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0. INTR~OUCTI~N 

The purpose of this paper is to classify the finite simple groups which 
arise as groups of standard type in the Trichotomy Theorem of Gorenstein 
and Lyons [33]. We prove 

THEOREM I. Let G be a jinite simple group of characteristic 2-type in 
which all proper subgroups are K-groups and e(G) > 4. If G is of standard 
type with respect to some (B, x, L) E Y*(p) for some prime p E P,(G), then 
G E Chev(2). 

The definitions relevant to Theorem I and the statement of the Trichotomy 
Theorem referred to above appear in the next section. If G is not of standard 
type but satisfies the other hypotheses of Theorem I, then the Trichotomy 
Theorem says roughly that either G contains a 2-local subgroup A4 with 
O,(M) of symplectic type or G possesses a strongly p-embedded maximal 2- 
local subgroup for various odd primes p. Proving the Trichotomy Theorem is 
a major step in classifying finite simple characteristic 2-type groups G with 
e(G) > 4. 

The techniques of proof in this paper have appeared before in the solution 
of odd standard component problems. The articles [23,35] survey the 
literature on odd standard component problems and the methods involved. In 
particular Finkelstein, Frohardt, and Solomon [ 17-221 have treated almost 
all the cases of Theorem I in which L is a group of Lie type defined over a 
field of order 2. We originally intended to restrict ourselves to the remaining 
cases. However it turned out that this dichotomy was artificial, and so we 
give a proof of Theorem I which is independent of the work cited above. 

*Partially supported by N.S.F. grant MCS76-05987. 
‘Partially supported by N.S.F. grants MCS76&07280, MCS78%02463, MCS80-03027. 

383 
0021.8693/83/020383-134$03.00/O 

Copyright 0 1983 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



384 GILMAN AND GRIESS 

Much of that work is more general than required for the proof of Theorem I: 
in many cases the hypothesis that all proper subgroups of G be K-groups is 
avoided. 

1. THE MAIN THEOREM OF GORENSTEIN AND LYONS 

The material in this section is taken from [33]. Standard definitions and 
notations may be found in [27, 28, 3 11. 

The known simple groups are discussed in 128, Chap. II]. A K-group is a 
finite group all of whose simple sections are known. Let X be a finite group. 
H is a 2-local subgroup of X if H = N,,.(T) from some 2-group T G X, T # 1. 
X is of characteristic 2-type, if C,(H) G O,(H) for every 2-local subgroup H 
of X. By definition 

e(X) = max(mz.,(X) /p ranges over all odd primes}, where for any odd 
prime p 

m,.,(X) = max (m,( H) ( H ranges over all 2-local subgroups of X) 

and 

m,(H) is the maximal rank of an abelian p-subgroup of H. 

Further 

p,(X) = ( p 1 p an odd prime, ml.,(X) > k); 

rP(X) = the set of elementary abelian p-subgroups of X, p an odd 
prime; 

F&JX) = {A E P(X)lm,(A) = k}; 

.9,&X; p) = (B 1 B E P’(X), m,(B) = m,-,(X). and B lies in a 2-local 
subgroup of X). 

We now define the notion standard tllpe. Let G be a finite group and p an 
odd prime. i *(p) is the set of triples (B, x, L) where B E .5Ym,,(G,p), 
.Y E BP, and L is a component of C,(.x) with the property that C,(L) has 
cyclic Sylow p-subgroups. Define Y (p) to be set of triples (B, x*, L *) with 
B as before, x* E B#, and L* a p-component of C&x*) with the property 
that C,(L */O,.(L *)) has cyclic Sylow p-subgroups. 

If (B, x, L) E .,2‘*(p), a standard subcomponent of (B, x, L) is a pair 
(0, K) such that x E D E F?(B), K = L(C,(D)) is a single component, and 
D = C,(K). with the additional restriction that if p = 3 and there exists a pair 
(D,, K,) satisfying these conditions with K, I?& U,(2) or A,, then necessarily 
K 2 U,(2) or A,. 

This last condition involves a minor technical point and avoids certain 
generational difftculties. 
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If (B,x,L)EY*(~), and (B,x*,L*)Ep(p), we call (B,x*,L*) a 
neighbor of (B, x, L) in G provided the following conditions hold: 

(1) (0, K) is a standard subcomponent of (B, x, L), where D = (x. x*) 
and K = L(C,(D)); 

(2) L* E (KJ), J= L&,(x*)); 

(3) .Y does not centralize L*/O,,(L*) 

(In the situation in which this notation is used, K will be a subgroup of 
L,.(C,(x*)).) We say that (B, x*, L*) is a neighbor of (B, x, ~5) with respect 
to (D, K), if these conditions hold. 

In the definition of standard type, L and L* will be covering groups of 
Chevalley groups (including twisted groups) defined over GF(2”) and the 
integer p will divide either 2” - 1 or 2” + 1. To describe precisely which of 
these two integers p divides, we need two further definitions. 

Let p be an odd prime, and j be a covering group of a Chevalley group J 
defined over GF(2”) for some n. (We consider twisted groups to be defined 
over the fixed field of the field automorphism involved in the twist.) We say 
that p is a splitting prime for j or p splits j, if and only if one of the 
following holds: 

(1) J is untwisted and p12” - 1; or 

(2) .I is twisted and ~12” + 1; or 

(3) J= ‘D,(2”) or 3D,(2”), and ~12” - 1; or 

(4) n = 1 and p = 3. 

We say that p is a ha[f-splitting prime for .f, or p half-splits j, if and only 
if one of the following holds: 

^ 
(1) p splits J; or 

(2) J= B,(2”), D,(2”), F,(2”), E,(2”), or E&2”), and ~12” + 1; or 

(3) J= ‘A,(2”) or ‘E,(2”) and ~12” - 1; or 

(4) J=A,(4) or E,(4), 20) = 1, and p= 5; or 

(5) J=A,(2) and p= 7; or 

(6) J= E,(2) and p = 7. 

Finally, if G is a group, p is an odd prime, and (B, x, L) E .,> *(p), we say 
that G is of starzdard t)pe bvith respect to (B. x, L) if and only if the 
following conditions hold: 

(1) L is a covering group of a Chevalley group of characteristic two: 

(2) p is a splitting prime for L: 

(3) every element of B induces an inner . diagonal automorphism on 
L: 
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(4) B does not centralize every B-invariant 2-subgroup of C,(x); 

(5) for every neighbor (B, x*. L *) of (B, x, L) in G. B normalizes L *, 
L * is a covering group of Chevalley group of characteristic two, and either p 
half-splits L * or else x induces a nontrivial field automorphism on 
L*/z(L *); 

(6) for every standard subcomponent (D, K) of (B, x, L), there exists a 
neighbor (B, x*, L *) of (B, x, L) with respect to (D, K). Moreover for all 
d E D*, [K, O,,(C,(d))] has odd order. 

We now state the Trichotomy Theorem of Gorenstein and Lyons [33]. 

TRICHOTOMY THEOREM. Let G be a finite simple group of characteristic 
2 type in which all proper subgroups are K-groups and e(G) > 4. Then one of 
the following holds: 

(I) G is of fype GF(2); 

(II) G is of standard type with respect to some (B, x, L) E Y*(p) for 
some prime p E P,(G); or 

(III) G is of uniqueness type with respect to u(G). 

The definitions we have omitted can be found in [33]. 

2. PROPERTIES OF GROUPS OF LIE TYPE IN CHARACTERISTIC 2 

Throughout this paper, we shall assume that the reader is acquainted with 
the basic theory of the groups of Lie type, particularly the B, N-structure and 
the commutator relations [ 12, 54, 551. It will also be necessary to view groups 
of Lie type as classical groups from time to time (e.g., A,(q) z PSL(n + 1, q), 
‘A,(q) z PSU(n + 1, q); see [ 12, 541. 

In this section we list a number of results about groups over a field F 
algebraic over IF,. The finiteness of F is not important in many cases. 

Notation. Suppose that G is a group of Lie type over iF, but not type 
‘C2, ‘D,. ‘Gz or ‘F,. We let C be the associated root system. For each 
u E Z, there is an associated root group X, < G. Let iE be a quadratic 
extension of F. Then X, consists of elements x,(f) or x,(t, U) which satisfy 
one of the following sets of relations 

(i) x,(t) x,(u) = x,(t + u), t, u E IF; 

(ii) x,(t) x,(24 j = x,(t + u), t, u E E; 

(iii) xa(t,, u,) xa(t2. u2) = x,(t, + f2, U, + u2 + i, t2), t,, tzu,, u? E E 
and tiii = ui + Ui for i= 1, 2. (note that x,(t, u))’ =x(t, It + u) and 
lx&, , u,), -qJt2, u2)l =x,(0, f,i2 + i, td. 



FINITE GROUPS WITH STANDARD COMPONENTS 381 

If the roots a and p are in the same orbit under the Weyl group, then the 
same relation is associated to X, and X,. Recall that two roots are in the 
same orbit if and only if they have the same length. 

The appropriate relations above are called Steinberg relations of type (A). 
The commutator relations among elements of distinct root groups are called 
relations of type (B) and they have one of the following shapes: 

for various a, /I E Z, I, U, u, w E E or IF. See [54] for a more thorough 
discussion and for the detailed list of relations for each group. The elements 
x,(t, u) occur only in *A,,, n even. Note that the annoying plus or minus 
signs vanish in characteristic 2. 

If G has type 3D, over IF and E is a degree 3 extension field of IF, then X, 
(as above) consist of elements x,(t) satisfying relations (i) or (ii) above. The 
commutator relations are of the form 

k&)l x&)1 = 1 
=x a+ b@) 
=X,+b (tU= + fu + izz) 

= x, +&7 + iu) x,+&ii + Gu + h) 

.x Ia + B(iiu + hi + &) 

= x n c&U) x, + z&W x, + 3,mm $2 +3@4. 
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We shall use the following conventions for root systems. When passing 
from an untwisted group to a Steinberg variation, the root system changes as 
follows (see [54]): 

In the left column, there is one root length, while in the right column, there 
are two. Following Steinberg [54], a root in the right column shall be a set 
R = (I-), (I-. 7) (r, 7, ?} or (r, r; r + r} of distinct roots r, 7 ,..., where the 
overbar denotes a symmetry of the Dynkin diagram extended to the root 
system ({r, r; F} occurs only for D, and (r, f, r + T} occurs only for A,, n 
even, and when it does, sets of the form {s), where s = f, are not considered 
roots in the twisted system). A root of the form R = (r, r) or {r, F, F} is 
considered short, and the others are considered long. 

The Steinberg relations for twisted groups are trickier than those for 
untwisted groups; compare [36] and [55]. We point out that the Chevalley 
commutator relations for untwisted groups look like 

whereas the analogue of the relations for twisted groups looks like 

Let G be a simple group of Lie type perhaps extended by diagonal 
automorphisms and defined over a finite field F, of characteristic 2. When 
we write G = C,,(q) for example, we mean that O*‘(G) is isomorphic to 
C,,(q). We never consider G =A,(q), ‘C2(q), or ‘F,(q). We adopt the 
convention that if C is a root system with all roots the same length, then a 
long root or a short root of C means just a root of Z. 

We need information on the 2-local structure of G. Much of the next few 
lemmas is in [ 16, Lemma 4.81. The lemmas follow from the commutator 
relations above, or one can compute in A,(q), C,(q), ‘A,(q), ‘A,(q). 
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LEMMA 2.1. If a + /3 is not a root. [X,, X,] = 1 except for the case a, /3 
long in ‘A,(q), 1 even. 

LEMMA 2.2. If a. /3, a + ,!I all have the same length. then 

(i) I# [g,h]forgEc,hEX$ 

(ii) ifG# ‘D,(q), [g,X,]=X,+,forgE~; 

(iii) if G = “D,(q), and a, p, a + p are long, then the equation in (ii) 
holds. while if a, /I. a + p are short, then [X, , X0] = X, +,X, +14X,, + D. 

LEMMA 2.3. If a, a + p are short, and /I is long, g E x]l’ and h E z, then 

(i) rf G # 3D,(q), then 

1 + Igv hl E XntJ2nto - K+BUX~,+,); 

(ii) if G = 3D,(q), then 

1 f Is hl E Xn+$zn+$3a+$~a+m - 
(Xn+o u X?a+$ u X.la+D ” X3a+*8); 

(iii) [Xn7X,l =XatBXZa+fl unless G = ‘D,,(q) or G is is untwisted 
and q = 2: 

(iv) [X,,X,l =Xa+4X2n+DX3a+dX3n+2~ ifG= ‘D4(q); 

(VI KJK3)1 =Xn+LAXh+LJ 

LEMMA 2.4. If a, /3 are short and a + /3 is long, then 

(i) [X,, X,] = 1 if G is untwisted; 

(ii) [ g, X,] = Z(X, + o)for g E X,” if G is twisted. 

LEMMA 2.5. Zf G has type ‘A”(q), n even, a, /3 are long and +(a +p) is 
short, then [ g, Xb] = X, + 4 for g E X, - Z(X,) and [Z(X,), X,] = 1. 

Let H be a Cartan subgroup corresponding to our choice of root groups 
for G. Possibly H = 1. 

LEMMA 2.6. Suppose x E Z(X,)” for some a E ,?I; and if a is short, 
suppose G is not twisted. Define 

48 I ‘80.‘2 8 
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The following conditions hold: 

(i) Q is a 2-group; 

(ii) L normalizes Q; 

(iii) H normalizes Q and L; 

(iv) L is a central product of groups of Lie type, or L = 1; 

(v) Q = OAHLQ); 
(vi) LQ = O”(HLQ); 

(vii) ifg E G, and xR E Z(X,)#, then g E HLQ; 

(viii) N,(Z(X,)) = HLQ: 

(ix) C,(x) = C,(x) LQ = C,(Z(X,)). 

Proof. Conditions (i)-(iii) follow from the commutator relations and the 
fact that H normalizes every root group. Likewise [LQ, Z(X,)] = 1 and 
HLQ < N,(Z(X,)) whence (vii) implies (viii) and (ix). Further, (iv) is a 
consequence of the Steinberg-Curtis-Tits presentations discussed above and 
in Proposition 2.27. and (vi) holds because H has odd order. 

It remains to prove (v) and (vii). Pick a fundamental system I7 for C such 
that a is the highest root of its length in C with respect to I7. Observe that 
(a, y) < 0 for every 1’ E 17. Let U and V be the Sylow 2-subgroups of G 
corresponding to the positive and negative roots, respectively. Note U < LQ. 
Every g E G has a unique representation 

g = uhn,,.u 

and one consequence of this fact is CJ n V = 1. Check that 17 contains a 
fundamental system for the root system corresponding to L. As a conse- 
quence UnL, VnLESyI,(L) which together with (UnL)n(VnL)= 1 
forces O,(L)= 1. Now (v) must hold. 

To check (vii) suppose g is as above and for some y E Z(X,)“, yg = gx. 
Reduce gx to standard form and notice that yg = gx forces w(a) = 01. By [ 12, 
Corollary 2.5.41 w is a product of reflections corresponding to roots 
orthogonal to CL. Thus n,,. E HL. Since U Al LQ, we have g E (LQ)(H)(HL) 
(LQ) = HLQ. 

The method of proof of the preceding lemma works also for the next two 
lemmas. 

LEMMA 2.7, Suppose x E x?: for some short root a E Z and G = ‘A,(q). 
Let (7, -y} be the unique pair of roots such that y is short and y + a is long. 
Define 

Q= (X,I(a,P) > 0); 

L = (X, I (a, P) = 0, P # *y>. 
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L, = (X,, X-,) = A,(q*) and there is an involution n E N,,(H) such that n 
inverts H n L 1 z E,,- ,, n normalizes X,, n permutes X, and X-,, and n 
induces a field automorphism on (X, , X- ,) z A, (q*). Further, the following 
conditions hold: 

(i) Q is a 2-group; 

(ii) L normalizes Q; 

(iii) H normalizes Q and L; 

(iv) L/Z(C) z *Anm2(q); 

(v) In, L] = 1 and [n, Q] < Q; 
(vi) Q = OJ(n> HLQ); 

(vii) ifg E G and xa E X,, then g E (n) HLQ; 

(viii) NJX,) = (n) HLQ; 

(ix) C,(X,) = C&f,) LQ; 
(x) there is a subgroup E g X, , E z E,, such that for x E E#, 

C,(x) = (n> C,(x) LQ = G(E). 

LEMMA 2.8. Suppose x E z for some short root a E C and G = *E,(q). 
Define 

Q = (X,1 (a, PI > 0); 

L = (X, 1 (a, 8) = 0 and j3 is long). 

For any y such that (a, y) = 0 and y is short, L, = (Xr, X-r) = A ,(q*), and 
there is an involution n E N,,(H) such that n inverts Hn L z Z,?- ,, n 
normalizes X, and n induces a field automorphism on (X, , X-,) = A, (q*). 
Further the following conditions hold: 

(i) Q is a 2-group; 

(ii) L normalizes Q; 

(iii) H normalizes L and Q; 

(iv) L/Z(L) s A,(q); 
(v) In, Q] < Q, [n, L] ,< L, and n induces a graph automorphism on 

L; 

CIA-~ 

(vi) Q = 0,((n) HLQ); 
(vii) tfg E G and x” E X,, then g E (n) HLQ; 

(viii) NJX,) = (n) HLQ; 

(ix) C,W,> = C,(X,) Z-Q; 
(x) there is a subgroup E < X,, E z E,, such that for x E E’, 

.) = (n) C,(x) LQ = C,(E). 
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LEMMA 2.9. Let a be a root in C with a long if G = ‘D,(q), ‘D,(q), or 
‘E,(q). If x E Z(X,)“. then C,(x)/LQ is cyclic. 

ProoJ Let R = Z(X,) and recall C,(x) < N,(R) = HLQ. It s&ices to 
show that C,,(t)/Hn L is cyclic. If G = A,(q) or ‘A,,(q), use matrix 
representations. In the remaining cases L has a root system of rank one less 
than that of G. Further, except for G =E,(q), ‘E,(q)L admits no outer- 
diagonal automorphisms whence H = (H n L) x C,(L) and the result 
follows. In the case G = E,(q) use the representations of H as characters on 
Z@ and calculate directly that 1 C,(r): H n L 1 = 1 or 3. Finally use the usual 
embedding of ‘Eh(q) in E,(q’) to prove the same result for G = ‘E,(q). 

A consequence of the last lemma is the following: 

LEMMA 2.10. If x E Z(X,)” for some a E C, with u long if G = ‘D4(q) 
or ‘Dn(q), then 

(i) c&j G (X, I (a, P) > 0) C,(x). 
(ii) IfaEAut(G) Mjith RnRa# 1. then R”=R. 

ProoJ: The first assertion is clear, and we know the second holds if a is 
inner. Since Aut(G) = Inn(G) NAut,(;,(R), (ii) is valid for a. 

LEMMA 2.11. Let R = Z(X,) for some a E C. Take a to be long if G is 
arz!- twisted group. Let Q = O>(N,(R)) and J = (R. Z(Xm,)). The following 
conditions hold: 

(i) IQ, Q] G R 5 Z(Q); 
(ii) N,(R) has no central factors on Q/R unless G =AZ(2); 

(iii) O”(G) = (J, Q); 

(iv) if G z A c Aut(G). then Oz(N4(R)) c Q; 

(v) if rE R” and GE A < Aut(G), then C,(r) c N.,(R) and 
IR. O,(C,(r))I = 1. 

ProoJ Condition (i) follows from the commutator relations and 
preceding lemmas which describe the generation of Q. Likewise in the 
notation of the preceding lemmas, N,(R) = (Q, L. H) is a maximal parabolic 
in G whence (Q, L, H, J> = G. But HL normalizes Q and J whence 
(Q, Jj a G and (iii) holds. 

To verify (iv) suppose a E O?(N,,(R)) - G with a’ E G. Since q is even, a 
is a field or graph automorphism. Assume that a is the highest root of its 
length with respect to some fundamental system n c E and take u to be the 
standard automorphism (with respect to n) for which d = ~-‘a is an inner- 
diagonal automorphism of G. If G = C?(q) or F,(q) with u a graph 
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automorphism, then d maps R to a root group X,, with /I and a bf different 
lengths. But using the decomposition 

d = uhnu, 

one sees that d cannot act on G in such a way. Otherwise u normalizes R. 
whence d does too. Since a E O?(N,(R)), it follows that r~ induces an inner- 
diagonal automorphism on ,!,Q/Q and centralizes HLQ/Q. Examination of 
cases yields (iv). 

For G = A,(q), ‘A.(q), or C,(q) use matrix representations to prove (ii). 
(Note that L(G) simple implies G # ‘A](2).) In the remaining cases use the 
results and methods of [ 16, Sects. 3 and 41. 

The first part of (v) is a consequence of Lemma 2.6(viii) and A = GN,(R). 
From Lemma 2.6(ix) we deduce O’(N,(R)) 5 C,(r) c N,,(R) whence 
O?(C,,(r)) z O,(N,(R)). Now the second assertion of (v) follows from (i) 
and (iv) except when G =A2(2), A,(2), or A2(4). In the first two cases 
R = (I-) and the assertion is immediate, while in the last case it may be 
checked directly. 

Lithum 2.12. Assume the notation of the preceding lemma, and take 
G = ‘E,(q) or ‘A,,(q), and u,short 

6) (IQ, Ql,R)~z(Qh 
(ii) N,(R) has no centralfactors on Q/R; 

(iii) O”(G) = (5, Q); 

(iv) if G g A or Aut(G), then O,(N,(A)) z Q; 

(v) ifr E R# and G &A s Aut(G), then C,4(r) c N,(R). 

Proof: A proof similar to the preceding one works. In this case N,(R) is 
not a maximal parabolic, but one can show that (N,(R), J) contains a 
maximal parabolic containing N,(R). 

The next four lemmas are proved by matrix calculations and the methods 
of [ 16. Sects. 3 and 41. 

LEMMA 2.13. Let R = Z(X,) for some a E Z with a long ifC has roots 
of two lengths. Let Q = Oz(Nc(R)). Then Q/R is a nontrivial irreducible 
N,(R)-module except when G = A,,(q) or F,(q). 

LEMMA 2.14. Let G = ‘E,(q), ‘A,(q), n > 3, or C,(q). n > 2, and take 
R =X, with a short. Let Q = 02(N,(R)); then Q has a unique subgroup U 
with R c U c Q and U a N,(R). Also U = Z(Q) and U is generated by R 
together with the two root groups X, for which a and p have different lengths 
and (a, /I) > 0. 
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LEMMA 2.15. Let G = A,(q), R = X,, and Q = O,(N,(R)). Assume 
n > 3 or q > 2. There are two subgroups U such that R c U c Q and 
U Q No(R). Both subgroups are generated by various root groups 
corresponding to roots ,i3 with (a, p) > 0. U/R and Q/N are nontrivial 
irreducible N,(R )-modules. 

LEMMA 2.16. Let G = F,(q), R =X0, and Q = O,(N,(R)). There is 
unique subgroup U of Q such that R c U c Q and U a No(R). U is 
generated by X, together with the root groups X, for which (a, /?) > 0. and a 
and /3 have different lengths. 

LEMMA 2.17. Let R = Z(X,) with a long if G is twisted. Define Q as in 
Lemma 2.6. If J is a summand of L, then Q = [Q, J] R. 

Proof: Let U = [Q, J] R and suppose U c Q. By Lemma 2.1 l(i), 
[Q. Ql c R. and it follows that U= [Q, JQ] R. As JQ a N,(R), U a N,(R) 
also. The possibilities for U are listed in the preceding lemmas, and it is 
straightforward to find in each case a root group of G which lies in J and 
acts nontrivially on Q/V, contradicting [Q, J] < V. In many cases we already 
know that J must equal L and that Q/R is an irreducible L-module. 

The group G may be described as the fixed points of a standard algebraic 
endomorphism o of an adjoint algebraic group G’ defined over the algebraic 
closure IK of our finite field. Here C,(a) includes all the diagonal 
automorphisms of G. Let c’ be a root system for G’ with root groups 8,, 
6 E 2. Given a fundamental system d for 2, the choices for u are listed in 
18. Table 1 1. In each case u corresponds to a certain symmetry of the 
Dynkin diagram and the root system, and also to isomorphisms of the root 
lattice and the Weyl-group I?. We denote all these maps by 0. 

C,?(a) is the Weyl group of G; and with an adjustment when G = ‘A,(q), 
n even, the orthogonal projection of ,!? onto the fixed points of u on IRf gives 
C. the root system of G. With the same exception, root groups of G 
correspond to orbits of root groups of C? under (uj. 

The method of Burgoyne and Williamson [lo] is useful in answering 
questions about classes and centralizers of elements of G of order prime to q 
(where F, is the field of definition of G). We give a sketch of the method. 

Denote by r the dual lattice to Hf. Each element q E f defines a 
homomorphism IK * + T. T a fixed Cartan subgroup of G, which sends 
J. E IK * to t(q, 1) E T. The element t(q, 1) is itself defined by giving its 
corresponding character x 

x:ZrZ?+IK*. 

x(a) = 1 1I’0), a E 2. 
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Fix a primitive pth root of unity A E IK* for some p with (p, q) = 1; and let 
t(q) = t(q, A). Every element of T of order p is t(q) for some q E Z. 

The Weyl group I@ of c’ acts on Z by 

wljqcl) = tj(w~-‘a) 

and the semidirect product I@. pf acts by 

The conjugacy classes of elements of order p in e correspond to orbits of 
@.pT on Z. If [q] denotes the orbit of n, then the corresponding class 
intersects the finite group G if and only if [q] = [q]. G n [n] is a union of 
G-classes each corresponding to a pair [q, vu] with u E m and uuu - u E pr. 
For any such pair t(q) centralizes Zcu, where I, is any inner automorphism 
of G defined by some element of the coset of N&?J/T corresponding to V. 
By Lemma 2.33 Z,,u is conjugate to u by an inner automorphism of G’. Thus, 
G 2 Cc(Zou), and in fact the centralizer in G of an element of [q, vu] is 
isomorphic to C,(t(~)) n C,(Z,.u). For example when plq + 1, it turns out 
that the classes of p-elements of G which intersect B*, an elementary abelian 
p-group of G of maximum rank, are [q, wu] where w interchanges positive 
and negative roots of 2. 

If t(q) E [q, vu], then G, = O”(C,(t(q))) . IS a central product of groups of 
Lie type defined over F, (the field of definition of G) or finite extensions of 
F,. G, can be recognized from-the action of uu on 2, = (a’]?(6) = l}. If 
t’ = 1, then the orbits of (a) on C, give a system of root groups for G, which 
correspond to a root system C, c C. In general G, does not have a root 
system which is a subsystem of z. 

LEMMA 2.18. Using the notation introduced above, let u be a standard 
algebraic endomorphism of G’ with O*‘(C,(u)) cr G c C,(u), and let p = Z,.u. 
Suppose c’, is a root system such that 

i. G 22, 

@, a) acts on 2Z0, 

and such that the restriction of u to z,, is in the Weyl group off,,. Further 
suppose that if L?, p E c’, and [d, , ,fB] # 1, then all linear combinations of a’ 
and j? in ,?? lie in f,, . 
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Let G, = (zG 1 GE J?,:,,j and G, = O”(Ci;,@)). The following conditions 
hold: 

(i) G,, is a central product of ChevalleJ groups defined over K and 
corresponding to the orthogonal summands of .??,,; 

(ii) there is an inner automorphism of G’ which carries C,(o) to C,,(p) 
and CGll(u) to c,J.~h 

(iii) G, is a central product of groups of Lie type deJined ouer F, or its 
finite extensions; 

(iv) G,, has a root system C, E Z, and any choice of root groups for 
G, corresponding to C, extends to a system of root groups for G with the 
convention that when G = ‘A,(q), n ecen, an abelian root group of G, ma? 
become the center of a nonabelian root group of G. 

Proof: It suffices to find z E G’ such that (I,)-’ pIz = u and I; normalizes 
G”. 

Let 2, consist of all roots in 2 orthogonal to 2”. and let 
GL = (f,#? E 2,). G, is a central product of Chevalley groups over K, and 
[G, , e, ] = 1. Choose u0 in the Weyl group of c’, so that o restricts to u,~. By 
112, Corollary 2.5.41, (co)-’ L’ = vJ for some v, in the Weyl group of Z, . By 
Lang’s theorem choose J E G,G, such that (I,)-’ pl, = Z,a for some 
xE TC&&) = T. 

It is a consequence of Hilbert’s Theorem 90 that for any q = 2” and 
1 E K* there exists p E K* with ,UP -4 = A. It follows in a straightforward 
way that there exists v E T such that (I,.)-’ I,al,, = u, whence we may take 
z =yh. 

As an application of the preceding lemma suppose 2, = {k(w) for some 
Cz E c’ with ~(a’) = *Icr’, u(6) = 6. We see that every root group of 

is a root group of G. When p = I,,.u and 1~’ is the element of the Weyl group 
fi of G which interchanges positive and negative roots, then C,-@) is tran- 
sitive on the set of roots G of a fixed length with b(6) = --a’. In fact we may 
take u’ to be the highest root of its length whence u(6) = a’ automatically. 

LEMMA 2.19. Let p = I,,.u with )I’ interchanging the positive and negatiL)e 
roots of c’. If p(c) = -6. then any root group of 

is the center of a root group of G corresponding to a root a E Z. When 2 or 
.E has roots of two lengths, the possibilities are as follows: 
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G G 

%,(d 
C,(q) 
C,(q) 
zR,(d 
‘D,(q) 
%W 
F,(q) 
F,(q) 

ii 

long 
short 
long 

short 
long 

a 

An 
ctl 
C” 
D, 
D4 
E6 
F4 
F4 

long 
short 
long 
long 
long 
long 
short 
long 

We make one more application of Lemma 2.18 to the cases G = E,(2) and 
E,(2) with p = 7. Choose extended fundamental root systems of type E, and 
E, as follows: 

where a,,, is the lowest root in both cases. Let nVi and M’* be the involutions 
of the Weyl group corresponding to roots a, and a*, respectively. Define c 
in the Weyl group of E, by 

Define the endomorphism p of the corresponding algebraic groups E,(IK) and 
E&K) by p = Z,,o, and p = Zwaz, respectively. Here I,, E E&K) corresponds 
to c and Zw E E&K) corresponds to w = w, w*. We consider elements of 
order 7 in the groups E,(2) and E,(2). In the notation of Burgoyne and 
Williamson [lo], [2~, + vs, p] denotes a conjugacy class in E,(2) each of 
whose elements has centralizer isomorphic to 

3D,(2)x h,, 
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while [n, + n,,pJ is a class in E,(2) with corresponding centralizers 

Let (? = E,(IK) or E,(IK) and G = C,@). 

LEMMA 2.20. In terms of the definitions above, ifx is a root group of G 
corresponding to a3, then C,(p) is a root group of G. 

The following lemma is proved by the method of Burgoyne and 
Williamson. 

LEMMA 2.21. Let .Y be an element of order 7 in G with L = L(C,(x)) 
and J = C,(x) f? C,(L). For each G below we list L and J as x ranges over 
representations of each G-class of elements of order 7. We also give the 
corresponding class in the algebraic group. These classes do not split in G. 
The fundmental roots are labeled as above. 

G 

E,(2) 

E,(2) 

L 

A 2(2) 
A2(2) x A,(2) 

"QQ) 
9hP) 
E,(2) 

‘D,(2) x A?(2) 

We mention some general results which are contained in [ 10, Sect. 5.21. 

LEMMA 2.22. If y E G has odd order, then O*‘(C,(y)) is a central 
product of groups of Lie type deJined over fields of characteristic 2, and 
C,(y) n C,(O*‘(C,( y)) has odd order. 

LEMMA 2.23. Suppose J’ E G has odd order and normalizes R = 2(X,) 
tt,hose X, is a root group of G with G # ‘Dj(q), ‘E,(q), ‘D,(q) or ‘A,,(q), n 
odd, ifa is short. Then OZ(C,V(,,,,(y)) < O?(N,(R)). 

Proof: This follows from the structure of N,(R) given in Lemma 2.6. 
The element y acts as an inner-diagonal automorphism on N,(R)/O,(N,(R)). 
Apply the preceding lemma. 

For various computations we will need the following information. 

LEMMA 2.24. Let p be an odd prime and q = 2’. 

(i) Zfp”)Iq-&,a>,1 arzd&=fl,thenp”+‘llq”-&E; 
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(ii) ifs = Ca,q”, and .z = f 1, then (s, q - c) = &“a,; 

(iii) if&= *l, r= *I, then 

(2” - E, 26 - r) = 2fo.b’ - 1 if &=r=l 

= 2la.b) + 1 if E = (- 1 y/W, r = (-1 )b/(a.b) 

=l otherwise. 

Proof: To prove (i) let q - E = bp”, ptb and expand (bps + E)~ = qp. 
Since p is odd, pi ( T), and the only terms not divisible by pat2 equal 
c”+(~)bp”cP~‘=c+bpat’. Thus,qP-sEbp”+’ modulop”+‘. 

The last two assertions are proved by induction. The induction steps are 

(s, q - E) = (s - a,,q”-‘(q - E), q - E) = wa, 

and assuming a > b 

(20 - E, 26 - 5) = (2” - & - 2726 - r), 2b - 5) 

= (2” -5 - E, 2b - 5) 

= (2’-’ - rc, 2’ - 5). 

LEMMA 2.25. With q and p us above and m > 2 

6) l~,-~(qp)l~l~p,-2(q>l ifplq - 1, and 
(4 I 24-,WMI 2~pm-2(qY ifpI4 + 1. 

Proof: Let E = 1 if (i) fails, and E = -1 if (ii) fails. Cancelling terms 
which appear in both order formulas and replacing l/(m, qp - E) with 
l/(q” - E), we obtain 

4 mp -em ptt-I 
r= 

qp-& / I[ (q’-&.i). (*) 
pli 

Note that r is an integer by the preceding lemma. Likewise replace each 
factor (q.‘- ei) in (*) by its greatest common divisor with qmp -em and 
conclude that r divides some power of 9”’ -cm. Let 

s = (&qp-” + (Eqp-2 + . . . + 1. (**) 

We have s(qm - em) = qmp - E”’ divides qp - E times some power of qm - em. 
By Lemma 2.24(i, ii), pIIs and (s, qm -&“‘)=p. Note that plq --E implies 
plq’” -Em, so Lemma 2.24(i) is applicable.’ 
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Our conditions force slp(q” - E) whence s <p(qp - E). The summands in 
(:I::I:) are of decreasing magnitude and are all positive or alternate in sign. It 
follows that q”‘pm ” <s whence qrntpm ” <p(q” + e) <pq”+‘. Thus 
9 

,nr-?lI/1-Il+p-! Gp. As p>3q 2~“~?I(P~I)~q~rrr~2,11,~I, Gp forces m=2, 

and likewise p = 3. 
Now q’ + q’ + 1 = r <p(qp + E) = 3(q-’ + F) implies q = 2, E = -1, but 

I’ = 2 1 does not divide p(qp + E) = 27. 

LEMMA 2.26. In the following table IA I,/‘1 BI. 

A B 

G,(q) or ‘D,(r), r’ = q A Aq) 0~ *A Js) 
J&bW-4(q3) D,(q) or A,(q) 
‘D,(q) or ‘A?(q’) *4(q) or *A,(q) 

ProoJ Similar to that of the preceeding lemma but easier. 

