\left(q^{p}-\varepsilon\right)$ whence $s \leqslant p\left(q^{p}-\varepsilon\right)$. The summands in (**) are of decreasing magnitude and are all positive or alternate in sign. It follows that $q^{m(p-1)} \leqslant s$ whence $q^{m(p-1)} \leqslant p\left(q^{p}+\varepsilon\right) \leqslant p q^{p+1}$. Thus $q^{(m-2 川 p-1)+p-3} \leqslant p$. As $p \geqslant 3,2^{(m-2)(p-1)} \leqslant q^{(m-2)(p-1)} \leqslant p$ forces $m=2$, and likewise $p=3$.

Now $q^{4}+q^{2}+1=r \leqslant p\left(q^{p}+\varepsilon\right)=3\left(q^{3}+\varepsilon\right)$ implies $q=2, \varepsilon=-1$, but $r=21$ does not divide $p\left(q^{p}+\varepsilon\right)=27$.

Lemma 2.26. In the following table $|A| \nmid|B|$.

A
$G_{2}(q)$ or ${ }^{3} D_{4}(r), r^{3}=q$
${ }^{3} D_{4}(q)$ or $A_{2}\left(q^{3}\right)$
${ }^{3} D_{+}(q)$ or ${ }^{2} A_{2}\left(q^{3}\right)$

B

$$
\begin{gathered}
A_{3}(q) \text { or }{ }^{2} A_{3}(q) \\
D_{5}(q) \text { or } A_{5}(q) \\
{ }^{2} D_{5}(q) \text { or }{ }^{2} A_{5}(q)
\end{gathered}
$$

Proof. Similar to that of the preceeding lemma but easier.

Proposition 2.27 (The Steinberg Relations). Let Σ be an indecomposable root system of rank at least 2 and let < be an ordering on Σ [54]. To each $\alpha \in \Sigma$. let there be associated a group X_{a} (a "root group"). Suppose that for any' pair of roots α, β with $\alpha \neq-\beta$ the following holds; whenever $x_{\alpha} \in X_{\alpha}$ and $x_{\beta} \in X_{\beta}$, there are elements $x_{\gamma} \in X_{\gamma}$ for every $\gamma \in \Sigma$ of the form $\gamma=i \alpha+j \beta, i, j$ nonnegative integers or half-integers such that

$$
\begin{equation*}
\left[x_{a}, x_{\beta} \mid=\prod_{\gamma} x_{\gamma},\right. \tag{*}
\end{equation*}
$$

where the order of the product is given $b y<$.
Let G be the group generuted by all $X_{a}, u \in \Sigma$, subject to the relations in $X_{a}($ relations of type $(\mathrm{A}))$ and all relations $(*)$ (relations of type (B)).

Suppose that \bar{G} is a quasisimple group of Lie type over \mathbb{F} generated by a usual set of root elements \bar{x}_{a}, for $x_{\alpha} \in X_{a}, \alpha \in \Sigma$ such that there is a homomorphism $G \xrightarrow{\oplus} \bar{G}$ satisfying $x_{\alpha} \mapsto \overline{x_{\alpha}}$, for all x_{α}. Then $\operatorname{ker} \phi \leqslant Z(G)$.

Proof. See Steinberg $[51,53,54 \mid$. Our hypotheses imply that \bar{G} is a Chevalley group or a Steinberg variation, or in the family ${ }^{2} F_{4}$.

Lemma 2.28. Let Σ be an indecomposable root system and W the Weyl group. Let $\Theta=\left\{\frac{1}{2}, 1,2\right\}, \Theta \Sigma=\{\lambda r \mid \lambda \in \Theta, r \in \Sigma\}$, and define the following equivalence relation on the set of unordered pairs in $\Sigma \times \Sigma:\{r, s\} \sim\left\{r^{\prime}, s^{\prime}\right\}$ if and only if
(i) the set of lengths in $\{r, s\}$ equals that for $\left\{r^{\prime}, s^{\prime}\right\}$.
(ii) $\left\langle r, s=\left\langle r^{\prime}, s^{\prime}\right.\right.$, where $\langle v, w$ denotes the undirected angle between the nonzero vectors b and w.
(iii) $r+s \in \Theta \Sigma$ if and only if $r^{\prime}+s^{\prime} \in \Theta \Sigma$.

Let Ω be the set of equivalence classes. Then each member of Ω is an orbit under W with the following exceptions:
(a) Σ has type $A_{n}, n \geqslant 2$; the equivalence classes of $(r, s),<r, s=\pi / 3$ and $2 \pi / 3$;
(b) Σ has type $D_{n}, n \geqslant 3$; the equivalence class of $(r, s),\langle r, s=\pi / 2$.

In any case, if $\{r, s\} \sim\left\{r^{\prime}, s^{\prime}\right\}$, then the rank 1 or 2 root systems they, generate are conjugate under W.

Proof. Exercise.
Lemma 2.29. Suppose that Σ is an indecomposable root system of rank at least 2 for the twisted group $K \in \operatorname{Chev}(2)$. Let W be the usual subgroup of K isomorphic to the Weyl group of Σ and let $W^{*}=\left\{w \in W \mid\right.$ when w^{\prime} is expressed as the product of fundamental reflections, the number of short roots is even $\}$.

Then (i) W^{*} is transitive on the sets of roots of the same length; (ii) for $w^{\in} \in W^{*}$ and $\alpha \in \Sigma$ such that $\alpha^{w}=\alpha, x_{\alpha}(t)^{w}=x_{a}(t)$ for all t (iii) when K has type ${ }^{2} A_{2 n}(q), \quad w \in W^{*}$ and α is a long root satisfying $\alpha^{w}=\alpha$, $x_{a}(t, u)^{u^{\prime}}=x_{\alpha}(t, u)$ for all appropriate t, u.

Proof. See [36].
Proposition 2.30. (a) Suppose that $G=\langle K, W\rangle$ where $K \in \operatorname{Chev}(2)$, W is the Weyl group of a root system Σ of rank at least 2.

Suppose further that (i) $\Sigma_{1} \subseteq \Sigma$ is a root system for K; and (ii) $W_{1}=W \cap K$ is the Weyl group of K in its action on Σ_{1}; (iii) $\Sigma_{1} \times \Sigma_{1}$ contains representatives of every W-orbit on $\Sigma \times \Sigma$; and (iv) $W_{a}:=$ $\left\{\omega \in W \mid \alpha^{\prime \prime}=\alpha\right\}$ normalizes X_{n}, for $\alpha \in \Sigma_{1}$ and X_{a} the root group of K associated to α. Then $G \in \operatorname{Chev}(2)$.
(b) The hypothesis (a(iii)) follows if Σ_{1} is indecomposable and contains roots of all lengths which occur in Σ, and (i) Σ_{1} has rank 3 and Σ has only one root length, or (ii) Σ_{1} has rank 4 when Σ has type B_{n} or C_{n}, $n \geqslant 4$ or (iii) $\Sigma_{1}=\Sigma$ when Σ has type F_{4}.

Proof. (a) For $\alpha \in \Sigma$, let $W_{a}=\left\{w \in W \mid \alpha^{w}=\alpha\right\}$. Set $\tilde{W}=W$ if K is untwisted and let $\tilde{W}=W^{*}$, the group of Lemma 2.29 , when K is twisted. By Lemma $2.29, \tilde{W}$ is transitive on roots of the same length in Σ. Set $\tilde{W}_{a}=W_{a} \cap \tilde{W}$.

We define root elements for $\beta \in \Sigma$ by the formula $x_{\beta}(t)=x_{\alpha}(t)^{w}$ or $x_{\beta}(t, u)=x_{\alpha}(t, u)^{w}$, where $\alpha \in \Sigma$, and $w \in \tilde{W}$ satisfy $\beta=\alpha^{n}$. To check that this is a good definition, we need to have elements of \widetilde{W}_{a} centralize X_{a}. Since W_{a} is generated by the reflections in it and since the set of such corresponding to long (short, respectively) roots fall into W_{a}-conjugacy classes, it suffices to check a representative from each such W_{a}-class. But we may take such w_{γ} in $W_{a} \cap W_{1}$ since $\Sigma_{1} \times \Sigma_{1}$ meets every W-orbit on $\Sigma \times \Sigma$. If K is untwisted or α is long or γ is long, $\left[X_{a}, w_{\gamma}\right]=1$. If α, γ are short and $\alpha+\gamma \notin \Sigma,\left|X_{a}, w_{a}^{\prime}\right|=1$. If α, γ are short and $\alpha+\gamma \in \Sigma$, then w_{γ} induces a "field automorphism" on X_{a}. Thus, $\left|X_{a}, \tilde{W}_{a}\right|=1$, and the well-definedness of the root elements follows.

Let \mathbb{F} be the field of definition of K and \mathbb{E} a quadratic extension, if appropriate. Call $w \in \tilde{W}$ an even element if $w \in W$ and odd if $w \in W-\tilde{W}$. We have the relations

$$
\left.\begin{array}{rl}
x_{a}(t)^{\prime \prime} & =x_{a^{n}}(\bar{t}) \quad \\
x_{a}(t)^{\prime \prime} & =x_{a^{\prime \prime}}(t) \\
x_{a}(t, u)^{n} & =x_{a^{\prime \prime}}(t, u)
\end{array}\right\} \quad \text { if } \alpha \text { is short and } w \text { is odd }
$$

for all appropriate t, u and $\alpha \in \Sigma$, when $t \rightarrow \bar{t}$ generates $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$.
We verify the Steinberg relations for these root elements; see Proposition 2.27. The relations of type (A) follows easily by conjugation under W. Now for type (B). Take $\alpha, \beta \in \Sigma$ with $\alpha \neq-\beta, x \in X_{\alpha}, y \in X_{\beta}$ and $w \in W$ so that $\alpha^{\prime \prime}, \beta^{\prime \prime} \in \Sigma_{1}$. Then $\left|x^{\prime \prime}, y^{\prime \prime}\right|$ is a product of certain root elements as in the relations of type (B) for K. The totally of relations thus obtained is a set of Steinberg relations for some group of Lie type. See [54] for a display of the relations for the untwisted groups and [36] for a display of the relations for the twisted groups. Thus, $\langle K, W\rangle \in \operatorname{Chev}(2)$, as required.

The proof of (b) is an exercise.
Proposition 2.31. (a) Suppose that $G=\left\langle K_{1}, \ldots, K_{m}, W\right\rangle$, where $K_{1} \ldots ., K_{m}$ are quasisimple with components in $\operatorname{Chev}(2), W$ is the Weyl group of an indecomposable root system Σ of rank at least 2 .

Suppose further that (i) for each $i=1, \ldots, m$, there is a subset $\Sigma_{i} \subseteq \Sigma$ so that Σ_{i} is a root system for K_{i} : and (ii) $W_{i}=W \cap K_{i}$ is the Weyl group of K in its action on Σ_{i}; and (iii) $\bigcup_{i=1}^{m} \Sigma_{i} \times \Sigma_{i}$ contains representatives for every W-orbit on $\Sigma \times \Sigma$ and that for every i, j such that $\Sigma_{i} \cap \Sigma_{j} \neq \varnothing, X_{o}$ is the same group for $\alpha \in \Sigma_{i}$ as for $\alpha \in \Sigma_{j}$, and that if $\alpha, \beta \in \Sigma_{i} \cap \Sigma_{j}$, the commutator of elements in X_{α} and X_{β} is independent of taking $\alpha, \beta \in \Sigma_{i}$ or $\alpha, \beta \in \Sigma_{j}$. (iv) $W_{a}:=\left\{w \in W \mid \alpha^{H}=\alpha\right\}$ normalizes X_{a}, for each $\alpha \in \bigcup_{i-1}^{m} \Sigma_{i}$. Then $G \in \operatorname{Chev}(2)$.

Proof. Imitate the proof of Proposition 2.30. A bit of care is needed to see that root elements are well defined for $m \geqslant 2$.

Tables B, C and P . The following three tables are critical to this paper. They contain information about elementary abelian p-subgroups and elements of order p in $K \in \operatorname{Chev}(2)$ whose centralizers are in standard form.
(2.32) Table B. In the table which follows. we list simple groups $K \in \operatorname{Chev}(2)$, certain odd primes p, subgroups $B \in \mathscr{B}_{\max }(\tilde{K} ; p)$, where $\operatorname{Inn}(K) \leqslant \tilde{K} \leqslant \tilde{K}$, and \tilde{K} is the full group of inner-diagonal automorphisms of K. Every such B contains at least one subgroup $\langle x\rangle$ of order p such that $C_{B}\left(L\left(C_{h}(x)\right)\right)=\langle x\rangle$ except in case K has type $A_{1}(q),{ }^{2} C_{2}(q)$ or type $A_{2}(q)$ such that $p=3$ divides $q-1$ or $(p, q)=(3,2)$ and K has type $A_{n}(2), n \leqslant 2$, in which cases there are none.

We also list $B^{*} \in S C_{p}(\tilde{K})$, where $B^{*} \geqslant B$. Then $\left|B^{*}: B\right|=1$ or p and B^{*} is unique up to conjugacy in $C_{\tilde{\kappa}}(B)$. Finally, we list $m(B), m\left(B^{*}\right), A(B)$, $A\left(B^{*}\right)$.

The method of verification of these assertions involves standard techniques from the theory of groups of Lie type, and is omitted. We do single out two results, Theorem 2.33 and Lemma 2.34, as relevant tools.

We construct B^{*} in this manner. Either B^{*} is available in a standard Cartan subgroup or we do the following. Let G be the ambient algebraic group containing K. Thus, G has an algebraic endomorphism σ with $K=L\left(C_{G}(\sigma)\right)$. Choose $L \in \operatorname{Chev}(2)$ such that $K<L<G$ such that L has the same type as G (so L is untwisted), p divides the order of H, a standard Cartan subgroup of L and $L=L^{\sigma}$. Let W be the standard copy of the Weyl group in L. Thus, $W \leqslant N_{l .}(H)=H W$. For $w \in W$, if β is the corresponding inner automorphism, $\beta \sigma$ is conjugate to σ by an inner automorphism of G. So, by choosing w appropriately, a conjugate of $\Omega_{1}\left(O_{p}\left(C_{H}(\sigma \beta)\right)\right)$ is our desired B^{*}.

Once we have B^{*}, the possibilities for B may be read off from the maximal parabolics of K, as $И_{K}(B ; 2) \neq\{1\}$.

Uniqueness of B^{*} up to conjugacy in $\operatorname{Aut}(K)$ is shown in Lemma 2.35 . Thus, the B^{*} constructed above is essentially the only one.

Actually, the table contains a few cases where p neither splits nor halfsplits K. See Section 1 for a full discussion.

Lemma 2.33 (Lang's theorem). (i) Let G be a connected linear algebraic group and σ an endomorphism of G onto G such that $\left|C_{G}(\sigma)\right|$ is finite. Then $x \mapsto x^{-1} x^{\sigma}$ is a surjective map $G \rightarrow G$.
(ii) If in addition, α is an endomorphism of G such that $\alpha=\sigma \beta$ for some inner automorphism β of G, there is $\gamma \in \operatorname{Inn}(G)$ such that $\gamma^{-1} \sigma \gamma=\alpha$.
TABLE B

K, p	$m(B)$	$m\left(B^{*}\right)$	$A(B)$	$A\left(B^{4}\right)$
$A_{n}(q), p \mid q-1$	n	n	Σ_{n+1}	$\Sigma_{n, 1}$
	or $n-1, p \mid n+1$	or $n-1, p \mid n+1$	Σ_{n+1}	$\Sigma_{n, 1}$
$p \mid q+1$	$\left[\frac{n+1}{2}\right]$	$\left[\frac{n+1}{2}\right]$	$2^{(n+1) / 2 \mid} \Sigma_{1(n+1), 21}$	$2^{\|n+11 \cdot ?\|} \Sigma_{1(n-1)=1}$
$p=7, n=8, q=2$	2	3	$3^{2} \Sigma_{2}$	$3^{3} \Sigma^{3}$
$C_{n}(q), q \mid q-1$	n	n	$2^{n} \Sigma_{n}$	$2^{\prime \prime} \Sigma^{\prime}$
$p \mid q+1$	$n-1$	n	$2^{n}{ }^{1} \Sigma_{n}$,	$2^{\prime \prime} \Sigma_{n}$
$D_{n}(q), p \mid q-1$	n	n	$2^{n-1} \Sigma_{n}$	$2^{\prime \prime} \Sigma_{n}$
$p \mid q+1$	$\left\{\begin{array}{l} n-1, n \text { even } \\ n-1, n \text { odd } \end{array}\right.$	$\begin{aligned} & n \\ & n-1 \end{aligned}$	$\begin{aligned} & 2^{n-1} \Sigma_{n-1} \\ & 2^{n-1} \Sigma_{n-1} \end{aligned}$	$\begin{aligned} & 2^{n-1} \Sigma_{n} \\ & 2^{n} \cdot \Sigma_{n} \end{aligned}$
${ }^{2} D_{n}(q) . p \mid q-1$	$n-1$	$n-1$	$2^{n-1} \Sigma_{n} \quad 1$	$2^{n}{ }^{1} \Sigma_{n-1}$
$p \mid q+1$	$\left\{\begin{array}{l} n-1, n \text { even } \\ n-1, n \text { odd } \end{array}\right.$	$\left\{\begin{array}{l} n-1 \\ n \end{array}\right.$	$\begin{aligned} & 2^{n-1} \Sigma_{n-1} \\ & 2^{n-1} \Sigma_{n-1} \end{aligned}$	$\begin{aligned} & 2^{n-1} \Sigma_{n} \\ & 2^{n} \\ & 1 \\ & \\ & \Sigma_{n} \end{aligned}$
${ }^{2} A_{n}(q), p \mid q-1$	$\left[\frac{n+1}{2}\right]$	$\left\lfloor\frac{n+1}{2}\right]$	$2^{1(n+11 / 2]} \Sigma_{1 / n+1 / 2]}$	$2^{[(n+1)}{ }^{3]} \Sigma_{\mid(\ldots, 1)}$
$p \mid q+1$	$\left\{\begin{array}{l} n-1 \\ \text { or } n-2, p \mid n+1 \end{array}\right.$	$\left\{\begin{array}{l} n \\ \text { or } n-1, p \mid n+1 \end{array}\right.$	$\begin{aligned} & \Sigma_{n} 1 \\ & \Sigma_{n-1} \end{aligned}$	$\begin{aligned} & \Sigma_{n+1} \\ & \Sigma_{n+1} \end{aligned}$

TABLE B (continued)

K, p	$m(B)$	$m\left(B^{*}\right)$	$A(B)$	$A\left(B^{*}\right)$
$F_{4}(q), p \mid q-1$	4	4	W_{14}	$W_{1}{ }_{4}$
$p \mid q-1$	3	4	W_{t}	W_{14}
$E_{6}(q), p \mid q-1$	$\left\{\begin{array}{l}6 \\ \text { or } 5 \text { if } p=3\end{array}\right.$	$\left\{\begin{array}{l} 6 \\ \text { or } 5 \text { if } p=3 \end{array}\right.$	$W_{\text {t. }}{ }^{\text {b }}$	$W_{r o}$
$p \mid q-1$	4	4	$W_{14}{ }^{\text {a }}$	$W_{14}{ }^{\prime \prime}$
$p=7, q=2$	2	3	$3^{2} \Sigma_{2}$	$3^{1+2} S L(2,3)$
${ }^{2} E_{6}(q) p \mid q-1$	4	4	$W_{F_{4}}$	W_{14}
$p \mid q-1$	$\left\{\begin{array}{l} 5 \\ \text { or } 4 \text { if } p=3 \end{array}\right.$	$\left\{\begin{array}{l} 6 \\ \text { or } 5 \text { if } p=3 \end{array}\right.$	$W_{1 s}$	$W_{\text {F }}$
$E_{7}(q) p \mid q-1$	7	7	$W_{1}{ }^{\text {, }}$	W_{17}
$p \mid q-1$	6	7	$W_{D_{6}}$	$W_{\text {+ }}{ }_{\text {\% }}$
$E_{\mathrm{B}}(q) p \mid q-1$	8	8	$W_{t: 8}$	$W_{1,}$
$p \mid q-1$	7	8	$W_{\text {E7 }}$	$W_{1: \times}$
$p \mid q^{2}+q+1, p \neq 3$	3	4	$3^{1+2} S L(2,3)$	$\hat{U}_{4}(2)^{n}$
${ }^{3} D_{4}(q) p \mid q-1$	2	2	$W_{G_{2}}$	$W_{6,2}$

[^1]TABLE B (continued)

$\left.\begin{array}{ccccc}\hline K, p & m(B) & m\left(B^{*}\right) & A(B) & A\left(B^{*}\right) \\ p \mid q+1 & 1 & 2 & Z_{2} & W_{G_{2}} \\ p \mid q^{2}+q+1, p \neq 3 & 1 & 2 & \mathbb{Z}_{2} & \begin{array}{c}S L(2,3) \\ \text { (an element of } \\ \text { order } 3 \text { fixes }\end{array} \\ \text { nontrivial elements } \\ \text { of } B^{*} \text {) }\end{array}\right)$

Proof. (i) See [6, E, 2.2] or [54]. We deduce (ii) from (i) as follows. For $g \in G$, we have $g^{\alpha}=g^{\sigma \beta}=y^{-1} g^{\sigma} y$ for some $y \in G$. Write $y^{-1}=x^{-1} x^{\sigma}$ for some $x \in G$. Then $g^{x^{-1} \sigma x}=\left(x g x^{-1}\right)^{\sigma x}=x^{-1} x^{\sigma} g^{\sigma}\left(x^{-1} x^{\sigma}\right)^{-1}=y^{-1} g y=g^{a}$. Take γ to be conjugation by x.

Lemma 2.34. Let $G \in \operatorname{Chev}(2), H$ a standard Cartan subgroup, and $g=u h n_{w} u^{\prime} \in G$ an element in standard form (see [6, 53]). For $k \in H$, $g \in C_{G}(k)$ if and only if
(i) $w \in W$ fixes k,
(ii) when u and u^{\prime} are written as products of root elements $\prod_{a} x_{a}$, where the product is taken in an appropriate ordering, we have that each x_{a} centralizes k.

Proof. Exercise.

Lemma 2.35. Suppose $K \in \operatorname{Chev}(2)$ and p is an odd prime.
(i) If $K \subseteq \tilde{K} \subseteq \operatorname{Aut}(K)$ with \tilde{K} acting as inner-diagonal automorphisms on K and if $B^{*} \in S C_{p}(\tilde{K})$ with $m_{p}\left(B^{*}\right) \geqslant m_{2, p}(\tilde{K})$, then B^{*} is the unique elementary abelian p-group of its rank in a Sylow p-subgroup of \tilde{K} except for $K=A_{2}(q), p=3\left|q-1, K={ }^{2} A_{2}(q), p=3\right| q+1, K=G_{2}(q)$ or ${ }^{3} D_{4}(q)$ with $p=3$;
(ii) if K, p appears in Table B, and B realizes the 2-local p-rank of \tilde{K}, then B is unique up to conjugacy in \tilde{K};
(iii) if \hat{K} is a covering group of K and E is an elementary abelian p group acting as inner-diagonal automorphisms on \hat{K} with $m_{p}(E) \geqslant m_{2, p}(E \hat{K})$ and $E \in S C_{p}(E \hat{K})$, then E projects onto a group B^{*} of (i) except for $K=A_{2}(q)$ or ${ }^{2} A_{2}(q)$ as in (i);
(iv) suppose G is of standard type with respect to $(B, x, K) \in \mathscr{S}^{*}(p)$ and $e(G) \geqslant 4$. Then $m_{2, p}(B K)=m_{2, p}(G)$ except perhaps when $K={ }^{2} E_{6}(q), p=3 \mid q+1, \quad m\left(B^{*}\right)=7 \quad$ or $\quad K={ }^{2} A_{n}(q), \quad p \mid(q+1, n+1)$, $m\left(B^{*}\right)=n+1$. In any case $m_{2, p}\left(B^{*} K\right) \geqslant 4$.

Proof. (i), (ii), (iii) We may assume that the Lie rank of K is at least 3, by inspection of the low rank cases.

Case 1. $p \mid q-1$, then $B=B^{*}$. We may take $B=\Omega_{1}\left(O_{p}(H)\right), H$ is a standard Cartan subgroup. Let A be another elementary abelian p-group in K such that $A \in S C_{p}(K)$. Then, as $B=B^{*}$, we may assume that $\langle A, B\rangle \leqslant$ $P \in \operatorname{Syl}_{p}(K)$. Then we may take $z \in \Omega_{1}(Z(P)) \cap A \cap B, z \neq 1$. Set $C=C_{K}(z)$. From [54] we get the shape of C. Set $E=\left\langle C_{X_{\alpha}}(z) \mid \alpha \in \Sigma\right\rangle$, where Σ is a root system for K with root groups X_{α}. If $E \neq 1$, by induction we may assume that $E \cap A=E \cap B$. Thus, A and B both stabilize all the normal
subgroups of E, whence A induces inner diagonal automorphisms on each normal subgroup E_{i} of E. If $p \nmid\left|Z\left(E_{i}\right)\right|$, then we may apply induction. If $p\left|\left|Z\left(E_{i}\right)\right|\right.$ we may apply induction to $\left.E_{i}\right| Z\left(E_{i}\right)$ as long as E_{i} does not contain a p-group Q with the property that $1 \neq Q^{\prime} \leqslant Z\left(E_{i}\right)$ but $m\left(Q / Q \cap Z\left(E_{i}\right)\right) \geqslant m\left(A / A \cap Z\left(E_{i}\right)\right)$. Since E_{i} is the family A_{n} or E_{6}, the only possibility is E_{i} of type $A_{2}(q)$, for $p=3$. Note that when this occurs in our induction situation, $E_{i} \cong S L(3, q)$. Thus, $A \cap E_{i}$ and $B \cap E_{i}$ are conjugate. Moreover, induction actually gives us that the images of A and B in \prod_{i} Aut E_{i} are conjugate by an element of $\prod_{i} \operatorname{Inn} E_{i}$. So, assume $E=1$. Then $A \cap B=\langle z\rangle$. Without loss, $A \leqslant B$. Pick $a \in N_{A}(B)-C_{4}(B)$. If $O_{p}\left(N_{G}(H) / N_{G}(H) \cap C_{G}(B)\right)=1$, then for some $n \in N_{G}(H),\left\langle a, a^{n}\right\rangle$ acts as $S L(2, p)$ on $V=\left\langle z, z^{n}\right\rangle$. But $E \neq 1$ for some and hence all $v \in V^{\#}$. Thus, $O_{p}\left(N_{G}(H) / N_{G}(H) \cap C_{G}(B)\right) \neq 1$ and the Weyl group is S_{3} or D_{12}. Using $E=1$. we have $p=3$ and $K / Z(K)=A_{2}(q)$. The assertion of the lemma can be checked directly in this case. (Use the fact that the centralizer of a 3central element of order 3 in ${ }^{3} D_{4}(q)$ is isomorphic to $S L(3, p)$.)

Case 2. $p \mid q+1$. Let G be the ambient algebraic group over \bar{F}_{2}. Then B^{*} lies in a Cartan subgroup H of L, where $K \leqslant L, L$ is finite and untwisted in the same family as G, and σ has order 2 on L, where $K=O^{2}\left(C_{G}(\sigma)\right)$. Say $A \leqslant K, A \cong B^{*}$.

Suppose $m\left(B^{*}\right)=m_{p}(H)$. We quote Case 1 to get $g \in L$ with $A^{g}=B^{*}$. We argue that we may arrange for $g \in C_{G}(\sigma)$. We have that σ and σ^{g} centralize B^{*}. Since $m\left(B^{*}\right)=m_{p}(H), C_{L\langle\sigma\rangle}\left(B^{*}\right)=H\langle\sigma\rangle$. Also, $\sigma^{k} \in H \sigma$ and $\sigma^{2}\left(\sigma^{\circ}\right)^{2} \in C(H)$. Since H has odd order and σ has order 2 on H, Sylow's theorem applied to $H\langle\sigma\rangle /\left\langle\sigma^{2}\right\rangle$ implies that there is $h \in H$ with $\sigma=\sigma^{\text {h }}$. Thus, $g h \in C_{L}(\sigma)$ and $A^{R h}=\left(B^{*}\right)^{h}=B^{*}$, as required.

Now to prove uniqueness of B up to conjugacy in case $m\left(B^{*}\right)=m_{p}(H)$. Without loss, $B<B^{*}$. Suppose $A<K, A \cong B$ and A lies in a 2-local of K. Let $A \leqslant A^{*} \in S C_{p}(K)$ By the above, we may assume $A<A^{*}=B^{*}$.

From Table B, we see that, with a few exceptions, $B=\left[B^{*}, \tilde{W}\right]$, where $W=A_{\Lambda}\left(B^{*}\right)$ is generated by a set of fundamental reflections and \bar{W} is generated by a subset of fundamental reflections. If \tilde{W} is unique up to conjugacy in W, uniqueness of B follows; this is the case. except for $(W, \tilde{W})=\left(W_{t_{d}}, W_{C_{3}}=W_{B_{3}}\right)$ and $\left(W_{D_{n}}, W_{A_{n-1}}\right)$. But here, the uniqueness of B via conjugacy in $\operatorname{Aut}(K)$ may be checked, case by case.

Suppose $m\left(B^{*}\right)<m_{p}(H)$. According to Table B, K has type $A_{n}(q)$ or $E_{6}(q)$. By inspecting the standard module for $A_{n}(q)$, it is easy to check the statement. Finally, let K have type $E_{6}(q)$.

Let $A \leqslant K$ satisfy $A=B^{*}$. We may assume that $\langle A, B\rangle \leqslant P \in \operatorname{Syl}_{p}(K)$. Since $C_{K}\left(B^{*}\right)$ is abelian, $A_{G}\left(B^{*}\right) \cong W_{F_{4}}$ implies that P is abelian for $p \geqslant 5$. So, for $p \geqslant 5, A=B$ and we may assume that $p=3$. Let $\langle z\rangle=\Omega_{1}(Z(P))$. Then $L\left(C_{K}(z)\right) \cong S U(3, q) \circ S U(3, q), \mid C_{K}(z): L\left(C_{K}((z)) \mid=3\right.$ and elements of
$C_{K}(z)-O^{z^{\prime}}\left(C_{K}(z)\right)$ induce outer diagonal automorphisms. It is now an easy exercise to see that A and B are conjugate in $C_{K}(z)$.

Case 3. $p \mid q^{2} \pm q+1$. These few special cases are left as an exercise with Lang's theorem (2.33).
(iv) By definition of standard type, B acts nontrivially on a 2 -group $T \subseteq C_{6}(x)$. If $\left.\mid T, K\right] \neq L$, then the first assertion of (iv) is clear. Otherwise $|T, K|=1 \neq|B, T|$ forces some $b \in B$ to induce an outer automorphism on K, and the assertion follows from checking the possibilities for L on Table B. Now $m_{2 ., p}\left(B^{*} K\right) \geqslant 4$ except perhaps if $K={ }^{2} A_{n}(q), p \mid(q+1, n+1)$. But then $m\left(B^{*}\right)=4$ and $\langle x\rangle=C_{B} \cdot(K)$ imply $n \geqslant 3$ whence $p \mid n+1$ forces $n \geqslant 4$ and (iv) holds.
(2.36) Table P . In the next table, we list all triples (K, p, L) where L is quasisimple with $L / Z(L) \in \operatorname{Chev}(2), K$ is a standard component in $\tilde{\tilde{L}}$ for the prime p, where p half-splits K or $L, L \leqslant \tilde{L} \geqslant \tilde{L}$, and \tilde{L} is the group of innerdiagonal automorphisms on L, unless L has type $D_{4}(q)$ in which case \tilde{L} is the group of inner-diagonal-graph automorphisms on L. The restrictions on n are for making $m_{p}(\tilde{L}) \geqslant 3$ and the $G-L$ restriction consists of an additional condition to make (D, K) a standard subcomponent of (B, x, L); see Section 1 for these notations. In particular, no case with $m_{p}(K)=1$ is listed.

Note that in most cases, but not all, p half-splits both K and L.
The completion of this table requires straightforward applications of standard techniques from the theory of groups of Lie type. See (2.31) and (2.32). Tables of a similar nature were compiled by Burgoyne and Williamson: see [10] and [33, Appendix to Part I].
(2.37) Table C . In the following table, we record all instances of the following: $K \in\left(\right.$ Chev 2), $B \leqslant K$ as in Table B, and K_{1}, K_{2} such that (i) $G_{i}=$ $L\left(C_{K}\left(z_{i}\right)\right)$, (ii) $\left(B, z_{i}, K_{i}\right) \in \mathcal{Z}^{*}(p)$ (with respect to $\left.G_{1}\right), i=1,2$, (iii) $K=\left\langle K_{1}, K_{2}\right\rangle$, (iv) p splits G_{1} or G_{2} and half-splits both. In the cvent that there is $L \in \operatorname{Chev}(2)$ such that $B \leqslant K<L$ and $G_{i}=L\left(C_{L}\left(z_{i}\right)\right),\left(B, z_{i}, G_{i}\right) \in$ $S_{L L}^{*}(p)$, for $i=1$ and 2 , we subscript $\left\langle K_{1}, K_{2}\right\rangle$ with an ${ }^{*}$. For each occurence of an ${ }^{*}, K_{1}, K_{2}, K$ and L are listed at the end of the table.
The table is used by choosing some K_{1} down the left column, choosing an admissible K_{2} above the solid line in row K_{1}, then reading $\left\langle K_{1}, K_{2}\right\rangle$ just below K_{2}. Directly below $\left\langle K_{1}, K_{2}\right\rangle$ is the subcomponent $L_{0}=L\left(K_{1} \cap K_{2}\right)$. Restrictions are written above K_{2}.

Lemma 2.38. Let $G_{1}=\left\langle K_{1}, K_{2}\right\rangle$ be any entry in Table C except

$$
\begin{aligned}
A_{n+2}(2) & =\left\langle A_{n}(2), A_{[(n+1) / 2]}(4)\right\rangle, & & p=3, \\
A_{11}(2) & =\left\langle A_{8}(2), A_{3}(8)\right\rangle, & & p=7,
\end{aligned}
$$

TABLE P

K, p	L	$G-L$ restriction
$A_{n}(q) . p \mid q-1 . n \geqslant 2$	$A_{n+1}(q)$	
	$A_{n+2}(q), p \mid n+3$	
	$C_{n+1}(q)$	
	$D_{n+1}(q)$	
	${ }^{2} D_{n+2}(q)$	
	$E_{n+1}(q), n=5,6,7,(n, p) \neq(7,3)$	
	$E_{8}(q), n=8 . p=3$	
	${ }^{2} A_{8}\left(q^{1,2}\right), n=2, p \mid q^{12}-1$	
	$A_{2 n+1}\left(q^{1 / 2}\right), A_{2 n+2}\left(q^{1 / 2}\right), n \geqslant 3$	$(p, q)=(3,4)$
$A_{n}(q), p \mid q+1, n \geqslant 3$		
	$E_{6}(q), n=5$	$(p, q)=(3,2) \text { or }(5,4)$
$A_{2}(8) . p=7$	$A_{8}(2)$	
$A_{2}(16), p=5$	$A_{5}(4)$	$Z(K)=1$
$A_{8}(2), p=7$	$A_{11}(2)$	
${ }^{2} A_{n}(q), p \mid q-1, n \geqslant 3$	${ }^{2} A_{n+2}(q), n \geqslant 3$	
	${ }^{2} D_{4}(q), n=3$	
	${ }^{2} E_{6}(q), n=5$	
${ }^{2} A_{n}(q), p \mid q+1, n \geqslant 2$	${ }^{2} A_{n+1}(q)$	
	${ }^{2} A_{n+2}(q), p \mid n+3$	
	$C_{n+1}(q)$	$(n, q) \neq(3,2)$
	$D_{n+1}(q), n \operatorname{odd}^{a}$	
	$D_{n+2}(q), n \text { odd }$	
	${ }^{2} D_{n+1}(q), n$ even	
	${ }^{2} D_{n+2}(q), n$ even	
	$\begin{gathered} { }^{2} E_{0}(q), n=5 \\ { }^{2} E_{6}\left(q^{1,31}\right. \\ E_{7}(q), n=6 \end{gathered}$	$(n, p)=(2,3)$
	$E_{8}(q), n=8, p=3$	
	$E_{8}(q) . n=7 . p \neq 3$	
$C_{n}(q), p \mid q-1, n \geqslant 2$	$C_{n+1}(q)$	
	$F_{4}(q), n=3$	
$C_{n \prime}(q) \cdot p \mid q+1, n \geqslant 2$	$C_{n+1}(q)$	
	$F_{4}(q), n=3$	$(n, q) \neq(2,2)^{n}$
$D_{n}(q), p \mid q-1, n \geqslant 2$	$D_{n+1}(q)$	
	$E_{n+1}(q) . n=5,6,7$	
	$E_{6}(q), n=4, p=3$	
$D_{n}(q), p \mid q+1 . n \geqslant 2$	${ }^{2} D_{n+1}(q)$	
	${ }^{2} E_{6}(q), n=4, p=3^{c}$	
	$E_{7}(q) \cdot n=6$	
${ }^{2} D_{n}(q), p \mid q-1, n \geqslant 3$	${ }^{2} D_{n+1}(q)$ ${ }^{2} E_{(q)}(q) n=4$	
	${ }^{2} E_{6}(q), n=4$	

"The only standard subcomponent of $D_{4}(q)$ is ${ }^{2} A_{3}(q)={ }^{2} D_{3}(q)$ for $p \mid q+1$.
${ }^{n} \mathrm{We}$ record this as an official restriction even though it does not apply since we require $m_{2 .,}\left(C_{n+1}(q)\right) \geqslant 3$, i.e., $n \geqslant 4$.
'This applies only when $\tilde{L}=O^{3}(\tilde{L})$.

TABLE P (continued)

K, p	L	$G-L$ restriction
${ }^{2} D_{n}(q), p \mid q+1, n \geqslant 3$	$D_{n+1}(q)$	
	$E_{6}(q), n=4$	
	${ }^{2} E_{6}(q), n=5$	
	$E_{8}(q) . n=7$	
${ }^{3} D_{4}(q), p=3,3 \mid q-1$	$D_{4}\left(q^{3}\right)$	
${ }^{\prime} D^{\prime}(q), p=3,3 \mid q+1$	$D_{4}\left(q^{3}\right)$	
${ }^{2} D_{4}(q), p \mid q^{2}+q+1$,	$E_{6}(q)$	$p=7, q=2$
$p \mid q^{2}-q+1$	${ }^{2} E_{6}(q)$	$p=7, q=2$
$E_{6}(q) \cdot p \mid q-1$	$E_{7}(q)$	
$p \backslash q+1$	none	$(p, q)=(5,4)$
$p \backslash q^{2}+q+1$	$E_{8}(q)$	$(p, q)=(7,2)$
${ }^{2} E_{6}(q), q \mid q-1$	none	
$p \mid q+1$	$E,(q)$	
$E_{7}(q), p \mid q-1$	$E_{8}(q)$	
$p \backslash q+1$	$E_{8}(q)$	
$E_{\mathrm{k}}(q) . p \mid q-1$	none	
$p \mid q+1$	none	
$F_{4}(q), p \mid q-1$	none	
$p \mid q+1$	none	
$G_{2}(q), p \mid q-1$	$D_{4}(q) \cdot p=3$	
$G_{2}(q), p \mid q+1$	$D_{4}(q) \cdot p=3$	
${ }^{2} F_{+}(q), p \mid q \pm 1$	none	

or

$$
E_{6}(2)=\left\langle A_{5}(2), A_{5}(2)\right\rangle . \quad p=3
$$

Let R be the center of a root group X_{α} of $L_{0}=L\left(L_{1} \cap K_{2}\right)$ with α long if L_{0} is any twisted group. For $J=K_{1}, K_{2}, G_{1}$ or G_{0}, R is the center of a root group X_{β} of J with β long if J is twisted except that for the entries

$$
{ }^{2} A_{7}(q)=\left\langle{ }^{2} A_{5}(q), A_{3}\left(q^{2}\right)\right\rangle, \quad p \mid q-1
$$

and

$$
{ }^{2} E_{6}(q)=\left\langle{ }^{2} A_{5}(q),{ }^{2} H_{5}(q)\right\rangle, \quad p \mid q-1
$$

β is short if J is twisted.
Proof. First suppose L_{0}, K_{1}, K_{2}, and G_{1} or G_{0} are all defined over \mathbb{F}_{g} with $p \mid q-1$. Then G_{1} or G_{0} is the layer of $C_{\overparen{G}}(\sigma)$ for an algebraic group \tilde{G} and standard endomorphism σ. It turns out that the element of $z_{1} \in B$ with $K_{1}=L\left(C_{G_{1}}\left(z_{1}\right)\right)$ is in a G_{1}-class (or G_{0}-class)

$$
[\eta, \sigma]
$$

TABLE C

TABLE C (continued)

	$\begin{gathered} * \text { for } p \\| n+3 \\ { }^{2} D_{n}(q) \end{gathered}$	$\begin{array}{lc} & n \text { even } \\ C_{n}(q) & D_{n}(q) \end{array}$	n even D_{n+1}	$\begin{gathered} n \text { odd } \\ { }^{2} D_{n}(q) \end{gathered}$	$\begin{gathered} n \text { odd } \\ { }^{2} D_{n+1}(q) \end{gathered}$	$\begin{aligned} & n=5 \\ & p=3 \\ & D_{4}(q) \end{aligned}$	$\begin{gathered} n=5 \\ { }^{2} D_{s}(q) \end{gathered}$	$\begin{gathered} n=6 \\ { }^{2} D_{6}(q) \end{gathered}$	$\begin{aligned} & n=7 \\ & E_{7}(q) \end{aligned}$
$\begin{aligned} & { }^{2} A_{n}(q) \\ & p \mid q+1 \end{aligned}$	${ }^{2} A_{n+1}(q)_{*} *$	$\begin{array}{ll} C_{n+1}(q) & { }^{2} D_{n+1}(q) \\ { }^{2} A_{n-1}(q) & { }^{2} A_{n-1}(q) \end{array}$	$\begin{aligned} & { }^{2} D_{n+2}(q) \\ & { }^{2} A_{n-1}(q) \end{aligned}$	$\begin{gathered} D_{n+1}(q) \\ { }^{2} A_{n-1}(q) \end{gathered}$	$\begin{aligned} & D_{n+2}(q) \\ & { }^{2} A_{n-1}(q) \end{aligned}$	$\begin{aligned} & { }^{2} E_{6}(q) \\ & { }^{2} A_{3}(q) \end{aligned}$	$\begin{aligned} & { }^{2} E_{6}(q) \\ & { }^{2} A_{4}(q) \end{aligned}$	$\begin{gathered} E_{,}(q) \\ { }^{2} A_{5}(q) \end{gathered}$	$\begin{gathered} E_{8}(q) \\ { }^{2} A_{6}(q) \end{gathered}$
	$\begin{gathered} n=8 \\ p=3 \\ { }^{2} D_{7}(q) \\ \hline \end{gathered}$	$\begin{aligned} & n=8 \\ & p=3 \\ & E_{7}(q) \\ & \hline \end{aligned}$							
$\begin{aligned} & { }^{2} A_{n}(q) \\ & p \mid q+1 \end{aligned}$	$\begin{aligned} & E_{8}(q) \\ & { }^{2} A_{6}(q) \end{aligned}$	$\begin{gathered} E_{8}(q) \\ { }^{2} A_{6}(q) \end{gathered}$							
	*for $n=3$ $A_{n}(q)$	$C_{n}(q)$	$\begin{aligned} & n=3 \\ & C_{3}(q) \end{aligned}$						
$\begin{aligned} & C_{n}(q) \\ & p \mid q-1 \end{aligned}$	$\begin{aligned} & C_{n+1}(q)_{*} \\ & A_{n-1}(q) \end{aligned}$	$\begin{aligned} & C_{n+1}(q) \\ & C_{n-1}(q) \end{aligned}$	$\begin{aligned} & F_{4}(q) \\ & C_{2}(q) \end{aligned}$						
	$\begin{aligned} & { }^{*} \text { for } n=3 \\ & { }^{2} A_{n}(q) \end{aligned}$	$C_{n}(q)$	$C_{3}(q)$						
$\begin{aligned} & C_{n}(q) \\ & p\{q+1 \end{aligned}$	$\begin{aligned} & C_{n+1}(q)_{*} \\ & { }^{2} A_{n-1}(q) \end{aligned}$	$\begin{aligned} & C_{n+1}(q) \\ & C_{n-1}(q) \end{aligned}$	$\begin{aligned} & F_{4}(q) \\ & C_{2}(q) \end{aligned}$						
	$A_{n}(q)$	$\begin{gathered} * \text { for } n=4, p=3 \\ D_{n}(q) \end{gathered}$	$\begin{gathered} n=5,6,7 \\ A_{n}(q) \end{gathered}$	$\begin{aligned} & n=5 \\ & D_{s}(q) \end{aligned}$		$\begin{gathered} n=6,7 \\ E_{n}(q) \end{gathered}$	$\begin{aligned} & n=4 \\ & p=3 \\ & A_{5}(q) \end{aligned}$		$\begin{aligned} & n=7 \\ & p=3 \\ & A_{\mathbf{8}}(q) \end{aligned}$
$\begin{aligned} & \overline{D_{n}(q)} \\ & p \mid q-1 \end{aligned}$	$D_{n+1}(q)$ $A_{n-1}(q)$	$D_{n+1}(q)_{*}$ $A_{n-1}(q)$	$E_{n+1}(q)$ $A_{n-1}(q)$	$E_{6}(q)$ $D_{4}(q)$		$E_{n+1}(q)$ $D_{n-1}(q)$	$\begin{aligned} & E_{6}(q) \\ & A_{3}(q) \end{aligned}$		$\begin{aligned} & E_{8}(q) \\ & A_{6}(q) \end{aligned}$

TABLE C (continued)

TABLE C (continued)

	$\begin{aligned} & q=2 \\ & p=7 \\ & E_{6}(q) \end{aligned}$			
$\begin{aligned} & E_{6}(q) \\ & p \mid q^{2}+q+1 \\ & p \neq 3 \end{aligned}$	$\begin{aligned} & E_{\mathrm{x}}(q) \\ & { }^{3} D_{4}(q) \end{aligned}$			
$\begin{aligned} & { }^{2} E_{6}(q) \\ & p \mid q-1 \end{aligned}$	none			
	${ }^{2} A_{6}(q)$	$D_{0}(q)$		
$\begin{aligned} & { }^{2} E_{6}(q) \\ & p \mid q+1 \end{aligned}$	$\begin{gathered} E_{r}(q) \\ { }^{2} A_{s}(q) \end{gathered}$	$\begin{gathered} E_{7}(q) \\ { }^{2} D_{5}(q) \end{gathered}$		
	$A_{7}(q)$		$\begin{aligned} & p=3 \\ & A_{8}(q) \end{aligned}$	$E_{7}(\underline{q})$
$\begin{aligned} & E_{7}(q) \\ & p \mid q-1 \end{aligned}$	$E_{8}(q)$	$E_{8}(q)$	$E_{8}(q)$	$E_{8}(q)$
	$A_{6}(9)$	$A_{6}(\underline{q})$	$A_{6}(\underline{q})$	$E_{6}(\underline{q})$
	${ }^{2} A_{7}(q)$	${ }^{2} D_{7}(q)$	$\begin{gathered} p=3 \\ { }^{2} A_{8}(q) \end{gathered}$	$E_{7}(q)$
$\begin{aligned} & E,(q) \\ & p \mid q+1 \end{aligned}$	$\begin{aligned} & E_{8}(q) \\ & { }^{2} A_{6}(q) \end{aligned}$	$\begin{gathered} E_{8}(q) \\ { }^{2} A_{6}(q) \end{gathered}$	$\begin{gathered} E_{8}(q) \\ { }^{2} A_{6}(q) \end{gathered}$	$\begin{aligned} & E_{8}(q) \\ & { }^{2} E_{6}(q) \end{aligned}$
$E_{8}(q)$, none $F_{4}(q)$, ${ }^{2} F_{4}(q)$, $G_{2}(q)$, $p \mid q^{2} \pm 1$				
${ }^{3} D_{4}(2) \quad$ none with $m_{2, p} \geqslant 4$				
We now list the pairs $G_{1}<G_{0}$ in order of occurence (marked by ${ }^{*}$) in Table C: $\left(G_{1}, G_{0}\right)$ have types $\left(A_{n+1}(q), A_{n+2}(q)\right)$ $\left.{ }^{2} A_{n+2}(q)\right)$ for $p \mid q+1,\left(C_{3}(q), F_{4}(q)\right)$ for both $p \mid q-1$ and $p \mid q+1,\left(D_{5}(q), E_{6}(q)\right),\left({ }^{2} D_{5}(q),{ }^{2} E_{6}(q)\right)$ for $p \mid q-1$ and $\left({ }^{2} D_{5}(q)\right.$ for $p \mid q+1$. In all cases G_{0} is generated by three components.				

(in the notation of Burgoyne and Williamson defined above); and if $\tilde{\Sigma}$ is a root system for \tilde{G}, then K_{1} is the layer of the centralizer of σ on the root groups of \tilde{G} corresponding to roots of $\tilde{\Sigma}$ in the kernel of χ, the character associated to $t(\eta)$. We can always find a root $\tilde{\alpha}$ in the kernel of χ and fixed by σ. In fact L_{0} is located inside K_{1} exactly as K_{1} is in G_{1} or G_{0}, and we can choose $\tilde{\alpha}$ to correspond to a root group of L_{0}. If \tilde{X} is the root group of \tilde{G} corresponding ro $\tilde{\alpha}$, then $C_{\tilde{X}}(\sigma)$ is a root group of L_{0}, K_{1} and G_{1} or G_{0}. Since the subgroups corresponding to roots of a given length are all conjugate in L_{0}, we may take $R=C_{\tilde{F}}(\sigma)$. The same argument works with respect to L_{0}, K_{2} and G_{1} or G_{0}.

If L_{0}, K_{1}, K_{2} and G_{1} or G_{0} are all defined over q with $p \mid q+1$, we proceed as above using Lemma 2.19 and the endomorphism ρ defined there. We pick $\tilde{\alpha}$ with $\rho(\tilde{\alpha})=-\tilde{\alpha}$. Note that if G_{0} or $G_{1}=F_{4}(q), p \mid q^{2}-1$, then the roots of $\bar{\Sigma}_{1}$ involved in K_{1} or K_{2} may form a root system of type B_{3} or C_{3}. However for any field F of characteristic 2 there is an isomorphism $B_{3}(\mathbb{F}) \rightarrow C_{3}(\mathbb{F})$ which maps root groups to root groups, so we obtain a root group of $K_{i}=C_{3}(q)$ with respect to a root system of type C_{3} in either case.

The remaining entries in Table C are $(*),(* *)$, and $E_{8}(2)=\left\langle E_{6}(2), E_{6}(2)\right\rangle$, $p=7$. In the cases $(* *)$ we proceed along the same lines as above taking $\tilde{\alpha}$ with $(\alpha, \sigma(\tilde{\alpha}))=0$. In the last case use Lemma 2.20.

Lemma 2.39. Consider the entries

$$
\begin{aligned}
A_{n+2}(2) & =\left\langle A_{n}(2), A_{4 n+1), 21}(4)\right\rangle, & & p=3 \\
A_{11}(2) & =\left\langle A_{8}(2), A_{3}(8)\right\rangle, & & p=7,
\end{aligned}
$$

in Table C and let $L_{0}=L\left(K_{1} \cap K_{2}\right), J=K_{1}, K_{2}$, or G_{0}. Pick a root group R of L_{0} and let $N=N_{J}(R), Q=O_{2}\left(N_{J}(R)\right)$. The following conditions hold:
(i) $\langle | Q, Q|, R\rangle \subseteq Z(Q)$;
(ii) N has no central factors on Q / R;
(iii) if $J=G_{0}$ and $Z(Q) \subset U \subset Q$ with $U \triangleleft N_{J}(R)$, then $\left\langle L_{0}, U\right\rangle=J$;
(iv) if y acts on J and centralizes $r \in R^{*}$, then y normalizes R;
(v) if y acts on J and $y \in O_{2}\left(N_{\langle J, y\rangle}(R)\right)$, then y induces an inner automorphism.

Proof. Use the standard matrix representation of J. For (v) proceed as in the proof of Lemma 2.11(iv).

Lemma 2.40. In any entry $G_{1}=\left\langle K_{1}, K_{2}\right\rangle$ of Table C with $L\left(K_{1} \cap K_{2}\right)=$ $A_{2}(4), C_{G_{1}}(D)$ contains elements acting as outer diagonal automorphisms on $L\left(K_{1} \cap K_{2}\right)$. Further there is no entry with $K_{i}=A_{2}(4)$.

Proof. We always find some $K_{i}=A_{3}(4), A_{5}(2)$, or $A_{6}(2)$. Look in $C_{K}(D)$; cf. Table C.

Lemma 2.41. Consider the entry

$$
E_{6}(2)=\left\langle A_{5}(2), A_{5}(2)\right\rangle, \quad p=3,
$$

in Table C. Let $L_{0}=L\left(K_{1} \cap K_{2}\right)=A_{2}(4)$ and $J=L_{0}, K_{1}$ or K_{2}. Pick a root group R of L_{0} and let $N=N_{J}(R), Q=O_{2}\left(N_{J}(R)\right)$. The following conditions hold:
(i) $\langle\lfloor Q, Q\rfloor, R\rangle \subseteq Z(Q)$;
(ii) N has no central factors on Q / R;
(iii) if y acts on J and centralizes $r \in R^{*}$, then y normalizes R;
(iv) if y acts on J and $y \in O_{2}\left(N_{\langle J, y\rangle}(R)\right)$, then y induces an inner automorphism.

Proof. Use the preceding lemma and the method of proof of Lemma 2.39.

Lemma 2.42. For any entry $G_{1}=\left\langle K_{1}, K_{2}\right\rangle$ of Table $\mathrm{C}, L\left(K_{1} \cap K_{2}\right)$ has a root sustem of rank at least two with the following exceptions:

$$
\begin{array}{ll}
D_{5}(q)=\left\langle{ }^{2} D_{4}(q),{ }^{2} A_{3}(q)\right\rangle, & p \mid q+1, \\
E_{6}(q)=\left\langle{ }^{2} D_{4}(q),{ }^{2} D_{4}(q)\right\rangle, & p \mid q+1,
\end{array}
$$

in which cases $L\left(K_{1} \cap K_{2}\right)={ }^{2} A_{2}(q), q>2$.
Proof. Check the possibilities for $L\left(K_{1} \cap K_{2}\right)$ in Table C and determined that the standard component (B, x, L) has $L={ }^{2} A_{3}(q), C_{3}(q),{ }^{2} D_{3}(q)$, or ${ }^{2} D_{4}(q)$. Invoke Table B and $m(B) \geqslant 4$ to eliminate the first three possibilities. Consult Table C again.

Lemma 2.43. There are no entries in Table C with $K_{i}=A_{2}(2)$ or $A_{3}(2)$, or with $L\left(K_{1} \cap K_{2}\right)=A_{2}(2)$. The entries with $L\left(K_{1} \cap K_{2}\right)=A_{3}(2)$ are
and

$$
\begin{array}{ll}
G_{1}=A_{7}(2)=\left\langle A_{5}(2), A_{5}(2)\right\rangle, & p=3 \\
G_{1}=D_{5}(2)=\left\langle{ }^{2} D_{4}(2),{ }^{2} D_{4}(2)\right\rangle, & p=3
\end{array}
$$

$$
\begin{aligned}
& G_{1} \subset G_{0}=E_{6}(2) \\
& G_{1}=E_{6}(2)=\left\langle A_{5}(2),{ }^{2} D_{4}(2)\right\rangle, \quad p=3 .
\end{aligned}
$$

In all these cases $B=B^{*}$ has rank 4 and $B \cap L\left(K_{1} \cap K_{2}\right)$ is conjugate in $N_{G_{i}}(B)$ to D.

Proof. $B=B^{*}$ has rank 4 from Table B. Exhibit G_{i} as $C_{\tilde{G}}(\rho)$ where \tilde{G} is the appropriate algebraic group and $\rho=I_{\mu} \sigma_{2}$. Take $D=\left\langle t\left(\eta_{1}\right), t\left(\eta_{2}\right)\right\rangle$; here $t\left(\eta_{i}\right)$ is in the standard form given by [10, Appendix 2]. Now $L\left(K_{1} \cap K_{2}\right)$ is $C_{\tilde{K}}(\rho)$ for an algebraic group \tilde{K} generated by root groups of \tilde{G} forming a root system of type A_{3}. Further $B \cap L\left(K_{1} \cap K_{2}\right)=B \cap \tilde{K}=\left\langle t\left(\eta_{3}\right), t\left(\eta_{4}\right)\right\rangle$, and reducing $t\left(\eta_{3}\right), t\left(\eta_{4}\right)$ by the algorithm of [10, Appendix 2] gives the last assertion of the lemma.

In the same way we prove
Lemma 2.44. In the entry

$$
G_{1}=E_{6}(2)=\left\langle A_{5}(2), A_{5}(2)\right\rangle
$$

of Table $\mathrm{C}, L\left(K_{1} \cap K_{2}\right)=A_{2}(4), B=B^{*}$ has rank 4 , and $B \cap L\left(K_{1} \cap K_{2}\right)$ is conjugate in $N_{G_{1}}(B)$ to D.