PROPOSITION 2.27 (The Steinberg Relations). Let C be an indecom- 
posable root system of rank at least 2 and let < be an ordering on C [54]. To 
each CI E C. let there be associated a group X, (a “root group”). Suppose 
that for an?’ pair of roots u, /I with CI # -/I the following holds; whenever 
I, E X, and xq E X,, there are elements xg E X, for every y E ,!I of the form 
1’ = iu + j/I, i, j nonnegative integers or half-integers such that 

where the order of the product is given b>l <. 
Let G be the group generated by all X,, u E C. subject to the relations in 

X, (relations of type (A)) and all relations (4:) (relations of type (B)). 
Suppose that c is a quasisimple group of Lie type over F generated bJ< a 

usual set of root elements .YO. for x, E X,, a E C such that there is a 
homomorphism G 5 G satisfying x, E+ x, , for all x, . Then ker 4 < Z(G). 

Proof: See Steinberg [S 1, 53, 541. Our hypotheses imply that (I? is a 
Chevalley group or a Steinberg variation, or in the family *F,. 

LEMMA 2.28. Let C be an indecomposable root system and W the Weyl 
group. Let 0 = ($, 1, 2}. OC = (IrlA E 0, r E C), and define the following 
equivalence relation on the set of unordered pairs in C x Z: (r, s} - (r’. s’ } if 
and only if 
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(i) the set of lengths in (r. s } equals that for (I-‘, s’ }. 

(ii) (r. s = (r’. s’, where (v. w denotes the undirected angle between 
the nonzero L’ectors ~1 and w. 

(iii) r+sEOCifandon& ifr’+s’EOZ. 

Let Q be the set of equiL)alence classes. Then each member of R is an orbit 
under W with the following exceptions. 

(a) ,?I has type A,,, n > 2; the equiralence classes of (r, s). <r, s = n/3 
and 2~13; 

(b) C has t>‘pe D,,, n > 3; the equivalence class of (r, s), <r, s = n/2. 

In any case, if (r. s} - jr’. s’ }, then the rank 1 or 2 root systems theJ 
generate are conjugate under W. 

Proqf: Exercise. 

LEMMA 2.29. Suppose that C is an indecomposable root system of rank 
at least 2 for the twisted group K E Chev(2). Let W be the usual subgroup of 
K isomorphic to the Weyl group of C and let W* = {w E W ( when w is 
expressed as the product of fundamental reflections, the number of short 
roots is el’ert }. 

Then (i) W* is transitive on the sets of roots of the same length; (ii) for 
w E W* and u E C such that 01~ = a, x,(t)w = x,(t)for all t (iii) when K has 
type ‘A,,,(q), w E W* and a is a long root satisfying a” = a, 
x,(t, u)” = x,(t, u) for all appropriate t, u. 

Proof See 1361. 

PROPOSITION 2.30. (a) Suppose that G = (K, W) where K E Chev(2), W 
is the We?1 group of a root system C of rank at least 2. 

Suppose further that (i) C, z C is a root system for K; and (ii) 
W, = Wn K is the Weyl group of K in its action on C,; (iii) Z, x C, 
contains representatices of eveg W-orbit on C x C; and (iv) W, := 
( II’ E W( a ‘I’ = u) normalizes X,, for u E C, and X, the root group of K 
associated to a. Then G E Chev(2). 

(b) The hypothesis (a(iii)) follows if C, is indecomposable and 
contains roots of all lengths which occur in C, and (i) C, has rank 3 and Z 
has on&, one root length, or (ii) C, has rank 4 when C has type B, or C,, 
n > 4 or (iii) Z, = C when C has type F,. 

Proof: (a) For aEC, let W, = {WE WJa’I‘=a}. Set I$‘= W if K is 
untwisted and let m= W*, the group of Lemma 2.29, when K is twisted. By 
Lemma 2.29, @ is transitive on roots of the same length in C. Set 
cVe = wfi n IV. 
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We define root elements for BE C by the formula x,Jt) = x,(t)” or 
xq(t, U) = x,(f, u)“‘, where a E C, and w E W satisfy /I = a”‘. To check that 
this is a good definition. we need to have elements of We centralize X,. 
Since W,, is generated by the reflections in it and since the set of such 
corresponding to long (short, respectively) roots fall into W,-conjugacy 
classes. it suffices to check a representative from each such W,-class. But we 
may take such M’), in W, n W, since C, x C, meets every W-orbit on Z x C. 
If K is untwisted or u is long or y is long, [X,, ~‘~1 = 1. If U, 7 are short and 
a + 1’ @ C, IX,. IV, 1 = 1. If a, 1’ are short and a + y E ,?J, then c\ly induces a 
“field automorphism” on X,. Thus, [X,, We] = 1, and the well-definedness 
of the root elements follows. 

Let IF be the field of definition of K and E a quadratic extension, if 
appropriate. Call M’ E I@ an ezlen element if )I’ E W and odd if w E W - W. 
We have the relations 

s,(t)“‘ =x,,,(i) 

xn(t)“c = x,,,.(t) 

if a is short and M! is odd, 

otherwise 
.r,(t, u)” = x,,,(t, u) 

for all appropriate I, u and a E C, when t -+ I generates Gal(E/F). 
We verify the Steinberg relations for these root elements; see Proposition 

2.27. The relations of type (A) follows easily by conjugation under W. Now 
fortype(B).Takea,PECwitha+--P,xEX,,yEX~andM,EWsothat 
a”./3”‘EL,. The n x”. ~“‘1 is a product of certain root elements as in the [ 
relations of type (B) for K. The totally of relations thus obtained is a set of 
Steinberg relations for some group of Lie type. See [54] for a display of the 
relations for the untwisted groups and [36] for a display of the relations for 
the twisted groups. Thus, (K, W) E Chev(2). as required. 

The proof of (b) is an exercise. 

PROPOSITION 2.3 1. (a) Suppose that G = (K, ,..., K, , W), where 
K , . . . . . K, are quasisimple with components in Chev(2), W is the Weyl group 
of an indecomposable root system C of rank at least 2. 

Suppose further that (i) for each i = l,..., m, there is a subset Ci c_ C so 
that Ci is a root system for Ki: and (ii) Wi = Wn Ki is the We},1 group of K 
in its action on Ci; and (iii) I-I;=, Ci x Ci contains representatives for eney 
W-orbit on C x C and that for etlery i. j such that Ci n Cj # 0, X, is the 
same group for a E Ci as for a E Cj, and that IY a, p E Zi n Cj, the 
commutator of elements in X, and X, is independent of taking a, p E Ci or 
a,/IEZj.(iv) W,:=(wE Wla”‘=atnormalizesX,,foreachaEU~7,Ci. 

Then G E Chev(2). 



FINITE GROUPS WITH STANDARD COMPONENTS 403 

Proof. Imitate the proof of Proposition 2.30. A bit of care is needed to 
see that root elements are well defined for m > 2. 

Tables B, C and P. The following three tables are critical to this paper. 
They contain information about elementary abelian p-subgroups and 
elements of order p in K E Chev(2) whose centralizers are in standard form. 

(2.32) Table B. In the table which follows, we list simple groups 
K E Chev(2), pertain =odd primes p, subgroups B E .9,,,,,(g;p), where 
Inn(K) < J? < K. and K is the full group of inner-diagonal automorphisms of 
K. Every such B contains at least one subgroup (x) of order p such that 
C,,(UC,(*~))) = ( x except in case K has type A ,(q), ‘Cl(q) or type A?(q) > 
such that p = 3 divides q - 1 or (p, q) = (3, 2) and K has type A,(2), n < 2, 
in which cases there are none. 

We also list B* E SC’,(I?), where B* > B. Then IB*: BI = 1 or p and B* 
is unique up to conjugacy in Cc(B). Finally, we list m(B), m(B*), A(B), 
A(B*). 

The method of verification of these assertions involves standard techniques 
from the theory of groups of Lie type, and is omitted. We do single out two 
results, Theorem 2.33 and Lemma 2.34, as relevant tools. 

We construct B * in this manner. Either B* is available in a standard 
Cartan subgroup or we do the following. Let G be the ambient algebraic 
group containing K. Thus, G has an algebraic endomorphism u with 
K = L(C,(a)). Choose L E Chev(2) such that K < L < G such that L has 
the same type as G (so L is untwisted), p divides the order of H, a standard 
Cartan subgroup of L and L = L”. Let W be the standard copy of the Weyl 
group in L. Thus, W < N,.(H) = HW. For w E W, if p is the corresponding 
inner automorphism, pa is conjugate to CJ by an inner automorphism of G. 
So, by choosing )t’ appropriately, a conjugate of Q,(0,(C,(c@))) is our 
desired B *. 

Once we have B*, the possibilities for B may be read off from the 
maximal parabolics of K, as ki,(B; 2) # {It. 

Uniqueness of B* up to conjugacy in Aut(K) is shown in Lemma 2.35. 
Thus, the B* constructed above is essentially the only one. 

Actually, the table contains a few cases where p neither splits nor half- 
splits K. See Section 1 for a full discussion. 

LEMMA 2.33 (Lang’s theorem). (i) Let G be a connected linear algebraic 
group and a an endomorphism of G onto G such that 1 C,(a)1 is finite. Then 
.Y w .Y ‘x0 is a subjective map G + G. 

(ii) If in addition, u is an endomorphism of G such that u = up for 
some inner automorphism p of G, there is y E Inn(G) such that y-‘ay = a. 
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Proof (i) See [6, E, 2.21 or [54]. We deduce (ii) from (i) as follows. For 
gEG, we have g”=gU4= y - ‘guy for some y E G. Write y - ’ = x-lx0 for 
some x E G. Then g”-‘“” = (xgx-‘)UX = x-‘xOgO(x-‘x0)-’ =y-‘gy = g”. 
Take y to be conjugation by x. 

LEMMA 2.34. Let GE Chev(2), H a standard Cat-tan subgroup, and 
g= uhn,u’ E G an element in standard form (see [6, 531). For kE H, 
g E C,(k) if and only if 

(i) MJ E Wfixes k, 

(ii) when u and u’ are written as products of root elements n, x,, 
where the product is taken in an appropriate ordering, we have that each x, 
centralizes k. 

Proof Exercise. 

LEMMA 2.35. Suppose K E Chev(2) and p is an odd prime. 

(i) If Kc Kc Aut(K) with Z? acting as inner-diagonal 
automorphisms on K and t$B* E SC,@) with m,(B*) > m,,,(Z?), then B* is 
the unique elementary abelian p-group of its rank in a Sylow p-subgroup of Z? 
except for K=A,(q), p=3]q-1, K=‘A,(q), p=3]q+ 1, K=G,(q) or 
‘D,,(q) with p = 3; 

(ii) if K, p appears in Table 0, and B realizes the 2-local p-rank of i?, 
then B is unique up to conjugacy in Z?; 

(iii) tf Z? is a covering group of K and E is an elementary abelian p- 
group acting as inner-diagonal automorphisms on K with m,(E) > m,,,(EK) 
and E E SCJEK), then E projects onto a group B* of (i) except for 
K =,4,(q) or *A,(q) as in (i); 

(iv) suppose G is of standard type with respect to (B, x, K) E Y*(p) 
and e(G) > 4. Then m,,,(BK) = m,,,(G) except perhaps when 
K= *E,(q),p= 3lq + 1, m(B*)=7 or K=‘A,(q), p](q+ l,n+ l), 
m(B*) = n + 1. In any case m,,,(B*K) > 4. 

Proof: (i), (ii), (iii) We may assume that the Lie rank of K is at least 3, 
by inspection of the low rank cases. 

Case 1. p]q - 1, then B = B*. We may take B =Q,(O,(H)), H is a 
standard Cartan subgroup. Let A be another elementary abelian p-group in K 
such that A E SC,(K). Then, as B = B*, we may assume that (A, B) < 
P E Syl,(K). Then we may take z E a,(Z(P)) nA n B, z # 1. Set 
C = C,(z). From [54] we get the shape of C. Set E = (C,Jz)]a E ,!Y), where 
Z is a root system for K with root groups X,. If E # 1, by induction we may 
assume that En A = En B. Thus, A and B both stabilize all the normal 
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subgroups of E, whence A induces inner diagonal automorphisms on each 
normal subgroup Ei of E. If p%l Z(Ei)J, then we may apply induction. If 
p / lZ(E,)I we may apply induction to Eil Z(E,) as long as Ei does not 
contain a p-group Q with the property that 1 # Q’ < Z(Ei) but 
m(Q/Q n Z(Ei)) > m(A/A n Z(Ei)). Since Ei is the family A, or E,. the 
only possibility is Ei of type A,(q), for p = 3. Note that when this occurs in 
our induction situation, Ei r X(3,4). Thus, A n Ei and B n Ei are 
conjugate. Moreover, induction actually gives us that the images of A and B 
in ni Aut Ei are conjugate by an element of JJi Inn Ei. So, assume E = 1. 
Then A n B = (z). Without loss, A <B. Pick a E N:,(B) - C,(B). If 
O,(N,(H)/N,(H) n C,(B)) = 1. then for some n E N,(H). (a, a’) acts as 
SL(2,p) on V’= (z, z”). But E # 1 for some and hence all L’ E I? Thus, 
O,(N,(H)/N,(Hj n C,(B)) # 1 and the Weyl group is S, or D,?. Using 
E = 1. we have p = 3 and K/Z(K) = AZ(q). The assertion of the lemma can 
be checked directly in this case. (Use the fact that the centralizer of a 3- 
central element of order 3 in ‘D,(q) is isomorphic to SL(3,p).) 

Case 2. plq + 1. Let G be the ambient algebraic group over FZ. Then 
B* lies in a Cartan subgroup H of L, where K <L, L is finite and untwisted 
in the same family as G, and u has order 2 on L, where K = O”(C,(o)). Say 
A<K,AzB”. 

Suppose m(B*) = m,(H). We quote Case 1 to get g E L with AP = B*. 
We argue that we may arrange for g E C,(a). We have that u and u’ 
centralize B*. Since m(B*) = m,(H), C,,,,(B*) = H(u). Also, ux E Ho and 
u’ (ue)’ E C(H). Since H has odd order and u has order 2 on H. Sylow’s 
theorem applied to H(u)/(u’) implies that there is h E H with u = c@. Thus, 
gh E C,(u) and Aph = (B*)h = B*, as required. 

Now to prove uniqueness of B up to conjugacy in case m(B*) = m,(H). 
Without loss, B ( B*. Suppose A < K. A z B and A lies in a 2-local of K. 
Let A < A * E SC’,(K) By the above, we may assume A < A* = B*. 

From Table B. we see that, with a few exceptions, B = [B*, @‘I. where 
IV = A,(B *) is generated by a set of fundamental reflections and W is 
generated by a subset of fundamental reflections. If I@ is unique up to 
conjugacy in W, uniqueness of B follows: this is the case. except for 
(IV. I?) = (W, ,, WC, = W8,) and ( W “,,. W ,.,,, J. But here. the uniqueness of 
B via conjugacy in Aut(K) may be checked, case by case. 

Suppose m(B*) < m,(H). According to Table B, K has type A,,(q) or 
E,(q). By inspecting the standard module for A,(q), it is easy to check the 
statement. Finally, let K have type E6(q). 

Let A < K satisfy A = B*. We may assume that (A, B) < P E Syl,(K). 
Since C,(B*) is abelian, A&B*) : WF, implies that P is abelian for p > 5. 
So, for p > 5, A = B and we may assume that p = 3. Let (z) = fi,(Z(P)). 
Then L(C,(z)) 2 SCr(3.9) o SU(3, q), 1 C,(z): L(C,((z))I = 3 and elements of 
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C,(z) - O”(C,(z)) d in uce outer diagonal automorphisms. It is now an easy 
exercise to see that A and B are conjugate in C,(z). 

Case 3. p/q’ f q + 1. These few special cases are left as an exercise 
with Lang’s theorem (2.33). 

(iv) By definition of standard type, B acts nontrivially on a 2-group 
T& C’,(x). If 1 T. K] # L, then the first assertion of (iv) is clear. Otherwise 
[r.K]=l#[B,T] f orces some b E B to induce an outer automorphism on 
K. and the assertion follows from checking the possibilities for L on Table B. 
Now m2.p (B*K) > 4 except perhaps if K = ‘A,(q), pi (4 + 1. n + 1). But then 
m(B*) = 4 and (x) = C,.(K) imply n > 3 whence pin + 1 forces n > 4 and 
(iv) holds. 

(2.36) Table P. In the next table, we list all triples (K,p, L) wgere L is 
quasisimple with L/Z(L) E Chev(2), K is” standard component in L for the 
prime p, where p half-splits K or L, L <L > t, and t is the group of inner- 
diagonal automorphisms on L, unless L has type Da(s) in which case J! is 
the group of inner-diagonal-graph automorphisms on L. The restrictions on n 
are for making m,(i) > 3 and the G-L restriction consists of an additional 
condition to make (D, K) a standard subcomponent of (B, x, L); see 
Section 1 for these notations. In particular, no case with m,(K) = 1 is listed. 

Note that in most cases. but not all, p half-splits both K and L. 
The completion of this table requires straightforward applications of 

standard techniques from the theory of groups of Lie type. See (2.31) and 
(2.32). Tables of a similar nature were compiled by Burgoyne and 
Williamson: see [lo] and [33, Appendix to Part I]. 

(2.37) Table C. In the following table, we record all instances of the 
following: K E (Chev 2), B <K as in Table B, and K,, K, such that (i) Gi = 
L(C,(zi)). (ii) (B, zi, Ki) E .;/ *(p) (with respect to G,), i= 1, 2, (iii) 
K = (K,, K?), (iv) p splits G, or G, and half-splits both. In the event that 
there is L E Chev(2) such that B <K < L and Gi = L(C,(zi)), (B, zi, Gi) E 
SF(p), for i = 1 and 2. we subscript (K,, K,) with an *. For each occurence 
of an *, K, , Kz, K and L are listed at the end of the table. 

The table is used by choosing some K, down the left column, choosing an 
admissible K, above the solid line in row K,, then reading (K,, K,) just 
below Kz. Directly below (K,, K?) is the subcomponent L, = L(K, n K?). 
Restrictions are written above K2. 

LEMMA 2.38. Let G, = (K,, KZ) be any entry in Table C except 

A,+2(2) = V,(2), A,,,+ w?,(4)), p= 3, 

A, ,(I) = (A,(2), A,@)). p= 7, 
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TABLE P 

‘A,(q”‘), n = 2,plq’ ’ - 1 
A 2”+,(9”2).A2n+*(9’;2)..23 @3 9) = (334) 

A,+,(9). @? 9) = (372) 
E,(9), n = 5 @, 9) = (332) or (5,4) 

A,(8).p = 7 A,(2) 
A2(16).p= 5 A,(4) Z(K) = I 
A,(Z).p= 7 A,,(4 

?,4,,(9).IJl9- l-n>3 ‘A,,+,(9).n>3 
‘D,(9), n = 3 
?E,(q). n = 5 

?A,(q),plq+ I.nZZ 

K-P 

.4,,(9).Pl9- I.n>Z 

L 

A,+ l(9) 
A,+1(9),pln + 3 

c,+ l(9) 
Dn, l(9) 
‘Dn+2(9) 

G -L restriction 

Em, ,(9), n = 536.7, (n.p) + (733) 
Es(q), n = 8. p = 3 

‘A,+,(9) 
‘A,+,(9).~ln + 3 

C”,,(9) 
D,+,(9).nodd” 
D, + J9). n odd 

'D,+,(q),neven 
‘D,, + :(9). n even 

2E,(9). n = 5 

‘Ed9’~“1 
E,(q), n = 6 

E,(q), n = 8. p = 3 
E,(q).n=7.p#3 

(a 9) f (3.2) 

(n, P) = (2,3) 

C,,(9),pl9- I.n>2 

C,,(9). PI9 + 1. n a 2 

D,,(9).~19 - 1. n > 2 

D,,(9).~19 + I. n Z 2 

‘D,(9).~19- l,n23 

cm+ l(9) 
F,(q), n = 3 

c, + l(9) 
F,(9), n = 3 

D,+,(9) 
E,+,(q). n = 5, 6, 7 
E,(q),n=4,p=3 

‘D,+ l(9) 
‘E,(q), n = 4, p = 3’ 

E,(q). n = 6 
‘D,+,(s) 

‘E,(q), n = 4 

(n, 9) f (2.2)” 

“The only standard subcomponent of D,(9) is ‘A,(q) = ‘D,(q) for ~(9 + 1. 

“We record this as an official restriction even though it does not apply since we require 
ml.,,(C,+ ,(s)) > 3, i.e., n > 4. 

“This applies only when 2 = O’(L). Table continued 
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TABLE P (conrinued) 

K.P L G - L restriction 

‘D,(q),p = 3. 319 - 1 
‘D,(q).p= 3.31q t 1 
‘~,(4hPlS? + 9 + 1. 

Pl4?-9+ 1 
E,(9). PI4 - 1 

PI9 + ’ 
pl4?+9+ 1 

?E,(9), 919 - 1 
Pl9f 1 

E,(9).plq- 1 
pl4+ 1 

E,(9). PI9 - 1 
p/9+ 1 

F,(q).Plq- 1 
pl9+ 1 

GAq).plq - 1 
G,(9).Pl9 + 1 
?F,(s). PI9 f 1 

D,+ ,k) 
E,(9). n = 4 
?&(9), n = 5 
E,(q). n = 7 

DS9’) 
DA?‘) 
E,(q) 
‘E.,(q) 
E,(9) 
none 

b(9) 
none 

E,(q) 
b(9) 
E,(9) 
none 
none 
none 
none 

D,(9). P = 3 
D,(9). P = 3 

p=7,q=2 

p=7,q=2 

(P?4)=(5*4) 
(P. 9) = (7,2) 

or (*I 

Jw) = V,(2)? A,(2)). p = 3. 

LetRbethecenterofarootgroupX,ofL,=L(L,nK,)MlthalongifL, 
is any twisted group. For J= K,, K,, G, or G,, R is the center of a root 
group X, of J with /I long if J is twisted except that for the entries 

24(4) = (24~~M(~2))~ P/4- 19 

and (**) 

*u?) = (ZA,(q)9 *H,(q)), Pl4- 1 

/I is short if J is twisted. 

Proof: First suppose L,, K,, K,, and G, or G, are all defined over ‘F2 
with plq - 1. Then G, or G, is the layer of C&o) for an algebraic group G 
and standard endomorphism O. It turns out that the element of z, E B with 
K, = W&N is in a G,-class (or G,-class) 
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(in the notation of Burgoyne and Williamson defined above); and if z’ is a 
root system for G, then K, is the layer of the centralizer of CJ on the root 
groups of G’ corresponding to roots of c’ in the kernel of ,Y, the character 
associated to r(q). We can always find a root I? in the kernel of x and fixed 
by r~. In fact I., is located inside K, exactly as K, is in G, or G,, and we can 
choose cx’ to correspond to a root group of L,. If ,? is the root group of G’ 
corresponding ro c7, then C,t(a) is a root group of L,, K, and G, or G,,. 
Since the subgroups corresponding to roots of a given length are all 
conjugate in f.,, we may take R = C’,(a). The same argument works with 
respect to L,, Kz and G, or G,. 

If L,. K, , Kz and G, or G, are all defined over q with plq + 1. we proceed 
as above using Lemma 2.19 and the endomorphism p defined there. We pick 
6 with p(G) = -a’. Note that if G, or G, = Fd(q), plq’ - 1, then the roots of 
c’, involved in K, or Kz may form a root system of type B, or C,. However 
for any field F of characteristic 2 there is an isomorphism B,(F) + C,(F) 
which maps root groups to root groups, so we obtain a root group of 
Ki = C,(q) with respect to a root system of type C, in either case. 

The remaining entries in Table C are (*), (**), and E,(2) = (E,(2), E,(2)), 
p = 7. In the cases (**:) we proceed along the same lines as above taking a” 
with (u. ~(6)) = 0. In the last case use Lemma 2.20. 

LEMMA 2.39. Consider the entries 

A,, + 2(2) = (A,,(2), A,,,, ,,,2,(4)), p=3 

A, l(2) = C4,(2), A3(8)), p = 7, 

in Table C and let L, = L(K, n K?). J = K, , Kz, or G,. Pick a root group R 
of L, and let N = N,(R), Q = O:(N,(R)). The following conditions hold: 

6) <IQ, Qlq R) E Z(Q); 
(ii) N has no central factors on Q/R; 

(iii) zf J = G, and Z(Q) c U c Q with U a N,(R), then (L,, U) = J; 

(iv) tfl, acts on J and centralizes r E R’. then y normalizes R; 

(v) zf y acts on J and y E 02(Nt,,+(R)), then y induces an inner 
automorphism. 

Proof: Use the standard matrix representation of J. For (v) proceed as in 
the proof of Lemma 2.11 (iv). 

LEMMA 2.40. In any entry G, = (K,, K,) of Table C with L(K, n K,) = 
A,(4), Co,(D) contains elements acting as outer diagonal automorphisms on 
L(K, f? K,). Further there is no entrv with Ki = A2(4). 
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Prooj We always find some K; = A,(4), A,(2), or A,(2). Look in C,(D); 
cf. Table C. 

LEMMA 2.41. Consider the entry 

E,(2) = @s(2), A#))3 p= 3, 

in Table C. Let L, = L(K, f7 K,) = A?(4) and J= L,, K, or K,. Pick a root 
group R of L, and let N = N,(R), Q = Oz(NJ(R)). The following conditions 
hold: 

6) (IQ, Ql, R) 5 Z(Q): 
(ii) N has no central factors on Q/R; 

(iii) ify acts on J and centralizes r E R#, then y normalizes R; 

(iv) if y acts on J and y E O.,(NcJ.,,(R)), then y induces an inner 
automorphism. 

Proof: Use the preceding lemma and the method of proof of Lemma 
2.39. 

LEMMA 2.42. For anq’ entry G, = (K,, K,) of Table C, L(K, n K2) has 
a root system of rank at least two with the following exceptions: 

D,(q) = (2Wdv ‘A,(d), PI4 + 1, 

MI) = wl(s>~ 2nlG?))~ PI4 + 1, 

in which cases L(K, n Kz) = ‘A,(q), q > 2. 

Proof. Check the possibilities for L(K, n K,) in Table C and determined 
that the standard component (B, x, L) has L = ‘A,(q), C,(q), ‘D3(q), or 
‘D4(q). Invoke Table B and m(B) > 4 to eliminate the first three possibilities. 
Consult Table C again. 

LEMMA 2.43. There are no entries in Table C with Ki = A,(2) or A,(2). 
or with L(K, f7 KZ) = A,(2). The entries with L(K, n K,) = A,(2) are 

and 

G, = A,(2) = (A,Q),A@)). P= 3, 

G, = o,(2) = (2&(2). 2&(2)), p= 3, 

G,cG,=E,P), 

G, = ~5,(2) = (A,(2), 2MW, p= 3. 

In all these cases B = B* has rank 4 and B n L(K, n K2) is conjugate in 
N,;(B) to D. 
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Proof B = B* has rank 4 from Table B. Exhibit Gi as C&I) where G’ is 
the appropriate algebraic group and p = I,o,. Take D = (t(n,), t(nz)); here 
t(qi) is in the standard form given by [ 10, Appendix 21. Now L(K, fI K,) is 
C&I) for an algebraic group g generated by root groups of G forming a root 
system of type A,. Further B n L(K, n K,) = B n R = (t(q3), f(qq)), and 
reducing t(q3), t(qJ by the algorithm of [ 10, Appendix 21 gives the last 
assertion of the lemma. 

In the same way we prove 

LEMMA 2.44. In the entry 

G, = ~%(2) = (A,(2), A,(V) 

of TableC,L(K,nK,)=A,(Lt),B=B* hasrank4,andBnL(K,nK,)is 
conjugate in No,(B) to D. 

LEMMA 2.45. Let G be a simple group which appears as G, or G, on 
Table C, and let a be an automorphism of G of order p. One of the following 
holds: 

(i) a is G-conjugate to an inner automorphism induced by an element 
0fB": 

(ii) a is G-conjugate to an automorphism centralizing B*, and a is 
conjugate by an inner-diagonal automorphism of G to a standard (with 
respect to some system of root groups of G) field automorphism of G; 

(iii) one of the following occurs: 

G 

A,(q)vplq - l,pln + 1 

o”(CGw) 

n+l 
Ar(qP), r=-- 1 

P 

*A.(q),Plq + l,pln + 1 ‘A,(q’),r=$- ] 

E,(q),p= 3, PI4 - 1 3D4(q)orA2(d) 

2E 6(4)7P = 3, PI9 + 1 3D,tq) or ‘A,(q-‘) 

D,(q),p=3, plq- 1 G,(q) Or A,(q) 

D,(q),p= 3, Plq + 1 G*(q) or 2A 2(q) 

D,(q), P = 3 ‘D,(r), r3 = q 

Proof If a is inner-diagonal, then the method of Burgoyne-Williamson 
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yields either (i) or one of the first few cases listed in (iii). Suppose a is not 
inner-diagonal. By [8, Proposition 1.11 either one of the last three cases of 
(iii) holds or a is conjugate by an inner-diagonal automorphism of G to a 
standard field automorphism a. 

Exhibit G as O”(C&)) as above and take an appropriate pth root A of p 
such that A and u differ by an inner-diagonal automorphism of G. Observe 
that A centralizes CT@) where i: is an appropriate Cartan subgroup of G 
containing B*. It follows that a centralizes some group of inner-diagonal 
automorphisms isomorphic to B *. But by the discussion preceding Lemma 
2.33 there is just one such group up to conjugacy by an inner automorphism, 
so (ii) holds 

DEFINITION 2.46. Let the quasisimple group K satisfy lZ(K)I odd and 
K/Z(K) an untwisted group or a Steinberg variation in Chev(2). Let Z be a 
root system and X, , a E C, root groups for K. If K has type ‘A,(q), n even, 
and (r is long, let w, =xn(O, 1)x-,(0, 1)x,(0, 1). Otherwise, let w, =x,(l) 
x-~( 1) x,( 1). Finally, let H be a standard Cartan subgroup of K and set 
N = (H, w, ] a E Z). If H # 1, N = N,(H). We call a complement to H in N 
a standard cop>’ of the Weyl group. The group W = (wQ ] a E Z) is called 
the standard copy of the Weyl group; it will be shown in Lemma 2.50 that it 
is isomorphic to the Weyl group. 

If B* is a subgroup of K described in Table B, a complement to C,(B*) 
in NR(B*) is called a standard copy of A,(B*). 

These notions all extend in a natural way to finite central products of 
groups as above. 

LEMMA 2.47. Let K be afield, H a group, M a KH-module. Then there 
exists an extension of KH-modules 0 --) M+ N + T+ 0 where (i) 
T z ExtL,(K, M) = H’(H, M) is a trivial module; (ii) if the extension is 
restricted to any nonzero submodule of T, it remains nonsplit; (iii) if 
0 + M-+ N, --t T, -+ 0 is an extension of KH-modules with T, a trivial 
module having property (ii), then there is a commutative diagram 

O+M-+N,+T,+O 

II 1 1 
O+M-+ N-+ T-+0. 

In particular, all vertical arrows are inclusions. 

Proof. The existence of 0 + M + N --) T + 0 follows from the properties 
of the Baer sum, described in [46, p. 691, for example. We give a sketch. 
Namely, let {A ] i E I} be a K-basis of Ext:,(K, M). To each A, we have an 
extension 0 + M-“’ Ei + K -+ 0. Define N = ui Et/M,, where M0 is the set 
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of all (miui) E Hi Ma, < UiEi, rrzi E M, xi m, = 0. The “universal 
property” may be proven using a Zorn’s lemma argument. 

LEMMA 2.48. Let r be an odd prime, W an indecomposable Weyl group 
of rank at least 2 and let M be the nontricial irreducible constituent of the 
natural Z-lattice A for W reduced module r. Then dimFrHL( W, M) = 1 when 
Wg W.,,! and rln+ 1 or WZ WE, and r=3 and dim,rH’(W,M)=O 
otherwise. 

Proof By inspection, M is faithful for W. If O,(W) # 1, we quote [ 141 
or [SO]. Say O,(M). Then W z W1” or WE,. 

Case 1. W= W.A,. Then n > 2. It is easy to check the result for n = 2 or 
3, so assume n > 4 and that the result is true for W,l,m,. Let V be a natural 
copy of WA,_, in 1%‘. Consider an extension 0 -+ M+ N+ T + 0, where T is a 
trivial IF,. W-module and C,(W) = 0. 

Suppose H’( V, M) = 0. Then, V has a fixed point in any nonzero coset of 
A4 in N. Thus, N = M @ U, as F, V-modules. Let t E W be a transvection not 
in I’. We have dim C,v(t) = dim N - 1. Thus, W = (V, t) and C,V( IV) = 0 
imply that dim T = dim U = 0 or 1. We, thus, get dim H’( W, M) = 1 in case 
r/n + 1 by inspecting the permutation module over Z reduced modulo r. In 
case rln + 1, the restriction H’( W, M) + H’(V, M) is a monomorphism, 
whence H’ ( W, M) = 0, as required. 

We now argue that H’ (I’, M) = 0. Suppose otherwise. Then rl n and 
dim H’( V, hrl,) = 1 by induction, where M, is the nontrivial If,-constituent 
within M (we also need H’(l< Fr)= Hom(V, Fy)=O). Since rtn + 1, 
dim M = n. By Lemma 2.47 and dim H’( V, M,) = 1, C,,(V) # 0. Since M is 
irreducible for W. this means that M is a quotient of the natural permutation 
module S for IF,. W. whence M 2 S,, where S 1 S,,@ K. Thus, M is 
isomorphic to the natural permutation module IFr 1’. Then Lemma 2.45 
implies that H’( V. M) = 0, as required. 

Case 2. W? W,:,. H’(W. M) # 0. Then rj 1 WI = 2’3’5, whence r= 3 
or 5. We claim that r = 3. Say r = 5. Since W contains a natural copy of 

u’,< with index prime to 5, case 1 gives H’( W, M) = 0. Thus, r = 3. 
Let N be the natural ?-lattice for W reduced modulo 3. Since the 

quadratic form on the lattice given by the Cartan matrix has determinant 3, 
we have a submodule N,, the radial of the F,-valued form. Thus. dim N = 6. 
dim N,> 1. Since W contains a natural WDi-subgroup, we have 
dim N/N, > 5, whence dim N, = 1 and M = N/N,. From [57], there is some 
L-lattice in Q @ ‘4, stable under W, whose reduction modulo 3, E, is 
indecomposable. Therefore, Ext’(E,, M) # 0. Since M is self-dual, either 
statement gives H’( W, M) # 0. Consider an extension 0 + M+ M, -+ T+ 0 
with T a trivial module and C,,,(w) = 0 and T= H’( W, M); see Lemma 
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2.45. Regard E as a submodule of T. Let V. V, be natural IV,, WD,- 
subgroups of W, respectively. Since dimH’(V, E) < 1 by Case 1, 
dimC,,,,(V)>dimT. Since M,=C ,,,, (V,)O [M, V,] and dim[M,, V,]=5, 
dim C,,,( V,) > dim T. Without loss, Vr7 V, contains (h), a group of order 5. 
Since M, = [M,, h] @ C,,,(h) and dim[M,, h] = 4, dim C,,,,(h) = 1 + dim T. 
Since C,,,(h)> C,,,(V) and C ,,,, (V,). we get C,,,(V)nC,,I,(V,)fO if 
dim T> 2. So, if dim T>2, W= (V, V,) has a fixed point on M,, a 
contradiction. Therefore, dim T = 1, E = M, and dim H’( W, H) = 1, as 
required. 

LEMMA 2.49. Let G,, K,, K,. L, be as in Table C with G, of type 
D,,(q). ‘D,(q) or C,(q). If D = C,.(L,) and K = L(C,,(z))for some z E D# 
and (z, = C,(K), then K = K, or Kz. 