Lemma 2.45. Let G be a simple group which appears as G_{0} or G_{1} on Table C , and let a be an automorphism of G of order p. One of the following holds:
(i) a is G-conjugate to an inner automorphism induced by an element of B^{*} :
(ii) a is G-conjugate to an automorphism centralizing B^{*}, and a is conjugate by an inner-diagonal automorphism of G to a standard (with respect to some system of root groups of G) field automorphism of G;
(iii) one of the following occurs:

$$
G \quad O^{2^{\prime}\left(C_{G}(a)\right)}
$$

$A_{n}(q), p\|q-1, p\| n+1$	$A_{r}\left(q^{p}\right), r=\frac{n+1}{p}-1$
${ }^{2} A_{n}(q), p\|q+1, p\| n+1$	${ }^{2} A_{r}\left(q^{p}\right), r=\frac{n+1}{p}-1$
$E_{6}(q), p=3, \quad p \mid q-1$	${ }^{3} D_{4}(q)$ or $A_{2}\left(q^{3}\right)$
${ }^{2} E_{6}(q), p=3, \quad p \mid q+1$	${ }^{3} D_{4}(q)$ or ${ }^{2} A_{2}\left(q^{3}\right)$
$D_{4}(q), p=3, \quad p \mid q-1$	$G_{2}(q)$ or $A_{2}(q)$
$D_{4}(q), p=3$,	$p \mid q+1$
$D_{4}(q), p=3$	$G_{2}(q)$ or ${ }^{2} A_{2}(q)$
	${ }^{3} D_{4}(r), r^{3}=q$

Proof. If a is inner-diagonal, then the method of Burgoyne-Williamson
yields either (i) or one of the first few cases listed in (iii). Suppose a is not inner-diagonal. By [8, Proposition 1.1] either one of the last three cases of (iii) holds or a is conjugate by an inner-diagonal automorphism of G to a standard field automorphism σ.

Exhibit G as $O^{2}{ }^{\prime}\left(C_{\tilde{G}}(\rho)\right)$ as above and take an appropriate p th root λ of ρ such that λ and σ differ by an inner-diagonal automorphism of G. Observe that λ centralizes $C_{\tilde{T}}(\rho)$ where \tilde{T} is an appropriate Cartan subgroup of \tilde{G} containing B^{*}. It follows that a centralizes some group of inner-diagonal automorphisms isomorphic to B^{*}. But by the discussion preceding Lemma 2.33 there is just one such group up to conjugacy by an inner automorphism, so (ii) holds

Definition 2.46. Let the quasisimple group K satisfy $|Z(K)|$ odd and $K / Z(K)$ an untwisted group or a Steinberg variation in Chev(2). Let Σ be a root system and $X_{\alpha}, \alpha \in \Sigma$, root groups for K. If K has type ${ }^{2} A_{n}(q), n$ even, and α is long, let $w_{\alpha}=x_{\alpha}(0,1) x_{-\alpha}(0,1) x_{\alpha}(0,1)$. Otherwise, let $w_{\alpha}=x_{\alpha}(1)$ $x_{-a}(1) x_{a}(1)$. Finally, let H be a standard Cartan subgroup of K and set $N=\left\langle H, w_{a} \mid \alpha \in Z\right\rangle$. If $H \neq 1, N=N_{K}(H)$. We call a complement to H in N a standard copy of the Weyl group. The group $W=\left\langle w_{\alpha} \mid \alpha \in Z\right\rangle$ is called the standard copy of the Weyl group; it will be shown in Lemma 2.50 that it is isomorphic to the Weyl group.
If B^{*} is a subgroup of K described in Table B, a complement to $C_{K}\left(B^{*}\right)$ in $N_{K}\left(B^{*}\right)$ is called a standard copy of $A_{G}\left(B^{*}\right)$.

These notions all extend in a natural way to finite central products of groups as above.

Lemma 2.47. Let K be a field, H a group, M a $K H$-module. Then there exists an extension of KH-modules $0 \rightarrow M \rightarrow N \rightarrow T \rightarrow 0$ where (i) $T \cong \operatorname{Ext}_{K H}^{1}(K, M)=H^{1}(H, M)$ is a trivial module; (ii) if the extension is restricted to any nonzero submodule of T, it remains nonsplit; (iii) if $0 \rightarrow M \rightarrow N_{1} \rightarrow T_{1} \rightarrow 0$ is an extension of $K H$ modules with T_{1} a trivial module having property (ii), then there is a commutative diagram

In particular, all vertical arrows are inclusions.
Proof. The existence of $0 \rightarrow M \rightarrow N \rightarrow T \rightarrow 0$ follows from the properties of the Baer sum, described in [46, p. 69], for example. We give a sketch. Namely, let $\left\{f_{i} \mid i \in I\right\}$ be a K-basis of $\operatorname{Ext}_{K H}^{1}(K, M)$. To each f_{i}, we have an extension $0 \rightarrow M \rightarrow{ }^{\alpha_{i}} E_{i} \rightarrow K \rightarrow 0$. Define $N=\coprod_{i} E_{i} / M_{0}$, where M_{0} is the set
of all $\left(m_{i} \alpha_{i}\right) \in \bigsqcup_{i} M \alpha_{i} \leqslant \bigsqcup_{i} E_{i}, \quad m_{i} \in M, \quad \sum_{i} m_{i}=0$. The "universal property" may be proven using a Zorn's lemma argument.

Lemma 2.48. Let r be an odd prime, W an indecomposable Weyl group of rank at least 2 and let M be the nontrivial irreducible constituent of the natural \mathbb{Z}-lattice A for W reduced modulo r. Then $\operatorname{dim}_{F_{r}} H^{1}(W, M)=1$ when $W \cong W_{A_{n}}$ and $r \mid n+1$ or $W \cong W_{E_{6}}$ and $r=3$ and $\operatorname{dim}_{F_{r}} H^{1}(W, M)=0$ otherwise.

Proof. By inspection, M is faithful for W. If $O_{2}(W) \neq 1$, we quote [14] or [50]. Say $O_{2}(M)$. Then $W \cong W_{A_{n}}$ or $W_{E_{6}}$.

Case 1. $W=W_{A_{n}}$. Then $n \geqslant 2$. It is easy to check the result for $n=2$ or 3 , so assume $n \geqslant 4$ and that the result is true for $W_{A_{n-1}}$. Let V be a natural copy of $W_{A_{n-1}}$ in W. Consider an extension $0 \rightarrow M \rightarrow N \rightarrow T \rightarrow 0$, where T is a trivial $F_{r} W$-module and $C_{N}(W)=0$.

Suppose $H^{1}(V, M)=0$. Then, V has a fixed point in any nonzero coset of M in N. Thus, $N=M \oplus U$, as $\mathbb{F}_{r} V$-modules. Let $t \in W$ be a transvection not in V. We have $\operatorname{dim} C_{N}(t)=\operatorname{dim} N-1$. Thus, $W=\langle V, t\rangle$ and $C_{N}(W)=0$ imply that $\operatorname{dim} T=\operatorname{dim} U=0$ or 1 . We, thus, get $\operatorname{dim} H^{1}(W, M)=1$ in case $r \mid n+1$ by inspecting the permutation module over \mathbb{Z} reduced modulo r. In case $r \mid n+1$, the restriction $H^{1}(W, M) \rightarrow H^{1}(V, M)$ is a monomorphism, whence $I^{1}(W, M)=0$, as required.

We now argue that $H^{1}(V, M)=0$. Suppose otherwise. Then $r \mid n$ and $\operatorname{dim} H^{1}\left(V, M_{1}\right)=1$ by induction, where M_{1} is the nontrivial \mathbb{F}_{r}-constituent within M (we also need $H^{\prime}\left(V, F_{r}\right)=\operatorname{Hom}\left(V, \mathbb{F}_{r}\right)=0$). Since $r \nmid n+1$, $\operatorname{dim} M=n$. By Lemma 2.47 and $\operatorname{dim} H^{1}\left(V, M_{1}\right)=1, C_{M}(V) \neq 0$. Since M is irreducible for W. this means that M is a quotient of the natural permutation module S for $\mathbb{F}_{r} W$, whence $M \cong S_{0}$, where $S \cong S_{0} \oplus K$. Thus, M is isomorphic to the natural permutation module $F_{r} V$. Then Lemma 2.45 implies that $H^{1}(V, M)=0$, as required.

Case 2. $W \cong W_{r_{\mathrm{h}}}, H^{1}(W, M) \neq 0$. Then $r \| W \mid=2^{7} 3^{4} 5$, whence $r=3$ or 5 . We claim that $r=3$. Say $r=5$. Since W contains a natural copy of W_{1}, with index prime to 5 , case 1 gives $H^{1}(W, M)=0$. Thus, $r=3$.

Let N be the natural \mathbb{Z}-lattice for W reduced modulo 3 . Since the quadratic form on the lattice given by the Cartan matrix has determinant 3, we have a submodule N_{0}, the radial of the \mathbb{F}_{3}-valued form. Thus, $\operatorname{dim} N=6$, $\operatorname{dim} N_{0} \geqslant 1$. Since W contains a atural $W_{D_{5}}$ subgroup, we have $\operatorname{dim} N / N_{0} \geqslant 5$. whence $\operatorname{dim} N_{0}=1$ and $M=N / N_{0}$. From [57], there is some \mathbb{Z}-lattice in $\mathbb{Q} \otimes A$, stable under W, whose reduction modulo $3, E$, is indecomposable. Therefore, $\operatorname{Ext}^{1}\left(\mathbb{Z}_{3}, M\right) \neq 0$. Since M is self-dual, either statement gives $H^{1}(W, M) \neq 0$. Consider an extension $0 \rightarrow M \rightarrow M_{1} \rightarrow T \rightarrow 0$ with T a trivial module and $C_{M_{1}}(W)=0$ and $T=H^{1}(W, M)$; see Lemma
2.45. Regard E as a submodule of T. Let V, V_{1} be natural $W_{A_{5}}, W_{D_{5}}$ subgroups of W, respectively. Since $\operatorname{dim} H^{1}(V, E) \leqslant 1$ by Case 1, $\operatorname{dim} C_{M_{1}}(V) \geqslant \operatorname{dim} T$. Since $M_{1}=C_{M_{1}}\left(V_{1}\right) \oplus\left[M, V_{1}\right]$ and $\operatorname{dim}\left[M_{1}, V_{1}\right]=5$, $\operatorname{dim} C_{M_{1}}\left(V_{1}\right) \geqslant \operatorname{dim} T$. Without loss, $V \cap V_{1}$ contains $\langle h\rangle$, a group of order 5. Since $M_{1}=\left[M_{1}, h\right] \oplus C_{w_{1}}(h)$ and $\operatorname{dim}\left[M_{1}, h\right]=4, \operatorname{dim} C_{M_{1}}(h)=1+\operatorname{dim} T$. Since $C_{M_{1}}(h) \geqslant C_{M_{1}}(V)$ and $C_{M_{1}}\left(V_{1}\right)$, we get $C_{M_{1}}(V) \cap C_{M_{1}}\left(V_{1}\right) \neq 0$ if $\operatorname{dim} T \geqslant 2$. So, if $\operatorname{dim} T \geqslant 2, W=\left\langle V, V_{1}\right\rangle$ has a fixed point on M_{1}, a contradiction. Therefore, $\operatorname{dim} T=1, E=M_{1}$ and $\operatorname{dim} H^{\prime}(W, H)=1$, as required.

Lemma 2.49. Let $G_{1}, K_{1}, K_{2}, L_{0}$ be as in Table C with G_{1} of type $D_{n}(q),{ }^{2} D_{n}(q)$ or $C_{n}(q)$. If $D=C_{B} .\left(L_{0}\right)$ and $K=L\left(C_{G_{1}}(z)\right)$ for some $z \in D^{\#}$ and $\langle z\rangle=C_{B}(K)$, then $K=K_{1}$ or K_{2}.

Proof. We sketch the proof. Let M be the standard $2 n$-dimensional module over \mathbb{F}_{q}. By Table C , one of the following holds: L_{0} has type $D_{n-2}(q),{ }^{2} D_{n-2}(q)$ or $C_{n-2}(q)$ and centralizes a 2 -dimensional nonsingular subspace; or $p \mid q-1, L_{0}$ has type $A_{n-2}(q)$ or $A_{n-3}(q)$ and leaves invariant a pair of maximal totally singular subspaces meeting trivially; or $p \mid q+1, L_{0}$ has type ${ }^{2} A_{n-2}(q)$ or ${ }^{2} A_{n-3}(q)$ and $\left[M, L_{0}\right]$ may be regarded as the natural $n-1$ - or $n-2$-dimensional $\mathbb{F}_{q^{2}}$-module for L_{0}. By the action of $\left\langle B^{*}, L_{0}\right\rangle$ on M, any such K must be of type $D_{n-1}(q),{ }^{2} D_{n-1}(q), A_{n-1}(q)$ or ${ }^{2} A_{n-1}(q)$ in a natural representation as above. By inspecting the possibilities, one gets the lemma.

Lemma 2.50. Assume the notations of Definition 2.46. Let K be defined over \mathbb{F}_{q}.
(i) $w_{a}=w_{-a}$ is an involution, for all $\alpha \in \Sigma$. and $W=\left\langle w_{a} \mid \alpha \in \Sigma\right\rangle$ is isomorphic to the Weyl group of K.
(ii) If H is a standard Cartan subgroup of K and $V \leqslant K$ so that $H V=H W$ and $H \cap V=1$, then there is a inner-diagonal automorphism β in $C_{\text {Aut }(K)}(H)$ such that $V^{3}=W$, unless possibly K has type ${ }^{2} A_{n}(q)$ or ${ }^{2} E_{6}(q)$. In the latter cases, there are $\beta, \gamma \in$ Aut K such that $V^{\beta \gamma}=W$, where β is as before and $\gamma \in \operatorname{Inn}(K)$ and γ centralizes $H_{1}=\left\{y \in H \mid y^{q+1}=1\right\}$.
(iii) Let B^{*} be the subgroup of K described in Table $\mathrm{B}, p \mid q^{2}-1$. Then there is a standard copy W^{*} of $A_{K}\left(B^{*}\right)$ in K and any two such are conjugate by an element of $C_{\text {Aut } K}\left(B^{*}\right)$ in the group of inner-diagonal automorphisms, with the exception described in (ii) when B^{*} lies in a standard Cartan subgroup of K, where K has type ${ }^{2} A_{n}(q)$ and $p \mid q-1$.

Let W be as in (ii). Then, replacing W or W^{*} by a conjugate in Aut K, we have the following containment relations:

$$
\begin{array}{rlrl}
A_{n}(q), p \mid q-1 & W=W^{*} & { }^{2} D_{n}(q), p \mid q-1 & W=W^{*} \\
p \mid q+1 & W>W^{*} & p \mid q+1 & W \leqslant W^{*} \\
C_{n}(q), p \mid q-1 & W=W^{*} & E_{6}(q), p \mid q-1 & W=W^{*} \\
p \mid q+1 & W=W^{*} & p \mid q+1 & W>W^{*} \\
D_{n}(q), p \mid q-1 & W=W^{*} & { }^{2} E_{6}(q), p \mid q=1 & W=W^{*} \\
p \mid q+1 & W \geqslant W^{*} & p \mid q+1 & W<W^{*} \\
F_{4}(q), E_{n}(q), n=7,8, p \mid q \pm 1 & W=W^{*} \\
A_{n}(q), p \mid q^{2}+q+1, p \neq 3 & W>W^{*} \\
E_{6}(q), p \mid q^{2}+q+1, p \neq 3 & W>W^{*} \\
E_{8}(q), p \mid q^{2}+q+1, p \neq 3 & W>W^{*}
\end{array}
$$

(iv) Suppose $L \leqslant K, O_{2}(L)=1$ and L is generated by a nonempty, proper subset of $\left\{X_{\alpha}, Z\left(X_{a}\right) \mid \alpha \in \Sigma\right\}$. Then $W \cap L$ is a standard copy of the Weyl group for L. Furthermore, the standard copy of the Weyl group for L is contained in one for K,
(v) Let L be as in (iv). (a) If $p \mid q^{2}-1$ and B_{L}^{*} is a subgroup of L as in Table B, B_{L}^{*} is contained in a K-conjugate of B^{*}. Furthermore, if $B^{* *}$ is such a K-conjugate, then $B^{* *} \leqslant C_{K}(L) C_{K}\left(C_{K}(L)\right)$, unless L has type $A_{n}(q)$, K has type $A_{n+n^{\prime}}(q)$ with $p \mid q+1, n$ even and n^{\prime} odd or L has type $A_{n}(q), n$ even, $p \mid q+1$ and K has type $D_{n}(q), n^{\prime}$ even or type ${ }^{2} D_{n^{\prime \prime}}(q), n^{\prime \prime}$ odd, type $C_{n^{\prime \prime}}(q),{ }^{2} A_{n^{\prime \prime \prime}}(q)$ or $F_{4}(q)$. (b) If W_{L}^{*} is a standard copy in L of $A_{K}\left(B^{*}\right)$, then W_{L}^{*} lies in a K-conjugate of W^{*}. (c) Let $B \leqslant B^{*}$ as in Table $B, p \mid q^{2}-1$, and let (B, x, L) be a standard subcomponent. Say $W^{*}=W_{K}^{*}$, as in (b). Then $W^{*} \cap L$ is a standard copy of $A_{L}\left(B^{*}\right)$.

Proof. (i) Since our field has characteristic 2 the structure of the $\left\langle X_{\beta}, X_{-\beta}\right\rangle$ implies that w_{α}^{2} centralizes $K=\left\langle X_{\beta} \mid \beta \in \Sigma\right\rangle$, whence $\left|w_{a}\right|=2$. To show that W is isomorphic to W_{Σ}, the Weyl group of Σ, we verify the appropriate relations among the w_{α}.

Let $m_{\alpha \beta}$ be the order of $\bar{w}_{a} \bar{w}_{B}$ where bars denote images under $W \rightarrow W_{\Sigma}$. Set $u_{a B}=\left(w_{a} w_{B}\right)^{m_{a B}}$. We want to show that $u_{a B}=1$. We can use induction on the Lie rank of K to reduce to the case of rank 2, where the root system is possibly decomposable. If decomposable, K is a central product and the result is clearly true. If not decomposable, then K has type $A_{2}, C_{2}, G_{2},{ }^{2} A_{3}$, ${ }^{2} A_{4}$, or ${ }^{3} D_{4}$. By dropping to the fixed point subgroup of the field automorphism, which contains W, it suffices to treat the cases A_{2}, C_{2}, G_{2}. These cases may be done by inspection.
(ii) The statement that V and W are H-conjugate would follow from
the assertion $H^{1}(W, H)=0$. This follows from [14] or [50] unless W has type A_{n} or E_{6}. The remaining statement follows from Table B, Lemmas 2.48 and 2.49, and the structure of Aut K.
(iii) Let us first suppose that B^{*} lies in a standard Cartan subgroup H of K. Then the statements follow from (i) and (ii). Thus, we may suppose otherwise.
We have that B^{*} lies in H_{1}, a standard Cartan subgroup of K_{1}, where $K \leqslant K_{1} \in \operatorname{Chev}(2)$ and $K=L\left(C_{K_{1}}(\alpha)\right)$ where α is a field or field-graph automorphism of order 2 or 3 of K_{1}. We shall do the case where $|\alpha|=2$ in detail, and leave $|\alpha|=3$ as an exercise.

Let W_{1} be the standard copy of the Weyl group for $K_{1}, W_{1} \leqslant N_{K_{1}}\left(H_{1}\right)$. By Table B and the accompanying discussions, we may take $\alpha=w_{1} \sigma$, where σ is the standard field or field-graph automorphism of K_{1} and $w_{1} \in W_{1}$ (considered as a subgroup of Aut K_{1}), $\left|w_{1}\right|=2, \sigma w_{1}=w_{1} \sigma$. Since $W_{1}^{\alpha}=W_{1}$, $C_{H_{1} W_{1}}=C_{H_{1}}(\alpha) C_{W_{1}}(\alpha)$. The required copy of $A_{K}\left(B^{*}\right)$ is the subgroup $C_{w_{i}}(\alpha)$.
The statements about conjugacy follow as in the proof of (ii). The table is filled by studying the construction of Table B and the standard modules for the groups in $\operatorname{Chev}(2)$.
(iv) The statement about $W \cap L$ is clear from the definition of W and the fact that if Σ_{1} is a subset of Σ which is itself a root system under the addition of Σ, then $W_{\Sigma_{1}}=\left\langle w_{a} \mid \alpha \in \Sigma_{\mathrm{t}}\right\rangle$. If W_{L} is a standard copy of the Weyl group of L, the last part of (iv) follows unless possibly not all such groups are conjugate in L. In this case, however, L is proper in K and L has type $A_{n},{ }^{2} A_{n}, E_{6}$ or ${ }^{2} E_{6}$. Thus, $A_{K}(L)$ induces the full group of innerdiagonal automorphisms on L, whence all such standard copies of the Weyl group of L are conjugate in $N_{K}(L)$, and we may proceed as above.
(v) It suffices to treat the case that B^{*} does not lie in a Cartan subgroup of K.
(a) Suppose that some $Z\left(X_{\alpha}\right)$ lies in L, where α is a root in Σ such that $\alpha^{\perp}=\{\beta \in \Sigma \mid \alpha \perp \beta\}$ has rank one less than the rank of Σ and α is long in case there are two root lengths. Suppose further that K does not have type $B_{2}(2)$ or ${ }^{2} A_{3}(2)$ or ${ }^{2} A_{4}(2)$. Then $S=\left\langle Z\left(X_{\alpha}\right), Z\left(X_{\alpha}\right)\right\rangle=A_{1}(q)$ for some q and $C_{K}(S)^{\prime}=L\left(C_{K}(S)\right)$ is a central extension of a group in $\operatorname{Chev}(2)$. We may arrange for $B_{S}^{*}=B^{*} \cap S$ to have order p. Then $B^{*} \leqslant C_{K}\left(B_{L}^{*}\right)=H_{S} \cdot C_{K}(S)$ where H_{S} is the group of order $q+1$ in S containing B_{L}^{*}. If S has rank at least 2, we apply induction to the pair $\left(L \cap C_{K}(S)^{\prime}, C_{K}(S)^{\prime}\right)$ in place of (L, K). If $L=S$, the result is clear. If L has rank 1 but $L \neq S$, then $L=S U(3, q)$ and K has type ${ }^{2} A_{n}(q)$. The embedding of B^{*} in K makes the result clear in his case. Finally, dropping the assumption that K have type $B_{2}(2),{ }^{2} A_{3}(q)$ or ${ }^{2} A_{4}(2)$, we verify (a) directly in these cases.

Now suppose that $Z\left(X_{\alpha}\right)$ and α may not be chosen as above. Then either K has type $A_{n}(q)$, for n, q or else Σ has two root lengths and the root groups in L are associated to only one root length. If K has type $A_{n}(q)$, the result is clear from the structure of $\operatorname{Aut}(K)$. So, assume K does not have type $A_{n}(q)$. Let l be the Lie rank of $K, l \geqslant 2$. Suppose Σ has type B_{n}. Since the extended Dynkin diagram looks like

the root lengths for L are short. In Σ, the sum of two orthogonal short roots is a long root. So, K is untwisted, i.e., K has type $B_{n}(q)=C_{n}(q)$ and L is a direct factor of $\Pi\left\langle x_{a}, x_{-\alpha}\right\rangle$, where $\{\alpha,-\alpha\}$ sums over all n pairs of distinct short roots. But here. it is clear that L contains a copy of \mathbb{Z}_{q+1}^{n}, as required. (Perhaps a more proper interpretation here is that for this K, the α 's should be regarded as long roots in a root system of type C_{n}.)

Suppose Σ has type C_{n}. Since the extended Dynkin diagram looks like $\cdots==\because — — — — — — — — —$ the roots for L are short. The structure of Σ shows that we may arrange for L to lie in the natural $A_{l-1}(q)$ subgroup of K, where Σ has rank l and K has type $C_{l}(q)$ or ${ }^{2} A_{r}\left(q^{1 / 2}\right)$ for $r=2 l-1$ or $2 l$. Our assertions now follow from inspection of the standard module.

Suppose Σ has type F_{4}, K of type $F_{+}(q)$ or ${ }^{2} E_{6}(q), p \mid q+1$. The extended Dynkin diagram looks like

the three roots on the left are long. In Σ, the sum of two orthogonal short roots is long. So, if $K-{ }^{2} E_{5}(q)$, the roots for L are short and L has rank at most 2. By properties of Σ, we may assume that $L \leqslant\left\langle X_{+a}, X_{ \pm B}\right\rangle$, and the assertions are easily checked. If $K=F_{4}(q)$ and the previous sentence does not apply, we may use the graph automorphism to invoke symmetry.
(b) By replacing B^{*} by a conjugate, we may assume that B_{L}^{*} is the group of Table B in L. If B^{*} lies in a Cartan subgroup of K, this is clear. Supposing otherwise, we proceed as follows. Since $L<K, N_{K}(L)$ induces on L the full group of inner-diagonal automorphisms, where all standard copies of $A_{L}\left(B^{*}\right)$ fuse in $N_{K}(L)$. We claim that $H^{1}\left(A_{L}\left(B^{*}\right), B^{*}\right)=0$. We have that $B^{*}=B_{1} \times B_{2}$ as $A_{L}\left(B^{*}\right)$ modules, where $\left[B_{2}, A_{L}\left(B^{*}\right)\right]=1, B_{1}$ is indecomposable of dimension the rank of $A_{L}\left(B^{*}\right)$ as a Weyl group. We have already established that $H^{1}\left(A_{L}\left(B^{*}\right), B^{*} / C_{B^{*}}\left(A_{L}\left(B^{*}\right)\right)\right)=0$; see Lemma 2.48. Since $A_{I}\left(B^{*}\right)$ is generated by elements of order $2, H^{1}\left(A_{L}\left(B^{*}\right), C_{B^{*}}\left(A_{L}\left(B^{*}\right)\right)\right)=0$,
whence the claim follows. The claim now implies at once that the standard copy of $A_{I}\left(B^{*}\right)$ fuses into the standard copy of $A_{K}\left(B^{*}\right)$ in $N_{K}\left(B^{*}\right)$.
(c) By (a) and (b), it suffices to treat the case that L is not generated as in (iv). According to Table P , this means that $p \mid q+1$ and (L, K) is one of

$$
\begin{gathered}
\left(A_{2}(q), A_{5}(q)\right), \quad\left({ }^{2} A_{n}(q), D_{n+\delta}(q)\right), \quad \delta=1,2, \\
\left({ }^{2} A_{n}(q),{ }^{2} D_{n+\delta}(q)\right), \quad \delta=1,2, \\
\left({ }^{2} A_{n}(q), C_{n+1}(q)\right), \quad\left({ }^{2} A_{n}(q), E_{n} \cdot(q)\right), \\
\left(D_{n}(q),{ }^{2} D_{n+1}(q)\right), \quad\left({ }^{2} D_{n}(q), D_{n+1}(q)\right), \\
\left({ }^{2} E_{6}(q), E_{7}(q)\right) .
\end{gathered}
$$

The assertion may be verified, case by case.

3. Linear Groups, Presentations and a Fusion Controlling Property of K-Groups

The first several results in this section are mainly concerned with answering the following question: given (B, x, L) and $B \subseteq B^{*}$ as in Sections 1 and 2, what are the possibilities for $A_{G}\left(B^{*}\right)$? We know that $A_{G}\left(B^{*}\right)$ is a subgroup of $G L\left(m\left(B^{*}\right), p\right)$ in which the stabilizer of a nonzero vector is essentially $A_{L}\left(B^{*}\right)$, a Weyl group.

Once we determine $A_{G}\left(B^{*}\right)$, the action on B^{*} is essentially unique, i.e., the reduction modulo p of the weight or root lattice when $R\left(B^{*}\right):=$ $\left\langle\left\{r \in A_{G}\left(B^{*}\right) \mid r\right.\right.$ is diagonalizable with eigenvalues $\left.\{-1,1,1, \ldots, 1\}\right\rangle$ is a Weyl group. This is an induction argument when $R\left(B^{*}\right) \cong W_{A_{n}}, W_{D_{n}}$ or $W_{C_{n}}$; an exercise when $R\left(B^{*}\right) \cong W_{E_{n}}$ (use the natural containments $W_{A_{n}} \leqslant W_{E_{n}}$) and $R\left(B^{*}\right) \cong W_{I_{+}}\left(\right.$use $\left.O_{2}\left(W_{I_{+}}\right) \cong 2_{+}^{1++}\right)$.

Lemma 3.1. Let $p>0$ be an odd prime, W an indecomposable Weyl group of rank $n \geqslant 3$ and M a nontrivial $F_{0} W$-module which is a section of the reduction modulo p of the natural \mathbb{Z}-free $\mathbb{Z} W$-module of rank n. Let $H \subseteq W, H$ a homocyclic group of rank $t \geqslant 1$ and exponent $p^{e}>3$. Suppose that $r_{1}=\operatorname{dim} M, r_{0}=\operatorname{dim} C_{M}(H)$. Then $t+r_{0}<r_{1}$. The same conclusion holds vacuously if W is a Weyl group of type D_{4} extended by a group of graph automorphisms.

Proof. We first do the case that H lies in a subgroup $V \subseteq W$, where V is generated by fundamental reflections and $V \cong \Sigma_{n^{\prime}}$, where $n^{\prime}=n$ or $n-1$. If W has type A_{n}, we require $V=W$. Note that this case always occurs when
W has type $A_{n}, B_{n}=C_{n}, D_{n}, E_{8}$ and E_{7}. In this case, $r_{1}=n^{\prime}, n^{\prime}-1$ or $n^{\prime}-2$ and $\left.M\right|_{F_{p} V}$ is a section of the natural $\mathbb{F}_{p} V$-permutation module M_{0}.

In the natural action of V on $\left\{1,2, \ldots, n^{\prime}\right\}$, let $0_{1}, 0_{2}, \ldots, 0_{1}$, be the orbits of H. Also, $r_{0}=l$ by the structure of M_{0}. We argue that $n^{\prime}-l \geqslant t\left(p^{e}-1\right)$. We first prove the inequalities $n_{i}-1 \geqslant t_{i}\left(p^{e}-1\right)$, where $n_{i}=\left|\theta_{i}\right|$ and $t_{i} \geqslant 1$ is the rank of $\delta^{e-1}\left(H / C_{H}\left(\theta_{i}\right)\right)$ for $i \in\{1, \ldots, l\}$ such that $t_{i} \geqslant 1$. These inequalities follow from the fact that for $\Sigma_{n_{i}}$ to contain $Z_{p^{e}}^{t_{i}}$ as a semi-regular subgroup we must have $n_{i} \geqslant t_{i} p^{p}$. Now sum these inequalities over i and use the fact that $\sum_{t_{i} \geqslant 1} t_{i} \geqslant t$, which follows from $H \subseteq \Sigma_{n^{\prime}}$.

Now to prove that $t+r_{0}<r_{1}$. Suppose $t+r_{0} \geqslant r_{1}$. Then $n^{\prime}-2 \leqslant r_{1} \leqslant$ $t+r_{0} \leqslant t+n^{\prime}-t\left(p^{e}-1\right)$, whence $2 \geqslant t\left(p^{e}-2\right) \geqslant 3 t \geqslant 3$, a contradiction.

We have now done a special case, and it remains to treat the case where H does not obviously lie in a suitable V. Thus, W has type E_{6}, E_{7} or E_{8} and $p^{e}=5,7$ or $9 .\left(E_{4}\right.$ is out since $p^{e}>3$; and W is not an cxtension of $W_{D_{4}}$ for the same reason.) If $p^{e}=7$, then $n=7$ or 8 and there is a suitable $V \cong \Sigma_{8}$ in W. If $p^{e}=5$ and $t=1, V \cong \Sigma_{6}$ works. If $p^{e}=5$ and $t=2$, then $n=8$ and we have $H \leqslant V_{1} \times V_{2}, V_{1} \cong V_{2} \cong \Sigma_{5}$ (think of $V_{1} \times V_{2} \leqslant W_{E_{8}}$ corresponding to the natural containment $\left.0^{-}(4,2) \times 0^{-}(4,2) \leqslant 0^{+}(8,2)\right)$. Thus, $r_{1}=8$, $r_{0} \leqslant 2$, and $t=2$ satisfy the required inequality. Finally, we look at the case $p^{e}=9$. Since $W_{E_{n}}$ has Sylow 3-group $P \cong Z_{3} \sim Z_{3}$ for $n=6,7$ and $P \cong\left(Z_{3} \sim Z_{3}\right) \times Z_{3}$ for $n=8$, it follows that $t=1$ and $H=\langle h\rangle \cong Z_{9}$ satisfies $r_{0} \leqslant r_{1}-3$, whence $r_{0}+t \leqslant r_{1}-2<r_{1}$, as required.

Lemma 3.2. If r, s are conjugate reflections in a Weyl group, then $|r s|=1,2$ or 3 .

Proof. Let $\rho: W \rightarrow(n, R)$ be the natural representation of the Weyl group W. Since the eigenvalues for $r s$ lie in $R,|r s|=1,2,3$ or 6 . If $|r s|=6$, there are associated roots forming an angle of $5 \pi / 6$, i.e., $W \cong W_{G_{2}}$. But then r and s are not conjugate.

Lemma 3.3. If r, s, t are reflections in a Weyl group W and if

is satisfied, then $\langle r, s, t\rangle \cong \Sigma_{3}$ or Σ_{4}.
Proof. Let $H=\langle r, s, t\rangle$. Since $r^{H^{\prime}}$ is a class of 3-transpositions in W, any solvable subgroup S of H inverted by r has order 2, 3 or 6 . By Lemma 3.2, H is a quotient of $Z^{2} \Sigma_{3}$. Let ρ be the natural representation $\rho: W \rightarrow O(n, R)$. Then $H^{\rho} \leqslant O(3, R)$, whence any elementary abelian 3-subgroup of H has order 3. Thus, $3^{2} \nmid|H|$. So, if $H \nsubseteq \Sigma_{3}, O_{2}(H) \cong Z_{2} \times Z_{2}$ and $H \cong \Sigma_{4}$.

Proposition CF. Let F be a field of characteristic $p \neq 2$ and B and F vector space of dimension $n+1, n \geqslant 3$. Suppose that B has a basis b_{0}, \ldots, b_{n} and that $H=R S \leqslant \operatorname{Aut}_{F}(B)$, where $R=\left\langle r_{1}, \ldots, r_{n}\right\rangle$ is elementary abelian of order 2^{n} and $b_{i}^{r_{j}}=b_{i}$ if $i \neq j$ and $b_{i}^{r_{i}}=b_{i}^{-1}$, and where $S \cong \Sigma_{n}$ acts on R and $\left\{b_{1}, \ldots, b_{n}\right\}$ in the natural way.
Suppose that $K \leqslant \operatorname{Aut}_{F}(B), K$ is finite and $H=C_{K}\left(b_{0}\right)$ or $n=4$, $C_{K}\left(b_{0}\right) \cong W_{F_{4}}$ or $W_{\digamma_{\perp}}\langle\gamma\rangle$ where γ is the graph automorphism. Assume that $H^{*}=N_{\kappa}\left(\left\langle b_{0}\right\rangle\right)=H \times\langle c\rangle \subseteq K$ where c centralizes $\left\langle b_{1}, \ldots, b_{n}\right\rangle$. Let r_{0} he defined by $b_{0}^{r_{0}}=b_{0}^{-1}$ and $b_{i}^{r_{0}}=b_{i}$ if $i \neq 0$. Let $R^{*}=\left\langle R, r_{0}\right\rangle$. Then one of the following holds
(a) $r_{0}^{K} \cap\left\langle H^{*},-1_{B}\right\rangle \subseteq R^{*}$ and either
(i) $R^{*} \triangleleft K$ and $K / R^{*} \cong \Sigma_{n+1}$; or
(ii) $p>0, K=O_{p}(K) H^{*}, O_{p}(K)$ is elementary abelian and is an $F_{p} H^{*}$-submodule of the stability group of $B \supseteq\left\langle b_{1}, \ldots, b_{n}\right\rangle \supseteq 1$.
(b) $r_{0}^{K} \cap\left\langle H^{*},-1_{B}\right\rangle \nsubseteq R^{*}$ and either
(i) $n=3, O_{2}(K) \cong 2_{+}^{1+4}, K / Z(K) \cong W^{*} / Z\left(W^{*}\right)$ where $W^{*} \cong W_{F_{4}}, a$ subgroup of index 2 in $W_{r_{+}}$, or $W_{F_{4}}\langle\gamma\rangle$ where γ is the graph automorphism of $W_{F_{\mathrm{s}}}$ (depending on F, there may be more than one possible K satisfying these conditions if $W^{*} \cong W_{F_{\star}}\langle\gamma\rangle$); or
(ii) $n=3, p=3, K^{\prime} \cong A_{6}, K / Z(K) \cong \Sigma_{6}$ or Aut A_{6} and K has a subgroup isomorphic to $\Sigma_{6} ;$ if $K / Z(K) \cong$ Aut $A_{6}, K / K^{\prime \prime} \cong D_{8:}$ in any case $-I \in K$.
(iii) $n=4, p=3, H \cong W_{F_{4}}$ and $K \cong Z_{2} \times W_{E_{6}}$ or H is isomorphic to $W_{D_{4}}\langle\theta\rangle$, where θ is a graph automorphism of order $3,-1_{B} \notin H^{*}$, $\left\langle-1_{B}, I^{*}\right\rangle \cong Z_{2} \times W_{F_{4}}$ and $K \cong W_{E_{6}}$.

Proof. We begin by observing that it does no harm to assume that $-1_{B} \in H^{*}$. The conclusions where $-1_{B} \notin H^{*}$ are easily deduced from those where $-1_{B} \in H^{*}$. Also, similar considerations allow us to assume that every element of K has determinant ± 1 on B. So, henceforth, we have $-1_{B} \in H^{*}$ and if $k \in K$, $\operatorname{det} k= \pm 1$. Thus, $c=r_{0}$. Define $K_{1}=\langle k \in K \mid \operatorname{det} k=1\rangle$.

We first show that if $O(K) \neq 1$, then we are in case (a)(ii). Namely, $O\left(H^{*}\right)=1$ means that $C_{O(K)}\left(r_{0}\right)=1$, whence $O(K)$ is abelian. Denying (a)(ii) gives $O_{p^{\prime}}(K) \neq 1$ whence $\left|O_{p^{\prime}}(K)\right|=3$ and $\operatorname{dim}_{F}[B, O(K)]=2$. Thus, H^{*} has a 2 -dimensional constituent on B, contradiction. So, $O(K)=1$, and we also get that $Z^{*}(K)=\left\langle-1_{B}\right\rangle$ since $H^{*} \subset K$.

First dispose of the special case $n=4$ and $3^{2}| | H \mid$, i.e., H is an extension of $W_{D_{4}}$ by Σ_{3}, its group of graph automorphisms or $H \cong W_{F_{4}}$ or $W_{F_{4}}\langle\gamma\rangle$ where γ is the graph automorphism of F_{4}. Work in K_{1}, so that $H_{1}=H^{*} \cap K_{1} \cong H$ satisfies $O_{2}\left(H_{1}\right) \cong 2_{+}^{1+4}$ and $H_{1} / O\left(H_{1}\right) \cong \Sigma_{3} \times \Sigma_{3}$ or
$\left.\Sigma_{3}\right\rangle Z_{2}$. Since $z=r_{1} r_{2} r_{3} r_{4}=-r_{0} \notin Z^{*}\left(K_{1}\right)$, there is $t \in z^{K_{1}} \cap H_{1}, t \neq z$. By looking at traces, $t \notin O_{2}\left(H_{1}\right)$; also t does not invert $O_{2,3}\left(H_{1}\right) / O_{2}\left(H_{1}\right)$ since z has trace -3 . It follows that $U_{1}=C_{O_{2}\left(H_{1}\right)}(t) \cong Q_{8}$ or \mathbb{Z}_{2}^{3}. If Q_{8}, take $g \in K$ so that $t^{g}=z$. But then the above remarks about fusion of z force $U^{k} \cap O_{2}\left(H_{1}\right)=1$, a contradiction. Thus, $U_{1} \not \not \equiv Q_{8}$. Now let $U=\left\langle U_{1}, t\right\rangle \cong Z_{2}^{4}, \quad N=N_{K_{1}}(U)$. Our fusion information implies that $N \cong W_{D_{5}} \cong Z_{2}^{4} \Sigma_{5}$. Fusion in H_{1} and in N imply that N^{\prime} meets two K_{1}-classes of involutions, i.e., those of z and of $v \in O_{2}\left(H_{1}\right)-\langle z\rangle,|v|=2$. Also, if $t \in N$ represents a transposition in Σ_{s} and t and z have the same set of eigenvalues, then $t \sim{ }_{\kappa} z$. Suppose $\left|K_{1}: N\right|$ is even. Since z is 2-central in K_{1}, this means $K_{1} \cong W_{H_{1}}\langle\gamma\rangle$. We argue that $\gamma \notin K_{1}^{\prime}$. We have that $V=C_{H_{1}}(\gamma) \cong D_{16}$. Take $g \in K_{\text {I }}$ so that $\gamma^{R} \in T$, a Sylow group of the subgroup of H_{1} corresponding to $W_{t_{4}}$. We may assume that $\gamma^{g}=v$ or z and that $V^{g} \leqslant T\langle\gamma\rangle$, as x and v are cxtremal in $T\langle\gamma\rangle$. Since $z^{k} \neq z$, we have $V^{g} \cap O_{2}\left(H_{1}\right)=1$, a contradiction. So, $\left|K_{1}: N\right|$ is odd, $H_{1} \nsubseteq W_{t_{4}}\langle\gamma\rangle$ and so $H_{1} \cong W_{D_{4}} \cdot \Sigma_{3}$. Now take the standard monomial matrix representation ρ for N. We may assume that

$$
z^{\rho}=\left(\begin{array}{ccccc}
1 & & & & \\
& -1 & & & \\
& & -1 & & \\
& & & -1 & \\
& & & & -1
\end{array}\right), \quad t^{\rho}=\left(\begin{array}{rrrrr}
1 & & & & \\
& -1 & & & \\
& & -1 & & \\
& & & 0 & -1 \\
& & & -1 & 0
\end{array}\right)
$$

Then

$$
(z t)^{\rho}=\left(\begin{array}{ccccc}
-1 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & & 0 & 1 \\
& & & 1 & 0
\end{array}\right)
$$

Taking traces, we see that $z l$ dues not fuse into N^{\prime}. Thus, $K^{\prime}=K_{1}^{\prime}$ has index 2 in K_{1} and $C_{K},(z)=2_{+}^{1+4}\left(\Sigma_{3} \times Z_{3}\right)$ has a Sylow 2-group isomorphic to that of A_{8}. Since $K \leqslant G L(5, F)$, a theorem of Gorenstein and Harada [29] identifies $K^{\prime} \cong \Omega(5,3)$ (and $p=3$). Thus, $K \cong Z_{2} \times O(5,3) \cong Z_{2} \times W_{F_{n}}$, i.e., conclusion (b)(iii) holds.

We consider another special case, that of $Q=O_{2}(K) \supset\left\langle-1_{B}\right\rangle$. We may assume that $Q \neq R^{*}$. Define $R_{0}=\left\langle r_{i} r_{j} \mid i, j=1,2, \ldots, n\right\rangle \cong Z_{2}^{n-1}$. We claim that $n=3$. Define $Q_{1}=Q \cap K_{1}$. Letting $Q_{0}=N_{Q_{1}}(R)$, we have that Q_{0} stabilizes $C_{B}(R)=\left\langle b_{0}\right\rangle$, whence $Q_{0}=\left\langle R,-1_{B}\right\rangle$ or $n=3$. If $n \geqslant 4, N_{Q_{1}}\left(Q_{0}\right)$ preserves $\left\{\left\langle b_{0}\right\rangle, \ldots,\left\langle b_{n}\right\rangle\right\}$, the eigenspaces for Q_{0}, whence $Q_{1}=Q_{0}$ and $K=H^{*}$. So, $n=3$ and a similar argument gives that $Q_{0}=O_{2}\left(H^{*} \cap K_{1}\right) \cong$ 2_{+}^{1+4}. Since $C_{K}\left(Q_{0}\right) \leqslant H^{*}$, it follows that $Q_{0}=Q=C_{K}(Q)$ and that $K / Z(K) \rightarrow$ Aut Q. This leads to case (b)(i).

Having disposed of these special cases, we now have $O(K)=1$, $O_{2}(K)=\left\langle-1_{B}\right\rangle, H \cong W_{C_{n}}$ and $H^{*} \cong Z_{2} \times W_{C_{n}}$. We now deal with the cases (a) and (b).
(a) Since $Z^{*}(K)=\left\langle-1_{B}\right\rangle, r_{0}^{K} \cap H^{*} \neq\left\{r_{0}\right\}$. An eigenvalue argument shows that $r_{0}^{K} \cap H^{*}=\left\{r_{0}, r_{1}, r_{2}, \ldots, r_{n}\right\}$. Thus, $N=N_{k}\left(R^{*}\right)$ satisfies $N / R^{*} \cong \Sigma_{n+1}$.

For $v \in N$, define property (*): if $g \in K, v^{g} \in N$, then $g \in N$. We have (*) for r_{0}, and $|K: N|$ is odd.

Let $w_{i}=r_{0} r_{1} \cdots r_{i}$ for $i=0,1, \ldots, n-1, C_{i}=C_{K}\left(w_{i}\right), C_{i}^{+}=C_{C_{i}}\left(\left\langle b_{0}, \ldots, b_{i}\right\rangle\right)$, $C_{i}^{-}=C_{C_{i}}\left(\left\langle b_{i+1}, \ldots, b_{n}\right\rangle\right)$. Since $N_{K}\left(\left\langle b_{j}\right\rangle\right) \leqslant N$ for all j, C_{i}^{+}and C_{i}^{-}lie in N for all i. Since $r_{0} \in C_{i}^{-}$and $r_{n} \in C_{i}^{+}$for all $i,\left({ }^{*}\right)$ implies that $C_{i} \leqslant N$ for all i. Take $g \in K$ so that $w_{2}^{g} \in N$. Write $w_{2}^{g}=r s$ for $r \in R^{*}, s \in S$. Assume $s \neq 1$. The eigenvalues for w_{2} restrict s to be (up to conjugacy) t_{01} or $t_{01} t_{23}$. If w_{2}^{g} centralizes some r_{i}, then $r_{i} \in C_{i}^{g} \leqslant N^{g}$, whence $g \in N$, a contradiction. Therefore, we may assume $n=3$ and $w_{2}^{\mathrm{g}}=t_{01} t_{23}$. In the group $\bar{K}=K /\left\langle-1_{B}\right\rangle$, \bar{R}^{*} is a self-centralizing eights group. Thus, we quote a result of Harada [40] to identify \bar{K}. Since $K \rightarrow G L(5, F)$ and $O_{2}(K)=Z(K)$, the only possibility is $K^{\prime} \cong A_{6}$, whence $\left\langle r_{0}, K^{\prime}\right\rangle \cong \Sigma_{6}$. But then (a) is violated. It follows that (*) holds for w_{2}. Now take any w_{i} and any $g \in K$ so that $w_{i}^{g} \in K$. Then w_{i}^{ε} centralizes some N-conjugate w^{\prime} of w_{2}, whence $w^{\prime} \in C_{i}^{q} \subseteq N^{\mathrm{g}}$. Using $\left(^{*}\right), g \in N$. Thus, (*) holds for each w_{i}. Define $\mathscr{C}=\bigcup_{i=0}^{n-1} w_{i}^{K}$. Then $\bar{K}_{0}=\langle\bar{X}\rangle$ satisfies a criterion of Aschbacher [2], whence \bar{K}_{0} has a strongly embedded subgroup (as $O\left(\bar{K}_{0}\right)=O_{2}\left(\bar{K}_{0}\right)=1$), a contraction.
(b) Here, we must prove that $n=3$. Take $t \in r_{0}^{K} \cap H^{*}, t \in R^{*}$. Then, an eigenvalue argument shows that we may assume $t=t_{12}$, where $t_{i j} \in S \cong \Sigma_{n}$ is the element interchanging b_{i} with b_{j} and fixing the other b_{j}. Define $\quad C=C_{K}(t), \quad C^{+}=C_{C}([B, t]), \quad C^{-}=C_{C}\left(C_{B}(t)\right) \quad$ as before. Then $C^{+} \cap H^{*}=R_{1} S_{1}$ where $R_{1}=\left\langle r_{j} \mid j \neq 1,2\right\rangle \cong Z_{2}^{n-1}$ and $S_{1}=\left\langle t_{i j} \mid i, j \neq 1,2\right\rangle \cong$ Σ_{n-2} and $C^{\prime} \cong Z_{2}^{n} \quad \Sigma_{n-1}$. Let π be the natural projection of C^{\prime} onto Σ_{n-1}. Then $\left\langle r_{0}\right\rangle \times R_{2} S_{1} \leqslant C^{+}$, where $R_{2}=\left\langle r_{j} \mid j \neq 0,1,2\right\rangle \cong Z_{2}^{n-2}$. Suppose $n \geqslant 5$. Then, $\left(R_{2} S_{1}\right)^{\pi}$ must contain a natural copy of Σ_{n-2}. Since r_{0}^{π} commutes with this image, $r_{0}^{\pi}=1$, i.e., $r_{0} \in\left(R^{*}\right)^{g}$ where $g \in K$ satisfies $r_{0}^{g}=t$. But $t \in\left(R^{*}\right)^{g}$ and $C_{C+\cap\left(R^{\cdot}\right) t}\left(R_{2} S_{1}\right)$ is a conjugate of $\left\langle r_{1}, r_{2} r_{3} \cdots r_{n}\right\rangle$, which contains only one element with the eigenvalues of r_{0}. So $r_{0}=t$, which is absurd. This leaves the cases $n=3$ and 4 .

If $n=4$, then it is easy to see that r_{0} is 2 -central in H^{*} and in K. We may then imitate the special argument given at the beginning of the proof to get $K \cong Z_{2} \times W_{E_{6}}$. But this is a contradiction since $3^{2} \chi\left|H^{*}\right|$ here.

We have $n=3, H^{*} \cong Z_{2} \times W_{C_{3}} \cong Z_{2} \times Z_{2} \times \Sigma_{4}$. Since $F^{*}(K)$ is not a 2 group, a theorem of Harada [40] implies that $F^{*}(K) \cong A_{6}$ and $p=3$. This leads to (b)(ii).

The proof of our proposition is complete.
(3.5) Proposition D. Let F be a field of characteristic $p \neq 2$ and B an F-vector space of dimension $n+1, n \geqslant 3$. Suppose that B has a basis $b_{0}, b_{1}, \ldots, b_{n}$ and that $H \subseteq H^{*} \subset K$ are finite subgroups of $\mathrm{Aut}_{F}(B)$ with the following properties:
(i) $H^{*}=N_{K}\left(\left\langle b_{0}\right\rangle\right) \leqslant N_{K}\left(\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle\right)$.
(ii) $C_{K}\left(b_{0}\right)$ contains the subgroup H and $H=C_{K}\left(b_{0}\right)$ or $n=4$ and $C_{K}\left(b_{0}\right)$ contains H as a normal subgroup of index 3 (hence $H=O^{2 \prime}\left(C_{K}\left(b_{0}\right)\right.$) is characteristic) where $H=R S, \quad R=\left\langle u_{i j} \mid i, j=1, \ldots, n, \quad i \neq j\right\rangle \cong Z_{2}^{n-1}$, $S \cong \Sigma_{n}, b_{i}^{u_{j h}}=b_{i}^{-1}$ if $i \in\{j, k\}$ and $b_{i}^{u_{j k}}=b_{i}$ otherwise, and where S acts naturally on $\left\{b_{1}, \ldots, b_{n}\right\}$ and on R.
(iii) $H^{*}=\left\langle C_{K}\left(b_{0}\right), c\right\rangle$ where c normalizes H.
(iv) $C_{H^{\cdot}}(H)=Z(H) \cdot C_{H^{\prime}}\left(\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle\right)$.

Let m be an integer such that $n=2 m$ or $2 m+1$ and let $z=u_{12} u_{34} \ldots$ $u_{2 m-1.2 m} \in R^{\#}$. Define $R^{*}=\left\langle R,-1_{B}\right\rangle$. Then one of the following holds.
(a) $(-z)^{K} \cap\left\langle H^{*},-1_{B}\right\rangle \subseteq R^{*}$ and either
(i) There is $u_{01} \in K$ so that $b_{k}^{u_{01}}=b_{k}$ if $k \notin\{0,1\}$ and $b_{k}^{u_{01}}=b_{k}^{-1}$ if $k \in\{0,1\},\left\langle R, u_{01}\right\rangle \triangleleft K$ and $K \cong W_{D_{n+1}}, W_{C_{n+1}}$ or $W_{D_{n+1}} \times\left\langle-1_{B}\right\rangle$,
(ii) $K \cong W_{E_{6}}$ or $W_{E_{6}} \times\left\langle-1_{B}\right\rangle$ and $n=5$ or $p=3$ and $n=4$,
(iii) $p>0, K=O_{p}(K) H^{*}, O_{p}(K)$ is elementary abelian and is an $F_{p} H^{*}$-submodule of the stability group of $B \supset\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle \supset 1$.
(iv) $K \cong \Sigma_{5}$ or $\Sigma_{5} \times\left\langle-1_{B}\right\rangle$ and $n=3$.
(b) $(-z)^{K} \cap\left\langle H^{*},-1_{B}\right\rangle \nsubseteq R^{*}$ and either
(i) $K \cong W_{E_{n+1}}$ for $n=6$ or 7 ,
(ii) $K \cong \Sigma_{6}$ or $\Sigma_{6} \times\left\langle-1_{B}\right\rangle, p=3, n=3$,
(iii) $n=3, \quad O_{2}(K) \cong 2_{+}^{1+4} \quad$ and $\quad K / Z(K) \cong \tilde{W} / Z(\tilde{W}) \quad$ where $O_{2,3}\left(W^{*}\right) \subseteq W \subseteq W^{*}=W_{F_{4}}$ and $W / O_{2,3}\left(W^{*}\right)$ is the group of order 2 in $W^{*} / O_{2,3}(W) \cong Z_{2} \times Z_{2}$ satisfying $W \nsubseteq S L(4, F)$ and $R=C_{W}(R)$.

Proof. We begin by observing that it does no harm to assume that $-1_{B} \in H^{*}$. The conclusions where $-1_{B} \notin H^{*}$ are easily deduced from the conclusions where $-1_{B} \in H^{*}$. Also, similar considerations allow us to assume that every element of K has determinant ± 1 on B. So, henceforth, we have $-1_{B} \in H^{*}$ and if $k \in K$, $\operatorname{det} k= \pm 1$. Define $K_{1}=\langle k \in K \mid \operatorname{det} k=1\rangle$, and when n is odd, $u_{0 n}=-z$.

If $C_{K}\left(b_{0}\right) \cong W_{C_{n}}$ or an extension of $W_{D_{4}}$ by Σ_{3}, the group of graph
automorphisms, then we may quote Proposition CF to identify K. So, we assume that this does not happen.

Our next reduction is to identify K in case $O(K) \neq 1$ (we get (a)(iii)) and $O_{2}(K) \supset Z(K)=\left\langle-1_{B}\right\rangle$ (we get (a)(i), (b)(iii)). The case $O(K) \neq 1$ is handled as in Proposition CF, so we have $O(K)=1$. In case $Q=O_{2}(K) \supset Z(K)$, we argue as in Proposition CF to get $n=3$ and $O_{2}(K) \cong 2_{+}^{1+4}$. The slight changes in the argument are left to the reader.

Suppose $R \nrightarrow H^{*}$. The structure of $H \triangleleft H^{*}$ then implies $n=4$ and some 3-group in H^{*} transitively permutes the three subgroups of $O_{2}(H)$ which are normal in $O_{2}\left(H^{*}\right)$ and isomorphic to Z_{2}^{3}. We eliminate this situation with a special argument. The difficulty to keep in mind is the fact that the 2 -fusion does lead to some simple groups. But we are safe because none of these lies in $G L(5, F)$.

Here is the special argument. Take $h \in H^{*}$ so that $|h|$ is a power of 3 and $R^{h} \neq R$. Define $H_{0}=C_{K}\left(b_{0}\right)$. Since $n=4$ is even and $\langle z\rangle=Z(T) \cap T^{\prime}$ for $T \in \operatorname{Syl}_{2}(K)$, clearly $H^{*}=C_{K}(z)$ and $T \in \operatorname{Syl}_{2}(K)$. Since H_{0} does not contain $W_{C_{4}}, O_{2}\left(H_{0}\right) \cong 2_{+}^{1+4}$ and $H_{0} \cong 2_{+}^{1+4}\left(\Sigma_{3} \times Z_{3}\right)$ is an extension of $W_{D_{4}}$ by a graph automorphism of order 3. Since $O_{2}\left(H_{0}\right)$ is absolutely irreducible on $\left\langle b_{1}, b_{2}, b_{3}, b_{4}\right\rangle$, the structure of $\operatorname{Aut}\left(2_{+}^{1+4}\right) \cong Z_{2}^{4}\left(\Sigma_{3} \sim Z_{2}\right)$ and the fact that H_{0} does not contain $W_{\mathrm{C}_{4}}$ implies that $H_{0}^{*}=\langle c\rangle \times H_{0}$. Since $\operatorname{det} c= \pm 1$, $|c|=2$. Define $T_{1}=T \cap K_{1}$. Then T_{1} is isomorphic to a Sylow 2-group of H_{0}. Since T_{1} is isomorphic to a Sylow 2-group of M_{12}, a look at the conclusions of a theorem of Gorenstein and Harada [29] shows that $K_{1} \leqslant G L(5, F)$ implies $K_{1}=O\left(K_{1}\right)\left(H^{*} \cap K_{1}\right)$, i.e., conclusion (a)(iii) holds.

Thus, we have $R \triangleleft H^{*}$ from now on. We quote [49] to see that $H^{*}=H \cdot C_{H} \cdot(H)$ or n is even and $H^{*} / C_{H} \cdot(H) \cong W_{C_{n}}$. We show that this latter case does not occur. Suppose it does and take $c \in H^{*}$ so that $C_{H}(c) \cong Z_{2}^{n-1} \Sigma_{n-1}$. Then $c^{2} \in C(H) \cap C_{K}\left(\left\langle b_{1}, \ldots, b_{n}\right\rangle\right)$. Since det $c= \pm 1$ and c normalizes $\left\langle b_{0}\right\rangle=C_{B}(H)$, we get $c^{2}=1$. But now, c or $-z c$ lies in H, whence H contains a copy of $W_{C_{n}}$, a contradiction. Therefore, in all cases, $H^{*}=\langle c\rangle \times H$ where c is trivial on $\left\langle b_{1}, \ldots, b_{n}\right\rangle$ and is -1 on $\left\langle b_{0}\right\rangle$. We keep this structure of H^{*} in mind during the rest of the proof, which breaks up into treatments of cases (a) and (b). Of course, we also have $O(K)=1$ and $O_{2}(K)=Z(K)$.
(a) Let $T \in \operatorname{Syl}_{2}\left(H^{*}\right), K_{1}=\langle k \in K \mid \operatorname{det} k=1\rangle, T_{1}=T \cap K_{1}$.