Proof: We sketch the proof. Let M be the standard 2n-dimensional 
module over F,. By Table C, one of the following holds: L, has type 
0,-z(q), *D,,-,(q) or C,-,(q) and centralizes a 2-dimensional nonsingular 
subspace: or plq - 1, L, has type A,-,(q) or A,_,(q) and leaves invariant a 
pair of maximal totally singular subspaces meeting trivially; or plq + 1, L, 
has type ‘A,- z(q) or ‘A,,-,(q) and [M, L,] may be regarded as the natural 
n - l- or n - 2-dimensional F,,-module for I,,,. By the action of (B*, L,) on 
M, any such K must be of type D,-,(q), *D,-,(q), A,-,(q) or *A,-,(q) in a 
natural representation as above. By inspecting the possibilities, one gets the 
lemma. 

LEMMA 2.50. Assume the notations of Definition 2.46. Let K be defined 
oaer IF,. 

G) w, = IV a is an involution, for all u E C. and W = (M’, (a E C> is 
isomorphic to the Weyl group of K. 

(ii) If H is a standard Cartan subgroup of K and V< K so that 
H V = H W and H (7 V = 1, then there is a inner-diagonal automorphism /3 in 
C ,,ut(K,(H) such that V” = W, unless possiblv K has type zA,(q) or ‘E,(q). In 
the latter cases, there are p, y E Aut K such that Vby = W, where B is as 
before and y E Inn(K) and 1’ centralizes H, = ( y E H 1 yqt ’ = 11. 

(iii) Let B* be the subgroup of K described in Table B,plq* - 1. Then 
there is a standard copy W* of A,(B*) in K and any two such are conjugate 
by an element of C AUtK(B*) in the group of inner-diagonal automorphisms, 
with the exception described in (ii) when B* lies in a standard Cartan 
subgroup of K, where K has type ‘A,(q) and pi q - 1. 

Let W be as in (ii). Then, replacing W or W* by a conjugate in Aut K, we 
haLIe the following containment relations: 
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A,(q),plq - 1 w= w* zD,(q),Plq- 1 w= w* 
plq+ I w> w* p,iq+l w<w* 

C,(q),plq- 1 W= W* &(q),plq - 1 W= W* 

p(q+l w=w* plq+l w> w* 

D,(q),plq- 1 W= W* *E,(q),pJq= 1 w= w* 

plq+l w>w* plq+l w<w* 

F,(q),E,(q), n = 7,8,plq f 1 W= W” 

A.(q),plq2+q+ l?Pf3 w> w* 

4Jq),Plq*+q+ l>P#3 w> w* 

4dd4?z+q+ l,Pf3 w> w* 

(iv) Suppose L <K, 02(L) = 1 and L is generated by a nonempty, 
proper subset of (X, , Z(X,) I a E C 1. Then W n L is a standard copy of the 
Weyl group for L. Furthermore, the standard copy of the Weyl group for L is 
contained in one for K, 

(v) Let L be as in (iv). (a) Zfplq* - 1 and Bf is a subgroup of L as 
in Table B, B,* is contained in a K-conjugate of B *. Furthermore, tf B * * is 
such a K-conjugate, then B* * < C,(L) C,(C,(L)), unless L has type A,(q), 
K has type A,,, (q) with p(q + 1, n even and n’ odd or L has type A,(q), n 
even, p/q + 1 and K has type D,(q), n’ even or type ‘D,,,,(q), n” odd, type 
C,,(q), *A,,,,,(q) or F,(q). (b) If W,* is a standard copy in L of A,(B*), then 
W,* lies in a K-conjugate of W*. (c) Let B < B* as in Table B, p I q* - 1, 
and let (B, x, L) be a standard subcomponent. Say W* = W,*, as in (b). 
Then W* n L is a standard copy of A,(B*). 

Proof (i) Since our field has characteristic 2 the structure of the 
(X,, X-,) implies that ,vh centralizes K = (Xb I /3 E Z), whence I in, I= 2. To 
show that W is isomorphic to W,, the Weyl group of C, we verify the 
appropriate relations among the w,. 

Let ma4 be the order of Wa Wn where bars denote images under W + W, . 
Set u,~ = (we w~)~o~. We want to show that u,,, = 1. We can use induction 
on the Lie rank of K to reduce to the case of rank 2, where the root system is 
possibly decomposable. If decomposable, K is a central product and the 
result is clearly true. If not decomposable, then K has type A,, C,, G,, *AJ, 
‘A,, or ‘D,. By dropping to the fixed point subgroup of the field 
automorphism, which contains W, it suffices to treat the cases A,, C,, G,. 
These cases may be done by inspection. 

(ii) The statement that V and W are H-conjugate would follow from 
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the assertion H’(W, H) = 0. This follows from [ 141 or [50] unless W has 
type A, or E,. The remaining statement follows from Table B, Lemmas 2.48 
and 2.49, and the structure of Aut K. 

(iii) Let us first suppose that B* lies in a standard Cartan subgroup H 
of K. Then the statements follow from (i) and (ii). Thus, we may suppose 
otherwise. 

We have that B* lies in H,, a standard Cartan subgroup of K,, where 
K < K, C Chev(2) and K =L(C,,(a)) where a is a field or field-graph 
automorphism of order 2 or 3 of K, . We shall do the case where 1 a ( = 2 in 
detail, and leave /aI = 3 as an exercise. 

Let W, be the standard copy of the Weyl group for K,, W, < NK,(H,). By 
Table B and the accompanying discussions, we may take a = w, (T, where (T 
is the standard field or field-graph automorphism of K, and w, E W, 
(considered as a subgroup of Aut K,), 1 wI 1 = 2, ow, = w, u. Since WY = W,, 
C,,,,,., = C,,(a) C,.,(a). The required copy of A,(B*) is the subgroup 
Cl,+4 

The statements about conjugacy follow as in the proof of (ii). The table is 
filled by studying the construction of Table B and the standard modules for 
the groups in Chev(2). 

(iv) The statement about Wn L is clear from the definition of W and 
the fact that if Z, is a subset of C which is itself a root system under the 
addition of Z, then W,, = (we I a E Z,). If W, is a standard copy of the 
Weyl group of L, the last part of (iv) follows unless possibly not all such 
groups are conjugate in L. In this case, however, L is proper in K and L has 
type 4, ‘A,,, E, or ‘E,. Thus, A,(L) induces the full group of inner- 
diagonal automorphisms on L, whence all such standard copies of the Weyl 
group of L are conjugate in N,(L), and we may proceed as above. 

(v) It suffices to treat the case that B* does not lie in a Cartan 
subgroup of K. 

(a) Suppose that some Z(X,) lies in L, where a is a root in C such 
that a’ = (p E C I a 1 /?}has rank one less than the rank of C and a is long in 
case there are two root lengths. Suppose further that K does not have type 
B,(2) or ‘A,(2) or ‘A,(2). Then S = (Z(X,), Z(X,)) = A,(q) for some q and 
C,(S)’ = L(C,(S)) is a central extension of a group in Chev(2). We may 
arrange for B% = B* n S to have order p. Then B* < C,(B,*) = H, - C,(S) 
where H, is the group of order q + 1 in S containing Bf. If S has rank at 
least 2, we apply induction to the pair (~5. n C,(S)‘, C,(S)‘) in place of 
(L, K). If L = S, the result is clear. If L has rank 1 but L # S, then 
L = SU(3, q) and K has type ‘A,(q). The embedding of B* in K makes the 
result clear in his case. Finally, dropping the assumption that K have type 
B?(2), ‘A,(q) or ‘AJ(2), we verify (a) directly in these cases. 
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Now suppose that Z(X,) and a may not be chosen as above. Then either 
K has type A,(q), for n, 4 or else Z has two root lengths and the root groups 
in L are associated to only one root length. If K has type A,(q), the result is 
clear from the structure of Aut(K). So, assume K does not have type A,,(q). 
Let 1 be the Lie rank of K. 12 2. Suppose Z has type B,,. Since the extended 
Dynkin diagram looks like 

the root lengths for L are short. In C, the sum of two orthogonal short roots 
is a long root. So, K is untwisted, i.e., K has type B,(q) = C,,(q) and L is a 
direct factor of Z7(x,, x-, j, where (u, --a) sums over all n pairs of distinct 
short roots. But here. it is clear that L contains a copy of ai+, , as required. 
(Perhaps a more proper interpretation here is that for this K, the (r’s should 
be regarded as long roots in a root system of type C,.) 

Suppose C has type C,. Since the extended Dynkin diagram looks like 
I.- zzzo o-cl~o . the roots for L are short. The 
structu=OfC shows that we may arrange for L to lie in the natural A,- ,(q)- 
subgroup of K. where C has rank 1 and K has type C,(q) or ‘A,(q”‘) for 
r = 21- 1 or 21. Our assertions now follow from inspection of the standard 
module. 

Suppose Z has type FJ, K of type F,(q) or ‘E,(q). ~14 + 1. The extended 
Dynkin diagram looks like 

B 
.----,--.z-::-. . 

the three roots on the left are long. In C, the sum of two orthogonal short 
roots is long. So. if K = ‘E,(q). the roots for L are short and L has rank at 
most 2. By properties of C. we may assume that L < (X,, , X,,), and the 
assertions are easily checked. If K = F,(q) and the previous sentence does 
not apply, we may use the graph automorphism to invoke symmetry. 

(b) By replacing B* by a conjugate, we may assume that Bf is the 
group of Table B in L. If B* lies in a Cartan subgroup of K, this is clear. 
Supposing otherwise, we proceed as follows. Since L < K. N,(L) induces on 
L the full group of inner-diagonal automorphisms, where all standard copies 
of A,(B*) fuse in Ai,( We claim that H’(A,(B*), B*) = 0. We have that 
B* = B, x B, as A,(B*) modules. where [B,,A,(B*)] = 1. B, is indecom- 
posable of dimension the rank of A,(B*) as a Weyl group. We have already 
established that H’(A,(B*), B*/C,.(A,(B*))) = 0; see Lemma 2.48. Since 
A,(B*) is generated by elements of order 2, H’(A,(B*). C,.(A,(B*))) = 0, 
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whence the claim follows. The claim now implies at once that the standard 
copy of A,.(B*) fuses into the standard copy of A,(B*) in N,(B*). 

(c) By (a) and (b), it suffices to treat the case that L is not 
generated as in (iv). According to Table P, this means that ~14 + 1 and 
(L, K) is one of 

(A,(q). A,(q)), (2A”(q)3 Dn+&))r 6= 1,2, 

(24(q)~ ‘4,SW)l 6= 1,2, 

GL(s), c,,. 1(4)h ewl)- E,,,(q)h 

P,(q), ‘D, + t(q)). (24(d, D, + ,(4)), 

(*a?)? w?))* 

The assertion may be verified, case by case. 

3. LINEAR GROUPS, PRESENTATIONS AND A 
FUSION CONTROLLING PROPERTY OF K-GROUPS 

The first several results in this section are mainly concerned with 
answering the following question: given (B, X, L) and B E B* as in Sections 
1 and 2, what are the possibilities for A,(B*)? We know that A&B*) is a 
subgroup of GL(m(B*),p) in which the stabilizer of a nonzero vector is 
essentially AI( a Weyl group. 

Once we determine A&B*), the action on B* is essentially unique, i.e., the 
reduction modulo p of the weight or root lattice when R(B*) := 
((r E A,(B*)(r is diagonalizable with eigenvalues (-1, 1, l,..., 1)) is a Weyl 
group. This is an induction argument when R(B*) z W.,,, Wb, or Wc,; an 
exercise when R(B*) z W,,t (use the natural containments W,d, < W,J and 
R(B*)z IV,, (use 02(W,1);2:+J). 

LEMMA 3.1. Let p > 0 be an odd prime, W an indecomposable Weyl 
group of rank n 2 3 and A4 a nontrioial F, W-module which is a section of 
the reduction modulo p of the natural Z-free Z W-module of rank n. Let 
H s W. H a homocyclic group of rank t > 1 and exponent pe > 3. Suppose 
that r, = dim M, r,, = dim C,(H). Then t + r0 < r, . The same conclusion 
holds tyacuously if W is a Weyi group of type D, extended by a group of 
graph automorphisms. 

Proof. We first do the case that H lies in a subgroup V c W, where V is 
generated by fundamental reflections and V z Zn,, where n’ = n or n - 1. If 
W has type A,,, we require V = W. Note that this case always occurs when 
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W has type A,, B,=C,, D,, E, and E,. In this case, I, =n’, n’ - 1 or 
n’ - 2 and MIFDC. is a section of the natural F, V-permutation module M,. 

In the natural action of V on { 1, 2 ,..., n’), let 0,, 0, ,..., 0, be the orbits of 
H. Also, r0 = 1 by the structure of M,,. We argue that n’ - 1> t(p’ - 1). We 
first prove the inequalities n, - 1 > r,(p’ - I), where ni = 119~1 and ti 2 1 is 
the rank of Ue-‘(H/C,(B,)) for iE (l,..., I) such that ti > 1. These 
inequalities follow from the fact that for z,i to contain Z$ as a semi-regular 
subgroup we must have n, > tipe. Now sum these inequalities over i and use 
the fact that J&, ti > t, which follows from H G Z’,, . 

Now to prove that t + r,, < r,. Suppose t + r0 > r,. Then n’ - 2 < I, < 
t + r0 < t + n’ - t(p’ - I), whence 2 > t(p’ - 2) > 3t > 3, a contradiction. 

We have now done a special case, and it remains to treat the case where H 
does not obviously lie in a suitable V. Thus, W has type E,, E, or E, and 
pp = 5, 7 or 9. (E, is out since pe > 3; and W is not an extension of WD, for 
the same reason.) If p’ = 7, then n = 7 or 8 and there is a suitable Vz JY, in 
W.Ifp”=5andt=l, VzJY,works.Ifpe=5andt=2,thenn=8andwe 
have H < V, x Vz, V, g I’? E C, (think of V, x V2 < WE, corresponding to 
the natural containment O-(4,2) x O-(4, 2) < 0’(8,2)). Thus, r, = 8, 
r,, < 2, and t = 2 satisfy the required inequality. Finally, we look at the case 
p’= 9. Since W, has Sylow 3-group P 2 Z, -Z, for n = 6, 7 and 
Pz (Z, Y Z,) x Z,“for n = 8, it follows that t = 1 and H = (h) z Z, satisfies 
r0 < r, - 3, whence r0 + t < r, - 2 < r, , as required. 

LEMMA 3.2. If r, s are conjugate rejlections in a Weyl group, then 
In= 1,2 or 3. 

ProoJ: Let p: W-+ (n, R) be the natural representation of the Weyl group 
W. Since the eigenvalues for rs lie in R, 1 rsl = 1, 2, 3 or 6. If 1 rs( = 6, there 
are associated roots forming an angle of 57r/6, i.e., WZ W,,. But then r and 
s are not conjugate. 

LEMMA 3.3. If r. s, t are reflections in a Weyl group W and if 

is satisfied, then (r, s, t) z C, or L,. 

Proof Let H = (r, s, t). Since r”’ is a class of 3-transpositions in W, any 
solvable subgroup S of H inverted by r has order 2, 3 or 6. By Lemma 3.2, 
H is a quotient of Z2X, . Let p be the natural representation p: W + O(n, R). 
Then H’ < 0(3, R), whence any elementary abelian 3-subgroup of H has 
order 3. Thus, 3 ‘11 HI. So, if H 3k C, , O,(H) z Z, x Z2 and H z C, . 
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PROPOSITION CF. Let F be a field of characteristic p # 2 and B and F- 
vector space of dimension n + 1, n > 3. Suppose that B has a basis b,,,..., b, 
and that H = RS < AutF(B), where R = (r , ,..., rn> is elementary abelian of 
order 2” and bp = bi tf i #j and bfi = b,: ‘, and where S z C, acts on R and 
ib , ,..., b,) in the natural way. 

Suppose that K < AutF(B), K is finite and H = C,(b,) or n = 4, 
C,(b,) z Wp, or W,,(y) where 7 is the graph automorphism. Assume that 
H* = N,((b,)) = H x (c)c K where c centralizes (b,,..., 6,). Let r0 be 
defined by bp = 6;’ and bj” = bi if i # 0. Let R * = (R, rO). Then one of the 
following holds 

(a) rtn(H *, -1,) E R* and either 

(i) R” a K and K/R* zJI,,+,; or 

(ii) p > 0, K = O,(K) H*, O,(K) is elementary abelian and is an 
F,, H*-submodule of the stability group of B 2 (6, ,..., b,) 3 1. 

(b) rt n (H*, -1,) &R* and either. 

(i) n = 3, O,(K) z 2:+‘, K/Z(K) z W*/Z(W*) where W* z WFdr a 
subgroup of index 2 in WFd, or Wp4(y) where y is the graph automorphism of 
W,:, (depending on F, there may be more than one possible K satisfying these 
conditions if W* z W,,(y)); or 

(ii) n = 3, p = 3, K’ g A,, K/Z(K) z Z, or Aut A, and K has a 
subgroup isomorphic to C,; if K/Z(K) z Aut A,, K/K” g Dgz in any case 
-1EK. 

(iii) n = 4, p = 3, Hz WF, and K z Z, x WE, or H is isomorphic to 
W&f?), where 0 is a graph automorphism of order 3, -1, & H*, 
(-lR, H*) z Z, x Wp, and K z WE,. 

Proof We begin by observing that it does no harm to assume that 
-1, E H*. The conclusions where -1, 65 H* are easily deduced from those 
where -1, E H*. Also, similar considerations allow us to assume that every 
element of K has determinant k 1 on B. So, henceforth, we have - 1, E H* 
andifkEK,detk=fl.Thus,c=r,.DetineK,=(kEKIdetk=l). 

We first show that if O(K) # 1, then we are in case (a)(ii). Namely, 
O(H*) = 1 means that C,,,,(r,) = 1, whence O(K) is abelian. Denying 
(a)(ii) gives O,,(K) # 1 whence 1 O,.(K)1 = 3 and dim,[B, O(K)] = 2. Thus, 
H* has a 2-dimensional constituent on B, contradiction. So, O(K) = 1, and 
we also get that Z*(K) = (-lB) since H* c K. 

First dispose of the special case n = 4 and 3 * ( I HI, i.e., H is an extension 
of WD, by ZJ, its group of graph automorphisms or H g WF, or WF4(y) 
where y is the graph automorphism of F.,. Work in K,, so that 
H, = H* n K, z H satisfies O,(H,) z 2y4 and H,/O(H,) z X3 x C, or 
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,?lJ) 2,. Since z = r,r2r3r4 = -r,, & Z*(K,), there is t E zK1 nZ-Z,, t # z. By 
looking at traces, t @ O,(H,); also t does not invert O,,,(H,)/O,(H,) since z 
has trace -3. It follows that U, = CO?,H,,(t) 2 Qs or Z:. If Q,, take g E K so 
that I’ = z. But then the above remarks about fusion of z force 
cPnO,(H,)= 1. a contradiction. Thus, u, k Qs. Now let 
u= (U,, t) z z;. N = N,,(U). Our fusion information implies that 
N 2 II’,+ 2 ZiC,. Fusion in H, and in N imply that N’ meets two K,-classes 
of involutions, i.e., those of z and of u E O,(H,k(z), 1~1 = 2. Also, if t E N 
represents a transposition in C, and t and z have the same set of eigenvalues, 
then t I I,z. Suppose 1 K,: NI is even. Since z is 2central in K,, this means 
K, z IV,,(y). We argue that y@ Ki. We have that V= C,,(I~) g D,,. Take 
g E K, so that 7” E T, a Sylow group of the subgroup of H, corresponding 
to wt,. We may assume that ye = L’ or z and that I” < T(y), as x and L’ are 
extremal in T(y). Since z’ # z. we have V n O?(H,) = 1, a contradiction. 
So. jK,: NI is odd, H, k W,,(y)! and so H, z Wr,, . C,. Now take the 
standard monomial matrix representation p for N. We may assume that 

Then 

i 

-1 
1 

(zt,” = 1 i 
01. 
1 0 

Taking traces, we see that zt does not fuse into N’. Thus, K’ = Ki has index 
2 in K, and C,.(z) = 2 ‘++‘(Cj x Z,) has a Sylow 2-group isomorphic to that 
of A,. Since K ,< GL(5, F), a theorem of Gorenstein and Harada [29] iden- 
tifies K’ ? R(5, 3) (and p = 3). Thus, K 2 Z2 X O(5, 3) F? Zz X WF,, i.e., 
conclusion (b)(iii) holds. 

We consider another special case, that of Q = O,(K) 3 (-1,). We may 
assume that Q # R *. Define R, = (rirj ) i, j = I, 2 ,..., n) ? Z;- ‘. We claim 
that n = 3. Define Q, = Qn K,. Letting Q. = N,,(R), we have that Q, 
stabilizes C,(R) = (b,), whence Q. = (R. -lR) or n = 3. If n > 4, N,,(Q,) 
preserves ((b,),..., (b,l)}, the eigenspaces for Q,,, whence Q, = Q. and 
K = H*. So, n = 3 and a similar argument gives that Q, = O,(H* f? K,) g 
2 ‘++‘. Since C,(Q,,) < H*, it follows that Q, = Q = C,(Q) and that 
K/Z(K) + Aut Q. This leads to case (b)(i). 
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Having disposed of these special cases, we now have O(K) = 1, 
02(K) = (-l,), Hz WC, and H* 2 Z2 x WC,. We now deal with the cases 
(a) and (b). 

(a) Since Z*(K) = (-l,), r$ n H* # (r,,}. An eigenvalue argument 
shows that r; n H* = ( ro, r,, r2 ,..., r,}. Thus, N = N,(R *) satisfies 
N/R* zC,,+,. 

For tl E N, define property (*): if g E K, ~7~ E N, then g E N. We have (*) 
for Y,,, and 1 K: NI is odd. 

Let ).vi = rOr, . .. ri for i = 0, l,..., n - 1, Ci = C,(w,), C[ = Cci((b, ,..., bi)), 
c; = C,i((bi+ , )..., b,)). Since N,((bj)) <N for allj, CT and C; lie in N for 
all i. Since r. E C,: and r,, E CT for all i, (*) implies that Ci < N for all i. 
Take g E K so that by! E N. Write ,uf = r-s for r E R *, s E S. Assume s # 1. 
The eigenvalues for IVY restrict s to be (up to conjugacy) t,, or t,,, fz3. If wf 
centralizes some ri. then ri E C: 6 N”, whence g E N, a contradiction. 
Therefore, we may assume n = 3 and M): = t,, f13. In the group K = K/(-l,), 
R* is a self-centralizing eights group. Thus, we quote a result of Harada 
(401 to identify K. Since K + GL(5,F) and O,(K) =Z(K), the only 
possibility is K’ 2 A,, whence (r,, K’) z z,. But then (a) is violated. It 
follows that (*) holds for ~7~. Now take any \lyi and any g E K so that 
itv[T E K. Then 1~: centralizes some N-conjugate M” of \t’?, whence 
IV’ E Cf g NP. Using (*), g E N. Thus, (*) holds for each wi. Define 
Ir = (J;:; w:. Then K, = (a) satisfies a criterion of Aschbacher [2], 
whence K, has a strongly embedded subgroup (as O(K,) = O@,) = l), a 
contraction. 

(b) Here, we must prove that n = 3. Take t E t-t n H*, t E R *. Then, 
an eigenvalue argument shows that we may assume I = t,, , where 
fij E S 2 z,, is the element interchanging bi with bj and fixing the other bj. 
Define C = C,(t). C+ = C,([B, t]), C = C,(C,(t)) as before. Then 
C+nH*=R,S,whereR,=(rjIj#1,2)~Z~~’andS,=(rijIi,j#1,2)~ 
c n _ 2 and Cc r ZI- ‘C,-, . Let 71 be the natural projection of Cc onto JY,-, . 
Then (ro) x R2S, < Ct, where R,=(rj\j#O, 1,2)rZ7’. Suppose n>5. 
Then, (R 1 S ,)q must contain a natural copy of C, ?. Since r-l commutes with 
this image, r; = 1, i.e., r,, E (R *)g where g E K satisfies r-i = t. But t E (R *)” 
and C,.+,,,.,dR2Sl) is a conjugate of (r,. r2rJ ... rn j, which contains only 
one element with the eigenvalues of r,,. So r. = t, which is absurd. This 
leaves the cases n = 3 and 4. 

If n = 4, then it is easy to see that r,, is 2-central in H* and in K. We may 
then imitate the special argument given at the beginning of the proof to get 
K % Z, x WE,. But this is a contradiction since 3’CI H* 1 here. 

We have n = 3, H* z Z, x Wc! z Z, x Z2 x C,. Since F*(K) is not a 2- 
group, a theorem of Harada 1401 implies that F*(K) z A, and p = 3. This 
leads to (b)(ii). 
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The proof of our proposition is complete. 

(3.5) PROPOSITION D. Let F be a field of characteristic p # 2 and B an 
F-oector space of dimension n + 1, n > 3. Suppose that B has a basis 
b, . b, ,..., 6, and that H c H* c K are finite subgroups of Aut,(B) with the 
folio wing properties: 

6) H* = ~,((b,)) < N,((b,, b2,..., 6,)). 
(ii) C,(b,) contains the subgroup H and H = C,(b,) or n = 4 and 

C,(b,) contains H as a normal subgroup of index 3 (hence H = 02’(C,(b,)) 
is characteristic) where H = RS, R = (uijl i, j = I,..., n, i # j) 2 Z;- ‘, 
S 2 C,, by = b,: ’ tf i E (j, k) and bv = bi otherwise, and where S acts 
natural@ on {b, ,..., 6, } and on R. 

(iii) H* = (C,(b,), c) where c normalizes H. 

(iv) C,.(H) = Z(H) . C,.((b,, 6, ,..., b,)). 

Let m be an integer such that n = 2m or 2m + 1 and let z = u,? u34 . . . 
u~,,-,,~,,, E R#. Define R* = (R, -1,). Then one of the following holds. 

(a) (-z)li n (H*, -1,) c R * and either 

(i) There is uO, E K so that b;o’ = b, tfk @ {O, 1) and &ol = b;’ if 
k E (0, 11, (R. uo,> 4 K and Kr WD,+,, W,-,+, or Wb,,, x (-l,), 

(ii) Kr WE,or WEoX{-l,)andn=Sorp=3andn=4, 

(iii) p > 0, K = O,(K) H*, O,,(K) is elementary abelian and is an 
F,, H*-submodule of the stability group of B I> (b, , b, ,..., 6,) I 1. 

(iv) K r C, or C, x (-1,) and n = 3. 

(b) (--z)” fI (H*, -lR) g R * and either 

(i) K r WE.+, for n = 6 or 7, 

(ii) Kg C, or ,X, x (-lB), p = 3, n = 3, 

(iii) n = 3, O,(K)s 2y4 and K/Z(K) g q/Z(@) where 
O,,,( W*) G WC_ W* = Wr, and W/0,.,( W*) is the group of order 2 in 
W*/O,,,( W) z Z, x Z2 satisfying W G SL(4, F) and R = C,(R). 

Proof: We begin by observing that it does no harm to assume that 
- 1, E H*. The conclusions where -1, & H* are easily deduced from the 
conclusions where -1, E H*. Also, similar considerations allow us to 
assume that every element of K has determinant f 1 on B. So, henceforth, we 
have -l,EH* and if kEK, detk=kl. Define K,=(kEK/detk=l), 
and when n is odd, uOn = -z. 

If C,(b,) z W,” or an extension of Wu, by C,, the group of graph 
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automorphisms, then we may quote Proposition CF to identify K. So, we 
assume that this does not happen. 

Our next reduction is to identify K in case O(K) # 1 (we get (a)(iii)) and 
O,(K) II Z(K) = (-1,) (we get (a)(i), (b)(iii)). The case O(K) # 1 is handled 
as in Proposition CF, so we have O(K) = 1. In case Q = O,(K) I Z(K), we 
argue as in Proposition CF to get n = 3 and O,(K) g 2:f’. The slight 
changes in the argument are left to the reader. 

Suppose R b H*. The structure of H a H* then implies n = 4 and some 
3-group in H* transitively permutes the three subgroups of O,(H) which are 
normal in O,(H*) and isomorphic to Z:. We eliminate this situation with a 
special argument. The difficulty to keep in mind is the fact that the 2-fusion 
does lead to some simple groups. But we are safe because none of these lies 
in GL(5, F). 

Here is the special argument. Take h E H* so that ] h ] is a power of 3 and 
Rh # R. Define H, = C,(b,). Since n = 4 is even and (z) = Z(T) n T’ for 
T E Syl,(K), clearly H* = C,(z) and T E Syl,(K). Since H,, does not contain 
W Oz(H,) 2 2:fJ and H, g 2yJ(C, x Z,) is an extension of WD, by a 
gr$h automorphism of order 3. Since O,(H,,) is absolutely irreducible on 
(b,, b,, b,, 6,). the structure of Aut(2y”) z Zj(C, - Z,) and the fact that 
H, does not contain WC, implies that H,* = (c) x H,. Since det c = f 1, 
1 c] = 2. Define T, = Tn K, . Then T, is isomorphic to a Sylow 2-group of 
H,. Since T, is isomorphic to a Sylow 2-group of M,,, a look at the 
conclusions of a theorem of Gorenstein and Harada [29] shows that 
K, 6 GL(5, F) implies K, = O(K,)(H* nK,), i.e., conclusion (a)(iii) holds. 

Thus, we have R 4 H* from now on. We quote [49] to see that 
H* = H. C,.(H) or n is even and H*/C,.(H) g W,-,. We show that this 
latter case does not occur. Suppose it does and take c E H* so that 
C,(c) g Zy-‘z,-, . Then c* E C(H) n C,((b, ,..., b,)). Since det c = f 1 and 
c normalizes (b,) = C,(H), we get c* = 1. But now, c or -zc lies in H, 
whence H contains a copy of WC,, a contradiction. Therefore, in all cases, 
H* = (c) X H where c is trivial on (6, ,..., 6,) and is -1 on (b,). We keep 
this structure of H* in mind during the rest of the proof, which breaks up 
into treatments of cases (a) and (b). Of course, we also have O(K) = 1 and 
O,(K) = Z(K). 

(a) Let TE Syl,(H*). K, = (k E K 1 det k = 1), T, = Tn K,. 

Case 1 

n is even. Then z is 2-central in H*, (b,) = C,(Z(T)n T,) whence 
T E Syl,(K) and C,(z) < H*. Since (a) holds, an eigenvalue argument shows 
that z’ n H* = {z). Therefore, Glauberman’s Z*-theorem [24] implies that 
z E Z*(K) = Z(K) and so K = H*, a contradiction. 
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Case 2 

tz is odd. Then R * is generated by .9 = { 4, E R* 1.1’ has two eigenvalues 
-I}, a set of (‘y’ ) elements which is the union of the two H*-classes 
( uo; Ij = l,..., n) and (uii 1 1 < i <j < n). In either case (-z)’ n R * generates 
R *. which forces TE Syl:(K). Let N = N,(R*). Then N/R * z C,, + , or C,, 
according to whether .fl is in one K-conjugacy class or not. 

Subcase. .d # (-z)” n R*. We examine C = C,(U,,). Let B” = 
(b E B 1 buuo = b”}, CE= C,(BmE) where I&,--E} = (+,-}. Then B- = 
(b,, b,\l. B + = (6, ,... . 6, }. Since 1 K: C n N 1 is odd, the action of C n N on 
B- shows that (z+,,, Us,,, ‘1 maps isomorphically onto a Sylow 2subgroup of 
C/C+. In this subcase, uO, does not fuse to u,, = u,,, u,,,, modulo C’, whence 
c/c+ is 2-nilpotent. Since C/C’ + GL(2, F), uO, inverts O(C/C’ j and 
either O(C/C’ ) is cyclic and completely reducible on B or p > 0 and 
O(C/C’ j is an elementary abelian p-group. 

Suppose that O(C/C’) = O(C) C’/C’. Set Y= (z$,, n Cj. Then V/O(V) 
is elementary abelian. A theorem of Goldschmidt [26] implies that 
M = (u:,,) has the property that M/O(M) is elementary abelian. Since 
O(K) = 1, we have O(M) = 1 which gives M = R * and K = N, i.e., (a)(i) 
holds. 

We now have that 1 # O(C/C’) 2 O(C) C’/C+. Thus. Out(C’) contains 
an element of odd order, whence n = 5 and 3 = IO(C/C’): O(C) C’/C’ 1. 
Thus, as Cn N contains a Sylow 2-group of K, it is easy to see that 
K, n N 2 (;- 1, j x Zi_A, and K,/(- 1,) is a fusion-simple group with a 
Sylow 2-group isomorphic to that of A,. We then quote a theorem of 
Gorenstein and Harada (301 to conclude that K, 2 U,(2). Therefore. 
K 2 Z, x CVPh. as required. 

Subcase. ti = (-z)^ n R *. Define Ci,j = C,(u,), and let C;.i = C,,,(B “) 
where BFj= (bEB~b”“~~l=b”‘}. (E,--E}= (+,-}. Set C=C “.,,, B”=B,“.,. 
C” = C’ 

0, II . Since B + = (b,, 6, ,..., b,,_ ,), B = (b,. b,,:,, it follows that 
C+<H. whence C’ =(uij,fiiI l<i<j<n- ljzz;~%,,~, and 
C’XCaC. Now. C-XR,S,<C:.2 where R,=(uii13<i<j< 
II - 1) z z;-‘. S,=(tji~3<i<j<n- l:irC,,-,. Since (a) implies 
(t ,:tz,)” n R * = 0. or else such elements would be in (-z)\‘. it follows that 
S, 2 ST is a natural subgroup isomorphic to C,,-, where 71 is the quotient 
map CF., Thus, (C~)T is trivial or is (7’) for a transposition r. Since 
(C ~, R , Si 21.’ it follows that /C ( ( 4. On the other hand. C contains 
h,,. to .> and u, , acts on C with centralizer (u,,,), as u,,, , acts on B 
with eigknvalues I-1, I} and H* = N,((b,j). Thus. C/C’ z (C , uO,,) z D,. 
In any case, C <N = N,((R, u,.,)). We finish as in the previous subcase by 
verifying the conditions of Goldschmidt’s criterion 1261. This gives (a)(iv). 

(b) Here we have to show that n E (6, 7) and that K 2 WE,, ,. 
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Case 1 

n is even. Then H* = Ch.,;) has odd index in K, t = -z is -1 on bi, 1 on 
bi for j = 1. 2..... n. Also there is g E K so that tX E H* -R*. Eigenvalue 
considerations allow us to assume te = t,.?. Now, H* = C,(t) and 
D=C,,.(t,,:)=(t, u,?. t,?, z4i,i. tij13~i<j~n)~ZZzXZzXZ?x 
Z;-T ,,-:. Let 71 be the natural epimorphism (H*)e + S” z X,, and let S, = 
jtiil 3 < i <j < n) 2 C,->. If S, ? Sy, then xI~,+,,~~,,~) has kernel E of order 4. 
We have t,., & E. If t,?u,? E E. an eigenvalue argument forces t,:u,: = tR = 
t I?’ contradiction. Now, E contains an element with eigenvalues 
(-1. 1, l...., 1 } because E = (t, u,?){. The only remaining possibility is t E E. 
Since E’-’ <R*, we get t = tern’. impossible since t” = t,?. We conclude that 
S, k S;, whence II - 2 = 4 or 2. 

Suppose n = 4. Then H* > Z, x W,), ” Zz x 2 pJC, where an element of 
order 3 acts fixed point freely on the Frattini factor of the extraspecial group. 
Proceeding as before with n = 4, we observe that K, has a Sylow 2-group of 
type A,. Since K, 4 GL(5, F), we get K, z WF:, [30]. But here, (a) holds, 
not (b). a contradiction. So n = 4 is out. 