Case 1

n is even. Then z is 2-central in $H^{*},\left\langle b_{0}\right\rangle=C_{B}\left(Z(T) \cap T_{1}\right)$ whence $T \in \operatorname{Syl}_{2}(K)$ and $C_{K}(z) \leqslant H^{*}$. Since (a) holds, an eigenvalue argument shows that $z^{K} \cap H^{*}=\{z\}$. Therefore, Glauberman's Z^{*}-theorem [24] implies that $z \in Z^{*}(K)=Z(K)$ and so $K=H^{*}$, a contradiction.

Case 2

n is odd. Then R^{*} is generated by $\mathscr{P}=\left\{y \in R^{*} \mid y\right.$ has two eigenvalues $-1\}$, a set of $\binom{n+1}{2}$ elements which is the union of the two H^{*}-classes $\left\{u_{0 j} \mid j=1, \ldots, n\right\}$ and $\left\{u_{i j} \mid 1 \leqslant i<j \leqslant n\right\}$. In either case $(-z)^{k} \cap R^{*}$ generates R^{*}, which forces $T \in \operatorname{Syl}_{2}(K)$. Let $N=N_{\Lambda}\left(R^{*}\right)$. Then $N / R^{*} \cong \Sigma_{n+1}$ or Σ_{n} according to whether D is in one K-conjugacy class or not.

Subcase. $\notin \neq(-z)^{K} \cap R^{*}$. We examine $C=C_{K}\left(u_{0 n}\right)$. Let $B^{\varepsilon}=$ $\left\{b \in B \mid b^{u_{0 n}}=b^{\varepsilon 1}\right\}, \quad C^{\varepsilon}=C_{C}\left(B^{-\varepsilon}\right) \quad$ where $\{\varepsilon,-\varepsilon\}=\{+,-\}$. Then $B^{-}=$ $\left\langle b_{0}, b_{n}\right\rangle, B^{+}=\left\{b_{1}, \ldots, b_{n}\right\}$. Since $|K: C \cap N|$ is odd, the action of $C \cap N$ on B^{-}shows that $\left\langle u_{01}, u_{0 n}\right\rangle$ maps isomorphically onto a Sylow 2-subgroup of C / C^{+}. In this subcase, u_{01} does not fuse to $u_{1 n}=u_{01} u_{0 n}$ modulo C^{+}, whence C / C^{+}is 2-nilpotent. Since $C / C^{+} \rightarrow G L(2, F), u_{01}$ inverts $O\left(C / C^{+}\right)$and either $O\left(C / C^{+}\right)$is cyclic and completely reducible on B^{-}or $p>0$ and $O\left(C / C^{+}\right)$is an elementary abelian p-group.

Suppose that $O\left(C / C^{+}\right)=O(C) C^{+} / C^{+}$. Set $V=\left\langle u_{0 n}^{\mathrm{K}} \cap C\right\rangle$. Then $V / O(V)$ is elementary abelian. A theorem of Goldschmidt [26] implies that $M=\left\langle u_{0 n}^{K}\right\rangle$ has the property that $M / O(M)$ is elementary abelian. Since $O(K)=1$, we have $O(M)=1$ which gives $M=R^{*}$ and $K=N$, i.e., (a)(i) holds.

We now have that $1 \neq O\left(C / C^{+}\right) \supset O(C) C^{+} / C^{+}$. Thus, Out $\left(C^{+}\right)$contains an element of odd order, whence $n=5$ and $3=\left|O\left(C / C^{+}\right): O(C) C^{+} / C^{+}\right|$. Thus, as $C \cap N$ contains a Sylow 2 -group of K, it is easy to see that $K_{1} \cap N \cong\left\langle-1_{B}\right\rangle \times Z_{2}^{1} A_{5}$ and $K_{1} /\left\langle-1_{B}\right\rangle$ is a fusion-simple group with a Sylow 2 group isomorphic to that of A_{8}. We then quote a theorem of Gorenstein and Harada $|30|$ to conclude that $K_{1} \cong U_{4}(2)$. Therefore. $K \cong Z_{2} \times W_{1,}$, as required.

Subcase. $\quad \mathscr{\prime \prime}=(-z)^{K} \cap R^{*}$. Define $C_{i, j}=C_{G}\left(u_{i j}\right)$, and let $C_{i . j}^{\varepsilon}=C_{C_{i,}}\left(B^{-\varepsilon}\right)$ where $B_{i j}^{\varepsilon}=\left\{b \in B \mid b^{u_{0, n}}=b^{\varepsilon 1}\right\} .\{\varepsilon,-\varepsilon\}=\{+,-\}$. Set $C=C_{0, n}, B^{\varepsilon}=B_{0 . n}^{\varepsilon}$, $C^{\varepsilon}=C_{0, n}^{e}$. Since $B^{+}=\left\langle b_{1}, b_{2}, \ldots, b_{n-1}\right\rangle, B^{-}=\left\langle b_{0}, b_{n}\right\rangle$, it follows that $C^{+} \leqslant H$, whence $\quad C^{+}=\left\langle u_{i j}, t_{i j} \mid 1 \leqslant i<j \leqslant n-1\right\rangle \cong Z_{2}^{n-2} \Sigma_{n-1} \quad$ and $C^{+} \times C^{-} \triangleleft C$. Now, $C^{-} \times R_{1} S_{1} \leqslant C_{1,2}^{+} \quad$ where $\quad R_{1}=\left\langle u_{i j}\right| 3 \leqslant i<j \leqslant$ $n-1\rangle \cong Z_{2}^{n-4}, \quad S_{1}=\left\langle t_{i j} \mid 3 \leqslant i<j \leqslant n-1\right\rangle \cong \Sigma_{n-3}$. Since (a) implies $\left(t_{12} t_{34}\right)^{K} \cap R^{*}=\varnothing$. or else such elements would be in $(-z)^{V}$, it follows that $S_{1} \cong S_{1}^{\pi}$ is a natural subgroup isomorphic to Σ_{n-3} where π is the quotient map $C_{1,2}^{+} \rightarrow \Sigma_{n-1}$. Thus, $\left(C^{-}\right)^{n}$ is trivial or is $\langle\tau\rangle$ for a transposition τ. Since $\left|C^{-}, R_{1} S_{1}\right|=1$, it follows that $\mid C^{-} \| 4$. On the other hand, C^{-}contains $\left\langle u_{0, n}, t_{0, n}\right\rangle$ and $u_{0,1}$ acts on C^{-}with centralizer $\left\langle u_{0, n}\right\rangle$, as $u_{0,1}$ acts on B with eigenvalues $\{-1,1\}$ and $H^{*}=N_{K}\left(\left\langle b_{0}\right\rangle\right)$. Thus, $C / C^{+} \cong\left\langle C^{-}, u_{0,1}\right\rangle \cong D_{8}$. In any case, $C \leqslant N=N_{G}\left(\left\langle R, u_{0, n}\right\rangle\right)$. We finish as in the previous subcase by verifying the conditions of Goldschmidt's criterion [26]. This gives (a)(iv).
(b) Here we have to show that $n \in\{6,7\}$ and that $K \cong W_{E_{n}, 1}$.

Case 1

n is even. Then $H^{*}=C_{K(z)}$ has odd index in $K, t=-z$ is -1 on $b_{i}, 1$ on b_{j} for $j=1,2 \ldots, n$. Also there is $g \in K$ so that $t^{g} \in H^{*}-R^{*}$. Eigenvalue considerations allow us to assume $t^{g}=t_{1.2}$. Now, $H^{*}=C_{G}(t)$ and $D=C_{i} \cdot\left(t_{1,2}\right)-\left\langle t, \quad u_{12}, \quad t_{12}, \quad u_{i j}, \quad t_{i j} \mid 3 \leqslant i<j \leqslant n\right\rangle \cong Z_{2} \times Z_{2} \times Z_{2} \times$ $Z_{2}^{n-3} \Sigma_{n-2}$. Let π be the natural epimorphism $\left(H^{*}\right)^{2} \rightarrow S^{g} \cong \Sigma_{n}$ and let $S_{1}=$ $\left\langle t_{i j} \mid 3 \leqslant i<j \leqslant n\right\rangle \cong \Sigma_{n-2}$. If $S_{1} \cong S_{1}^{\pi}$, then $\left.\pi\right|_{\left\langle t, u_{12}, t_{12}\right\rangle}$ has kernel E of order 4 . We have $t_{1,2} \notin E$. If $t_{12} u_{12} \in E$, an eigenvalue argument forces $t_{12} u_{12}=t^{R}=$ t_{12}, contradiction. Now, E contains an element with eigenvalues $\{-1,1,1, \ldots, 1\}$ because $E=\left\langle t, u_{12}\right\rangle^{R}$. The only remaining possibility is $t \in E$. Since $E^{z^{-1}} \leqslant R^{*}$, we get $t=t^{R^{-1}}$. impossible since $t^{g}=t_{12}$. We conclude that $S_{1} \not S_{1}^{\tau}$, whence $n-2=4$ or 2 .

Suppose $n=4$. Then $H^{*} \cong Z_{2} \times W_{D_{+}} \cong Z_{2} \times 2_{+}^{1+4} \Sigma_{3}$ where an element of order 3 acts fixed point freely on the Frattini factor of the extraspecial group. Proceeding as before with $n=4$, we observe that K_{1} has a Sylow 2-group of type A_{8}. Since $K_{1} \subset G L(5, F)$, we get $K_{1} \cong W_{F_{6}}[30]$. But here, (a) holds, not (b), a contradiction. So $n=4$ is out.

We have $n=6$. Then $H^{*} \cong Z_{2} \times W_{D_{6}}$. Thus, $C_{K_{1}}(t)$ is isomorphic to the centralizer of a 2 -central involution in $S p(6,2)$. Since $O_{2}\left(K_{1}\right)=1$, [55] implies that $K_{1} \cong S p(6,2)$, whence $K \cong W_{F_{7}} \cong Z_{2} \times S_{p}(6,2)$.

Case 2

n is odd. Then $n \geqslant 5$; for if not, $n=3$ and every involution of $H^{*} \cong Z_{2} \times \Sigma_{4}$ outside R^{*} is conjugate to t_{12} or $-t_{12}$, in conflict with (b). Here, we do not know that H^{*} has odd index or that H^{*} contains $C_{K}(z)$. We use the notation $C_{i j}^{\varepsilon}$, etc., as in (a). Let $C=C_{k}\left(u_{0, n}\right)$. As before, $C^{+}=$ $\left\langle u_{i j}, t_{i j} \mid 1 \leqslant i<j \leqslant n \cdots 1\right\rangle \cong Z_{2}^{n-2} \Sigma_{n-1}$.

The element $u_{0, n}=-z$ fuses to an element of $H^{*}-R^{*}$, which an eigenvalue argument shows is conjugate in H^{*} to $t_{12} t_{34}$. Let $D=C_{K}\left(t_{12} t_{34}\right)$ and define D^{+}. D^{-}as with C. Then $C^{-} \times\left\langle t_{12}, u_{12}, t_{34} u_{34}, R_{1} S_{1}\right\rangle \subseteq D^{+}$, where $R_{1}=\left\langle u_{i j} \mid s \leqslant i<j \leqslant n-1\right\rangle \cong Z_{2}^{n-6}$ if $n \geqslant 6$ and $R_{1}=1$ if $n=5$, and $S_{1}=\left\langle t_{i j} \mid 5 \leqslant i<j \leqslant n-1\right\rangle \cong \Sigma_{n-5}$. Let π be the natural projection of D^{+} onto Σ_{n-1}.

The first step in our argument is to show that $C \subseteq N$. An eigenvalue argument shows that if $t \in t_{12}^{K} \cap D$, then t is a transposition. Therefore, $\left\langle t_{12} u_{12}, t_{34} u_{34}, R_{1} S_{1}\right\rangle^{\pi}$ contains a natural copy of $\Sigma_{2} \times \Sigma_{n-5}$. Since $\left(C^{-}\right)^{\pi}$ commutes with this, we get $\left(C^{-}\right)^{\pi}$ embedded in a natural copy of $\Sigma_{2} \times \Sigma_{2}$ or in a natural copy of $\Sigma_{2} \times \Sigma_{2} \times \Sigma_{2}$ and $n=7$. Since $C^{-} \cap$ ker $\pi \subseteq\left(R^{*}\right)^{g}$, which consists of elements of determinant 1 only, it follows that $C^{-} \cap \operatorname{ker} \pi \subseteq\left\langle u_{0 n}\right\rangle$. Thus, C^{-}is a 2 -group and $\left|\Phi\left(C^{-}\right)\right| \leqslant 2$. Since $D^{-} \sqsupseteq\left\langle t_{12}, t_{34}\right\rangle, C^{-}$contains a fours group. Since $C_{C}-\left(u_{01}\right)$ stabilizes $\left\langle b_{0}\right\rangle=\left\{b \in B^{-} \mid b^{u_{01}}=b^{-1}\right\}, C_{C}-\left(u_{01}\right) \leqslant H^{*}$, whence $C_{C}-\left(u_{01}\right)=\left\langle u_{0 n}\right\rangle$.

Thus, $\left\langle C^{-}, u_{0 n}\right\rangle$ is a group of maximal class of order at least 8 and at most 16 (since $\left|\Phi\left(C^{-}\right)\right| \leqslant 2$). Therefore, C^{-}contains an involution which conjugates u_{01} t $u_{01} u_{0 n}=u_{1 n}$ and so interchanges $\left\langle b_{0}\right\rangle$ and $\left\langle b_{1}\right\rangle$ under its action on B. Since C^{-}centralizes $\left\langle b_{1}, \ldots, b_{n-1}\right\rangle$, it follows that $N=N_{K}\left(R^{*}\right)$ satisfies $N / R^{*} \cong \Sigma_{n+1}$ (the eigenspaces $\left\{\left\langle b_{0}\right\rangle, \ldots,\left\langle b_{n}\right\rangle\right\}$ for R^{*} form a single N-orbit). Take $y \in N$ so that $b_{0}^{y}=b_{1}$ and $b_{n}^{y}=b_{2}$. Then $C_{1}=\left(C^{-}\right)^{y} \subseteq H^{*}$. In fact $C_{1} \subseteq\left\{h \in H^{*} \mid h\right.$ centralizes b_{i} for $\left.i \neq 1,2\right\}\left\langle u_{12}, t_{12}\right\rangle$, a four group. We conclude that $\left|C^{-}\right|=4$ and $C \subseteq N$.

We now have $C \subseteq N$ and $N \cap D=R_{2} S_{2} \times R_{3} S_{3}$, where $R_{2}=$ $\left\langle u_{12}, u_{34}\right\rangle \cong Z_{2}^{2}, S_{2}=\left\langle t_{12}, t_{34}, t_{14} t_{23}\right\rangle \cong D_{8}, R_{3}=\left\langle u_{i j} \mid i, j \in I\right\rangle \cong Z_{2}^{n-4}, S_{3}=$ $\left\langle t_{i j} \mid i, j \in I\right\rangle \simeq \Sigma_{n-3}$, where $I=\{0,5,6, \ldots, n\}$.

Take $k \in K$ so that $\left(t_{12} t_{34}\right)^{k}=u_{12}$. Then $\left(R_{3} S_{3}\right)^{k} \leqslant C$ and an eigenvalue argument shows that its image in N / R^{*} is a natural Σ_{n-3} lying in C_{12} / R^{*}. By replacing k with an element of $k C_{12}$, we may assume that $R^{*}\left(R_{3} S_{3}\right)^{k}=$ $R^{*} S_{3}$. Since $R_{3} S_{3}=\left\langle t \in R^{*} S_{3}\right||t|=2$ and, t has eigenvalues $\{-1,1, \ldots, 1\}$ on $\left.R^{*}\right\rangle$, it follows that k normalizes $R_{3} S_{3}$.

Suppose k normalizes R_{3}. Since R_{3} is an irreducible $F_{2} S_{3}$-module, we may assume that k centralizes R_{3}. So, $k \in C_{k}\left(u_{0 n}\right)=H^{*} \subseteq N$, which conflicts with $\left(t_{12} t_{34}\right)^{k}=u_{12}$. This contradiction would then complete the proof if we knew that k normalizes R_{3}. If this does not happen, $R_{3} \neq O_{2}\left(R_{3} S_{3}\right)$, i.e., $n=5$ or 7 . When $n=5, R_{3}=\left\langle u_{05}\right\rangle=R_{3} S_{3} \cap K_{1}$ is normalized by k, again, a contradiction. Thus, $n=7$ and $R_{3}^{k} \neq R_{3}$ is the outstanding subcase.

Subcase $n=7$. We adopt the notation and situation described in the last paragraph. We must show that $K \cong W_{E_{\mathfrak{q}}}$. The first step is to show that $\left|K: H^{*}\right|$ is odd.

Let $z=u_{05} u_{67}, T=\left\langle R^{*}, t_{12}, t_{34}, t_{14} t_{23}, t_{05}, t_{67}, t_{06} t_{57}, t_{10} t_{25} t_{36} t_{47}\right\rangle \in$ $\operatorname{Syl}_{2}(N)$. Then $\left.T / R^{*} \cong D_{8}\right\rangle \mathbb{Z}_{2}$, a Sylow 2-group of $\Sigma_{8},|T|=2^{14},\left\langle-1_{B}\right\rangle=$ $Z(T),\left\langle-1_{B}, z\right\rangle /\left\langle-1_{B}\right\rangle=Z\left(T /\left\langle-1_{B}\right\rangle\right)$. We show that $T \in \operatorname{Syl}_{2}(K)$. Define $a=\{t \in T \mid$ has eigenvalues $-1,1,1, \ldots, 1\}=\left\{t_{i j}, t_{i j} u_{i j} \mid\{i, j\}=\{1,2\},\{3,4\}\right.$, $\{0,5\}$, or $\{6,7\}\}, \mathscr{B}=\{\langle b\rangle \subseteq B \mid\langle b\rangle=[B, t]$ for some $t \in \mathscr{O}\}=\left\{\left\langle b_{i} b_{j}^{-1}\right\rangle\right.$, $\left\langle b_{i} b_{j}\right\rangle \mid\{i, j\}=\{1,2\},\{3,4\},\{0,5\}$ or $\left.\{6,7\}\right\}$.

Now suppose that S is a 2 -group in K containing T properly as a normal subgroup. Then S leaves (7 and x invariant.

Define $S_{0}=\{s \in S \mid s$ is trivial on $\mathscr{B}\}$ and $T_{0}=T \cap S=\left\langle u_{12}, u_{34}, u_{05}\right.$, $\left.u_{67}, t_{12}, t_{34}, t_{56}, t_{78}\right\rangle \cong Z_{2}^{8}$. Then $s \in S_{0}$ acts as a scalar on each $\langle b\rangle \in \mathscr{B}$, whence S_{0} is abelian. Since $C_{K}\left(u_{i j}\right) \subseteq N, S_{0} \subseteq N$, whence $S_{0}=T_{0}$. Thus, S / T_{1} is embedded in Σ_{8} and properly contains T / T_{0} of order 2^{6}, i.e., S / T_{1} acts on \mathscr{B}^{\prime} as a full Sylow 2-group of the symmetric group on \mathscr{B}. Take $s \in S$ to induce a transposition. Then $s \notin T$ since T induces only even permutations on . \hat{x}. Since $v=u_{01} u_{23} u_{46} u_{57}$ maps to an element of $Z\left(S / T_{1}\right)^{\#}$ and has orbits of shape $\left\{\left\langle b_{i} b_{j}\right\rangle,\left\langle b_{i} b_{j}^{-1}\right\rangle\right\}$ in \mathscr{B}, we may choose s to interchange $\left\langle b_{1} b_{2}\right\rangle$ and $\left\langle b_{1} b_{2}^{-1}\right\rangle$ and fix the other elements of \mathscr{B} (s must preserve the
orbits of v). Let $T_{2}=N_{T}\left(\left\langle b_{1}, b_{2}\right\rangle\right)$ and let ψ be the natural map $\left\langle T_{2}, s\right\rangle \rightarrow$ Aut ${ }_{r}\left(\left\langle b_{1}, b_{2}\right\rangle\right)$. Then $\left\langle T_{2}, s\right\rangle$ permutes $\left\langle b_{1}, b_{2}\right\rangle,\left\langle b_{1} b_{2}^{-1}\right\rangle$. Let U be the kernel of this action. Then U^{ψ} is abelian. Since U^{ψ} contains $\left\langle u_{12}, t_{12}\right\rangle^{\psi} \cong Z_{2} \times Z_{2}$, U is not cyclic. On the other hand, $\left\langle T_{2}, s\right\rangle^{\psi}$ must be a group of maximal class since $\left\{u \in\left\langle T_{2}, s\right\rangle \mid u^{山}\right.$ commutes with $\left.u_{01}\right\}$ stabilizes $\left\langle b_{0}\right\rangle$, hence lies in $H^{*} \subseteq N$ and so must have image $Z_{2} \times Z_{2}$ under ψ. Therefore, $\left\langle T_{2}, s\right\rangle^{*}$ has maximal class. We conclude that $U^{4} \cong Z_{2} \times Z_{2}$ and $\left\langle T_{2}, s\right\rangle^{4}=D_{8}$. Thus, $H=C_{\kappa}\left(b_{0}\right)$ has order divisible by $|U| / 2=\left|\left\langle T_{2}, S\right\rangle / / 4=\left|T_{2}\right| / 2=|T| / 8=2^{\prime \prime}\right.$, whereas $H \cong W_{D}$, has Sylow 2 -group of order 2^{10}, a contradiction. We conclude that there is no such S, i.e., $T \in \operatorname{Syl}_{2}(K)$.

Now that we have $T \in \operatorname{Syl}_{2}(K)$, we can show that K is an oddtransposition group [4]. Let $\mathscr{X}=t_{12}^{k}$ be the proposed conjugacy class. Suppose $u, v \in \mathscr{O}, d$ is an integer and $|u v|=2 d \geqslant 4$. We obtain a contradiction. Let w be the involution of $\langle u v\rangle$. Then w has eigenvalues $\{-1,-1,1,1,1,1,1,1\}$. If $w \in T$, an eigenvalue argument and the structure of T imply that we may assume $w=t_{12} t_{34}$ or $w=u_{0 n}$. Replacing w by a K conjugate, we may assume $w=u_{0 n}$, whence $C_{K}(w) \subseteq N$. Therefore, u and v each have shape $t_{i j}$ or $t_{i j} u_{i j}$. The structure of $N / R^{*} \cong \Sigma_{8}$ and $d \geqslant 2$ imply that $d=2$ or $d=3$. The structure of N implies that if u, v commute modulo R^{*}, then they commute. So, $d=2$ is out. Since $d=3$, we may assume $u=\left\{t_{i j}, t_{i j} u_{i j}\right\}, v \in\left\{t_{j k}, t_{j k} u_{j k}\right\}$ for distinct indices i, j, k. Let $l \in\{0,1, \ldots, 7\}-$ $\{i, j, k\}$. Since $\left(t_{i j} t_{j k}\right)^{3}=1$ and $t_{i j}^{u^{\prime}}=t_{i j} u_{i j}, t_{j k}^{u^{\prime}}=t_{j k}, t_{i j}^{u_{k}}=t_{i j}, t_{j k}^{u_{k}}=t_{j k} u_{j k}$, it follows that $(u v)^{3}=1$, a contradiction to $|u v|=2 d$. We conclude that for $u, v \in \mathcal{Z},|u v|$ is 2 or an odd integer. An inspection of the possibilities shows that $K \cong W_{E_{8}}$.

The analysis of our subcase is completed and with it the proof of the proposition.
(3.6) Proposition E. Let F be a field of characteristic $p \neq 2$ and B an F-vector space of dimension $n+1$ for $n \in\{5,6,7,8\}$. Suppose that B has a basis $b_{0}, b_{1}, \ldots, b_{n}$ and that $H \subseteq H^{*} \subset K$ are finite subgroups of $\mathrm{Aut}_{F}(B)$ with the following properties:
$H^{*}=N_{\kappa}\left(\left\langle b_{0}\right\rangle\right) \subseteq N_{K}\left(\left\langle b_{1}, \ldots, b_{n}\right\rangle\right), H=C_{K}\left(b_{0}\right) \cong W_{E_{n}}$ for $n \geqslant 6, W_{E_{6}}$ for $n=5$ and $p=3$, or $Z_{2} \times W_{E_{6}}$ for $n=6$ or $p=3$ and $n=5$. Also $H^{*}=H \times\langle c\rangle$ and c is trivial on $\left\langle b_{1}, \ldots, b_{n}\right\rangle$; or $n=5$ or $6, H=W_{E_{6}}$ and c inverts $\left\langle b_{1}, \ldots, b_{n}\right\rangle$.

Then one of the following holds:

(a) $p>0, K=O_{p}(K) H^{*}$ and $O_{p}(K)$ is an $F_{p} H^{*}$ submodule of the stability group of $B \supset\left\langle b_{1}, \ldots, b_{n}\right\rangle \supset 1$.
(b) $\quad H \cong W_{E_{n}}$ and $K \cong W_{E_{n+1}}$ for $n=6$ or 7 .

Proof. First some reductions. As in Proposition CF we may assume that $-1_{R} \in K$ and that every element of K has determinant ± 1. This forces $|c|=2$. Let $K_{\mathrm{I}}=\{k \in K \mid \operatorname{det} k=1\}$.

Suppose $O(K) \neq 1$. Then $C_{O(K)}\left(H^{\prime}\right)$ normalizes $\left\langle b_{0}\right\rangle$. But $O\left(H^{*}\right)=1$, whence $C_{O(K)}\left(H^{\prime}\right)=1$. Now let $A \neq 1$ be an elementary abelian subgroup of $O(K)$ normalized by H^{\prime}. Suppose $A H^{*}$ is irreducible on B. Since $A H^{\prime} \subset G L(n+1, F)$, Clifford's theorem implies that H^{\prime} must have a proper subgroup of index at most $n+1$, a contradiction. Thus, $p>0, A$ is a p-group, and we get (a).

Suppose $O_{2}(K) \supset\left\langle-1_{B}\right\rangle$. Then $O_{2}(K) H^{*}$ acts irreducibly on B. Clifford's theorem and the structure of H^{*} imply that B is irreducible for $O_{2}(K)$, i.e., $n=7$. If $O_{2}(K)$ had an abelian subgroup $A \supset Z(K)=\left\langle-1_{B}\right\rangle$, invariant under H^{\prime}, the above argument could be applied to $A H^{\prime}$ to get a contradiction. Therefore, $O_{2}(K)$ is of symplectic type [27]. Since $\left|Z\left(O_{2}(K)\right)\right|=2, O_{2}(K)$ is extraspecial (of order 2^{7}). But $\operatorname{Sp}(6,2)$ is not involved in $\operatorname{Aut}\left(O_{2}(K)\right.$), a contradiction.

Case 1. There is an involution $z^{*} \in Z(H)$. We set $z=-z^{*} \in$ $C_{K}\left(\left\langle b_{0}, \ldots, b_{n}\right\rangle\right)$. Since $Z^{*}(K)=\left\langle-1_{B}\right\rangle$, the Z^{*}-theorem [24] implies that $z^{K} \cap H^{*} \neq\{z\}$. Take $z_{1} \in Z^{K} \cap H^{*}, z_{1} \neq z$. Then, the shape of H^{*} implies that $z_{1} \in H$ and the structure of H shows that $z^{K} \cap H$ is the natural class of reflections in H. Now take $z_{2} \in z^{K} \cap H, z_{2} \in C\left(\left\langle z_{1}, z_{1}\right\rangle\right)-\left\{z, z_{1}\right\}$. Then we have the following table:

$$
C(z) \quad C\left(\left\langle z, z_{1}\right\rangle\right) \quad C\left(\left\langle t, z_{1}, z_{2}\right\rangle\right)
$$

$Z_{2} \times W_{E_{6}}$	$Z_{2} \times Z_{2} \times W_{A,}$	$Z_{2} \times Z_{2} \times Z_{2} \times W_{A_{3}}$
$W_{E,}$	$Z_{2} \times W_{D_{6}}$	$Z_{2} \times Z_{2} \times W_{C_{4}}$
$W_{E_{8}}$	$Z_{2} \times W_{E,}$	$Z_{2} \times Z_{2} \times W_{D_{6}}$

We now prove that z^{K} is a class of odd transpositions. Suppose false and take $z_{3}, z_{4} \in z^{K}$ so that $\left|z_{1} z_{2}\right|$ is the involution of $\left\langle z_{3}, z_{4}\right\rangle$. Since $\left\langle z_{3}, z_{4}\right\rangle$ is trivial on $C_{B}\left(z_{1} z_{2}\right) \supseteq\left\langle b_{0}\right\rangle,\left\langle z_{3}, z_{1}\right\rangle \subseteq C_{H}\left(z_{1} z_{2}\right)$. By inspecting the above table and (and keeping in mind the class $z^{K} \cap H$), we see that $\left\langle z_{3}, z_{4}\right\rangle=\left\langle z_{1}, z_{2}\right\rangle$ is a fours group. Thus, z^{K} is a class of odd transpositions. We quote [4] to identify $\left\langle z^{K}\right\rangle$, and then K (finally, we see that $H \cong Z_{2} \times W_{E_{6}}$ does not occur).

Case 2. $Z(H)=1$, i.e., $H \cong W_{E_{6}}$. It seems that we have to build up the 2 -structure. Let L be a natural W_{D} subgroup of H, i.e., $L \cong Z_{2}^{4} \Sigma_{5}$. Let $R=O_{2}(L), R^{*}=\left\langle R,-1_{B}\right\rangle, Q=C_{K}(R)$. If $Q=R^{*}$, the fact that $r \in R$ cannot fuse to $-r$ implies that $\bar{K}=K /\left\langle-1_{B}\right\rangle$ contains the simple group $\bar{K}^{\prime}=F^{*}(\bar{K})$ having self-centralizing $\bar{R} \cong Z_{2}^{4}$. Since $\bar{L}^{\prime}=N_{\bar{K}^{\prime}}(\bar{R})=\bar{R} L, \bar{R}_{L_{L^{\prime}}}$, where $L_{1} \cong A_{5}$ and \bar{R} is a projective $\mathbb{F}_{2} L_{1}$-module, it follows that $\bar{R}=J(\bar{T})$
where $T \in \operatorname{Syl}_{2}\left(\bar{L}^{\prime}\right)$. Since this Sylow 2 -group leads to $\overline{K^{\prime}} \cong A, A_{9}$ or $U_{4}(2)$, we have a contradiction.

We have $Q \supset R^{*}$. If $n=5$, then $Q L$ stabilizes $\left\langle b_{0}\right\rangle=C_{B}(R)$, so that $Q L \subseteq H^{*}$, a contradiction. Therefore, $n=6$. Also, Q is a 2 -group. Suppose $\Phi(Q) \supseteq R$. Then $[Q, L] \supset R$ and the action of $[Q, L] L$ on $C_{B}(R)$ forces $[Q, L] \subseteq H$, a contradiction. So, we have $\Phi(Q) \cap R=1$ and so R is a direct factor of $Q=C_{K}(R)$. Set $Q_{1}=C_{Q}([B, R])$. The shape of H and the fact that Σ_{6} can not act on $X \cong \mathbb{Z}_{4}^{5}$ in such a way that $\Omega_{1}(X)$ is the codimension 1 submodule of the usual $\mathbb{F}_{2} \Sigma_{6}$ permutation module forces $Q=Q_{1} R\left\langle-1_{B}\right\rangle$. We claim that Q_{1} does not contain an involution inverting $C_{B}(R)$.

If so, it would lie in H^{*} and centralize $L \subseteq H$, contradicting the structure of Aut $H \cong H$. Since $Q_{1} \rightarrow\{x \in G L(2, F) \mid \operatorname{det} x= \pm 1\}$, it follows that $Q_{1}=\langle y\rangle$ where is an involution with one eigenvalue -1 . Since $Q \cong Z_{2}^{6}$, the action of L on Q shows that Q is the only normal subgroup of its isomorphism type in $T \in \operatorname{Syl}_{2}(Q L)$. Thus, Q is characteristic in T. Set $C=C_{\kappa}(y)$.

Suppose that $T \in \operatorname{Syl}_{2}(K)$. A check of eigenvalues now shows that since $y \notin Z^{*}(K)=\left\langle-1_{B}\right\rangle, y$ fuses to some $t \in C^{+}=\{x \in C \mid x$ is trivial on $[B, y]\}$. Since $Q L \cap C^{+}=\langle-g, L\rangle$ has odd index in C^{+}, we may assume that $t \in L \leqslant H$. Since $C_{H}(t) \cong Z_{2} \times \Sigma_{6}, C^{+}$contains L properly. We quote Proposition D and use $\Sigma_{6} \rightarrow C^{+}$to get $C^{+} \cong W_{D_{6}}$ or $C^{+} \cong W_{E_{6}} \times Z_{2}$.

We have $T \notin \operatorname{Syl}_{2}(K)$. Since Q is characteristic in $T, Q \triangleleft S \in$ $\operatorname{Syl}_{2}\left(N_{K}(T)\right.$). Notice that $\{y\}=\{x \in Q \mid x$ has one eigenvalue -1$\}$. Thus, $N:=N_{K}(Q) \subseteq C_{K}(y)$. Since $N_{K}(Q)$ is corefree and 2-constrained and $n=6$, we get (by Proposition D) $N_{K}(Q)=\langle y\rangle \times M, L \leqslant M \cong W_{D_{6}} \cong 2^{5} \cdot \Sigma_{6}$. By Proposition D applied to the action of $L \leqslant M$ on $C_{B}(y), C_{K}(y) \cong \mathbb{Z}_{2} \times W_{E_{6}}$. The latter case is impossible, as $W_{E_{6}}$ does not contain a subgroup of shape $2^{5} \cdot \Sigma_{6}$. So, $C_{K}(y)=N_{K}(\Omega)=\langle y\rangle \times M$. Also, if $\langle t\rangle=Z(M), C_{K}(t)=C_{K}(y)$. Thus, $\left|K: N_{K}(\Omega)\right|$ is odd and $K=K /\left\langle-1_{B}\right\rangle$ has an involution with centralizer of the form $W_{D_{6}}$. By $[59], \bar{K} \cong S p(6,2)$ and so $K \cong W_{E_{7}}$, as required.

The proof of our proposition is complete.
(3.7) Proposition A. Let F be a field of characteristic $p \neq 2$ and B an F-vector space of dimension $n+1, n \geqslant 3$. Suppose that $b_{0} \in B^{*}$ and that $H \subseteq H^{*} \subset K$ are finite subgroups of $\mathrm{Aut}_{{ }_{F}}(B)$ with the following properties:
(i) $H^{*}=N_{K}\left(\left\langle b_{0}\right\rangle\right) \subseteq N_{K}(H), H^{*}=H\langle c\rangle$, where c acts as ± 1 on $|B, H|$;
(ii) $H \cong \Sigma_{n+1}$, or $\Sigma_{n+1} \times Z_{2}$; or $p \mid n+2$ and $H \cong \Sigma_{n+2}$ or $\Sigma_{n+2} \times Z_{2} ;$ and
(iii) $B /\left\langle b_{0}\right\rangle$ is isomorphic to $F \Omega / F\left(\Sigma_{a \in \Omega} \alpha\right)$ or $V / F\left(\Sigma_{a \in \Omega} \alpha\right)$ where Ω is a set of n objects on which H operates transitively, $F \Omega$ is the permutation module and, when $H \cong \Sigma_{n+2}, V=\left\{\sum_{\alpha \in \Omega} \lambda_{\alpha} \alpha \mid \sum_{\alpha \in \Omega} \lambda_{\alpha}=0\right\}$.

Then, one of the following holds:
(a) $H \cong \Sigma_{n+1}$ and K contains a normal subgroup $K_{1}=K_{0} \times\langle z\rangle$, where z is $\pm 1_{B}$ and $K_{0} \cong W_{A_{n+1}}, p \mid n+3$ and $K_{0} \cong W_{A_{n+2}}$ or $n=5$ and $K_{0} \cong W_{E_{6}}$. Furthermore, $K=K_{1}$ unless $K_{1} \cong \Sigma_{6} \times Z_{2}, K / Z(K) \cong$ Aut A_{6} and $K / K^{\prime \prime} \cong D_{8}$.
(b) $H \cong \Sigma_{n+2}, p \mid n+2$, and $n=4, p=3, K \cong W_{E_{6}}$ or $W_{E_{n}} \times Z_{2}$ or $n=7, p=3, K \cong W_{E_{8}}$.
(c) $p>0, K=O_{p}(K) H^{*}, O_{p}(K)$ is elementary abelian and stabilizes the chain $0 \subset B_{1} \subset B, B_{1}$ a hyperplane of B with $b_{0} \notin B$.

Proof. It suffices to do the case that $K=\left\langle t_{i j}^{K}\right\rangle$ where $t_{i j} \in H$ corresponds to the transposition ($i j$) under the corresponds to the transposition ($i j$) under the given isomorphism $H \cong \Sigma_{m}$, where $m=n+1$ or $n+2$. Thus, $t_{i j}$ effects a reflection on B. Set $t=t_{12}, C=C_{K}(t)$. Then $C \cap H^{*}=\langle t\rangle \times\langle c\rangle \times C_{0}$, where $|c|=1$ or 2 (as $\operatorname{det} c= \pm 1$) and $C_{0}=\left\langle t_{i j} \mid i, j \notin\{1,2\}\right\rangle \cong \Sigma_{m-2}$. Define $B_{0}=C_{B}(t), C_{1}=C_{C}(|B, t|)$. Then $\operatorname{dim}_{F} B_{0}=n, C_{1}=C_{0}\left\langle d_{0}\right\rangle$ for $d_{0}=1$ or $d_{0}=c t$ and $C=C_{1} \times\langle t\rangle$.

We may assume that $n \geqslant 4$ for the following reasons. If $n=3, H \cong \Sigma_{4}$ or Σ_{5}. If $H \cong \Sigma_{4} \cong W_{D_{3}}$, we may quote Proposition D. If $H \cong \Sigma_{5}, p=5$ and we argue as follows. Let $U=O_{2}(H), B_{1}=[B, U],\left\langle b_{0}\right\rangle=C_{V}(U)$. Then $C_{K}(U)$ stabilizes $\left\langle b_{0}\right\rangle$, hence lies in H^{*} and so U is self-centralizing in $H^{*} \cap S L(B)$. Thus, a Sylow 2-group of $K \cap S L(B)$ has maximal class. Since $K \subset G L\left(4, \overline{\mathbb{F}}_{5}\right)$, the classifications $[1,11,25]$ give a contradiction.

Now, as $n \geqslant 4$, we may apply induction with $C_{0}, H^{*} \cap C_{1}, C_{1}, B_{0}, b_{0}$ in the roles of H, H^{*}, K, B, b_{0} to get the possibilities for C_{1}. Suppose that (c) holds for C_{1}. Then, as $O_{0}\left(C_{1}\right)$ consists of transvections on B_{0} and $B=B_{0} \times[B, t]$, with both factors C-invariant, $O_{p}\left(C_{1}\right)$ consists of transvections on B. Thus, $\left\langle C_{1}^{K}\right\rangle=\left\langle\left(C_{1} \cap t^{K}\right)^{K}\right\rangle=\left\langle t^{K}\right\rangle$ contains transvections on B. Using McLaughlin's theorem [47], we get that (c) holds for K (the other possibilities are eliminated by the shape of H^{*}). We, therefore, may assume that (a) or (b) holds for C_{1}.

For simplicity, we first treat the case that C_{1} is isomorphic to a Weyl group. If C_{1} is isomorphic to the Weyl group of some root system of type other than A, we may quote Proposition CF, D or E. Thus, we may assume that $C_{1} \cong \Sigma_{r}$ for $r=n+1$ or $p \mid n+2$ and $r=n+2$. Evidently, $C \cap t^{K}=$ $\{t\} \cup\left(C_{1} \cap t^{K}\right)$. We have that $C_{1} \cap t^{K}=t_{34}^{C_{1}}$. We argue that t^{K} is a class of odd transpositions. Namely, let $s \in t^{K}$ so that $s t$ has even order. Let u be the involution of $\langle s t\rangle$. Then u has eigenvalues $\{-1,-1,1,1,1, \ldots, 1\}$ on B. By the structure of C_{1}, either $u=t t^{\prime}$ for $t^{\prime} \in C_{1} \cap t^{K}$, or $u=t^{\prime} t^{\prime \prime}$ for distinct t^{\prime}, $t^{\prime \prime} \in C_{1} \cap t^{K}$. In any case, $\langle s, t\rangle$ acts faithfully on $[B, u]$ and trivially on $C_{B}(u)$.

If $t^{\prime \prime}$ is in $C_{C_{1}}(u) \cap t^{k}$ and $t^{\prime \prime \prime}$ does not appear in the above factorization
for u, then, as $\left[B, t^{\prime \prime \prime}\right] \subseteq C_{B}(u)=C_{B}(\langle s, t\rangle)$, we get $\langle s, t\rangle \leqslant C_{K}\left(t^{\prime \prime \prime}\right)$, which is conjugate to C. It follows from $s, t \in t^{K}$ and the structure of C that $\langle s, t\rangle$ is a four-group. If no such $t^{\prime \prime \prime}$ exists, then, as $n \geqslant 4$, we must have u of the form $t t^{\prime}$. But then it is obvious that $\langle s, t\rangle$ is a four-group. Consequently, t^{K} is a class of odd transpositions. Using the list of conclusions in $[4]$ and $C \cong Z_{2} \times \Sigma_{r}$, we get that $K \cong \Sigma_{r+2}$ or $r=4, p=3$ and $K \cong W_{E_{6}}$, as required.

Now suppose that $C_{1}=C_{2} \times\langle z\rangle$, where C_{2} is generated by $t^{K} \cap C_{2}$ and is isomorphic to a Weyl group of some root system, then we may modify the argument of the previous paragraph, provided that $C \cap t^{\kappa}=\{t\} \cup\left(C_{2} \cap t^{K}\right)$. If this is false, then t fuses in K to some $s z$, where $s \in C_{2}$ and s has eigenvalues $\{-1,-1, \ldots,-1,1,1\}$. Since $[B, t]$ is a section of the usual permutation module for $C_{2} \cong \Sigma_{r}$, the number of eigenvalues equal to 1 for s is at least $1+n / 2$, whereas $n \geqslant 4$, a contradiction.

Finally, suppose that C_{1} has neither form. Then $n=4, p=3$ and C_{1} is the central extension of Aut A_{6} in (a). We have $t^{K} \cap C \subset C_{1} \cup\{t\}$. It suffices to show that every conjugate of t in C_{1} lies in C_{1}^{*}, the $Z_{2} \times \Sigma_{6}$ subgroup of index 2 in C_{1}, for then the argument of the previous paragraph may be repeated. So, by way of seeking a contradiction, suppose that there is $s \in C_{1} \cap t^{K}, s \notin C_{1}^{*}$. Then, the structure of Aut A_{6} implies that s must lie in $C_{1}^{*} s_{1}$ where $Y=C_{C_{1}^{\prime \prime}}\left(s_{1}\right) \cong D_{10}$ (only two nontrivial cosets in Out A_{6} contain involutions). On B_{0}, Y has two absolutely irreducible constituents, and on each of these s_{1} acts as a scalar. So, s_{1} has eigenvalues $1, \alpha, \alpha, \beta, \beta \in F$. Since $\operatorname{det} s=\operatorname{det} t=-1$, it follows that $\alpha^{2} \beta^{2}=-1$. Thus, $\left|s_{1}\right| \geqslant 4$ and, as s_{1}^{2} centralizes $C_{1}^{\prime \prime}$, we have $s_{1}^{2}-\langle z\rangle$. Thus, $\left\langle C_{1}^{\prime \prime}, s_{1}\right\rangle / C_{1}^{\prime \prime} \cong Z_{4}$, whence s cannot be in $\left\langle C_{1}^{\prime \prime}, s_{1}\right\rangle$. Since $s \notin C_{1}^{*}$, it follows from the structure of Aut A_{6} that s cannot correspond to an involution in Aut $A_{6}-\operatorname{Inn} A_{6}$, a contradiction. The proof is now complete.

Lemma 3.8. Let $H \cong A_{6}$ and X the irreducible 4-dimensional $\mathbb{F}_{3} H$ module which occurs in conclusion (b)(ii) of Proposition (3.4).
(i) If H_{1} is any subgroup of H ismorphic to A_{5}, then X occurs in the $F_{3} H$-permutation module based on the cosets of H.
(ii) If $Y \cong Z_{3 n}^{4}$ as abelian groups, $n \geqslant 2$ and Y is an H-module, then $Y / \Omega_{1}(Y) \nsubseteq X$ as H-modules.

Proof. (i) By inspecting the Brauer character, one sees that the permutation modules on the cosets of nonconjugate A_{5}-subgroups are isomorphic $F_{3} H$-modules. Take $H_{1} \subseteq H, H_{1} \cong A_{5}$. Then X is irreducible for H_{1} and if $H_{2} \subseteq H_{1}, H_{2} \cong A_{4}$, then H_{2} fixes the 1-dimensional space $C_{X}\left(\mathrm{O}_{2}\left(\mathrm{H}_{2}\right)\right)$. Thus, X is the nontrivial absolutely irreducible constituent of the $F_{3} H_{1}$-permutation module for the action of H_{1} on the cosets of H_{2}. Since $\left.X\right|_{H_{1}}$ is unique (up to equivalence), so is X.
(ii) This requires some matrix calculations. We suppose that $Y / \Omega_{1}(Y) \cong X$, then derive a contradiction. Without loss, $n=2$.

Any subgroup $\langle x\rangle$ of order 3 in H is contained in a subgroup $H_{0} \cong \Sigma_{4}$. Set $T=O_{2}\left(H_{0}\right)$. Then $Y=[Y, T] \times C_{Y}(T)$ and the factors are free Z_{9}-modules of ranks 3 and 1, respectively, and are H_{0} invariant. Since $x \in H_{0}^{\prime}, x$ centralizes $C_{V}(T)$. Thus, one may choose a basis for Y so that x has matrix

$$
\alpha=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Now, let $\langle s\rangle \times\langle t\rangle \in \operatorname{Syl}_{3}(H)$ where s and t are conjugate in H. Let y_{1}, y_{2}, y_{3}, y_{4} be a basis for Y so that s has matrix as above. Let $\psi: Y \rightarrow \bar{Y}=X$ be our H-homomorphism. Since X occurs as a section of the $F_{3} H$-permutation module, we may assume that X is generated by elements $e_{i j}, 1 \leqslant i, j \leqslant 6$, $i \neq j$. which satisfy the relations $e_{i j}=-e_{j i}, e_{i j}+e_{j k}=e_{i k}, i \neq k$, and $e_{12}+e_{13}+e_{45}+e_{46}=0$. We may now choose notation so that,$_{1}^{4}=e_{14}$, $y_{2}^{\omega}=e_{24}, l_{3}^{\omega}=e_{34}, y_{4}^{\omega}=e_{56}, s, t$, correspond to the permutations (123), (456), respectively, and the element $g \in H$ acts on $e_{i j}$ by $e_{i j}^{q}=e_{i^{\prime}, i^{\prime}}$ where g corresponds to the permutation g^{\prime}, where $i^{g}=i^{\prime}, j^{g^{\prime}}=j^{\prime}$.

We now determine conditions satisfied by the matrix B representing t. Using the hasis $e_{14}, e_{24}, e_{34}, e_{56}$ for X, we compute that $e_{14}^{t}=e_{15}=-e_{24}-$ $e_{34}+e_{56}, e_{24}^{t}=e_{25}=-e_{14}-e_{34}+e_{56}, e_{34}^{t}=e_{35}=-e_{14}-e_{24}+e_{56}$ and e_{56}^{t} $=e_{64}=e_{14}-e_{24}-e_{34}+e_{56}$, whence t has matrix

$$
\beta=\left(\begin{array}{rrrr}
0 & -1 & -1 & 1 \\
-1 & 0 & -1 & 1 \\
-1 & -1 & 0 & 1 \\
1 & -1 & -1 & 1
\end{array}\right)+\left(c_{i j}\right)
$$

where each $c_{i j}$ is divisible by 3.
Since $s t=t s$ and

$$
\alpha^{-1}=\alpha^{2}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

we have

$$
\begin{aligned}
\alpha^{-1} \beta \alpha & =\left(\begin{array}{rrrr}
-1-c_{31} & -1+c_{32} & c_{33} & 1+c_{34} \\
c_{11} & -1+c_{12} & -1+c_{13} & 1+c_{14} \\
-1+c_{21} & c_{22} & -1+c_{23} & 1+c_{24} \\
1+c_{41} & -1+c_{42} & -1+c_{43} & 1+c_{44}
\end{array}\right) \alpha \\
& =\left(\begin{array}{rrrr}
c_{33} & -1+c_{31} & -1+c_{32} & 1+c_{34} \\
-1+c_{13} & c_{11} & -1+c_{12} & 1+c_{14} \\
-1+c_{23} & -1+c_{21} & c_{22} & 1+c_{24} \\
-1+c_{43} & 1+c_{41} & -1+c_{42} & 1+c_{44}
\end{array}\right),
\end{aligned}
$$

which equals β. Comparing coefficients and noting equalities, we have a, b, $c, d, e \in 3 Z_{4}$ such that $a=c_{11}=c_{22}=c_{33}, b=c_{12}=c_{23}=c_{31}, c=c_{13}=c_{21}=$ $c_{32}, d=c_{41}=c_{42}=c_{43}$ and $e=c_{14}=c_{24}=c_{34}$. Since α and β are conjugate comparing traces gives $c_{44}=0$.

Now

$$
\alpha \beta=\left(\begin{array}{cccc}
-1+c & a & -1+b & 1+e \\
-1+b & -1+c & a & 1+e \\
a & -1+b & -1+c & 1+e \\
1+d & 1+d & 1+d & 1
\end{array}\right)
$$

which has trace $-3+3 c+1=-2$. As noted in the second paragraph, the trace must be 1 since $\alpha \beta$ represents the element st $\in H$ of order 3. This contradiction completes the proof of (ii).

Lemma 3.9. Let the group G be generated by involutions $t_{1}, \ldots, t_{n}, n \geqslant 2$ subject to the relations

Then G is a split extension $Z^{n-1} \Sigma_{n}$, where the normal abelian subgroup A is isomorphic to the submodule $\left\langle e_{i}-e_{j} \mid i, j=1, \ldots, n\right\rangle$ of the permutation module $\coprod_{i-1}^{n} Z e_{i}$ for the symmetric group $\Sigma_{n} \cong G / A$ (this isomorphism is given by $\left.t_{i} \rightarrow(i, i+1), 1 \leqslant i \leqslant n-1\right)$.

Proof. Let $\varphi: G \rightarrow \Sigma_{n}$ be the epimorphism given by $t_{i} \rightarrow(i, i+1)$ for $1 \leqslant i \leqslant n-1$ and $t_{n} \rightarrow(n, 1)$. Then $a=t_{1}^{t_{2} l^{\cdots} t_{n-1}} t_{n} \in \operatorname{ker} \varphi$. Let $A=\left\langle a^{G}\right\rangle \subseteq$ ker φ. Then G / A is generated by the images of t_{2}, \ldots, t_{n} which satisfy

whence $A=\operatorname{ker} \varphi$. We shall show that A is abelian. For now, assume $n \geqslant 4$.

Let $H=\left\langle t_{2}, \ldots, t_{n}\right\rangle \cong \Sigma_{n}, C=C_{H}\left(t_{n}\right)=\left\langle t_{2}, \ldots, t_{n-2}\right\rangle \times\left\langle t_{n}\right\rangle$. We claim that

$$
\begin{align*}
& a^{t_{n}}-a^{-1} \tag{1}\\
& a^{t_{1}}=a, \quad 2 \leqslant i \leqslant n-2 . \tag{2}
\end{align*}
$$

In our calculations, we use the index i for t_{i}. Thus, $t_{i} t_{j} t_{k} \cdots$ is written $i \times j \times k \cdots$. So, (1) is equivalent to $1=a a^{t_{n}}=n-1 \times n-2 \times \cdots \times 3 \times$ $2 \times 1 \times 2 \times 3 \times \cdots \times n-2 \times n-1 \times n \times n \times n-1 \times n-2 \times \cdots \times 3 \times$ $2 \times 1 \times 2 \times 3 \times \cdots \times n-1 \times n \times n$. Since the right side trivially collapses to the identity, (1) follows. Now for (2). We have $a^{t_{i}}=t_{1}^{t_{2} t_{3} \cdots t_{n-1} i^{\prime}} t_{n}=$ $t_{1}^{t_{2} \cdots t_{i-1}} t_{i} t_{i+1} t_{i} \cdots t_{n-1} t_{n}=t_{1}^{t_{2} \cdots t_{i-1} t_{i+1} t_{i} t_{i+1} \cdots t_{n-1} t_{n}}=\left(t_{1}^{t_{i+1}}\right)^{t_{2} \cdots t_{i-1} t_{i} i_{i+1} \cdots t_{n-1}} t_{n}=a$, giving (2).

Define $B=\left\langle a, a^{t_{n-1} c}\right\rangle$. We claim that B is abelian. It suffices to prove that $\left[a, a^{t_{n-1}}\right]=1$, i.c., that $1=n \times n-1 \times n-2 \times \cdots \times 3 \times 2 \times 1 \times 2 \times$ $3 \times \cdots \times n-2 \times n-1 \times n-1 \times n \times n-1 \times n-2 \times \cdots \times 3 \times 2 \times 1 \times$ $2 \times 3 \times \cdots \times n-2 \times n-1 \times n-1 \times n-1 \times n-2 \times \cdots \times 3 \times 2 \times 1 \times$ $2 \times 3 \times \cdots n-1 \times n \times n-1 \times n-1 \times n-2 \times \cdots \times 3 \times 2 \times 1 \times 2 \times$ $3 \times \cdots \times n-2 \times n-1 \times n-1$. But an exercise with relations verifies this requirement (e.g., start right at the middle, using $n-2 \times n-1 \times n-1 \times n-$ $1 \times n-2=n-2 \times n-1 \times n-2=n-1 \times n-2 \times n-1$, then move the ($n-1$)'s away from center).

Finally we show $A=B$. We have $H=C \cup C t_{n-1} C \cup C t_{n-1} t_{1} C$. It suffices to show that $a^{i_{n-1} t_{n}} \in B$. In fact, we show that

$$
\begin{equation*}
a^{t_{n-1} t_{1}}=a^{t_{1} t_{n}} a^{t_{n-1}} \tag{3}
\end{equation*}
$$

equivalently,

$$
1=a^{t_{1} t_{n} t_{n-1}} a a^{-t_{1}}
$$

So, we show the triviality of $n-1 \times n \times 1 \times n-1 \times n-2 \times \cdots \times 3 \times 2 \times$ $1 \times 2 \times 3 \times \cdots \times n-2 \times n-1 \times n \times 1 \times n \times n-1 \times n-1 \times n-$ $2 \times \cdots \times 3 \times 2 \times 1 \times 2 \times 3 \times \cdots \times n-2 \times n-1 \times n \times 1 \times n \times n-1 \times$ $n-2 \times \cdots \times 3 \times 2 \times 1 \times 2 \times 3 \times \cdots \times n-2 \times n-1 \times 1$. Now, cancel $n-1 \times n-1$ and replace both triples $n \times 1 \times n$ by $1 \times n \times 1$. Next move the i 's closest to each $2 \times 1 \times 2$ inward, then replace each $1 \times 2 \times 1 \times 2 \times 1$ by 3 . What remains is an expression in H. Since $H \cong H^{\omega}$, it is routine to show that the expression is trivial by a calculation in $H^{\circ}=\Sigma_{n}$.

As for $n \leqslant 3$, the lemma is trivial for $n=2$ and the argument for $n=3$ amounts to showing that $B=\left\langle a, a^{t_{2}}\right\rangle$ is abelian and verifying (3) with a similar calculation.

Now we show $A=B$ is abelian of rank at most $n-1$. Namely, B is generated by a and all a^{g} where g runs over a right transversal T to $C_{C}\left(t_{n-1}\right)$ in C. Taking $T=\left\{g \in C \mid g^{\circ}=(2, n-1),(3, n-1), \ldots, \quad(n-2, n-1)\right.$,
$(2, n-1)(n, 1), \ldots$, or $(n-2, n-1)(n-1)\}$ and using the facts that $(n, 1)$ commutes with each $(j, n-1), 2 \leqslant j \leqslant n-2$, and t_{n} inverts a, we get that at most $n-1$ distinct cyclic subgroups are generated by the members of $\left\{a, a^{g} \mid g \in T\right\}$. Thus, B has rank at most $n-1$.

Finally we show that A has rank exactly $n-1$ as follows. Let M be the module $\left\langle e_{i}-e_{j} \mid i, j=1, \ldots, n\right\rangle$ for $H \cong \Sigma_{n}$ as in the statement of the lemma and let $M H$ be the semidirect product. The elements $\left(\left(e_{1}-e_{n}\right) t_{n}\right)^{t_{n-1} t_{n-2} \cdots t_{3} t_{2}}, t_{2}, \ldots, t_{n}$ satisfy the diagram defing G, and we have a map $\psi: G \rightarrow M H$. Since $e_{1}-e_{2} \in G^{\omega}$ and $e_{1}-e_{2}$ generates M as a module, ψ is onto. The shapes of A and M show that ψ is an isomorphism, and we are done.

We will require some results on generation of the known simple groups. Consider the following more general situation.

$$
E \subseteq H \subseteq G \quad \text { and if }
$$

$$
g \in G \quad \text { with } \quad E^{g} \cap H \neq 1, \quad \text { then } g \in H
$$

which we refer to by saying that H controls strong fusion of E in G. We specify

Hypothesis 3.10. H controls strong fusion of E in G and $E \cong E_{p^{2}}, p$ odd.