We have n = 6. Then H* 5 Zz X W”,. Thus, C,,(t) is isomorphic to the 
centralizer of a 2-central involution in Sp(6, 2). Since OJK,)= 1, [55] 
implies that K, 2 Sp(6.2), whence K z WF7 z Z, x S,(6,2). 

Case 2 

II is odd. Then n > 5; for if not, n = 3 and every involution of 
H* 2 Zz X C, outside R * is conjugate to t,Z or -t,*, in conflict with (b). 
Here, we do not know that H* has odd index or that H* contains C,(z). We 
use the notation Ci, etc., as in (a). Let C = C,(u,.,). As before, C’ = 
(uii.tiiI 1 <i<j<n- l)?Z~~‘C,-,. 

The element z+,,~ = -z fuses to an element of H* -R *, which an eigen- 
value argument shows is conjugate in H* to t,ztJ,. Let D = Ce(t,, t,,) and 
define D+. D- as with C. Then Cm x (t,z,U,zrt~,U3?,R,S,)CDt, where 
R,=(uiiIs<i<j,<rr- l)?Zy-” if n>6 and R,=l if n=5, and 
S,=(tii/5~i<j~rz-l)~~,_,. Let 71 be the natural projection of D’ 
onto z,, , . 

The first step in our argument is to show that C & N. An eigenvalue 
argument shows that if t E tF2 n D, then t is a transposition. Therefore, 
O,zu,?. t,,U,,,R,S,)n contains a natural copy of C, XC,-,. Since (C-)’ 
commutes with this, we get (C-)” embedded in a natural copy of ,?Yz x Cz or 
in a natural copy of CI x Cz x ,?Y, and n = 7. Since C- n ker 7c c (R*)S, 
which consists of elements of determinant 1 only, it follows that 
C- n ker 7c c (u,,). Thus, Cm is a 2-group and 1 @(C-)( < 2. Since 
Dm 3 (t,z. t,,), C- contains a fours group. Since Cc - (u,,) stabilizes 
(b,) = (b E Bm I b”“’ = bp’). C, - (uo,) < H*, whence Cc - (uO,) = (u,,,,). 
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Thus, (C-, u,,~) is a group of maximal class of order at least 8 and at most 
16 (since 1 @(C)l ,< 2). Therefore, C contains an involution which 
conjugates no, t u,, uon = u,~ and so interchanges (b,) and (b,) under its 
action on B. Since C- centralizes (b , ,..., b,- ,), it follows that N = N,(R *) 
satisfies N/R * s C,,, , ( h t e et ens ‘g p aces ((b,),..., (b,)} for R* form a single 
N-orbit). Take ~7 E N so that 6; = b, and bi = 6,. Then C, = (C)Y E H*. 
In fact C, c {h E H* ( h centralizes bi for if 1, 2) (ur?, t,,), a four group. 
We conclude that 1 C- I= 4 and C E N. 

We now have CLN and NnD=R,S,xR,S,, where R?= 

(U ,2’Uj‘j) z z;, sz = (I,,. t34, t,,f2j)gDg, R,=(uJ~,~EZ)ZZ~-~, S,= 
(tiiIi,jEI)z.Tnm,, where I= (0,5,6 ,..., n}. 

Take k E K so that (f,Zt24)k = u,?. Then (R,S,)k < C and an eigenvalue 
argument shows that its image in N/R * is a natural C,-, lying in C,,/R *. 
By replacing k with an element of kc,,, we may assume that R*(R,S,)k = 
R *S,. Since R,S, = (t E R *S, 1 1 t/ = 2 and, t has eigenvalues (-1, l,..., 1 } 
on R*), it follows that k normalizes R,S,. 

Suppose k normalizes R,. Since R, is an irreducible Fz S,-module, we may 
assume that k centralizes R,. So, k E C,(u,,) = H* G N, which conflicts 
with (t,ztzd)k = uIz. This contradiction would then complete the proof if we 
knew that k normalizes R,. If this does not happen, R, # O,(R,S,), i.e., 
tz = 5 or 7. When n = 5, R, = (u,,) = R,S, n K, is normalized by k, again, 
a contradiction. Thus, n = 7 and R: # R, is the outstanding subcase. 

Subcase n = 7. We adopt the notation and situation described in the last 
paragraph. We must show that K s WE,. The first step is to show that 
I K: H* 1 is odd. 

Let z = uo5u67, T = CR*, t,,, tj4, t,4t23, to,, t,,, lo6t57, t,,f,,t,,~,,) E 
Syl,(N). Then T/R * 2 D, t Zz, a Sylow 2-group of L,, 1 T1 = 214, (-18) = 
Z(T), (-lB, z)/(-1,) = Z(T/(-1,)). We show that TE Syl,(K). Define 
CPI = {t E T( has eigenvalues -1, 1, l,..., 1) = ([i/v tijuij ( {i,j} = (l9 2)v (39 4), 
(0,5}, or (6,7}}, 9={(b)rBI(b)=[B,t] for some tEGsl)= {(b,b,:‘), 
(bibj)l liJ}= {1,2), (3,4), {0,5) or {W}}- 

Now suppose that S is a 2-group in K containing T properly as a normal 
subgroup. Then S leaves 0’ and .A invariant. 

Define S,=(sESIs is trivia1 on 9) and T,=TnS=(u,,, uj4, uos, 
‘677 t 12’ t34* l56, t,,) % Zi. Then s E So acts as a scalar on each (6) E 9, 
whence So is abelian. Since C,(u,) G N, So c N, whence So = To. Thus, 
S/T, is embedded in C, and properly contains T/T, of order 2”, i.e., S/T, 
acts on .r/ as a full Sylow 2-group of the symmetric group on 3. Take s E S 
to induce a transposition. Then s @ T since T induces only even permutations 
on .d. Since u = uo, u?, u46u57 maps to an element of Z(S/T,)# and has 
orbits of shape {(bib,), (bib,:‘)} in .S, we may choose s to interchange 
(b, bz) and (b, b;‘) and fix the other elements of 9 (s must preserve the 
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orbits of a). Let Tz = N,((b, , b2)) and let II/ be the natural map (T,, s) --t 
AutF((6,, b,)). Then (T,, s) permutes (b,, 6,), (b, b;‘). Let U be the kernel 
of this action. Then U” is abelian. Since CJ* contains (uIz, f12)0 z Z, x Z, , 
CJ is not cyclic. On the other hand, (T,, s)” must be a group of maximal 
class since (U E (Tz, s) ] u” commutes with uO,} stabilizes (b,), hence lies in 
H* G N and so must have image Z, x Z2 under w. Therefore, (T,, s)” has 
maximal class. We conclude that CJ* z Zz x Z, and (Tz, s)O = D,. Thus, 
H = C,(b,) has order divisible by ] U]/2 = I(TZ, S)1/4 = 1 Tz1/2 = 1 Tl/8 = 2”, 
whereas Hz W,,, has Sylow 2-group of order 2”, a contradiction. We 
conclude that there is no such S, i.e., TE Syl?(K). 

Now that we have T E Syl,(K), we can show that K is an odd- 
transposition group [4]. Let 4% = tt2 be the proposed conjugacy class. 
Suppose u, t’ E Q, d is an integer and JUU] = 2d > 4. We obtain a 
contradiction. Let w be the involution of (MI). Then u’ has eigenvalues 
(- 1, - 1, 1, 1, 1, 1, 1, 1 }. If M’ E T, an eigenvalue argument and the structure 
of T imply that we may assume bt’ = t,zt3, or u’ = Us,,. Replacing w by a K- 
conjugate, we may assume w = uon, whence C,(w) G N. Therefore, u and v 
each have shape tij or tijuij. The structure of N/R * z C, and d > 2 imply 
that d = 2 or d = 3. The structure of N implies that if U, t’ commute modulo 
R *, then they commute. So, d = 2 is out. Since d = 3, we may assume 
ZJ = (tij, fiiuij}, L’ E {fjk, tjaujk} for distinct indices i, j, k. Let I E {O, l,..., 7) - 
(i.j, k}. Since (tijtjk)’ = 1 and t$f= tjjuij, t$f = tjk, t>‘= tij, ty/f= tjkujk, it 
follows that (~7)~ = 1, a contradiction to JUU] = 2d. We conclude that for 
U, t’ E 9, / uu ( is 2 or an odd integer. An inspection of the possibilities shows 
that K z WE,. 

The analysis of our subcase is completed and with it the proof of the 
proposition. 

(3.6) PROPOSITION E. Let F be afield of characteristic p # 2 and B an 
F-vector space of dimension n + 1 for n E (5,6,7, S}. Suppose that B has a 
basis b,, b, ,..., b, and that HE H* c K arejmite subgroups of Aut,(B) with 
the following properties: 

ff* = N,((b,)) G N,((b,,..., b,)), H= C,(b,) z WE. for n > 6, WE, for 
n=5 and p=3, or Z,x WE, for n=6 or p=3 and n=5. A/so 
H* = H X (c) and c is trivial on (b,,..., 6,); or n = 5 or 6, H = WE, and c 
inverts (b, ,..., b,). 

Then one of the foRowing holds: 

(a) p > 0, K = O,(K) H* and O,,(K) is an F,H* submodule of the 
stability group of B I (b, ,..., b,) 2 1. 

(b) HZ W,“andKg WEn+,forn=60r7. 
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ProoJ First some reductions. As in Proposition CF we may assume that 
-I, E K and that every element of K has determinant f 1. This forces 
Icl=2. Let K,=(kEKIdetk= 1). 

Suppose O(K) # 1. Then C,,,,(H’) normalizes (6,). But O(H*) = I, 
whence C,,,,(H’) = 1. N ow let A # 1 be an elementary abelian subgroup of 
O(K) normalized by H’. Suppose AH* is irreducible on B. Since 
AH’ 4 GL(n + 1,F). Clifford’s theorem implies that H’ must have a 
proper subgroup of index at most n + 1, a contradiction. Thus, p > 0, A is a 
p-group, and we get (a). 

Suppose O,(K) 3 (-1,). Then O?(K) H* acts irreducibly on B. Clifford’s 
theorem and the structure of H* imply that B is irreducible for O,(K), i.e., 
II= 7. If O,(K) had an abelian subgroup A 1 Z(K) = (-l,), invariant under 
H’. the above argument could be applied to AH’ to get a contradiction. 
Therefore, Oz(K) is of symplectic type [27]. Since IZ(O,(K))( = 2, O,(K) is 
extraspecial (of order 2’). But Sp(6.2) is not involved in Aut(O,(K)), a con- 
tradiction. 

Case 1. There is an involution z* E Z(H). We set z = -z* E 
C,((b, . . . . . b,,)). Since Z*(K) = (-I,), the Z*-theorem [24] implies that 
z’ n H* # (z}. Take z, E Z” n H*, z, # z. Then, the shape of H* implies 
that z, E H and the structure of H shows that zK n H is the natural class of 
reflections in H. Now take z2 E zR n H. z? E C((z, z,)) - (z, z, }. Then we 
have the following table: 

C(z) C((z, z,)) C((f, z, 9 z2)) 

zz x WE, zzxzzx w,, ZZXZ~XZ,X w.,, 
WE. zz x w,,, z, x z, x WC, 
WE, z2 x WE, z, x z2 x 5, 

We now prove that z’ is a class of odd transpositions. Suppose false and 
take zj, zI E r’ so that /z,z: 1 is the involution of (z3, 2,). Since (z>, zJ> is 
trivial on C,(z, z2) 2 (b,), (z~, z,) g C,(z,z,). By inspecting the above table 
and (and keeping in mind the class z’ n H), we see that (z3, z.,) = (z,, z2) is 
a fours group. Thus, zR is a class of odd transpositions. We quote [4] to 
identify (z’), and then K (finally, we see that H g Z, x WE-, does not occur). 

Case 2. Z(H) = 1. i.e., Hz WE,. It seems that we have to build up the 
2-structure. Let L be a natural IVD5 subgroup of H, i.e., L z Z:C,. Let 
R=O,(L), R*=(R,-1,). Q=C,(R). If Q=R*, the fact that rER 
cannot fuse to -r implies that K = K/(-l,) contains the zirnpk gro_up 
I?’ = F*(K)having self-centralizing Rh= Z:. Since z’ = N,,(R) = R-L, R,, 
where L, z A, and R is a projective F,L,-module, it follows that R = J(T) 
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where T E Syl&‘). Since this Sylow 2-group leads to K’ r A, A, or U,(2), 
we have a contradiction. 

We have Q 3 R*. If n = 5, then QL stabilizes (6,) = C,(R), so that 
QL s H*, a contradiction. Therefore, n = 6. Also, Q is a 2-group. Suppose 
@(Q) 2 R. Then [Q, L] I R and the action of [Q, L] L on C,(R) forces 
[Q, L] G H, a contradiction. So, we have Q(Q) f? R = 1 and so R is a direct 
factor of Q = C,(R). Set Q, = C,([B, R]). The shape of H and the fact that 
C, can not act on X? S: in such a way that Q,(X) is the codimension 1 
submodule of the usual F,C, permutation module forces Q = Q, R(-1,). We 
claim that Q, does not contain an involution inverting C,(R). 

If so, it would lie in H* and centralize L G H. contradicting the structure 
of Aut H 2 H. Since Q, + (X E GL(2, F) 1 det x = f 1 }, it follows that 
Q, = (yj where is an involution with one eigenvalue -1. Since Q z Zi, the 
action of L on Q shows that Q is the only normal subgroup of its 
isomorphism type in TE Syl?(QL). Thus. Q is characteristic in T. Set 
c = C,(y). 

Suppose that TE Syl,(K). A check of eigenvalues now shows that since 
J’ 6? Z*(K) = (-I#), y fuses to some I E C+ = {x E C]X is trivial on [B,y]}. 
Since QL f7 C+ = (-g, L) has odd index in C ‘, we may assume that 
tEL<H. Since C,(t)2ZzxC,, C+ contains L properly. We quote 
Proposition D and use C, + C+ toget C+ E WDgor C+ z WE6xZz. 

We have T@ Syl,(K). Since Q is characteristic in T, Q 4 S E 
Syl?(N,(T)). Notice that (v} = (X E Q ] x has one eigenvalue -l}. Thus, 
N := N,JQ) E C,(y). Since NK(Q) is corefree and 2-constrained and n = 6, 
we get (by Proposition D) N,JQ) = (y) x M, L < M z WD, E 25 . C,. By 
Proposition D applied to the action of L < M on C,(y), C,(JJ) = Zz x WE,. 
The latter case is impossible, as WE, does not contain a subgroup of shape 
2’ . C,. So, C,(y) = N&l) = (y) x M. Also, if (t) = Z(M), C,(t) = C,(y). 
Thus, ]K: N&2)( is odd and K = K/(-l,) h as an involution with centralizer 
of the form WD,. By [59], Z? 2 Sp(6,2) and so K? WE,, as required. 

The proof of our proposition is complete, 

(3.7) PROPOSITION A. Let F be a field of characteristic p # 2 and B an 
F-cector space of dimension n + 1, n > 3. Suppose that b, E B# and that 
H c H* c K are finite subgroups of Aut,(B) with the following properties: 

(i) H* = N,((b,)) s N,(H), H* = H(c), where c acts as *l on 
I& HI; 

(ii) Hz,Y,,+,. or C,,,, xZ2; or pin+2 and Hz~Y,,+~ or c 
nCI x Zz; and 

(iii) B/(b,) is isomorphic to F.R/F(ZnEOu) or V/F(,E‘,.oa) where R is 
a set of n objects on which H operates transitively, Fl2 is the permutation 
module and, when HzC,,?, V= {CaERA,uIC,ERA,=O}. 

481:80.2 I I 
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Then, one of the following holds: 

(4 H=L+, and K contains a normal subgroup K, = K, x (z), 
where z is +l, and K,s W,d,+,, p]n + 3 and K,r W,d,+z or n= 5 and 
K, ? WE,. Furthermore, K = K, unless K, r C, X Zl, K/Z(K) z Aut A, and 
K/K” z D,. 

(b) Hz-C,,,, p]n+2, and n=4, p=3, Kr WE, or WEoxZz or 
n = I, p = 3, K? WE,. 

(cl P > 0, K = O,(K) H”, O,(K) is elementary abelian and stabilizes 
the chain 0 c B , c B, B, a hyperplane of B with b, 6? B. 

Proof: It sufftces to do the case that K = (t$) where tij E H corresponds 
to the transposition (ij) under the corresponds to the transposition (ij) under 
the given isomorphism H z Z,,, , where m = n + 1 or n + 2. Thus, tij effects a 
reflection on B. Set t = 1, ?, C = C,(t). Then C n H* = (t) x (c) x C,, where 
]c]= I or 2 (as detc=*l) and C,=(t,]i,jG (1,2})~Z,,-,. Define 
B, = C,(t), C, = C,( [B, t]). Then dim, B, = n, C, = C,(d,) for d, = 1 or 
d, = ct and C = C, x (t). 

We may assume that n > 4 for the following reasons. If n = 3, Hz C, or 
C, . If H z C, z Wbz, we may quote Proposition D. If H z C,, p = 5 and we 
argue as follows. Let U= O,(H), B, = [B, U], (b,) = C,,(U). Then C,(U) 
stabilizes (b,), hence lies in H* and so U is self-centralizing in H* n SL(B). 
Thus, a Sylow 2-group of Kn X(B) has maximal class. Since 
K 4 GL(4, F,), the classifications [ 1, 11, 25 ] give a contradiction. 

Now, as n > 4, we may apply induction with C,, H* n C,, C,, B,, b, in 
the roles of H, H*, K, B, 6, to get the possibilities for C,. Suppose that (c) 
holds for C,. Then, as O,(C,) consists of transvections on B, and 
B = B, x [B, t]. with both factors C-invariant, O,(C,) consists of 
transvections on B. Thus, (Cf) = ((C, n t”)“) = (tK) contains transvections 
on B. Using McLaughlin’s theorem [47], we get that (c) holds for K (the 
other possibilities are eliminated by the shape of H*). We, therefore, may 
assume that (a) or (b) holds for C,. 

For simplicity, we first treat the case that C, is isomorphic to a Weyl 
group. If C, is isomorphic to the Weyl group of some root system of type 
other than A, we may quote Proposition CF, D or E. Thus, we may assume 
that C, 2 C, for r = n + 1 or pin + 2 and r = n + 2. Evidently, Cn t” = 
(t) u (C, n t”‘). We have that C, n t” = t:;. We argue that t” is a class of 
odd transpositions. Namely, let s E t” so that st has even order. Let u be the 
involution of (St). Then u has eigenvalues (-1, -1. 1, 1, l,..., 1 } on B. By 
the structure of C,, either u = tt’ for t’ E C, n t”, or u = t’t” for distinct t’, 
t” E C, n t”. In any case, (s, t) acts faithfully on [B, u] and trivially on 
C,(u )- 

If t” is in C,,(u) n t” and t”’ does not appear in the above factorization 



FINITE GROUPS WITH STANDARD COMPONENTS 439 

for u, then, as [B, ,“‘I c C,(u) = C,((s, t)), we get (s, t) < C,&“‘), which is 
conjugate to C. It follows from s, t E tK and the structure of C that (s, t) is a 
four-group. If no such t”’ exists, then, as n > 4, we must have u of the form 
tt’. But then it is obvious that (s, t) is a four-group. Consequently, tK is a 
class of odd transpositions. Using the list of conclusions in [4] and 
CzZz,xz,, we get that KzC,,z or r=4, p=3 and Kr WE,, as 
required. 

Now suppose that C, = C, x (z), where C, is generated by tK n C, and is 
isomorphic to a Weyl group of some root system, then we may modify the 
argument of the previous paragraph, provided that Cn t” = (t) U (C, n t”). 
If this is false, then t fuses in K to some sz, where s E C, and s has eigen- 
values ( - 1, -l,..., -1, 1, 1). Since [B, t] is a section of the usual 
permutation module for C, 2 C,, the number of eigenvalues equal to 1 for s 
is at least 1 + n/2, whereas n > 4, a contradiction. 

Finally, suppose that C, has neither form. Then n = 4, p = 3 and C, is the 
central extension of Aut A, in (a). We have tK n C c C, U (t). It suffices to 
show that every conjugate of t in C, lies in C,*, the Z, x C, subgroup- of 
index 2 in C,, for then the argument of the previous paragraph may be 
repeated. So, by way of seeking a contradiction, suppose that there is 
s E C, n t”, s G CT. Then, the structure of Aut A, implies that s must lie in 
CFs, where Y = C,(s,) 2 D,, (only two nontrivial cosets in Out A, contain 
involutions). On B,, Y has two absolutely irreducible constituents, and on 
each of these s, acts as a scalar. So, s, has eigenvalues 1, a, a, ,8, /3 E F. 
Since det s = det t = -I, it follows that a’p’ = -1. Thus, Is, ] > 4 and, as s: 
centralizes Cl’, we have s: = (z). Thus, (Cl’, s,)/Cr r Z,, whence s cannot 
be in (Cl’, s,). Since s G C,*, it follows from the structure of Aut A 6 that s 
cannot correspond to an involution in Aut A,-Inn A,, a contradiction. The 
proof is now complete. 

LEMMA 3.8. Let Hz A, and X the irreducible 4-dimensional F,H- 
module which occurs in conclusion (b)(ii) of Proposition (3.4). 

(i) If H, is any subgroup of H ismorphic to A,, then X occurs in the 
F, H-permutation module based on the cosets of H. 

(ii) If Y 2 Z:, as abelian groups, n > 2 and Y is an H-module, then 
Y/R, ( Y) & X as H-modules. 

Proof (i) By inspecting the Brauer character, one sees that the 
permutation modules on the cosets of nonconjugate A,-subgroups are 
isomorphic F, H-modules. Take H, G H, H, 2 A,. Then X is irreducible for 
H, and if H,G H,, H,zA,, then H, fixes the l-dimensional space 
C,y(Oz(H2)). Thus, X is the nontrivial absolutely irreducible constituent of 
the F, H,-permutation module for the action of H, on the cosets of H,. Since 
XI,,, is unique (up to equivalence), so is X. 
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(ii) This requires some matrix calculations. We suppose that 
Y/Q,(Y) z X, then derive a contradiction. Without loss, n = 2. 

Any subgroup (-xl) of order 3 in H is contained in a subgroup Ho z C,. Set 
T = 02(H,). Then Y = [Y, T] x C,.(T) and the factors are free Z,-modules of 
ranks 3 and 1. respectively. and are Ho-invariant. Since .Y E H;, ?I centralizes 
C,.(T). Thus. one may choose a basis for Y so that ,Y has matrix 

t 

0 1 0 0 
0 0 1 0 

a= 
1 0 0 0 
0 0 0 1 i 

Now, let (s j x (t> E Syl,(H) where s and t are conjugate in H. Let y,, 4’:) 
?‘3 l yJ be a basis for Y so that s has matrix as above. Let IJI: Y -+ ?= X be 
our H-homomorphism. Since X occurs as a section of the F, H-permutation 
module, we may assume that X is generated by elements eij, 1 < i, j < 6, 
i#j. which satisfy the relations eij = -eji, eij + ej, = eik, i # k, and 
e,: fe,, +e,, +e46= 0. We may now choose notation so that J: = e,,, 
,u .I? = ez4r 4 - ? 3 - e34, 4’: = e563 s, t. correspond to the permutations (123), 

(456). respectively, and the element g E H acts on eii by e: = e,,.;, where g 
corresponds to the permutation g’. where i’ = i’, jR = j’. 

We now determine conditions satisfied by the matrix B representing t. 

Using the basis e,,, ez4. ej3. e56 for X, we compute that e{, = e,, = -e14 - 
I - e34 + e561 e24 - ezs = -e14 f - - e34 + e563 e34 - e35 = -e14 - e24 + e56 and e$ 

- eh4 = e14 - e24 - e34+e56y whence t has matrix 

where each cii is divisible by 3. 
Since st = ts and 

a -I =a? zz 

‘0 0 1 0 
1 0 0 0 
0 1 0 0 

,o 0 0 1 

we have 
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i 

-1 -cj, -1 + Cj? c33 1 f c34 

r, -l"lI Cl, -1 ‘i-c,2 -l+c,, 1 tc,, 

-1 t Cl, 

a 

c22 -1 tc2.l 1 tc,, 

1 +c,, -l+q2 --1+c,, 1 tc,, ! 

-i 

C33 -l+c,, -l+c,: l+c,, 
_ -lfC,3 Cl, -1 +c,z 1 tc,, 

-1 + cp -1 + C?, C?2 1 t CZJ ' 
-1 + c43 1 +c,, -1 + c,: 1 + c,, 1 

which equals ,B. Comparing coefficients and noting equalities, we have a, 6. 
c,d,eE32,suchthata=c,,=~~~=~~~,b=c,~=c~~=~~,,~=~,~=~~,= 
c,,?. d = cJ, = cJ2 = cJ3 and e = c,, = czJ = c,,. Since a and p are conjugate 
comparing traces gives c,, = 0. 

Now 

a/?= 

i 

-1 +c a --I+b l+e 
-l+b -l+c a lte 

a -l+b -l+c lte ’ 
l+d ltd ltd 1 i 

which has trace -3 t 3c + 1 = -2. As noted in the second paragraph, the 
trace must be 1 since c$ represents the element st E H of order 3. This 
contradiction completes the proof of (ii). 

LEMMA 3.9. Let the group G be generated bJ1 involutions t, ,..., t,, n > 2 
subject to the relations 

// -.\-- O 3-o-o ~. . .-0 - . 

(1 t? II 1,-l t” 

Then G is a split extension Zn-‘C,,, where the normal abelian subgroup A is 
isomorphic to the submodule (e, - ejl i, j = l,..., n) of the permutation module 
uy-, Zei for the symmetric group Z, r G/A (this isomorphism is given by 
ti+(i,i+l), l<i<n-1). 

ProoJ Let rp: G + C, be the epimorphism given by ti + (i, i + 1) for 
1 <i<n- 1 and t,,+(n, 1). Then a=(:?““‘‘n-lt,Eker~. Let A=(~‘)E 
ker 9. Then G/A is generated by the images of t2,..., t, which satisfy 

whence A = ker 9. We shall show that A is abelian. For now, assume n > 4. 
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Let H = (tz ,..., t,) ? C,, C = C,(t,) = (tz ,..., t,-,) x (t,). We claim that 

U’” = u-1 (1) 
($1 =a 2<i<n-2. (2) 

In our calculations, we use the index i for I~. Thus, titjtk. .. is written 
ixjxk.... So, (1) is equivalent to l=a a’n=n-lxn-2xX..x3x 
2x1~2~3~ ~~~Xn-2Xn-lXnXnXn-lXn-2x~~~x3x 
2x1~2~3~ ..a x n - 1 x n x n. Since the right side trivially collapses 
to the identity, (1) follows. Now for (2). We have a” = t:*“.“‘n-l’~~ = 
*;*. “fj-,lili+,li’. .+ = (2’. ‘fi-l~i+l~i~i+l”~f~~I~n = (t:i+l)‘*““i-l’i’i+l”““~It, =a, 
giving (2). 

Define B = (a, c~‘m-1~ ). We claim that B is abelian. It suffices to prove that 
I a, a’” 11 = 1, i.e., that 1 = n x n - 1 x n - 2 x ... x 3 x 2 x 1 x 2 x 
3x ~~~Xn-2Xn-lXn-lXnXn-lxn-2x~~~x3x2xlx 
2x3x ~~~Xn-2Xn-lXn-lXn-lxn-2x~~~x3x2xlx 
2x3x ~~~n-lXnXn-lxn-lxn-2x~~~x3x2xlX2X 
3 x .a* x n - 2 x n - 1 X n - 1. But an exercise with relations verifies this 
requirement (e.g., start right at the middle, using n - 2 X n - 1 X n - 1 x n - 
lxn-2=n-2xn-lxn-2=n-lxn-2xn-l,thenmove 
the (n - 1)‘s away from center). 

Finally we show A=B. We have H=CUCr,-,CUCt,-,t,C. It 
suffices to show that u’nml’n E B. In fact, we show that 

ur”-lll = a’l’“u’“-l. 1 (3) 

equivalently. 

So,weshowthetrivialityofn-lxnxlxn-lxn-2X~~~~3~2~ 
1 x 2 x 3x.** Xn-2Xn-lXnXlXnxn-lxn-lxn- 
2 x ‘.f x3x2x1x2x3x... xn-2Xn-lxnxlxnxn-1X 
n - 2 X ... ~3x2~1~2~3~~~~ xn-2xn- 1 x l.Now,cancel 
n - 1 x n - 1 and replace both triples n x 1 x n by 1 x n x 1. Next move 
the i’s closest to each 2 x 1 x 2 inward, then replace each 1 x 2 x 1 x 2 x 1 
by 3. What remains is an expression in H. Since HZ H”, it is routine to 
show that the expression is trivial by a calculation in H’ = C,. 

As for n < 3, the lemma is trivial for n = 2 and the argument for n = 3 
amounts to showing that B = (a, u’*) is abelian and verifying (3) with a 
similar calculation. 

Now we show A = B is abelian of rank at most n - 1. Namely, B is 
generated by a and all ug where g runs over a right transversal T to C&t,- ,) 
in C. Taking T=(gEC]gm=(2,n-1), (3,n-1) ,..., (n-2,n-l), 
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(2, n - l)(n, I),..., or (n - 2, n-l)(n - l)} and using the facts that (n, 1) 
commutes with each (j, n - l), 2 <j < n - 2, and t, inverts a, we get that at 
most n - 1 distinct cyclic subgroups are generated by the members of 
(a, ug (g E T}. Thus, B has rank at most n - 1. 

Finally we show that A has rank exactly n - 1 as follows. Let M be 
the module (e, - ejli,j = l,..., n) for Hz X, as in the statement of the 
lemma and let MH be the semidirect product. The elements 
((e, - e,) tn)‘+1r+2. ’ .fJf2, I2 ,..., t, satisfy the diagram deling G, and we have 
a map v/: G -+ MH. Since e, - e, E G’ and e, - e, generates M as a module, 
ly is onto. The shapes of A and M show that I is an isomorphism, and we 
are done. 

We will require some results on generation of the known simple groups. 
Consider the following more general situation. 

EcHcG and if 
gEG with E’nHfl, then gCH, 

which we refer to by saying that H controls strong fusion of E in G. We 
specify 

Hypothesis 3.10. H controls strong fusion of E in G and E z Ep2, p odd. 

LEMMA 3.11. Suppose H controls strong fusion of e in G and e has 
prime order p. 

(i) IfeEdsHandR~aX,thenXcH. 

(ii) IfeE N, then ptlN: Nn HI. 

(iii) if eEN, V=HnN and N=N/K for some K4 N with 
K c_ V n N, then v controls strong fusion of (CT) in fl. 

Proof: The proof is straightforward. 

LEMMA 3.12. Suppose (3.10) holds. 

(i) If G is p-solvable, H = G. 

(ii) If H is p-nilpotent, H = G. 

Proof: To prove (i) let M be a minimal normal subgroup of G. If pCl Ml, 
then M = (C,Je) 1 e E EX) c H, while if M is a p-group and R = EM, R E H 
by Lemma 3.1 l(i). Thus, M !Z H and since H/M controls strong fusion of 
EM/M in G/M, we have H = G by induction. 

For (ii) suppose H is p-nilpotent and pick P E Syl,(H) with E c P. By 
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Lemma 3.1 I(i) again, P E Syl,(G). By a result of Glauberman [25, Theorem 
12.7 1 there exists a subgroup WE P such that 

W is characteristic in P, and 

if z E P n Z(N,( w)), then z is weakly closed 

in P with respect to G. 

Let N = N&W). If N = G. we may apply the induction hypotheses to G/W, 
so assume N # G. H n N controls strong fusion of E in N, so N s H by 
induction. From the structure of H and choice of K we see that every 
z E Z(P) is weakly closed in P with respect to G. If z E Z(G), then we are 
done by induction, so assume z g Z(G) whence C,(z) C_ H by induction. 
Thus. zK E H implies g E H. and in particular N,(D) E H for any D g P 
with C,,(D) s D. It follows that two elements of P are conjugate in G if and 
only if they are conjugate in P. But now G is p-nilpotent, and the action of E 
on O,.(G) forces O,.(G) G H and H = G. 

LEMMA 3.13. Suppose (3.10) holds and the p-laver of G is L,.(G) = 
K, .‘. K, or L,.(G) = 1. 

(i) Ecer! p-soltlable normal subgroup of G lies in H. 

(ii) If R c H and [R. Hn Ki] g O,,,(H), then R normalizes Ki. In 
particular 0, ,,,(H) normalizes each K;. 

(iii) If Ki @ H, then E normalizes Ki. 

Proof. Lemma 3.1 l(i) yields (i). Next we prove (iii). Assume E does not 
normalize K;. By induction on IGI, we may assume O,..,(G) = 1. Indeed if 
not, then by (i). O,..,(G) c H and by induction E normalizes KiO,.*,(G). As 
Ki aa G, Ki is characteristic in KiO,,,,(G) and (iii) holds. We may also 
assume by induction that E acts transitively on thep-components of G. Since 
O,,.,(G) = 1, each Kj is simple. 

Let L = L,,(G) and X= (C,(e) 1 e E E’). It suffices to show X= L. If 
NF(Ki) # 1, then choose e E E# to normalize Ki. As p 1 / Kil, 1 # C,i(e) c 
Xn Ki. ChoosefE E so that (f) acts transitively on the components of L. 
As C,(f) s X, X projects onto Ki whence Xn Ki a Ki and Ki S X. It 
follows that L = X as desired. 

If N,(K,) = 1, then E acts regularly and we can choose e,fE E” so that 
the (e)-orbit containing Ki and the (f)-orbit containing Ki have only Ki in 
common. Letting X = (Kj’)) and Y = (Kjn), we have Ki = [C,(e), 
CJf)] g X whence L = X. 

Now we prove (ii). Just as in the proof of (iii) we may assume 
O,.,,(G) = 1 whence Ki is simple. Suppose r E R does not normalize Ki. If 
Ki 5 H, then K,(K,)’ = [Ki, r] c O,,,,(H), which is impossible. Thus, Ki g H 
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and by (iii) E acts on Ki. By Lemma 3.12, If n Ki is not p-nilpotent, whence 
[Hn Ki, r] contains a section which is not p-nilpotent. But [H n Ki, r] E 
O,,-,(H), contradicting the existence of r. 

LEMMA 3.14. Assume the hqlpothesis of the preceding lemma and assume 
that each Ki satisfies the Schreier Conjecture: then 

L,.(H) = L,,(Hn K,) . . . L,,(Hn K,). 

Further if L, is a quasisimple component of H, then L, s Ki for some 
quasisimple component of G. 

Proof The action of E gives O,,(G) c H. Thus, if L, is as above, then 
(L,, O,,(G)] = 1, whence [Ki, O,(G)] = 1 and Ki is quasisimple. 

For the proof of the remainder of Lemma 3.14 we may assume 
O,..,(G) = 1 by induction whence each Ki is simple. Since L,,(Ki n H) is 
clearly a summand of L,,(H), it suffkes to show that each p-component of H 
lies in some Ki. 

Let L = L,.(H) and X= HnL,(G). Since X Q H, L = L,L2 where L, is 
the product of all p-components of H lying in X, L2 is the product of all 
other p-components of H, and Xn LL c 0,.,(L2) s Op,.,(H). As 
( tz n X. X] E L, n X, Lemma 3.11 (ii) implies that LZ normalizes each Ki. 
It follows that L does too. 

Now for any K = Ki, L = L,L, where L, is the product of all p- 
components of H lying in K and L, is the product of the rest. Letting 
Y= Hn K, we have as before L, E Y and L,n YE O,,,,(L,). By 
hypothesis, L, acts as inner automorphisms on K. Let bars denote images in 
Am(K). z, < I? implies [z4,z4] E [z4, y] 5 O,..,(z,). As L, is perfect, 
&= 1. 

Thus, for any p-component J of H and any K = Ki, Jz K or [J, K] = 1. 
As O,.*,(G) = 1, J acts nontrivially on L,,(G) and (ii) holds. 

LEMMA 3.15. Assume the hypothesis of Lemma 3.13. Suppose p = 3 and 
P a Q a R a H with 

(a) R/P 2 S,; 

(b) P = O,,(R); 

Cc) Q = O”(Q); 
then R normalizes every Ki. Further either Q c O,,.,(G) or there exists 
K = Ki such that R acts nontrivially on K/O,.*,(K) and if Q acts as inner 
automorphisms on K/O,,,,(K), then Q s K. 

Proof: Clearly [R, H] c QS O,, ,(H) so R normalizes each Ki by 
Lemma 3.13(ii). If Q acts nontrcvially on O,,.,(G)/O,,(G), then our 
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hypotheses force Q c O,,,,(G). Th us, we may assume Q acts nontrivially on 
K/O,..,(K) and induces innerautomorphisms. By induction we may further 
assume 0 ,,.,(G) = 1. If Q YZ K, then [R, H f7 K] c P, and letting bars denote -- 
images in Aut(K/O,,.,(K)), wehave[R,Q]c[R,HnK]gPwhenceQ=l, 
not the case. 

The remainder of this section is primarily devoted to determining when 
certain configurations satisfying Hypothesis 3.10 can occur in the known 
simple groups. These results will be used in Section 6; and roughly speaking, 
H will be isomorphic to the centralizer of an element of prime order in a 
group of Lie type defined over a field of characteristic 2. As a consequence 
we need only consider configurations satisfying the following more restrictive 
version of Hypothesis 3.10. 

Hq’pothesis 3.16. (I) H controls strong fusion of E in G and E z E,,, p 
odd. 

(II) K = F*(G) is a known simple group. 

(III) Let Q = O,(H) and L/Q = L(H/Q). The following conditions 
hold: 

(a) The components of L/Q are Chevalley groups or Steinberg 
variations (i.e., not twisted groups of type Bz or F4) over a field of charac- 
teristic 2; 

(b) L is perfect or L(H/Q) = 1; 

(c) H/L is solvable: 

(d) E acts as inner-diagonal automorphisms on each component of 

L/Q: 
(e) if L(H/Q) # 1, then either L is 2-constrained, or L is 

quasisimple with IZ(L)I odd; 

(f) if L(H/Q) = 1, then either m,(K) = 1, or K has a perfect central 
extension K by a cyclic p-group with m,(K) = 2. 

(IV) For all ?I E E#, L,.(C,(x)) is quasisimple or 1 and each 
component is a group of Lie type over a field of characteristic 2. 

LEMMA 3.17. If Hypothesis (3.16) holds and K is alternating or of Lie 
type, then one of the following occurs: 

(i) H=G: 

(ii) K=A,, p=3, F*(HnK)=E, or K=AJs, s=2,3,4, p=S, 
and F*(HnK) = A;; 

(iii) K is a group of Lie type over afield of characteristic 2 and p = 3 
or 5. 
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Proof. We may assume H # G. If K E H, then fi controls strong fusion 
of i? in G = G/K, and as G is always solvable, H = G by Lemma 3.12. Thus, 
we may assume K & H. 

Suppose K is alternating, say K = An, and e E E# has cycle structure 1 ‘p”. 
Assume s > p and 

e=(l)..., p)(p+ l,..., 2p) *.* ((p- 1)p + l,...,p*) . . . . 

As e is fused in K to 

f=(l,p+l,..., (p-l)p+I)...(p,2p ,..., p’>y 

we have (a, b) g H, where 

a = (1, 2,..., p) E C,(e) E H 

and 

b = (p, 2p ,..., p’) e C,(f) c_ H. 

But (a, b) is the alternating group of the letters moved by a or b; and it 
follows easily that A, x A,, & H. As sp > 9, conditions III(a)-(c) of 
Hypothesis 3.16 cannot both be satisfied, and we conclude s < p. 

A similar argument yields r <p. It follows that E has no regular orbits, 
and that we can choose e to have cycle structure lpps. Control of strong 
fusion of e forces H to contain F = A, 2 A,, , . In fact, as e E F, N&F) E H. 
Since N,(F) is maximal in G, H = N,(F). Applying conditions III and V of 
Hypothesis 3.16 we obtain conclusion (ii) above. 

Next suppose K is of Lie type over a field of characteristic p. If 
EnK= 1, then p= 3 and K =D4(33n). Some eE E# is a field 
automorphism with H 2 C,(e) z 0,(3”). By [8, Theorem 11, C,(e) is 
maximal in K. By Lemma 3.11, p,ji G: HI; and as p /(K: CR(e)/, it follows 
easily that K z H. Thus, we may assume En K # 1. Applying the operator 
O,(N,( )) repeatedly to En K, we eventually reach O,(w) for some 
parabolic subgroup W of K [9]. It follows that WC H whence H n K is a 
parabolic. Condition III(e) now implies L.(H/Q) = 1, and in view of 
Condition III(f) we need only consider the possibilities m,(K) = 1 and 
m,(Z?) = 2. In the first case K must have Lie-rank 1 whence H n K is a 
maximal subgroup of K. But some e E E - K is a field automorphism, and it 
follows_ easily from C,(e) E H that KC H. In the second case, by [38], 
p 1 jZ(K)I implies p = 3 and 

K=A,(% B,(3), G,(3), or ‘A,(3). 

Likewise the Sylow 3-subgroup of Z(K) is elementary whence by Condition 
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III(f) lZ(I?)l = 3. Now m>(x) < 2 implies m,(K) < 3 by a straightforward 
argument whence K = A ,(9) z A, and Lemma 3.17(ii) holds. 

Finally suppose K is of Lie type over a field of characteristic prime to p. 
Our conditions imply K # (C,(e) e E E”), and 1.52. Theorem 1 and 
Theorem 21 yields conclusion (iv) of Lemma 3.17. 

LEMMA 3.18. If Hypothesis (3.16) holds and K is of Lie type ocer afield 
of characteristic 2. then one of the following holds: 

(i) p = 3, K = C,(2), Hn K = 0’(8,2); 

(ii) p = 3, K = C,(2), H n K = 0 -(6, 2); 

(iii) p=3, K=A:(4). ES K, F*(HnK)=A,zCz(2)’ or 
Hn K = ‘A:(Z); 

(iv) p=5,K= 'C,(2"). HnK=Z,ZZ,; 
(v) p = 3, K = A,(8); Hn K is dihedral of order 18. 

Further C,(E) is a p-group. and. in cases (i)-(iii), E acts on K as inner- 
diagonal automorphisms. In cases (i) and (ii) the standard K-module may be 
decomposed into a direct sum of pairwise orthogonal hyperbolic planes in 
such a way that E acts nontriL~ial[?~ on each plane and H acts as the 
orthogonal group preserzling the quadratic form which takes the tlalue 1 on 
the nonzero elements of every* plane. 

ProoJ We sketch the proof. which consists of analyzing all the 
possibilities for failure of generation presented in [52]. Suppose first that K 
is classical and E acts as inner-diagonal automorphisms. Let E, be a Sylow 
p-subgroup of the pre-image of E in the universal covering group K, of K (or 
more precisely in K, extended by its diagonal automorphisms). Assume first 
that E, is abelian. By [ 52, (4. l)], p = 3. ra = 2, and K # A,(2). Further let V 
be the standard K,-module; then 

with V,, = C,.(E,), dim( VO) < 0, 1, 2 according to whether V is symplectic, 
unitary. or orthogonal and for i >, 1 Vi = [Vi, E,], dim( Vi) = 1 or 2 
according to whether V is unitary or not. Let D,, = CRO(E,), then either 
D, = E, and D, stabilizes the decomposition of V above, or K, = Sp(Zn, 2) 
and D, = 0”(2n, 2) preserve the quadratic form which has value 1 on each 
vector in q, i > 1. Clearly K G H implies D, # K,. 

If K, = SU(n, 2), then a lift of e E E” has a diagonal matrix representation 
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with each diagonal entry corresponding to a summand of the decomposition 
of V. If 1; = Jj = I, for distinct i, j, k, then D, contains a subgroup 
isomorphic to SU(3,2) which does not stabilize the decomposition of V. 
Thus, the multiplicity of any eigenvector is at most 2, whence n < 6. If n = 6, 
then the trace of the matrix of e is 0 for each e E E”. As each ii is a cube 
root of unity, we may choose the lifts of each e to generate a subgroup 
E, E E,. E, z E. We identify E with E, . Let w be the corresponding 
character of E. w(e) = 0 for e E E” and I+Y( 1) = 6 which is impossible as 
1 El = 9. A similar contradiction obtains if n = 5. 

Consider the case n = 4. We have K, = K = SU(4, 2) z PSp(4, 3). As 
H n K controls strong fusion of E#. H n K contains all monomial matrices. 
The subgroup of such matrices corresponds to a maximal parabolic of 
PSp(4. 3) whence H n K is the monomial subgroup. It follows that the 
subgroup of diagonal matrices is normal in H. On the other hand there are 3 
K-classes of elements of order 3 represented by 

As we saw above, E contains no elements of the third class; it follows easily 
that E contains elements from the other two classes. But Hn K contains an 
element I(’ with matrix 

i 0100’ 0 0 1 0 0 0 0 0 1 0 0 1 1 
As C,.(trl) has dimension 2, MI is fused in K to an element of E. Thus, \V is 
fused in H to E, contrary to the structure of H. 

The last two paragraphs show that when E, is abelian (and Kg H) we do 
not have K = ‘A,(2). A similar argument disposes of the other classical 
groups whenever D, stabilizes the decomposition of V. 

Suppose E, is abelian but D,, does not stabilize the decomposition of V. 
K, = Sp(2n, 2) and D,, = 0”(2n, 2) as discussed above. If the lift of any 
e E E# centralizes two summands of V, then D, contains a subgroup 
isomorphic to Sp(4,2) which does not preserve the quadratic form. Thus, the 
centralizers in E, of the summands of V are all distinct. It follows that k ,< 4. 
As V,, = 0, we have K = C,(2) or C,(2) and H = H n K contains a subgroup 
L isomorphic to O-(6. 2) or 0+(8, 2), respectively. By [52, (2.3)], D, does 
not act on a 2-subgroup of K, lest D, = K,. Thus, O?(H) = 1, and it follows 
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by arguments on the order of L and H that L a H. At this point we have 
obtained Lemma 3.18(i, ii). 

Assume E, is nonabelian. BY 152, (4.5)) we have p = 3 and 
K, = SL(3k, 4) or SU(n, 2). In the first case if E, is reducible, then E, acts 
on a 2-subgroup of K, whence D, = K, by 152, (2.3)]. Thus, E, is 
irreducible. As E, is extraspecial of order 27, we deduce first that k = 1 and 
then that Lemma 3.18(iii) holds. In the second case suppose some e E E lifts 
to e, E E with Je,] = 9. Then n = 3k and with respect to some basis e, has 
matrix 

Further if k > 1 and fE E - (e j lifts to f,, then f, acts as a field 
automorphism on L(C,&e,)) whence 2 1 ] C,O((e,,fo))] contrary to [52, 
(2.3)]. Thus, k = 1 and K is solvable, not the case. Finally if every element 
of E# lifts to an element of order 3, then E, permutes the 3 eigenspaces of 
any e, E Ez. and an argument using [52, (2.3)] yields K = 1. 

Next assume that K is an exceptional group of Lie type and E acts as 
inner-diagonal automorphisms. The possibilities with Cf,JE,) # K, are listed 
in [ 52. (5. l)]. With one exception p = 3 and ra = 2 or 4. Notice that as we 
have seen above ] C,o(E,,)I must be odd. When p = 3, it follows that for any 
e E l?. O”(C,Je)) has as possible summands only A,(q), A,(q) with 
3 I q - 1, and ‘A?(q) with 3 I q + 1. Thus, for any particular exceptional group 
K that there are at most a few possibilities for the conjugacy classes of 
elements in E. In fact when K is of type E, or E,. there are no elements of 
order 3 whose centralizers have the required structure. 

Next suppose K = F,(2). There is just one possible class for e E E#. Pick a 
fundamental system of roots of type F, 

and let (vi 1 I < i < 4) be the dual basis. Let u be the standard automorphism 
of the algebraic group Z? with fixed points F,(2), and let W,, be the element 
of the Weyl group interchanging positive and negative roots. [q3, woa] 
describes an element in the K-class of e (where K is taken to be the 
centralizer on the algebraic group of I,,.Ou as discussed in Section 2). C,(e) = 
Z,/(‘A,(2) x ‘A,(2))/Z,. Let E, be the group generated by e and 

and check that all elements of E, are conjugate in K to e. As E, C_ H, H 



FINITE GROUPS WITH STANDARD COMPONENTS 451 

controls strong fusion of E, in K. E, acts on J= F*(CdZ,Oa)) where .? is 
generated by the root groups corresponding to *cz, , *a,, +a,, and k/3, /I the 
lowest short root. Jr C,(2), so our previous discussion of the case 
K = C,(2) yields a subgroup L of H isomorphic to D,(2). If O,(H) # 1, then 
some 3-element w E K has a subgroup isomorphic to D,(2) in its centralizer, 
which is impossible by inspection. If O,,(H) # 1, then O,(C,( g)) # 1 for 
some g E ET, again impossible by inspection. Thus O,,.,(H) = 1 whence L 
lies in E(H) and E(H) is a direct product of simple groups. Let L project 
nontrivially on the summand L, of E(H). From the preceding observation 
3kjC,(L,)I whence all other summands have order prime to 3. As 
O,(H)= 1, L,=E(H). As 35/11L( but 36]]C,(e)] ]H(, L=L, implies that 
N,(L) contains a 3-element u’ with C,(w) 2 3D,(2) which is impossible by 
inspection of the layers of centralizers of elements of order 3. Likewise 
t , # C,(2). On the other hand the conjugates under L, of the root 
involutions of K in L generate L, , so the possibilities for L, are known by 
Timmesfeld [ 581; and 1 L ] ] IL, I ] ] Kj gives a contradiction. 

The other cases in [52, (5.1)] are dealt with similarly. The failures of 
generation in which E does not act as inner-diagonal automorphisms are 
described in 152, (6.1), (6.3), (6.4)]. In (6.1) we find p = 3, K = ‘C2(25) or 
A ,(S). which leads to Lemma 3.18(iv. v). In (6.3) and (6.4) we have E acting 
as inner-graph automorphisms on K = “D,(2), D,(2), or D,(4), and we wish 
to show that K @ H leads to a contradiction. 

Suppose K = ‘D,(2). K has one class of 3-central elements of order 3. Let 
.Y be such an element. From [52, Table 3.31, C,(x) is an extension of 
J = SU(3,2) with I C,(x): J] = 3 and some 3-element inducing an outer- 
diagonal automorphism on J. The other class of elements of order 3 in K has 
centralizer Z, x A ,(8). K has a graph automorphism r with C,(t) = G,(2). 
As G,(2) contains a 3central element with centralizer SU(3, 2), we may 
take r to centralize J. Thus C,(x)(s) contains a Sylow 3-subgroup of 
K(r) 2 E. We take E c C,(x)(r) and (x, r) c S E Syl,(C,(.u)(r)). As 
N,((x)) is solvable, N,((x)) s H by Lemma 3.12. From [52, (4.3)] we have 
C’,@) @ NJ(x)) for any p E E - K. Thus N,((x)) c H n K whence 
O,,(H)= 1. 

Pick yESnK with C,(y)=(y)xL, LzA,(8); and C,,(y)E 
Syl,(C,(y)). Our conditions force x E L whence (as K has just two classes 
of elements of order 3) y is inverted in N,((y)) n C,(x). It follows that 
.r E J. Let F = O,,(H n K). If F # 1, then considering the action of (x,~‘) on 
F, we have either O,,(C,(x)) # 1 or for some z = yxi, i = 0, 1, 2, C,(z) 
contains a @-subgroup invariant under C,((x, y)) 2 Z, x Z,. But as z is 
conjugate to 4’ in J, we see that neither possibility occurs whence F = 1. 

We have O,.,,(Hn K) = 1 whence X = E(Hn K) # 1. Each summand of 
X is simple with order divisible by 3. As S n K has rank 2, X has at most 2 
summands. Thus the intersection of S with any summand lies in Z(S). As 
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Z(S) = (x), we have that X is simple and S acts faithfully on X. Further 1x1 
properly divides ]R( = 2” x 3J x 7’ x 13. and surveying the orders of the 
known simple groups, we see that no such X exists. 

In the cases K = O,(2) or D,(4) we can use E to find A & Hn K such 
that H controls strong fusion of A in K, a possibility ruled out earlier. 

LEMMA 3.19. Let QY be a 2-constrainedfinite group with Q = O,(QY) a 
special group of order q9, q > 2 a power of 2, Y 2 GU*(4, q) z GU(4, q) x 
Z q-1 with Q/Q’ the standard module for Y. Then the isomorphism type of 
QY is unique. 

Proof: Let Y,, be the subgroup of Y corresponding to GU(4, q). Set 
H = QY,,. @ = H/Q’. Since the Schur multiplier of Y, is trivial [38] and 
Ext :-,,(Fz, Q) = 0 (because Z( Y,,) z Z, + , acts fixed point freely on Q), we get 
that the Schur multiplier of H is isomorphic to Q’, an elementary abelian 
group of order q (because the invariants in Q@ Q of Y,, have dimension 1 
over End,-o(Q) 2 F,,). Therefore, H is a covering group of H. A result of 
Schur [ 5 1 ] states that if G is a finite group in which 1 G/G’ 1 is prime to the 
order of the multiplier, a covering group is unique up to isomorphism. So, H 
is uniquely determined. Let rr = ~(q - 1) and let (~1) = O,(Z( Y)). The action 
of J’ on 6 lifts to a unique action on H (see [37, appendix]). Since 
H n (~1) = 1. the isomorphism type of QY = H(J) is completely determined. 

LEMMA 3.20. Let K be one of the linear groups in the conclusion of 
Propositions A, CF. D or E. Then K does not contain a p-element inducing a 
quadratic minimal polynomial on B*. except for p = 3 and K essentialI>? 
w; I. 

Proof Let .Y be a p-element with [B*, x, x] = 1. Then x does not act 
nontrivially on a nonidentity abelian 2-group. So, if O?(K) # 1. it is 
extraspecial and K is essentially the Weyl group of F,. In this case, if 
R z O,(K), then (R, ,r] z QR, and C,(.u) = Q,. 

Suppose O?(K) = 1. Then either K is essentially a Weyl group of type A 
and B* is a standard module, in which case the result is obvious, or else K is 
of type E,. E, or E,; but then special arguments may be employed. It 
suffices to do the case K z WE,. 

If .Y lies in a subgroup isomorphic to some Z,, generated by reflections, we 
are done. Since Wdp 4 W,.$, the only possibility is p = 5 and x has minimal 
polynomial (t’ - l)/(t - 1) on the root lattice, /i. Say [z. x. -y] = 1 where 
/1z A/5/1 2 B*. Such an .Y lies in a diagonal subgroup S g S, x Sz, 
S” s, ” Sz” w,,. The representation theory of F,A, shows that x is not 
quadratic on any irreducible module, contradiction. 
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PROPOSITION 3.21. Assume Hypothesis 3.16 with K sporadic. Then 
m,(K) < 2. 

PROPOSITION 3.22. Assume Hypothesis 3.16 with K sporadic. Then 
p = 5, K 2 FzZ, H g D,(3) C,. 

Proof of Proposition 3.22. This follows from Proposition 3.21, [33], and 
Hypothesis 3.16. By [33, Part I, Section 24) (K,p) must be on the following 
list when m,(K) = 2. 

p= 3: K=M,,,M,,, 

p=5: K = His, WL, F,, , 

p= 7: K = Held, O’s, Fi4, 

p= 11: K=J,. 

We eliminate all but p = 5, K = F,,. 
Suppose L(H/Q) = 1. By Hypothesis 3.16(111(f)) and knowledge of Schur 

multipliers (381, we eliminate all groups on the list above. 
Suppose Q # 1. Then for some e E E’, O,(C(e)) # 1. By checking the 

properties of the groups on the list, we find that the only possibility is ML*, 
p = 3, C(e) z 3 “‘2 or 3xA, for eEE#. Thus ]Q]=4, since E contains 
elements of both 3-classes, and so QE z 3A,. But then, as all elements of 
E - Z(P) (E < P E Syl,(K)) are fused, we have a contradiction to C(e) G H 
for all e E E#. So, Q = 1. 

We now have that L = L(H)s L(H/Q) # 1. Suppose O,(H)# 1. By 
checking the properties of groups on the list, L # 1 limits us to the 
possibilities 

HI’S: p=5. 5 xA,, 

Held: p= 7, 7 X L,(2), twice. 

But in these cases lK: HI E 0 (modp), a contradiction. 
Finally, we get O,(H) = 1. Suppose for some e E E#, C(e) is nonsolvable. 

We then get the possibilities of the previous paragraph. In particular, p > 5. 
Since P is nonabelian of order p3, exponent p, P is the weak closure of E in 
P. Therefore, L has nonabelian Sylow p-group, whence p divides the order of 
the Weyl group, whence IPI >p”-’ >p’ > IH(, =p3, a contradiction. So, 
C(e) is solvable, for e E E#. The above argument goes through unless P is 
abelianorp=3.Ifp=3,L#land(IK:HI,3)=1implythatK=M,,and 
LzA,, Hz.,,. But then N(P) 2 3’ . 24 cannot be in H, a contradiction. 
So, p = 5 and K = F,,, as required. 

48 1faop I 2 
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Proof of Proposition 3.2 1. Until further notice, we assume Hypothesis 
3.16(1. II, III). Without loss. K = F*(K). We let P denote a Sylow p-group 
containing E. 

We assume that the list of Known simple groups in 128, Chapter 21 is 
complete. 

In some of the results which follow, we give information about sporadic 
groups. It is not possible to give published references in every case. 
Sometimes, the information is deduced from the character table and class 
list, copies of which have circulated among the group theorists. The 
published references are 14, 45. 481. See also 1331. 

LEMMA 3.23. Suppose that m,(K) > 3 for some odd prime r. Then the 
possibilities are: 

K r IKI, m,(K) 

J, 
M’L 
SW 
0.1 

0.2 
0.3 
F22 
F23 
FL 
Ly s 

O’S 
F2 

Fl 

F3 
F5 

3 
3 
3 

3, 5 

3 
3 
3 
3 
3 

375 

3 
3, 5 

3, 5, 1 

3 
395 

3’ 
36 
3’ 

39. 5j 

3J 
313, 56 

320, 59, 76 

3 IO 

36, 56 

3 
24 
25 
26 for r = 3 

3 for r = 5 
4 

25 
25 
26 
27 
>,5 for r = 3 

3 for r = 5 
4 

25 for r = 3 
3 for r= 5 

27 for r = 3 
24 for r = 5 
23 for r = 7 
>5 
23 for r = 3, 5 

LEMMA 3.24. Suppose that F*(K) is sporadic, m,(K) > 3 and that 
r E K(K) is odd. 

(a) For x E K, 1x1 = r, the possibilities for C(x) are listed below. 

(b) In (a), when L(C(x)) # 1 and every component lies in Chev(2), we 
mark with an * (an *? indicates a possibility only). 
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(c) When x E K, 1x1= r and O,(C,.,,,(x)) # 1, we mark with a # (an 
# ? indicates a possibility only). 

(d) If a Sylow 3-group of K has noncyclic center, F*(K) r J,, O’S, 
suz. 

Remark 3.25. Since lout(K)1 < 2, for all sporadic simple groups K, if 
/ OZ(C,(x))( # 1 and there is no # opposite K for C(x), then \O,(C,(x))\ = 2. 
This occurs for K = F,: . 2. In the proof, we may assume K = F*(K)). 

Sporadic Centralizer orders 
Group p r for class of order r 

J, 3 3 

2 

M’L 3 3 

2 

suz 3 3 

5 

7 
>ll 

0.1 3,5 3 

5 

7 

>ll 

0.2 3 3 

5 

7 
211 

35 
2’ 33 5 

23 36 5 
2’ 35 

2’ 3’ 5 7 
23 34 5 
2’ 3’ 

23 32 52 
22352 
22 3 7 

213 38 5 7 13 
2’ 39 5 

26 3s 5 7 
28 38 5 7 
2’ 33 52 7 

23 3 54 
25 32 53 
23 3? 5 7 
23 3 72 

22 3 53 
23 3 52 

23 7 

Centralizers 

35 
3xA, 

solvable 

3’f4SL(2,5) 
solvable Z? 
solvable 

3 . U,(3) 
3x3xA6 
solvable +; 
5xA, * 
5XAs * 
3xA4 f 

solvable 
3 suz 

3’ +4sp(4,3) 
3xA, 

3 . 3 . U,(3) . 2 
5 x HJ 

5”+2sL(2,5) 
5 x (AS xA,)2 *,#? 

7xA, 
7 X L,(7) 
solvable 

3’+42’+4A, 
3 x U4(2) 2 * 

solvable 
5xA,.2 * 

7 x D, f 
solvable 
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Sporadic 
Group p 

0.3 3 

FL' 3 

f-23 3 

F22 3 

GILMAN AND GRIESS 

Centralizers orders 
r for class of order r 

3 

5 

7 
11 
23 

3 

5 
7 

11 
>13 

3 

5 
7 

11 
>13 

3 

5 

7 
11 
13 

2" 3'7 3 XL,(B)* 3 
2-'3l5 3'+'SL(2,9)2 
2? 36 5 3.3'.A,' 2 
23 35' solvable 
2? 35? 5xA, 
237 solvable 
2 11 cyclic # 
23 23 

2’3 31J 5? 7 13 
2" 316 5 11 

26 314 
2q 3'" 5 7 
2' 38 7 13 
2'3j 52 1 
2j 3? 5 7? 

2? 3 73 
2'3 11 

3 x ~4(3)9C3 

3 '+'oc/,(2)* 2 
solvable 

3. 36 1 O-(6,3),2 
3 x 3 x G,(3) 

5 xc, 
7 xc, 

solvable 
solvable # 
solvable 

2" 3'O 5 7 13 
2’0 3’3 

zJ 3'O 
2' 3'O 5 
2J 32 51 
2"357 

22 11 

3 x B,(3) 

solvable 
solvable 

3. 3s * B2(3)2 
5xz, 
7 xc, * 

solvable # 
solvable 

2s 3l5 7 
2' 39 
2" 3' 
26 3' 

23352 

237 
2 11 
13 

3 x U4(3)2 
solvable f ? 
solvable # ? 
solvable +? 

5 xc, 
* 

solvable 
solvable # 
solvable 

Centralizers 
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Sporadic Centralizer orders 
Group p r for class of order r Centralizers 

LpS 3,5 3 24 3'5 32+1SUr(2,5) 
2' 3' 5 7 11 3M’L 

5 zJ 3? 5h 5’+JsL(2,9) 
235' (5 If2 x 5). c, 

7 2J 3 I2 7 x SL(2,7) 
>ll solvable 

O’S 3 3 2" 34 5 

a5 

F, 3.5,7 3 2'13205z 7 1113 

3x3x.4, * 
solvable 

5 

7 

11 
13 
17 
19 
23 
29 
31 
41 
47 

259 

2'5 3"5372 13 1931 
2213165273 11 13 172329 

28 j359 7 
2'" 36 56 7 11 19 

24 32 5 76 
2'O 33 52 7J 17 

26 33 5 112 
2'3 13' 
2'3 7 17 
2? 3 5 19 
2" 3 23 

3 29 
2331 

24;7 

3 '+'~2SUz 
3 x F, 

3Fi4 
5 ‘+“2HJ 

5 x F, 
7”‘2A, 
7 x Held 
11 XM,, 

13’+‘SL(2,3) 
17 x Lz(7) 

19xA, 
# 

29 x 3 
31 xc, 

41 
47 x 2 # 

solvable 

F2 3,5 3 

5 

7 
11 
13 
17 

2'93'05'7 1123 
2’3 313 5 

2” 32 5” 7 11 
27356 

2'3?5 7 
2335 11 
2'3 13 
22 17 

3 x Fz2. 2 
3'+82'+6UJ(2) 

5 x HI‘S . 2 
51+'21+4A 

7x2.L3(4)f2 # 
11 xc, * 

13 xc, # 

2x2~17 # 
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Sporadic Centralizer orders 
Group p r for class for order r Centralizers 

F3 3 3 24 3’ 5 3 . 3”A, 2 

26 3l7 13 3 x G,(3) 
2’ 3’O solvable 

5 2’ 3 5’ 5 Ii.? 
7 2’ 3 72 7 X L,(7) 

>13 solvable 

F5 3,5 3 26 35 5 7 3xA, 
2’ 36 5 3’+4SL(2, 5) 

5 2j 3255 7 5 x U'(5) 
2s 56 solvable 

2” 3 5J solvable 
7 7xA, 

11 2x 11 # 
19 2 19 19 x 2 # 

ProoJ Study the character tables and class lists. 
We argue that none of the rows for p = 3 and K = Fi4 or F,, deserves a #. 

(They tentatively deserve Z’S). 
Say K = F,, ,1x1 = 3, 1 C(x)/ = 263 I’. Without loss, P c C(x), P E Syl,(K). 

Say O,(C(x)) # 1. Let 2’ = 1 Oz(C(x))/lp(02(C(x)))I, r > 1. Since 
max( 1 C(t)13 1 t an involution of F,, } = 3 lo, we get r = 6, P/C,(O,(C(x))) z 
Z, t Z, and every element of O,(C(x))# has centralizer of the form 2F,,. 
Since such an involution lies in F2,, - Fi4 and r > 1, we have a contradiction. 

Say K=F,,,xEK, 1x1=3, IC(X)I=~“~‘~, O,(C(x))# 1. Then 
I P: C,(O,(C(x)))l < 36. Thus, for Y E O,(C(x)), IW)13 > 3’, a 
contradiction. Say x E K, 1x1 = 3, I C(x)1 = 243’o, O,(C(x)) # 1. Then for 
4’ E O,(C(x)), I C(y)l, 2 3’, another contradiction. So, K # Fz3. 

LEMMA 3.26. pk/ K: HI; in fact N,(P) c H for P E Syl,(H). 

Proof. If E E H, s H, then N,(H,) G H. 

LEMMA 3.27. Suppose m,(K) > 3, P,(H) = 1 and L(H) # 1. Then L(H) 
is quasisimple. 

Proof: Let L, ,..., L, be the components. We assume s > 2. 
We claim that E normalizes each component. If false, take an index i with 

E c N(L,). Then Li 2 Lf for all x E E, so that m,(H) > 3 for r E n(Li). By 
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Lemma 3.23, (K, r) = (. 1, 3), (. 1,5), (LyS, 3), (LYS, 5), (F, ,3), (F*, 5), 
(F,, 3), (F,, 5), (F,, 7), (F5, 3) or (Fs, 5), for r E n(L,). In particular, 
n(Li) G (2, 3, 5, 7). Suppose r = 7. Then there are distinct, pairwise 
commuting conjugates Li, Lj, L, and an element y E Li, 1 yl = 7 so that 
C(y) 1 (y, Lj, Lk). So, C(y) z Z, x Held, Li z L,(7), s = 3 and p = 3. Take 
.X E E - N,(L,). Then C,,,,(x) 2 L,(7). But, C,(x) z 3F;.,, 3’+“2 Suz, or 
3 x F,, whence C,(x) cannot be contained in H, a contradiction. So, r < 5 
and r(Li) = 12, 3, 5}. By properties of K-groups, Li/Z(Li) z L,(4), 
L>(9) z Sp(4,2)’ or U,(2). 

Since Lvvs does not contain a four-group whose centralizer involves a copy 
of Li,Li, (Lq6,3) and (LyS,5) are out. So, Kg-l, F,,F, or F,. 

Suppose K 2 .l. The only possibility is s = 3, p = 3 and L(H) s 
A, xA, XA,. Take x E E, Lf # Li. Since 1x1= 3, C(x) 2 3’+‘Sp(4,3), 
3 x A,, 3’ . U,(3).2 or 3&z. Clearly C(x) G H is impossible, in all these 
cases. 

Similar arguments eliminate the cases F,, F, and F,. Say K z F,. Then 
p = 3, or else A, x A, x A, x A, is contained in the centralizer of an element 
of order 5. So s = 3 and p = 3 and we get a contradiction as above (if 
IX= 3. x E K, then C(x) r 3FG,, 3 x F, or 3” ‘*2 SUZ). The cases F, and 
F, proceed similarly. The claim follows: that is, E normalizes each com- 
ponent. 

Let E G P E Syl,(H) E Syl,(K). We argue that p E n(L,) for all i. Suppose 
that p & n(L,). Then as Li is a Chevalley group or Steinberg variation, p # 3 
so that p = 5 or 7. Thus, the structure of Out(Li) (cyclic Sylow p-groups 
since p & n(L,)) implies that C,(L,) # 1 and that if [L,, E] = 1, then some 
element of E induces a field automorphism on Li. If [Li, E] = 1, we 
contradict Lemma 3.24 for p> 5. So, [Li, E] = 1. Thus, Li is a group 
defined over some finite field whose degree over the prime field is divisible 
by p > 5, a contradiction to Lemma 3.24. Therefore p E 7c(Li) for all i, as 
claimed. 

We now argue that P has one orbit on (L,,..., L,}. Suppose otherwise. 
Since O,(H) = 1, O,(Z(L,)) = 1 for all i, whence Z(P) is noncyclic, and so K 
does not contain an element x of order p with C(x) p-constrained, 
O,,(C(x)) = 1 and O,(C(x)) extraspecial. By checking Lemmas 3.23 and 
3.24, we eliminate every possibility except (K, p) = (.I,, 3), (Suz, 3) (F,, ,3), 
(LJS. 3), (O’S, 3). From above, there is x E Z(P)” with C(x) nonsolvable. 
Thus, (K,p) = (Suz, 3), (LyS, 3) or (O’S, 3). In all these groups, if y is an 
element of order p, C(y) does not involve a direct product of two simple 
groups. By Lemma 3.26, s = 2 and (I Out(L 3) = 1 for i = 1, 2. Therefore, 
P is decomposable as a direct product (P n L,) x C,(L,). This forces 
K = 0’s. However, N,(P) is transitive on P”, against P = (Pn L,) x 
(Pn L,) and the fact that N,(P) c H permutes {L, , L,}. 

So, P has one orbit on (L, ,..., L,}, as claimed. Therefore s > 1 is a power 
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of p and P involves Zp (’ Z,. So, if p > 5, then p = 5 and K = F, (look at the 
list of sporadics in Lemma 3.23). In that case, the centralizer of an element 
of order 5 in L, contains Lz x ... x L,, a contradiction to Lemma 3.24. 
Thus, p = 3. Since L, g Lz z L,, m,(H) > s a m,(L,) > 3 for r E n(L,) (we 
get s = 3 and n(L,) = (2. 3, 5}). Thus, L, z A,, A, or U,(2) (using properties 
of K-groups). Consequently, an element J’ of order 5 in L, centralizes 
L,xL,. Therefore K=.l or F, and C(y)g(5xA,xA,)2 or 5XF, or 
.5”(‘2HJ. Since PE Syl,(K) and IPJ = 39 or 3”, we get iC,(L(H))/ > 
1 P( . 3 -’ > 3’. forcing Z(P) to be noncyclic and for C(z) to contain 
L,xLzxL,, for some z E Z(P)? This is clearly impossible since 
/ C(z)i < 5’, a contradiction which proves the lemma. 