Lemma 3.11. Suppose H controls strong fusion of e in G and e has prime order p.
(i) If $e \in \dot{R} \subseteq H$ and $R \triangleleft \triangleleft X$, then $X \subseteq H$.
(ii) If $e \in N$, then $p \nmid|N: N \cap H|$.
(iii) If $e \in N, V=H \cap N$ and $\bar{N}=N / K$ for some $K \triangleleft N$ with $K \subseteq V \cap N$, then \bar{V} controls strong fusion of $\langle\bar{e}\rangle$ in \bar{N}.

Proof. The proof is straightforward.

Lemma 3.12. Suppose (3.10) holds.
(i) If G is p-solvable, $H=G$.
(ii) If H is p-nilpotent, $H=G$.

Proof. To prove (i) let M be a minimal normal subgroup of G. If $p \nmid|M|$, then $M=\left\langle C_{M}(e) \mid e \in E^{*}\right\rangle \subseteq H$, while if M is a p-group and $R=E M, R \subseteq H$ by Lemma 3.11 (i). Thus, $M \subseteq H$ and since H / M controls strong fusion of $E M / M$ in G / M, we have $H=G$ by induction.

For (ii) suppose H is p-nilpotent and pick $P \in \operatorname{Syl}_{p}(H)$ with $E \subseteq P$. By

Lemma 3.11 (i) again, $P \in \operatorname{Syl}_{p}(G)$. By a result of Glauberman [25, Theorem 12.7| there exists a subgroup $W \subseteq P$ such that
W is characteristic in P, and if $z \in P \cap Z\left(N_{G}(W)\right)$, then z is weakly closed in P with respect to G.

Let $N=N_{G}(W)$. If $N=G$, we may apply the induction hypotheses to G / W, so assume $N \neq G$. $H \cap N$ controls strong fusion of E in N, so $N \subseteq H$ by induction. From the structure of H and choice of K we see that every $z \in Z(P)$ is weakly closed in P with respect to G. If $z \in Z(G)$, then we are done by induction, so assume $z \notin Z(G)$ whence $C_{G}(z) \subseteq H$ by induction. Thus. $z^{g} \in H$ implies $g \in H$, and in particular $N_{G}(D) \subseteq H$ for any $D \subseteq P$ with $C_{p}(D) \subseteq D$. It follows that two elements of P arc conjugate in G if and only if they are conjugate in P. But now G is p-nilpotent, and the action of E on $O_{p^{\prime}}(G)$ forces $O_{p^{\prime}}(G) \subseteq H$ and $H=G$.

Lemma 3.13. Suppose (3.10) holds and the p-layer of G is $L_{p}(G)=$ $K_{1} \cdots K_{\text {, }}$ or $L_{p}(G)=1$.
(i) Every p-solvable normal subgroup of G lies in H.
(ii) If $R \subseteq H$ and $\left[R . H \cap K_{i}\right] \subseteq O_{p^{\prime} p}(H)$, then R normalizes K_{i}. In particular $O_{p \cdot . p}(H)$ normalizes each K_{i}.
(iii) If $K_{i} \notin H$, then E normalizes K_{i}.

Proof. Lemma 3.11 (i) yields (i). Next we prove (iii). Assume E does not normalize K_{i}. By induction on $|G|$, we may assume $O_{p^{\prime}, p}(G)=1$. Indeed if not, then by (i), $O_{p^{\prime}, p}(G) \subseteq H$ and by induction E normalizes $K_{i} O_{p^{\prime}, p}(G)$. As $K_{i} \triangleleft \triangleleft G, K_{i}$ is characteristic in $K_{i} O_{p^{\prime}, p}(G)$ and (iii) holds. We may also assume by induction that E acts transitively on the p-components of G. Since $O_{p^{\prime}, p}(G)=1$, each K_{i} is simple.

Let $L=L_{p},(G)$ and $X=\left\langle C_{L}(e) \mid e \in E^{*}\right\rangle$. It suffices to show $X=L$. If $N_{F}\left(K_{i}\right) \neq 1$, then choose $e \in E^{\#}$ to normalize K_{i}. As $p \| K_{i} \mid, 1 \neq C_{K_{i}}(e) \subseteq$ $X \cap K_{i}$. Choose $f \in E$ so that $\langle f\rangle$ acts transitively on the components of L. As $C_{L}(f) \subseteq X, X$ projects onto K_{i} whence $X \cap K_{i} \triangleleft K_{i}$ and $K_{i} \subseteq X$. It follows that $L=X$ as desired.

If $N_{E}\left(K_{i}\right)=1$, then E acts regularly and we can choose $e, f \in E^{*}$ so that the $\langle e\rangle$-orbit containing K_{i} and the $\langle f\rangle$-orbit containing K_{i} have only K_{i} in common. Letting $X=\left\langle K_{i}^{(e)}\right\rangle$ and $Y=\left\langle K_{i}^{(\rho)}\right\rangle$, we have $K_{i}=\left[C_{X}(e)\right.$, $\left.C_{y}(f)\right] \subseteq X$ whence $L=X$.

Now we prove (ii). Just as in the proof of (iii) we may assume $O_{p^{\prime}, p}(G)=1$ whence K_{i} is simple. Suppose $r \in R$ does not normalize K_{i}. If $K_{i} \subseteq H$, then $K_{i}\left(K_{i}\right)^{r}=\left[K_{i}, r\right] \subseteq O_{p^{\prime}, p}(H)$, which is impossible. Thus, $K_{i} \nsubseteq H$
and by (iii) E acts on K_{i}. By Lemma 3.12, $H \cap K_{i}$ is not p-nilpotent, whence $\left[H \cap K_{i}, r\right]$ contains a section which is not p-nilpotent. But $\left[H \cap K_{i}, r\right] \subseteq$ $O_{p^{\prime}, p}(H)$, contradicting the existence of r.

Lemma 3.14. Assume the hypothesis of the preceding lemma and assume that each K_{i} satisfies the Schreier Conjecture; then

$$
L_{p^{\prime}}(H)=L_{p^{\prime}}\left(H \cap K_{1}\right) \cdots L_{p^{\prime}}\left(H \cap K_{t}\right)
$$

Further if L_{1} is a quasisimple component of H, then $L_{1} \subseteq K_{i}$ for some quasisimple component of G.

Proof. The action of E gives $O_{p^{\prime}}(G) \subseteq H$. Thus, if L_{1} is as above, then $\left[L_{1}, O_{p}(G)\right]=1$, whence $\left[K_{i}, O_{p^{\prime}}(G)\right]=1$ and K_{i} is quasisimple.

For the proof of the remainder of Lemma 3.14 we may assume $O_{p^{\prime}, p}(G)=1$ by induction whence each K_{i} is simple. Since $L_{p^{\prime}}\left(K_{i} \cap H\right)$ is clearly a summand of $L_{p^{\prime}}(H)$, it suffices to show that each p-component of H lies in some K_{i}.

Let $L=L_{p^{\prime}}(H)$ and $X=H \cap L_{p^{\prime}}(G)$. Since $X \triangleleft H, L=L_{1} L_{2}$ where L_{1} is the product of all p-components of H lying in X, L_{2} is the product of all other p-components of H, and $X \cap L_{2} \subseteq O_{p^{\prime}, p}\left(L_{2}\right) \subseteq O_{p^{\prime}, p}(H)$. As $\left[L_{2} \cap X, X\right] \subseteq L_{2} \cap X$, Lemma 3.11 (ii) implies that L_{2} normalizes each K_{i}. It follows that L does too.

Now for any $K=K_{i}, L=L_{3} L_{4}$ where L_{3} is the product of all p components of H lying in K and L_{4} is the product of the rest. Letting $Y=H \cap K$, we have as before $L_{5} \subseteq Y$ and $L_{4} \cap Y \subseteq O_{p^{\prime}, p}\left(L_{4}\right)$. By hypothesis, L_{4} acts as inner automorphisms on K. Let bars denote images in $\operatorname{Aut}(K) . \bar{L}_{4} \leqslant \bar{K}$ implies $\left[\bar{L}_{4}, \bar{L}_{4}\right] \subseteq\left[\bar{L}_{4}, \bar{Y}\right] \subseteq O_{p^{\prime}, p}\left(\bar{L}_{4}\right)$. As L_{4} is perfect, $\bar{L}_{4}=1$.

Thus, for any p-component J of H and any $K=K_{i}, J \subseteq K$ or $[J, K]=1$. As $O_{p^{\prime}, p}(G)=1, J$ acts nontrivially on $L_{p^{\prime}}(G)$ and (ii) holds.

Lemma 3.15. Assume the hypothesis of Lemma 3.13. Suppose $p=3$ and $P \triangleleft Q \triangleleft R \triangleleft H$ with
(a) $R / P \cong S_{3} ;$
(b) $P=O_{3},(R)$;
(c) $Q=O^{3}(Q)$;
then R normalizes every K_{i}. Further either $Q \subseteq O_{3^{\prime} \cdot 3}(G)$ or there exists $K=K_{i}$ such that R acts nontrivially on $K / O_{p^{\prime}, p}(K)$ and if Q acts as inner automorphisms on $K / O_{p^{\prime} . p}(K)$, then $Q \subseteq K$.

Proof. Clearly $[R, H] \subseteq Q \subseteq O_{3}, 3(H)$ so R normalizes each K_{i} by Lemma 3.13(ii). If Q acts nontrivially on $O_{3^{\prime}, 3}(G) / O_{3}(G)$, then our
hypotheses force $Q \subseteq O_{3^{\prime}, 3}(G)$. Thus, we may assume Q acts nontrivially on $K / O_{3^{\prime}, 3}(K)$ and induces innerautomorphisms. By induction we may further assume $O_{3^{\prime}, 3}(G)=1$. If $Q \pm K$, then $[R, H \cap K] \subseteq P$, and letting bars denote images in Aut $\left(K / O_{3^{\prime}, 3}(K)\right.$), we have $[\bar{R}, \bar{Q}] \subseteq[\bar{R}, H \cap K] \subseteq \bar{P}$ whence $\bar{Q}=1$, not the case.

The remainder of this section is primarily devoted to determining when certain configurations satisfying Hypothesis 3.10 can occur in the known simple groups. These results will be used in Section 6; and roughly speaking, H will be isomorphic to the centralizer of an element of prime order in a group of Lie type defined over a field of characteristic 2. As a consequence we need only consider configurations satisfying the following more restrictive version of Hypothesis 3.10.

Hypothesis 3.16. (I) H controls strong fusion of E in G and $E \cong E_{p^{2}}, p$ odd.
(II) $K=F^{*}(G)$ is a known simple group.
(III) Let $Q=O_{2}(H)$ and $L / Q=L(H / Q)$. The following conditions hold:
(a) The components of L / Q are Chevalley groups or Steinberg variations (i.e., not twisted groups of type B_{2} or F_{4}) over a field of characteristic 2;
(b) L is perfect or $L(H / Q)=1$;
(c) H / L is solvable;
(d) E acts as inner-diagonal automorphisms on each component of L / Q;
(e) if $L(H / Q) \neq 1$, then either L is 2-constrained, or L is quasisimple with $|Z(L)|$ odd;
(f) if $L(H / Q)=1$, then either $m_{p}(K)=1$, or K has a perfect central extension \hat{K} by a cyclic p-group with $m_{p}(\hat{K})=2$.
(IV) For all $x \in E^{*}, L_{p},\left(C_{G}(x)\right)$ is quasisimple or 1 and each component is a group of Lie type over a field of characteristic 2.

Lemma 3.17. If Hypothesis (3.16) holds and K is alternating or of Lie type, then one of the following occurs:
(i) $H=G$;
(ii) $K=A_{6}, p=3, F^{*}(H \cap K)=E$, or $K=A_{5 s}, s=2,3,4, p=5$, and $F^{*}(H \cap K)=A_{5}^{s}$;
(iii) K is a group of Lie type over a field of characteristic 2 and $p=3$ or 5 .

Proof. We may assume $H \neq G$. If $K \subseteq H$, then \bar{H} controls strong fusion of \bar{E} in $\bar{G}=G / K$, and as \bar{G} is always solvable, $H=G$ by Lemma 3.12. Thus, we may assume $K \nsubseteq H$.

Suppose K is alternating, say $K=A_{n}$, and $e \in E^{\#}$ has cycle structure $1^{r} p^{s}$. Assume $s \geqslant p$ and

$$
e=(1, \ldots ., p)(p+1, \ldots, 2 p) \cdots\left((p-1) p+1, \ldots, p^{2}\right) \cdots
$$

As e is fused in K to

$$
f=(1, p+1, \ldots,(p-1) p+1) \cdots\left(p, 2 p, \ldots, p^{2}\right) \cdots,
$$

we have $\langle a, b\rangle \subseteq H$, where

$$
a=(1,2, \ldots, p) \in C_{G}(e) \subseteq H
$$

and

$$
b=\left(p, 2 p, \ldots, p^{2}\right) \in C_{G}(f) \subseteq H
$$

But $\langle a, b\rangle$ is the alternating group of the letters moved by a or b; and it follows easily that $A_{r} \times A_{s p} \subseteq H$. As $s p \geqslant 9$, conditions III(a)-(c) of Hypothesis 3.16 cannot both be satisfied, and we conclude $s<p$.

A similar argument yields $r \leqslant p$. It follows that E has no regular orbits, and that we can choose e to have cycle structure $1^{p} p^{s}$. Control of strong fusion of e forces H to contain $\left.F=A_{p}\right\rangle A_{s+1}$. In fact, as $e \in F, N_{G}(F) \subseteq H$. Since $N_{G}(F)$ is maximal in $G, H=N_{G}(F)$. Applying conditions III and V of Hypothesis 3.16 we obtain conclusion (ii) above.

Next suppose K is of Lie type over a field of characteristic p. If $E \cap K=1$, then $p=3$ and $K=D_{4}\left(3^{3 n}\right)$. Some $e \in E^{\#}$ is a field automorphism with $H \supseteq C_{K}(e) \cong D_{4}\left(3^{n}\right)$. By [8, Theorem 1], $C_{K}(e)$ is maximal in K. By Lemma 3.11, $p \nmid|G: H|$; and as $p \| K: C_{K}(e) \mid$, it follows easily that $K \subseteq H$. Thus, we may assume $E \cap K \neq 1$. Applying the operator $O_{p}\left(N_{K}()\right)$ repeatedly to $E \cap K$, we eventually reach $O_{p}(W)$ for some parabolic subgroup W of K [9]. It follows that $W \subseteq H$ whence $H \cap K$ is a parabolic. Condition III(e) now implies $L(H / Q)=1$, and in view of Condition III(f) we need only consider the possibilities $m_{p}(K)=1$ and $m_{p}(\hat{K})=2$. In the first case K must have Lic-rank 1 whence $H \cap K$ is a maximal subgroup of K. But some $e \in E-K$ is a field automorphism, and it follows easily from $C_{K}(e) \subseteq H$ that $K \subseteq H$. In the second case, by [38], $p||Z(\hat{K})|$ implies $p=3$ and

$$
K=A_{1}(9), \quad B_{3}(3), \quad G_{2}(3), \quad \text { or } \quad{ }^{2} A_{3}(3)
$$

Likewise the Sylow 3-subgroup of $Z(\hat{K})$ is elementary whence by Condition

III(f) $|Z(\hat{K})|=3$. Now $m_{3}(\hat{K}) \leqslant 2$ implies $m_{3}(K) \leqslant 3$ by a straightforward argument whence $K=A_{1}(9) \cong A_{1}$ and Lemma 3.17 (ii) holds.

Finally suppose K is of Lie type over a field of characteristic prime to p. Our conditions imply $K \neq\left\langle C_{K}(e) e \in E^{\# \prime}\right\rangle$, and [52, Theorem 1 and Theorem 2| yields conclusion (iv) of Lemma 3.17.

Lemma 3.18. If Hypothesis (3.16) holds and K is of Lie type over a field of characteristic 2, then one of the following holds:
(i) $p=3, K=C_{4}(2), H \cap K=O^{+}(8,2)$;
(ii) $p=3, K=C_{3}(2), H \cap K=O^{-}(6,2)$;
(iii) $p=3, \quad K=A_{2}(4), \quad E \subseteq K, \quad F^{*}(H \cap K)=A_{6} \cong C_{2}(2)^{\prime} \quad$ or $H \cap K={ }^{2} A_{2}(2)$;
(iv) $p=5, K={ }^{2} C_{2}\left(2^{5}\right), H \cap K=Z_{4} Z_{25}$;
(v) $p=3, K=A_{1}(8) ; H \cap K$ is dihedral of order 18 .

Further $C_{K}(E)$ is a p-group. and, in cases (i)-(iii), E acts on K as innerdiagonal automorphisms. In cases (i) and (ii) the standard K-module may be decomposed into a direct sum of pairwise orthogonal hyperbolic planes in such a way that E acts nontrivially on each plane and H acts as the orthogonal group preserving the quadratic form which takes the value 1 on the nonzero elements of every plane.

Proof. We sketch the proof, which consists of analyzing all the possibilities for failure of generation presented in [52]. Suppose first that K is classical and E acts as inner-diagonal automorphisms. Let E_{0} be a Sylow p-subgroup of the pre-image of E in the universal covering group K_{0} of K (or more precisely in K_{0} extended by its diagonal automorphisms). Assume first that E_{0} is abelian. By $\left.\mid 52,(4.1)\right], p=3, r^{a}=2$, and $K \neq A_{n}(2)$. Further let V be the standard K_{0}-module; then

$$
V=V_{0} \perp V_{1} \perp \cdots \perp V_{\kappa}
$$

with $V_{0}=C_{1}\left(E_{0}\right), \operatorname{dim}\left(V_{0}\right) \leqslant 0,1,2$ according to whether V is symplectic, unitary, or orthogonal and for $i \geqslant 1 \quad V_{i}=\left\{V_{i}, E_{0}\right\}, \operatorname{dim}\left(V_{i}\right)=1$ or 2 according to whether V is unitary or not. Let $D_{0}=C_{K_{0}}\left(E_{0}\right)$, then either $D_{0}=E_{0}$ and D_{0} stabilizes the decomposition of V above, or $K_{0}=\operatorname{Sp}(2 n, 2)$ and $D_{0}=O^{\varepsilon}(2 n, 2)$ preserve the quadratic form which has value 1 on each vector in $V_{i}^{*}, i \geqslant 1$. Clearly $K \nsubseteq H$ implies $D_{0} \neq K_{0}$.

If $K_{0}=S U(n, 2)$, then a lift of $e \in E^{\#}$ has a diagonal matrix representation

$$
e \sim\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)
$$

with each diagonal entry corresponding to a summand of the decomposition of V. If $\lambda_{i}=\lambda_{j}=\lambda_{k}$ for distinct i, j, k, then D_{0} contains a subgroup isomorphic to $\operatorname{SU}(3,2)$ which does not stabilize the decomposition of V. Thus, the multiplicity of any eigenvector is at most 2 , whence $n \leqslant 6$. If $n=6$, then the trace of the matrix of e is 0 for each $e \in E^{*}$. As each λ_{i} is a cube root of unity, we may choose the lifts of each e to generate a subgroup $E_{1} \subseteq E_{0}, E_{1} \cong \dot{E}$. We identify E with E_{1}. Let ψ be the corresponding character of $E . \psi(e)=0$ for $e \in E^{*}$ and $\psi(1)=6$ which is impossible as $|E|=9$. A similar contradiction obtains if $n=5$.

Consider the case $n=4$. We have $K_{0}=K=S U(4,2) \cong P S p(4,3)$. As $H \cap K$ controls strong fusion of $E^{*}, H \cap K$ contains all monomial matrices. The subgroup of such matrices corresponds to a maximal parabolic of $\operatorname{PSp}(4,3)$ whence $H \cap K$ is the monomial subgroup. It follows that the subgroup of diagonal matrices is normal in H . On the other hand there are 3 K-classes of elements of order 3 represented by

$$
\left(\begin{array}{llll}
\lambda & & & \\
& \lambda^{-1} & & \\
& & 1 & \\
& & & 1
\end{array}\right), \quad\left(\begin{array}{llll}
\lambda & & & \\
& \lambda & & \\
& & \lambda^{-1} & \\
& & & \lambda^{-1}
\end{array}\right), \quad\left(\begin{array}{llll}
\lambda & & & \\
& \lambda & & \\
& & \lambda & \\
& & & 1
\end{array}\right) .
$$

As we saw above, E contains no elements of the third class; it follows easily that E contains elements from the other two classes. But $H \cap K$ contains an element w with matrix

$$
\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

As $C_{1}\left(w^{\prime}\right)$ has dimension $2, w$ is fused in K to an element of E. Thus, w is fused in H to E, contrary to the structure of H.

The last two paragraphs show that when E_{0} is abelian (and $K \nsubseteq H$) we do not have $K={ }^{2} A_{n}(2)$. A similar argument disposes of the other classical groups whenever D_{0} stabilizes the decomposition of V.
Suppose E_{0} is abelian but D_{0} does not stabilize the decomposition of V. $K_{0}=S p(2 n, 2)$ and $D_{0}=O^{\varepsilon}(2 n, 2)$ as discussed above. If the lift of any $e \in E^{*}$ centralizes two summands of V, then D_{0} contains a subgroup isomorphic to $S p(4,2)$ which does not preserve the quadratic form. Thus, the centralizers in E_{0} of the summands of V are all distinct. It follows that $k \leqslant 4$. As $V_{0}=0$, we have $K=C_{3}(2)$ or $C_{4}(2)$ and $H=H \cap K$ contains a subgroup L isomorphic to $O^{-}(6.2)$ or $O^{+}(8,2)$, respectively. By [52, (2.3)], D_{0} does not act on a 2 -subgroup of K_{0} lest $D_{0}=K_{0}$. Thus, $O_{2}(H)=1$, and it follows
by arguments on the order of L and H that $L \triangleleft H$. At this point we have obtained Lemma 3.18 (i, ii).

Assume E_{0} is nonabelian. By $[52,(4.5)]$ we have $p=3$ and $K_{0}=S L\left(3^{k}, 4\right)$ or $S U(n, 2)$. In the first case if E_{0} is reducible, then E_{0} acts on a 2 -subgroup of K_{0} whence $D_{0}=K_{0}$ by [52, (2.3)]. Thus, E_{0} is irreducible. As E_{0} is extraspecial of order 27 , we deduce first that $k=1$ and then that Lemma 3.18 (iii) holds. In the second case suppose some $e \in E$ lifts to $e_{0} \in E$ with $\left|e_{0}\right|=9$. Then $n=3 k$ and with respect to some basis e_{0} has matrix

$$
\left(\begin{array}{lll}
0 & 0 & \lambda I \\
I & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Further if $k>1$ and $f \in E-\langle e\rangle$ lifts to f_{0}, then f_{0} acts as a field automorphism on $L\left(C_{K_{v}}\left(e_{0}\right)\right)$ whence $2\left|\left|C_{K_{0}}\left(\left\langle e_{0}, f_{0}\right\rangle\right)\right|\right.$ contrary to [52, (2.3) . Thus, $k=1$ and K is solvable, not the case. Finally if every element of E^{\nRightarrow} lifts to an element of order 3 , then E_{0} permutes the 3 eigenspaces of any $e_{0} \in E_{0}^{\neq}$, and an argument using [52, (2.3)] yields $K=1$.

Next assume that K is an exceptional group of Lie type and E acts as inner-diagonal automorphisms. The possibilities with $C_{K_{0}}^{0}\left(E_{0}\right) \neq K_{0}$ are listed in $[52,(5.1)]$. With one exception $p=3$ and $r^{a}=2$ or 4 . Notice that as we have seen above $\left|C_{K_{0}}\left(E_{0}\right)\right|$ must be odd. When $p=3$, it follows that for any $e \in E^{*}, O^{2}\left(C_{K}(e)\right)$ has as possible summands only $A_{1}(q), A_{2}(q)$ with $3 \mid q-1$, and ${ }^{2} A_{2}(q)$ with $3 \mid q+1$. Thus, for any particular exceptional group K that there are at most a few possibilities for the conjugacy classes of elements in E. In fact when K is of type E_{7} or E_{8}, there are no elements of order 3 whose centralizers have the required structure.

Next suppose $K=F_{4}(2)$. There is just one possible class for $e \in E^{\#}$. Pick a fundamental system of roots of type $F_{;}$

and let $\left\{\eta_{i} \mid 1 \leqslant i \leqslant 4\right\}$ be the dual basis. Let σ be the standard automorphism of the algebraic group \tilde{K} with fixed points $F_{4}(2)$, and let W_{0} be the element of the Weyl group interchanging positive and negative roots. $\left[\eta_{3}, w_{0} \sigma\right.$] describes an element in the K-class of e (where K is taken to be the centralizer on the algebraic group of $I_{w_{0}} \sigma$ as discussed in Section 2). $C_{K}(e)=$ $Z_{3} /\left({ }^{2} A_{2}(2) \times{ }^{2} A_{2}(2)\right) / Z_{3}$. Let E_{1} be the group generated by e and

$$
f_{1}=\left|\eta_{1}+\eta_{2}+\eta_{4}, w_{0} \sigma\right|
$$

and check that all elements of E_{1} are conjugate in K to e. As $E_{1} \subseteq H, H$
controls strong fusion of E_{1} in K. E_{1} acts on $J=F^{*}\left(C_{\tilde{J}}\left(I_{W_{0}} \sigma\right)\right)$ where \tilde{J} is generated by the root groups corresponding to $\pm \alpha_{1}, \pm \alpha_{2}, \pm \alpha_{3}$, and $\pm \beta, \beta$ the lowest short root. $J \cong C_{4}(2)$, so our previous discussion of the case $K=C_{4}(2)$ yields a subgroup L of H isomorphic to $D_{4}(2)$. If $O_{3}(H) \neq 1$, then some 3-element $w \in K$ has a subgroup isomorphic to $D_{4}(2)$ in its centralizer, which is impossible by inspection. If $O_{3}(H) \neq 1$, then $O_{3}\left(C_{K}(g)\right) \neq 1$ for some $g \in E_{1}^{*}$, again impossible by inspection. Thus $O_{3^{\prime}, 3}(H)=1$ whence L lies in $E(H)$ and $E(H)$ is a direct product of simple groups. Let L project nontrivially on the summand L_{1} of $E(H)$. From the preceding observation $3 X\left|C_{\kappa}\left(L_{1}\right)\right|$ whence all other summands have order prime to 3 . As $O_{3^{\prime}}(H)=1, L_{1}=E(H)$. As $3^{5} \||L|$ but $3^{6}| | C_{\kappa}(e)| | H \mid, L=L_{1}$ implies that $N_{K}(L)$ contains a 3 -element w with $C_{L}(w) \supseteq{ }^{3} D_{4}(2)$ which is impossible by inspection of the layers of centralizers of elements of order 3. Likewise $L_{1} \neq C_{4}(2)$. On the other hand the conjugates under L_{1} of the root involutions of K in L generate L_{1}, so the possibilities for L_{1} are known by Timmesfeld [58]; and $|L|\left|\left|L_{1}\right|\right||K|$ gives a contradiction.

The other cases in $[52,(5.1)]$ are dealt with similarly. The failures of generation in which E does not act as inner-diagonal automorphisms are described in $\left\{52,(6.1),(6.3),(6.4) \mid\right.$. In (6.1) we find $p=3, K={ }^{2} C_{2}\left(2^{5}\right)$ or $A_{i}(8)$, which leads to Lemma $3.18(\mathrm{iv}, \mathrm{v})$. In (6.3) and (6.4) we have E acting as inner-graph automorphisms on $K={ }^{3} D_{4}(2), D_{4}(2)$, or $D_{4}(4)$, and we wish to show that $K \nsubseteq H$ leads to a contradiction.

Suppose $K={ }^{3} D_{4}(2) . K$ has one class of 3 -central elements of order 3. Let x be such an element. From [52, Table 3.3], $C_{K}(x)$ is an extension of $J=S U(3,2)$ with $\left|C_{K}(x): J\right|=3$ and some 3 -element inducing an outerdiagonal automorphism on J. The other class of elements of order 3 in K has centralizer $Z_{3} \times A_{1}(8)$. K has a graph automorphism τ with $C_{K}(\tau)=G_{2}(2)$. As $G_{2}(2)$ contains a 3 -central element with centralizer $\operatorname{SU}(3,2)$, we may take τ to centralize J. Thus $C_{\kappa}(x)\langle\tau\rangle$ contains a Sylow 3 -subgroup of $K\langle\tau\rangle \supseteq E$. We take $E \subseteq C_{K}(x)\langle\tau\rangle$ and $\langle x, \tau\rangle \subseteq S \in \operatorname{Syl}_{3}\left(C_{K}(x)\langle\tau\rangle\right)$. As $N_{\kappa}(\langle x\rangle)$ is solvable, $N_{\kappa}(\langle x\rangle) \subseteq H$ by Lemma 3.12. From [52, (4.3)] we have $C_{h}(\rho) \notin N_{G}(\langle x\rangle)$ for any $\rho \in E-K$. Thus $N_{K}(\langle x\rangle) \subset H \cap K$ whence $O_{3}(H)=1$.

Pick $y \in S \cap K$ with $C_{K}(y)=\langle y\rangle \times L, L \cong A_{1}(8)$; and $C_{S \cap K}(y) \in$ $\mathrm{Syl}_{3}\left(C_{K}(y)\right)$. Our conditions force $x \in L$ whence (as K has just two classes of elements of order 3) y is inverted in $N_{K}(\langle y\rangle) \cap C_{K}(x)$. It follows that $y \in J$. Let $F=O_{3}(H \cap K)$. If $F \neq 1$, then considering the action of $\langle x, y\rangle$ on F, we have either $O_{3}\left(C_{K}(x)\right) \neq 1$ or for some $z=y x^{i}, i=0,1,2, C_{K}(z)$ contains a p^{\prime}-subgroup invariant under $C_{K}(\langle x, y\rangle) \cong Z_{3} \times Z_{9}$. But as z is conjugate to y in J, we see that neither possibility occurs whence $F=1$.

We have $O_{3^{\prime}, 3}(H \cap K)=1$ whence $X=E(H \cap K) \neq 1$. Each summand of X is simple with order divisible by 3 . As $S \cap K$ has rank $2, X$ has at most 2 summands. Thus the intersection of S with any summand lies in $Z(S)$. As
$Z(S)=\langle x\rangle$, we have that X is simple and S acts faithfully on X. Further $|X|$ properly divides $|K|=2^{12} \times 3^{4} \times 7^{2} \times 13$, and surveying the orders of the known simple groups, we see that no such X exists.

In the cases $K=D_{4}(2)$ or $D_{4}(4)$ we can use E to find $A \subseteq H \cap K$ such that H controls strong fusion of A in K, a possibility ruled out earlier.

Lemma 3.19. Let $Q Y$ be a 2-constrained finite group with $Q=O_{2}(Q Y) a$ special group of order $q^{9} . q>2$ a power of $2, Y \cong G U^{*}(4, q) \cong G U(4, q) \times$ Z_{q-1} with Q / Q^{\prime} the standard module for Y. Then the isomorphism type of $Q Y$ is unique.

Proof. Let Y_{0} be the subgroup of Y corresponding to $G U(4, q)$. Set $H=Q Y_{0}, \bar{H}=H / Q^{\prime}$. Since the Schur multiplier of Y_{0} is trivial [38] and $\operatorname{Ext}_{\xi_{1}}^{1}\left(F_{2}, \bar{Q}\right)=0$ (because $Z\left(Y_{0}\right) \cong Z_{q+1}$ acts fixed point freely on \bar{Q}), we get that the Schur multiplier of H is isomorphic to Q^{\prime}, an elementary abelian group of order q (because the invariants in $\bar{Q} \otimes \bar{Q}$ of Y_{0} have dimension 1 over End ${\xi_{n}}(\bar{Q}) \cong F_{q^{2}}$). Therefore, H is a covering group of \bar{H}. A result of Schur $|51|$ states that if G is a finite group in which $\left|G / G^{\prime}\right|$ is prime to the order of the multiplier, a covering group is unique up to isomorphism. So, H is uniquely determined. Let $\pi=\pi(q-1)$ and let $\left\langle y^{\prime}\right\rangle=O_{\pi}(Z(Y))$. The action of y on \bar{H} lifts to a unique action on H (see [37, appendix]). Since $I \cap\langle\boldsymbol{V}\rangle=1$, the isomorphism type of $Q Y=H\langle y\rangle$ is completely determined.

Lemma 3.20. Let K be one of the linear groups in the conclusion of Propositions A, CF, D or E. Then K does not contain a p-element inducing a quadratic minimal polynomial on B^{*}, except for $p=3$ and K essentially $W_{I_{+}}$.

Proof. Let x be a p-element with $\left[B^{*}, x, x\right]=1$. Then x does not act nontrivially on a nonidentity abelian 2 -group. Su , if $O_{2}(K) \neq 1$, it is extraspecial and K is essentially the Weyl group of F_{4}. In this case, if $R \cong O_{2}(K)$, then $|R, x| \cong Q_{8}$, and $C_{R}(x)=Q_{8}$.

Suppose $O_{2}(K)=1$. Then either K is essentially a Weyl group of type A and B^{*} is a standard module, in which case the result is obvious, or else K is of type E_{6}, E_{7} or E_{8}; but then special arguments may be employed. It suffices to do the case $K \cong W_{E_{\mathrm{x}}}$.

If x lies in a subgroup isomorphic to some Σ_{n} generated by reflections, we are done. Since $W_{4_{8}} \rightarrow W_{I \cdot x}$, the only possibility is $p=5$ and x has minimal polynomial $\left(t^{5}-1\right) /(t-1)$ on the root lattice, Λ. Say $[\bar{\Lambda}, x, x]=1$ where $\bar{A} \cong A / 5 \Lambda \cong B^{*}$. Such an x lies in a diagonal subgroup $S \subseteq S_{1} \times S_{2}$, $S \cong S_{1} \cong S_{2} \cong W_{4_{4}}$. The representation theory of $\mathbb{F}_{5} A_{5}$ shows that x is not quadratic on any irreducible module, contradiction.

Proposition 3.21. Assume Hypothesis 3.16 with K sporadic. Then $m_{p}(K) \leqslant 2$.

Proposition 3.22. Assume Hypothesis 3.16 with K sporadic. Then $p=5, K \cong F_{22}, H \cong D_{4}(3) \Sigma_{3}$.

Proof of Proposition 3.22. This follows from Proposition 3.21, [33], and Hypothesis 3.16. By [33, Part I, Section 24] (K, p) must be on the following list when $m_{p}(K)=2$.

$$
\begin{array}{ll}
p=3: & K=M_{11}, M_{12} \\
p=5: & K=H i S, M^{c} L, F_{22} \\
p=7: & K=H e l d, O^{\prime} s, F_{24}^{\prime} \\
p=11: & K=J_{4} .
\end{array}
$$

We eliminate all but $p=5, K=F_{22}$.
Suppose $L(H / Q)=1$. By Hypothesis $3.16(\operatorname{III}(f))$ and knowledge of Schur multipliers [38], we eliminate all groups on the list above.

Suppose $Q \neq 1$. Then for some $e \in E^{*}, O_{2}(C(e)) \neq 1$. By checking the properties of the groups on the list, we find that the only possibility is M_{12}, $p=3, C(e) \cong 3^{1+2} 2$ or $3 \times A_{4}$ for $e \in E^{\#}$. Thus $|Q|=4$, since E contains elements of both 3-classes, and so $Q E \cong 3 A_{4}$. But then, as all elements of $E-Z(P)\left(E \leqslant P \in \operatorname{Syl}_{3}(K)\right)$ are fused, we have a contradiction to $C(e) \subseteq H$ for all $e \in E^{\#}$. So, $Q=1$.

We now have that $L=L(H) \cong L(H / Q) \neq 1$. Suppose $O_{p}(H) \neq 1$. By checking the properties of groups on the list, $L \neq 1$ limits us to the possibilities

$$
\begin{array}{rll}
\text { HiS: } & p=5, & 5 \times A_{5}, \\
\text { Held: } & p=7, & 7 \times L_{3}(2), \quad \text { twice. }
\end{array}
$$

But in these cases $|K: H| \equiv 0(\bmod p)$, a contradiction.
Finally, we get $O_{p}(H)=1$. Suppose for some $e \in E^{\#}, C(e)$ is nonsolvable. We then get the possibilities of the previous paragraph. In particular, $p \geqslant 5$. Since P is nonabelian of order p^{3}, exponent p, P is the weak closure of E in P. Therefore, L has nonabelian Sylow p-group, whence p divides the order of the Weyl group, whence $|P| \geqslant p^{p-1} \geqslant p^{4}>|H|_{3}=p^{3}$, a contradiction. So, $C(e)$ is solvable, for $e \in E^{*}$. The above argument goes through unless P is abelian or $p=3$. If $p=3, L \neq 1$ and $(|K: H|, 3)=1$ imply that $K=M_{11}$ and $L \cong A_{6}, H \cong M_{10}$. But then $N(P) \cong 3^{2} \cdot 2^{4}$ cannot be in H, a contradiction. So, $p=5$ and $K=F_{22}$, as required.

Proof of Proposition 3.21. Until further notice, we assume Hypothesis 3.16(I, II, III). Without loss, $K=F^{*}(K)$. We let P denote a Sylow p-group containing E.

We assume that the list of Known simple groups in $[28$, Chapter 2| is complete.

In some of the results which follow, we give information about sporadic groups. It is not possible to give published references in every case. Sometimes, the information is deduced from the character table and class list, copies of which have circulated among the group theorists. The published references are $[4,45,48]$. See also [33].

Lemma 3.23. Suppose that $m_{r}(K) \geqslant 3$ for some odd prime r. Then the possibilities are:

K	r	$\|K\|_{r}$	$m_{r}(K)$
J_{3}	3	3^{5}	3
$M^{c} L$	3	3^{6}	$\geqslant 4$
Suz	3	3^{7}	$\geqslant 5$
$0 \cdot 1$	3,5	$3^{9}, 5^{4}$	$\geqslant 6$ for $r=3$
		3 for $r=5$	
$0 \cdot 2$	3	3^{6}	4
$0 \cdot 3$	3	3^{7}	$\geqslant 5$
F_{22}	3	3^{9}	$\geqslant 5$
F_{23}	3	3^{13}	$\geqslant 6$
F_{24}^{\prime}	3	3^{16}	$\geqslant 7$
$L y S$	3,5	$3^{7}, 5^{6}$	$\geqslant 5$ for $r=3$
	3	3^{4}	3 for $r=5$
$O^{\prime} S$	3,5	$3^{13}, 5^{6}$	$\geqslant 5$ for $r=3$
F_{2}	$3,5,7$	$3^{20}, 5^{9}, 7^{6}$	$\geqslant 7$ for $r=3$
F_{1}			$\geqslant 4$ for $r=5$
	3,5	3^{10}	$\geqslant 3$ for $r=7$
		$3^{6}, 5^{6}$	$\geqslant 3$ for $r=3,5$

Lemma 3.24. Suppose that $F^{*}(K)$ is sporadic, $m_{p}(K) \geqslant 3$ and that $r \in \pi(K)$ is odd.
(a) For $x \in K,|x|=r$, the possibilities for $C(x)$ are listed below.
(b) In (a), when $L(C(x)) \neq 1$ and every component lies in $\operatorname{Chev}(2)$, we mark with an $*$ (an $*$? indicates a possibility only).
(c) When $x \in K,|x|=r$ and $O_{2}\left(C_{F^{*}(K)}(x)\right) \neq 1$, we mark with $a \neq(a n$ \neq ? indicates a possibility only).
(d) If a Sylow 3-group of K has noncyclic center, $F^{*}(K) \cong J_{3}, O^{\prime} S$, Suz.

Remark 3.25. Since $|\operatorname{Out}(K)| \leqslant 2$, for all sporadic simple groups K, if $\left|O_{2}\left(C_{K}(x)\right)\right| \neq 1$ and there is no \neq opposite K for $C(x)$, then $\left|O_{2}\left(C_{K}(x)\right)\right|=2$. This occurs for $K=F, 2 \cdot 2$. In the proof, we may assume $K=F^{*}(K)$).

Sporadic Group	p	r	Centralizer orders for class of order r	Centralizers
$L y S$	3,5	3	$2^{4} 3^{7} 5$	$3^{2+4} S U^{ \pm}(2,5)$
			$2^{7} 3^{7} 5711$	$3 M^{c} L$
		5	$2^{4} 3^{2} 5^{6}$	$5^{1+4} S L(2,9)$
			235^{4}	$\left(5^{1+2} \times 5\right) \cdot \Sigma_{3}$
		7	$2^{4} 37^{2}$	$\begin{gathered} 7 \times S L(2,7) \\ \text { solvable } \end{gathered}$
		$\geqslant 11$		
$O^{\prime} S$	3	$\begin{array}{r} 3 \\ \geqslant 5 \end{array}$	$2^{3} 3^{4} 5$	$\begin{gathered} 3 \times 3 \times A_{6} \\ \text { solvable } \end{gathered}$
F_{1}	3, 5, 7	3	$2^{14} 3^{20} 5^{2} 71113$	$3^{1+12} 2 S u z$
			$2^{15} 3^{11} 5^{3} 7^{2} 131931$	$3 \times F_{3}$
			$2^{21} 3^{16} 5^{2} 7^{3} 1113172329$	$3 F_{24}^{\prime}$
		5	$2^{8} 3^{3} 5^{9} 7$	$5^{1+6} 2 \mathrm{HJ}$
			$2^{14} 3^{6} 5^{6} 71119$	$5 \times F_{5}$
		7	$2^{4} 3^{2} 57^{6}$	$7^{1-4} 2 A_{7}$
			$2^{10} 3^{3} 5^{2} 7^{4} 17$	$7 \times$ Held
		11	$2^{6} 3^{3} 511^{2}$	$11 \times M_{12}$
		13	$2^{3} 313^{3}$	$13^{1+2} S L(2,3)$
		17	$2^{3} 3717$	$17 \times L_{2}(7)$
		19	$2^{2} 3519$	$19 \times A_{5}$
		23	$2^{3} 323$	
		29	329	29×3
		31	2331	$31 \times \Sigma_{3}$
		41	41	41
		47	247	47×2
		$\geqslant 59$		solvable

$F, \quad 3,5 \quad 3$

$$
\begin{array}{cc}
3 & 2^{19} 3^{10} 5^{2} 71123 \\
& 2^{13} 3^{13} 5 \\
5 & 2^{11} 3^{2} 5^{4} 711 \\
& 2^{7} 35^{6} \\
7 & 2^{7} 3^{2} 57 \\
11 & 2^{3} 3511 \\
13 & 2^{3} 313 \\
17 & 2^{2} 17
\end{array}
$$

$$
3 \times F_{22} \cdot 2
$$

$$
3^{1+8} 2^{1+6} U_{4}(2)
$$

$$
5 \times H i S \cdot 2
$$

$$
5^{1+4} 2^{1+4} A_{3}
$$

$$
7
$$

$$
7 \times 2 \cdot L_{3}(4) \cdot 2 \neq
$$

$$
11
$$

$$
11 \times \Sigma_{5}
$$

$$
13
$$

$13 \times \Sigma_{4} \quad \neq$ 17

Sporadic Group	p	r	Centralizer orders for class for order r	Centralizers
F_{3}	3	3	$2^{4} 3^{7} 5$	$3 \cdot 3{ }^{4} A_{6} 2$
			$2^{6} 3^{7} 713$	$3 \times G_{2}(3)$
			$2^{3} 3^{10}$	solvable
		5	$2^{3} 35^{3}$	5^{1+2}
		7	$2^{3} 37^{2}$	$7 \times L_{2}(7)$
		$\geqslant 13$		solvable
F_{5}	3,5	3	$2^{6} 3^{5} 57$	$3 \times A_{9}$
			$2^{3} 3^{6} 5$	$3^{1+4} S L(2,5)$
		5	$2^{4} 3^{2} 5^{4} 7$	$5 \times U_{3}(5)$
			$2^{5} 5^{6}$	solvable
			$2^{3} 35^{4}$	solvable
		7		$7 \times A_{5}$
		11		2×11
		19	219	19×2

Proof. Study the character tables and class lists.
We argue that none of the rows for $p=3$ and $K=F_{24}^{\prime}$ or F_{22} deserves a \neq. (They tentatively deserve \neq 's).

Say $K=F_{24},|x|=3,|C(x)|=2^{6} 3^{14}$. Without loss, $P \subseteq C(x), P \in \operatorname{Syl}_{3}(K)$. Say $\quad O_{2}(C(x)) \neq 1$. Let $\quad 2^{r}=\left|O_{2}(C(x)) / \Phi\left(O_{2}(C(x))\right)\right|, \quad r \geqslant 1$. Since $\max \left\{|C(t)|_{3} \mid t\right.$ an involution of $\left.F_{24}\right\}=3^{10}$, we get $r=6, P / C_{P}\left(O_{2}(C(x))\right) \cong$ $\left.Z_{3}\right\rangle Z_{3}$ and every element of $O_{2}(C(x))^{*}$ has centralizer of the form $2 F_{23}$. Since such an involution lies in $F_{24}-F_{24}^{\prime}$ and $r>1$, we have a contradiction.

Say $K=F_{23}, x \in K, \quad|x|=3, \quad|C(x)|=2^{10} 3^{13}, \quad O_{2}(C(x)) \neq 1$. Then $\left|P: C_{P}\left(O_{2}(C(x))\right)\right| \leqslant 3^{6}$. Thus, for $y \in O_{2}(C(x)), \quad|C(y)|_{3} \geqslant 3^{7}, \quad$ a contradiction. Say $x \in K,|x|=3,|C(x)|=2^{4} 3^{10}, O_{2}(C(x)) \neq 1$. Then for $y \in O_{2}(C(x)),|C(y)|_{3} \geqslant 3^{8}$, another contradiction. So, $K \neq F_{23}$.

Lemma 3.26. $\quad p \nmid|K: H| ;$ in fact $N_{K}(P) \subseteq H$ for $P \in \operatorname{Syl}_{p}(H)$.
Proof. If $E \subseteq H_{1} \subseteq H$, then $N_{K}\left(H_{1}\right) \subseteq H$.
Lemma 3.27. Suppose $m_{p}(K) \geqslant 3, P_{p}(H)=1$ and $L(H) \neq 1$. Then $L(H)$ is quasisimple.

Proof. Let L_{1}, \ldots, L_{s} be the components. We assume $s \geqslant 2$.
We claim that E normalizes each component. If false, take an index i with $E \subset N\left(L_{i}\right)$. Then $L_{i} \cong L_{i}^{x}$ for all $x \in E$, so that $m_{r}(H) \geqslant 3$ for $r \in \pi\left(L_{i}\right)$. By

Lemma 3.23, $(K, r)=(.1,3),(.1,5),(L y S, 3),(L y S, 5),\left(F_{2}, 3\right),\left(F_{2}, 5\right)$, $\left(F_{1}, 3\right),\left(F_{1}, 5\right),\left(F_{1}, 7\right),\left(F_{5}, 3\right)$ or $\left(F_{5}, 5\right)$, for $r \in \pi\left(L_{i}\right)$. In particular, $\pi\left(L_{i}\right) \subseteq\{2,3,5,7\}$. Suppose $r=7$. Then there are distinct, pairwise commuting conjugates L_{i}, L_{j}, L_{k} and an element $y \in L_{i},|y|=7$ so that $C(y) \supseteq\left\langle y, L_{j}, L_{k}\right\rangle$. So, $C(y) \cong Z_{7} \times$ Held, $L_{i} \cong L_{2}(7), s=3$ and $p=3$. Take $x \in E-N_{E}\left(L_{i}\right)$. Then $C_{L(H)}(x) \cong L_{2}(7)$. But, $C_{K}(x) \cong 3 F_{24}^{\prime}, 3^{1+12} 2 \mathrm{Suz}$, or $3 \times F_{3}$, whence $C_{K}(x)$ cannot be contained in H, a contradiction. So, $r \leqslant 5$ and $\pi\left(L_{i}\right)=\{2,3,5\}$. By properties of K-groups, $L_{i} / Z\left(L_{i}\right) \cong L_{2}(4)$, $L_{2}(9) \cong S p(4,2)^{\prime}$ or $U_{4}(2)$.

Since Lys does not contain a four-group whose centralizer involves a copy of $L_{i}, L_{i},(L y S, 3)$ and $(L y S, 5)$ are out. So, $K \cong \cdot 1, F_{2}, F_{5}$ or F_{1}.

Suppose $K \cong \cdot 1$. The only possibility is $s=3, p=3$ and $L(H) \cong$ $A_{s} \times A_{s} \times A_{s}$. Take $x \in E, L_{i}^{x} \neq L_{i}$. Since $|x|=3, C(x) \cong 3^{1+4} S p(4,3)$, $3 \times A_{9}, 3^{2} \cdot U_{4}(3) .2$ or $3 . S u z$. Clearly $C(x) \subseteq H$ is impossible, in all these cases.

Similar arguments eliminate the cases F_{1}, F_{2} and F_{5}. Say $K \cong F_{1}$. Then $p=3$, or else $A_{5} \times A_{5} \times A_{5} \times A_{5}$ is contained in the centralizer of an element of order 5. So $s=3$ and $p=3$ and we get a contradiction as above (if $|x|=3, x \in K$, then $C(x) \cong 3 F_{24}^{\prime}, 3 \times F_{3}$ or $\left.3^{1+12} 2 S u z\right)$. The cases F_{2} and F_{s} proceed similarly. The claim follows: that is, E normalizes each component.

Let $E \subseteq P \in \operatorname{Syl}_{p}(H) \subseteq \operatorname{Syl}_{p}(K)$. We argue that $p \in \pi\left(L_{i}\right)$ for all i. Suppose that $p \notin \pi\left(L_{i}\right)$. Then as L_{i} is a Chevalley group or Steinberg variation, $p \neq 3$ so that $p=5$ or 7 . Thus, the structure of $\operatorname{Out}\left(L_{i}\right)$ (cyclic Sylow p-groups since $\left.p \notin \pi\left(L_{i}\right)\right)$ implies that $C_{E}\left(L_{i}\right) \neq 1$ and that if $\left[L_{i}, E\right]=1$, then some element of E induces a field automorphism on L_{i}. If $\left[L_{i}, E\right]=1$, we contradict Lemma 3.24 for $p \geqslant 5$. So, $\left[L_{i}, E\right]=1$. Thus, L_{i} is a group defined over some finite field whose degree over the prime field is divisible by $p \geqslant 5$, a contradiction to Lemma 3.24. Therefore $p \in \pi\left(L_{i}\right)$ for all i, as claimed.

We now argue that P has one orbit on $\left\{L_{1}, \ldots, L_{s}\right\}$. Suppose otherwise. Since $O_{p}(H)=1, O_{p}\left(Z\left(L_{i}\right)\right)=1$ for all i, whence $Z(P)$ is noncyclic, and so K does not contain an element x of order p with $C(x) p$-constrained, $O_{p,}(C(x))=1$ and $O_{p}(C(x))$ extraspecial. By checking Lemmas 3.23 and 3.24, we eliminate every possibility except $(K, p)=\left(J_{3}, 3\right),(S u z, 3)\left(F_{22}, 3\right)$, ($L y S, 3$), $\left(O^{\prime} S, 3\right)$. From above, there is $x \in Z(P)^{*}$ with $C(x)$ nonsolvable. Thus, $(K, p)=(S u z, 3),(L y S, 3)$ or $\left(O^{\prime} S, 3\right)$. In all these groups, if y is an element of order $p, C(y)$ does not involve a direct product of two simple groups. By Lemma 3.26, $s=2$ and $\left(\left|\operatorname{Out}\left(L_{i}\right)\right|, 3\right)=1$ for $i=1,2$. Therefore, P is decomposable as a direct product $\left(P \cap L_{1}\right) \times C_{P}\left(L_{1}\right)$. This forces $K=O^{\prime} S$. However, $N_{K}(P)$ is transitive on P^{*}, against $P=\left(P \cap L_{1}\right) \times$ ($P \cap L_{2}$) and the fact that $N_{K}(P) \subseteq H$ permutes $\left\{L_{1}, L_{2}\right\}$.

So, P has one orbit on $\left\{L_{1}, \ldots, L_{2}\right\}$, as claimed. Therefore $s>1$ is a power
of p and P involves $\left.Z_{p}\right\rangle Z_{p}$. So, if $p \geqslant 5$, then $p=5$ and $K=F_{1}$ (look at the list of sporadics in Lemma 3.23). In that case, the centralizer of an element of order 5 in L_{1} contains $L_{2} \times \cdots \times L_{p}$, a contradiction to Lemma 3.24. Thus, $p=3$. Since $L_{1} \cong L_{2} \cong L_{3}, m_{r}(H) \geqslant s \cdot m_{r}\left(L_{i}\right) \geqslant 3$ for $r \in \pi\left(L_{1}\right)$ (we get $s=3$ and $\pi\left(L_{1}\right)=\{2,3,5\}$). Thus, $L_{1} \cong A_{5}, A_{6}$ or $U_{4}(2)$ (using properties of K-groups). Consequently, an element y of order 5 in L_{1} centralizes $L_{2} \times L_{3}$. Therefore $K=.1$ or F_{1} and $C(y) \cong\left(5 \times A_{5} \times A_{5}\right) 2$ or $5 \times F_{5}$ or $5^{1+6} 2 H J$. Since $P \in \operatorname{Syl}_{3}(K)$ and $|P|=3^{9}$ or 3^{20}, we get $\left|C_{p}(L(H))\right| \geqslant$ $|P| \cdot 3^{-7} \geqslant 3^{2}$, forcing $Z(P)$ to be noncyclic and for $C(z)$ to contain $L_{1} \times L_{2} \times L_{3}$, for some $z \in Z(P)^{*}$. This is clearly impossible since $|C(z)|_{\leqslant} \leqslant 5^{2}$, a contradiction which proves the lemma.

Lemma 3.28. Suppose that $m_{p}(K) \geqslant 3, P \in \operatorname{Syl}_{p}(K)$ and $Z(P)$ is noncyclic. Then $(K, p)=\left(J_{3}, 3\right),(S u z, 3),(L y S, 3)$ or $\left(O^{\prime} S, 3\right)$, and conversely $Z(P)$ is noncyclic for these groups.

Proof. We may eliminate (K, p) from the list of conclusions if K contains an element x of order p for which $C(x)$ is p-constrained, $O_{p^{\prime}}(C(x))=1$ and $O_{p}(C(x))$ is extraspecial. What remains are the four pairs above and $\left(F_{22}, 3\right)$, which we must eliminate.

Let $K=F_{22}, x \in K$ with $|x|=3$ and $C(x) \cong 3 \times U_{4}(3) \cdot 2$. Without loss, x is extremal in $P \in \operatorname{Syl}_{3}(K)$. The structure of $U_{4}(3)$ implies that $Z\left(C_{P}(x)\right)=$ $\langle x\rangle \times\langle z\rangle$, where $\langle z\rangle=Z(P \cap L(C(x))) \subseteq(P \cap L(C(x)))^{\prime}$. Since $N_{P}\left(C_{P}(x)\right)$ contains $C_{p}(x)$ properly, it must act nontrivially on $Z\left(C_{p}(x)\right)$), fixing z. Therefore, $Z(P)=\langle z\rangle \cong Z_{3}$, as required.

Lemma 3.29. There is no K, H satisfying our hypotheses with $O_{p}(H)=1$ and $L(H) \neq 1$ quasisimple and $m_{p}(K) \geqslant 3$.

Proof. Suppose that there is a pair K, H satisfying our hypotheses with $m_{p}(K) \geqslant 3$. Let $L=L(H)$, a quasisimple group by Lemma 3.27.

We claim that $p \in \pi(L)$. Suppose false. The structure of $\operatorname{Aut}(L)$ (i.e., cyclic Sylow p-groups) implies that P induces a group of field automorphisms on L. So, $P / C_{P}(L)$ is cyclic and $E_{1}=C_{P}(L) \cap E \neq 1$. By referring to Lemma 3.24 (the ${ }^{*}$'s) for the cases $m_{r}(K) \geqslant 3, r \notin \pi(L(C(x)))$ and $L(C(x)) \in \operatorname{Chev}(2)$, we find no possibilities. Since $C_{K}\left(E_{1}\right) \subseteq H$, we have a contradiction which proves the claim.

If $C_{p}(L) \neq 1$, then $p \in \pi(L)$ implies that $Z(P)$ is noncyclic and there is $z \in \Omega_{1}(Z(P))^{\#}$ with $L \subseteq C(z)$, making $C(z)$ nonsolvable. So, by Lemma 3.28, $K=S u z, L y S$ or $O^{\prime} S$. Since $N(P)$ acts irreducibly on $Z(P)$ in the case of $L_{1} S$ and $O^{\prime} S$, we get a contradiction, since $N(P) \subseteq H \subseteq N(L)$ and $L \cap Z(P) \neq 1$. So. $K=S u z,|P|=3^{7}$ and there is $z \in Z(P)^{*} \cap C(L)$ with
$C(z)$ nonsolvable (as $L \subseteq C(z)$). So, by Lemma 3.24, $C(z) \cong 3 U_{4}(3)$. Since $L \in \operatorname{Chev}(2)$, and L is embedded in $U_{4}(3), L \cong A_{5}, A_{6}, U_{4}(2), L_{3}(2)$ or $L_{3}(4)$. In any of these cases $\left|C_{P}(L)\right| \geqslant 3^{3}$, since P normalizes L. However, $3^{3} \chi|C(y)|$ for an element $y \in K$ of order 5 or 7 , a contradiction. Therefore, $C_{p}(L)=1$.
Thus, P acts faithfully on L. Since $m_{p}(P) \geqslant 3$, either the Lie rank of L is at least 3 , or it is 2 , and some elements of P induce field automorphisms of L. Note that no element of order p may induce a field-diagonal automorphism in the latter case.

Suppose that the Lie rank of L is 2 . Then L is defined over F_{q}, where $q=2^{k}, k \equiv 0(\bmod p)$. Either $E \subseteq L$ or $|E \cap L|=3$ and there is $x \in E-L$ inducing a field automorphism on L. In the latter case, $L(C(x)) \cong A_{2}\left(2^{k / p}\right)$. This possibility does not occur with an ${ }^{*}$ in Lemma 3.24. So, $E \subseteq L$.

Suppose $L \cong A_{2}(q)$. Thus, (a) all elements of E are conjugate and lie in the center of a Sylow p-group of H, (b) $C(x)$ is solvable, for $x \in E^{*}$, (c) $Z(P)$ is cyclic if $p=3$, (d) $m_{p}(P)=3$, (e) p divides $2^{k}-1$.

Say $p=3$. By Lemma $3.24, F^{*}(K)=J_{3}$, or F_{3}. On the other hand, if $y \in P, y=3$ and y induces a field automorphism on L, then $C(y)$ contains a copy of $A_{2}\left(2^{k / 3}\right)$. Neither J_{3} nor F_{3} satisfy this condition. So, $p=5$ or 7. Since $k \equiv 0(\bmod p), P$ contains a copy of $Z_{p^{2}} \times Z_{p^{2}}$ as a proper normal subgroup. This condition, with $m_{p}(K) \geqslant 3$, quickly forces $(K, p)=(L y S, 5)$, $\left(F_{2}, 5\right)$. ($F_{5}, 5$) (all of which, incidentally, have isomorphic Sylow 5 subgroups) or ($F_{1}, 7$). But upon closer inspection we find that none of these pairs has the requisite property.

Suppose that $L / Z(L) \simeq{ }^{2} A_{n}(q)$ for q even and $n \leqslant 4$. If $n-2, m_{p}(L) \geqslant 2$ implies that $p \mid q+1$. If $p \neq 3, Z(p)$ has rank at least 3 , a contradiction to Lemma 3.24. So, $p=3$. Thus, $m_{3}(K)=3$ whence $K=J_{3}$ or F_{5} by Lemma 3.24. However, for $K=J_{3}, \Omega_{1}(P)$ is abelian, whereas $\Omega_{1}(P \cap L)$ is nonabelian, a contradiction.

Say $K=F_{5}$. Then $|K|_{3}=3^{6}$. Since an element of P induces a field automorphism on L and $3 \mid q+1$, we get $q+1 \equiv 0(\bmod 9)$. Therefore, $|P| \geqslant 3|L|_{3} \geqslant 3^{7}$. a contradiction. Consequently, $n=3$ or 4 . If $p=3$, $p \mid q-1$ or $p \mid q+1$. In either case, $Z(P)$ is noncyclic, whence $K=S u z, O^{\prime} S$, $L y S$ or J_{3}. If $3 \mid q-1, \Omega_{1}(P) \cong Z_{3}^{3}$ whence $K=J_{3}$. However, for L of type ${ }^{2} A_{n}(q), \Omega_{1}(P) \nless P^{\prime}$. So, $3 \mid q+1$. Thus, $Z(P)$ is noncyclic since L contains the normalizer of a torus of shape $\left(Z_{q+1}\right)^{n} \cdot \Sigma_{n+1}$ modulo a group of order $(n+1, q+1), n=3$ or 4 . In particular, $m_{p}(P)=n+1=4$ or 5 , whence $n=3$ and $K=O^{\prime} S$, which has abelian Sylow 3 -groups, a contradiction. So, $p \neq 3$. By Lemma 3.28, P is nonabelian, whence $n=3$ or 4 implies that $p=5,5 \mid q+1, n=4$ and $|P| \geqslant\left(5^{2}\right)^{4} \cdot 5^{-1} \cdot 5 \cdot 5=5^{9}$. So, $K=F_{1}$ and the inequality is an equality. However, the structure of $\operatorname{Aut}(L)$ implies that P is metabelian, which conflicts with the structure of F_{1}.

Suppose that the Lie rank of L is 2 but L does not have type A_{n} or ${ }^{2} A_{n}$.

Since L is a Chevalley group or a Steinberg variation, by (III), L has type $B_{2}(q)$. Thus $m_{p}(L)=2$ implies that $p \mid q^{2}-1$. Also $P \cap L$ is abelian and $Z(P) \cap L$ is noncyclic. So, K has type $J_{3}, O^{\prime} S, L y S$ or Suz. Since $m_{3}(P)=3$ (consider Aut (L)), $K=J_{3}$. In $J_{3}, P^{\prime}=\Omega_{1}(P)$, which is not the case in H, a contradiction.

The Lie rank l^{\prime} of L is, therefore at least 3 . We have $p=3,5$ or 7 . Let l be the rank of the largest subgroup of type A in L generated by root groups. We have $l \geqslant l^{\prime}-1 \geqslant 2$. From Lemma 3.24 we see that no element of E induces a field automorphism on $L\left(C_{K}(x) \leqslant H\right.$ for all $x \in E$ and, if x induces a field automorphism, $L\left(C_{K}(x)\right)$ has Lie rank 3). The same goes for field-graph automorphisms in case L has type $D_{4}(q)$. Suppose $x \in E$ induces a graph automorphism on $L \cong D_{4}(q)$. Then $|x|=3$ and $L(C(x)) \cong G_{2}(q)$ or $G_{2}(2)^{\prime} \cong U_{3}(3)$. Lemma 3.24 shows that this is impossible. So, E induces inner-diagonal automorphisms on L.

Say $31 \| L \mid$. Then $K=O^{\prime} S, F_{2}, F_{1}$ or F_{3}. The structure of $O^{\prime} S$ and F_{1} and the fact that $127=2^{7}-1$ imply that the Lie rank of L is at most 6 . We claim that $p=3$. If $p=7$, the facts that the Lie rank of L is at most 6 and $|K| \leqslant 7^{6}$ imply that a Sylow 7 -group of L is abelian or has an abelian subgroup of index 7 . But then $K=F_{2}$ or F_{3} and $m_{7}(K) \leqslant 2$, a contradiction. Therefore, $p=5$ or 3 . If $p=5, m_{5}(K) \geqslant 3$ implies that $K=F_{1}$ or F_{2}. Since the Lie rank of L is at most $6, P^{\prime}$ is abelian, a contradiction. (See Lemma 3.24.) So, $p=3$, as claimed. Say $K \neq O^{\prime} S$. For $K=F_{1}, F_{2}$ or F_{3}, when $x \in K,|x|=3$ and $L(C(x)) \neq 1, L(C(x)) \notin \operatorname{Chev}(2)$. So, for $x \in E^{*}$, $L(C(x)=1$ whence $C(x)$ is solvable (since x is a semisimple element in L). The only possibility is $K=F_{3}$ with $|C(x)|=2^{3} \cdot 3^{10}$ for $x \in E^{*}$. In particular $|P|=3^{10}$. If $q=2^{f}>2$, then an element of order 31 lies in a cyclic group of order $\left(q^{5}-1\right) /(q-1)>31$, a contradiction. So, $q=2$. Therefore, L has type $A_{4}(2),{ }^{2} D_{6}(2), D_{5}(2), B_{5}(2)$. Since $C_{P}(L)=1,|P| \leqslant 3^{6}$, whereas $|K|_{3}=3^{10}$, a contradiction. Thus $K=O^{\prime} S$. As above, L has type $A_{4}(2),{ }^{2} D_{6}(2), D_{5}(2)$ or $B_{5}(2)$. Since P is abelian, L has type $A_{4}(2)$. But then $C_{P}(L) \neq 1$, a contradiction.

We have shown that $31 \nmid|L|$. Thus, $\left(q^{5}-1\right) /(q-1)$ does not divide $|L|$; in particular, L does not involve $\operatorname{PSL}(5, q)$, whence L has lie rank at most 4.

We claim that $p=3$. If $p \geqslant 5$, the Sylow p-subgroup is abelian, unless $p=5$ and L has type ${ }^{2} A_{n}(q)$ for $4 \leqslant n \leqslant 10,5 \mid q+1$ or ${ }^{2} E_{6}(q)$ for $5 \mid q+1$. If the Sylow 5 -group is abelian, we have a conflict with Lemma 3.24. Suppose L has type ${ }^{2} A_{n}(q)$. Since $5 \mid q+1, q=4$ or $q=2^{5} \geqslant 64$. Since $n \geqslant 4, q^{10}| | L \mid$, forcing $q=4$ since $|K|_{2} \leqslant 2^{46}$. If $n \geqslant 5, q^{6}+1=4097=17 \cdot 241$ divides $|K|$, a contradiction. So $n=4$. But since $\left|{ }^{2} A_{4}(q)\right|$ is divisible by $\left(q^{5}+1\right) /(q+1)$, we get $1025 / 5=205=5.41$ as a divisor of $|K|$. Therefore, $K=F_{1}$ which is impossible since $31 \nmid|K|$.

Suppose that the Lie rank of L is 4 . Then Table P tells us that there is an element $x \in L,|x|=3$ with $L\left(C_{L}(x)\right) \in \operatorname{Chev}(2)$ and $L\left(C_{L}(x)\right)$ of Lie rank at
least 3. According to Lemma 3.24, there is no example of an element of order 3 in K with a such group involved in $C_{K}(x)$.

Suppose that L does not have type ${ }^{2} A_{n}(q)$, for $n=5$ or 6 . We have that the Lie rank of L is exactly 3. Then $m_{3}(P)=3$ or $m_{3}(P)=4$ and some element of P induces a field automorphism on L. In the latter case, an element x of order 3 in P has $L\left(C_{L}(x)\right)$ of Lie rank 3, a contradiction to Lemma 3.24. Thus, P has rank 3 and a normal homocyclic abelian subgroup P_{1} of index 3 and rank 3. A look at the groups in Lemma 3.24 reveals no such possibility.

We have that L has type ${ }^{2} A_{5}(q)$ or ${ }^{2} A_{6}(q)$. If L has type ${ }^{2} A_{6}(q)$, there is an element x of order 3 in H with $L\left(C_{L}(x)\right)$ of type ${ }^{2} A_{5}(q)$ or ${ }^{2} A_{4}(q)$, a contradiction to Lemma 3.24. The same argument applies to L of type ${ }^{2} A_{5}(q)$ unless $H / C_{H}(L) \cong{ }^{2} A_{5}(q) \cdot k$, where $(k, 3)=1$, and if $P_{1}=P \cap L \cong$ Z_{3}^{4}. Then $N_{L}\left(P_{1}\right) / C_{L}\left(P_{1}\right) \cong \Sigma_{6}$. Su, $|P|=3^{6}$. Thus, $K=M c L, \cdot 2$ or F_{5}. Since $q^{15}=\left|{ }^{2} A_{5}(q)\right|_{2}$ but $2^{15} \chi|M c L|$ or F_{5}, we get $K=\cdot 2$. However, if $K \cong \cdot 2,\langle z\rangle=Z(P)$, then $C(z) \cong 3^{1+4} S L(2,5)$ and if $x \in P$ represents the other class of elements of order 3 then $C(x)=3 \times U_{4}(2) .2$. Thus, $q=2$ and $E^{\#} \subset x^{H}$ since $C_{K}(e)=C_{H}(e)$ is the centralizer of a semisimple element in L. Also, $C(z) \nsubseteq H$.

We eliminate this last possibility. In the usual matrix representation of $S U(6,2)$, we may assume that $x \in E^{*}$ has shape

Let $y \in E-\langle x\rangle$. By adjusting with scalars, we have

if $\alpha=1$, we may assume $\beta=\left(\rho, \gamma=\omega^{-1}, \delta=1, \varepsilon=1\right.$. But then $C_{L}(x y) \cong S L(2,2) \times S L(2,2) \times S L(2,2), \quad$ whence $\quad C_{K}(x y) \nsubseteq H$. Suppose
$\alpha \neq 1$; without loss, $\alpha=\omega$. We may assume that $\beta=\omega^{-1}, \gamma=\delta=\varepsilon=1$. Then $x y^{2}$ is congruent to

modulo scalars. Since $C_{L}\left(x y^{2}\right) \cong\left(S U(3,2) \cdot S U(3,2) .2, \quad x y^{2} \notin x^{L}, ~ a\right.$ contradiction. So, we have eliminated the possibility.

This completes the proof of Lemma 3.29.

Lemma 3.30. Let $G \in \operatorname{Chev}(2), g \in G, g$ odd, $C=C_{G}(g), C^{0}$ the intersection of C with the connected component of the identity of $C_{\bar{G}}(g)$, where \bar{G} is the ambient algebraic group over $\overline{\mathbb{F}}_{2}$ containing G. Then C / C^{0} is abelian of odd order and C^{0} is generated by conjugates of root elements of G.

Proof. See Burgoyne and Williamson [10].
In the next series of results, we assume (I), (II), (III), (IV) and $O_{p}(H) \neq 1$.
Lemma 3.31. $p \neq 7$.
Proof. If so, $K=F_{1}$ and $C(x) \cong 7 \times$ Held or $7^{1+4} \cdot 2 \cdot A_{7}$. Since $L(C(x))$ must be semisimple and have components in $\operatorname{Chev}(2)$ for $x \in E^{*}$, we have a contradiction.

Lemma 3.32. $p \neq 5$.

Proof. Suppose so. Then $K=.1, L y S, F_{2}, F_{1}$ or F_{5}. By looking for *'s in Lemma 3.24, we find that $K=.1$ or F_{5} are the only possibilities.

Say $K=.1$. Then for $x \in E^{*}, C(x) \cong 5 \times\left(A_{9} \times A_{5}\right)$.2. Since $C(x)$ operates on $O_{5}(H)$, we get $\langle x\rangle=O_{5}(H)$ for all $x \in E^{\#}$, which is absurd.

Say $K=F_{5}$. Let $Z=Z(P)$. Then $N_{K}(Z) \cong 5^{1+4} .2^{1+4}$.5.4. Since $|E|=5^{2}$, $E \cap O_{5}\left(N_{\kappa}(Z)\right) \neq 1$. Therefore, $N_{\kappa}(Z) \subseteq H$. Since $1 \neq O_{5}(H) \cap N_{K}(Z) \triangleleft$ $N_{\kappa}(Z)$, we get $H=N_{\kappa}(Z)$. If there is $x \in E-O_{5}(H)$, the fact that $O_{5}(H) / Z$ is an indecomposable $\langle x\rangle$-module means that $\left|C_{p}(x)\right| \leqslant 5^{3}$, a contradiction. Therefore, $\quad E \subseteq O_{5}(H)$. Since $\pi\left(N_{K}(Z)\right)=\{2,5\}, \quad \pi\left(C_{K}(x)\right) \subseteq\{2,5\} \quad$ for $x \in E^{*}$. The only possibility $E^{*} \subseteq x^{K}$, where $|C(x)|=2^{2} \cdot 5^{4}$. We eliminate this possibility by showing that there does not exist $E \subseteq P, E \cong Z_{s} \times Z_{5}$ with $E^{*} \subseteq x^{K}$.

Suppose such an E exists. In the notation of $[41], x$ lies in the class 5B. Let χ be an irreducible character of K of degree $133[41]$. Then $\chi(x)=3[41]$.

We have $\sum_{g \in E} \chi(g)=133+24(3)=210$. However, this sum should be congruent to $0 \bmod 25=|E|$, a contradiction.

Corollary 3.33. $p=3$ and $O_{3}(H) \neq 1$.
Lemma 3.34. If $K=J_{3}, H=N_{K}(Z(P))=N_{K}(P)$.
Proof. Suppose $K=J_{3}$. Since $E \subseteq \Omega_{1}(P) \cong Z_{3}^{3}, E \cap Z(P) \neq 1$. We claim that $E=Z(P)$. If not, $|E \cap Z(P)|=3$, and if $x \in E-Z(P), C(x) \cong 3 \times A_{6}$. Thus, $H \supseteq\langle N(P), N(\langle x\rangle)\rangle$, a group of order divisible by $2^{4} 3^{3} 5$ and containing a copy of A_{6}. Since a Sylow 3 -normalizer in A_{6} acts irreducibly on its Sylow 3-group, $L(C(x)) \cap P=Z(P)$. It follows that $O_{p}(H)=1$, a contradiction to our temporary hypothesis. So, $E=Z(P)$ as claimed. Thus, $N(P)=N(Z(P)) \subseteq H$.

Since $O_{3}(H) \neq 1$, by hypothesis, the facts that $Z(P)$ is weakly closed in P with respect to K and $N(P)$ operates irreducibly on $Z(P)$ imply that $H \subseteq N(Z(P))$. So, $H=N(Z(P))$ as required.

Lemma 3.35. $K \neq$ Ly S.
Proof. Say $K=L y S$. If $x \in K,|x|=3, C(x) \cong 3^{2+4} . S L(2,5)$ or $3 . M c L$. So. Hypothesis 3.16(IV) is not satisfied.

Lemma 3.36. $K \neq O^{\prime} S$.
Proof. Since $N(P)$ acts on $P \cong Z_{3}^{4}$ irreducibly, $O_{3}(H) \neq 1$ implies that $P=O_{3}(H)$, whence $\quad H=3^{4} \cdot 2^{1+4} \cdot D_{10}$. However, if $\quad x \in P^{*}$, $C(x) \cong 3 \times 3 \times A_{6}$, so that $C(x) \nsubseteq H$, a contradiction.

Lemma 3.37. $K \neq$ Suz.
Proof. In Suz, there are three classes of elements of order 3, called $3 U$, $3 V, 3 W$, with centralizers of shape $3 . U_{4}(3), 3 \times 3 \times A_{6}, 3.3^{1+4} S L(2,3)$.
Since at least one of these classes is represented by an element of E^{*}, Hypothesis 3.16 (IV) forces E^{*} to be disjoint from the first class. We claim that E^{*} meets class 3 V . If false, E^{*} lies in class 3 W and, given $e \in E^{*}$ there is $y \in 3 U$ such that $C(e) \subseteq C(y) \cong 3 \cdot U_{4}(3)$. In $C(y), E \cap\langle y\rangle=1$ and $\left\langle N_{C(y)},\left\langle e_{1}\right\rangle\right)\left|e_{1} \in E^{*}\right\rangle=C(y)$ (property of $U_{4}(3)$, since $N_{C(y)}\left(e_{1}\right)$ maps to a maximal parabolic in $\left.U_{4}(3)\right)$. Therefore, $C(y) \subseteq H$. Since $O_{3}(H) \neq 1$, $O_{3}(H)=\langle y\rangle$, contradicting $L \in \operatorname{Chev}(2)$. So, $E^{*} \cap 3 V$ contains e, say, and $L(C(e)) \subseteq L$. Take $z \in O_{3}(H) \cap Z(P)^{*}$. Then $C(z) \cong 3 \cdot U_{4}(3)$ and $L \in \operatorname{Chev}(2)$ implies that $L=L(C(e)) \cong A_{6}$. Then, $|P|=3^{7}$ implies that $|C(L)|_{3}=3^{5}$ and P is decomposable, a contradiction to the shape of $C(z)=3 \cdot U_{4}(3)$.

Lemma 3.38. Without loss (i) $|Z(P)|=3$; (ii) $L_{3}(H)=1$ and H is 3constrained; (iii) if $x \in E^{*}, C(x)$ is solvable.

Proof. If $|Z(P)|>3$, then K has type $J_{3}, S u z, L y S$ or $O^{\prime} S$. These possibilities have been treated. Since $O_{3}(H) \neq 1$, we get (ii) from (i) unless $O_{3^{\prime} 3}\left(L_{3}(H)\right)>O_{3^{\prime}}\left(L_{3^{\prime}}(H)\right)$. Suppose that this happens. Let $\langle z\rangle=\Omega_{1}(Z(P))$. Then $\langle z\rangle$ maps onto $Z\left(L_{3},(H) / O_{3},(H)\right)$ and $N_{K}(\langle z\rangle)$ covers $H / O_{3},(H)$. Since $O_{3}(H) \neq 1, z \in O_{3}(H)$, whence $O_{3}(H) \leqslant C(z)$. Therefore, $H \leqslant N_{K}(\langle z\rangle)$ and so $H=N_{K}(\langle z\rangle)$. By consulting Lemmas 3.24 and 3.25 we see that there are no such possibilities for $m_{3}(K) \geqslant 3$.

Suppose $x \in E^{*}$ and $C(x)$ is nonsolvable. By Lemma 3.30 and Hypothesis 3.14(IV), $L(C(x)) \neq 1$. An application of the $P \times Q$ Lemma (sec 5.3 .4 of [27]) and the definition of $L(C(x))$ implies that $\left[O_{3}(H), L(C(x))\right]=1$. Therefore, $L(C(x))$ is a 3^{\prime}-group, since $Z(P)$ is cyclic. By inspecting the *'s in Lemma 3.25, we find no such possibility. So, (iii) follows.

Lemma 3.39. K does not exist.
Proof. We have $p=3, O_{3}(H) \neq 1$ and $L_{3}(H)=1$. Then Hypothesis 3.16 (IV) gives a contradiction, as $m_{p}(K) \geqslant 3$ and $L\left(H / O_{2}(H)\right)=1$.

This completes the proof of the fusion controlling result, Proposition 3.21.

4. The Field Automorphism Case

We begin the proof of the Main Theorem by establishing some notation which will be used throughout the rest of this paper. Take G to be of standard type with respect to (B, x, L) in $\mathscr{f}^{*}(p)$ and fix a standard subcomponent (D, J) of (B, x, L). Let $x=z_{1}$ and let $\left\langle z_{2}\right\rangle \cdots\left\langle z_{r}\right\rangle$ be the distinct subgroups of order p in D for which those exist neighbors, $\left(B, z_{2}, K_{2}\right), \ldots$, $\left(B, z_{r}, K_{r}\right)$ of (B, x, L) with respect to (D, J). Let $(B, x, L)=\left(B, z_{1}, K_{1}\right)$.

By Table B, B lies in an elementary abelian p-group B^{*} such that B^{*} contains every element of order p in its centralizer and $\left|B^{*}: B\right| \leqslant p$. We define $N=N_{G}\left(B^{*}\right)$. In this section we prove

Proposition 4.1. $\quad O_{p}\left(A_{G}\left(B^{*}\right)\right)=1$.
Corollary 4.2. No element of B^{*} involves a field automorphism on any K_{i}.

Proof of Corollary 4.2. Suppose false; then by the structure of $\operatorname{Aut}\left(K_{i}\right)$, $A_{K_{i}}\left(B^{*}\right)$ contains an element a of order p with $\left|B^{*}: C_{B^{*}}(a)\right|=p$. Let $F=\left\langle a^{A_{G}\left(B^{*}\right)}\right\rangle$. As $O_{p}\left(A_{G}\left(B^{*}\right)\right)=1$, McLaughlin's theorem [47] together with the structure of $A_{L}\left(B^{*}\right)$ forces $F=S L\left(B^{*}\right)$ or $S p\left(B^{*}\right)$. Indeed the only other possibility is $\langle x\rangle=C_{B^{*}}(F) \triangleleft N_{G}\left(B^{*}\right)$; but $\langle x\rangle \nless N_{K_{i}}\left(B^{*}\right)$. Now all
subgroups of order p in B^{*} are conjugate in $N_{G}\left(B^{*}\right)$, and in particular $\langle x\rangle$ is conjugate to $\left\langle z_{2}\right\rangle$. We have a contradiction as no element of B^{*} acts as a field automorphism on L (by definition of standard type) while such an action does occur on K_{i}.

Now we begin the proof of Proposition 4.1. We assume $P=O_{p}\left(A_{G}\left(B^{*}\right)\right) \neq 1$, and we define $B_{1}=C_{B} \cdot(P), M=N_{G}\left(B_{1}\right), C=C_{G}\left(B_{1}\right)$. Pick $U \in \operatorname{Syl}_{p}(C)$. We will show that U normalizes one of the K_{j} 's, inducing field automorphisms. Letting U_{1} be the subgroup of U which induces innerdiagonal automorphisms on K_{j}, we show that U_{1} is abelian and weakly closed in a Sylow p-group of G, and that $N_{G}\left(U_{1}\right)$ has a quotient of order p. By a theorem of Wielandt on transfer $[39,43] G$ is not simple, a contradiction. We conclude $P=1$.

By the structure of B^{*} as a module for $A_{L}\left(B^{*}\right)$ (see Table B), we may define B_{2} by $\left|B^{*}: B_{2}\right| \leqslant p, x \in B_{2}, B_{2} /\langle x\rangle$ is an absolutely irreducible module for $W=A_{1}\left(B^{*}\right)$ and $B^{*} /\langle x\rangle$ an indecomposable one.

Lemma 4.3. $\quad B^{*}=B_{1} \times\langle x\rangle$.
Proof. Let $P_{1}=C_{P}(\langle x\rangle)$, and pick $R \subseteq C_{G}(x)$ projecting onto $P_{1} . R$ projects into $O_{p}\left(A_{N_{G}(L)}\left(B^{*}\right)\right)$ whence $[R, R]=1$ by Table B. Thus $|R, B| \subseteq C_{B} \cdot(L)=\langle x\rangle$. Since R centralizes $\left\langle B^{*} \cap L, x\right\rangle$, we have $P_{1}=1$ or $\left|B^{*}:\left\langle B^{*} \cap L, x\right\rangle\right|=p, \quad\langle x\rangle=\left[B^{*}, P_{1}\right]$, and $\left|P_{1}\right|=p$. In particular as $\langle x\rangle \nless N_{G}\left(B^{*}\right)$, we have $P_{1} \neq P$ and $x \notin B_{1}$.

Since $B_{1} \cap\langle x\rangle=1, \quad B_{1}$ projects nontrivially into $B /\langle x\rangle$ whence $B_{1} \cap B_{2} \neq 1 . B_{1}$ is W-invariant where $W=A_{L}\left(B^{*}\right)$, so $B_{2}=\left(B_{1} \cap B_{2}\right) \times\langle x\rangle$, by Dedekind's law. If $B^{*}=\left\langle B_{1}, x\right\rangle$, we are done; so assume $B_{2}=B_{1} \times\langle x\rangle$ has index p in B^{*}. In particular B_{1} is an absolutely irreducible W-module.

As $W=O^{p}(W)$ and B^{*} / B_{2} is a trivial W-module, we see that $\left[B^{*}, B \mid \subseteq B_{1}\right.$. Let $P_{0}=C_{P}\left(B^{*} / B_{1}\right)$. We have that $[P, W] \subseteq P_{0}$ since $\left[B^{*}, W, P\right]=1$ and $\left[P, B^{*}, W\right] \leqslant\left[B^{*}, W\right] \leqslant B_{1}$. Also, we have that $\mid P, W] \neq 1$ lest P normalize $\langle x\rangle=C_{B} \cdot(W)$ and $P=P_{1}$. Thus $P_{0} \neq 1$. For any $b \in B^{*}, f_{b}(p)=[p, b]$ defines a map from P_{0} to B_{1}. Our conditions imply $f_{b}(p q)=|p q, b|=[p, b]^{q}\left[q, b \mid=f_{b}(p) f_{b}(q)\right.$, and further for any $w \in W$, $f_{h}(p)^{\prime \prime}=\left[p^{w}, b^{\prime \prime}\right]=\left[p^{w}, b[b, w \mid]=f_{b}\left(p^{w}\right)\right.$ as $[b, w] \in B_{1}$. Thus, f_{b} is a homomorphism of groups and $P_{0} / \operatorname{ker}\left(f_{b}\right)$ is elementary abelian, i.e., $P_{0} / C_{P_{0}}(b)$ is elementary abelian for every $b \in B^{*}$ whence P_{0} is also elementary abelian since we have an embedding $P_{0} \rightarrow \prod_{b \in B} . P_{0} / C_{P_{0}}(b)$. Further f_{b} is a homomorphism of W-modules. Since B_{1} is absolutely irreducible, f_{b} is either trivial or an isomorphism. As $\left|B^{*}: B_{1}\right|=p^{2}, P_{0}$ is isomorphic to B_{1} or $B_{1} \times B_{1}$ as a W-module. In the latter case $C_{P_{0}}(x)=\operatorname{ker} f_{x} \cong B_{1}$ as a group, contradicting $\left|P_{1}\right| \leqslant p$. Thus $P_{0} \cong B_{1}$ and we have $C_{P_{0}}(x)=1$. Further by absolute irreducibility of P_{0}, we have $\left|B^{*}: C_{B} \cdot\left(P_{0}\right)\right|=p=\left|C_{B} \cdot\left(P_{0}\right): B_{1}\right|$.

Now for $d \in C_{B^{*}}\left(P_{0}\right)-B_{1}, f_{d}(p)=[p, d]$ defines a map from P to B_{1} because $\left[d, P \mid \subseteq B_{1}\right.$. We see exactly as before that $P / C_{P}(d)$ and $[P, d] \leqslant B_{1}$ are isomorphic W-modules. Since B_{1} is irreducible, $\left|B_{1}\right| \geqslant p^{2}$ and $\left|\mid P, d \| \leqslant p\right.$, we get $[P, d]=1$ whence $P=C_{p}(d)$ and we are done.

Lemma 4.4. The following hold:
(i) $C_{P}(x)=1,\left[B^{*}, P, P\right]=1$, and P is elementary abelian;
(ii) Either $[P, x]=B_{1}$ and P is isomorphic to B_{1} as an $A_{L}\left(B^{*}\right)$ module, or $\left.B_{2}<B^{*}, \mid P, x\right]=B_{1} \cap B_{2}$ and P is isomorphic to $B_{1} \cap B_{2}$ as an $A_{I}\left(B^{*}\right)$-module:
(iii) $D \cap B_{1}=\left\langle z_{i}\right\rangle$ for some $\left.i\right\rangle 1, B_{1}$ acts as inner-diagonal automorphism on K_{i}, and $\langle x\rangle$ induces a field automorphism on K_{i}.

Proof. Parts (i) and (ii) follow from Lemma 4.3. Note that $\left|B_{1} \cap B_{2}\right| \geqslant p^{2}$ in all cases. Now for (iii). Let $D \cap B_{1}=\langle d\rangle$, and choose a p group $R \leqslant C_{G}(d) \cap N_{G}\left(B^{*}\right)$ projecting onto P. By definition of standard type, J lies in a p-component K of $C_{G}(d)$. Suppose R does not normalize K. Since (D, J) is a subcomponent and $m_{p}(B) \geqslant 4, B^{*} \cap J$ acts nontrivially on J and so projects nontrivially into $\left\langle K^{R}\right\rangle / O_{p^{\prime} p}\left(\left\langle K^{R}\right\rangle\right)$. This latter group is semisimple with at least 3 direct factors, whence $\left[B^{*}, R, R\right] \neq 1$, a contradiction by (i). Thus R must normalize K. As $[R, D] \geqslant\left[R,\langle x\rangle \mid \geqslant B_{1} \cap B_{2}, R\right.$ does not normalize $D=C_{B^{\prime}}(J)=C_{B^{\prime}}\left(J O_{p^{\prime}}(K) / P_{p^{\prime}}(K)\right)$. It follows that $K \neq J O_{p},(K),\langle d\rangle=\left\langle z_{i}\right\rangle$ for some i, and $K=K_{i}$.

It remains to prove the last two assertions of (iii). Suppose B^{*} acts as inner-diagonal automorphisms on K, and let R_{1} be the subgroup of R which is inner-diagonal on K. In particular, the possibilities for K are given by Table P. By Table B, R_{1} centralizes K unless perhaps $K=A_{2}(q)$ or $G_{2}(q)$, not the case by Table P. We have $\left[R_{1}, B^{*}\right] \subseteq C_{B^{*}}(K)=\langle d\rangle$. It follows that P_{1}, the projection of R_{1} on P, has order at most p. If $G \neq D_{4}(q)$, then R / R_{1} is cyclic whence $|P| \leqslant p^{2}$. As $m_{p}\left(B^{*}\right) \geqslant 4$, we must have $B_{1} \cap B_{2} \subset B_{1}$. In particular $B_{2} \subset B$ whence $L=A_{n}(q)$ or ${ }^{2} A_{n}(q)$ with $p \mid n+1$, or $L=E_{6}(q)$ or ${ }^{2} E_{6}(q)$ with $p=3$. As $n \geqslant 3$ in the first case, we have $m_{p}\left(B^{*}\right) \geqslant 5$ in all cases. But now Lemma 4.4(ii) implies $m_{p}(P) \geqslant 3$, a contradiction. If $G=D_{4}(q)$, then a similar argument yields $|P| \leqslant p^{3}$ against $m_{p}(B)=5$ and $P \cong B_{1} \cap B_{2}=B_{1} \cong E_{p}^{4}$.

Reasoning as in Remark 5.1, we see that no element of B^{*} acts on K as a graph or graph-field automorphism. Thus $B^{*}=A \times\langle a\rangle$ with A inner diagonal on K and b acting as a (standard) field automorphism. If $A=B_{1}$, we are done, so we may assume $a \in B_{1}-A$. As $B_{1} \cap B_{2} \subseteq\left[P, B^{*}\right] \subseteq A$, $B_{1}=\left(B_{1} \cap B_{2}\right) \times\langle a\rangle$.

Let $Y=A_{G}\left(B^{*}\right)$ and $\bar{Y}=Y / C_{Y}\left(B_{1}\right)$. Since $\left|B^{*}: B_{1}\right|=p$ and $B_{1}=C_{B^{*}}(P)$, it follows that $O^{p^{\prime}}\left(C_{y}\left(B_{1}\right)\right)=P, C_{Y}\left(B_{1}\right) / P$ is cyclic of order dividing $p-1$,
and $O_{p}(\bar{Y})=1$. Repeating the argument of the proof of Corollary 4.2, we apply McLaughlin's theorem and obtain that $\left\langle\bar{a}^{\bar{Y}}\right\rangle$ acts irreducibly on B_{1}. We conclude $B_{1}=\left[P, B^{*}\right] \subseteq A$, and Lemma 4.4 is proved.

Recall that $M=N_{G}\left(B_{1}\right), C=C_{G}\left(B_{1}\right)$ and $B^{*} \leqslant U \in \operatorname{Syl}_{p}(C)$. Note that $N_{G}\left(B^{*}\right) \leqslant M$. Further U_{1} is the subgroup of U which acts as inner-diagonal automorphisms on K. Let $V=C_{l}(K)$. Clearly $V \leqslant U_{1} ;$ also $\Omega_{l}\left(C_{l}(x)\right) \leqslant C_{l}\left(B^{*}\right)$, whence $\Omega_{l}\left(C_{l}(x)\right) \leqslant B^{*}$.

Lemma 4.5. The following conditions hold:
(i) $V \nless N_{M}(U)$:
(ii) for any $r \in N_{M}(U)-N_{G}(V), V \cap V^{r}=1$;
(iii) V is cyclic;
(iv) $\left\langle V^{v_{w}(U)}\right\rangle \subseteq U_{1}$;
(v) $U_{1} \triangleleft N_{M}(U)$.

Proof. To prove (i) pick $t \in N_{L}\left(B^{*}\right)$ with $\langle d\rangle \neq\left\langle d^{*}\right\rangle$. As $N_{G}\left(B^{*}\right) \subseteq M=C N_{M}(U)$, these exists $r \in N_{M}(U)$ with $d^{r}=d^{t}$. Since $\langle d\rangle=C_{B} .(K)=V \cap B^{*}, r \notin N_{G}(V)$ and (i) holds.

For any r as in (ii) let $W=V \cap V^{r}$. If $\langle r\rangle$ normalizes $\langle d\rangle$, then $\langle r\rangle$ acts on K and normalizes $V=C_{K}(U)$. Thus $\langle d\rangle \neq\left\langle d^{r}\right\rangle$ whence $W \cap B^{*}=1$. If $W \neq 1$, then as $W \triangleleft U, 1 \neq \Omega_{1}\left(C_{W}(x)\right) \subseteq B^{*}$. Thus $W=1$ and (ii) is valid.

Suppose $n \in N_{M}(U)-N_{G}(V)$; we claim $V^{n} \cap U_{1}$ is cyclic. Since x acts as a field automorphism on K, x centralizes $\Omega_{1}(U / V) . V \cap V^{n}=1$ implies $\left|x, \Omega_{1}\left(V^{n}\right)\right|=1 \quad$ and $\quad \Omega_{1}\left(V^{n}\right) \subseteq B^{*}$. Thus $\quad \Omega_{1}\left(V^{n} \cap U_{1}\right)=V^{n} \cap B_{1}=$ $\left(V \cap B_{1}\right)^{n}=\left\langle d^{n}\right\rangle$, and our claim is proved.

To prove (iii) it suffices to prove (iv), so assume $n \in N_{M}(U)$ and $V^{n} \nsubseteq U_{1}$. Some element of V^{n} induces a field automorphism on K. It follows that $\left\{U_{1}, V^{n} \mid V / V\right.$ is abelian of rank at least 2 except perhaps when $J=A_{2}(q)$ or ${ }^{2} A_{2}(q)$. In these cases we find by checking the possibilities for L (cf. Table P) that $J \cong S L(3, q)$ or $S U(3, q)$ whence $m\left(\left[U_{1}, V^{n}\right] V / V\right) \geqslant 2$ in all cases. However $\left[U_{1}, V^{n}\right] \subseteq V^{n} \cap U_{1}$ yields a contradiction by the preceding paragraph.

It remains to prove (v); suppose $U_{1} \neq U_{1}^{n}$ for $n \in N_{M}(U)$, and let $E=U_{1} U_{1}^{n}, A=U_{1} \cap U_{1}^{n}$. We know $V \cap V^{n}=1$ and $V V^{n} \subseteq A$. Since U_{1} / V is abelian of exponent p^{s} for some $s \geqslant 2$, so is A. Pick $w \in U_{1}^{n}-U_{1}$ with $w^{p} \in U_{1}$ and if possible $w \in U_{1}\left(U_{1}^{n}\right)$. We have $|E, w| \subseteq\left\langle w^{p}, V^{n}\right\rangle$ and $|E, w| \subseteq V^{n}$ if $w \in U_{1}\left(U_{1}^{n}\right)$. On the other hand w acts as a field automorphism on K, and the considerations of the preceding paragraph yield that $|E, w| V / V$ is abelian of rank at least 2. We conclude first that $|E, w| \nsubseteq V^{n}$ whence $\left|E: U_{1}\right|=\left|U_{1}: A\right|=p$ and secondly that $m\left(\Omega_{\varsigma}\left(U_{1} / V\right)\right)=2$, whence from Table $\mathrm{P}, m\left(B^{*}\right)=4$ and, consequently,
$B_{2}=B^{*}$. Since U / U_{1} is cyclic, E is independent of the choice of n, which implies $E \triangleleft N_{M}(U)$.

Our conditions imply $\Omega_{1}(E / V)=B^{*} V / V$. Thus $\Omega_{1}(E) \subseteq B^{*} V$; and as V is cyclic, $\quad B^{*}=\Omega_{1}(E) \triangleleft Y=N_{M}(U)$. Thus $Y \subseteq N_{G}\left(B^{*}\right) \subseteq M$, and since $M=Y C, B_{1}$ is an irreducible Y-module. Further let $D=N_{C}\left(B^{*}\right)$. D acts on B^{*} and centralizes B_{1} whence $O^{p^{\prime}}(D)$ projects to $P=O_{p}\left(A_{G}\left(B^{*}\right)\right)$. As $U \subseteq D, U$ also projects to P, and we have by Lemma 4.4 that $U / C_{V^{\prime}}\left(B^{*}\right)$ is an irreducible Y-module with $U / C_{Y}\left(B^{*}\right) \cong B_{1} \cong E_{p^{3}}$.

Let $F=C_{E}\left(B^{*}\right)$; as $E \triangleleft Y$ and U / E is cyclic, we must have $U=E C_{L^{\prime}}\left(B^{*}\right)$ and F / E is isomorphic to $U / C_{V^{\prime}}\left(B^{*}\right)$ as a Y-module. The structure of E / V implies $[E, E] V / V \subseteq \Omega_{1}(Z(E / V))$, and likewise for E / V^{n}. As $V \cap V^{n}=1$, it follows that $[E, E] \subseteq \Omega_{1}(Z(E))$; and as p is odd, taking p th powers is an endomorphism of E. By the same argument, $Z_{1}(E) \subseteq Z(E)$. As $E / \Omega_{1}(E)=E / B^{*} \cong \mho_{1}(E),\left|E: \mho_{1}(E)\right|=p^{4}$. Thus $\left\langle x, \mho_{1}(E)\right\rangle \subseteq F$ forces $F=\langle x\rangle \times J_{1}(E)$ and $\mho_{1}(E)=Z(E)$. Since taking p th powers commutes with the action of Y on $E, \mho_{1}(E) / \mho_{2}(E)$ is isomorphic to E / F as a Y-module, and we see that $\bar{U}_{1}(E)$ is homocyclic of rank 3 . As E / V has exponent p^{s}, so does E whence $U_{1}(E) \cong\left(Z_{p^{s-1}}\right)^{3}$. In particular $|E|=p^{2 s+1}$ and $\left|U_{1}\right|=p^{3 s}$. It follows that $U_{1} / V \cong\left(Z_{p}\right)^{2}$ and $V \cong Z_{p^{p}}$. However (iv) above implies $V \subseteq U_{2}$ where U_{2} is the largest subgroup of U_{1} normal in Y. Thus $U_{2} \nsubseteq F$ and we must have $E=U_{2} F$. But then $\left|U_{2}\right|=\left|U_{1}\right|$ implies $U_{1} \triangleleft Y$. This contradicts $U_{1} \neq U_{1}^{n}$ and completes the proof of Lemma 4.5.

Lemma 4.6. We have

(i) U_{1} is abelian of exponent p^{s} and after perhaps replacing x by another generator of $\langle x\rangle, u^{x}=u^{1+p^{s-1}}$ for all $u \in U_{1}$;
(ii) U_{1} contains a homocyclic subgroup of rank $m\left(U_{1}\right)$ or $m\left(U_{1}\right)-1$ and exponent p^{s};
(iii) $\quad U_{1}=J(U)$, the Thompson subgroup of U;
(iv) $B_{1}=\Omega_{1}\left(U_{1}\right)$ and $B^{*}=\Omega_{1}(U)$;
(v) $O_{p}(M / C)=1$.

Proof. By Lemma 4.5, pick $r \in N_{M}(U) \subseteq N_{M}\left(U_{1}\right)$ with $V \cap V^{r}=1$; the structure of U / V implies (i). $\Omega_{1}(U / V)=B^{*} V / V$ forces $\Omega_{1}(U) \subseteq B^{*} V$. As V is cyclic, (iv) holds.

To prove (ii) we repeat an argument from the proof of Lemma 4.5. By (iv), $N_{M}(U) \subseteq N_{G}\left(B^{*}\right) \subseteq M$; so $M=C N_{M}(U)$ and Lemma 4.4 imply that $U_{1}\left(C_{U_{1}}\left(B^{*}\right)\right.$ is isomorphic to B_{1} or $B_{1} \cap B_{2}$ as an $A_{L}\left(B^{*}\right)$-module. As $\Omega_{s}\left(U_{1}\right)$ has rank at least 2 , it projects nontrivially on $U_{1} / C_{U_{1}}\left(B^{*}\right)$ whence $m\left(\Omega_{s}\left(u_{1}\right)\right) \geqslant m\left(B_{1} \cap B_{2}\right) \geqslant m\left(B_{1}\right)-1$ and (ii) holds.

Assertion (iii) follows easily from (i) and (ii). To prove (v) suppose first that $O_{p}(M / C) \neq 1$. Let $Y=N_{G}\left(B^{*}\right)$ and $Z=C_{G}\left(B^{*}\right)$. By (iv), $M=Y C$ so
$O_{p}\left(Y / C_{Y}\left(B_{1}\right)\right) \neq 1$. On the other hand $C_{Y}\left(B_{1}\right) / Z$ is an extension of $O_{p}(Y / Z) \cong P$ by a group which is cyclic of order dividing $p-1$. It follows that $O_{p}(Y / Z)$ covers $O_{p}\left(Y / C_{Y}\left(B_{1}\right)\right)$ whence $O_{p}\left(Y / C_{Y}\left(B_{1}\right)\right)=1$.

Lemma 4.7. (i) $N=N_{G}\left(B^{*}\right)$ covers M / C; (ii) B_{1} is weakly closed in B^{*} with respect to G; (iii) U_{1} is weakly closed in R with respect to G, where $U \leqslant R \in \operatorname{Syl}_{p}(M)$, (iv) $R \in \operatorname{Syl}_{p}(G)$.
Proof. (i) and (ii) A Frattini argument implies that N covers M / C. From this it follows easily that B_{1} is weakly closed in B^{*} with respect to G : for if $g \in G, B_{1}^{g} \leqslant B^{*}$, then $B_{1} \leqslant\left(B^{*}\right)^{g-1}$, whence there is $c \in C$ such that $\left(B^{*}\right)^{g^{-i} c} \leqslant U$, implying $g^{-1} c \in N$ and $g^{-1} \in N c^{-1} \subseteq M$, as required.
To prove (iii) and (iv) it suffices to show $U_{1}=J(R)$. Assume not and pick A abelian of maximum order in R with $A \neq U_{1}$. By the Thompson Replacement Theorem [27, Theorem 8.2.5], we may assume $\left[U_{1}, A, A\right]=1$. As $U_{1} \triangleleft R$, we have $\left[U_{1}, A\right] \subseteq C_{C_{1}^{\prime}}(A)=A \cap U_{1}$. Thus $\left[u^{r}, a^{s}\right]=[u, a]^{r s}$ for $u \in U_{1}$ and $a \in A$. Let $A_{1}=V_{s-1}\left(A / A \cap U_{1}\right)$; we have $\left[A_{1}, V^{s-1}\left(U_{1}\right)\right]=1$.

We claim $\left|A_{1}, B_{1}\right|=1$. If not, then by, Lemma 4.6 (ii), $\left|B_{1}: B_{1} \cap \partial^{5-1}\left(U_{1}\right)\right|=P$ and A_{1} induces transvections on B_{1}. Let $F=\left\langle A_{1}^{r_{M}(t)}\right\rangle$. We know that $N_{M}(U) \subseteq N_{G}\left(B^{*}\right) \subseteq M$ and $M=C N_{M}(U)$. As B_{1} is an indecomposable $A_{L}\left(B^{*}\right)$-module, Lemma 4.6(v) and McLaughlin's theorem imply that $N_{M}(U)$ acts irreducibly on B_{1} forcing $B_{1} \subseteq V^{s-1}\left(U_{1}\right)$ and establishing our claim.

Now $A_{1} \subseteq C_{R}\left(B_{1}\right)=U$. As U / U_{1} is cyclic of order dividing s, so is $A_{1} / A \cap U_{1}$. It is easy to see that $p \geqslant 3$ and $s \geqslant 2$ imply $p^{s-1}>s$ whence $\left|A_{1}: A \cap U_{\mathrm{t}}\right|<p^{s-1}$. It follows that $A-A_{1} \subseteq U$, and we are done by Lemma 4.6 (iii).

Lemma 4.8. Proposition 4.1 holds.

Proof. Let $N_{0}=N_{G}\left(U_{1}\right), C_{0}=C_{G}\left(U_{1}\right)$. By Lemma 4.7, U_{1} is weakly closed in $R \in \operatorname{Syl}_{p}(G)$, so by the Hall-Wielandt theorem [43, Theorem 14.4.2], G has a quotient of order p if N_{0} does. As G is simple, it suffices to show $x \notin\left[N_{0}, N_{0}\right]$ to complete the proof by contradiction of Proposition 4.1.

Let $H=C_{G}(x), \quad Y=C_{H}(L)$, and $U_{2}=C_{U_{1}}(x)=\Omega_{s-1}\left(U_{1}\right)$. From the structure of $\operatorname{Aut}(L), F=H \cap C$ covers $H / L Y$ (recall $C=C_{G}\left(B_{1}\right)$). By definition of standard type Y has cyclic Sylow p-subgroups. If $\langle w\rangle \in \operatorname{Syl}_{p}(Y)$, $\Omega_{1}(\langle w\rangle)=\langle x\rangle \subseteq Z(Y)$ implies $Y=\langle w\rangle O_{p^{\prime}}(Y)$. Pick $\langle w\rangle$ so $\left\langle w, U_{2}\right\rangle \subseteq$ $P \in \operatorname{Syl}_{p}(H)$; then U_{2} normalizes $\langle w\rangle$. It follows that $\Omega_{1}\left(B^{*}\langle w\rangle\right)=B^{*}$ whence $\langle w\rangle \subseteq N_{G}\left(B^{*}\right) \subseteq N_{G}\left(B_{1}\right)$. Thus $\left[w, B_{1}\right] \subseteq\langle w\rangle \cap B_{1}=1$ and $w \in$ $H \cap C$. Consequently F covers $H / L O_{p^{\prime}}(Y)$. Since $L O_{p^{\prime}}(Y) \subseteq[H, H] O^{p}(H) U_{2}$ and $U_{2} \subseteq F, \quad x \notin[F, F] O^{p}(F) U_{2}$ implies $x \notin[H, H] O^{p}(H) U_{2}$. But F acts on K with x acting as a field automorphism and $U_{2} \subseteq U_{1}$ inducing innerdiagonal automorphisms, so $x \notin\left[H, H \mid O^{p}(H) U_{2}\right.$.

Let $H_{0}=H \cap N_{0}$ and $X=\left[H_{0}, H_{0}\right] O^{p}\left(H_{0}\right) U_{2}$. As U_{1} is abelian and is a Sylow p-subgroup of $C_{0}, C_{0}=U_{1} \times O_{p}\left(C_{0}\right)$. Thus $H_{0} \cap C_{0}=$ $U_{2} \times O_{p^{\prime}}\left(H_{0} \cap C_{0}\right) \subseteq X$, and if $N_{0}=H_{0} C_{0}, N_{0}$ has the desired quotient of order p by the preceding paragraph.

Assume $H_{0} C_{0} \neq N_{0}$. By the action of x on $U_{1},\langle x\rangle C_{0} / C_{0} \subseteq Z\left(N_{0} / C_{0}\right)$, and it follows that $\bar{B}^{*} \triangleleft \bar{N}_{0}=N_{0} / O_{p},\left(C_{0}\right)$. If $n \in N_{0}$ and $\bar{x}^{n}=\bar{x} \bar{b}$ with $\bar{b} \in \mho^{s-1}\left(\bar{U}_{1}\right)$, then for some $u \in U_{1},[\bar{x}, \bar{u}]=\bar{b}$ whence $\bar{n} \in \bar{U}_{1} C_{\bar{N}_{1}}(\bar{x})$. As H_{0} covers $C_{\bar{N}_{0}}(\bar{x})$, we have $n \in H_{0} C_{0}$. Thus, the assumption $H_{0} C_{0} \neq N_{0}$ implies that U_{1} is not homocyclic. Lemma 4.6 yields $\left|B_{1}: \mho^{s-1}\left(U_{1}\right)\right|=p$. As we have seen before, we must have $B_{1} \cap B_{2}=U^{s-1}\left(U_{1}\right) \subset B_{1}$.

Consider the action of N_{0} on $\bar{B} * / \overline{B_{1} \cap B_{2}} \cong E_{p^{2}}$. Let $N_{1}=$ $C_{N_{0}}\left(\bar{B}^{*} / \overline{B_{1} \cap B_{2}}\right)$ and $\tilde{N}_{0}=N_{0} / N_{1}$. As $\langle\bar{x}\rangle$ covers $\bar{B}^{*} / \bar{B}_{1},\left[N_{1}, \bar{B}^{*}\right] \subseteq \bar{B}_{1}$. If $n \in N_{0}$ normalizes \bar{B}_{2}, then the analysis of the preceding paragraph gives $n \in H_{0} C_{0}$. As $\left[B^{*}, U_{1}\right]=\left[\langle x\rangle, U_{1}\right] \subseteq \mho^{s-1}\left(U_{1}\right), \quad \widetilde{C}_{0}=1$ and we have $\tilde{n} \in \tilde{H}_{0}$. In other words $N_{\tilde{N}_{0}}\left(\bar{B}_{2}\right) \subseteq \tilde{H}_{0}$. Picking elements in \bar{B}_{1} and \bar{B}_{2} as a basis for $\bar{B}^{*} / \overline{B_{1} \cap B_{2}}$, we see that \tilde{N}_{0} is represented by matrices of the form

$$
\left(\begin{array}{ll}
* & * \\
0 & 1
\end{array}\right)
$$

and $\tilde{N}_{0} \cong Z_{r_{-}}$or $Z_{r} \cdot Z_{p_{\tilde{N}}}$ with $r \mid p-1$. In the latter case $N_{\bar{N}_{0}}\left(\bar{B}_{2}\right) \cong Z_{r}$ is maximal in \tilde{N}_{0} whence $\tilde{H}_{0} \cong Z_{r}$. Thus in either case $p \nmid\left|\tilde{H}_{0}\right|$.

Since $H_{0} \cap C_{0} \subseteq X, H_{0} C_{0} / X C_{0}$ is an abelian p-group, and $x \notin X C_{0}$. As $p \nmid\left|H_{0} C_{0}: N_{1}\right|, H_{0} C_{0} / X C_{0} \cong N_{1} /\left(X C_{0} \cap N_{1}\right)$, and N_{1} / X_{1} is an abelian p group, where X_{1} is the largest subgroup of $X_{0} C_{0} \cap N_{1}$ normal in N_{0}. Further $X_{1} \supseteq C_{0}$, so $\left[N_{0}, x\right] \subseteq X_{1}$. Thus, N_{0} / N_{1} acts on N_{1} / X_{1} and centralizes $\langle x\rangle X_{1} / X_{1}$. If N_{0} / N_{1} is a p^{\prime} group, then N_{0} / X_{1} has a quotient of order p as desired, so assume $\tilde{N}_{0} \cong Z_{r} \cdot Z_{p}$.

It suffices to show $X_{1}=X C_{0} \cap N_{1}$. Suppose $X_{1}=X_{0} C_{0} \cap N_{1}$ and pick $h \in H_{0}$ with $\langle\tilde{h}\rangle \cong Z_{r}$. We may take h to be of p^{\prime} order whence $h \in X$ and $\left[h, N_{1}\right] \subseteq X C_{0} \cap N_{1}=X_{1}$. Thus \tilde{h} and $O_{p}\left(\widetilde{N}_{0}\right)=\left[\widetilde{h}, \widetilde{N}_{0}\right]$ centralize N_{1} / X_{1}. Letting $W / N_{1}=O_{p}\left(\tilde{N}_{0}\right) \cong Z_{p}$, we see that W / X_{1} is an abelian p-group (as $N_{1} / X_{1} \subseteq Z\left(W / X_{1}\right)$ and W / N_{1} is cyclic $)$. Now as before N_{0} / W acts on W / X_{1} with fixed points and N_{0} / X_{1} has a quotient of order p.

It remains to show $X_{1}=X C_{0} \cap N_{1}$. Let $X_{2}=X_{1} \cap H_{0}$. As $X C_{0} /\left(X C_{0} \cap N_{1}\right) \cong H_{0} C_{0} / N_{1} \cong Z_{r}, \quad\left|X: X_{2}\right|=s p^{a}$ for some $s \mid r$. Further $X_{2} \triangleleft H_{0}$. Suppose $N_{H}\left(B^{*}\right)=H_{0} C_{G}\left(B^{*}\right)$. Examination of the possibilities for L yields $A_{H}\left(B^{*}\right)=O^{p}\left(A_{H}\left(B^{*}\right)\right)$ whence $H_{0}=C_{H_{0}}\left(B^{*}\right) X$. Further X / X_{2} is an extension of an abelian p-group by Z_{s}, and the structure of $A_{H}\left(B^{*}\right)$ yields $\left|H_{0}: C_{H_{0}}\left(B^{*}\right) X_{2}\right| \mid s$.

Let $F=C_{H_{0}}\left(u_{1}\right)=C_{0} \cap H_{0}$. We claim $X \cap C_{H_{0}}\left(B^{*}\right)=X_{2} \cap C_{H_{0}}\left(B^{*}\right)=F$ whence $\left|X: X_{2}\right|=\left|X C_{H_{0}}\left(B^{*}\right): X_{2} C_{H_{0}}\left(B^{*}\right)\right| \mid s$, and it follows that $X_{1}=X_{0} C_{0} \cap N_{1}$ as desired. $C_{H_{0}}\left(B^{*}\right)=H \cap C \cap N_{0}=N \cap N_{C}\left(U_{1}\right)$ has a

Sylow P-subgroup Q which is an extension of U_{2} by a cyclic group with $x \in Q-U_{2}$. As $C_{H_{0}}\left(B^{*}\right)$ acts on U_{1} as a p-group, and (as we saw above) $F=U_{2} \times O_{p^{\prime}}(F)$, we see that $C_{H_{0}}\left(B^{*}\right) / F$ is a cyclic p-group with $x \in C_{H_{0}}\left(B^{*}\right)-F$. Now $C_{0} \subseteq X_{1}$ implies $F=C_{0} \cap H_{0} \subseteq X_{2} \subseteq X$, and $x \notin X$ implies $X \cap C_{H_{0}}\left(B^{*}\right) \subseteq F$ as desired.

5. Construction of $G_{0} \leqslant G, G_{0} \in \operatorname{Chev}(2)$

We let $z_{1}, \ldots, z_{r}, K_{1}, \ldots, K_{r} r \geqslant 2, B, B^{*}$, etc., have the same meaning as in Section 4. Set $G_{0}=\left\langle K_{1}, \ldots, K_{r}\right\rangle$. The object of this section is to show that $G_{0} \in \operatorname{Chev}(2)$; see Proposition 5.20. In Section 6, the problem of showing $G_{0}=G$ will be handled.

Before discussing our plan, we establish some further notation. Set $C_{i}=C_{G}\left(z_{i}\right), \quad N_{i}=N_{G}\left(\left\langle z_{i}\right\rangle\right), \quad A_{i}=A_{K_{i}}\left(B^{*}\right), A_{i}^{*}=A_{N_{i}}\left(B^{*}\right), \quad i=1, \ldots, r, r \geqslant 2$. For any distinct pair $i, j \in\{1, \ldots, r\}, L_{0}=L\left(K_{i} \cap K_{j}\right)$. Set $A_{0}=A_{L_{0}}\left(B^{*}\right)$.