LEMMA 3.28. Suppose that m,,(K) > 3, PE Syl,(K) and Z(P) is 
nonc#c. Then (K, p) = (J,, 3). (Suz, 3). (LJS, 3) or (O’S, 3), and 
conrlersel)’ Z(P) is nonc.vclic for these groups. 

Proof: We may eliminate (K,p) from the list of conclusibns if K contains 
an element x of order p for which C(x) is p-constrained, O,,(C(x)) = 1 and 
O,(C(x)) is extraspecial. What remains are the four pairs above and (Fzz. 3), 
which we must eliminate. 

Let K = Fzz, x E K with 1x1 = 3 and C(x) G 3 x U,(3) . 2. Without loss, x 
is extremal in P E Syl?(K). The structure of U,(3) implies that Z(C,(x)) = 
(?I:; x (z), where (z), = Z(Pf7 L(C(x))) E (Pn L(C(x)))‘. Since Np(Cp(x)) 
contains C,(x) properly, it must act nontrivially on Z(C,(x))), fixing z. 
Therefore, Z(P) = (z) 2 Z, . as required. 

LEMMA 3.29. There is no K, H satisf4,ing our hq’potheses Mfth O,(H) = 1 

and L(H) # 1 quasisimple and m,(K) > 3. 

Proo$ Suppose that there is a pair K, H satisfying our hypotheses with 
m,(K) > 3. Let L = L(H), a quasisimple group by Lemma 3.27. 

We claim that p E n(L). Suppose false. The structure of Aut(L) (i.e., 
cyclic Sylow p-groups) implies that P induces a group of field 
automorphisms on L. So, P/C’,(L) is cyclic and E, = C,(L)n E # 1. By 
referring to Lemma 3.24 (the *‘s) for the cases m,.(K) > 3, r & n(L(C(x))) 
and L(C(x)) E Chev(2), we find no possibilities. Since C,(E,) G H, we have 
a contradiction which proves the claim. 

If C,(L) # 1, then p E x(L) implies that Z(P) is noncyclic and there is 
z E Q,(Z(P))” with L c C(z), making C(z) nonsolvable. So, by Lemma 3.28, 
K = Suz, Lq’S or 0’s. Since N(P) acts irreducibly on Z(P) in the case of 
L!vS and O’S, we get a contradiction, since N(P) G H E N(L) and 
LnZ(P)# 1. So. K=Suz, lPl=3’ and there is zEZ(P)“nC(L) with 
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C(z) nonsolvable (as L G C(z)). So, by Lemma 3.24, C(z) r 3U,(3). Since 
L E Chev(2), and L is embedded in U,(3), L g A,,A,, U,(2), L,(2) or 
L,(4). In any of these cases 1 C,(L)\ >, 33, since P normalizes L. However, 
3’11 C( )‘)I for an element 4’ E K of order 5 or 7, a contradiction. Therefore, 
C,,(L) = 1. 

Thus, P acts faithfully on L. Since mp(P) > 3, either the Lie rank of L is 
at least 3, or it is 2, and some elements of P induce field automorphisms of 
L. Note that no element of order p may induce a field-diagonal 
automorphism in the latter case. 

Suppose that the Lie rank of L is 2. Then L is defined over F,, where 
4=2k, k=O (modp). Either EsL or (EnLI=3 and there isxEE-L 
inducing a field automorphism on L. In the latter case, L(C(x)) zA*(~~@). 
This possibility does not occur with an * in Lemma 3.24. So, E G L. 

Suppose L ? A 2(q). Thus, (a) all elements of E are conjugate and lie in the 
center of a Sylow p-group of H, (b) C(x) is solvable, for x E E#, (c) Z(P) is 
cyclic if p = 3, (d) m,(P) = 3, (e) p divides 2k - 1. 

Say p = 3. By Lemma 3.24, F*(K) = J,, or F,. On the other hand, if 
.r’ E P, 4’ = 3 and 4’ induces a field automorphism on L, then C(y) contains a 
copy of Az(Zk’.‘). Neither J, nor F, satisfy this condition. So, p = 5 or 7. 
Since k = 0 (modp), P contains a copy of Z,, X Zpz as a proper normal 
subgroup. This condition, with m,(K) > 3, quickly forces (K, p) = (LyS, 5), 
(F], 5) (F,, 5) (all of which, incidentally, have isomorphic Sylow 5- 
subgroups) or (F,, 7). But upon closer inspection we find that none of these 
pairs has the requisite property. 

Suppose that L/Z(L)? *A,,(q) for q even and n < 4. If n = 2, m,(L) > 2 
implies that pjq + 1. If p # 3, Z(p) has rank at least 3, a contradiction to 
Lemma 3.24. So, p = 3. Thus, m,(K) = 3 whence K = J, or F, by Lemma 
3.24. However, for K =J,. O,(P) is abelian, whereas R,(Pn L) is 
nonabelian. a contradiction. 

Say K = F,. Then IKIj = 36. Since an element of P induces a field 
automorphism on L and 3 /q + 1, we get q + 1 = 0 (mod 9). Therefore, 
1 PI > 3 /L I3 > 3’. a contradiction. Consequently, n = 3 or 4. If p = 3, 
pl q - 1 or pJ q + 1. In either case, Z(P) is noncyclic, whence K = Suz, O’S, 
LyS or J, . If 3 I q - 1, R,(P) z Zi whence K = J, . However? for L of type 
‘A,(q), Q,(P) &P’. So, 3jq + 1. Thus, Z(P) is noncyclic since L contains 
the normalizer of a torus of shape (Z,, ,)” . C,, , modulo a group of order 
(n + 1. q + 1), n = 3 or 4. In particular, m,(P) = n + 1 = 4 or 5, whence 
n = 3 and K = O’S, which has abelian Sylow 3-groups, a contradiction. So, 
p # 3. By Lemma 3.28, P is nonabelian, whence n = 3 or 4 implies that 
p=5, 5lq+l, n=4 and IP(>(52)“.5-‘e5.5=59. So, K=F, and the 
inequality is an equality. However, the structure of Aut(L) implies that P is 
metabelian, which conflicts with the structure of F,. 

Suppose that the Lie rank of L is 2 but L does not have type A, or ‘A,,. 
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Since L is a Chevalley group or a Steinberg variation, by (III), L has type 

B,(q). Thus m,(L) = 2 implies that plq’ - 1. Also Pn L is abelian and 
Z(P) n L is noncyclic. So, K has type J3, O’S, LyS or Suz. Since mj(P) = 3 
(consider Aut(L)). K = Jj. In J,, P’ = Q,(P), which is not the case in H, a 
contradiction. 

The Lie rank 1’ of L is, therefore at least 3. We have p = 3, 5 or 7. Let I 
be the rank of the largest subgroup of type A in L generated by root groups. 
We have I> I’ - 1 > 2. From Lemma 3.24 we see that no element of E 
induces a field automorphism on L (C,(x) ,< H for all x E E and, if x 
induces a field automorphism, L(C,(x)) has Lie rank 3). The same goes for 
field-graph automorphisms in case L has type D,(q). Suppose x E E induces 
a graph automorphism on L z D,(q). Then 1x1 = 3 and L(C(x)) z G2(q) or 
G2(2)’ z U,(3). Lemma 3.24 shows that this is impossible. So, E induces 
inner-diagonal automorphisms on L. 

Say 3 1 1 1 L I. Then K = O’S, F,, F, or F,. The structure of O’S and F, 
and the fact that 127 = 2’ - 1 imply that the Lie rank of L is at most 6. We 
claim that p = 3. If p = 7, the facts that the Lie rank of L is at most 6 and 
I KI < 7’ imply that a Sylow 7-group of L is abelian or has an abelian 
subgroup of index 7. But then K = Fz or F, and m,(K) < 2, a contradiction. 
Therefore, p = 5 or 3. If p = 5, m,(K) > 3 implies that K = F, or F,. Since 
the Lie rank of L is at most 6, P’ is abelian, a contradiction. (See Lemma 
3.24.) So, p = 3, as claimed. Say K # 0’s. For K = F,, Fz or F,, when 
XE K, /xl= 3 and L(C(x))# 1, L(C(x)) @ Chev(2). So, for XE E#, 
L(C(x) = 1 whence C(x) is solvable (since x is a semisimple element in L). 
The only possibility is K = F, with I C(x)1 = 2” . 3” for x E Es. In particular 
(PI = 3”. If q = 2’ > 2, then an element of order 3 1 lies in a cyclic group of 
order (q‘( - I)/(q - I) > 3 1, a contradiction. So, q = 2. Therefore, L has type 
A,(2). ‘D,(2), D,(2). B,(2). Since C,(L) = 1, IPI < 36, whereas IK13 = 3”, a 
contradiction. Thus K = 0’s. As above. L has type A,(2), 2D6(2), D,(2) or 
B,(2). Since P is abelian. L has type A,(2). But then C,(L)# 1, a con- 
tradiction. 

We have shown that 31 C/L\. Thus, (q’ - l)/(q - 1) does not divide IL I; 
in particular, L does not involve PSL(5, q), whence L has lie rank at most 4. 

We claim that p = 3. If p > 5, the Sylow p-subgroup is abelian, unless 
p=5andLhastype’A,(q)for4~n~10,5~q+1or2E6(q)for5~q+1.If 
the Sylow 5-group is abelian, we have a conflict with Lemma 3.24. Suppose 
Lhastype2A.(q).Since5Iq+1,q=4orq=25~64.Sincen~4,q’oIILI, 
forcing q = 4 since /KI, < 2Jh. If n>5, q6+1=4097=17.241 divides 

IKL a contradiction. So n = 4. But since I ‘A,(q)1 is divisible by 
(q’ + l)/(q + l), we get 1025/5 = 205 = 5 . 41 as a divisor of IKl. Therefore, 
K = F, which is impossible since 31 CIKI. 

Suppose that the Lie rank of L is 4. Then Table P tells us that there is an 
element x E L, 1.x = 3 with L(C,.(x)) E Chev(2) and L(C,(x)) of Lie rank at 
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least 3. According to Lemma 3.24, there is no example of an element of 
order 3 in K with a such group involved in C,(x). 

Suppose that L does not have type ‘A,(q), for n = 5 or 6. We have that 
the Lie rank of L is exactly 3. Then mj(P) = 3 or mj(P) = 4 and some 
element of P induces a field automorphism on L. In the latter case, an 
element x of order 3 in P has L(C’,(x)) of Lie rank 3, a contradiction to 
Lemma 3.24. Thus, P has rank 3 and a normal homocyclic abelian subgroup 
P, of index 3 and rank 3. A look at the groups in Lemma 3.24 reveals no 
such possibility. 

We have that L has type ‘A,(q) or ‘A6(q). If L has type ‘A,(q), there is 
an element x of order 3 in H with L(C,(x)) of type ‘A,(q) or ‘A,(q), a 
contradiction to Lemma 3.24. The same argument applies to L of type 
‘A,(q) unless H/C,(L) z ‘,4,(q) . k, where (k, 3) = 1, and if P, = PHI L z 
Z:. Then NL(P,)/CL(P,) 2 C,. So, 1 P( = 36. Thus, K = McL, . 2 or F,. 
Since q15 =I’A,(q)J, but 2’5)/1McLI or F,, we get K=. 2. However, if 
K z . 2, (z) = Z(P), then C(z) E 3 ’ f4SL(2, 5) and if x E P represents the 
other class of elements of order 3 then C(x) = 3 x U,(2).2. Thus, q = 2 and 
E#c xH since C,(e) = C,(e) is the centralizer of a semisimple element in L. 
Also, C(z) $ H. 

We eliminate this last possibility. In the usual matrix representation of 
SL/(6.2). we may assume that x E E# has shape 

0 

w 
-1 

I 
X’ 

i i 

1 

1 
1 

Let y E E - (x). By adjusting with scalars, we have 

if a = 1, we may assume $=o, Y=(L)-‘, 6= 1, E= 1. But then 
C,(V) g SL(2,2) x SL(2,2) x SL(2,2), whence C,(xy) Y$ H. Suppose 
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a# 1; without loss, a=o. We may assume that /?=w-‘, y=8=e= 1. 
Then xy’ is congruent to 

module scalars. Since C,(xy’) z (SU(3.2) . SU(3,2).2, xy’ 6? xL. a 
contradiction. So, we have eliminated the possibility. 

This completes the proof of Lemma 3.29. 

LEMMA 3.30. Let G E Chev(Z), g E G. g odd, C = C,(g), Co the inter- 
section of C with the connected component of the identity of C&g), where c 
is the ambient algebraic group over Fz containing G. Then C/C” is abelian of 
odd order and Co is generated by conjugates of root elements of G. 

ProoJ See Burgoyne and Williamson [lo]. 
In the next series of results, we assume (I), (II), (III), (IV) and O,(H) # 1. 

LEMMA 3.3 1. p # 7. 

Proof If so, K = F, and C(x) : 7 x Held or 7’+’ . 2 . A,. Since L(C(x)) 
must be semisimple and have components in Chev(2) for x E E#, we have a 
contradiction, 

LEMMA 3.32. p # 5. 

ProoJ Suppose so. Then K = .I, LyS, Fz , F, or F, . By looking for *‘s in 
Lemma 3.24, we find that K = .l or F, are the only possibilities. 

Say K = . 1. Then for x E E#, C(x) E 5 x (A 5 x A 5).2. Since C(x) operates 
on O,(H), we get (x) = O,(H) for all x E E’, which is absurd. 

Say K = F,. Let Z = Z(P). Then N,(Z) z 5”‘.2”‘.5.4. Since IE( = 5’, 
En O,(N,(Z)) # 1. Therefore, N,JZ) G H. Since 1 # O,(H) fT N,(Z) a 
N,(Z), we get H = N,(Z). If there is x E E - O,(H), the fact that O,(H)/Z 
is an indecomposable (x)-module means that 1 C,(x) 1 < 5 ‘, a contradiction. 
Therefore, E c O,(H). Since rr(NK(Z)) = { 2, 5 1, z(C,(x)) s (2, 5 1 for 
x E Ea. The only possibility E# E xK, where 1 C(x) 1 = 2* . 5J. We eliminate 
this possibility by showing that there does not exist E G P. E z Z, x Z, with 
IF c_ xK. 

Suppose such an E exists. In the notation of [41], x lies in the class 5B. 
Let x be an irreducible character of K of degree 133 [41]. Then x(x) = 3[41]. 
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We have xREEx(g) = 133 + 24(3) = 210. However, this sum should be 
congruent to 0 mod 25 = 1 E 1, a contradiction. 

COROLLARY 3.33. p = 3 and O,(H) # 1. 

LEMMA 3.34. If K = J,, H = N,,.(Z(P)) = N,(P). 

ProoJ Suppose K = J,. Since E c Q,(P) ? Z:, E f7 Z(P) # 1. We claim 
that E=Z(P). If not, lEnZ(P))=3, and ifxEE-Z(P), C(x)g3XA,. 
Thus. H 2 (N(P), N((x))), a group of order divisible by 25355 and 
containing a copy of A,. Since a Sylow 3-normalizer in A, acts irreducibly 
on its Sylow 3-group, L(C(x)) f? P = Z(P). It follows that O,(H) = 1, a 
contradiction to our temporary hypothesis. So, E = Z(Pj as claimed. Thus, 
N(P)=N(Z(P))cH. 

Since O,(H) # 1, by hypothesis, the facts that Z(P) is weakly closed in P 
with respect to K and N(P) operates irreducibly on Z(P) imply that 
H C_ N(Z(P)j. So, H = N(Z(P)) as required. 

LEMMA 3.35. K # LyS. 

Proof Say K = LyS. If x E K, 1x1 = 3, C(x) z 3*+‘.SL(2, 5) or 3.McL. 
So. Hypothesis 3.16(IV) is not satisfied. 

LEMMA 3.36. K # 0’s. 

Proof. Since N(P) acts on PT Z: irreducibly, O,(H) # 1 implies that 
P = O,(H), whence H = 3’ - 2”’ . D,,. However, if xEP#, 
C(x) 2 3 x 3 x A,, so that C(x) & H, a contradiction. 

LEMMA 3.37. K # Sm. 

Proof: In Suz, there are three classes of elements of order 3, called 3U, 
3V, 3IV, with centralizers of shape 3.U,(3), 3 x 3 x A,, 3.3’+“SL(2, 3). 

Since at least one of these classes is represented by an element of E#, 
Hypothesis 3.16(IV) forces Es to be disjoint from the first class. We claim 
that E# meets class 3V. If false, E# lies in class 3W and, given e E E# there 
is J E 3CJ such that C(e) G C(p) z 3 . U,(3). In C(y), En (4’) = 1 and 
(N,,y,((e,))le, E E#) = C(y) (property of U,(3), since N,,,,,(e,) maps to a 
maximal parabolic in U,(3)). Therefore, C(y) G H. Since O,(H) # 1, 
O,(H) = (y), contradicting L E Chev(2). So, E”n 3V contains e, say, and 
L(C(e)) c L. Take z E O,(H) n Z(P)? Then C(z) r 3 . U,(3) and 
L E Chev(2) implies that L = L(C(e)) r A,. Then, IPI = 3’ implies that 
) C(L)I, = 35 and P is decomposable, a contradiction to the shape of 
C(z) = 3 . U,(3). 
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LEMMA 3.38. Without loss (i) [Z(P)1 = 3; (ii) L,(H) = 1 and Z-Z is 3- 
constrained; (iii) ifx E EX, C(x) is solvable. 

ProoJ If IZ(P)I > 3, then K has type J,, Suz, LyS or 0’s. These 
possibilities have been treated. Since O,(H) # 1, we get (ii) from (i) unless 
O,.,(L,.(H)) > O,.@,,(H)). Suppose that this happens. Let (z) = Q,(Z(P)). 
Then (z) maps onto Z(L,, (H)/O,.(H)) and N,((z)) covers H/O,(H). Since 
O,(H) # 1, z E O,(H), whence O,(H) < C(z). Therefore, H < N,((z)) and 
so H = N,J(z)). By consulting Lemmas 3.24 and 3.25 we see that there are 
no such possibilities for m,(K) > 3. 

Suppose x E ES and C(x) is nonsolvable. By Lemma 3.30 and Hypothesis 
3.14(IV), L(C(x)) # 1. An application of the P X Q Lemma (see 5.3.4 of 
127)) and the definition of L(C(x)) implies that [O,(H), L(C(x))] = 1. 
Therefore. L(C(x)) is a 3’-group, since Z(P) is cyclic. By inspecting the *‘s 
in Lemma 3.25, we find no such possibility. So, (iii) follows. 

LEMMA 3.39. K does not exist. 

Proof: We have p = 3, O,(H)+ 1 and L.,,(H) = 1. Then Hypothesis 
3.16(IV) gives a contradiction, as m,(K) > 3 and L(H/O,(H)) = 1. 

This completes the proof of the fusion controlling result, Proposition 3.21. 

4. THE FIELD AUTOMORPHISM CASE 

We begin the proof of the Main Theorem by establishing some notation 
which will be used throughout the rest of this paper. Take G to be of 
standard type with respect to (B, x, L) in Y*(p) and fix a standard subcom- 
ponent (D,J) of (B, x, L). Let x = z, and let (z2) ... (zr) be the distinct 
subgroups of order p in D for which those exist neighbors, (B, z2, K*),..., 
(R, z,, K,) of (B, x, L) with respect to (0, J). Let (B, X, L) = (B, z,, K,). 

By Table B, B lies in an elementary abelian p-group B* such that B* 
contains every element of order p in its centralizer and (B *: B ( <p. We 
define N = N,(B*). In this section we prove 

PROPOSITION 4.1. O,(A,(B*)) = 1. 

COROLLARY 4.2. No element of B* involves a field automorphism on 
any Ki. 

Proof of Corollar-v 4.2. Suppose false; then by the structure of Aut(K,), 
A,,(B*) contains an element a of order p with jB*: CB.(a)l =p. Let 
F= (a AG(B”). As 0&4&B*)) = 1, McLaughlin’s theorem [47] together with 
the structure of A,(B*) forces F = SL(B*) or Sp(B*). Indeed the only other 
possibility is (x) = C,.(F) 4 N,(B*); but (x) b iV,JB*). Now all 
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subgroups of order p in B* are conjugate in N&I*), and in particular (x) is 
conjugate to (z2). We have a contradiction as no element of B* acts as a 
field automorphism on L (by definition of standard type) while such an 
action does occur on Ki. 

Now we begin the proof of Proposition 4.1. We assume 
P = O,(A,(B*)) # 1, and we define B, = C,.(P), M = NJB,), C = C,(B,). 
Pick II E Syl,(C). We will show that U normalizes one of the Kis, inducing 
field automorphisms. Letting CJ, be the subgroup of U which induces inner- 
diagonal automorphisms on Kj, we show that U, is abelian and weakly 
closed in a Sylow p-group of G, and that N&U,) has a quotient of order p. 
By a theorem of Wielandt on transfer (39,431 G is not simple, a 
contradiction. We conclude P = 1. 

By the structure of B* as a module for A,(B*) (see Table B), we may 
define B2 by JB*: B,l <p, XE B,, B,/( x is an absolutely irreducible module ) 
for W = A, (B*) and B*/(x) an indecomposable one. 

LEMMA 4.3. B*=B, x(x). 

Proof: Let P, = C,((x)), and pick R E C,(x) projecting onto P,. R 
projects into O,(A,,,,,LI(B*)) whence [R, R] = 1 by Table B. Thus 
[R, B] G C,*(L) = (x). s ince R centralizes (B * n L, x), we have P, = 1 or 
lB*:(B*nL,x)l=p, (x)= [B*,P,], and jP,I=p. In particular as 
(x) &‘V,(B*), we have P, # P and x e B, . 

Since B, f7 (x) = 1, B, projects nontrivially into B/(x) whence 
B, n Bz + 1. B, is W-invariant where W=A,(B*), so B, = (B, n B2) x (x), 
by Dedekind’s law. If B* = (B, , x), we are done; so assume B, = B, x (x) 
has index p in B*. In particular B, is an absolutely irreducible W-module. 

As W = Op(WJ and B*/Bz is a trivial W-module, we see that 
[B*,B]sB,. Let P, = C,(B*/B,). We have that [P, W] 5 P, since 
[B*, W,P] = 1 and [P,B*, W] < [B*, W] <B,. Also, we have that 
[P, W] # 1 lest P normalize (x) = C,.(W) and P = P, . Thus P, # 1. For any 
b E B*, f&p) = [p, b] defines a map from P,, to B, . Our conditions imply 
fh( ~4) = [pa bl = [P, blq[q, bl =.&(p).&(q), and further for any w E W, 
Jh(p)“’ = [p”‘, b”‘] = [p”‘, b[b, w]] =fb(pr) as [b, w] E B,. Thus, fb is a 
homomorphism of groups and P,/ker(f,) is elementary abelian, i.e., 
P,/C,o(b) is elementary abelian for every b E B* whence P, is also 
elementary abelian since we have an embedding P, + n,,,,,. P,/C,o(b). 
Further fh is a homomorphism of W-modules. Since B, is absolutely 
irreducible, fh is either trivial or an isomorphism. As ] B* : B, 1 =p’, P, is 
isomorphic to B, or B, x B, as a W-module. In the latter case 
Cp,(x) = kerf, z B, as a group, contradicting (P, ( <p. Thus P, z B, and we 
have C,&x) = 1. Further by absolute irreducibility of P,, we have 
IB*: C,.(P,)I =p=JC,.(P,): B,I. 
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Now for d E C,,.(P,) - B, &(p) = [p, d] defines a map from P to B, 
because [d, P] G B, . We see exactly as before that P/C,(d) and [P, d] < B, 
are isomorphic W-modules. Since B, is irreducible, IB, 1 >p2 and 
I I P, d] I < p, we get [P, d] = 1 whence P = C,(d) and we are done. 

LEMMA 4.4. The following hold: 

(i) C,(x) = 1. [B*. P, P] = 1, and P is elementary abelian; 

(ii) Either [P. x] = B, and P is isomorphic to B, as an AL(B*)- 
module,orB,<B*, (P,x]=B,nB,andPisisomorphictoB,nB,asan 
A,(B*)-module: 

(iii) Dn B, = (zi) for some i > 1, B, acts as inner-diagonal 
automorphism on Ki, and (x) induces a field automorphism on Ki . 

Proo$ Parts (i) and (ii) follow from Lemma 4.3. Note that 
1 B, n Bzl >p’ in all cases. Now for (iii). Let D n B, = (d), and choose a p- 
group R < C,(d) n N,(B*) projecting onto P. By definition of standard 
type, J lies in a p-component K of C,(d). Suppose R does not normalize K. 
Since (D, J) is a subcomponent and m,,(B) > 4, B * n J acts nontrivially on J 
and so projects nontrivially into (KR)/OpSp((KR)). This latter group is 
semisimple with at least 3 direct factors, whence [B*, R, R] # 1, a contra- 
diction by (i). Thus R must normalize K. As [R, D] > [R, (x)] > B, n B,, R 
does not normalize D = C,.(J) = C,.(JO,,,.(K)/P,,(K)). It follows that 
K # JO,.(K), (d) = (zii for some i, and K = Ki. 

It remains to prove the last two assertions of (iii). Suppose B* acts as 
inner-diagonal automorphisms on K, and let R, be the subgroup of R which 
is inner-diagonal on K. In particular, the possibilities for K are given by 
Table P. By Table B, R, centralizes K unless perhaps K = A,(q) or G,(q), 
not the case by Table P. We have [R,, B*] c C,+(K) = (d). It follows that 
P, , the projection of R, on P, has order at most p. If G # D,(q), then R/R, 
is cyclic whence IPI <p’. As m,(B*) > 4, we must have B, n B, c B,. In 
particular B, c B whence L = A,(q) or ‘A,(q) with pin + 1, or L = E,(q) or 
‘E,(q) with p = 3. As n > 3 in the first case, we have m&B*) > 5 in all 
cases. But now Lemma 4.4(ii) implies m,(P) > 3, a contradiction. If 
G = D,(q), then a similar argument yields IPJ <p3 against m,(B) = 5 and 
PzB,nB,=B,zEt. 

Reasoning as in Remark 5.1, we see that no element of B* acts on K as a 
graph or graph-field automorphism. Thus B* = A x (a) with A inner 
diagonal on K and b acting as a (standard) field automorphism. If A = B,, 
we are done, so we may assume aEB,-A. As B,nB2c[P,B*]SA, 
B, = (B, n B,) x (a). 

Let Y=A,(B*) and F= Y/C,(B,). Since IB*:B,l=p and B,=C,.(P), 
it follows that OP’(C,(B,)) = P, C,(B,)/P is cyclic of order dividing p - 1, 
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and O,(n = 1. Repeating the argument of the proof of Corollary 4.2, we 
apply McLaughlin’s theorem and obtain that (a’) acts irreducibly on B, . 
We conclude B, = [P, B*] G A, and Lemma 4.4 is proved. 

Recall that M= N,(B,), C = C,(B,) and B* < U E Syl,(C). Note that 
N,(B *) < M. Further 17, is the subgroup of U which acts as inner-diagonal 
automorphisms on K. Let V= C’,,(K). Clearly V< U, ; also 
Q,(C,.(x)) < C’, (B”), whence Q,(C,-(x)) <B*. 

LEMMA 4.5. The following conditions hold: 

(9 V b N,,(U): 
(ii) for any rEN,+,(U)-NJV), Vn V’= 1; 

(iii) V is cyclic; 

(iv) ( K”2f(U)) z U, ; 

(v) u, a N,,,(u). 

ProoJ To prove (i) pick t E N,(B*) with (d) # (d’). As 
N&B*) c M= CN,,,,(U), these exists r E NM(U) with d’= d’. Since 
(d) = C,.(K) = Vn B *, r @ N,(V) and (i) holds. 

For any r as in (ii) let W = Yn V’. If (r) normalizes (d), then (r) acts on 
K and normalizes V = C,(U). Thus (d) # (d’) whence Wn B* = 1. If 
Wf 1, then as W a CT, 1 # Q,(C,(x)) G B*. Thus W = 1 and (ii) is valid. 

Suppose n E N,J U) - NG( I’); we claim V” n U, is cyclic. Since x acts as 
a field automorphism on K, x centralizes Q,(U/V). Vn V” = 1 implies 
[x, L!,(P)] = 1 and n,(V) G B*. Thus R,(V”nU,)= V”nB,= 
(Vn B,)” = (d”), and our claim is proved. 

To prove (iii) it s&ices to prove (iv), so assume n E N,,,(U) and V” g U,. 
Some element of V” induces a field automorphism on K. It follows that 
(U,. V”] V/V is abelian of rank at least 2 except perhaps when J=A2(q) or 
‘A,(q). In these cases we find by checking the possibilities for L (cf. 
Table P) that JZ SL(3, q) or SU(3, q) whence m([U,, I”‘] V/V) > 2 in all 
cases. However [U,, V”] G V” n U, yields a contradiction by the preceding 
paragraph. 

It remains to prove (v); suppose U, # U: for n EN,,,(U), and let 
E=U,U/‘:,A=U,nU;.Weknow VnI/“=landVV”EA.SinceU,/Vis 
abelian of exponent p’ for some s > 2, so is A. Pick w E U; - U, with 
&’ E U, and if possible w E U,(U:). We have [E, w] G (wp, V’) and 
(E. ,v] E V” if MJ E U,(U:). On the other hand w acts as a field 
automorphism on K, and the considerations of the preceding paragraph yield 
that [E, )v] V/V is abelian of rank at least 2. We conclude first that 
[E, rv] YZ V” whence 1 E: II, I= 1 U, : A 1 =p and secondly that 
m(Q,(U,/V)) = 2, whence from Table P, m(B*) = 4 and, consequently, 

48l&iO./2 13 
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B, = B*. Since U/U, is cyclic, E is independent of the choice of n, which 
implies E a N,(U). 

Our conditions imply R, (E/ V) = B * V/V. Thus R,(E) E B * V, and as V is 
cyclic, B * = n,(E) 4 Y = N,J U). Thus Y c IV&?*) G M, and since 
M = YC, B, is an irreducible Y-module. Further let D = N,(B *). D acts on 
B* and centralizes B, whence Op’(D) projects to P= 0&4&B*)). As 
U G D, U also projects to P, and we have by Lemma 4.4 that U/C,,(B*) is 
an irreducible Y-module with U/C,.(B*) z B, z E,,. 

Let F = C,(B*); as E Q Y and U/E is cyclic, we must have 
U = EC,,(B*) and F/E is isomorphic to U/CJB*) as a Y-module. The 
structure of E/V implies [E, E] V/Vc L?,(Z(E/V)), and likewise for E/V”. 
As vn V” = 1, it follows that [E, E] G Q,(Z(E)); and as p is odd, taking 
pth powers is an endomorphism of E. By the same argument, U,(E) G Z(E). 
As E/O,(E) = E/B* z U,(E), lE: U,(E)1 =p4. Thus (x, U,(E)) G F forces 
F = (x) x U,(E) and U,(E) = Z(E). Since taking pth powers commutes with 
the action of Y on E, U,(E)/U*(E) is isomorphic to E/F as a Y-module, and 
we see that U,(E) is homocyclic of rank 3. As E/V has exponent p*, so does 
E whence U,(E) g (ZPlm,)‘. In particular IEl =pzst’ and IU,I =p3’. It 
follows that U,/Vz (Z,,)’ and V? Z,,. However (iv) above implies VG U, 
where ZJz is the largest subgroup of U, normal in Y. Thus Uz &F and we 
must have E = CJ2 F. But then 1 CJz 1 = 1 U, 1 implies (I, a Y. This contradicts 
(I, # U; and completes the proof of Lemma 4.5. 

LEMMA 4.6. We hate 

(i) U, is abelian of exponent pS and after perhaps replacing x by 
another generator of(x), ux = u’ tps -‘for all u E U, ; 

(ii) U, contains a homocyclic subgroup of rank m(U,) or m(U,) - 1 
and exponent p’; 

(iii) U, =J(U), the Thompson subgroup of U, 

(iv) B, = f2,(U,) and B* = R,(U); 

(v) O,(M/C) = 1. 

Proof By Lemma 4.5, pick r E N,&,(U) E N,,(U,) with Vn V’ = 1; the 
structure of U/V implies (i). Q,(U/V) = B*V/V forces Q,(U) c B*V. As V 
is cyclic, (iv) holds. 

To prove (ii) we repeat an argument from the proof of Lemma 4.5. By 
(iv), N,,(U) c iV,(B*) EM; so M = CN,JU) and Lemma 4.4 imply that 
U,(CLf,(B*) is isomorphic to B, or B, nB, as an A,(B*)-module. As 
0&U,) has rank at least 2, it projects nontrivially on U,/Cuq(B*) whence 
m(Q,(u,)) > m(B, n B,) > m(B,) - 1 and (ii) holds. 

Assertion (iii) follows easily from (i) and (ii). To prove (v) suppose first 
that O,(M/C) # 1. Let Y = N&B*) and Z = C&B*). By (iv), M= YC so 
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O,(Y/C,(B,)) # 1. On the other hand C,(B,)/Z is an extension of 
O,( Y/Z) E P by a group which is cyclic of order dividing p - 1. It follows 
that O,( Y/Z) covers O,( Y/C,@,)) whence O,( Y/C,@ ,)) = 1. 

LEMMA 4.7. (i) N= N&B*) couers M/C; (ii) B, is weakly closed in B* 
with respect to G; (iii) CT, is weakly closed in R with respect to G, where 
U < R E Syl,(M), (iv) R E Syl,(G). 

Proof. (i) and (ii) A Frattini argument implies that N covers M/C. From 
this it follows easily that B, is weakly closed in B* with respect to G: for if 
gE G, B: < B*, then B, < (B*)g-‘, whence there is c E C such that 
(B*)qm’C < CJ, implying g-‘c E N and g-’ E NC-’ C_ A4, as required. 

To prove (iii) and (iv) it suffices to show U, =J(R). Assume not and pick 
A abelian of maximum order in R with A # U,. By the Thompson 
Replacement Theorem [27, Theorem 8.2.51, we may assume [U, , A, A] = 1. 
As CJ, a R, we have [U,, A] c C,,,(A) = A n U,. Thus [u’. a’] = [u, airs 
for u E U, and aEA. Let A,=u,-,(A/AnU,); we have [A,,ZTS-‘(U,)]=l. 

We claim [A,, B, ] = 1. If not, then by, Lemma 4.6 (ii), 
IB,:B,nZTsm’(U,)(=P and A, induces transvections on B, . Let 
F = (A ;\I( 1’) ). We know that N,(U) c N,(B*) G M and M = Clv,,,(U). As B, 
is an indecomposable A,(B*)-module, Lemma 4.6(v) and McLaughlin’s 
theorem imply that N,,(U) acts irreducibly on B, forcing B, s u’- ‘(U,) and 
establishing our claim. 

Now A, s C,(B, ) = U. As U/U, is cyclic of order dividing s, so is 
AJA n U, . It is easy to see that p > 3 and s > 2 imply ps-’ > s whence 
~A,:AnU,~<p’-‘.ItfollowsthatA=A,cU,andwearedonebyLemma 
4.6(iii). 

LEMMA 4.8. Proposition 4.1 holds. 