The main step in identifying G_{0} is to identify $G_{1}=\left\langle K_{1}, K_{2}\right\rangle$, where G is of standard type with respect to $\left(B, z_{1}, K_{1}\right) \in S^{*}(p)$. We know that p half-splits K_{2} but we do not know whether G is of standard type with respect to $\left(B, z_{2}, K_{2}\right)$. Thus, the roles of K_{1} and K_{2} in our argument are not usually symmetric.
Our method is to first identify $A=\left\langle A_{1}, A_{2}\right\rangle$ as a prelude to identifying G_{1}. Recall that B^{*} contains B with index 1 or p. Eventually one needs to produce a "Weyl group" for G_{1}, and the most sensible method appears to be to work in $A_{G}\left(B^{*}\right)$ rather than in $A_{G}(B)$. The results of Section 3, plus further special arguments, enable us to determine the possibilities for A. We have $O_{p}(A)=1$ as a consequence of Section 4. From there we proceed to identify G_{1} by analyzing various cases for A, A_{1}, A_{2}. Tables B and P are used heavily to study how subgroups fit together. Finally Proposition 2.30 is used in the various cases we consider to identify G_{1}. The identification of G_{0} is then a relatively easy consequence of the preceding work.

Before embarking on the proof of our main result (Proposition 5.11) we recall that $4 \leqslant m(B) \leqslant m\left(B^{*}\right) \leqslant m(B)+1$. Table B and Lemma 2.35 (iv) imply that $m_{2, p}\left(K_{1}\right) \geqslant 3$ and $m_{p}\left(K_{2}\right) \geqslant 3$, whence the Lie rank of each K_{j} is at least 2 and is at least 3 if K_{j} is not of type ${ }^{2} A_{4}(q)$. Familiarity with the "splitting prime" and "half-splitting prime" situation is assumed; see Section 1.

Remark 5.1. In Section 4, we showed that x does not induce a field automorphism on any K_{j}. We argue that B^{*} induces a group of innerdiagonal automorphisms on each K_{j}. If false, choose j so that x induces a graph or a graph-field automorphism on K_{j}. Then $p=3$ and K_{j} has type $D_{4}(q)$. By $\left[10 \mid . C_{K_{1}}(x) \cong G_{2}(q), S L(3, q)\right.$ if $3 \mid q-1$, or $S U(3, q)$ if $3 \mid q+1$.

Since $\left\langle z_{j}\right\rangle \cap K_{j}=1$ and $m_{3}\left(C_{K_{j}}(x)\right)=2$, we get $m(B)=4$. If $3 \mid q-1$, the fact that $m_{2,3}\left(D_{4}(q)\right)=4$ implies $m(B)=5$, a contradiction. So, $3 \mid q+1$, whence $m\left(B^{*}\right)=5, m\left(B^{*}\right)=4$. However, the shape of $C_{K}(x)$, which must contain B^{*}, forces $m\left(B^{*}\right)=4$, a contradiction.

A reflection shall mean a linear transformation on a finite dimensional vector space of characteristic not 2 such that the eigenvalues are -1, 1, 1.... 1 .

Remark 5.2. In every case, $N_{K_{i}}(B) \leqslant N_{K_{i}}\left(B^{*}\right)$, a great convenience. The groups $K \in \operatorname{Chev}(2)$ which appears in the following arguments usually have $|Z(K)|$ odd. If some $\left|Z\left(K_{i}\right)\right|$ is even, there may be a complication in a generator and relations argument. We comment when a relevant $\left|Z\left(K_{i}\right)\right|$ might be even and otherwise say nothing.

We now begin the identification of G_{1} and G_{0}. Since p splits K_{1}, A_{1} is isomorphic to a Weyl group (though not necessarily the Weyl group on a (B, N)-pair for K_{1}). Thus we consider what happens when the A_{i} are various Weyl groups.

Lemma 5.3. Let bars denote images under $N_{G}\left(B^{*}\right) \rightarrow A_{G}\left(B^{*}\right)$. Suppose that $K \leqslant G, K \in \operatorname{Chev}(2)$, that $B^{*} \cap K$ lies in the " B^{*} " column of Table B and $B^{*}=C_{B} \cdot(K)\left(B^{*} \cap K\right)$. Let $t_{1}, t_{2} \in N_{K}\left(B^{*}\right)$ be involutions so that \bar{t}_{1} and \bar{t}_{2} are distinct reflections on B^{*}. If $k \in \mathbb{Z}$ and $\left|\bar{t}_{1} \bar{t}_{2}\right|=k$, then $\left(t_{1} t_{2}\right)^{k} \in O_{2}(K)$. If $m_{2, p}(K) \geqslant 3$, then such involutions t_{1}, t_{2} always exist and may be arranged to satisfy $y^{\prime}\left(t_{1} t_{2}\right)^{k}=1$.

Proof. We first assume $O_{2}(K)=1$. A look at Table B^{*} and properties of K imply that $A_{K}\left(B^{*}\right) \cong A_{K}\left(C_{K}\left(B^{*}\right)\right)$ and that if $s_{1}, s_{2} \in N_{K}\left(B^{*}\right)$ induce distinct reflections on B^{*}, then $\left[C_{K}\left(B^{*}\right), s_{1}\right] \cap\left[C_{K}\left(B^{*}\right), s_{2}\right]=1$. Set $u=\left(t_{1} t_{2}\right)^{k}$. Then $\bar{u}=1$, whence $u \in C_{K}\left(B^{*}\right)$ and u is inverted by t_{1} and t_{2}, whence $u=1$, as required.

Now, drop the assumption that $O_{2}(K)=1$. Then $|Z(K)|$ even and the fact that $m_{2, p}(K) \geqslant 3$ implies that K has type ${ }^{2} A_{5}(2)$ or ${ }^{2} E_{6}(2)$. It suffices to prove the statements for $p \mid q+1$ because of the embedding of the natural subgroup isomorphic to $A_{K}\left(B^{*}\right)$ for $p \mid q-1$ into that for $p \mid q+1$; see Lemma 2.50. When K has type ${ }^{2} A_{5}(q)$, the elements \bar{t}_{i} are images of unitary transvections under $S U(6, q) \rightarrow K$ (to see this, regard the \bar{t}_{i} as images of transpositions from the standard group of permutation matrices and $C_{K}\left(B^{*}\right)$ as a subgroup of the full diagonal group). The facts that we may arrange $\left|t_{i}\right|=2$ and $\left(t_{1} t_{2}\right)^{2}$ or $\left(t_{1} t_{2}\right)^{3}$ is 1 may be read off from the generators and relations for the covering group of ${ }^{2} A_{5}(2)$ [36]; in fact, we define $\left\langle t_{j}\right\rangle$ as a conjugate of $\left[Y_{a}, Y_{\beta}\right]$, where Y_{γ} is the preimage under $K \rightarrow{ }^{2} A_{5}(2)$ of a root group for a short root and $\alpha+\beta=\gamma$ is a long root. The argument for the case K of type ${ }^{2} E_{6}(2)$ is reduced to that of ${ }^{2} A_{5}(2)$ because $A_{K}\left(B^{*}\right) \cong W_{E_{6}}$
and all pairs \bar{t}_{i}, \bar{t}_{j} are conjugate in $A_{K}\left(B^{*}\right)$ to a pair in the image of $A_{t}\left(B^{*}\right) \rightarrow A_{\kappa}\left(B^{*}\right)$, where L is a natural ${ }^{2} A_{5}(2)$ subgroup of K.

Definition. The involutions $t_{i} \in N_{K}\left(B^{*}\right)$ representing the fundamental reflections are called special involutions if $|Z(K)|$ is odd or if $|Z(K)|$ is even and K has Lie rank at least 3 and the t_{i} are chosen as in the proof of (5.2).

Note that each K_{i} has Lie rank at least 3 or $\left|Z\left(K_{i}\right)\right|$ odd; see Section 1 and use the facts about Schur multipliers in [36, 38].

The next result verifies the extra hypothesis (iv) of Lemma 2.30 .

Lemma 5.4. Let $G^{*}=\left\langle G^{*}, W\right\rangle, K_{1}$ and B^{*} as above, W the Weyl group of root system Σ of rank at least 2. Assume hypotheses (i), (ii), and (iii) of Lemma 2.30. Set $A_{\alpha}=C_{B^{\cdot}}\left(\left\langle Z\left(X_{\alpha}\right), Z\left(X_{-\alpha}\right)\right\rangle\right),\left\langle b_{\alpha}\right\rangle=B^{*} \cap\left\langle Z\left(X_{\alpha}\right)\right.$, $\left.Z\left(X_{-a}\right)\right\rangle, \alpha \in \Sigma_{1}$. Suppose that W normalizes B^{*} and satisfies $N_{W}(\{ \pm \alpha\})=$ $N_{W}\left(\left\langle b_{a}\right\rangle\right)=N_{W}\left(A_{a}\right) \quad$ and $\quad N_{W}(\alpha)=C_{W}\left(b_{a}\right) . \quad$ Then (iv) holds, i.e., $W_{n}:=\left\{w \in W \mid \alpha^{\prime \prime}=\alpha\right\}$ normalizes X_{a}, for $\alpha \in \Sigma_{1}$ and X_{a} is the root group of K associated to α.

Proof. Note that $A=A_{a}$ is a hyperplane of B^{*} and $B^{*}=A x\left\langle b_{\alpha}\right\rangle$.
We consider the possibility that there is a standard subcomponent (D, \hat{K}) of (B, x, K_{1}) with the properties (1) $b_{a} \in D$, (2) $D=\left\langle b_{\alpha}, b_{\beta}\right\rangle$ where b_{a} and b_{β} are conjugate by an element of W, and (3) $b_{\beta} \in A$.

Since $m\left(B^{*}\right) \geqslant 4$, a study of Tables B and P shows that such a (D, \hat{K}) may be obtained whenever W does not have type A_{l} when $p \mid l+1$.

Suppose that (1), (2), (3) are achieved. We have $C_{G}(A) \leqslant C_{G}\left(b_{B}\right)_{\bar{G}} C_{G}\left(b_{\alpha}\right)$, the structure of which implies that

$$
\begin{aligned}
L\left(C_{G}(A)\right) & =\left\langle Z\left(X_{a}\right), Z\left(X_{-a}\right)\right\rangle \\
O^{2}\left(C_{G}(A)\right) & \text { if } \quad\left|Z\left(X_{a}\right)\right|>2 ; \\
=\left\langle Z\left(X_{a}\right), Z\left(X_{-a}\right)\right\rangle & \text { if } \quad\left|Z\left(X_{a}\right)\right|=2 .
\end{aligned}
$$

In any case, $S:=\left\langle Z\left(X_{a}\right), Z\left(X_{-a}\right)\right\rangle \cong S L(2, q)$ for $q=\left|Z\left(X_{a}\right)\right|$ and W_{a} acts on S, centralizing $\left\langle b_{a}\right\rangle$. Thus, $\left[S, W_{a}\right]=1$, as required.

Suppose W has type A_{l}, when $p \mid l+1 ; l \geqslant 4$ since $m\left(B^{*}\right) \geqslant 4$. Then $p \mid q-1$. Choose β so that α, β span a root system of type A_{2}. Set $W_{a, \beta}=$ $W_{\alpha} \cap W_{\beta}$. Since $l \geqslant 4$, we may take a root α orthogonal to α and β. Since $b_{y} \sim b_{a} \sim b_{B}$ via W, we may look in $C_{G}\left(b_{\alpha}\right)$ to get the structure of $C_{G}\left(A_{0}\right)$ where $A_{0}=C_{B^{\prime}} \cdot\left(\left\langle X_{\alpha}, X_{-a}, X_{\beta}, X_{-\beta}\right\rangle\right)$. We get $J=L_{p}\left(C_{G}\left(A_{0}\right)\right)=J_{0} O_{p} \cdot(J)$, where $J_{0}=\left\langle X_{ \pm a}, X_{ \pm \beta}\right\rangle$ is of type $A_{2}(q), q=\left|X_{a}\right|$. Since $W_{\alpha, \beta}$ centralizes $B^{*} \cap L\left(C_{G}\left(A_{0}\right)\right)=\left\langle b_{\alpha}, b_{\beta}\right\rangle$ and $W_{a, \beta}$ is generated by involutions, $W_{a, \beta}$ centralizes $L\left(C_{G}\left(A_{0}\right)\right) J_{0}$. Since W_{α} is generated by the $W_{\alpha, \beta}$, for all possible choices of β, we are done in this case. The lemma is proven.

Lemma 5.5. For $i=1,2$, let W_{i} be a subgroup of K_{i} normalizing B^{*} and as described in Lemma $2.50(\mathrm{v})(\mathrm{c})$. Let bars denote images under $N_{G}\left(B^{*}\right) \rightarrow A_{G}\left(B^{*}\right)$. Suppose $\quad W_{i} \cong \bar{W}_{i}=A_{i} \quad$ for $\quad i=1,2$ and that $\overline{W_{1} \cap W_{2}}=A_{1} \cap A_{2}$ and that A is generated by reflections $r_{1}, r_{2}, \ldots, r_{n+1}$ which satisfy the relations of a Dynkin diagram and $A_{1}=\left\langle r_{1}, \ldots, r_{n}\right\rangle, A_{2}=\left\langle r_{2}, r_{3}, \ldots, r_{n+1}\right\rangle$. Then $\left\langle W_{1}, W_{2}\right\rangle \cong A$.

Proof. Let $t_{1} \in W_{1}, t_{2}, t_{3}, \ldots, t_{n} \in W_{1} \cap W_{2}, t_{n+1} \in W_{2}$ be the special involutions for which $\overline{t_{i}}=r_{i}, i=1, \ldots . n+1$. If $\left|r_{1} r_{n+1}\right|=k$, then we can get $\left(t_{1}, t_{n+1}\right)^{k}=1$ by the argument of Lemma 5.3 provided we know that distinct t_{j} in A have commutators on $C_{G}\left(B^{*}\right)$ meeting trivially. Since this is true with A_{1} or A_{2}, it suffices to check the statement for t_{1}, t_{n+1}. Since the Dynkin diagram has no loops, t_{1} and t_{n+1} commute. We assume that $\left[B^{*}, t_{1}\right]=\left|B^{*}, t_{n+1}\right|$. Since $n \geqslant 3$, we may choose an index $j, j \neq 1, n+1$, such that $\left|r_{i} r_{1}\right|>2$ and $r_{i} r_{n+1}=2$. By conjugating with t_{j}, we get $\left[B^{*}, t_{1} \mid=\right.$ $\left|B^{*}, t_{n+1}\right|$, whence $\left|B^{*}, t_{1} t_{j}\right|=1$. But since A_{i} acts faithfully on B^{*}, this is a contradiction.

Lemma 5.6. Suppose A_{1}, A_{2} are Weyl groups of type A. Then one of the following occurs: (a) $A_{1} \cong A_{2} \cong W_{A_{n}}$ and A is a Weyl group of type A_{n+1} or D_{n+1}, (b) $p=3$, one of A_{1} or A_{2} is isomorphic to $W_{A_{5}}$ and $A \cong W_{E_{6}}$, (c) $p=3$, one of A_{1}, A_{2} is isomorphic to $W_{A_{\mathrm{t}}}$ and $A \cong W_{E_{\mathrm{R}}}$.

Also. in (a), A_{0} is the usual l-point stabilizer for the symmetric groups $A_{1} \simeq A_{2}$ and in (b) and (c), A_{0} is a 2-point stabilizer.

Proof. See Proposition A.

Lemma 5.7. Assume the hypotheses of Lemma 5.6 and that A is a Weyl group of type A. If K_{1} (equivalently, K_{2}) has type $A_{n}(q),{ }^{2} A_{n}(q)$, respectively, then G_{1} has type $A_{n+1}(q)$ or ${ }^{2} A_{n+1}(q)$.

Proof. Suppose K_{1} and K_{2} have type $A_{n}(q)$. Then $G_{1}=\left\langle K_{1}, W\right\rangle$ is identified as a group of type $A_{n+1}(q)$ by Proposition 2.30.

Suppose K_{1} and K_{2} have type ${ }^{2} A_{n}(q)$. Then $p \mid q+1, n \geqslant 4$ and $G_{1}=\left\langle L_{0}, W\right\rangle$. Let $\phi: W \rightarrow \Sigma_{n+2}$ be an isomorphism so that the involutions of Lemma 5.3 inducing reflections on B^{*} go to transpositions. Let $\tau \in W$ so that $\tau^{\infty}=(12)(34) \cdots(2 l-1,2 l)$, where $l=[(n+1 / 2]$. We may alter ϕ so that $C_{W_{1}}(\tau) \cong W_{C_{t-1}}$ and $C_{W_{1}}(\tau)$ is a standard copy of the Weyl group of L_{0}; see Lemma $2.50(\mathrm{v})(\mathrm{c})$. By Proposition 2.30 , we can identify G_{1} as a group of type ${ }^{2} A_{n+1}(q)$ if $l \geqslant 4$, i.e., $n \geqslant 7$. So we may assume $4 \leqslant n \leqslant 7$.

Let us look a bit more carefully at Proposition 2.30. We can use W to define root elements for any $n \geqslant 4$. The problem is verifying relations between elements of the shape $x_{a}(t), x_{B}(u)$, (or $x_{a}\left(t, t^{\prime}\right), x_{\beta}\left(u, u^{\prime}\right)$) where $\alpha, \beta \in \Sigma$, our root system, and α, β are both short and form an angle of $\pi / 3$
or $2 \pi / 3$ or $n=6$ and they are orthogonal, or α, β are of unequal length and orthogonal and $n \leqslant 5$.

Choosing epimorphisms $S U(n+1, q) \rightarrow K_{i}, i=1,2$, which agree on a subgroup isomorphic to $S U(n, q)$ mapping onto L_{0}, we assume that $S U(n+1, q)$ is a matrix group relative to an orthonormal basis $\left\{e_{i} \mid 1 \leqslant j \leqslant n+1\right\}$ and that $B^{*} \cap K_{i}$ is the image of a diagonal group. We then define $S_{i j}$ to be the subgroup of K_{1} or K_{2} corresponding to the $S U(2, q) \cong S L(2, q)$ subgroup associated with the i th and j th basis vectors.

Using the action of W on the $S_{i j}$, we see that $\left[S_{i j}, S_{i, j}\right]=1$ whenever $\{i, j\} \cap\left\{i^{\prime}, j^{\prime}\right\}=\varnothing$. Thus, if $n=6, \Sigma_{1}$ and Σ_{2} are orthogonal sets of roots in Σ such that both have type C_{2}, then $[x, y]=1$ whenever x, y are root elements associated to roots in Σ_{1}, Σ_{2}, respectively. Therefore, $\left[x_{\alpha}(t)\right.$, $x_{\beta}(u) \mid=1$ whenever α, β are short roots, orthogonal, and $\alpha+\beta \notin \Sigma$. If we take $\Sigma_{1}=\{r,-r\}$ for r long and $\Sigma_{2}=\{s \in \Sigma \mid s$ is orthogonal to $r\}$, then we get that root elements associated with orthogonal roots of unequal length commute.

Suppose $n=5$ and α, β are short roots generating a subsystem of type A_{2}. We may arrange for $V \leqslant W, V \cong W_{C_{3}}$ so that $V \leqslant K_{1}$ and $V \cap L_{0}$ is a standard copy of the Weyl group of L_{0} (see (2.50(iv))). Then each $x_{a}(t)$, $x_{B}(u)$ is a natural root element in K_{1}, we can define the commutator relations between these elements and complete the verification of Steinberg relations for G_{1}.

We are now left with the case $n=4, \alpha, \beta$ short generating a subsystem of type A_{2}. We observe that $p \neq 3$; for $p=3$, then $A \cong \Sigma_{6}$ has a nontrivial fixed point on B^{*}, rank 5 , and $C_{B}(A)=C_{R} \cdot\left(A_{1}\right)$, a contradiction. So $p \neq 3$ and $q>2$.

We have $B^{*}=\left(B^{*} \cap K_{1}\right)\left(B^{*} \cap K_{2}\right)$ and we replace the hyperplane B by a conjugate in $N_{G}\left(B^{*}\right)$ so that $B \cap L_{0}$ has index p in $B^{*} \cap L_{0}$. We have $C_{I_{0}}(B)=\langle S, H\rangle$ where S induces $S U(2, q)$ in a natural way on a twodimensional summand U_{0} of the standard module U for $L_{0} \cong S U(4, q)$, and $H_{1} \cong Z_{q+1} \times Z_{q+1} \times Z_{q+1}$. Let Z be a Sylow 2 -group of S. Define $M_{i}=N_{\kappa_{i}}(Z), Q_{i}=O_{2}\left(M_{i}\right), i=1,2, M_{0}=N_{L_{0}}(Z), Q_{0}=O_{2}\left(M_{0}\right)$. We have $Q_{1} \cap Q_{2}=Q_{0}$. Also, $J=\left\langle N_{w_{1}}(B), N_{W_{2}}(B)\right\rangle \cap N_{G}(Z)$ (the W_{i} are as in (5.4)) induces Σ_{4} on B and permutes $X_{1}, X_{2}, X_{3}, X_{4}$ is a natural way under conjugation, where $Q_{1}=Z X_{1} X_{2} X_{3}, Q_{0}=Z X_{1} X_{2}, Q_{2}=Z X_{1} X_{2} X_{4}$, and the X_{i} are K_{i} conjugates of nonabelian root groups for a long root in a root system for $K_{i}, i=1$ or 2 . (Think of X_{j} as follows: let $\left\{e_{k}\right\}$ be our orthogonal basis, $U_{0}=\operatorname{span}\left\{e_{1}, e_{2}\right\}, X_{j} \in \operatorname{Syl}_{2}\left(S_{12 j}\right)$, where $S_{12 j}$ induces the special unitary group on $\operatorname{span}\left\{e_{1}, e_{2}, e_{j}\right\}$, is trivial on $\operatorname{span}\left\{e_{k} \mid k \neq 1,2, j\right\}$ and $X_{i} \geqslant Z$.) It follows that $Q=Q_{1} Q_{2}$ is a special 2-group. A Levi factor in M_{i} contains a unitary transvection acting nontrivially on X_{1} and trivially on the other X_{i} in Q_{i}. Now, using the action of J, we get that $\left|M_{1}, X_{4}\right|=\left|M_{2}, X_{3}\right|=1$. Take $h_{1} \in H,\left|h_{1}\right|=q+1$, so that h_{1} acts as a
scalar on the above-mentioned two-dimensional space U_{0} and h_{1} acts trivially on the orthogonal complement to U_{0} in U. Take $h_{2} \in N_{S}(Z)$, $\left|h_{2}\right|=q-1$ and set $h=h_{1} h_{2}$. Then the actions of h and $\left\langle M_{1}, M_{2}\right\rangle$ on Q commute (this follows from the structures of K_{1} and K_{2}). Considering the $\left\langle h_{2}\right\rangle$-action, we see that commutation gives a \mathbb{F}_{q} bilinear form on Q / Z, whence $\left\langle M_{1}, M_{2}\right\rangle$ gives a subgroup of $S p(8, q)$. Now, considering the $\left\langle h_{1}\right\rangle$ action, we see that $\left\langle M_{1}, M_{2}\right\rangle$ induces a subgroup of $G U^{*}(4, q)$ (the subgroup of $G L(4, q)$ fixing a nondegenerate Hermetian form up to a scalar) on Q / Z. Since this subgroup contains two distinct copies of $S U(3, q)$, it is not difficult to see that it must be isomorphic to $G U^{*}(4, q)$ (for example, one can show that the nonsingular 1 -dimensional subspaces form a system of imprimitivity for the action of $\operatorname{PGU}(4, q)$). By Lemma 3.19, the isomorphism type of $\left\langle M_{1}, M_{2}\right\rangle=Q Y$, where $Y=C_{\left(M_{1}, M_{2}\right)}(h) \cong G U^{*}(4, q) \cong G U(4, q) \times$ Z_{q-1}, is uniquely determined, hence is necessarily isomorphic to the parabolic subgroup of ${ }^{2} A_{5}(q)$ corresponding to the subset $\circ=0$ of the Dynkin diagram o-o $=\circ$ for ${ }^{2} A_{5}(q)$.

We now verify the required commutator relations. We have $M_{0} \leqslant Q Y$ and, as $L_{0} \cong{ }^{2} A_{3}(q), M_{0}$ contains representatives of each L_{0}-conjugacy class of root groups (these are the root groups for the system of type A_{5}). Let $V_{i} \leqslant K_{i}, V_{i}$ a standard copy of the Weyl group of K_{i} derivable from the system of root groups already chosen, $i=1$, 2 . Then $V_{i} \cong \Sigma_{5}, V=\left\langle V_{1}, V_{2}\right\rangle \Sigma_{6}$ and $V \cap Q Y \leqslant Y, V \cap Q Y \cong \Sigma_{4}$. Let H be a Cartan subgroup in Y associated with the given root groups and let $H^{*}=H Z(Y)$ (recall that $Z(Y)$ acts as the multiplicative group of $\mathbb{F}_{q^{2}}^{x}$ on Q / Z). We claim that H^{*} has exactly four irreducible subspaces in its action on Q / Z, i.e.. H has exactly four irreducible $\mathbb{F}_{q^{2}}$-subspaces in its action on Q / Z. This follows from viewing $H \cong Z_{q^{2}-1} \times Z_{q^{2}-1}$ as a group of matrices preserving the Hermitian form with matrix

$$
\left(\begin{array}{cc}
01 & \\
10 & \\
& 01 \\
& 10
\end{array}\right)
$$

and letting generators for direct factors of H act via

$$
\left(\begin{array}{cccc}
\lambda^{-1} & & & \\
& \lambda^{q} & & \\
& & 1 & \\
& & & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \lambda^{-1} & \\
& & & \lambda^{a}
\end{array}\right)
$$

where $\mathbb{F}_{q^{2}}^{x}=\langle\lambda\rangle$. Let Q_{j} / Z be these four subspaces, $j=1,2,3,4$. Then, as the one-dimensional spaces above are singular under the bilinear form, each Q_{j} is abelian. By their uniqueness and the isomorphism of $Q Y$ with the parabolic subgroup of ${ }^{2} A_{5}(q),\left[Q_{j}, H\right]$ corresponds to a root group for a short root. It follows that $Q Y$ contains a pair of root groups X_{a}, X_{B} in our system with α, β both short and forming an angle of $\pi / 3$ and a pair of root groups for the angle $2 \pi / 3$. Using the isomorphism of $Q Y$ with the parabolic subgroup, we get the desired commutator relations.

This completes the argument for the case $n=5$ and with it the proof of the lemma.

Lemma 5.8. Assume the hypotheses of Lemma 5.6 and that $\left\langle A_{1}, A_{2}\right\rangle \cong W_{E_{0}}$ or $W_{E_{8}}$. Then there is some z_{i} and a q so that K_{i} has type $D_{4}(q)$ in the first case and type $E_{7}(q)$ in the second case.

Proof. Suppose $\left\langle A_{1}, A_{2}\right\rangle \cong W_{E_{6}}, A_{j} \cong W_{A_{5}}, p=3, m\left(B^{*}\right)=5$. We have $A_{0} \cong W_{A_{3}}$ and L_{0} has type $A_{3}(q)$ or ${ }^{2} A_{3}(q)$ for some $q, 3 \mid q-1$ or $3 \mid q+1$, respectively. In fact there is a reflection $r \in A_{j}$ with $C_{A_{j}}(r)=\langle r\rangle \times A_{0}$. Thus, we may choose reflections r_{1}, \ldots, r_{6} in $\left\langle A_{1}, A_{2}\right\rangle$ so that

is satisfied and $A_{0}=\left\langle r_{2}, r_{3}, r_{4}\right\rangle$. Then $\left\langle z_{1}, z_{2}\right\rangle=C_{B^{*}}\left(A_{0}\right)$ and clearly, $C_{B} .\left(\left\langle r_{2}, r_{3}, r_{4}, r_{6}\right\rangle\right)=\langle z\rangle$ has order 3. Since $\left\langle r_{2}, r_{3}, r_{4}, r_{6}\right\rangle \cong W_{D_{4}}, z$ is in fact one of the z_{i} 's. By Tables B and $\mathrm{P}, L\left(C_{G}(z)\right)$ must have type $D_{4}(q)$.

Suppose $\left\langle A_{1}, A_{2}\right\rangle \cong W_{E_{8}}, A_{j} \cong W_{A_{8}}, p=3, m\left(B^{*}\right)=8$. We have $A_{0} \cong W_{A_{6}}$ and there is a reflection $r \in A_{j}$ with $C_{A}(r)=\langle r\rangle \times A_{0}$. Thus we may choose reflections r_{1}, \ldots, r_{8} to satisfy

Thus, $C_{B} \cdot\left(A_{0}\right)=\left\langle z_{1}, z_{2}\right\rangle$ and $\left.C_{B^{*}}\left(r_{1}, r_{2}, \ldots, r_{7}\right\rangle\right)=\langle z\rangle$ has order p. Since $\left\langle r_{1}, r_{2}, \ldots, r_{7}\right\rangle$ acts irreducibly as W_{E}, on $B^{*} /\langle z\rangle$, Table B tells us that $L\left(C_{G}(z)\right)$ has type E_{7}.

Lemma 5.9. Suppose that $A_{i} \cong W_{E_{n}}$ for some $n \in\{6,7,8\}$ or $A_{i} \cong W_{F_{4}}$. Then $n=6$ or 7 and $A=\left\langle A_{1}, A_{2}\right\rangle \cong W_{E_{n+1}}$ or $A_{i} \cong W_{F_{4}}$ and $A \cong W_{E_{6}}$. Also, $\left\langle K_{1}, K_{2}\right\rangle$ has type $E_{7}(q)$ or type $E_{8}(q)$ for some q with $p \mid q^{2}-1$ and the case $A_{i} \cong W_{F_{+}}$does not occur.

Proof. Suppose A_{i} has type $W_{E_{n}}$. By Proposition E, $A \cong W_{E_{n+1}}$ for $n=6$ or 7 and $m\left(B^{*}\right)=n+1$. Since $K_{i} \in \operatorname{Chev}(2)$, Table B implies that K_{i} has type ${ }^{2} E_{6}(q)$ for $p \mid q+1$ and $n=6$ or $E_{n}(q)$ for some $n=6,7$ and q such that $p \mid q^{2}-1$.

If K_{i} has type $E_{n}(q)$, Proposition 2.30 then enables us to identify $\left\langle K_{1}, K_{2}\right\rangle$ as a group of type $E_{n+1}(q)$. (Note that, in $E_{m}(q)$, the standard copy of $A_{G}\left(B^{*}\right)$ for $p \mid q+1$ is also one for $p \mid q-1$, if $m=7$ or 8).

Now suppose K_{i} has type ${ }^{2} E_{6}(q), p \mid q+1, n=6$. We have to be alert to any possible "exceptional" coverings of groups in $\operatorname{Chev}(2)$ when $q=2$. We have $W_{i} \cong W_{E_{6}}$ and $W \cong W_{E_{7}}$. Let $K \leqslant K_{i}$ be a natural subgroup of type $D_{4}(q)$, i.e., K is generated by all the root groups for long roots in the root system for K. Then $W \cap K$ is a natural $W_{D_{4}}$ subgroup of K; see Lemma 2.50 . We note that K is simple (see the description of the exceptional covering of ${ }^{2} E_{h}(2)$ in $[36 \mid)$. Thus we may use W and the Steinberg relations to construct a group $Y=\langle K, W\rangle$ of type $E_{7}(q)$. Then $Y \geqslant B^{*}$ since W acts irreducibly on B^{*} and $K \cap B^{*} \neq 1$. Also, since $A_{Y}\left(B^{*}\right)$ contains a copy of W, Table B implies that $Y \cap K_{i}=K_{i}$. Since $L_{0} \leqslant Y$, a similar argument with Table B implies that $K_{j} \leqslant Y$, as Table P tells us that the possibilities are that L_{0} has type ${ }^{2} A_{5}(q)$ or ${ }^{2} D_{4}(q)$, whence. by Table P, K_{i}, has types ${ }^{2} A_{6}(q), C_{6}(q)$. $D_{6}(q), \quad{ }^{2} E_{6}(q)$ or $D_{6}(q)$. ${ }^{2} E_{6}(q)$, respectively. Therefore, $\quad G_{1}=$ $\left\langle K_{1}, K_{2}\right\rangle \leqslant Y=\langle K, W\rangle=\left\langle K . W_{1}, W_{2}\right\rangle \leqslant G_{1}$, whence G_{1} has type $E_{7}(q)$, as required.

Suppose $A_{i} \cong W_{1}$. By Proposition CF, $m\left(B^{*}\right)=5, p=3$ and $A=\left\langle A_{1}, A_{2}\right\rangle \cong W_{E_{n}} \times Z_{2}$. There are three orbits of A on $\left(B^{*}\right)^{*}$ with stabilizers $W_{r_{4}}, \Sigma_{2} \times \Sigma_{6}$ and a 3 -local subgroup of index 40 in A. Let $\left\{j, j^{\prime}\right\}=\{1,2\}$. Since p half splits K_{j}, A_{j} is therefore $W_{t_{4}}$ or $W_{t^{\prime}}$. Suppose $A_{j} \cong W_{A}$ so that K_{j} has type $A_{5}(q)$ or ${ }^{2} A_{5}(q)$. Then L_{0} has type $A_{3}(q)$ or ${ }^{2} A_{3}(q)$. By Table P. K_{j}, cannot have type $F_{4}\left(q^{\prime}\right)$ or ${ }^{2} E_{6}\left(q^{\prime}\right)$ for any q^{\prime}, contradiction. Therefore, $A_{i} \cong W_{t_{+}}$. Consequently, $A_{0} \cong W_{C_{2}}$ and L_{0} has type $C_{3}(q),{ }^{2} D_{4}(q)$ or ${ }^{2} A_{5}(q)$ for some q. Set $Q=O_{2}\left(A_{0}\right) \cong A_{2}^{3}$. Then $R=\left|Q, A_{0}\right|$ is a four group in $O_{2}\left(A_{i}\right), j=1,2$. Also $\langle t\rangle=Z\left(A_{0}\right)$, where t has eigenvalues $\{1,1,-1,-1,-1\}$. By inspecting the maximal 2-locals of $W_{E_{\mathrm{h}}} \times Z_{2}$ and noting that no involution of A_{0} can have more than three eigenvalues -1 , hence cannot be conjugate to any t_{i}, we see that $C_{A}(R)$, hence $N_{4}(R)$, must lie in the 2-local $A_{j} \times\left\langle-1_{B}\right\rangle$ for both $j=1$ and 2. Thus, $C_{A}(R)=Q \times$ $\left\langle t_{i}\right\rangle \times\left\langle-1_{B} \cdot\right\rangle, \quad j=1.2, \quad$ and $\quad\left|C_{A}(R)\right|=2^{5}$. But then $\quad Z\left(N_{A}(R)\right)=$ $\left\langle t_{1}, t_{2}-1_{B}.\right\rangle \cong Z_{2}^{3}$, which is incompatible with the structure of A_{1} and A_{2}.
This contradiction completes the proof of Lemma 5.9.

Lemma 5.10. Suppose that K_{i} has type $A_{n}(q), p \mid q+1, n \geqslant 7$. Then G_{1} has type $A_{n+2}(q)$.

Proof. We have $k=[(n+1) / 2]=m\left(B^{*}\right)-1$. By Proposition CF,
$A=\left\langle A_{1}, A_{2}\right\rangle \cong W_{c_{k+1}}$ or $W_{F_{+}}$. In this case, $4 \leqslant m(B)=m\left(B^{*}\right)-1$, by 2.35 (iv), whence $A \cong W_{C_{k+1}}$ for $k \geqslant 4$. Note that $K_{1} \cong K_{2} \cong A_{n}(q)$; by Table P, $K_{j}=E_{6}(q)$ may be possible, but is out by Proposition CF.

Choose standard copies W_{i}^{*} in K_{i} of $A_{K_{i}}\left(B^{*}\right)$ as in Lemma 5.5. Thus $\left\langle W_{1}^{*}, W_{2}^{*}\right\rangle \cong A$ by extensions of the natural isomorphisms $W_{i}^{*} \cong A_{i}$. Now, choose standard copies W_{i} of the Weyl groups of each K_{i} such that $W_{i} \geqslant W_{i}^{*}, i=1,2$ and $W_{1} \cap W_{2}$ is a standard copy of the Weyl group for $L_{0}=L\left(K_{1} \cap K_{2}\right)$; see Lemma 2.50 (iii). We want to show that $\left\langle W_{1}, W_{2}\right\rangle \cong W_{A_{n+2}}$. Choose fundamental reflections w_{1}, w_{2}, \ldots so that $W_{1}=\left\langle w_{1}, w_{2}, \ldots, w_{n}\right\rangle, W_{2}=\left\langle w_{3}, w_{4}, \ldots, w_{n+2}\right\rangle$ and w_{1}, w_{2}, \ldots satisfy the relations

are satisfied. We wish to show that $\left[\left\langle w_{1}, w_{2}\right\rangle,\left\langle w_{n+1}, w_{n+2}\right\rangle\right]=1$.
The embedding $W_{i}^{*} \leqslant W_{i}$ can be described by regarding W_{i}^{*} as the centralizer in $W_{i} \cong \Sigma_{n+1}$ of an element corresponding to (12)(34) $\cdots(k-1, k)$. Even though $\left\langle w_{1}, w_{2}\right\rangle$ does not normalize B^{*}, we know that $B_{1}=C_{R^{\prime}}\left(\left\langle w_{1}, w_{2}\right\rangle\right)$ has index p^{2} in B^{*}. Also, if $B_{2}=$ $C_{B} \cdot\left(\left\langle w_{n+1}, w_{n+2}\right\rangle\right),\left|B^{*}: B_{2}\right|=p^{2}$. Furthermore, B_{1}, B_{2} and $B_{0}=B_{1} \cap B_{2}$ are direct products of the A-transforms of $\left\langle z_{1}\right\rangle$ (or $\left.\left\langle z_{2}\right\rangle\right)$ which they contain and $\left|B^{*}: B_{0}\right|=p^{4}$. It follows that $J_{0}=L\left(C_{G}\left(B_{0}\right)\right)$ has type $A_{7}(q)$ or $A_{8}(q)$. Also, it contains $J_{i}^{*}=L\left(C_{G}\left(B_{i}\right)\right)$, which has type $A_{3}(q)$ or $A_{4}(q), i=1,2$. The action of B^{*} on J_{0} and the fact that B_{1} and B_{2} fuse in $N_{A}\left(B_{0}\right)$ imply that $J_{1}^{*} \cong J_{2}^{*}$. Let J_{i} be the natural $A_{3}(q)$-subgroup of J_{i}^{*} which contains $B^{*} \cap J_{i}^{*}$, $i=1,2$. The structure of $J_{0}=B_{i} \cap J_{i}^{*} \cong Z_{p} \times Z_{p}$, where $\left\{i, i^{\prime}\right\}=\{1,2\}$ and the action of $\left(B_{1} \cap J_{2}\right) \times\left(B_{2} \cap J_{1}\right)$ force $\left[J_{1}, J_{2}\right]=1$, which gives us the desired relation.

Set $W=\left\langle W_{1}, W_{2}\right\rangle \cong W_{A_{n+2}}$. Then $G_{1}=\left\langle K_{1}, W\right\rangle \cong A_{n+2}(q)$, by Proposition 2.30.

Lemma 5.11. Suppose that $A_{i} \cong W_{C_{n}}$. Then $A=\left\langle A_{1}, A_{2}\right\rangle \cong W_{c_{n+1}}$ or $n=3, A \cong W_{l_{4}}$ or $n=p=3$ and $A^{\prime \prime} \cong A_{6}$, the alternating group. Also, there is a q so that G_{1} has type $C_{n+1}(q)$ or $p \mid q-1$ and G_{1} has type $A_{n},(2)$, $\left|\left(n^{\prime} \mid 1\right) / 2\right|=n+1,{ }^{2} D_{n+2}(q),{ }^{2} A_{7}(q),{ }^{2} E_{6}(q)$ or $F_{4}(q)$. Moreover, the case $A^{\prime \prime} \cong A_{6}$ does not occur.

Proof. Proposition CF gives the possibilities for A. The possibilities for K_{i}, since p half-splits K_{i}, are groups of type $C_{n}(q), D_{n+1}(q)$ with $p \mid q+1$, ${ }^{2} D_{n+1}(q)$ with $p \mid q-1,{ }^{2} A_{5}(q)$ with $n=3, p \mid q-1$ or $A_{2 n-1}(2), A_{2 n}(2)$ with $p=3, n \geqslant 3$, or $A_{s}(4)$ with $p=5, n=3$. We deal with these cases individually.

Suppose K_{i} has type $D_{n+1}(q)$. Then $m\left(B^{*}\right)=n$ if n is even, $n+1$ if n is odd. By Table B, L_{0} has type ${ }^{2} D_{n}(q)$, whence K_{1} has type $D_{n+1}(q)$, ${ }^{2} E_{6}(q), E_{6}(q)$ or $E_{8}(q)$. But p does not split $D_{n+1}(q), E_{6}(q)$ or $E_{8}(q)$ since $p \mid q+1$, whence K_{1} has type ${ }^{2} E_{6}(q)$. Thus, $m\left(B^{*}\right)=7$ or $p=3$ and $m\left(B^{*}\right)=6$: moreover, $A \cong W_{t_{7}}$. But then we have a contradiction to Proposition CF with regard to the containment $A_{i}<A$.

Thus K_{i} has type $C_{n}(q)$ or $p \mid q-1$ and K_{i} has type ${ }^{2} D_{n+1}(q)$ or ${ }^{2} A_{5}(q)$. Since we have eliminated $D_{n+1}(q)$, we observe that K_{i} can involve no "exceptional" covering as $n \geqslant 4$ or $p \mid q-1$.

Suppose $A \cong W_{C_{n+1}}$ and suppose that K_{i} does not have type $A_{l}\left(q^{\prime}\right)$, for some l and q^{\prime}. Then $W_{i}:=W \cap K_{i}$ is a standard copy of the Weyl group of K_{i} (see Table B and Lemma 2.50), we use Proposition 2.30 to show that $G_{1}=\left\langle K_{1}, K_{2}\right\rangle$ has type $C_{n+1}(q),{ }^{2} D_{n+2}(q),{ }^{2} A_{7}(q)$ when K_{i} has type $C_{n}(q)$, ${ }^{2} D_{n+1}(q),{ }^{2} A_{5}(q)$ respectively (note that $n \geqslant 3$ implies that K_{i} has Lie rank at least 3).

Suppose that K_{i} has type $A_{n}(2)$. Then $p=3$. If $n \geqslant 7$, Lemma 5.10 gives the desired conclusion. Say $n<7$. Then $m_{3}(K) \geqslant 3$ implies that $n=5$ or 6 and $B=B^{*}$ has rank 4. The possibilities for L_{0} are $A_{n-2}(2)$ or $S L(|(n+1) / 2|, 4)=S L(3,4)$. From Table P, we see that the possibilities for the type of K_{1} are

$$
A_{n}(2), \quad n=5,6 \quad \text { for } L_{0} \cong A_{n-2}(2)
$$

Say $L_{0} \cong A_{n-2}(2)$. Then $m_{2,3}\left(K_{1}\right) \geqslant 3$ implies that K_{1} has type $A_{4}(2)$, $A_{6}(2)$ or $E_{6}(2)$. By Lemma $5.9, K_{1} \cong A_{5}(2)$ or $A_{6}(2)$. We have $A_{1} \cap A_{2} \cong W_{C_{2}}$.

We treat the case $K_{1} \cong A_{6}(2)$ in detail and leave the $A_{5}(2)$ case as an exercise. For $i=1,2$, choose standard copies W_{i} of the Weyl group of K_{i} in K_{i} so that $W_{i}=W_{i} \cap N_{K_{i}}\left(B^{*}\right)$ is a standard copy of $A_{K_{i}}\left(B^{*}\right)$. Then $W_{1} \cong \Sigma_{7}, W_{1} \cap L_{0} \cong \Sigma_{5}, W_{2} \cong \Sigma_{7}$. Let w_{1}, \ldots, w_{8} satisfy $W_{1}=\left\langle w_{1}, \ldots, w_{6}\right\rangle$, $w_{2}=\left\langle w_{3}, \ldots . w_{8}\right\rangle, W_{1} \cap W_{2}=\left\langle w_{3}, \ldots, w_{6}\right\rangle$,

and

We wish to verify relations

Let $\phi: K_{1} \cong G L(7,2)$ satisfy

$$
w_{i}^{U}=i_{i+1}\left(\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & & 01 & & \\
& & & 10 & & \\
& & & & 1 & \\
& & & & & \ddots \\
& & & & & \\
&
\end{array}\right], \quad i=1, \ldots, 6
$$

with respect to the basis v_{1}, \ldots, v_{7}. Set $\left\langle z_{2}\right\rangle=D \cap K_{1}$; then $\left(B, z_{2}, K_{2}\right)$ is a neighbor since z_{2} fuses to z_{1} in $N_{G}(B)$ (each $\left\langle z_{i}\right\rangle$ is the commutator of B with a fundamental reflection in $O_{2}\left(A_{G}(B)\right)$). We may arrange for

$$
z_{2}^{\phi}=\left(\begin{array}{lll}
01 & & \\
11 & & \\
& 1_{1} 1_{1} \\
& & \\
& &
\end{array}\right)
$$

and for $\left(B \cap K_{1}\right)^{\phi}$ to have shape

with each block 2×2. This is compatible with preceding arrangements since $N_{H_{1}}(B)=C_{W_{1}}(t)$, where

Similarly we may arrange for an isomorphism $\psi: K_{2} \cong G L(7,2)$ to satisfy

with respect to the basis v_{3}, \ldots, v_{9}, and for $\left(B \cap K_{2}\right)^{凶}$ to have shape

Let $M=\bar{M} \dot{\phi}^{-1}, \tilde{M}=\left\{g \in G L(7,2) \mid g\right.$ fixes $v_{i}, i \neq 5,6,7$ and leaves the span of $\left\{v_{5}, v_{6}, v_{7}\right\}$ invariant $\} \cong G L(3,2)$.

We claim that $L\left(C_{G}(M)\right) \cong G L(6,2)$. Since $B \cap M \cong Z_{3}$ fuses in $N_{G}(B)$ to z_{1}, we get $L\left(C_{G}(M)\right) \hookrightarrow G L(7,2)$. If $M_{0} \leqslant M$ corresponds under ϕ to a natural $G L(4,2)$ subgroup and $\left|M_{0} \cap B\right|=9$, we have $L\left(C_{G}\left(M_{0}\right)\right) \cong$ $G L(6,2)$. Thus, $L\left(C_{G}(M)\right) \cong G L(6,2), G L(7,2)$ or is 1 (this happens if M centralizes a maximal parabolic of $L\left(C_{G}(B \cap M)\right)$). Assume $L\left(C_{G}(M)\right)=1$. In this case, taking $z_{2} \in L\left(C_{K_{1}}(M)\right) \cong G L(4,2)$ and considering the natural action of $G L(6,2)$ on its standard module, we find that z_{2} centralizes a subgroup of the shape $2^{4} \cdot G L(4,2) \times Z_{3}$ in $C_{G}(M) \cap L\left(C_{G}(B \cap M)\right.$); but this violates the shape of $C_{K_{i}}(M) \cong G L(4,2)$ and its embedding in $C_{G}\left(z_{2}\right)$. So the claim holds.

We change bases slightly. Let $\quad \mathscr{b}=\left\{v_{1}-v_{2}, v_{2}-v_{3}, v_{1}+v_{2}+v_{3}\right.$,
$\left.v_{4}, v_{5}, v_{6}, v_{7}\right\}$ and let $\phi^{\prime}: K_{1} \rightarrow G L(7,2)$ be an isomorphism differing from ϕ by this basis change. We take $A \leqslant K_{1} B$, a conjugate of B, so that $z \in A$ and $\left(A \cap K_{1}\right)^{\Phi^{\prime}}$ has shape

and $\left(A \cap K_{2}\right)^{\psi^{\prime}}$ has shape

where $C=\left\{v_{1}+v_{2}+v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$ and $\psi^{\prime}: K_{2} \rightarrow G L(7,2)$ is a representation of K_{2} with respect to this basis. We replace M by the conjugate M^{*} such that $\left(M^{*}\right)^{\Phi^{\prime}}$ has shape

Let S, T be the subgroup of K_{1}, K_{2} inducing the general linear group on span $\left\{v_{1}-v_{2}, v_{2}-v_{3}\right\}, \quad \operatorname{span}\left\{v_{6}, v_{7}, v_{8}, v_{9}\right\}$ and fixing $\left\{v_{1}+v_{2}+v_{3}\right.$, $\left.v_{4}, v_{5}, v_{6}, v_{7}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}$, respectively. Let V be the natural module for $L\left(C_{G}\left(M^{*}\right)\right) \cong G L(n, 2), \quad n=6$ or 7. Since $[V, T]=[V, T \cap A] \quad$ and $C_{V}(T)=C_{V}(T \cap A), \quad\left[S, N_{T}\left(T \cap A(]=1 \quad\right.\right.$ (seen in $\left.N_{G}(A)\right)$ implies that $[S, T]=1$. Since $\left\langle w_{1}, w_{2}\right\rangle \leqslant S$ and $\left\langle w_{7}, w_{8}\right\rangle \leqslant T$, we get the desired relations

At this point, Proposition 2.30 identifies $G_{1}=\left\langle K_{1}, W\right\rangle$ as $A_{8}(2)$, as required. Of course, when $K_{1} \cong A_{5}(2)$, we get $G_{1} \cong A_{7}(2)$.

If $L_{0} \cong S L(3,4)$, it is still the case that $\left(B, z_{i}, K_{i}\right)$ is a standard component and so the above arguments apply to give $G_{1} \in \operatorname{Chev}(2)$.

Suppose that K_{i} has type $A_{5}(4), p=5$. Then p only half-splits K_{i}. By Table P, for p to split K_{1}, we must have $L_{0} \cong S L(3,16)$.

Then K_{1} is a group defined over \mathbb{F}_{16} and in fact is of type $A_{4}(16), A_{5}(16)$, $C_{3}(16), D_{3}(16),{ }^{2} D_{4}(16)$ or K_{1} has type ${ }^{2} A_{5}(4)$. If K_{1} is defined over \mathbb{F}_{16}, we get $G_{2}:=\left\langle K_{1}, W\right\rangle \in \operatorname{Chev}(2)(W$ as in Lemma 5.5$)$ by a previous part of this lemma and Lemmas 5.7. There is no possibility for $K_{i} \cong A_{5}(4)$ to be compatible with $C_{G_{2}}\left(z_{i}\right)$ since G_{2} is defined over \mathbb{F}_{16} (one must check the cases to see this). If K_{1} has type ${ }^{2} A_{5}(4)$, Lemma 5.7 implies that G_{2} has type ${ }^{2} A_{6}(4)$; in this case $L_{0} \simeq \operatorname{PSL}(3,16)$, not $\operatorname{SL}(3,16)$, a contradiction.

Suppose $A \cong W_{1+}$. Then, we can proceed as in the case $A \cong W_{C_{n+1}}$ to construct $F_{4}(q)$ or ${ }^{2} E_{6}(q)$. There is a special problem in that one of K_{1} or K_{2} will not contain a W-conjugate a given pairs of roots. So, we use both K_{1} and K_{2} and Proposition 2.31. Thus, an examination of Tables B and \mathbf{P} shows that when K_{i} has type $C_{3}(q),{ }^{2} D_{4}(q),{ }^{2} A_{5}(q)$, respectively, we construct G_{1} of type $F_{4}(q),{ }^{2} E_{6}(q),{ }^{2} E_{6}(q)$, respectively.

Finally, we treat the case $A^{\prime \prime} \cong A_{6}$; that is A contains a copy of $\Sigma_{6} \times Z_{2}$ and $Z(A)=\left\langle-1_{B} \cdot\right\rangle, A / Z(A) \cong \Sigma_{6}$ or $\operatorname{Aut}\left(\Sigma_{6}\right), p-3$ and $m(B)=m\left(B^{*}\right)=4$. Also K_{i} has type $C_{3}(q)$, or type ${ }^{2} A_{5}(q)$ with $3 \mid q-1$, or type ${ }^{2} D_{4}(q)$, or type $A_{n}(2), n=5$ or 6 and $p=3$. Since $B=B^{*}$ and 3 splits $K_{1} \in \operatorname{Chev}(2)$, the possible types for K_{1} are $A_{3}\left(q_{1}\right)$ or $C_{3}\left(q_{1}\right)$ for $3 \mid q-1$ or type ${ }^{2} D_{4}\left(q_{1}\right)$ for some $q_{1} \in\left\{q, q^{2}\right\}$ or type $A_{n}(2)$ for $n=5$ or $6, p=3$. Also $3 \mid q-1$ or $q_{1}=q$ and K_{1} has type ${ }^{2} D_{4}(q)$.

For now, let us suppose that $3 \mid q_{1}-1$. In any case, K_{1} contains a natural subgroup K of type $A_{3}\left(q_{1}\right)=D_{3}\left(q_{1}\right)$ such that $V=K \cap W \cong W_{A,}, V$ is a standard copy of the Weyl group for K, and K is generated by appropriate root groups; see Lemma 2.50 (iv). Take $\tilde{W} \leqslant W$ so that $\tilde{W} \geqslant V$ and $W \cong \Sigma_{6}$. By Proposition $2.30, Y=\langle K, W\rangle \cong A_{5}\left(q_{1}\right)$. Also, $Z(Y)=1$.

The following argument is an adaption of the argument in result (5.11) of Finkelstein and Frohardt [17]. Define $N=N_{G}(B), \quad P \in \operatorname{Syl}_{3}(N)$, $P_{1}=C_{p}\left(B_{1}\right)$ where $B_{1}=\left\langle z_{1}, z_{0}\right\rangle \quad$ and $\left\langle z_{0}\right\rangle=B \cap Z(P), \quad N^{*}=N_{G}\left(B_{1}\right)$, $C^{*}=C_{G}\left(B_{1}\right)$ and $L=L\left(C_{G}\left(B_{1}\right)\right)=L\left(C_{\kappa_{1}}\left(z_{0}\right)\right) \cong S L\left(3, q_{1}\right)$ with $3 \mid q_{1}-1$ (check the possible K_{1}). We have $N_{1} / C_{1} \cong Z_{2} \times \Sigma_{3}$.

We argue that $B=J_{e}(P)$, where J_{e} denotes the Thompson subgroup $\langle\tilde{B}| \tilde{B} \leqslant P, m(\tilde{B})=m(P), \tilde{B}$ elementary abelian \rangle. Let $\tilde{B} \leqslant P$ with $\tilde{B} \cong B$, $\widetilde{B} \neq B$. Note that $C_{G}(B)$ has homocyclic abelian rank 4 Sylow 3-subgroups. In fact, Lemma (3.8) implies that $B \in \operatorname{Syl}_{3}\left(C_{G}(B)\right)$. If $|\tilde{B} \cap B|=3^{2}$, then \tilde{B} covers $P / C_{P}(B)$, whence $|Z(P)|=3^{2}$, a contradiction. Thus, $|\tilde{B} \cap B|=3^{3}$. It follows that A contains a tranvection on B. However, every 3 -element of A normalizes but does not centralize a four-group of A, hence cannot be a tranvection on B, contradiction. Therefore $B=J_{e}(P)$, and we have also shown that B is the unique group of its isomorphism type in P. Consequently,
$P \in \operatorname{Syl}_{3}(G),|P|=3^{6}$ and N controls G-fusion in B, by a Burnside-type argument.

Set $R_{1}=P \cap L \triangleleft P \leqslant C^{*}, R_{2}=C_{P}\left(R_{1}\right)$ and $R=R_{1} R_{2}$. Then $\left|R_{2}\right|=27$ and $R_{1} \cap R_{2}=Z(P)=\left\langle z_{0}\right\rangle \cong Z_{3}$. We argue that $R_{2} \cong 3^{1+2}$. First, note that if $B \cap R_{2} \leqslant Z\left(R_{2}\right)$, then R_{2} contains an element inducing a transvection on B. against Lemma 3.20. Thus, R_{2} is nonabelian, so it suffices to show that $\exp R_{2}=3$. Suppose false. Then $\left|R: \Omega_{1}(R)\right|=3$ and $\Omega_{1}(R) B$ is a characteristic subgroup of P lying strictly between B and P. However, the structure of A_{6} implies that $A_{G}(P / B)$ contains a cyclic group of order 4 , whence $A_{G}(P / B)$ is irreducible on P / B, contradiction. Thus, $R_{2}=\Omega_{1}\left(R_{2}\right)$ and $R=\Omega_{1}(R) \cong 3^{1+4}$. We also have that $\left[R_{2}, B\right]=R_{2} \cap B$, or else we would have $\left|R_{2}, B\right| \leqslant Z(P)$ and so elements of $P-B$ would have quadratic minimal polynomial on B, against Lemma 3.20. Thus, in its action on $R / Z(P)$, an element of $P-R$ has a matrix similar to

$$
\left(\begin{array}{ll}
11 & \\
01 & 11 \\
& 01
\end{array}\right)
$$

Finally, we determine $A_{G}(R / Z(P))$. It must be a subgroup of $S p^{ \pm}(4,3)$. From K_{1}, we get a copy S of $G L(2,3)$ in $A_{G}(R / Z(P))$ which satisfies $\left.\mid R_{2} / Z(P), O_{2}(S)\right]=1$. Since $R_{2} / Z(P)=\left[R / Z(P), O_{2}(S)\right]$, we must have $O_{2}\left(A_{G}(R / Z(P))\right) \neq O_{2}(S)$, or else we could contradict the action of $N_{G}(P)$ on P / R as above. Thus, the structure of $S p^{ \pm}(4,3)$ and $\left|A_{G}(R / Z(P))\right|_{3}=3$ implies that $O_{2}\left(A_{G}(R / Z(P))\right) \cong Q_{8} \backslash Z_{2},\left[O_{2}\left(A_{G}(R / Z(P))\right), O_{2,3}\left(A_{G}(R / Z(P))\right)\right]$ $\cong Q_{8} \times Q_{8}$ and $A_{G}(R / Z(P)) / O_{2}\left(A_{G}(R / Z(P)) \cong \Sigma_{3}\right.$.

Define Q_{1} to be a complement to R_{1} in $N_{K_{1}}\left(R_{1}\right)$. Then $Q_{1} \cong Q_{8}$ and $\left[R_{2}, Q_{1}\right]=1$. We let $Q_{2}=Q_{1}^{h}$, where $h \in N_{G}(P)$ and h interchanges R_{1} and R_{2} under conjugation. Let $\langle t\rangle=Z\left(Q_{2}\right)$. Then $\left[R_{1}, t\right]=1$ implies that $[L, t]=1$. Since the maximal subgroups of R_{2} form an orbit under Q_{2}, we may assume that t normalizes Z_{1}. Also, we may assume that t inverts z_{1} by replacing Q_{1} with a conjugate by an element of R_{1}.

The possible structures of Aut K_{1} and $[L, t]=1$ imply that $\left[K_{1}, t\right]=1$ or $K_{1} \cong{ }^{2} D_{4}\left(q_{1}\right), t$ acts as an orthogonal tranvection on K_{1} and $L\left(C_{K_{1}}(t)\right) \cong$ $C_{3}\left(q_{1}\right)$. Now, take $y \in R_{1}, y_{\mathcal{N R},} z_{1}$. Then $[y, t]=1$ and $y \in L\left(C_{K_{1}}(t)\right)$ since $B=\left\langle z_{1}\right\rangle \times\left(B \cap L\left(C_{K_{1}}(t)\right)\right)$. We have that $L\left(C_{G}\left(\left\langle z_{1}, y\right\rangle\right)\right) \cong S L(2, q)$ and y is a noncentral element of order 3 in a natural $A_{2}\left(q_{1}\right)$ subgroup of $L\left(C_{K_{1}}(t)\right)$. Now suppose that K_{1} does not have type $A_{n}(2)$. If $L\left(C_{K_{1}}(t)\right)$ contains a copy of $C_{3}\left(q_{1}\right)$, then $C_{G}(\langle t, y\rangle) \geqslant\langle t\rangle \times C_{L^{\prime}\left(C_{K_{1}}(t)\right.}(y) \cong Z_{2} \times G L\left(2, q_{1}\right) \times Y_{1}$ where $Y_{1} \cong S p\left(2, q_{1}\right) \cong S L\left(2, q_{1}\right)$ or $Y_{1} \cong{ }^{2} D_{2}\left(q_{1}\right) \cong S L\left(2, q_{1}^{2}\right)$. Since Out K_{1} has abelian Sylow 2-subgroups and t lies in a quaternion group in $C_{\sigma}(y), t$ must induce an inner antomosphism on $L\left(C_{G}(y)\right) \cong K_{1}$. But $K_{1} \cong C_{3}\left(q_{1}\right)$ or
${ }^{2} D_{4}\left(q_{1}\right)$ implies that t centralizes $L\left(C_{G}(y)\right)$, a contradiction since t induces a reflection on $B \leqslant\left\langle y, L\left(C_{G}(y)\right)\right\rangle$. The case where $L\left(C_{K_{1}}(t)\right)$ does not contain a copy of $C_{3}\left(q_{1}\right)$ is the case $K_{1} \cong A_{3}\left(q_{1}\right)$. But then $i=2$ and we merely reverse the roles of z_{i} and z_{1} in the above argument and use the fact that K_{2} does contain a natural $C_{3}\left(q_{1}\right)$-subgroup.

If K_{1} has type $A_{n}(2), n=5,6$, we may argue as above to get a contradiction. The only change occurs at the end, namely, $C_{G}(\langle t, y\rangle) \geqslant\langle t\rangle \times C_{K}(y) \cong Z_{2} \times G L(2,4) \times G L(n-3,2)$.

Thus, the case $A^{\prime \prime} \cong A_{6}$ is eliminated, and the proof of the lemma is complete.

Lemma 5.12. Suppose that $A_{i} \cong W_{D_{n}}$. Let $A=\left\langle A_{1}, A_{2}\right\rangle$. Then there is a q so that one of the following holds.
(i) $A \cong W_{D_{n+1}}$ and G_{1} has type $D_{n+1}(q), p \mid g-1$ or n is even $n \geqslant 4$, $p \mid q+1$; or G_{1} has type ${ }^{2} D_{n+1}(q), n$ odd, $n \geqslant 5, p \mid q+1$.
(ii) $A \cong W_{E_{n+1}}$ and $\left(K_{i}, G_{1}\right)$ have types

$$
\begin{array}{ll}
\left(D_{5}(q), E_{6}(q)\right) & p \mid q-1 \\
\left({ }^{2} D_{5}(q),{ }^{2} E_{6}(q)\right) & p \mid q+1 \\
\left(D_{4}(q), E_{6}(q)\right) & p=3,3 \mid q-1 \\
\left(D_{6}(q), E_{7}(q)\right) & p \mid q^{2}-1 \\
\left(D_{7}(q), E_{8}(q)\right) & p \mid q-1 \\
\left({ }^{2} D_{7}(q), E_{q}(q)\right) & p \mid q+1 .
\end{array}
$$

(iii) $A \cong \Sigma_{5}$, and G_{1} has type $A_{4}(q), p \mid q-1 . K_{i}$ has type $D_{3}(q)$

Proof. The possibilities for A are given by Proposition D. Thus, $A \cong W_{D_{n+1}}, W_{C_{n+1}}$ or $n=5,6,7$ and $A \cong W_{E_{n+1}}$ or $n=4, p=3$ and $A \cong W_{E_{6}}$ or $n=3$ and A is a group of small index in $W_{F_{4}}\langle\gamma\rangle, \gamma$ a graph automorphism (i.e., $W_{D_{4}} \leqslant A \leqslant W_{F_{4}}\langle\gamma\rangle$) or $n=3, p=3$ and $A \cong \Sigma_{6}, \Sigma_{6} \times Z_{2}, A_{6} \cdot D_{8}, \Sigma_{5}$ or $\Sigma_{5} \times Z_{2}$. Let $\left\{i, i^{\prime}\right\}=\{1,2\}$.

We can eliminate several possibilities for A with a few observations. Suppose $A / A^{\prime} \cong Z_{2} \times Z_{2}$. We claim that A_{1} or A_{2} must be associated with a Dynkin diagram with two root lengths. If false, the fact that A_{0} is generated by reflections and covers each of A_{1} / A_{1}^{\prime} and A_{2} / A_{2}^{\prime} gives a contradiction. Thus, some A_{j} is isomorphic to $W_{C_{n}}$ or $W_{F_{4}}$. Since the diagram for A_{i} has one root length, the same is true for A_{0} (see Table P), whence $A_{j} \cong W_{F_{\mathrm{d}}}$. Thus $A_{j} \cong W_{C_{n}}$. By Lemma $5.11, A \cong W_{C_{n_{2}-1}}$ or $W_{F_{4}}$ and $G_{1} \cong C_{n+1}(q)$ or $p \mid q-1$ and ${ }^{n} G_{1}$ has type ${ }^{2} D_{n+2}(q),{ }^{n_{2}} A_{7}(q),{ }^{2} E_{6}(q)$ or $F_{4}(q)$. As $G_{1} \in \operatorname{Chev}(2)$, we look at Table B and see that $A_{i} \cong W_{D_{n}}$ is impossible. We conclude that $A / A^{\prime} \cong Z_{2}$, whence $A \cong W_{D_{n+1}}$ or $n=5,6,7$ and $A \cong W_{E_{n+1}}$ or $n=4, p=3$ and $A \cong W_{E_{6}}$ or $n=3$ and $A \cong \Sigma_{5}$ or $n=4$ and $p=3$ and $A \cong \Sigma_{6}$.

Suppose $A \cong W_{E_{6}}$. Then $n=5$ or $p=3$ and $n=4$. If $n=5, K_{i}$ has type $D_{5}(q), p \mid q-1$, or type ${ }^{2} D_{5}(q), p \mid q+1$, and we show that G_{1} has type $E_{6}(q)$ or ${ }^{2} E_{6}(q)$, respectively, using Proposition 2.30. For K_{i} of type $D_{5}(q)$, this is easy. For ${ }^{2} D_{5}(q)$, it is almost as easy once we see that the natural containment ${ }^{2} D_{5}(q) \hookrightarrow{ }^{2} E_{6}(q)$ corresponds to a natural containment $W_{C_{4}} \hookrightarrow W_{F_{3}}$.
If $p=3$ and $n=4, K_{i}$ has type $D_{4}(q)$ and A is isomorphic to $W_{E_{6}}$. We have that L_{0} has type $A_{3}(q)=D_{3}(q)$. Since A_{i} is a Weyl group for a root system with one root length, Table P implies that $A_{i} \cong W_{A_{4}}$ or $W_{A_{5}}$ or $W_{D_{4}}$. If $A_{i} \cong W_{A_{4}}$ or $W_{D_{4}}$, then A is generated by five reflections. If $A \cong W_{E_{6}}$, this is impossible (look at the usual representation in $O(6, \mathbb{R})$). Thus, $A_{i} \cong W_{A_{s}}$. The orbits of $W_{E_{6}}$ on the 121 one-dimensional subspaces of B^{*} have lengths 40,36 and 45 , whence A_{i}, is a natural $W_{A_{5}}$ subgroup of $W_{E_{0}}$. We therefore may use Proposition 2.30 to get G_{1} of type $E_{6}(q)$. Note that this forces $C_{A}\left(b_{i}\right)$ to be an extension of $W_{D_{A}}$ by the graph automorphism of order 3 and $N_{A}\left(\left\langle b_{i}\right\rangle\right) \cong W_{F_{4}}$.

Suppose $A \cong \Sigma_{6}, n=3, p=3$. Then $A_{i} \cong W_{D_{3}}$ implies K_{i} has type $D_{3}(q)$, $p \mid q-1$ or ${ }^{2} D_{3}(q), p \mid q+1$, whence $A_{0} \cong \Sigma_{3}$. Since $A \cong \Sigma_{6}, A$ is not generated by four reflections, whence A_{i}^{\prime} has type $W_{A_{4}}$ (rather than $W_{A_{3}}$). Since A_{i}, must fix a nontrivial element of B^{*}, we have $p=5$, a contradiction. So, $A \npreceq \Sigma_{6}$.

If $A \cong A_{6} \cdot D_{8}$, we quote the last line of Lemma 5.11.
If $A \cong \Sigma_{5}$, we quote Lemma 5.6 , the case $n=3$. Thus $p \mid q-1$ and G_{1} has type $A_{4}(q)\left(G_{1}\right.$ cannot be ${ }^{2} A_{4}(q)$ as $\left.m_{2.0}\left(G_{1}\right) \geqslant 4\right)$.

If $A \cong W_{E}, K_{i}$ has type $D_{6}(q), p \mid q^{2}-1$, and if $A \cong W_{E_{8}}, K_{i}$ has type $D_{7}(q), p \mid q-1$, or ${ }^{2} D_{\gamma}(q), p \mid q+1$. In both cases, A_{i} is a natural $W_{D_{n}}$ subgroup of $A \cong W_{E_{n+1}}$; see Proposition D. In the first case, we let K be a natural $D_{s}(q)$ subgroup and show that $G_{1}=\langle K, W\rangle$ has type $E_{7}(q)$. In the second case, we let K be a natural $D_{6}(q)$ subgroup and prove that $G_{1}=\langle K, W\rangle$ has type $E_{8}(q)$.

Finally suppose that $A \cong W_{D_{n+1}}$. Then K_{i} has type $D_{n}(q)$ and $p \mid q-1$, type $D_{n}(q) n$ is even and $p \mid q+1$, or type ${ }^{2} D_{n}(q)$ and n is odd, $p \mid q+1$. We must show that G_{1} has type $D_{n+1}(q),{ }^{2} D_{n+1}(q), D_{n+1}[q]$, respectively. As usual, we need Proposition 2.30 but we have to be slightly careful about choosing the subgroup K of that proposition. If $p \mid q-1$, take $K=K_{i}$ and if $p \mid q+1$, let K be a natural subgroup of type $D_{n}(q),{ }^{2} D_{n-1}(q), D_{n-1}(q)$, respectively. In the first and third cases, we want the Lie rank of K to be at least 3. Since $m(B) \geqslant 4$, if $p \mid q-1, n \geqslant 3$ and if $p \mid q+1, n \geqslant 4$, so there's no problem. In the second case, there are two root lengths, so we want K to have Lie rank at least four, i.e., $n-2 \geqslant 4$ or $n \geqslant 6$. Since n is even here, it remains to treat the case $n=4$. It is no problem to verify the Steinberg relations for a pair of root elements which can be conjugated by an element of W to a pair of elements in K.

Let us tabulate the possible configurations up to $W_{B_{4}}$-conjugacy of pairs of linearly independent roots in the system Σ of type B_{4}. Here $s, s^{\prime}\left(r, r^{\prime}\right)$ denote typical short (and long) roots respectively and $\left\langle r_{1} r_{2}\right.$ is the angle between the roots $r_{1}, r_{1} \in \Sigma$.
(1) $\left\langle s, s^{\prime}=\pi / 2\right.$,
(2) $\left\langle r, r^{\prime}=\pi / 3\right.$,
(3) $\left\langle r, r^{\prime}=2 \pi / 3\right.$.
(4) $\left\langle r, r^{\prime}=\pi / 2, \mathbb{R} r+\mathbb{R} r^{\prime}\right.$ contains a short root,
(5) $\left\langle r, r^{\prime}=\pi / 2 \mathbb{R} r+\mathbb{R} r^{\prime}\right.$ does not contain in a short root
(think of a root system of type B_{k} as all $\pm e_{\alpha}, \pm e_{\alpha} \pm e_{\beta}, \alpha \neq \beta$, where e_{1}, \ldots, e_{k} is an orthonormal basis for \mathbb{R}^{k}). Pairs of root elements corresponding to pairs (1) and (4) are W-conjugate to pairs of root elements of K or type ${ }^{2} D_{3}(q)$. The pairs (2), (3) and (5) involve only long roots, and, as K_{i} (type $\left.D_{4}(q)\right)$ contains K as a natural subgroup, root elements for long roots in K one root elements in K_{i}, and the verification of the relations is immediate.

The proof of Lemma 5.12 is now complete.
Corollary 5.13. G_{1} is described by one of the preceding five lemmas.
Proof. If A_{i} is a Weyl group of type $B=C, D, E$ or F, this is clear. Otherwisc, A_{i} has type A. In fact, we may assume that both A_{1} and A_{2} have type A. Then Lemmas 5.6 and 5.7 apply, and we are left with the case $A \cong W_{D_{n+1}}, A_{1} \cong A_{2} \cong W_{A_{n}}, A_{1} \subset A_{2} \cong W_{A_{n-1}}$. Then $p \mid q-1, n \geqslant 3$ and $A_{1} \cong A_{2}$ has type $A_{n}(q)$. Since $n \geqslant 3$, it is easy to see that Proposition 2.30 may be applied to get $G_{1} \cong D_{n+1}(q)$.

Lemma 5.14. If $K_{j} \nless G_{1}$, then $A_{j} \nless A$.
Proof. We may assume that $A_{j} \leqslant A$. Define $L=L\left(C_{G_{1}}\left(z_{j}\right)\right)$. We have $L_{0} \leqslant L<K_{j}$. We claim that $L_{0}-L$; assume otherwise.

Set $L_{00}=\left\langle L_{0}^{W_{J}}\right\rangle \leqslant K_{j} \cap G_{1}$. Then $L_{00} \leqslant L$, and, since $W_{j} \leqslant N_{K_{i}}\left(L_{0}\right)$, $L_{0}<L_{00}$. Consequently $W_{j} \cap L_{00}<W_{j}$ and $W_{j} \cap L \triangleleft W_{j}$. Since, by Lemma $2.50, W_{j} \cap Y$ is a standard copy of $A Y\left(B^{*}\right)$ for $Y=L_{00}$ and L, either $W_{j} \cap Y=W_{j}$ or $W_{j} \cap Y, W_{j}$ are isomorphic to $W_{D_{n}}, W_{C_{n}}$ or $W_{D_{4}}, W_{F_{4}}$, respectively. The last case is out, by Proposition CF applied to $A_{j}<\left\langle A_{1}, \ldots, A_{r}\right\rangle$. Thus, $W_{j} \cap Y$ and W_{j} are "almost equal," i.e., $\left|W_{i}: W_{j} \cap Y\right| \leqslant 2$.

If $W_{j} \leqslant L$, then $L \neq K$ and Tables B and P show that $W_{j} \cong W_{C_{n}}$ for some n (we have eliminated $W_{j} \cong W_{F_{4}}$). Thus, whether W_{j} lies in L or not, $W_{j} \cong W_{C_{n}}$. Therefore, $\left\langle A_{1}, \ldots, A_{r}\right\rangle \cong W_{C_{n+1}}$ or $W_{F_{4}}$, by Proposition CF. We replace K_{2} by K_{1} in the preceding part of this section to get $G_{1}^{*}=\left\langle K_{1}, K_{j}\right\rangle \in$ Chev(2). We use Table B to get the possibilities for G_{1}^{*}.

Suppose G_{1}^{*} has type $F_{4}(q)$. Then, by Table C, K_{1} and K_{j} both have type $C_{3}(q)$ and L_{0} has type $C_{2}(q)$. It is clear that $K_{2} \leqslant G_{1}^{*}, K_{2}$ has type $C_{3}(q)$ and that G_{1} has type $C_{4}(q)$ or $F_{4}(q)$. Since $K_{j} \nless G_{1}, G_{1}$ has type $C_{4}(q)$ and $K_{j} \cap G_{1}$ must have Lie rank 3, hence $G_{1} \cap K_{j} \cong A_{3}(q)$. But then $A_{j} \cong W_{C_{3}}, A_{j} \nless A$, a contradiction.

Suppose that G_{1}^{*} has type $C_{n+1}(q)$, we may repeat the above argument unless K_{1} and K_{2} have type $D_{n}(q)$ or ${ }^{2} D_{n}(q)$. Then G_{1} has type $D_{n+1}(q)$ or ${ }^{2} D_{n+1}(q)$. Since $K_{J} \cong C_{n}(q) \nsubseteq K_{i}, i=1,2$, we must have L_{0} of type $A_{n-1}(q)$ or ${ }^{2} A_{n-1}(q)$, whence K_{i} has type $A_{n}(q),{ }^{2} A_{n}(q), D_{n}(q)$ or ${ }^{2} D_{n}(q)$. However, viewing $D L_{0} \leqslant G_{1}^{*}$, we see that $K_{i} \not \geqq D_{n}(q)$ or ${ }^{2} D_{n}(q), i=1,2$. From the usual matrix representation of $C_{n+1}(q)$, we see that at most one of $\left\{K_{1}, K_{2}\right\}$ can be $A_{n}(q)$ or ${ }^{2} A_{n}(q)$, a contradiction.

Finally, if G_{1}^{*} has type $D_{n+1}(q)$ or ${ }^{2} D_{n+1}(q)$, the preceding argument may be modified to show that $G_{1}=G_{1}^{*}$, a contradiction.

Lemma 5.15. If $A_{j} \leqslant A$, then $\left(A_{j}, A,\left\langle A, A_{j}\right\rangle\right)$ is one of the following:

$$
\begin{array}{ll}
\left(W_{A_{n}}, W_{A_{n+1}}, W_{A_{n+2}}\right), & p \mid n+3, \\
\left(W_{A_{4}}, W_{D_{5}}, W_{F_{6}}\right), & p=3, \\
\left(W_{C_{3}}, W_{C_{4}}, W_{F_{4}}\right) . &
\end{array}
$$

Furthermore, in these cases $\left\langle A, A_{j}\right\rangle$ contains all $A_{k}, k=1,2, \ldots, r$.
Proof. Letting $A_{\infty}=\left\langle A_{1}, \ldots, A_{r}\right\rangle$, we quote Propositions A, CF, D and E and use $O_{p}\left(A_{\infty}\right)=1$ and the fact that A_{∞} is generated by reflections. Compare this result with the last few lines of Table C .

Proposition 5.16. Suppose that $K_{j} \leqslant G_{1}$ for some $j \geqslant 3$. Then we are in one of the following situations:

L_{0}	K_{i}	K_{2}	K_{3}	G_{1}	G_{0}	p
$A_{n-1}(q)$	$A_{n}(q)$	$A_{n}(q)$	$A_{n}(q)$	$A_{n+1}(q)$	$A_{n+2}(q)$	$p\|n+3, p\| q-1$
${ }^{2} A_{n-1}(q)$	${ }^{2} A_{n}(q)$	${ }^{2} A_{n}(q)$	${ }^{2} A_{n}(q)$	${ }^{2} A_{n+1}(q)$	${ }^{2} A_{n+2}(q)$	$p\|n+3, p\| q+1$
$A_{2}(q)$	$C_{3}(q)$	$C_{3}(q)$	$C_{3}(q)$	$C_{4}(q)$	$F_{4}(q)$	$p \mid q-1(p \nmid q+1$
						since p splits
					some $\left.K_{i}\right)$	
$A_{3}(q)$	$D_{4}(q)$	$D_{4}(q)$	${ }^{2} D_{4}(q)$	$D_{5}(q)$	$E_{6}(q)$	$p=3,3 \mid q-1$
			${ }^{2} A_{5}(q)$			
${ }^{2} A_{3}(q)$	$D_{4}(q)$	$D_{4}(q)$	$D_{4}(q)$	${ }^{2} D_{5}(q)$	${ }^{2} E_{6}(q)$	$p=3,3 \mid q+1$
$A_{2}(q)$	${ }^{2} D_{4}(q)$	${ }^{2} D_{4}(q)$	${ }^{2} A_{5}(q)$	$D_{4}(q)$	${ }^{2} D_{5}(q)$	${ }^{2} E_{6}(q)$
${ }^{2} A_{2}(q)$	$p=3,3 \mid q-1$					
${ }^{2} A_{2}(q)$	${ }^{2} D_{4}(q)$	${ }^{2} D_{4}(q)$	${ }^{2} D_{4}(q)$	$D_{5}(q)$	$E_{6}(q)$	$p=3,3 \mid q+1$

In particular, $r=3$ unless $\left\langle A_{1}, \ldots, A_{r}\right\rangle \cong W_{E_{6}}$ in which case $r \geqslant 6$ or $\left\langle A_{1}, \ldots, A_{r}\right\rangle \cong W_{f_{1}}$ and $r=4$.

Proof. By Lemmas 5.13 and 5.14, we have $A_{j} \$ A$ and the possibilities for $A=\left\langle A_{1}, \ldots, A_{r}\right\rangle=\left\langle A_{1}, A_{2}, A_{3}\right\rangle$. We identify the group $G_{0}^{*}=\left\langle G_{1}, W_{3}\right\rangle$ by Proposition 2.30 and Lemma 2.50, except for the case G_{1} or type $C_{4}(q)$. Once G_{0}^{*} is identified, we get G_{0}^{*} by checking components. If G_{1} has type $C_{4}(q), L_{0}$ has type $A_{3}(q)$ or ${ }^{2} A_{3}(q)$. If we choose L_{0} differently in this case, i.e., L_{0} of type $C_{2}(q)$, the components generate a group $G_{0}^{* *}$ of type $F_{4}(q)$. But its evident that our K_{1}, K_{2} and K_{j} all lie in $G_{0}^{* *}$ (by Table P , for instance, and the structure of $L\left(C_{G_{0} * *}(z)\right)$ for $\left.z \in B^{*}\right)$, whence $G_{1}<G_{0}=G_{0}^{* *}$, as required. The last statement in the proposition is an exercise.

Corollary 5.17. Define $A^{*}=\left\langle A_{1}, \ldots, A_{r}\right\rangle, \quad A^{* *}=A_{G}\left(B^{*}\right)$. Then $A^{* *}=A^{*} A_{0}^{*}$ where $A_{0}^{*}=\left\{\alpha \in A^{* *} \mid \alpha\right.$ induces a scalar transformation on $\left.B^{*}\right\}$, or we are in one of the following cases:
(a) $A^{*} A_{0}^{*} \triangleleft A^{* *}$ and either
(i) $A^{*} \cong W_{45},\left|A_{0}^{*}\right|=2, \quad A^{* *} / A_{0}^{*} \cong \operatorname{Aut}\left(A_{6}\right), \quad p=3 \quad$ and $m\left(B^{*}\right)=4 ;$ or
(ii) $A^{*} \cong W_{D_{n}}, n$ even, $A^{* *}=A_{0}^{*} A_{1}^{*}$, where $A_{1}^{*} \cong W_{C_{n}}$; or
(iii) $A^{*} \cong W_{D_{4}}, A^{* *} / A^{*} A_{0}^{*}$ is a subgroup of Σ_{3}; or
(iv) $A^{*} \cong W_{1_{+}}, A^{* *} / A^{*} A_{0}^{*} \cong Z_{2}$; or
(v) $A^{*} \cong W_{t_{\mathrm{a}},}, A^{* *} / A^{*} A_{0}^{*} \cong Z_{2}$.
(b) $A^{*} A_{\text {* }}^{*} \nless A^{* *}$ and
(i) $A^{*} \cong W_{C_{\perp}}, A^{* *}=A_{0}^{*} A_{1}^{*}, A_{1}^{*} \cong W_{F_{4}}$ or $W_{F_{\mathrm{s}}}\langle\gamma\rangle$ where γ induces the graph automorphism on $A_{2}^{*} \simeq W_{F_{4}}, A_{2}^{*} \leqslant A_{1}^{*}$; or
(ii) $A^{*} \cong W_{4_{n}}, A^{* *}=A_{0}^{*} \times A_{1}^{*}$ where $A_{1}^{*} \cong W_{t_{n+1}}, \quad p \mid n+2$ or $n=4$ and $A^{* *}$ is the group of $(\mathrm{a})(\mathrm{i})$; or
(iii) $A^{*} \cong W_{D_{\mathrm{s}},}, A^{* *}=A_{0}^{*} \cong A_{1}^{*}, A_{1}^{*} \cong W_{E_{\mathrm{i}}}$.

Proof. Use Propositions A, CF, D and E.

Lemma 5.18. Define $A^{*}=\left\langle A_{1}, \ldots, A_{r}\right\rangle, A^{* *}=A_{G_{r}}\left(B^{*}\right)$. In the notation of Lemma 5.17, $A_{0}^{*} \leqslant\left\langle-1_{B},\right\rangle$ and $A^{*} \triangleleft A^{* *}$.

Proof. The structure of Aut $K_{i}, K_{i} \in \operatorname{Chev}(2)$ implies that $A_{0}^{*} \leqslant\left\langle-1_{B^{*}}\right\rangle$. We show that $A^{*} \triangleleft A^{* *}$ by eliminating each of the cases in conclusion (b) of Lemma 5.17. However, the structures of A^{*} and $A^{* *}$ gives contradictory values for r. For example, if $A^{*}=W_{C_{4}}, r \leqslant 3$ whereas if $A^{* *} \cong W_{F_{4}}$, then $r=4$.

Corollary 5.19. The A^{*}-conjugacy class of $\left\langle z_{i}\right\rangle$ is invariant under $A^{* *}$ unless possibly
(i) $A^{*} \cong W_{D_{n}}, A_{i} \cong W_{A_{n-1}}$ and $A^{* *} \cong W_{C_{n}}$,
(ii) $A^{*} \cong W_{F_{1}}, A_{i} \cong W_{C_{3}}, A^{* *}=A^{*}\langle\gamma\rangle$ where γ induces a graph automorphism on $A^{*}, \gamma^{2} \in Z\left(A^{*}\right)$.

Proof. The only opportunity for the statement to fail occurs when $A^{* *}$ induces a noninner automorphism on A^{*}. In this case, $A^{*} \cong W_{D_{n}}$ or $W_{F_{4}}$. After an examination of the cases and the using fact that A^{*} and $A^{* *}$ are both irreducible linear groups, we get (i) and (ii).

Corollary 5.20. $\left\langle N_{G}(B), N_{G}\left(B^{*}\right)\right\rangle \leqslant N_{G}\left(G_{0}\right)$.
Proof. Let $g \in N_{G}(B)$ or $N_{G}\left(B^{*}\right)$. If an element of the coset $C_{G}(B) N_{G_{01}}(B) g$ or $C_{G}\left(B^{*}\right) N_{G_{0}}\left(B^{*}\right) g$ leaves invariant each of the z_{i}, then the entire coset lies in $N_{G}\left(G_{0}\right)$, as $G_{0}=\left\langle K_{1}, \ldots, K_{r}\right\rangle$. For $g \in N_{G}\left(B^{*}\right)$, this does happen with the exception of Corollary 5.19. Let us consider those two cases.

Assume $A^{*} \cong W_{D_{n}}$. Then G_{0} has type $D_{n}(q),{ }^{2} D_{n}(q), n \geqslant 4$. Since $N_{G}\left(B^{*}\right)$ preserves every $N_{G_{0}}\left(B^{*}\right)$-class of subgroup $\langle b\rangle$ of order p in B^{*} in which $L\left(C_{G_{0}}(b)\right)$ is quasisimple, we get $N_{G}\left(B^{*}\right) \leqslant N_{G}\left(G_{0}\right)$ because $g \in N_{G}\left(B^{*}\right) \leqslant C_{G}\left(B^{*}\right) G_{0}$.

Assume $A^{*} \cong W_{r_{+}}$. Say $g \in N_{G}\left(B^{*}\right)$ induces a graph automorphism of order 2 , normalizing W, the standard copy of $A_{G_{0}}\left(B^{*}\right)$. If g normalizes a standard subcomponent, we are done as above. So, we may assume that L_{0} has type $A_{2}(q)$. But it is clear from studying components that G_{0} is the " G_{0} " for L_{0}^{g}, whence $g \in N_{G}\left(G_{0}\right)$, as required.

Finally, we turn to the case $g \in N_{G}(B), B<B^{*}$. The definition of G_{0} implies that $C_{G}(B) \leqslant N_{G}\left(G_{0}\right)$. The structure of $C_{C}\left(z_{i}\right)$ implies that if $P \in \operatorname{Syl}_{p}\left(C_{G}(B)\right)$, then $P_{1}=\Omega_{1}(P)$ contains B^{*} and if $B^{*}<P_{1}$, then $P_{1}-B^{*}$ contains an element inducing a field automorphism on each K_{i}. The existence of such an element would contradict the definition of standard type. Thus $B^{*}=P_{1}$, and so a Frattini argument implies that $N_{G}(B) \leqslant C_{G}(B) N_{G}\left(B^{*}\right) \leqslant N_{G}\left(G_{0}\right)$. The proof is now complete.

We summarize the main result of this section.

Proposition 5.21. $G_{0}:=\left\langle K_{1}, K_{2}, \ldots, K_{r}\right\rangle \in \operatorname{Chev}(2)$.

$$
\text { 6. } G_{0}=G
$$

We now know that the following hypotheses are valid.
I. G is a simple K-group of characteristic 2-type.
II. $B \cong E_{p^{n}}, n \geqslant 4$, and B realizes the 2-local p-rank of G.
III. $B \subseteq B^{*}$ with $m\left(B^{*}\right)=m_{p}(G)$.
IV. For some $x \in B^{*}, G$ is of standard type (as defined in Section 1) with respect to (B, x, L).
V. For some $D \subseteq B$ and standard subcomponent (D, J) the set of neighbors of (B, x, L) with respect to (D, J) together with L generates a group G_{0} of Lie type over a field of characteristic 2 . The possibilities for G_{0} are listed as G_{0} or G_{1} in Table C of Section 2.
VI. B^{*} acts as inner-diagonal automorphisms on G_{0}.
VII. $\left\langle N_{G}(B), N_{G}\left(B^{*}\right)\right\rangle \subseteq N_{G}\left(G_{0}\right)$.

In this section we prove

Proposition 6.1. $\quad G_{0}=G$

Notice that Hypotheses I-IV appear in Section 1, and Hypotheses V and VII are Proposition 5.21 and Corollary 5.20, respectively. Hypothesis VI follows from Corollary 4.2. Note that if $G_{0}=D_{4}(q)$ and $p=3$, no $b \in B^{*}$ can act as a graph or nonstandard field automorphism because the p-rank of the centralizer of b would be too small.

We fix a choice of $B, B^{*},(B, x, L)$, and (D, J); and we define $M=N_{G}\left(G_{0}\right)$. Our initial goal (which we attain by proving Lemmas 6.9 and 6.13) is to show that M controls strong fusion of D in G.

Lemma 6.2. $\quad C_{G}(D) \subseteq M$ and $J=L\left(C_{G}(D)\right)$.
Proof. Since $C_{G}(D)$ normalizes J, it normalizes L and every neighbor. Hence $C_{G}(D)$ normalizes G_{0}. The second assertion follows from the first together with $. J=L\left(C_{G_{0}}(D)\right)$.

Lemma 6.3. The following conditions hold:
(i) $p \nmid\left|C_{G}\left(G_{0}\right)\right|$;
(ii) $2 \nmid\left|C_{G}\left(G_{0}\right)\right|$;
(iii) No element of $N_{G}\left(B^{*}\right)$ induces a transvection on B^{*}.

Proof. From the definition of standard type $C_{G}(L)$ has cyclic Sylow p subgroups. Since $\langle x\rangle$ acts nontrivially on each neighbor, $\langle x\rangle$ acts nontrivially on G_{0} and (i) holds.
B^{*} acts on $C_{G}\left(G_{0}\right)$ and by (i) B^{*} normalizes some $T \in \operatorname{Syl}_{2}\left(C_{G}\left(G_{0}\right)\right)$. Assume $T \neq 1$. By Hypothesis I, G_{0} acts nontrivially on $Q=O_{2}\left(N_{G}(T)\right)$. Thus for some $d \in D^{*}, J$ acts nontrivially on $C_{Q}(d)$. If (B, d, K) is a neighbor, then $J \subseteq K \subseteq G_{0}$ forces K to act nontrivially on $C_{Q}(d)$ contrary to $K \triangleleft \triangleleft C_{G}(d)$. Similarly $L \triangleleft \triangleleft C_{G}(x)$ forces $d \notin\langle x\rangle$. The remaining possibility is that J covers $F / O_{p},(F)$ for some p-component F of $C_{G}(d)$. But then $\left|J, C_{Q}(d)\right| \subseteq O_{p^{\prime}}(F)$ forcing $\mid\left[J, O_{p^{\prime}}\left(C_{G}(d)\right)| |\right.$ even and contradicting the definition of standard type.

Finally suppose $a \in N_{G}\left(B^{*}\right)$ induces a transvection on B^{*}. By Proposition 4.1 and Hypothesis VII we have $O_{p}\left(N_{M}\left(B^{*}\right) / C_{M}\left(B^{*}\right)\right)=1$. Let A be the normal closure of a in $N_{M}\left(B^{*}\right)$. By a result of McLaughlin [47] the image of A in $\operatorname{Aut}\left(B^{*}\right)$ is a product of linear and symplectic groups, but Table B supplies a contradiction.

For any $d \in D^{*}$ we define

$$
K_{d}=\left\langle J^{L\left(C_{G_{1}}(d)\right.}\right\rangle
$$

Of course $K_{d}=J$ or $K_{d}=L$ or $\left(B, d, K_{d}\right)$ is a neighbor of (B, x, L).

Lemma 6.4. $|Z(J)|$ is odd, and for all $d \in D^{\#},\left|Z\left(K_{d}\right)\right|$ is odd.
Proof. Since $\left|Z\left(G_{0}\right)\right|$ is odd, Lemma 2.22 gives the desired conclusion.

Lemma 6.5. $\quad K_{d} \triangleleft \triangleleft C_{G}(d)$.
Proof. If not, then by definition of standard type $K_{d}=J$ and lies in a p component A of $C_{G}(d)$ with $A=J O_{p^{\prime}}(A)$ and $\left[J, O_{p},(A)\right] \neq 1$.

Choose $R=Z\left(X_{\alpha}\right)$ for some root group X_{α} of J with α long if J is any group whose root system has roots of two lengths. By Lemma 2.6, $N_{J}(R)$ is a parabolic subgroup of $J . N_{J}(R)$ is a maximal parabolic except when $J / Z(J)=A_{n}(q)$.

Choose $r \in R^{\#} \quad$ and \quad let $\quad E=O_{p^{\prime}}(A), \quad F=C_{E}(r), \quad P=O_{2}\left(C_{G}(r)\right)$, $Q=O_{2}\left(C_{J}(r)\right)$.

Suppose $|R| \geqslant 4$. We claim $R \subseteq P$. It will follow that $[R, F] \subseteq F \cap P=1$ whence $C_{E}(s)=C_{E}(r)$ for $s \in R^{*}$ and $E=\left(C_{E}(s)\left|s \in R^{*}\right\rangle=F\right.$. But then $J=|J, r|$ centralizes E as desired.

Since G is of characteristic two type, $R \subseteq P$ will follow from $[R, P]=1$ which in turn will follow from $\left|R, C_{p}(e)\right|=1$ for all $e \in D^{*}$. Let A_{e} be the p component of $C_{G}(e)$ containing K_{e}. As $C_{p}(e)$ centralizes $r \in R \subseteq K_{e}, C_{p}(e)$ acts on A_{e}. By Lemma $2.11(\mathrm{v}),\left[R, C_{p}(e)\right]$ centralizes $A_{e} / O_{p},\left(A_{e}\right)$ whence $\left[R, C_{p}(e)\right] \subseteq O_{p},\left(A_{e}\right)$. Let $Y=\left[A_{e}, O_{p},\left(A_{e}\right)\right]$. As $A_{e}=K_{e} Y$ and A_{e} has no proper normal subgroups covering $A_{e} / Y, Y=\left[K_{e}, O_{p^{\prime}}\left(A_{e}\right)\right]$ whence $|Y|$ is odd by definition of standard type. By Lemma $6.4,\left|O_{p^{\prime}, p}\left(A_{e}\right) / Y\right|$ is odd, so
$\left|O_{p^{\prime}}\left(A_{e}\right)\right|$ is odd. But $\left[R, C_{p}(e)\right]$ is a 2-subgroup of P, so $\left[R, C_{p}(e)\right]=1$ as desired.

We may assume $|R|=2$. In particular Lemma 2.38 implies that for each $e \in D^{*}, R$ is the center of a root group X_{B} of K_{e} with β long for all twisted groups. We define $Q_{e}=O_{2}\left(N_{K_{e}}(R)\right)$ and $P_{e}=C_{p}(e)$.

We claim $Q \subseteq P$. It suffices to show that for every $e \in D^{\#}$ either $Q_{e} \subseteq P_{e}$ or $\left|Q_{e}, P_{e}\right| \subseteq R$. Indeed $Q \subseteq Q_{e}$ by Lemma 2.23 so assume $\left[Q_{e}, P_{e} \mid \subseteq R\right.$ for all $e \in D^{\#}$. It follows that $[Q, P] \subseteq R$ whence $Q \subseteq P$ by definition of P.

We will show that the desired condition holds. $R \subseteq Q_{e} \cap P_{e}$, so when Q_{e} / R is an irreducible $N_{K_{e}}(R)$-module either $Q_{e} \cap P_{e}=Q_{e}$ or $R \supseteq Q_{e} \cap P_{e} \supseteq$ $\left.\mid Q_{e}, P_{e}\right]$. In the contrary case we have, by Lemma 2.13, $K_{e} / Z\left(K_{e}\right)=A_{n}(2)$, $F_{4}(2)$ or $K_{e} / Z\left(K_{e}\right)=C_{n}(2)$ with $R=X_{B}, \beta$ short. A check of Table C shows that $F_{4}(2)$ does not occur and $p=3$ in all cases. As $Q_{e} \cap P_{e} \triangleleft N_{K_{e}}(R)$, Lemmas 2.14 and 2.15 determine $Q_{e} \cap P_{e}$. Of course we may assume $R \subset Q_{e} \cap P_{e} \subset Q_{e}$.

Let $T_{e}=Q_{e} P_{e}$. When $K_{e} / Z\left(K_{e}\right)=C_{n}(2)$, we have $n \geqslant 3$ by Table B (as $m(B) \geqslant 4$) whence $T_{e}=Q_{e} C_{T_{e}}\left(A_{e} / O_{p}\left(A_{e}\right)\right)$ by Lemma 2.11(iv). By part (i) of the same lemma $\left[Q_{e}, P_{e} \mid \subseteq R O_{p},\left(A_{e}\right)\right.$. As we have seen above $\left|O_{p^{\prime}}\left(A_{e}\right)\right|$ is odd; and it follows that $\left|Q_{e}, P_{e}\right| \subseteq R$. When $K_{e} / Z\left(K_{e}\right)=A_{n}(2)$ the same argument works except possibly in the case $n=3$ when P_{e} might not act as inner automorphisms on $A_{e} / O_{p},\left(A_{e}\right)$. However in this case some element of P_{e} acts as a graph automorphism. By Lemma 2.15 there are two $N_{K_{e}}(R)$ invariant subgroups U with $R \subset U \subset Q_{e}$, and it is easy to check that they are interchanged by a graph automorphism normalizing Q_{e}. Thus $P_{e} \cap Q_{e} \nless P_{e} N_{K_{e}}(R)$ forces $P_{e} \cap Q_{c}=R$ or Q_{e} contrary to the assumption above.

We have shown $Q \subseteq P$ in all cases. Suppose Q contains R^{8} for some $g \in J-N_{J}(R) .\left[R^{g}, F\right] \subseteq P \cap F-1$ implies $F=C_{E}\left(R^{g}\right)$. When $N_{J}(R)$ is a maximal parabolic, $J=\left\langle N_{J}(R), g\right\rangle$ normalizes F, and it follows that r inverts or centralizes any section of F on which J acts irreducibly. Consequently $J=|J, r|$ centralizes F. When $N_{J}(R)$ is not a maximal parabolic, $J / Z(J)=A_{n}(2)$ and it is easy to check that every involution in Q is conjugate in J to r whence $[Q, F]=1$ which forces $F=E$ and $[J, E \mid=1$ as above.

When a root system Σ of J has a root γ of the same length as α but not orthogonal to α, then we may take $(\alpha, \gamma)>0$ and $R^{g}=Z\left(X_{\gamma}\right)$. We are left with the cases $J / Z(J)={ }^{2} A_{n}(2), n \geqslant 3$, and $J / Z(J)=C_{n}(2), n \geqslant 3$ and α long. In these cases all roots in Σ of the same length as α are orthogonal to α. Pick a root β with $(\alpha, \beta)>0$ and $X_{\beta} \subseteq Q$. Let

$$
J_{0}=\left\langle X_{\alpha}, X_{-\alpha}, X_{\beta}, X_{-\beta}\right\rangle
$$

J_{0} has a root system Σ_{0} of type C_{2} and $J_{0} / Z\left(J_{0}\right)=C_{2}(2),{ }^{2} A_{3}(2)$, or ${ }^{2} A_{4}(2)$. In any case since $Q \subseteq P$ forces $[Q, F] \subseteq F \cap P=1, C_{E}\left(X_{\beta}\right) \supseteq F$. Likewise if
γ is the other root of Σ_{0} with $(\alpha, \gamma)>0$ and β and γ of the same length, then $C_{E}\left(X_{\gamma}\right) \supseteq F$. A reflection of the Weyl group of Σ_{0} corresponding to the roots orthogonal to α moves $\{\beta, \gamma\}$ to $\{-\beta,-\gamma\}$. By Lemma 2.6 there exists $g \in N_{J_{0}}(R)$ with $\left\{X_{B}^{\mathrm{g}}, X_{\gamma}^{\mathrm{g}}\right\}=\left\{X_{-\beta}, X_{-\gamma}\right\}$. Consequently

$$
J_{0}=\left\langle X_{a}, X_{\beta}, X_{\gamma}, X_{-\beta}, X_{-\gamma}\right\rangle
$$

centralizes F. By the argument above J_{0} centralizes E whence J centralizes E too, and the proof of the lemma is complete.

Lemma 6.6. $\quad C_{G}(J) \subseteq M$.
We prove a preliminary lemma first. Choose $R=Z\left(X_{a}\right), X_{\alpha}$ a root group of J, with α long.

Define

$$
\begin{aligned}
P & =O_{2}\left(N_{G}(R)\right), \quad Q=O_{2}\left(N_{G_{0}}(R)\right), \quad S=N_{P}(Q) \\
J_{0} & =\left\langle R, Z\left(X_{-\Omega}\right)\right\rangle .
\end{aligned}
$$

Note $J_{0} \subseteq J$.
Lemma 6.7. One of the following holds:
(i) $S=\left\langle S \cap Q, C_{S}(J)\right\rangle ;$
(ii) $J=A_{3}(2)$;
(iii) $\quad G_{0}=E_{6}(2), L=A_{5}(2), J=A_{2}(4), p=3$.

Proof. By the preceding lemma K_{d} is a component of $C_{G}(d)$. As $C_{s}(d)$ normalizes $R, C_{S}(d)$ acts on K_{d}. Apply Lemmas 2.38 and 2.11 (iv), 2.40, $2.43,2.12$, to deduce that either (ii) holds or $C_{s}(d) \subseteq K_{d}\left(C_{G}\left(\left\langle K_{d}, d\right\rangle\right)\right)$ for all $d \in D^{*}$, or we are in one of the cases $\left(^{*}\right.$) of Lemma 2.38. In these cases either (iii) holds or Lemma 2.39 applies. Thus we may assume $C_{S}(d) \subseteq K_{d} C_{G}\left(\left\langle K_{d}, d\right\rangle\right)$. The lemmas just mentioned assert that $N_{K_{d}}(R)$ has no central factors on $O_{2}\left(N_{K_{d}}(R) / R\right)$. As $R \subseteq K_{d} \cap S$, we have $C_{S}(d) \subseteq$ $\left\langle S \cap K_{d}, C_{S}\left(\left\langle K_{d}, d\right\rangle\right)\right\rangle$. Since $J \subseteq K_{d} \subseteq G_{0}$, we have $S \cap K_{d} \subseteq O_{2}\left(N_{G}(R)\right) \cap$ $G_{0}=Q$ and $C_{S}\left(K_{d}\right) \subseteq C_{S}(J)$; and (i) holds.

We proceed to the proof of Lemma 6.6. In Lemma 6.7 (ii, iii), D is conjugate in G_{0} to $B \cap J$ by Lemmas 2.7 and 2.8 . Thus by Lemma 6.2 we may assume that Lemma 6.7(i) holds, and (ii) and (iii) do not hold. From Lemma 2.38, 2.11(iii) and 2.12 (iii) or by Lemma 2.39 (iii) we have $G_{0}=\left\langle Q, J_{0}\right\rangle$. Thus $C_{S}(J)$ acts on G_{0}, and by Lemma 6.7(i) S acts on G_{0}. Now $S \subseteq Q C_{G}\left(G_{0}\right)$; and as $\left|C_{G}\left(G_{0}\right)\right|$ is odd by Lemma $6.3, S \subseteq Q$.

Since $S=N_{P}(Q)$, we have $P \subseteq Q$. If $P=Q$, then $\left[R, C_{G}(J)\right]=1$ implies that $C_{G}(J)$ acts on $\left\langle Q, J_{0}\right\rangle=G_{0}$ and Lemma 6.6 holds. In the contrary case
$Z(Q) \subseteq C_{G}(P) \subseteq P$ forces $Z(Q) \subset P \subset Q$. By Lemmas $2.13,2.14,2.15$, we have $G_{0}=F_{4}(q)$ or $G_{0}=A_{n}(q), p \mid q-1$, or $A_{n}(2), p=3$ or 7 . In the first two cases $|Q, Q| \subseteq R$ by Lemma $2.11(\mathrm{i})$ whence Q centralizes P / R and R which forces $Q \subseteq P$. In the second case $\langle J, P\rangle=G_{0}$ by Lemma 2.39 (iii) and $C_{G}(J)$ acts on G_{0}. Lemma 6.6 is proved.

Lemma 6.8. The following conditions hold:

(i) $L\left(C_{G}(d)\right) \subseteq G_{0}$ for $d \in D^{\#}$;
(ii) D normalizes every' component of $C_{G}(d)$;
(iii) every D-signalizer lies in M.

Proof. Assertion (i) follows from Lemmas 6.5 and 6.6. If (ii) fails, then looking in $C_{G}(d)$ we find a component of $C_{G}(D)$ distinct from J contrary to Lemma 6.2.

To prove (iii) let Q be D-invariant of order prime to p. We may assume that Q is an r-group for some prime $r \neq p$. By Lemma 6.2 we may assume $Q=|Q, D|$.

We claim $Q=\left\langle\mid C_{Q}(d), D \| d \in D^{\#}\right\rangle$. Indeed let $\left.P=\langle | C_{Q}(d), D| | d \in D^{\#}\right\rangle$. If $P \neq Q$, we can find R such that $P \subseteq R \subset Q, R<Q D$, and Q / R is an irreducible D-module. As $Q=|Q, D|, Q / R$ is not a trivial D module; but then $C_{D}(Q / R)=\langle e\rangle$ and $\left|C_{Q}(e), D\right| \subseteq P$ covers Q / R, a contradiction.

It suffices to show $Q_{d}=\left[C_{Q}(d), D\right]$ lies in M. By (ii), $\left.Q_{d}=\mid Q_{d}, D\right]$ normalizes K_{d}. It follows that Q_{d} acts as inner automorphisms on K_{d} whence $Q_{d} \subseteq K_{d} C_{G}\left(K_{d}\right) \subseteq M$ by Lemmas 6.5 and 6.6.

Lemma 6.9. (i) If $(J D)^{g} \subseteq M$, then $g \in M$;
(ii) $\quad N_{G}\left(K_{d}\right) \subseteq M$ for $d \in D^{*}$;
(iii) $\quad C_{G}(d) \subseteq M$ for $d \in D^{*}$;
(iv) $C_{6}\left(G_{0}\right)=1$.

Proof. For (i) let $K=J^{g}, E=D^{g}$. It follows from Lemma 6.3 that $K \subseteq G_{0}$. Now $E=E_{p^{2}}$ acts on G_{0} and centralizes a nontrivial 2-group in K. By the result of Borel and Tits [7] or [9] E normalizes a maximal parabolic subgroup of G_{0}. The proof of $[52,(2.3)]$ shows that G_{0} is generated by $2 E$ signalizers. By Lemma 6.8 (iii), $G_{0} \subseteq M^{g}$, and it follows easily that $G_{0}=\left(G_{0}\right)^{g}$ as desired.

For (ii) we note that $J D \subseteq B^{*} K_{d} C_{G}\left(K_{d}\right) \triangleleft N_{G}\left(K_{d}\right)$ and $B^{*} K_{d} C_{G}\left(K_{d}\right) \subseteq M$ by Lemmas 6.5 and 6.6. Now (i) yields (ii).

Let V be the subgroup of $C_{G}(d)$ which normalizes all components of $C_{G}(d)$. From Lemma 6.8 (ii), $J D \subseteq V \triangleleft C_{G}(d)$. From (i) and (ii) we get (iii).

To prove (iv) pick $T \in \operatorname{Syl}_{2}(J)$ and let $N=N_{G}(T), Q=O_{2}(N)$. The action of D forces $Q \subseteq M$. By Lemma 6.3, $X=C_{G}\left(G_{0}\right)$ has odd order. Since
$T \subseteq G_{0}, X \subseteq N$; and since $X \triangleleft M$, we have $[Q, X] \subseteq Q \cap X=1$. As G is of characteristic 2-type, we conclude $X=1$.

Choose $P \in \operatorname{Syl}_{p}(M)$ with $B^{*} \subseteq P$. We will analyze fusion in P.

Lemma 6.10. The following conditions hold:

(i) B^{*} is the unique elementary abelian subgroup of its rank of P;
(ii) $P \in \operatorname{Syl}_{p}(G)$;
(iii) any two elements of B^{*} which are conjugate in G are conjugate in $N_{G}\left(B^{*}\right)$;
(iv) No element $y \in P$ induces a field automorphism on G_{0} unless $p=3, G_{0}=D_{4}(q), C_{G_{0}}(y)={ }^{3} D_{4}\left(q^{1 / 3}\right)$.

Proof: Suppose $G_{0} \neq D_{4}(q)$. If any $y \in P$ induces a field automorphism of order p on G_{0}, then as $p \nmid\left|C_{G}\left(G_{0}\right)\right|$, we may assume $|y|=p$. By Lemma 2.45 (ii) we may choose y to centralize B^{*}. But now $y \in B^{*}$ contrary to Hypothesis VI at the beginning of this section. We conclude that P acts as inner - diagonal automorphisms on G_{0} whence by Lemma $2.35, B^{*}$ is the unique elementary abelian subgroup of its rank in P. Clearly (i) implies (ii) and (iii).

If $G_{0}=D_{4}(q), p=3$, and some $y \in P$ induces an outer automorphism on G_{0}, then the argument above convinces us that we may choose y so that $|y|=3$, and for any such choice either y induces a graph automorphism or y induces a field automorphism with $C_{G_{0}}(y)={ }^{3} D_{4}(r), r^{3}=q$. In any event $C_{G_{0}}(y)$ has 3-rank 2 by Lemma 2.45 (iii) and any elementary abelian subgroup $E \subseteq P$ with $m(E)=m\left(B^{*}\right)=4$ acts as inner-diagonal automorphisms on G_{0}. Apply Lemma 2.35 again.

Lemma 6.11. If $b \in B^{*}, C_{G}(b) \subseteq M$ and $y=b^{g} \in M$, then one of the following holds:
(i) $g \in M$;
(ii) $\quad G_{0}=A_{p-1}(q), p \mid q-1, p \geqslant 5$;
(iii) $G_{0}={ }^{2} A_{p-1}(q), p \mid q+1, p \geqslant 5$;
(iv) $G_{0}=D_{4}(q), p=3, p \mid q-1$, and y acts on G_{0} as a graph automorphism with $L\left(C_{G_{0}}(y)\right) \cong A_{2}(q)$.

Further if (i) does not hold, then y is not conjugate in M to any element of B^{*}.

Proof. First suppose $y^{m} \in B^{*}$ for some $m \in M$. Since $N_{G}\left(B^{*}\right) \subseteq M$, Lemma 6.10 (iii) ensures that we may choose m so that $y^{m}=b$ whence $g m \in C_{G}(b) \subseteq M$ and (i) holds.

Now we assume that (i) fails and show that one of (ii)-(iv) holds. Without loss of generality $\langle y, b\rangle \subseteq P$. Also y is not fused in M to an element of B^{*}. Using Lemma 6.10 (iv) we see that the possibilities for G_{0} and y are listed in Lemma 2.45 (iii). We choose g so that $\left(C_{M}(y)\right)^{g^{-1}} \subseteq C_{M}(b)=C_{G}(b)$. Since $C_{M}(b) / L\left(C_{M}(b)\right)$ is solvable, $\mid L\left(C_{G_{0}}(y)\right): Z\left(L\left(C_{G_{0}}(y)\right) \mid\right.$ divides $|K: Z(K)|$ for some component K of $C_{G_{0}}(b)$. Consider the set of all components of $C_{G_{0}}(e)$ as e ranges over $\left(B^{*}\right)^{\#}$; the same divisibility condition holds if we take K to be an element of this set which is maximal with respect to inclusion. Apply Lemmas 2.25 and 2.26 and conclude that one of (ii)-(iv) holds. Note that $m_{2, p}(M) \geqslant 4$ rules out the analog of (iv)with $3 \mid q+1$ and $L\left(C_{G_{0}}(y)\right)={ }^{2} A_{2}(q)$. Likewise p must be at least 5 in (ii) and (iii).

Lemma 6.12. Suppose conclusion (i) of Lemma 6.11 fails and (ii) or (iii) holds; then $m\left(B^{*}\right)=p-1$ and $O^{p^{\prime}}\left(C_{G_{0}}(b)\right)$ does not have any summands $A_{k}(q)$ or ${ }^{2} A_{k}(q)$ with $k \geqslant 2$.

Proof. Take $\varepsilon=1$ if $G_{0}=A_{n}(q)$, and $\varepsilon=-1$ if $G_{0}={ }^{2} A_{n}(q)$. By Lemma 6.10, P induces inner-diagonal automorphisms on G_{0}. Assuming $y=b^{g} \in P$, we have $P=\langle y\rangle T$ where $T=C_{P}\left(B^{*}\right)$ is abelian. Otherwise $y \in \Omega_{1}(T)=B^{*}$ and $y^{r}=b$ for some $r \in N_{G}\left(B^{*}\right) \subseteq M$ contrary to Lemma 6.10 .

Let M_{0} be the subgroup of M inducing inner-diagonal automorphisms on $G_{0} . C_{G}\left(G_{0}\right)=1$ by Lemma 6.9 (iv) whence M_{0} is isomorphic to a subgroup of $\operatorname{PGL}(n, q)$ or $\operatorname{PSU}(n, q)$. Take the usual matrix representations (i.e., matrices we determined up to scalar multiplication) for these groups with the Hermitian form represented by the identity matrix in the second case. For any $m \in M_{0}$ let $\mathscr{H}(m)$ be the matrix representing m. Arrange things so that $\mathscr{H}(t)$ is diagonal for all $t \in T$ and $\mathscr{H}(y)$ is monomial. Suppose $m \in M_{0}$ is fused in M to $l \in M_{0}$ and $\mathscr{H}(m)$ has eigenvalues $\lambda_{i}, \quad 1 \leqslant i \leqslant p$. There exists a scalar μ and an integer v relatively prime to the order of each the eigenvalues such that the eigenvalues of $\mathscr{M}(l)$ are $\mu\left(\lambda_{i}\right)^{r}, 1 \leqslant i \leqslant p$. In particular if the eigenvalues of $\mathscr{H}(m)$ are distinct, so are those of $\mathscr{H}(l)$.

As y is not fused in M to b, the standard module is an irreducible $\langle\mathscr{M}(y)\rangle$ module. Multiplying $\mathscr{M}(y)$ by a scalar if necessary so that $\langle\mathscr{M}(y)\rangle$ is a p group, we have $(\mathscr{H}(y))^{p}=\lambda^{\eta}$ where.ξ is the identity matrix, λ is a primitive p^{a}-root of unity, and $p^{a} \mid q-\varepsilon$. Thus the determinant of $\mathscr{M}(y)$ is a primitive p^{a}-root of unity and y induces an outer-diagonal automorphism on G_{0}. Since $B^{*}=\Omega_{1}\left(C_{p}\left(B^{*}\right)\right)$ by Lemma 6.10 , it follows that $m\left(B^{*}\right)=p-1$ and we have proved the first part of the lemma.