ProoJ Let N, =NJU,), C, = C,(U,). By Lemma 4.7, U, is weakly 
closed in R E Syl,(G), so by the Hall-Wielandt theorem [43, Theorem 
14.4.21, G has a quotient of order p if N, does. As G is simple, it suffices to 
show x 6!E [N,, N,] to complete the proof by contradiction of Proposition 4.1. 

Let H = C,(x), Y = C,(L), and U, = C,,(x) = l2,-,(U,). From the 
structure of Aut(L), F = Hn C covers H/LY (recall C = C&B,)). By 
definition of standard type Y has cyclic Sylow p-subgroups. If (w) E Syl,( Y), 
J?,((,v)) = (x) g Z(Y) implies Y= (w)O,,(Y). Pick (w) so (w, U,)C 
PE Syl,(H); then U, normalizes (MY). It follows that fi,(B*(w)) = B* 
whence (w)~N,(B*)~N,(B,). Thus [w,B,]~(w)nB,= 1 and wE 
Hn C. Consequently F covers H/LO,.(Y). Since LO,.(Y)c [If, H] O”(H) U, 
and U, G F, x k?? [F, F]OP(F)U, implies x 6? [H, H]OP(H)U, . But F 
acts on K with x acting as a field automorphism and U, c U, inducing inner- 
diagonal automorphisms, so x $ [H, H] OP(H)U,. 
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Let H,, = H 17 N, and X = [H,, H, ] O’(H,,) U,. As U, is abelian and is a 
Sylow p-subgroup of c,, c, = u, x OJC,). Thus H,nC,= 
Uz x O,,(H, n C,) s X, and if N, = H, C,, N, has the desired quotient of 
order p by the preceding paragraph. 

Assume H,C, # N, By the action of x on U,, (x) Co/C, c Z&,/C,), 
and it follows that B* a %,, = N,/O,,(C,). If n E N, and 3’ = 3 with 
b E Us- ‘(o,), then for some u E U, , [Y, zi] = 6 whence ii E 0, C,(Y). As H, 
covers C,(X), we have n E H, C,. Thus, the assumption H,, C, # N,, implies 
that U, is not homocyclic. Lemma 4.6 yields IB, : tY-‘(U,)l =p. As we 
have seen before, we must have B, n B, = Us-‘(U,) c B,. 

Consider the action of N, on B*/B, n B,z E,?. Let N, = 
C,@*/B, n B,) and No = No/N,. As (2) covers B*/B,, [N,, B*] c B,. If 
n E N, normalizes B2, then the analysis of the preceding paragraph gives 
n E zf,C,. As [B*, U,] = [(x), 17~1 E Us-‘(U,), c,= 1 and we have 
G E H,. In other words N,q@J G H,. Picking elements in B, and E2 as a 
basis for B*/B, n B, , we see that f10 is represented by matrices of the form 

t 

* * 

0 1 1 

and fl,, r Z, or Z, . Zp with rip - 1. In the latter case Nf10(B2) 2 Z, is 
maximal in E0 whence d, z Z,. Thus in either case p$IAol. 

Since H, n C, G X, H,C,/XC, is an abelian p-group, and x 4 XC,,. As 
pjIH,C,,: N, (, H,C,/XC, g N,/(XC, n N,), and N,/X, is an abelian p- 
group, where X, is the largest subgroup of X,C, n N, normal in N,,. Further 
X, ?C,. so [No,x] cX,. Thus, N,/N, acts on N/X, and centralizes 
(x)X,/X,. If N,,/N, is a p’ group, then N,/X, has a quotient of order p as 
desired, so assume fiO 2 Z, . 2,. 

It suffices to show X, = XC, n N,. Suppose X, = X,C, n N, and pick 
h E H, with (h? g Z,. We may take h to be of p’ order whence h E X and 
[h, N,] c XC, n N, =X,. Thus /i and O,(N,& = [F, fl,,] centralize N,/X,. 
Letting W/N, = O,(NO) ? Z,, we see that W/X, is an abelian p-group (as 
N,/X, c Z( W/X,) and W/N, is cyclic). Now as before No/W acts on W/X, 
with fixed points and N,,/X, has a quotient of order p. 

It remains to show X, = XC,, n N, . Let X,=X,nH,. As 
XC,/(XC, n N, ) ? H, C,/N, ? Z,, IX: X, ] = sp” for some s I r. Further 
XL 4 H,, . Suppose N,(B*) = H,, C&B*). Examination of the possibilities 
for L yields A,(B*) = OP(AH(B*)) whence H, = C,u(B*) X. Further X/X, is 
an extension of an abelian p-group by Z,$, and the structure of A,(B *) yields 
IH,: Go(B*)X,I Is. 

Let F=C,&u,)=ConH,. We claim XnC,JB*)=X2nC,&B*)=F 
whence IX: X2/ = )XC,,(B*): X,C,o(B*)I ]s, and it follows that 
X,=X,C,nN, as desired. C,&B*)=HnCnN,,=NnN,(U,) has a 
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Sylow P-subgroup Q which is an extension of U, by a cyclic group with 
x E Q - II,. As CHO(B*) acts on U, as a p-group, and (as we saw above) 
F = U, x O,,(F), we see that C&3*)/F is a cyclic p-group with 
xECHo(B*)-F. Now C,gX, implies F=C,nH,zX,cX, and x@X 
implies X n C,,(B *) z F as desired. 

5. CONSTRUCTION OF G,<G, G,E Chev(2) 

We let z, ,..., z,. K, ,..., K, r > 2, B, B*, etc., have the same meaning as in 
Section 4. Set G, = (K, ,..., K,). The object of this section is to show that 
G, E Chev(2); see Proposition 5.20. In Section 6, the problem of showing 
G, = G will be handled. 

Before discussing our plan, we establish some further notation. Set 
Ci = C,(z,), Ni = Nc((zi)), Ai = A,,(B*), A; = A,,(B*), i = l,..., r, r >, 2. 
For any distinct pair i, j E ( l,..., r),L,,=L(KinKj). SetA,=A,&B*). 

The main step in identifying G, is to identify G, = (K,, K,), where G is of 
standard type with respect to (B, z,, K,) E S*(p). We know that p half-splits 
K, but we do not know whether G is of standard type with respect to 
(B. z?, K,). Thus, the roles of K, and K, in our argument are not usually 
symmetric. 

Our method is to first identify A = (A,, A 2) as a prelude to identifying G, . 
Recall that B* contains B with index 1 or p. Eventually one needs to 
produce a “Weyl group” for G, , and the most sensible method appears to be 
to work in A&B*) rather than in A,(B). The results of Section 3, plus 
further special arguments, enable us to determine the possibilities for A. We 
have O,(A) = 1 as a consequence of Section 4. From there we proceed to 
identify G, by analyzing various cases for A, A,, A,. Tables B and P are 
used heavily to study how subgroups fit together. Finally Proposition 2.30 is 
used in the various cases we consider to identify G, . The identification of G, 
is then a relatively easy consequence of the preceding work. 

Before embarking on the proof of our main result (Proposition 5.11) we 
recall that 4 <m(B) < m(B*) <m(B) + 1. Table B and Lemma 2.35(iv) 
imply that m,,,(K,) > 3 and m,(K,) 2 3, whence the Lie rank of each Kj is 
at least 2 and is at least 3 if Kj is not of type ‘Ad(q). Familiarity with the 
“splitting prime” and “half-splitting prime” situation is assumed; see 
Section 1. 

Remark 5.1. In Section 4, we showed that x does not induce a field 
automorphism on any Kj. We argue that B* induces a group of inner- 
diagonal automorphisms on each Kj. If false, choose j so that x induces a 
graph or a graph-field automorphism on Kj. Then p = 3 and Kj has type 
D4(s). By [lo].- C,,(x) 2 G:(q), X(3, q) if 31q - 1, or SU(3, q) if 3)q + 1. 
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Since (zj) f? K,j = 1 and m,(C,(x)) = 2, we get m(B) = 4. If 3 ] q - 1, the fact 
that m2.3(D,(q)) = 4 implies m(B) = 5. a contradiction. So, 3]q + 1. whence 
m(B*) = 5, m(B*) = 4. However, the shape of C,,(x), which must contain 
B*, forces m(B*) = 4, a contradiction. 

A reflection shall mean a linear transformation on a finite dimensional 
vector space of characteristic not 2 such that the eigenvalues are 
-1. 1. I,.... 1. 

Remark 5.2. In every case, N,,(B) < N,JB*), a great convenience. The 
groups K E Chev(2) which appears in the following arguments usually have 
1 Z(K)] odd. If some ]Z(K,)] is even, there may be a complication in a 
generator and relations argument. We comment when a relevant ]Z(Ki)] 
might be even and otherwise say nothing. 

We now begin the identification of G, and G,. Since p splits K,, A, is 
isomorphic to a Weyl group (though not necessarily the Weyl group on a 
(B. N)-pair for K,). Thus we consider what happens when the Ai are various 
Weyl groups. 

LEMMA 5.3. Let bars denote images under No(B*) + A,(B*). Suppose 
that K < G, K E Chev(2), that B” n K lies in the “B*” column of Table B 
and B* = C,{.(K)(B* n K). Let t,, t, E N,,.(B*) be involutions so that r, and -- 
i, are distinct reflections on B*. If k E iz and It, t, ] = k, then (t, t,)k E O,(K). 
If m,,,(K) > 3. then such involutions t, , t, always exist and may be arranged 
to satisJi1 (t, t,)” = 1. 

Proof: We first assume O,(K) = 1. A look at Table B* and properties of 
K imply that A,(B*) z A,(C,(B*)) and that if s,, s2 E N,(B*) induce 
distinct reflections on B*, then [C,(B*), s,] n [C,(B*), sJ = 1. Set 
u = (t, tz)A. Then P= 1, whence u E C,(B*) and u is inverted by t, and t2, 
whence u = 1, as required. 

Now, drop the assumption that O,(K) = 1. Then ]Z(K)] even and the fact 
that m,,,(K) > 3 implies that K has type *A,(2) or *E,(2). It suffices to 
prove the statements for p]q + 1 because of the embedding of the natural 
subgroup isomorphic to A,(B *) for p]q - 1 into that for p] q + 1; see 

Lemma 2.50. When K has type *A,(q), the elements < are images of unitary 
transvections under SU(6, q) -+ K (to see this, regard the <. as images of 
transpositions from the standard group of permutation matrices and C,(B*) 
as a subgroup of the full diagonal group). The facts that we may arrange 
I tjI = 2 and (t, t,)’ or (t, t,)’ is 1 may be read off from the generators and 
relations for the covering group of *A,(2) [36]; in fact, we define (tj) as a 
conjugate of [Y,, Yb], where Yy is the preimage under K-+ “A,(2) of a root 
group for a short root and a + p = y is a long root. The argument for the 
case K of type *E,(2) is reduced to that of *A,(2) because A,(B*) z We, 



FINITE GROUPS WITH STANDARDCOMPONENTS 475 

and all pairs 5, t;. are conjugate in A,@*) to a pair in the image of 
A,@*) + A,#?*), where L is a natural ‘A,(2) subgroup of K. 

DEFINITION. The involutions ti E N,(B*) representing the fundamental 
reflections are called special involutions if ]Z(K) 1 is odd or if /Z(K)] is even 
and K has Lie rank at least 3 and the ti are chosen as in the proof of (5.2). 

Note that each Ki has Lie rank at least 3 or ]Z(Ki)( odd; see Section 1 
and use the facts about Schur multipliers in [36, 381. 

The next result verifies the extra hypothesis (iv) of Lemma 2.30. 

LEMMA 5.4. Let G* = (G*, W), K, and B* as above, W the Weyl 
group of root system C of rank at least 2. Assume hypotheses (i), (ii), and 
(iii) of Lemma 2.30. Set A, = C,.((Z(X,), Z(X-,))), (b,) = B* n (Z(X,), 
Z(X_,)), a E C,. Suppose that W normalizes B* and satisfies N,({ *a)) = 
Nd(b,)) = N,.,@,) and N,.(a) = C&b,). Then (iv) holds, i.e., 
w, : = ( w E w 1 a ‘I’ = a} normalizes X,, for a E C, and X, is the root group 
of K associated to a. 

Proof Note that A = A, is a hyperplane of B* and B* = Ax(b,). 
We consider the possibility that there is a standard subcomponent (D, R) 

of (B, x, K,) with the properties (1) b, E D, (2) D = (b,, b,) where b, and 
6, are conjugate by an element of W, and (3) 6, EA. 

Since m(B*) > 4, a study of Tables B and P shows that such a (D, K) 
may be obtained whenever W does not have type A, when plf + 1. 

Suppose that (1), (2). (3) are achieved. We have C,(A) < C,(b,)cC,(b,), 
the structure of which implies that 

UC,(A)) = @v,)Y -w-J) if IZ(X,)l > 2; 

~2’G(4) = V(X,)7 -vL)> if IZ(X,)l = 2. 

In any case, S:= (Z(X,), Z(X-,)) E SL(2,q) for q = IZ(X,)I and W, acts 
on S, centralizing (6,). Thus, [S, W,] = 1, as required. 

Suppose W has type A,, when pII+ 1;1>4 since m(B*)>4. Then 
p)q - 1. Choose /? so that a,b’ span a root system of type A,. Set W, 4 = 
W, f? W,. Since I > 4, we may take a root a orthogonal to a and 8. Since 
b, - 6, - b, via W, we may look in C,(b,) to get the structure of C,(A,) 
where A, = C,.((X,, X-,, X0, X-,)). We get J= L,,(C,(A,)) =J,O,(J), 
where J, = (Xkn, X,,) is of type A 2(4), q = IX, ]. Since W,., centralizes 
B*n L(C,(A,)) = (b,, 6,) and W,., is generated by involutions, W,,, 
centralizes L(C,(A,)) J,. Since W, is generated by the WQ,o, for all possible 
choices of p, we are done in this case. The lemma is proven. 
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LEMMA 5.5. For i = I9 2, let Wi be a subgroup of Ki normalizing B* and 
as described in Lemma 2.50(v)(c). Let bars denote images under 
N,(B*) +A,(B*). Suppose Wi:mi=Ai for i=l,2 and that 
W, n W, = A, n A, and that A is generated by reflections r, , rz ,..., r,,+ , 
which satisfy the relations of a Dynkin diagram and 
A, = (r, . . . . . r,).Az=(rz,r3 ,.... r,,+,). Then (W,. W:)%A. 

Proof Let I, E W,, t2. t3 ,.... t,, E W, n WZ, t, + , E W? be the special 
involutions for which < = ri, i = l,..., n + 1. If ) r, r, + , ) = k, then we can get 
(t, , t,,+ ,)’ = 1 by the argument of Lemma 5.3 provided we know that 
distinct t,i in A have commutators on C,(B*) meeting trivially. Since this is 
true with A, or A,. it sufftces to check the statement for t,, t,, , . Since the 
Dynkin diagram has no loops, t, and t,+, commute. We assume that 
[B*.t,]= [B*,t,+,]. S’ mce n > 3. we may choose an index j, j # 1, II + 1, 
such that 1 r;r, / > 2 and rir,l+, = 
IB*, t,,+, 1, whence [B*. 

2. By conjugating with tj, we get [B*, t’{] = 
t, til = 1. But since Ai acts faithfully on B*, this is a 

contradiction. 

LEMMA 5.6. Suppose A,, A? are Weyl groups of type A. Then one of the 
following occurss: (a) A, z AI z W,,Z and A is a Weyl group of type A,, +, or 
D ,,+,, (b)p=3, one of A, or AZ is isomorphic to W,,< and AZ Wt,, (c) 
p = 3, one of A,, AI is isomorphic to W,q, and A z WE,. 

Also. in (a), A,, is the usual l-point stabilizer for the symmetric groups 
A, 2 AZ and in (b) and (c), A, is a Z-point stabilizer. 

Proof: See Proposition A. 

LEMMA 5.1. Assume the hJ,potheses of Lemma 5.6 and that A is a We-v1 
group of tpe A. If K, (equiualently, K,) has type A,,(q). ‘A,(q), respectirelv, 
then G, has tvpe A,,+,(q) or ‘A,+,(q). 

Proof Suppose K, and Kz have type A,,(q). Then G, = (K,, W) is iden- 
tified as a group of type A,, ,(q) by Proposition 2.30. 

Suppose K, and Kz have type ‘A,(q). Then plq + 1, n > 4 and 
G, = (L,, W). Let 4: W+C,,+z be an isomorphism so that the involutions of 
Lemma 5.3 inducing reflections on B* go to transpositions. Let r E W so 
that r” = (12)(34) ... (21- 1, 21), where I = [(n + l/2]. We may alter 4 so 
that C,.,(r) 1 WC,-, and C,.,(r) is a standard copy of the Weyl group of L,; 
see Lemma 2.50(v)(c). By Proposition 2.30, we can identify G, as a group of 
type ‘A,,, ,(q) if I > 4, i.e., n > 7. So we may assume 4 < n < 7. 

Let us look a bit more carefully at Proposition 2.30. We can use W to 
define root elements for any n > 4. The problem is verifying relations 
between elements of the shape x,(t), x,(u), (or x,(t, t’), xo(u, u’)) where 
a, /I E C. our root system, and a, /3 are both short and form an angle of 7r/3 
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or 2rr/3 or n = 6 and they are orthogonal, or a, /? are of unequal length and 
orthogonal and n < 5. 

Choosing epimorphisms SI!J(~ + 1, q) + Ki, i = 1, 2, which agree on a 
subgroup isomorphic to SU(n, q) mapping onto L,, we assume that 
SU(n + 1,q) is a matrix group relative to an orthonormal basis 
{eil 1 <j < n + I } and that B * n Ki is the image of a diagonal group. We 
then define ,S, to be the subgroup of K, or Kz corresponding to the 
SU(2, q) 2 SL(2, q) subgroup associated with the ith andjth basis vectors. 

Using the action of W on the S,, we see that [S,, S,.,j,] = 1 whenever 
(i,j} n (i’,j’) = 0. Thus. if n = 6, ,E, and Ez are orthogonal sets of roots in 
C such that both have type Cz, then [x, J] = 1 whenever X,J are root 
elements associated to roots in C,, z7,, respectively. Therefore, [x,(t), 
x,(u)] = 1 whenever a, ,8 are short roots, orthogonal, and GL + p & C. If we 
take ,Y, = (r. --Y} for r long and Cz = (s E Z/s is orthogonal to r), then we 
get that root elements associated with orthogonal roots of unequal length 
commute. 

Suppose n = 5 and a. /I are short roots generating a subsystem of type A?. 
We may arrange for V < W, V E WC, so that V < K, and VTI L, is a 
standard copy of the Weyl group of L, (see (2SO(iv))). Then each x,(t), 
x,(u) is a natural root element in K, , we can define the commutator relations 
between these elements and complete the verification of Steinberg relations 
for G,. 

We are now left with the case n = 4, a, p short generating a subsystem of 
type A?. We observe that p # 3; for p = 3, then A z C, has a nontrivial fixed 
point on B”, rank 5, and C,.(A) = C,.(A,), a contradiction. So p # 3 and 
q > 2. 

We have B* = (B* n K,)(B* n K2) and we replace the hyperplane B by a 
conjugate in N,(B*) so that B n L, has index p in B* n L,. We have 
C,.“(B) = (S, H) where S induces SU(2, q) in a natural way on a two- 
dimensional summand U, of the standard module U for L, z SLr(4, q), and 
HI ~‘q+I x-q+, x-q+,. Let Z be a Sylow 2-group of S. Define 
Mj = N,,(Z), Qi = 0,(&f,), i= 1, 2, M, = N,JZ), Q, = O,(M,). We have 
Q, n Qz = Q,,. Also, J = (N,.,(B), NW:(B)) n NC(Z) (the Wi are as in (5.4)) 
induces C, on B and permutes X,, X1, X,, X, is a natural way under 
conjugation, where Q, = ZX, X2X,, Q, = ZX, X,, Qz = ZX, X,X,, and the 
Xi are K,-conjugates of nonabelian root groups for a long root in a root 
system for Ki, i = 1 or 2. (Think of Xj as follows: let (ek} be our orthogonal 
basis, U, = span{e,, ez}, Xj E SYI~(S,,~), where S,, induces the special 
unitary group on span{ e, , e,, ej 1, is trivial on span(e,lk# 1, 2,jt and 
Xi > Z.) It follows that Q = Q, Q, is a special 2-group. A Levi factor in Mi 
contains a unitary transvection acting nontrivially on X, and trivially on the 
other Xi in Qj. Now, using the action of J, we get that 
[M,,X,]=[Mz,X,]=l. Take h,EH, lh,I=q+l, so that h, acts as a 
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scalar on the above-mentioned two-dimensional space U,, and h, acts 
trivially on the orthogonal complement to U, in U. Take h, E N,(Z), 
Ihzl=q- I and set h=h,hz. Then the actions of h and (M,,M,) on Q 
commute (this follows from the structures of K, and K,). Considering the 
(h?)-action, we see that commutation gives a F, bilinear form on Q/Z, 
whence (M,, MI) gives a subgroup of Sp(8, q). Now, considering the (h,)- 
action, we see that (M, ,152~) induces a subgroup of GU*(4, q) (the subgroup 
of GL(4, q) fixing a nondegenerate Hermetian form up to a scalar) on Q/Z. 
Since this subgroup contains two distinct copies of SU(3, q), it is not 
difficult to see that it must be isomorphic to GU*(4, q) (for example, one can 
show that the nonsingular l-dimensional subspaces form a system of 
imprimitivity for the action of PGU(4, q)). By Lemma 3.19. the isomorphism 
type of (AI,, Mz j = QY, where Y = C,,,,,,,,z,(h) 2 GU*(4, q) z GU(4, q) x 
Z y-, , is uniquely determined, hence is necessarily isomorphic to the 
parabolic subgroup of ‘A,(q) corresponding to the subset o=o of the 
Dynkin diagram o---0=0 for *A,(q). 

We now verify the required commutator relations. We have M, < QY and, 
as L,, g ‘A,(q), M, contains representatives of each LO-conjugacy class of 
root groups (these are the root groups for the system of type A,). Let 
Vi < Ki, Vi a standard copy of the Weyl group of Ki derivable from the 
system of root groups already chosen, i = 1,2.Then Vi z C,, V = (I’,, V,).E, 
and VnQY< Y, VnQYrZ,. Let H be a Cartan subgroup in Y 
associated with the given root groups and let H* = HZ(Y) (recall that Z(Y) 
acts as the multiplicative group of F,‘2 on Q/Z). We claim that H* has 
exactly four irreducible subspaces in its action on Q/Z, i.e., H has exactly 
four irreducible F,?-subspaces in its action on Q/Z. This follows from 
viewing H z Z,,- , x Z+, as a group of matrices preserving the Hermitian 
form with matrix 

01 
10 ! i 01 

10 

and letting generators for direct factors of H act via 

and 
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where FB = (A). Let Q,/Z be these four subspaces, j = 1,2, 3, 4. Then, as the 
one-dimensional spaces above are singular under the bilinear form, each Qj 
is abelian. By their uniqueness and the isomorphism of QY with the 
parabolic subgroup of ‘A,(q), [Qj, H] corresponds to a root group for a 
short root. It follows that QY contains a pair of root groups X,, X, in our 
system with a, p both short and forming an angle of z/3 and a pair of root 
groups for the angle 2z/3. Using the isomorphism of QY with the parabolic 
subgroup, we get the desired commutator relations. 

This completes the argument for the case n = 5 and with it the proof of the 
lemma. 

LEMMA 5.8. Assume the hypotheses of Lemma 5.6 and that 
(A,, Al) z WE, or W, . Then there is some zi and a q so that Ki has trpe 
D.,(q) in the first case 8and type E,(q) in the second case. 

Proof: Suppose (A,, A,) z WEg, Aj g WA,, p = 3, m(B*) = 5. We have 
A,z W,,> and L, has type A,(q) or ‘A,(q) for some q, 31q- 1 or 3)q+ 1, 
respectively. In fact there is a reflection r E Aj with C,,(r) = (r) x A,,. Thus, 
we may choose reflections r, ,..., r6 in (A,, A,) so that 

is satisfied and A,, = (r2, r3, r4). Then (z,, z& = C,.(A,) and clearly, 
C,,((rz, rJ, rq, r6)) = (z) has order 3. Since (r2, r3, r.,, r6) z WDJ, z is in fact 
one of the zi)s. By Tables B and P, L(C,(z)) must have type D,(q). 

Suppose (A,, A,)2 WE,, Ajz WAg,p = 3, m(B*)= 8. We have A,z W,do 
and there is a reflection r E Aj with C,g,(r) = (r) x A,,. Thus we may choose 
reflections r, ,..., r8 to satisfy 

Thus, C,.(A,) = (z,, zz) and C,*(r,, rz ,..., r,)) = (z) has order p. Since 
(r, , r2 . . . . . r,) acts irreducibly as WE, on B*/(z), Table B tells us that 
L(C,(z)) has type E,. 

LEMMA 5.9. Suppose that Ai z WE. for some n E (6, 7,8} or Ai g WF,. 
Thenn=6or7andA=(A,,A,)~WW,“+,orAi~WFqandArWEg.A1so, 
(K,, K,) has type E,(q) or type E,(q) for some q with p1q2 - 1 and the case 
Ai z WF, does not occur. 
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ProoJ Suppose Ai has type WE,. By Proposition E, A 2 WE,+, for n = 6 
or 7 and m(B*) = n + 1. Since Ki E Chev(2), Table B implies that Ki has 
type ‘Eg(q) for ~19 + 1 and n = 6 or E,,(q) for some n = 6, 7 and 9 such that 
plqz - 1. 

If Ki has type E,(q), Proposition 2.30 then enables us to identify (K,, K,) 
as a group of type E,, ,(q). (Note that, in E,(q), the standard copy of 
A,(B*) for ~19 + 1 is also one for plq - 1. if m = 7 or 8). 

Now suppose Ki has type ‘E,(q), p)q + 1, n = 6. We have to be alert to 
any possible “exceptional” coverings of groups in Chev(2) when 9 = 2. We 
have Wi z W):, and W g W,-:, Let K < Ki be a natural subgroup of type 
DJ(s), i.e., K is generated by all the root groups for long roots in the root 
system for K. Then B’nK is a natural WD, subgroup of K; see Lemma 2.50. 
We note that K is simple (see the description of the exceptional covering of 
‘E,,(2) in 1361). Thus we may use Wand the Steinberg relations to construct 
a group Y = (K, W> of type E,(q). Then Y > B * since IV acts irreducibly on 
B * and K n B* # 1. Also, since A,.(B*) contains a copy of W, Table B 
implies that Yn Ki = Ki. Since I., < Y, a similar argument with Table B 
implies that K,i < Y, as Table P tells us that the possibilities are that L, has 
type ‘A,(q) or ‘D,(q). whence. by Table P, Ki, has types ‘A,(q), C,(q). 

D&L ‘E,(q) or D6(q). *E,(q), respectively. Therefore, G, = 
(K,, K-J < Y = (K, W> = (K. W,, W,j < G,, whence G, has type E,(q), as 
required. 

Suppose Ai 2 W,,, By Proposition CF, m(B*) = 5. p = 3 and 
A=(A,,A2)z WF.h~Z2. There are three orbits of A on (B*)# with 
stabilizers WI-,, C, x ,J5, and a 3-local subgroup of index 40 in A. Let 
(j.j’} = (1. 2}. Since p half splits Kj, Aj is therefore W,, or W,,l. Suppose 
Ajz W,d5 so that Kj has type A,(q) or ‘A,(q). Then L, has type A3(q) or 
‘A,(q). By Table P. Kj, cannot have type F,(q’) or ‘E6(q’) for any q’, 
contradiction. Therefore, A i z W, . Consequently, A,, z Wc, and L, has type 
C?(q), ‘D,(q) or *A,(q) for some i. Set Q = O,(A,,)? A;. Then R = [Q, A,] 
is a four group in O>(A,), j = 1, 2. Also (t) = Z(A,), where I has eigenvalues 
( 1. 1, - 1. - 1. -1 }. By inspecting the maximal 2-locals of WL, x Z, and 
noting that no involution of A,, can have more than three eigenvalues -1, 
hence cannot be conjugate to any ti, we see that C.,(R), hence N,(R), must 
lie in the 2-local Aj x (-l,,) for both j= 1 and 2. Thus, C,(R) = Q x 

(fil x (-lR. >, j= 1. 2, and IC,,(R)l = 2’. But then Z(N,(R)) = 
(t, . f2 - lR.) z Z:, which is incompatible with the structure of A, and A?. 

This contradiction completes the proof of Lemma 5.9. 

LEMMA 5.10. Suppose that Ki has type A,(q),plq + 1, n>, 7. Then G, 
has we A,+,(q). 

Proof: We have k= [(n + 1)/2] = m(B*) - 1. By Proposition CF, 
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A = (A,, A,)= Wc,+, or WF,. In this case, 4 < m(B) = m(B*) - 1, by 
2.35(iv), whence A z Wca+, for k > 4. Note that K, g K, z A,(q); by Table 
P, K,i = E,(q) may be possible, but is out by Proposition CF. 

Choose standard copies WT in Ki of A.JB*) as in Lemma 5.5. Thus 
(W:, WT) z A by extensions of the natural isomorphisms W,? z Ai. Now, 
choose standard copies Wi of the Weyl groups of each Ki such that 
Wi 2 WT, i = 1, 2 and W, n W, is a standard copy of the Weyl group for 
L, =L(K, f? K,); see Lemma 2.5O(iii). We want to show that 
(W,? w*> z wA,+2’ Choose fundamental reflections w, , w2 ,... so that 
W, = ()I~, . )v? ,..., IV,,), Wz = (IVY, wj ,..., MS,+ *) and \v,, w2 ,... satisfy the 
relations 

are satisfied. We wish to show that [(w, , wz), (wn + , , w,,,?)] = 1. 
The embedding WT < Wi can be described by regarding Wiyc as the 

centralizer in WizEc,+, of an element corresponding to 
(12)(34) . . . (k - 1, k). Even though (bv,, wz) does not normalize B*, we 
know that B, = C,.((w,, MY?)) has index p’ in B*. Also, if B, = 
C,’ (Ot’n + IV ‘$‘?I + 2 )), JB*:B,l=p*. Furthermore, B,,B, and B,=Z?,nB, 
are direct products of the A-transforms of (z,) (or (z2)) which they contain 
and lB*: B,I =p’. It follows that J0 = L(C,(B,)) has type A,(q) or A,(q). 
Also, it contains JT = L(C,(B,)), which has type A3(q) or A,(q), i = 1, 2. 
The action of B* on J, and the fact that B, and B, fuse in N,(B,) imply that 
JT = J2y. Let Ji be the natural A,(q)-subgroup of J,? which contains B* n JF, 
i = 1. 2. The structure of J,, = Bi, nJ; z 2, x Z,, where (i, i’} = { 1, 2) and 
the action of (B, nJz) x (Bz nJ,) force [J,, Jz] = 1, which gives us the 
desired relation. 

Set W = (W,, W,) 2 W,d,+z. Then G, = (K,, W) z A,+*(q), by 
Proposition 2.30. 

LEMMA 5.11. Suppose that Ai g WC,. Then A=(A,,Az)z WC,+, or 
n=3, AZ W,.,or n=p=3 andA”zAA,? the alternating group. Also, there 
is a q so that G, has type C,,+,(q) or plq- 1 and G, has type A,,(2), 
j(n’ + 1)/2] = IZ + 1, 2D,+2(qL *A,(q), ‘E,(q) or F,(q). Moreover, the case 
A ” 2 A, does not occur. 

Proof: Proposition CF gives the possibilities for A. The possibilities for 
Ki. since p half-splits Ki, are groups of type C,,(q), D,, + ,(q) with PI q + 1. 
‘D,r+,(s) with plq - 1, *A,(q) with n = 3, plq - 1 or A>,-,(2), A?,,(2) with 
p=3. n>3, or A,(4) with p= 5. n = 3. We deal with these cases 
individually. 
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Suppose Ki has type D,, + ,(q). Then m(B*) = n if n is even, n + 1 if n is 
odd. By Table B, L, has type ‘D,(q), whence K, has type D,+,(q), 
‘Eh(q), E,(q) or ER(q). But p does not split D,+,(q), E6(q) or E,(q) since 
plq + 1. whence K, has type ‘E6(q). Thus, m(B*)= 7 or p= 3 and 
m(B*) = 6; moreover, A z Wh,. But then we have a contradiction to 
Proposition CF with regard to the containment Ai < A. 

Thus Ki has type C,,(q) or pJq - 1 and Ki has type ‘D,+,(q) or ‘A,(q). 
Since we have eliminated D, + ,(q), we observe that Ki can involve no “excep- 
tional” covering as n > 4 or p(q - 1. 

Suppose A z WC,+, and suppose that Ki does not have type A,(q’), for 
some 1 and q’. Then Wi := W n Ki is a standard copy of the Weyl group of 
Ki (see Table B and Lemma 2.50), we use Proposition 2.30 to show that 
G, = (K,,K,) has type C,,, (q), 2D,+2(q)7 ‘A,(q) when Ki has type C,(qh 
‘D, + ,(q), ‘A,(q) respectively (note that n > 3 implies that Ki has Lie rank at 
least 3). 

Suppose that Ki has type A,(2). Then p = 3. If n > 7, Lemma 5.10 gives 
the desired conclusion. Say n < 7. Then m,(K) >, 3 implies that n = 5 or 6 
and B = B* has rank 4. The possibilities for L, are A,_J2) or 
SL( [ (n + 1)/2], 4) = SL(3,4). From Table P, we see that the possibilities for 
the type of K, are 

A,(2)- n=5,6 for L, z A,-,(2) 

A,(2) or A,,- ,(2) 

A,(4) I 
C,(4) 
D,(4) 

‘D,(4) 
‘A,(2) 

Say L, z Anmz(2). Then m2,3 (K,) > 3 implies that K, has type A,(2), 
A,(2) or E,(2). By Lemma 5.9, K, z-A,(2) or A,(2). We have 
A,nAzr WC,. 

We treat the case K, z A,(2) in detail and leave the A,(2) case as an 
exercise. For i = 1,2, choose standard copies Wi of the Weyl group of Ki in 
Ki so that Wi = WinNKi(B*) is a standard copy of AKi(B*). Then 
W, 2 C,, W, n L, ? C,, Wz 2 C,. Let w, ,..., MT* satisfy W, = (w, ,..., we), 
w2 = (w3 ).... wg), w, n wz = (U’, ,..., iv,), 
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We wish to verify relations 

w , ,I’? *‘j 

Let @ K, z GL(7, 2) satisfy 

w;=ii+, 

1 
01 
10 

I 
* . 

1 

3 i = l...., 6 

with respect to the basis ~1, ,..., u,. Set (z2) = D n K, ; then (B, z2, K,) is a 
neighbor since z2 fuses to z, in N,(B) (each (zi) is the commutator of B with 
a fundamental reflection in 0,&4,(B))). We may arrange for 

z2 += 01 
11 

( ) 

5 
111 

and for (B n K,)& to have shape 

with each block 2 x 2. This is compatible with preceding arrangements since 
N,.,(B)= C,.,(t), where 
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01 
10 

t$ = 
10 

i---i 01 
. 

01 
10 

1 

Similarly we may arrange for an isomorphism tq K, z GL(7,2) to satisfy 

1 . L.2 = "1 
1 i 01 

i+l c -.i , i=3,...,8 
10 

1 

‘1 

with respect to the basis o3 ,..., LYE, and for (B n K2)’ to have shape 

Let M=@$-‘, fi= (gEGL(7,2)lg fixes tji,i#5, 6, 7 and leaves the 
span of (LJ~, L’~, L’,} invariant} z GL(3, 2). 