Assume $O^{p^{\prime}}\left(C_{G_{0}}(b)\right)$ has one of the forbidden summands; it suffices to reach a contradiction. The fusion of y to b can be carried out in steps by means of a conjugation family. Consider the first point at which an element whose matrix acts irreducibly on the standard module is fused to one whose
matrix acts reducibly. (Since $P \subseteq M_{0}$, every element of P has a matrix representation.) Replacing y by an appropriate G-conjugate if necessary, we may assume this point occurs at the first step. Thus there exists $Q \subseteq P$ with the following properties:

$$
\begin{gathered}
y \in Q \subseteq P \\
y \text { is fused in } N_{G}(Q) \text { to } e
\end{gathered}
$$

$\mathscr{H}(e)$ acts reducibly on the standard module.
It follows from the action of $\mathscr{H}(e)$ that e is fused in M to B^{*}. As e is fused in G to b. Lemma 6.11 implies that e is fused in M to b. Further $\mathscr{M}(e)$ is diagonalizable and we may choose it so that

$$
\mathscr{M}(e)^{p}=\mathscr{y}
$$

If $e \in P-T$, then $\mathscr{M}(e)$ is monomial and $\mathscr{M}(e)^{p}=\mathscr{F}$ implies that the product of the nonzero entries is 1 . We see that the characteristic polynomial of. $\mathscr{H}(e)$ is $x^{p}+1=x^{p}-1$ whence the eigenvalues of $\mathscr{M}(e)$ are the p distinct p th roots of unity. Considering the summands of $O^{p}\left(C_{G_{0}}(b)\right)$ we see that $\mathscr{I}(b)$ has three identical eigenvalues. Thus e cannot be fused in M to b. We conclude $e \in T$.

Now $\left|Q: C_{Q}(e)\right| \leqslant|P: T|=p$ implies $\left|Q: C_{Q}(y)\right| \leqslant p$ whence $[e, y, y]=1$. $\mathscr{N}(y)$ is the product of a permutation matrix \mathscr{P} and a diagonal matrix whence

$$
|\mathscr{I}(e), \mathscr{P}, \mathscr{Z}, \not \mathscr{P}|=\mathscr{y}
$$

We may assume that conjugation by \mathscr{P} moves each diagonal entry of $\mathscr{M}(e)$ into the next and the last into the first. Picking an appropriate root of unity λ and letting the diagonal entries of $\mathscr{M}(e)$ be

$$
\lambda^{i_{1}}, \ldots, \lambda^{i_{p}}
$$

we find that the commutator condition above amounts to a difference equation of degree 3 for the λ_{i} 's. We must have

$$
i_{j}=k j^{2}+l j+m
$$

for some integers k, l, m. We know from the fact that e is fused in M to b that for three values of j, i_{j} is the same. Since i_{j} is given by a polynomial of degree $2, i_{j}$ must be constant whence $e=1$. But then $b=1, G=C_{G}(b) \subseteq M$ and Lemma 6.11 (i) holds.

The required fusion cannot occur and Lemma 6.12 is valid.
Lemma 6.13. If $b \in B^{*}, C_{G}(b) \subseteq M$ and $y=b^{g} \in M$, then either $g \in M$ or the following conditions hold:
(i) $\quad G_{o}=A_{p-1}(q)$ and $p \mid q-1$ or $G_{0}={ }^{2} A_{p-1}(q)$ and $p \mid q+1$;
(ii) $p \geqslant 5$;
(iii) $m\left(B^{*}\right)=p-1$;
(iv) $O^{p^{\prime}}\left(C_{G_{0}}(b)\right)$ has no summands $A_{k}(q)$ or ${ }^{2} A_{k}(q), k \geqslant 2$.

In particular if $b \in D$, then $g \in M$.

Proof. Notice that if $b \in D$, then $C_{G}(b) \subseteq M$ by Lemma 6.9. If conditions (i)-(iii) hold, then $J=O^{p^{\prime}}\left(C_{G_{0}}(D)\right)=A_{k}(q)$ or ${ }^{2} A_{k}(q)$ with $k \geqslant 2$. Hence the first part of Lemma 6.13 implies the last assertion. Thus Lemma 6.13 follows from the preceding two lemmas once we rule out the possibility that Lemma 6.11 (iv) holds.

Suppose Lemma 6.11 (iv) holds. In particular $\langle y\rangle$ acts on G_{0} as a graph automorphism of order 3 . If M contained elements acting as field or graphfield automorphisms of order 3 , then P would contain an element acting as a standard field automorphism contrary to Lemma 6.10(iv). Thus $P=\langle y\rangle\left(P \cap G_{0}\right)$.

Three of the five G_{0}-classes of elements of order 3 are fused in M. The centralizers in G_{0} of the three M-classes are
(1) $A_{3}(q) \times Z_{q-1}$.
(2) $A_{1}(q) \times A_{1}(q) \times A_{1}(q) \times Z_{q-1}$,
(3) $G L(3, q) \times Z_{q-1}$.

The last centralizer is evident inside the first one. Classes (1) and (3) are 3central in G_{0} and are also the classes appearing in D^{*}. Thus the centralizers in G of elements in these classes lie in M. As class (1) splits into $3 G_{0}$ classes, every element of order 3 which is 3 -central in M lies in class (3).

Analyzing the fusion of y to b in G, we may assume $y \in Q \subseteq P$ with $C_{p}(Q) \subseteq Q$ and $N_{G}(Q) \nsubseteq M$. There exists an element $z \in Q \cap Z(P)$ with $|z|=3$ and $C_{G}(z) \subseteq M$. Applying Lemma 6.11 to z, we see that we may assume z is fused to y in $N_{G}(Q)$. Thus $C_{M}(y)$ is isomorphic to a subgroup of $C_{G}(z)=C_{M}(z)$. Since $C_{G_{0}}(y)$ has a section isomorphic to $A_{2}(q)$, we must have $L\left(C_{G_{0}}(y)\right)=L\left(C_{G}(y)\right) \cong S L(3, q)$. But then $y^{n}=z$ implies that n conjugates $Z\left(L\left(C_{G_{0}}(y)\right)=\langle w\rangle\right.$ to $\langle z\rangle=Z\left(L\left(C_{G_{0}}(z)\right)\right)$. As all elements of order 3 in P which lie in the commutator subgroup of Sylow 3-subgroups of their centralizers in G_{0} lie in class (3), $\langle w\rangle$ is fused in G_{0} to $\langle z\rangle$ whence $n \in G_{0} C_{G}(z) \subseteq M$ which is impossible.

We have now reached our initial goal: M controls strong fusion of D in G. Before beginning the final phase of the proof of Proposition 6.1 we wish to control strong fusion of other elements of B^{*}.

Lemma 6.14. If $b \in B^{*}$ and $C_{G_{0}}(b)$ has a component L with $m\left(C_{B^{\prime}}(L)\right) \leqslant 2$, then L is subnormal in $C_{G}(b)$.

Proof. If $G_{0}=A_{n}(q), p \mid q-1$, or $G_{0}={ }^{2} A_{n}(q), p \mid q+1$, then b is fused by $N_{G_{0}}\left(B^{*}\right)$ to an element of $D . M$ controls strong fusion of b in G by Lemma 6.13 whence $C_{G}(b) \subseteq M$ and $L \triangleleft \triangleleft C_{G}(b)$.

Otherwise let $N=C_{G}(b), T=C_{M}(b)$; if E is any M-conjugate of D lying in T, then T controls strong fusion of E in N. By Lemma 3.14 every component L_{1} of T lies in a component K_{1} of N. Let L lie in the component K of N. As we may assume $K \nsubseteq T, K$ is E-invariant by Lemma 3.13. We will find a configuration satisfying Hypothesis 3.16 inside Aut (K).

Our conditions imply that $L(T)$ is the central product of the groups $L\left(T \cap K_{1}\right)$ as K_{1} ranges over the components of N. Let $H=E(K \cap T)$; we have that $L(H)=L(K \cap T)$ is a product of components of Lie type over a field of characteristic 2. By Proposition $2.22,|Z(L)|$ is odd. Further from the structure of T we know that E acts on each component of $L(H)$ as innerdiagonal automorphisms and $H / L(H)$ is solvable. Similarly since $C_{k}(e) \subseteq K \cap T$ for $e \in E^{*}$, we see that $L\left(C_{K}(e)\right)$ is a product of components of Lie type over fields of characteristic 2.

Let $V=C_{H}(K)$. As $V / V \cap K$ is isomorphic to a subgroup of E and $\mid V, V \cap K] \subseteq[V, K]=1, V$ is nilpotent. E acts on V and $V \subseteq T$ by Lemma 3.13. Let $W=E K$ and $\bar{W}=W / V$; by Lemma $3.11, \bar{H}$ controls strong fusion of \bar{E} in \bar{W}. All the conditions of the preceding paragraph carry over to \bar{W}, and to check that Hypothesis 3.16 holds (with \bar{W} and \bar{H} in place of G and $H)$ it suffices to show that $O_{2}(\bar{H})=1$.

Let $P / V=O_{2}(\bar{W})$ and $Q=O^{2^{\prime}}(P)$. Q covers P / V; and as $|W: K|$ is odd, $Q \subseteq K$. Thus $\quad[Q, V]=1 \quad$ whence $\quad Q \subseteq O_{2}(P)$. We have $Q \subseteq O_{2}(K \cap T) \triangleleft \triangleleft T$.

We need only show $R=O_{2}(T)=1$. By Lemma $6.9, M$ acts faithfully on G_{0}. By the structure of $T, R \cap G_{0}=1$; and it follows that R cannot acts as inner - diagonal automorphisms on G_{0}. As $G_{0} B^{*} \triangleleft M, \quad\left[B^{*}, R\right] \subseteq$ $\left[T \cap G_{0} B^{*}, R\right] \subseteq G_{0} B^{*} \cap R=1$. Now check in [52, (8.9), (8.10), §19] that for all choices of G_{0} and for any involution $r \in R$ either $O_{2}\left(C_{G_{0}}(r)\right)=1$ or $m_{p}\left(C_{G_{11}} B^{*}(r)\right)<m\left(B^{*}\right)$.

Lemmas 3.17, 3.18, and 3.22 yield the following possibilities (as $L(\bar{H} \cap \bar{K})=1)$.

$K / Z(K)$	L
$A_{5 s}, p=5, s=2,3,4$	A_{5}
$C_{4}(2), p=3$	$D_{4}(2)$
$C_{3}(2), p=3$	${ }^{2} A_{3}(2)$
$A_{2}(4), p=3$	A_{6}
$F_{22}, p=5$	$D_{4}(2)$

In the first case $\mid C_{B^{*}}(L) \leqslant p^{2}$ forces $m\left(B^{*}\right) \leqslant 3$, not the case. In the last case G_{0} is defined over a field of order q with $p=5$ dividing $q \pm 1$. In particular $q>2$ and as b acts on G_{0} as an inner - diagonal automorphism, L is defined over a field of order a power of q which contradicts $L=D_{4}(2)$. Likewise an examination of the possibilities for G_{0} reveals that $L=A_{6}$ does not occur. In the other cases by examining the possibilities for G_{0} we find that we can choose E so that $C_{J}(E)$ contains a subgroup isomorphic to $A_{1}(2)$. However the lemmas listed above guarantee that $C_{\bar{K}}(\bar{E})$ is a p-group; and this contradiction completes the proof of the lemma.

Lemma 6.15. Suppose $b \in B^{*}$ and $C_{G_{0}}(b)$ has a component L with $m\left(C_{B^{*}}(L)\right) \leqslant 2$, then M controls strong fusion of b in G.

Proof. As in the preceding proof we may assume that we do not have $G_{0}=A_{n}(q), p \mid q-1$ or $G_{0}={ }^{2} A_{n}(q), p \mid q+1$. By Lemma 6.13 it suffices to show $C_{G}(b) \subseteq M$.

Let $E=C_{B^{*}}(L)$ and $A=B^{*} \cap L$. Our conditions imply $\left|B^{*}: A E\right| \leqslant p$ with equality unless some element of B^{*} induces an outer-diagonal automorphism of L. From the preceding lemma $\langle b\rangle \triangleleft \triangleleft C_{G}(b)$. Thus if $D \cap\langle b\rangle L \neq 1$, then $C_{G}(b) \subseteq M$ as desired. In the contrary case $|E|=p^{2}$, $A E \neq B^{*}$, and $B^{*}=A E\langle d\rangle$ for some $d \in D^{*}$.

Let $\quad X=C_{G}(b) \cap C_{G}(L)$. By Lemma 2.22, $\quad p \nmid|Z(L)|$. Thus $m_{p}(L X) \leqslant m_{p}\left(B^{*}\right)$ implies $m_{p}(X) \leqslant 3$. In fact since some element in B^{*} induces an outer automorphism on L, the uniqueness of B^{*} (Lemma 6.10(i)) implies $m_{p}(L X)<m_{p}\left(B^{*}\right)$ whence $m_{p}(X)=2$. We claim that if $Y \triangleleft X$ and $E \nsubseteq Y$, then $m_{p}(Y)=1$ and Y has a normal p-component. The second assertion follows from the first as $b \in Z(Y)$, so assume $m_{p}(Y) \geqslant 2$. Pick a B^{*} invariant subgroup $F \subseteq Y . F \cong E_{p^{2}}$ with $\langle b\rangle \subseteq F . F \cap B^{*} \subseteq C_{B^{\prime}}(L)=E$, so $F \cap B^{*}=\langle b\rangle$. It follows that $\left[B^{*}, F \mid \subseteq\langle b\rangle\right.$. As B^{*} contains all elements of order p in $C_{G}\left(B^{*}\right), F$ acts as a transvection on B^{*} contrary to Lemma 6.3.

Take Y to be the largest normal subgroup of X lying in M. Suppose $E \subseteq Y$. For some $f \in E^{*}\langle f\rangle=C_{B} .\left(L_{1}\right)$ where L_{1} is a component of $C_{G_{0}}(f)$ containing L. Thus M controls fusion of f in G and $Y L \triangleleft \triangleleft C_{G}(b)$ gives $C_{G}(b) \subseteq G$. We may assume $b \in Y$ but $E \nsubseteq Y$.

By Lemma 3.13(i) Y contains every p-solvable normal subgroup of X. Thus $L(X / Y) \neq 1$, and it follows from the structure of Y that $K=L_{p^{\prime}}(X) \neq 1$. Every p-component K_{1} of K contains an element of order p in $K_{1}-O_{p}, p\left(K_{1}\right)$ lest K_{1} have a normal p-complement by a theorem of Frobenius. As $m_{p}(K\langle b\rangle)=2, K$ must be a single p-component. Further $C_{X}(K / Y)$ has p-rank 1 and contains b whence $C_{X}(K / Y)$ has a normal p complement. The action of D forces $C_{X}(K / Y) \subseteq M$, and we conclude $C_{X}(K / Y)=Y$.

We will find a configuration satisfying Hypothesis 3.16 inside $X / Y=\bar{X}$.

We proceed as we did in the proof of Lemma 6.14. Let $T=C_{X}(b) ; T$ controls strong fusion of D in X and likewise for \bar{T}, \bar{D} and \bar{X}. As $T \triangleleft \triangleleft C_{M}(b)$, Lemma 3.14 implies $L_{p}(T)$ is a p-component of $L_{p} \cdot\left(C_{M}(b)\right)$ and (from the structure of $\left.C_{M}(b)\right) T / L_{p^{\prime}}\left(C_{M}(b)\right)$ is solvable. In fact, if $L_{p^{\prime}}(T) \neq 1$, then as every p-component of $C_{M}(b)$ is a component, Lemma 3.14 implies that K is quasisimple. In this case the argument used in the proof of Lemma 6.14 yields that Hypothesis 3.16 holds.

Suppose $L_{p}(T)=1$; then T is solvable. Further condition $\operatorname{III}(f)$ of Hypothesis 3.16 is satisfied because $m_{p}(K\langle b\rangle)=2$. Thus Hypothesis 3.16 holds in this case too. Applying Lemmas 3.17, 3.18, and 3.22 we obtain the following possibilities.

\[

\]

Further $b \in K$ in the first two cases but not in the last two. Also in the first two cases \bar{D} acts on \bar{K} as inner automorphisms. From the decomposition $B^{*}=A\langle d\rangle E$ given above it follows that d acts on \bar{K} as an element of \bar{E}. Thus $B^{*}=A_{1} \times E$ with $\left[K, A_{1}\right]=1$. We can find an element of $N_{K}(E)$ which induces a transvection on B^{*}, not the case. Likewise in the last two cases d acts nontrivially on a B^{*}-invarient Sylow p-subgroup Q of K with $Q \cong Z_{p^{2}}$. Further $E=\langle b, e\rangle$ with $\langle e\rangle=E \cap Q \neq 1$. As $A\langle b\rangle$ centralizes \bar{K}, it centralizes Q whence the action of Q on $\langle d, e\rangle$ induces a transvection on B^{*}, which is impossible. This contradiction establishes the lemma.

Lemma 6.16. Suppose $G_{0}=D_{4}(q), p \mid q-1$, and $b \in B^{*}$ with $L\left(C_{G_{0}}(b)\right)=A_{1}(q) \times A_{1}(q) \times A_{1}(q)$; then M controls strong fusion of b in G.

Proof. Use the method of proof of the two preceding lemmas. If L is one of the components of $C_{G_{0}}(b)$, then $L \subseteq K$, a component of $C_{G}(e)$. If $L \neq K$, then Lemmas 3.17, 3.18 and 3.22 give $q=4, L=A_{1}(4) \cong A_{5}$ and $p=5$. But $p=3$ in this case, so we have $L=K$ and $L\left(C_{G_{0}}(b)\right) \triangleleft \triangleleft C_{G}(e)$.

By Lemma 6.13 it suffices to show $C_{G}(b) \subseteq M$, and to do that we need only find $e \in L\left(C_{G_{0}}(e)\right)$ with M controlling strong fusion of e in G. Let e be the product of two elements of order p lying in distinct components of $C_{G}(e)$. $C_{G_{0}}(e)$ has a single component $K=A_{3}(q)$ with $C_{R} \cdot(K)=\langle e\rangle$, so Lemma 6.15 applies.

Lemma 6.17. Suppose $b \in B^{*}$ and $C_{G_{0}}(b)$ has a component L with p, L and G_{0} not listed below. Then M controls strong fusion of b in G.

L	p	Restriction on G_{0}
${ }^{\prime} A_{3}(2), C_{2}(2)^{\prime}, D_{4}(2)$	3	
$A_{1}(4), D_{4}(2)$	5	
$A_{1}(q)$	$p \mid q-1$	$G_{0}=A_{n}(q)$
$A_{1}(q)$	$p \mid q+1$	$G_{0}={ }^{2} A_{n}(q)$
$A_{h}\left(q^{2}\right)$	all p	

In the preceding table q is the order of the field of definition of G_{0} (which is the fixed field if G_{0} is twisted).

Proof. As in the preceding three proofs $L \subseteq K$ where K is a component of $C_{G}(b)$ and D acts on K if $K \nsubseteq M$. Likewise Lemmas 3.17, 3.18, 3.22 and the exclusions in the first two lines of the table above force $L=K$. Once we show $C_{G}(b) \subseteq M$ Lemma 6.13 and the next two lines of the table imply that M controls strong fusion of b in G.

We will find $e \in B^{*} \cap L$ such that M controls strong fusion of e in G. As $L \triangleleft \triangleleft C_{G}(B)$, we immediately obtain $C_{G}(b) \subseteq M$.

If $G_{0}=A_{n}(q)$ or ${ }^{2} A_{n}(q)$, use the standard matrix representations. The restriction in the last line of the table quarantees that L contains an element $e \in B^{*}$ represented by a matrix of determinant 1 with fixed points of codimention 2 on the standard module (except the codimension is 3 if $\left.G_{0}=A_{11}(2), p=7\right)$. Further e is conjugate in $N_{G_{0}}\left(B^{*}\right)$ to an element of D, so ϵ is the desired element.

If $G_{0}=E_{8}(2), p=7$, then we see by Lemma 2.21 that every $b \in B^{*}$ satisfies the hypotheses of Lemma 6.15. Thus we are done in this case.

In all the remaining cases $p \mid q^{2}-1$. Exhibit $C_{C}(b)$ as in Section 2 so that

$$
\begin{aligned}
G_{0} & =O^{2 \prime}\left(C_{\tilde{\sigma}}(\sigma)\right) \\
\sigma & =I_{w_{0}^{\prime}} \sigma_{q} \quad \text { or } \quad I_{w_{i 1}^{\prime}}{ }^{2} \sigma_{q}
\end{aligned}
$$

and $O^{2}\left(C_{G_{0}}(b)\right)$ corresponds to a subsystem $\tilde{\Sigma}_{0}$ of the root system $\tilde{\Sigma}$ of \bar{G}, Further σ_{q} and ${ }^{2} \sigma_{q}$ are standard with respect to some fundamental set of roots. $I_{w_{0}}$ is an inner automorphism of \widetilde{G} corresponding to w_{0} in the Weyl group of \tilde{G}. If $p \mid q-1, w_{0}$ is the identity while if $p \mid q+1 w_{0}$ interchanges positive and negative roots. Letting \tilde{L} be generated by the root groups of \tilde{G} corresponding to roots in $\widetilde{\Sigma}_{0}$ we have

$$
O^{2^{\prime}}\left(C_{G_{i}}(b)\right)=O^{2^{\prime}}\left(C_{I}(\sigma)\right)
$$

We see that L corresponds to a subsystem $\tilde{\Sigma}_{1} \subseteq \tilde{\Sigma}_{0} . \tilde{\Sigma}_{1}$ is either a connected component of $\tilde{\Sigma}_{0}$ or two such components interchanged by σ. However the latter possibility is excluded by the last line in the table above.

Let $\tilde{\alpha}$ be the highest root in $\tilde{\Sigma}_{\mathrm{I}}$ and let \tilde{J} be generated by the root groups
corresponding to $\tilde{\alpha}$ and $-\tilde{\alpha}$. Since B^{*} consists of all elements of order p in $C_{\tilde{T}}(\sigma)$ where \tilde{T} is a maximal torus of \tilde{G} leaving all root groups of \tilde{G} invariant, and since $\langle\sigma\rangle$ acts on \bar{J} by choice of $\tilde{\alpha}, B^{*}$ acts on

$$
J=C_{J}(\sigma) \cong A_{1}(q)
$$

As B^{*} contains every element of order p in its centralizer, there exists

$$
e \in B^{*} \cap J
$$

As $J \subseteq L$, we need only show that e and $C_{G_{0}}(e)$ satisfy the hypotheses of Lemma 6.15 or Lemma 6.16 to complete the proof. Let \tilde{W} be the Weyl group of \tilde{G}. Since the $\langle\sigma\rangle$-orbits of $\tilde{\Sigma}$ correspond to roots in the root system Σ of G_{0} and $C_{\tilde{W}}(\sigma)$ acts as the Weyl group of $\Sigma, \tilde{\alpha}$ is conjugate by an element of $C_{\tilde{W}}(\sigma)$ to $\tilde{\beta}$, the highest root of its length in $\tilde{\Sigma}$.

Let \tilde{J}_{1} be generated by the root groups of \tilde{G} corresponding to $\tilde{\beta}$ and $-\widetilde{\beta}$. Our conditions imply that \tilde{J}_{1} is conjugate to \tilde{J} by some element of $C_{\tilde{G}}(\sigma) \cap N_{\tilde{G}}(T)$ which projects to an appropriate element of $C_{\tilde{W}}(\sigma)$. In other words $C_{G_{0}}(e) \cong C_{G_{0}}\left(e_{1}\right)$ for some $e_{1} \in B^{*} \cap \tilde{J}_{1}$. As we have already treated the cases where $\tilde{\Sigma}$ has type A_{n}, we have that e_{1} centralizes all but one fundamental root group of \tilde{G}; that is all root groups corresponding to roots orthogonal to β. It follows that $C_{B^{*}}\left(O^{2}\left(C_{G_{0}}\left(e_{1}\right)\right)\right.$ is cyclic. Further except when $\tilde{\Sigma}$ has type $D_{4}, O^{2}\left(C_{G_{0}}\left(e_{1}\right)\right)$ is either quasisimple or a product of a quasisimple group with a group isomorphic to $A_{1}(q)$. In either case the hypotheses of Lemma 6.15 are satisfied.

Finally if $\tilde{\Sigma}$ has type D_{4}, then $m_{2, p}(M) \geqslant 4$ forces $p \mid q-1$ and $G_{0}=D_{4}(q)$ by Table B in Section 2. $O^{2 \prime}\left(C_{G_{0}}(e)\right)$ is a product of three $A_{1}(q)$'s and Lemma 6.16 applies.

The proof of Lemma 6.17 is complete. We will complete the proof of Proposition 6.1 by showing that M controls strong fusion of $\langle r\rangle$ for some 2central involution $r \in M$. Of course we are done if $M=G$, so we assume $M \neq G$ and consider the action of G on the cosets G / M. By a result of Holt [42, Theorem 1] G is identified as an alternating group or a Bender group. But one sees easily that these groups do not satisfy the hypotheses on G, so we must have $M=G$ after all.

We proceed to study $C_{G}(r)$ where r is a root involution of G_{0} lying in a long root group if G_{0} is any twisted group. We know that r is 2-central in M. Further except in the cases $\left(^{*}\right)\left({ }^{* *}\right)$ of Lemma 2.38 we may assume $[D, r]=1$.

In the exceptional cases Lemma $2.38\left({ }^{*}\right),\left({ }^{* *}\right)$ it is necessary to switch from D to E where $D \cong E, E \subseteq B^{*}$, and E centralizes a long root group of G_{0}. We define $E=\langle d, e\rangle$ for $d \in D^{*}$ and $e \in B^{*}-D$. The elements d and e are chosen as follows:

For $G_{0}=A_{n+2}(2)=\left\langle A_{n}(2), A_{|(n+1) / 2|}(4)\right\rangle, p=3$, consider the standard
module V and pick $d \in D^{\neq}$so that $C_{V}(d)$ has codimension 2 and $C_{G_{0}}(d) \cong A_{n}(2) \times Z_{3}$. Let e be an $N_{G_{0}}\left(B^{*}\right)$-conjugate of d chosen so that $C_{1} \cdot(d e)$ has codimension 4 and $C_{G_{0}}(d e) \cong A_{1}(4) \times A_{n-2}(2) \times Z_{3}$. Every $f \in E^{*}$ is G_{0}-conjugate to d or ed.

For $G_{0}=A_{11}(2), p=7$ and $G_{0}={ }^{2} A_{7}(q), p \mid q-1$ we proceed as above. The results are listed below. When $G_{0}=E_{6}(2), p=3$, or ${ }^{2} E_{6}(q), p \mid q-1$, label the fundamental system of roots

and take $d=\left|\eta_{6}, \sigma\right|, e=\left|\eta_{1}+\eta_{s}, \sigma\right|$ where \widetilde{G} is the corresponding algebraic group, $G_{0}=O^{2}\left(C_{\tilde{G}}(\sigma)\right)$, and $\left\{\eta_{i} \mid 1 \leqslant i \leqslant 6\right\}$ is the dual basis of the root lattice corresponding to the labelling above.

We list the possible centralizers of elements in $E^{\#}$.

\[

\]

By Lemma $6.17 M$ controls strong fusion of E in G. We fix
$E=D$ if we are not in one of the cases Lemma $2.38\left(^{*}\right)\left({ }^{* *}\right) ;$ $E=\langle e, d\rangle$ as above otherwise.

In all cases M controls strong fusion of E in G and E centralizes $R=Z(X)$ where X is a root group of G_{0} corresponding to a long root if G_{0} is any twisted group. Any $r \in R^{\#}$ is 2 -central in M. Fix such an r.

We will show $C_{G}(r) \subseteq M$. Let $N=C_{G}(r), V=C_{M}(r), P=O_{2}(N)$, and $Q=O_{2}(V)$. The action of E on P forces $P \subseteq Q$. Since G is of characteristic two type, $Z(Q) \subseteq C_{G}(P) \subseteq P$.

Let V_{0} be the subgroup of V which acts as inner - diagonal automorphisms on G_{0}. Since $C_{G}\left(G_{0}\right)=1$ by Lemma $6.9(\mathrm{iv})$, the structure of V_{0} is given by Lemma 2.6. By Lemmas 2.11 and $6.9, Q \subseteq V_{0}$. Let L be defined as in Lemma 2.6 and let J be a summand of L. By Lemma 2.17, $Q=|J, Q| Z(Q)$.

Define $\bar{N}=N / P$. From the preceding two paragraphs $|\bar{J}, \bar{Q}|=\bar{Q}$. As $J Q \triangleleft \triangleleft V$, we see that $\overline{J Q}$ is a p-component of \bar{V} if J is quasisimple. If J is not quasisimple, then by inspection we see that $p=3, J \cong S_{3}$, and $L=J J_{1}$ where J_{1} is quasisimple. Thus in this case $\bar{J} \bar{Q} \triangleleft \bar{V} . \bar{V}$ controls strong fusion of \bar{E} in \bar{N}. Lemma 3.14 is applicable when J is quasisimple and yields that $\overline{J Q}$ lies in a p-component \bar{K} of \bar{N}. It is easy to check that Lemma 3.15 is applicable when $J \cong S_{3}$. We summarize the results so far.

Lemma 6.18. Let J be a summand of L and $Y=O^{\rho^{\prime}}(J)$. $\overline{J Q}$ normalizes everl' p-component of \bar{N}. Further:
(i) If J is quasisimple, then $\overline{J Q}$ is a p-component of \bar{V}, and $\overline{J Q}$ lies in a p-component \bar{K} of \bar{N}.
(ii) If J is not quasisimple, then $p=3, J=S_{3}, \overline{J Q} \triangleleft \bar{V}$, and one of the following holds:
(a) $\overline{Y Q} \subseteq O_{3^{\prime}, 3}(\bar{N}) ;$
(b) $\overline{Y Q} \subseteq \bar{K}$ for some p-component \bar{K} of \bar{N}, and \bar{J} acts on \bar{K};
(c) \bar{J} acts on a p-component \bar{K} of \bar{N} and covers a section isomorphic to S_{3} in the outer automorphism group of $\bar{K} / O_{3^{\prime}, 3}(\bar{K})$.

Suppose we can show $\overline{J Q}=\bar{K}$ or $\overline{J Q} \subseteq O_{3^{\prime} 3}(\bar{N})$ in all cases. If so, then since $O_{3 \cdot 3}(\bar{N}) \subseteq \bar{V}$ by Lemma $3.13(\mathrm{i})$, we have $O^{p^{\prime}}(L Q) \subseteq X \triangleleft<N$ and $X \subseteq M$ for an appropriate subgroup X. By Lemma 2.9 there exists $1 \neq e \in E \cap L Q$, whence $N \subseteq M$ by Lemma 3.11 (i) and we have shown $C_{G}(r) \subseteq M$ as desired.

We proceed to consider the various cases. We may assume case (ii)(a) does not hold and $\bar{K} \nsubseteq \bar{V} . \bar{E}$ acts on \bar{K} by Lemma 3.13. Let $F / P=O_{r}(\bar{N})$ for any prime $r \neq p$. As $P=O_{2}(N), r \neq 2 . F \subseteq V$ by the action of E. From the structure of $V,[Y Q, F] \subseteq Q$. Since $F \triangleleft V,[Y Q, F] \subseteq Q \cap F=P$ and we have $[\overline{J Q}, \bar{F}]=1$. Likewise if $F / P=L\left(O_{p},(\bar{N})\right)$, then $F \subseteq V$ and from the structure of $V, \bar{F}=1$. Thus $\left[\bar{K}, F^{*}\left(O_{p}(\bar{N})\right)\right]=1$, which implies that \bar{K} is quasisimple. As we have done before in the proof of Lemma 6.14 we will find a configuration satisfying Hypotheses 3.16 inside $\operatorname{Aut}(\bar{K})$.

Let K be the inverse image of \bar{K} in N and define $W=K E, U=C_{W}(\bar{K})$, $T=V \cap W$. Let $\tilde{W}=W / U$ and denote the projection of any $H \subseteq W$ into \tilde{W} by \tilde{H}. By Lemma 3.12, $U \subseteq T$, and, by Lemma 3.11, \tilde{T} controls strong fusion of \tilde{E} in \tilde{W}.

We claim $\tilde{Q}=O_{2}(\tilde{T})$. Let $A_{1} / U=O_{2}(\tilde{T})$ and $A=O^{2}{ }^{\prime}\left(A_{1}\right)$; clearly $Q \subseteq A$. It suffices to show $Q=A$. As $|W: K|$ is odd, $A \subseteq K$ whence $[\bar{U}, \bar{A}]=1$ and \bar{A} is nilpotent. Thus $\bar{A}=O_{2}(\bar{A}) \subseteq \bar{Q}=O_{2}(\bar{T})$. It follows that $A \subseteq Q$ as desired.

Next let X be the product of all the quasisimple summands of L lying in K. By Lemma 6.18 and the structure of $V, \tilde{T} / \tilde{X}$ is solvable. In particular $\tilde{X} \tilde{Q} / \tilde{Q}=L\left(\tilde{T} / O_{2}(\tilde{T})\right)$. It is immediate that conditions I, II and III(a)-(e) of Hypotheses 3.16 hold with $\tilde{W}, \tilde{E}, \tilde{T}$ in place of G, E, H.

Check that Hypothesis 3.16 (IV) holds as follows: Let $A / U=C_{\tilde{W}}(\tilde{e})$ for some $e \in E^{*}$. As $W=E K, A=E(A \cap K)$. $\bar{U} \cap \bar{K}=Z(\bar{K})$ implies that \bar{e} centralizes $(\bar{A} \cap \bar{K}) / Z(\bar{A} \cap \bar{K})$ whence $O^{p}\left(C_{\bar{K}}(\bar{e})\right)$ covers $O^{p}((\bar{A} \cap \bar{K}) /$ $Z(\bar{A} \cap \bar{K})$). We conclude that $O^{p}\left(C_{\bar{w}}(\bar{e})\right)$ covers $O^{p}\left(C_{\bar{W}}(\tilde{e})\right)$; and as $C_{W}(e)$ covers $C_{\bar{W}}(e)$ we have that $O^{p}\left(C_{W}(e)\right)$ covers $O^{p}\left(C_{\tilde{W}}(\tilde{e})\right)$. Now Condition IV follows from the structure of $C_{W}(e)=C_{T}(e)$. In particular if the quasisimple summand J of L lies in K, then $L\left(\tilde{T} / O_{2}(\tilde{T})\right) \neq 1$ and we may apply Lemmas 3.17, 3.18 and 3.22. We have

Lemma 6.19. Let J, K and T be as above; then \bar{K} is quasisimple, and if J is quasisimple either $\tilde{J} \tilde{Q}=\tilde{K}$ or one of the following occurs:

\tilde{K}	$\tilde{J} \tilde{Q}$
$F_{22}, p=5$	$D_{4}(2)$
$C_{4}(2), p=3$	$D_{4}(2)$
$C_{3}(2), p=3$	${ }^{2} A_{3}(2)$

Further in the last two cases $\tilde{T} \cap \tilde{K}$ is isomorphic to $O^{+}(8,2)$ or $O^{-}(6,2)$, respectively.

Proof. The lemma follows from the preceding remarks. By checking the possibilities for G_{0} and E observe that $J=A_{6}$ never occurs.

Suppose $\tilde{J} \tilde{Q}=\tilde{K}$. We have $\bar{K} \subseteq \overline{J Q U} \subseteq \bar{V}$ whence $\bar{K} \subseteq \bar{V}$ and $\bar{K}=\overline{J Q}$ follows immediately. We will show that the possibilities listed in the table above do not occur. Since the field of definition of J is an extension of that of G_{0}, and since G_{0} is defined over a field of order q with $p \mid q^{2}-1$ (except for some cases when $p=7$), the first entry on the table does not occur.

We wish to eliminate the last two lines on the table. Assume one of these conclusions holds. Surveying the possibilities for G_{0} we find

G_{0}	L	J
$D_{6}(2)$	$D_{4}(2) \times A_{1}(2)$	$D_{4}(2)$
${ }^{2} D_{5}(2)$	${ }^{2} A_{3}(2) \times A_{1}(2)$	${ }^{2} A_{3}(2)$
${ }^{2} A_{5}(2)$	${ }^{2} A_{3}(2)$	${ }^{2} A_{3}(2)$.

To obtain a contradiction it suffices to find $y \in V$ such that $C_{\bar{K}}(\bar{y}) \nsubseteq K \cap V$ and M controls strong fusion of y in G. The centers of the root group containing r and its corresponding negative root group generate a group isomorphic to $A_{1}(2)$ which commutes with L. Thus we can choose $y \in C_{V}(L)$ with $|y|=3$. By Lemma 6.15, M controls strong fusion of y in G. Since V normalizes J, \bar{y} acts on \bar{K}. But \bar{J} is too large to lie in $C_{\bar{K}}(\bar{y})$ unless $[\bar{K}, \bar{y}]=1$ whence $C_{\bar{K}}(\bar{y}) \nsubseteq K \cap V$ as desired.
We have reached the desired conclusion $\overline{J Q}=\bar{K}$ whenever J is a quasisimple summand of L. It remains to consider the possibilities listed in Lemma $6.18(\mathrm{ii})(\mathrm{b}, \mathrm{c})$. By inspection $L=J J_{1}$ with J_{1} quasisimple, and from the preceding discussion $\bar{J}_{1} \bar{Q}$ is a component of \bar{N}. In particular $\bar{Q}=1$, $Q=P=O_{2}(N)$, and $\bar{J} \cong S_{3}$. Our conditions imply that \tilde{T} is solvable. Also by Lemma 2.9 we have $\left|B^{*}: B^{*} \cap J\right| \leqslant p^{2}=9$. Further as B^{*} is the unique clementary abclian subgroup of its rank in any Sylow p-subgroup of G, we must have $m_{p}(\bar{K})=1$. It follows that $p \nmid|Z(\bar{K})|$ and $m_{p}(\tilde{K})=1$. We have verified condition III (f) of Hypothesis 3.16 and checking Lemmas 3.17, 3.18 and 3.22 we find that $\tilde{J}<\tilde{T}, \tilde{J} \cong S_{3}$ is impossible. This contradiction completes the proof that $C_{G}(r) \subseteq M$.

Lemma 6.20. $\left|M: G_{0}\right|$ is odd.
Proof. Suppose $2\left|\left|M: G_{0}\right|\right.$. Let $G_{0}=O^{2^{\prime}}\left(C_{\tilde{G}}(\sigma)\right)$ where \bar{G} is an algebraic group and σ is standard with respect to some choice of root groups and fundamental set of roots. The roots of G_{0} correspond to $\langle\sigma\rangle$-orbits of the roots of \tilde{G}. Let t be an involution of $M-G_{0}$ which induces a standard field, graph, or graph-field automorphism of G_{0} with respect to the root system of G_{0} corresponding to that of \tilde{G}.

We may extend the action of t on G_{0} to an action on \tilde{G}. If $\sigma=\sigma_{q}$ and t is a field or graph-field automorphism of G_{0}, take $t=\sigma_{q / 2}$ or ${ }^{2} \sigma_{q / 2}$. Otherwise take t to be the standard graph automorphism of \tilde{G}.

It is straightforward to calculate $C_{G_{0}}(t)=C_{\tilde{G}}(\langle t, \sigma\rangle)$ using the methods of [12, Chap. 13]. We see that $G_{1}=O^{2}\left(C_{G_{0}}(t)\right)$ is a simple group of Lie type defined over a field of characteristic two. The roots of G_{1} correspond to $\langle t, \sigma\rangle$-orbits of roots of \tilde{G}.

Let α be the root of \tilde{G} of highest weight. As α is fixed by $\langle t, \sigma\rangle$, it follows that α corresponds to the highest root of G_{0} and of G_{1}. Pick r to be an involution in the centralizer of $\langle t, \sigma\rangle$ on the root group of \tilde{G} corresponding to $\alpha ; r$ is also in the highest root groups of G_{0} and G_{1}. In particular $C_{G_{1}}(r)$ has
the description given in Lemma 2.6 and we can check from our knowledge of the root system of G_{1} that $O_{2}\left(C_{G_{1}}(r)\right) \subset O^{2}\left(C_{G_{1}}(r)\right)$.

Let $P_{1}=P \cap M$. Clearly G_{1} normalizes P_{1}, and P_{1} normalizes $G_{1}=O^{2}\left(C_{G_{0}}(t)\right)$. Thus $\left[P_{1}, G_{1}\right] \subseteq P_{1} \cap G_{1}=1$ as $O_{2}\left(G_{1}\right)=1$. In particular $C_{p}(r) \subseteq P_{1}$ by Lemma 6.19 whence $\left[C_{P}(r), G_{1}\right]=1$. Hence $C_{G_{1}}(r)$ centralizes $C_{P}(r)$ and it follows that $O^{2 \prime}\left(C_{G_{1}}(r)\right)$ centralizes P. As G has characteristic two-type, $O^{2}\left(C_{G_{1}}(r)\right) \subseteq P$ contrary to the conclusion of the preceding paragraph. Thus we cannot have $2 \| M: G_{0} \mid$, and Lemma 6.20 is proved.

Lemma 6.21. If $r^{g} \in M$, then $g \in M$.

Proof. By Lemma 6.20 it suffices to show that r is fused to r^{g} in M. We will assume r is not fused to $t=r^{g}$ and obtain a contradiction either by showing $C_{M}(t)$ is not isomorphic to a subgroup of $C_{M}(r)$ or by producing x of order p in $C_{M}(t)$ such that M controls strong fusion of x in G. In the latter case $x^{\mathrm{g} \cdot} \in C_{G}(t) \subseteq M$ implies $g \in M$.

The centralizers in G_{0} of involutions in G_{0} are given by Aschbacher and Seitz [3], and the rest of the proof amounts to checking that one of the two conditions above holds for $C_{G}(t)$ as r runs through representatives of all $G_{0}-$ classes.

First suppose $G_{0}=A_{n}(q)$ or ${ }^{2} A_{n}(q)$. In terms of the usual matrix representations t is represented by

$$
\mathbb{U}_{l}=\left(\begin{array}{ccc}
I_{l} & 0 & 0 \\
0 & I_{k} & 0 \\
I_{l} & 0 & I_{l}
\end{array}\right)
$$

and the Hermitian form is represented by

$$
\left(\begin{array}{ccc}
0 & 0 & I_{l} \\
0 & I_{k} & 0 \\
I_{l} & 0 & 0
\end{array}\right)
$$

where $2 l+k=n+1$. Suppose $p \mid q-1$ of $G_{0}=A_{n}(q)$ and $p \mid q+1$ if $G_{0}={ }^{2} A_{n}(q)$. In the first case $n \geqslant 4$, while in the second case $n \geqslant 5$ lest $m_{2, p}(M)<4$. Let $e_{1}, \ldots, e_{2 l+k}$ be the usual basis elements of the standard module for the matrix representation of G_{0}. Suppose $k \neq 0$. Unless $p \mid n+1$ and $m\left(B^{*}\right)=n-1$, we may take x to be the element whose matrix (determined up to scalars) acts as follows:

$$
\begin{gathered}
e_{i} \rightarrow e_{i}, \quad i=l+1, \\
e_{l+1} \rightarrow \lambda e_{l+1}
\end{gathered}
$$

where λ is a primitive p th root of unity. As x is fused in G_{0} to an element of
D, M controls strong fusion of x in G. When $p \mid n+1$ and $m\left(B^{*}\right)=n-1$, the same conditions hold if the matrix of x acts as

$$
\begin{aligned}
& e_{1} \rightarrow \lambda e_{1} \\
& e_{l+1} \rightarrow \lambda^{-2} e_{l+1} \\
& e_{l+k+1} \rightarrow \lambda e_{l+k+1} \\
& e_{i} \rightarrow e_{i} \quad \text { for all other } i .
\end{aligned}
$$

Suppose $k=0$. Unless $p \mid n+1$ and $m\left(B^{*}\right)=n-1$, take the action

$$
\begin{aligned}
& e_{1} \rightarrow \lambda e_{1}, \\
& e_{l+1} \rightarrow \lambda e_{l+1} \\
& e_{i} \rightarrow e_{i} \quad \text { for all other } i .
\end{aligned}
$$

Again x is fused in G_{0} to D. Finally if $k=0, p \mid n+1$, and $m\left(B^{*}\right)=n-1$, take

$$
\begin{aligned}
& e_{1} \rightarrow \lambda e_{1}, \\
& e_{2} \rightarrow \lambda^{-1} e_{2}, \\
& e_{l+1} \rightarrow \lambda e_{l+1}, \\
& e_{l+2} \rightarrow \lambda^{-1} e_{l+2}, \\
& e_{1} \rightarrow e_{i} \quad \text { for all other } i .
\end{aligned}
$$

Here x is not fused in G_{0} to D, but Lemma 6.17 yields that M controls strong fusion of x in G unless $G_{0}=A_{5}(q),{ }^{2} A_{5}(q)$, or ${ }^{2} A_{n}(2), n=6,7$. Since $n+1=2 l$ is even and divisible by p, we actually have $p=3$ and $G_{0}=A_{5}(q)$ or ${ }^{2} A_{5}(q)$. In both these cases (and only in these cases) we show that $C_{M}(t)$ is not isomorphic to a subgroup of $C_{M}(r)$. Since $\left|M: G_{0}\right|$ is odd by the preceding lemma, it suffices to show that $H=O^{2}\left(C_{G_{0}}(t)\right)$ is not isomorphic to $K=O^{2^{\prime}}\left(C_{G_{0}}(r)\right)$. Let $P=O_{2}(H)$ and $Q=O_{2}(K)$. Suppose $G_{0}=A_{5}(q)$; a similar argument works when $G_{0}={ }^{2} A_{5}(q) . P \cong E_{q^{9}}$ and $H / P \cong A_{2}(q)$. As r is in the class represented by \mathscr{H}_{l} with $l=1, Q$ is special of order q^{9} and $\vec{K}=K / Q \cong A_{3}(q)$. Further, commutation induces a nondegenerate bilinear form over F_{q} on $Q / Z(Q)$ whence any abelian subgroup of Q has order at most q^{5}. Assuming $H \cong K$, we obtain $|P \cap Q| \leqslant 2^{5} \quad$ and $|\bar{H}|_{2}=|\bar{Q}|\left|A_{2}(q)\right|_{2} \geqslant q^{7}>q^{6}=\left|A_{3}(q)\right|_{2}=|\bar{K}|$, which is impossible.

The same sort of argument works for $G_{0}=A_{4}(q), p \nmid q-1$ or $G_{0}={ }^{2} A_{7}(q)$, $p \mid q-1$, and all the other classical groups. The conjugacy classes of involutions are represented by the matrices \mathscr{H}_{l} above, and the matrix for x is chosen as above except that instead of being diagonal it has one or two 2×2
(or 3×3 in the case $G_{0}=A_{11}(2), p=7$) blocks along the diagonal. Lemmas $6.15,6.16$ and 6.17 suffice to show that M controls strong fusion of x in G.

Finally consider the exceptional groups of Lie type. Exhibit G_{0} as $O^{2}\left(C_{\tilde{G}}(\sigma)\right)$ for the standard endomorphism σ. The possibilities for t are given in [3], as products of elements from various root groups of G_{0}. When $G_{0}={ }^{2} E_{6}(q)$ we may express each such element as a product of at most two such elements from root groups of \tilde{G}. Thus in all cases t is given as a product of elements of root groups of \bar{G}, and by inspection we can find for each t a root $\tilde{\alpha}$ which is orthogonal to all roots involved in t and fixed by σ.

Let \tilde{T} be the maximal torus of \tilde{G} corresponding to our choice of root groups for \tilde{G}, and let \tilde{J} be generated by the root groups corresponding to $\tilde{\alpha}$ and $-\tilde{\alpha}$. Clearly $C_{\tilde{J}}(\sigma) \subseteq O^{2}{ }^{\prime}\left(C_{\tilde{G}}(\sigma)\right)=G_{0}$; and as B^{*} consists of all elements of order p in $C_{\tilde{T}}(\sigma)$ or $C_{\tilde{T}}(\sigma) \cap G_{0}$ (when $G_{0}=E_{6}(q), p=3$, $m\left(B^{*}\right)=5$), we can pick $x \in B^{*} \cap \tilde{J}$. Clearly $[\tilde{J}, t]-1$, and Lemma 6.15 yields that M controls strong fusion of x in G.

When $p \mid q+1$, pick α as above so that in addition α is fixed by the element w_{0} of the Weyl group of \tilde{G} which interchanges positive and negative roots. Taking

$$
\rho=I_{w_{0}} \sigma
$$

where $I_{w_{0}}$ is an inner automorphism of \bar{G} corresponding to w_{0}, and exhibiting G_{0} as $O^{2}{ }^{\prime}\left(C_{\tilde{G}}(\rho)\right)$, we see as above that $B^{*} \cap \tilde{J}$ contains an element y which satisfies the hypotheses of Lemma 6.15. By Lemma 2.18(ii) there is an inner automorphism of \tilde{G} which carries $C_{\tilde{G}}(\rho)$ to $C_{\bar{G}}(\sigma)$ and $C_{\bar{J}}(\rho)$ to $C_{\bar{J}}(\sigma)$. Taking x to be the image of y under this automorphism, we see that x has the desired properties.

We must also consider $G_{0}=E_{8}(2), p=7$. Here by Lemmas 2.21 and 6.15, M controls strong fusion of all elements of order p in G_{0}, so it suffices to check in $[3]$ that $\left|C_{G_{0}}(t)\right|$ is always divisible by 7.

References

1. J. Alperin, R. Brauer, and D. Gurenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc. 151 (1970), 1-261.
2. M. Aschbacher, A condition for the existence of strongly embedded subgroups, Proc. Amer. Math. Soc. 38 (1973), 509-511.
3. M. Aschbacher and G. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 13 (1976), 1-91.
4. M. Aschbacher, On finite groups generated by odd transpositions I, Math. Z. 127 (1972), 45-56; II, III, IV, J. Algebra 26 (1973), 451-459; 26 (1973), 460-478; 26 (1973), 479-491.
5. M. F. Atiyah and C. T. C. Wall, Cohomology of groups, in "Algebraic Number Theory" (I. W. S. Cassels and A. Fröhlich, Eds.). Thompson Book Company. Washington D. C.. 1967.
6. A. Borel, R. Carter, C. W. Curtis, N. Iwahori, T. A. Springer and R. Steingerg, "Seminar on Algebraic Groups and Related Topics, Lecture Notes in Mathematics No. 131, Springer-Verlag, Berlin, 1973.
7. A. Borel and J. Tits, Elements unipotents et sousgroupes paraboliques de groups reductifs, I, Invent. Math. 12 (1971), 95-104.
8. N. Burgoyne, R. Griess, and R. Lyons, Maximal subgroups and automorphisms of Chevalley groups, Pacific J. Math. 71 (1977), 365-403.
9. N. Burgoyne and C. Williamson. On a theorem of Borel and Tits, Arch. Math. XXVII 27 (1976). 489-491.
10. N. Burgoyne and C. Williamson, Semisimple classes in Chevalley type groups, Pacific J. Math. 70 (1977). 83-100.
11. R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow subgroup is quaternion, Proc. Nat. Acad. Sci. USA 45 (1959). 1757-1759.
12. R. Carter, "Simple groups of lie type," Wiley, London, 1972.
13. J. Conway and S. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), 303-339.
14. P. Curran. Fixed point free action on a class of abelian groups, Proc. Amer. Math. Soc. 57 (1976). 189-193.
15. C. Curtis, Central extensions of groups of Lie type, J. Math. 219 (1965), 180-199.
16. C. Curtis. W. Kantor, and G. Seitz, The 2 -transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1-59.
17. L. Finkelstein and D. Frohardt, Simple groups with a standard 3-component of type $A_{n}(2), n \geqslant 5$. Proc. London Math. Soc. 43 (1981), 385-424.
18. L. Finkelstein and D. Frohardt, A 3-local characterization of $L_{n}(2)$, Trans. Amer. Math. Soc. 250 (1979), 181-194.
19. L. Finkelstein and D. Frohardt, Standard 3-components of type $\operatorname{Sp}(6,2)$, Trans. Amer. Math. Soc. 266 (1981), 71-92.
20. L. Finkelstein and R. Solomon, Finite simple groups with a standard 3 -component of type $S p(2 n, 2), n \geqslant 4$, J. Algebra 59 (1979), 466-480.
21. L. Finkelstein and R. Solomon, Finite groups with a standard 3 -component isomorphic to $\Omega^{ \pm}(2 m, 2), m \geqslant 5, F_{4}(2)$ or $E_{n}(2), n=6,7,8$, to appear.
22. D. Frohardt, From a 3 -local plus 3 -fusion to the centralizer of an involution, to appear.
23. R. Gllman. Odd standard components, Amer. Math. Soc. Proc. Symposia Pure Math. 37 (1980), 85-90.
24. G. Glauberman, Central elements in corefree groups, J. Algebra 4 (1966), 403-420.
25. G. Glauberman, Global and local properties of finite groups, in "Finite Simple Groups" (M. B. Powell and G. Higman, Eds.), Academic Press, London, 1971.
26. D. Goldschmidt, 2 -fusion in finite groups, Ann. of Math. 99 (1974), 70-117.
27. D. Gorenstein, "Finite Groups," Harper and Row, New York, 1968.
28. D. Gorenstein, "Finite Simple Group," Plenum Press, New York, 1982.
29. D. Gorenstein and K. Harada, Finite groups of low 2 -rank and the families $G_{2}(q), D_{4}^{2}(q), q$ odd, Bull. Amer. Math. Soc. 77 (1971), 829-862.
30. D. Gorenstein and K. Harada, On finite groups with Sylow 2 subgroups of type A_{n}. $n=8,9,10$, 11. Math. Z. 117 (1970), 207-238.
31. D. Gorenstein and R. Lyons, Finite groups of characteristic 2-type, in "Finite Simple Groups II" (Michael J. Collins, Ed.), Academic Press, London, 1980.
32. D. Gorenstein and R. Lyons, Signalizer foncturs, proper 2 -generated cores and nonconnected groups, J. Algebra 75 (1982), 10-22.
33. D. Gorenstein and R. Lyons, The local structure of finite groups of characteristic 2 type. Amer. Math. Soc. Memoir, to appear.
34. D. Gorenstein and J. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra 2 (1965), 85-151, 218-270, 354-393.
35. R. Griess, Odd standard form problems article, in "Finite Simple Groups II" (Michael J. Collins, Ed.). Academic Press, London, 1980.
36. R. Griess, Schur muitipliers of finite simple groups of Lie type, Trans. Amer. Math. Soc. 183 (1973). 355-421.
37. R. Griess, Schur multipliers of some sporodic simple groups, J. Algebra 32 (1974), 445-466.
38. R. Griess. Schur multipliers of the known simple groups II, in "The Santa Cruz Conference on Finite Groups" (B. Cooperstein and G. Mason, Eds.). Amer. Math. Soc., Providence, R.I.. 1980.
39. M. Hall, "The Theory of Groups," The MacMillan Company, New York, 1969.
40. K. Harada, On finite groups having self-centralizing 2 -subgroups of small order. J. Algebra 33 (1975), 144-160.
41. K. Harada. On the simple group F of order $2^{1+} 3^{6} 5^{6} 7 \cdot 11 \cdot 19$, in "Proceedings of the conference on finite groups." (W. R. Scott and F. Gross. Eds.). Academic Press, New York, 1976.
42. D. Holt, Transitive permutation groups in which an involution central in a Sylow 2 subgroup fixes a unique point. Proc. London Math. Soc. (3) 37 (1978), 165-192.
43. B. Huppert, "Endliche Gruppen I," Springer-Verlag, Berlin, 1968.
44. S. Lang. Algebraic groups over finite fields. Amer. J. of Math. 78 (1956), 555-563.
45. R. LyONS, Evidence for a new finite simple group, J. Algebra 20 (1972), 540-563.
46. S. Maclane, "Homology," Springer-Verlag. New York, 1967.
47. J. McLaughlin. Some groups generated by transvections. Arch. Math. 18 (1967), 364-368.
48. M. ONAN, Some evidence for the existence of a new simple group, Proc. London Math. Soc. 32 (1976), 421-479.
49. H. Pollatsek, Cohomology groups of some linear groups over fields of characteristic 2. Illinois J. Math. 15 (1971), 393-417.
50. D. Robinson, The vanishing of certain homology and cohomology groups, J. Pure Appl. Algebra 7 (1976), 145-167.
51. I. SchUr, Über die Darstellung der endliche Gruppen durch gebrochene lineare Substitutionen, J. Reine angew. Math. 27 (1904), 20-50; 132 (1907), 85-137.
52. G. Seitz. Generation of finite groups of Lie type. Trans. Amer. Math. Soc., to appear.
53. R. Steinberg, Generateurs, relations et revetements de groupes algébriques, in „Colloque sur la theorie des groupes algébriques, pp. 113-127, C.B.R.M., Brussels, 1962.
54. R. Steinberg. "Lectures on Chevalley Groups," Yale University Notes, 1967-1968.
55. R. Steinberg. Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33-56.
56. M. Suzukı, Characterizations of linear groups, Bull. Amer. Math. Soc. 75 (1969), 1043-1091.
57. J. Thompson. Vertices and sources. J. Algebra 6 (1976), 145-167.
58. F. Timmesfield, Groups generated by root involutions. I, II, J. Algebra 33 (1975). 75-135: $\mathbf{3 5}$ (1975). 367-441.
59. H. Yamaki, A characterization of the simple group $\operatorname{Sp}(6,2)$. J. Math. Soc. Japan 21 (1969). 334-356.

[^0]: * Partially supported by N.S.F. grant MCS76-05987.
 ${ }^{\dagger}$ Partially supported by N.S.F. grants MCS76-07280, MCS78-02463, MCS80-03027.

[^1]: ${ }^{a}$ If M is the 2 -local containing $B, A_{M}(B) \cong W_{C_{4}}$; the Levi factor for M has type $D_{5}(q)$. ${ }^{b} \hat{U}_{4}(2)$ is a covering group of $U_{4}(2)=W_{E_{6}}^{\prime}$.