We claim that L(C,(M)) 2 GL(6, 2). Since B n A4 z Z, fuses in N,(B) to 
z, . we get L( C,(M)) 4 GL(7,2). If M, < M corresponds under 9 to a 
natural GL(4,2) subgroup and (M, n BI = 9, we have L(C,(M,))? 
GL(6,2). Thus, L(C,(M))? GL(6, 2) GL(7,2) or is 1 (this happens if M 
centralizes a maximal parabolic of L(C,(B n M))). Assume L(C,(M)) = 1. 
In this case, taking z2 E L(C,,(M)) E GL(4, 2) and considering the natural 
action of GL(6, 2) on its standard module, we find that z2 centralizes a 
subgroup of the shape 2“ . GL(4,2) x Z, in C,(M) nL(C,(B n M)); but 
this violates the shape of C,,(M) g GL(4, 2) and its embedding in C,(z,). So 
the claim holds. 

We change bases slightly. Let .% = (~1, - u2, u2 - vj, L’, + ~1~ + L’?, 
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v,, v5, v6, v,} and let 4’: K, -+ GL(7,2) be an isomorphism differing from 4 
by this basis change. We take A ,< K, B, a conjugate of B, so that z E A and 
(An K,)” has shape 

and (A n K2)“” has shape 

* 

* 

1 * 
(I * 

where C= (v, + uz + v~, v4, v5, us, v,, us, v,} and v/‘: Kz+ GL(7,2) is a 
representation of K, with respect to this basis. We replace M by the 
conjugate M* such that (&I*)“’ has shape 

1 

( 

1 

I 
* * 

1 
1 

Let S, T be the subgroup of K,, K, inducing the general linear group on 
span {v, - u2, v2 - v3}, span{v,, v,, vg, vg} and fixing {v, + v2 + v3, 
1~4 , 1’ 5, v,, II,),{ v3, v,, us}, respectively. Let V be the natural module for 
L(C,(M*))rGL(n,2), n=6 or 7. Since [V,T]= [V,TnA] and 
C,.(T)= C,.(TnA), [S,N,(TnA(] = 1 (seen in N,(A)) implies that 
[S, T] = 1. Since (M),, wz) < S and (w,, wa) < T, we get the desired relations 

At this point, Proposition 2.30 identifies G, = (K,, W) as A,(2), as 
required. Of course, when K, z A,(2), we get G, z A,(2). 
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If L, 1 SL(3,4), it is still the case that (B, zi, Kj) is a standard 
component and so the above arguments apply to give G, E Chev(2). 

Suppose that K; has type A,(4), p = 5. Then p only half-splits Ki. By 
Table P, for p to split K, , we must have L, 2 SL(3. 16). 

Then K, is a group defined over F,, and in fact is of type A,(16), ,4,(16), 
C(16). 0,(16), ‘0,(16) or K, has type ‘A,(4). If K, is defined over iF,,, we 
get Gz := (K,. W) E Chev(2) (W as in Lemma 5.5) by a previous part of 
this lemma and Lemmas 5.7. There is no possibility for Ki z A,(4) to be 
compatible with C,: (zi) since G, is defined over F,, (one must check the 
cases to see this). If K, has type ‘A,(4), Lemma 5.7 implies that Gz has type 
‘A,(4); in this case L,, 2 PSL(3. 16), not SL(3. 16). a contradiction. 

Suppose A z IV,,,. Then, we can proceed as in the case A g WC,,+, to 
construct F,(q) or -E,(q). There is a special problem in that one of K, or Kz 
will not contain a W-conjugate a given pairs of roots. So, we use both K, 
and Kz and Proposition 2.3 1. Thus, an examination of Tables B and P shows 
that when Ki has type C,(q). ‘D4(q), ‘A,(q), respectively, we construct G, of 
type F,(q). ‘E,(q). ‘E6(q), respectively. 

Finally, we treat the case A” 2 A h ; that is A contains a copy of C, x Zz 
and Z(A) = x-l,,. >. A/Z(A) 2 C, or Aut(C,). p - 3 and m(B) = m(B*) = 4. 
Also Kj has type C,(q), or type ‘A,(q) with 3 ]q - I, or type *D,(q), or type 
A,,(2), n = 5 or 6 and p = 3. Since B = B* and 3 splits K, E Chev(2), the 
possible types for K, are A,(q,) or C,(q,) for 3]q- 1 or type ‘D,(q,) for 
some q, E (q, q’ } or type A,,( 2) for n = 5 or 6. p = 3. Also 3 1 q - 1 or q, = q 
and K, has type ‘D4(q). 

For now, let us suppose that 3]q, - 1. In any case, K, contains a natural 
subgroup K of type A,(q,) = Oj(s,) such that V= K 17 Wz W.,,, V is a 
standard copy of the Weyl group for K, and K is generated by appropriate 
root groups: see Lemma 2.5O(iv). Take @< W so that @> V and 
IV? C,. By Proposition 2.30, Y= (K, W) z A,(q,). Also, Z(Y) = 1. 

The following argument is an adaption of the argument in result (5.11) 
of Finkelstein and Frohardt [ 171. Define N = NC(B). P E Syl,(N), 
P, = C’,(B,) where B, = (z,.z,,) and (z,j = B n Z(P), N* = N&B,), 
C* = C,(B,) and L = L(C,(B,)) = L(C’,,(z,)) z SL(3.4,) with 319, - 1 
(check the possible K,). We have N,/C, ? Zz x C,. 

We argue that B = J,(P), where J, denotes the Thompson sub_group 
(E]B < P. m(B) = m(P), 2 elementary abelian). Let B’< P with B z B, 
B # B. Note that C,(B) has homocyclic abelian rank 4 Sylow 3-subgroups. 
In fact, Lemma (3.8) implies that B E Syl,(C,(B)). If ]zfJ B ] = 3’, then B’ 
covers P/C,(B), whence ] Z(P) I = 3 ‘, a contradiction. Thus, /B’ n B I = 3 ‘. It 
follows that A contains a tranvection on B. However, every 3-element of A 
normalizes but does not centralize a four-group of A, hence cannot be a tran- 
vection on B, contradiction. Therefore B = J,(P), and we have also shown 
that B is the unique group of its isomorphism type in P. Consequently, 
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P E Syl,(G), IPI = 36 and N controls G-fusion in B, by a Burnside-type 
argument. 

Set R,=PnLaP<C*, R,=C,(R,) and R=R,R,. Then lRzj=27 
and R, n R, = Z(P) = (zO) z Z,. We argue that R, 2 3 ” ‘. First, note that 
if B n Rz < Z(R,), then R, contains an element inducing a transvection on 
B. against Lemma 3.20. Thus, R? is nonabelian, so it suffices to show that 
exp RI = 3. Suppose false. Then IR: O,(R)1 = 3 and S),(R) B is a charac- 
teristic subgroup of P lying strictly between B and P. However, the structure 
of A, implies that A,(P/B) contains a cyclic group of order 4, whence 
A.(P/B) is irreducible on P/B, contradiction. Thus, R, = B,(R,) and 
R=R,(R)r3’+‘. We also have that [R,, B] = RI n B, or else we would 
have [ Rz, B ] < Z(P) and so elements of P-B would have quadratic 
minimal polynomial on B, against Lemma 3.20. Thus, in its action on 
R/Z(P), an element of P-R has a matrix similar to 

11 

( 1 O1 11 
01 . 

Finally, we determine A,(R/Z(P)). It must be a subgroup of Sp*(4,3). 
From K,, we get a copy S of GL(2, 3) in A,(R/Z(P)) which satisfies 
[R,/.W’), O,(S)] = 1. S ince R,/Z(P) = [R/Z(P), O,(S)], we must have 

W%(RIZV’))) # O,(S), or else we could contradict the action of N,(P) on 
P/R as above. Thus, the structure of Sp* (4,3) and IA,(R/Z(P))(, = 3 
implies that O~(A,(RIZ(P)))~QslZ~, lO,(A,(RIZ(P))),O~,~(A~(R/Z(P)))I 
z Qs x Q8 and A,(RlZ(p))lO,(A,(RlZ(P)) g C,. 

Define Q, to be a complement to R, in NK,(R1). Then Q, s Q8 and 
[R,, Q,] = 1. We let Qz = Qf, where h E N,(P) and h interchanges R, and 
R, under conjugation. Let (t) = Z(QJ. Then [R,, t] = 1 implies that 
[L, t] = 1. Since the maxima1 subgroups of R, form an orbit under Q,, we 
may assume that t normalizes Z, . Also, we may assume that t inverts z, by 
replacing Q, with a conjugate by an element of R 1. 

The possible structures of Aut K, and [L, t] = 1 imply that [K,, t] = 1 or 
K, g ‘II,( t acts as an orthogonal tranvection on K, and L(C,,(t)) z 
C,(q,). Now, take yER,,y,,yk,z,. Then [~,f]= 1 and yEL(C,,(f)) since 
B = (z,) x (B n L(C,,(f))). We have that L(C,((z, ,y))) g SL(2, q) and y is 
a noncentral element of order 3 in a natural A,(q,) subgroup of L(C,,(t)). 
NOW suppose that K, does not have type A,(2). If L(C,,(t)) contains a copy 
of C,(q,), then C,(O, .Y>) > (0 x CLfc, &Y) z Z, x G% q,) x Y, where 
Y, z Sp(2, q,) z SL(2, q,) or Y, E ‘D,fq,) s SL(2, q:). Since Out K, has 
abelian Sylow 2-subgroups and t lies in a quaternion group in C,(y), t must 
induce an inner antomosphism on L(C,(y))z K,. But K, z C,(q,) or 
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‘D,(q,) implies that t centralizes L(C,(y)), a contradiction since t induces a 
reflection on B < (y, L(C,(y))). Th e case where L(C,,(t)) does not contain 
a copy of C,(q,) is the case K, zAj(q,). But then i = 2 and we merely 
reverse the roles of zi and z, in the above argument and use the fact that K, 
does contain a natural C,(q,)-subgroup. 

If K, has type A.(2), n = $6, we may argue as above to get a 
contradiction. The only change occurs at the end, namely, 
C,((t, y)) 2 (t) x C,,(y) z Z, x GL(2,4) x GL(n - 3,2). 

Thus, the case A” 2 A, is eliminated, and the proof of the lemma is com- 
plete. 

LEMMA 5.12. Suppose that Ai z WD,. Let A = (A,, A,). Then there is a 
q so that one of the following holds. 

(i) A z WD,+, and G, has type D, + ,(q),pl g - 1 or n is even n > 4, 
p 1q + 1; or G, has type *D,+,(q), n odd, n 2 5, p)q + 1. 

(ii) A s WE,+, and (Ki, G,) have types 

(Ds(q)v E,(q)) Plq- 1 

(‘4(s). *Gd) Plq + 1 

(D,(q), E,(q)) p=3,31q- 1 

(D,(q), E,(q)) Plq* - 1 

(D,(q), 4(q)) Plq- 1 

(*D,(q), E,(q)) plq + 1. 

(iii) A rC,,and G, has type A,(q),p)q- 1. Ki has type D,(q) 

Proof. The possibilities for A are given by Proposition D. Thus, 
A 2 WD.+,3 WC,+, or n = 5, 6, 7 and A g WE,+, or n = 4, p = 3 and A g WE, 
or n = 3 and A is a group of small index in WFl(y), y a graph automorphism 
(i.e., WD, <A < WE-4(~)) orn=3,p=3andArC,,z;,xZz,A,.D,,E,or 
C, x Z,. Let (i, i’) = (1, 2). 

We can eliminate several possibilities for A with a few observations. 
Suppose A/A’ g Z, x Z,. We claim that A, or A, must be associated with a 
Dynkin diagram with two root lengths. If false, the fact that A, is generated 
by reflections and covers each of A,/A; and A,/A; gives a contradiction. 
Thus, some Aj is isomorphic to WC, or WF,. Since the diagram for Ai has 
one root length, the same is true for A,, (see Table P), whence Aj g WF,. 
Thus Ajz WC,. By Lemma 5.11, AzWW,” or WF, and G, zCc,+,(q) or 
plq - 1 and G, has type *D,,+*(q), ‘A,(q), *E,(q) or F,(q). As 
G, E Chev(Z), we look at Table B and see that Ai g WD, is impossible. We 
conclude that A/A’ g Z,, whence A 2 WDm+, or n = 5, 6, 7 and A z WE,+, or 
n = 4, p = 3 and A z WE, or n=3 and ArZ, or n=4 andp=3 and 
A r&. 
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Suppose A z WE,. Then n = 5 or p = 3 and n = 4. If n = 5, Ki has type 
OS(s), plq - 1, or type ‘D,(q), plq + 1, and we show that G, has type E,(q) 
or *Eg(q), respectively, using Proposition 2.30. For Ki of type D,(q), this is 
easy. For *D,(q), it is almost as easy once we see that the natural 
containment *Dg(q) 4 ‘E,(q) corresponds to a natural containment 
WC., 4 w,. . 

If p = 3 and n = 4, Ki has type D4(q) and A is isomorphic to WE,. We 
have that L, has type A3(q) = D,(q). Since Ai is a Weyl group for a root 
system with one root length, Table P implies that Ai z W,da or WA, or WD,. 
If Ais z W,,J or WDJ, then A is generated by five reflections. If A z WE,, this 
is impossible (look at the usual representation in O(6, R)). Thus, Ais z W,dg. 
The orbits of WE, on the 12 1 one-dimensional subspaces of B * have lengths 
40, 36 and 45, whence Ai, is a natural W,l, subgroup of WE,. We therefore 
may use Proposition 2.30 to get G, of type E,(q). Note that this forces 
C,d(bi) to be an extension of WD, by the graph automorphism of order 3 and 
N4((bi)) z wF,- 

Suppose A z C,, n = 3, p = 3. Then Ai z WD, implies Ki has type D,(q), 
plq- 1 or *D,(q), plq+ 1, whence A,rC,. Since Az.C,, A is not 
generated by four reflections, whence Ai has type W,Al (rather than W,A,). 
Since Ai, must fix a nontrivial element of B*, we have p = 5, a contradiction. 
So, A k C,. 

If A z A, . D,, we quote the last line of Lemma 5.11. 
If A z C,, we quote Lemma 5.6, the case n = 3. Thus plq - 1 and G, has 

type A,(q) (G, cannot be *A,(q) as m2JG,) > 4). 
If A 2 WE,, Ki has type D6(q), p\q* - 1, and if A z WE,, Ki has type 

D,(q), plq - 1, or *D,(q), p(q + 1. In both cases, Ai is a natural WD. 
subgroup of A z WE,,,; see Proposition D. In the first case, we let K be a 
natural D,(q) subgroup and show that G, = (K, W) has type E,(q). In the 
second case, we let K be a natural D6(q) subgroup and prove that 
G, = (K, W) has type ER(q). 

Finally suppose that A z WD,+, . Then Ki has type D,(q) and pi q - 1, 
type D,(q) n is even and p/q + 1, or type *D,(q) and n is odd, plq + 1. We 
must show that G, has type D,+,(q), *D,+,(q), D,, ,[q], respectively. As 
usual, we need Proposition 2.30 but we have to be slightly careful about 
choosing the subgroup K of that proposition. If pi q - 1, take K = Ki and if 
plq + 1, let K be a natural subgroup of type D,(q), ‘D,-,(q), D,-,(q), 
respectively. In the first and third cases, we want the Lie rank of K to be at 
least 3. Since m(B) > 4, if plq - 1, n > 3 and if plq + 1, n > 4, so there’s no 
problem. In the second case, there are two root lengths, so we want K to 
have Lie rank at least four, i.e., n - 2 > 4 or n > 6. Since n is even here, it 
remains to treat the case n = 4. It is no problem to verify the Steinberg 
relations for a pair of root elements which can be conjugated by an element 
of W to a pair of elements in K. 
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Let us tabulate the possible configurations up to W,J-conjugacy of pairs of 
linearly independent roots in the system C of type B,. Here s, s’ (r, r’) 
denote typical short (and long) roots respectively and (r, rz is the angle 
between the roots r, , r, E C. 

( 1) (s. s’ = 72/2. 

(2) (r, r’ = 743, 

(3) (r, r’ = 2~/3. 

(4) (r. r’ = 7r/2, Rr + Rr’ contains a short root, 

(5) (r, r’ = n/2 Rr + Rr’ does not contain in a short root 

(think of a root system of type B, as all fe,, fe, f e4, a #/I, where e, ,..., ek 
is an orthonormal basis for Rk). Pairs of root elements corresponding to 
pairs (1) and (4) are W-conjugate to pairs of root elements of K or type 
‘DJq). The pairs (2), (3) and (5) . mvolve only long roots, and, as K,(type 
D4(q)) contains K as a natural subgroup, root elements for long roots in K 
one root elements in Ki, and the verification of the relations is immediate. 

The proof of Lemma 5.12 is now complete. 

COROLLARY 5.13. G, is described b-v one of the preceding fioe lemmas. 

Proof: If Ai is a Weyl group of type B = C, D, E or F, this is clear. 
Otherwise, Ai has type A. In fact, we may assume that both A, and AI have 
type A. Then Lemmas 5.6 and 5.7 apply, and we are left with the case 
A z Wn,+,, A,sA,s W, , A,cA,z W,q,m,. Then plq- 1, 11>3 and 
A, z Al has type A,,(q), S&e n > 3, it is easy to see that Proposition 2.30 
may be applied to get G, z D,, ,(q). 

LEMMA 5.14. If Ki<G,, then A,&A. 

Prooj We may assume that A/ < A. Define L = L(C’,,(z,)). We have 
L, <L < Ki. We claim that L, = L; assume otherwise. 

Set L,, = (Lo”;) < Ki 17 G,. Then L,, <L, and, since Wj 4 N,I(L,), 

Lo < Loo- Consequently WjfT L,, a Wj and Win L Q Wj. Since, by 
Lemma 2.50, Wj n Y is a standard copy of AY(B*) for Y = L,, and L, 
either Wj n Y = Wj or Wj f-l Y, Wj are isomorphic to WD,, W,” or 
WD,, WF,, respectively. The last case is out, by Proposition CF applied to 
Aj < (A, ,..., A.). Thus, Win Y and Wj are “almost equal,” i.e., 
Iw,: w,nYl<2. 

If Wj <L, then L # K and Tables B and P show that Wj z WC,, for some 
n (we have eliminated Wj 2 W,;). Thus, whether Wj lies in L or not, 
wjr WC”. Therefore, (A, ,..., A,) z WC,+, or WF,, by Proposition CF. We 
replace K, by K, in the preceding part of this section to get CT = (K, , Kj) E 
Chev(2). We use Table B to get the possibilities for G:. 
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Suppose Gf has type F,(q). Then, by Table C, K, and Ki both have type 
C,(q) and L, has type C,(q). It is clear that K, < G$, K, has type C,(q) and 
that G, has type C,(q) or F,(q). Since Kj 4 G,, G, has type C,(q) and 
Kin G, must have Lie rank 3. hence G, n Kj gA,(q). But then 
Al z WC,, Al 4 A, a contradiction. 

Suppose that GT has type C, + ,(q), we may repeat the above argument 
unless K, and Kz have type D,,(q) or ‘D,(q). Then G, has type D,,+,(q) or 
‘Drr+,(q). Since Kj 2 C,,(q) $z Ki, i = 1, 2, we must have L, of.type A,-,(q) 
or ‘A,,-,(q), h w ence Ki has type A,(q), ‘A,(q), D,(q) or ‘D,(q). However, 
viewing DL, < GT, we see that Ki & D,(q) or *D,(q), i = 1, 2. From the 
usual matrix representation of C,, ,(q), we see that at most one of (K, , KJ 
can be A,,(q) or ‘A,(q), a contradiction. 

Finally, if GT has type D,,+,(q) or ‘D ,,+ ,(q), the preceding argument may 
be modified to show that G, = G:, a contradiction. 

LEMMA 5.15. If A, <A, then (Aj, A. (A, A,)) is one of the following: 

(W.4”~ WA”,,, W4,+>h pin + 3, 

WA,~ W”,, WEJY p=3, 

wc,r WC,9 W,;). 

Furthermore, in these cases (A, A,i) contains all A,, k = I, 2 ,..., r. 

Proof: Letting A, = (A, ,..., A,), we quote Propositions A, CF, D and E 
and use O&A,) = 1 and the fact that A, is generated by reflections. 
Compare this result with the last few lines of Table C. 

PROPOSITION 5.16. Suppose that Kj < G,for some j> 3. Then we are in 
one of the following situations: 

Lo Ki K2 K, G, Go P 

An- t(q) +(q) A,(q) A,(q) 4+,(q) 4+2(q) pin + Wq - 1 
*t $d A,,(q) *A,(q) *A,(q) *A,+,(q) 24+2(q) pin + 3,plq + 1 

2 C,(q) C,(q) C,(q) C,(q) F,(q) PI4 - 1 @1/q + 1 
sincep splits 

some Ki) 
A,(q) D,(q) D,(q) D,(q) D,(q) J%?) p=J,Jlq- 1 

‘A,(q) 
‘A .1(q) D,(q) Da(q) Da(q) *D,(q) 2qq) p=3,31q+ 1 

*A,(q) 
A,(q) *D,(q) ‘D&) *Da(q) *D,(q) *m?) p=3,3lq- 1 
*A,(q) *D.,(q) *D,(q) *D,(q) D&l J%(q) P=3,3lq+l 
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In particular, r = 3 unless (A ,,..., 
(A 

A,.) z WE, in which case r > 6 or 
,,..., A,.)z WE, and r= 4. 

ProoJ: By Lemmas 5.13 and 5.14, we have Aj 4 A and the possibilities 
for A = (A , ,..., A,) = (A,, A?, A3). We identify the group G,* = (G,, W,) by 
Proposition 2.30 and Lemma 2.50, except for the case G, or type C,(q). 
Once G,* is identified, we get G$ by checking components. If G, has type 
C,(q), L, has type A,(q) or ‘A,(q). If we choose I., differently in this case, 
i.e., L, of type C,(q), the components generate a group G,** of type F,(q). 
But its evident that our K,, Kz and Kj all lie in G,** (by Table P, for 
instance, and the structure of L(C,O,,(z)) for z E B*), whence 
G, < G, = G,**, as required. The last statement in the proposition is an 
exercise. 

COROLLARY 5.17. DeJne A * = (A, ,..., A,.), A * * = A&B *). Then 
A ** = A *A,: where A$ = {a E A* * 1 a induces a scalar transformation on 
B* }, or we are in one of the following cases: 

(a) A *A$ a A * * and either 
(i) A* z W,<. IA& = 2. A * */A$ z Aut(A,), p=3 and 

rn(B*) = 4; or 

(ii) A* r Wn,. n er!en, A** = AzA,*, where A,* 2 WC,; or 
(iii) A* z W,,l. A * */A *A$ is a subgroup of C, ; or 
(iv) A * r W, ,, A **/A *A$ z Z, ; or 
(v) A* r W[:,. A**jA*A$ ~2;. 

(b) A”A,F b A** and 

(i) A* 2 WC.,, A** = A,*A:, A: z W,, or WFl(y) where y induces 
the graph automorphism on Ax z WF,, A? < A r; or 

(ii) A* z W,,,, A** = A,* X A: where AT 2 W,,,+,, pin + 2 or 
n = 4 and A** is the group of (a)(i); or 

(iii) A “2 W,,<.A**=A,+A;,A;z WE,. 

ProoJ Use Propositions A, CF, D and E. 

LEMMA 5.18. DeJne A * = (A, . . . . . A,), A* * = AJB*). In the notation 
of Lemma 5.17, A,* < (-lR.) and A* a A**. 

Proof The structure of Aut Ki, Ki E Chev(2) implies that A$ ,< (-lB.). 
We show that A* (1 A ** by eliminating each of the cases in conclusion (b) 
of Lemma 5.17. However, the structures of A * and A * * gives contradictory 
values for r. For example. if A * = WC,, r < 3 whereas if A* * 2 WF,, then 
r = 4. 
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COROLLARY 5.19. The A*-conjugacy class of (zi) is invariant under 
A * * unless possibly 

(i) A* E WD,,Aiz W,q,,m, andA** 2 WC,, 

(ii) A* E Wk.,, Ai z WC,, A** = A*(y) where y induces a graph 
automorphism on A*. y2 E Z(A*). 

ProoJ The only opportunity for the statement to fail occurs when A* * 
induces a noninner automorphism on A *. In this case, A* z WD, or WE.,. 
After an examination of the cases and the using fact that A* and A* * are 
both irreducible linear groups, we get (i) and (ii). 

COROLLARY 5.20. (lV,(B),N,(B*))< N,(G,). 

ProoJ Let g E N,(B) or N,(B*). If an element of the coset 
C,(B) N,,)(B) g or C,(B*) N,JB*) g leaves invariant each of the zi, then the 
entire coset lies in N&G,), as G, = (K, ,..., K,). For g E N&B*), this does 
happen with the exception of Corollary 5.19. Let us consider those two 
cases. 

Assume A* z WD,. Then G, has type D,(q), ‘D,(q), n > 4. Since 
N,;(B*) preserves every N,,(B*)--class of subgroup (6) of order p in B* 
in which L(C,Jb)) is quasisimple, we get N,(B*) < N,(G,) because 
g E N,(B*) < Cc@*) Go. 

Assume A* z WF,. Say g E N,(B*) induces a graph automorphism of 
order 2, normalizing W. the standard copy of AGO( If g normalizes a 
standard subcomponent, we are done as above. So, we may assume that L, 
has type A?(q). But it is clear from studying components that G,, is the “Go” 
for Li, whence g E N,(G,). as required. 

Finally, we turn to the case g E N,(B), B < B*. The definition of G, 
implies that C,(B) < NJG,). The structure of C,(z,) implies that if 
P E Syl,(C,(B)), then P, = Q,(P) contains B * and if B * < P, , then P, - B * 
contains an element inducing a field automorphism on each Ki. The 
existence of such an element would contradict the definition of standard type. 
Thus B”=P,, and so a Frattini argument implies that 
NJB) < C,(B) N&B*) < N&G,). The proof is now complete. 

We summarize the main result of this section. 

PROPOSITION 5.21. G, := (K,, KZ ,..., K,) E Chev(2). 
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6. G, = G 

We now know that the following hypotheses are valid. 

I. G is a simple K-group of characteristic 2-type. 

II. B z E,,. n > 4, and B realizes the 2-local p-rank of G. 

III. B c B* with m(B*) = m,(G). 

IV. For some x E B*. G is of standard type (as defined in Section 1) 
with respect to (B, x, L). 

V. For some D c B and standard subcomponent (D, J) the set of 
neighbors of (B, x, L) with respect to (D,J) together with L generates a 
group G, of Lie type over a field of characteristic 2. The possibilities for G, 
are listed as G,, or G, in Table C of Section 2. 

VI. B * acts as inner-diagonal automorphisms on G,. 

VII. <N,(B), N,(B*)) g N,(G,). 

In this section we prove 

PROPOSITION 6.1. G, = G 

Notice that Hypotheses I-IV appear in Section 1, and Hypotheses V and 
VII are Proposition 5.21 and Corollary 5.20, respectively. Hypothesis VI 
follows from Corollary 4.2. Note that if G, = D,(q) and p = 3, no b E B* 
can act as a graph or nonstandard field automorphism because the p-rank of 
the centralizer of b would be too small. 

We fix a choice of B, B*, (B, x, L), and (D, J); and we define 
M = N&G,). Our initial goal (which we attain by proving Lemmas 6.9 and 
6.13) is to show that M controls strong fusion of D in G. 

LEMMA 6.2. C,(D) c M and J = L(C,(D)). 

ProoJ Since C,(D) normalizes J, it normalizes L and every neighbor. 
Hence C,(D) normalizes G,. The second assertion follows from the first 
together with J = L(C,“(D)). 

LEMMA 6.3. The following conditions hold: 

(i) PCIC,(G,)I: 

6) 21;/C,(G,)I; 
(iii) No element of N&B*) induces a transvection on B*. 

ProojI From the definition of standard type C,(L) has cyclic Sylow p- 
subgroups. Since (x) acts nontrivially on each neighbor, (x) acts nontrivially 
on G, and (i) holds. 
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B* acts on C,(G,) and by (i) B* normalizes some TE Syl,(C,(G,)). 
Assume T # 1. By Hypothesis I, G, acts nontrivially on Q = 02(N,(T)). 
Thus for some dE 0”. J acts nontrivially on C,(d). If (B, d, K) is a 
neighbor, then J G K & G, forces K to act nontrivially on C,(d) contrary to 
K Q a C,(d). Similarly L a Q C,(X) forces d @ (x). The remaining 
possibility is that J covers F/O,.(F) for some p-component F of C,(d). But 
then ]J. C,(d)] c O,.(F) forcing ] [J, O,.(C,(d))] 1 even and contradicting the 
definition of standard type. 

Finally suppose a E N,(B*) induces a transvection on B*. By Proposition 
4.1 and Hypothesis VII we have O,(N,,,(B *)/C,,,(B*)) = 1. Let A be the 
normal closure of a in N,,,(B*). By a result of McLaughlin [47] the image of 
A in Aut(B*) is a product of linear and symplectic groups, but Table B 
supplies a contradiction. 

For any d E D* we define 

K, = (J~'~GI(~'~). 

Of course K, = J or K, = L or (B, d, Kd) is a neighbor of (B. x, L). 

LEMMA 6.4. ) Z(J)) is odd, andfor all d E D”, ) Z(K,)/ is odd. 

Proof: Since / Z(G,)I is odd, Lemma 2.22 gives the desired conclusion. 

LEMMA 6.5. K, 4 (1 C,(d). 

ProoJ: If not, then by definition of standard type K, = J and lies in a p- 
component A of C,(d) with A = JO,,(A) and [J, O,,(A)] # 1. 

Choose R = Z(X,) for some -root group X, of J with (r long if J is any 
group whose root system has roots of two lengths. By Lemma 2.6, N,(R) is a 
parabolic subgroup of J. N,(R) is a maximal parabolic except when 
J/Z(J) = A,,(q). 

Choose r E R” and let E = O,,(A), F = C,(r), P = Oz(C,(r)), 
Q = 02GW). 

Suppose II7 1 > 4. We claim R E P. It will follow that [R, F] g Fn P = 1 
whence C,(s) = C,(r) for s E R# and E = (C,(s)(s E R#) = F. But then 
J = [J, r ] centralizes E as desired. 

Since G is of characteristic two type, R E P will follow from [R, P] = 1 
which in turn will follow from [R, Cp(e)] = 1 for all e E D#. Let A, be the p- 
component of C,(e) containing K,. As C,(e) centralizes r E R G K,, C,(e) 
acts on A,. By Lemma 2.1 l(v), [R, Cp(e)] centralizes A,/O,,(A,) whence 
[R, Cp(e)] G O,.(A,). Let Y= [A,, O,.(A,)]. As A, = K, Y and A, has no 
proper normal subgroups covering A,/Y, Y= [K,, O,.(A,)] whence ) Y1 is 
odd by definition of standard type. By Lemma 6.4, ] O,.q,(A,)/Y1 is odd, so 
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lO,,(A,)I is odd. But [R, C,(e)] . IS a 2subgroup of P, so [R, C,(e)] = 1 as 
desired. 

We may assume IR 1 = 2. In particular Lemma 2.38 implies that for each 
e E D*, R is the center of a root group X, of K, with /I long for all twisted 
groups. We define Q, = O,(N,e(R)) and P, = C,(e). 

We claim Q G P. It suffkes to show that for every e E D# either Q, G P, 
or [Q,, P,] E R. Indeed Q E Q, by Lemma 2.23 so assume [Q,, P,] E R for 
all e E D’. It follows that [Q. P] c R whence Q G P by definition of P. 

We will show that the desired condition holds. R c Q, n P,, so when 
Q,/R is an irreducible NKr(R)-module either Q, n P, = Q, or R 2 Q, n P, 2 
IQ,. P,]. In the contrary case we have, by Lemma 2.13, K,/Z(K,) = A,(2), 
F,(2) or K,/Z(K,) = C,(2) with R =X,, /I short. A check of Table C shows 
that F,(2) does not occur and p = 3 in all cases. As Q,n P, 4 N,jR), 
Lemmas 2.14 and 2.15 determine Q, n P,. Of course we may assume 
RcQ,nP,cQ,. 

Let r, = QPPc. When K,/Z(K,) = C,,(2), we have n > 3 by Table B (as 
m(B) > 4) whence T, = Q, Crc(A,/O,,(A,)) by Lemma 2.1 l(iv). By part (i) 
of the same lemma [Q,, P,] GRO,,(A,). As we have seen above ]O,,(A,)I is 
odd: and it follows that [Q,, P,] G R. When K,/Z(K,) =A,(2) the same 
argument works except possibly in the case n = 3 when P, might not act as 
inner automorphisms on A,/O,.(A,). However in this case some element of 
P,. acts as a graph automorphism. By Lemma 2.15 there are two iV,<{R)- 
invariant subgroups U with R c CJ c Q,. and it is easy to check that they are 
interchanged by a graph automorphism normalizing Q,. Thus 
P,, n Q, a P,, N,JR) forces P, n Q, = R or Q, contrary to the assumption 
above. 

We have shown Q G P in all cases. Suppose Q contains R’ for some 
gEJ-N,(R). [R”,F]&PnF= 1 implies F=C,(R’). When N,(R) is a 
maximal parabolic, J = (N,(R), g:) normalizes F, and it follows that r inverts 
or centralizes any section of F on which J acts irreducibly. Consequently 
J = ]J, r] centralizes F. When N,(R) is not a maximal parabolic, 
J/Z(J) = A,(2) and it is easy to check that every involution in Q is conjugate 
in J to r whence [Q. F] = 1 which forces F = E and [J. E] = 1 as above. 

When a root system C of J has a root )’ of the same length as a but not 
orthogonal to (;I, then we may take (u, 7) > 0 and R4 = Z(X,.). We are left 
with the cases J/Z(J) = ‘A,,(2), n > 3, and J/Z(J) = C,(2), n > 3 and a long. 
In these cases all roots in 2 of the same length as a are orthogonal to a. Pick 
a root p with (a, /I) > 0 and X, c: Q. Let 

Jo has a root system C, of type C, and J,/Z(J,) = C?(2), ‘A,(2), or ‘A,(2). 
In any case since Q c P forces [Q, F] G F n P = 1, C&Y,) I> F. Likewise if 
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1’ is the other root of C, with (a, y) > 0 and /3 and y of the same length, then 
C,(X,) 2 F. A reflection of the Weyl group of C, corresponding to the roots 
orthogonal to u moves (/3, y} to {-p, -y}. By Lemma 2.6 there exists 
gE N,,,(R) with (XP,, Xf} = (X,, X,}. Consequently 

J,, = (X,. X,,, X,,, Xm,, X-,> 

centralizes F. By the argument above J,, centralizes E whence J centralizes E 
too, and the proof of the lemma is complete. 

LEMMA 6.6. C,(J) EM. 

We prove a preliminary lemma first. Choose R = 2(X,), X, a root group 
of J, with a long. 

Define 

P = OANGWL Q = O&,W), S = N,(Q), 
J,, = (R, Z(X,)). 

Note J, c J. 

LEMMA 6.7. One of the following holds: 

6) S = (S n Q, C,(J)); 
(ii) J = A,(2); 

(iii) G, = E,(2), L =A,(2), J= A,(4), p = 3. 

Proof: By the preceding lemma K, is a component of C,(d). As C,(d) 
normalizes R, C,(d) acts on K,. Apply Lemmas 2.38 and 2.11(iv), 2.40, 
2.43, 2.12, to deduce that either (ii) holds or C,(d) E K,(C,((K,, d))) for all 
d E D”, or we are in one of the cases (*) of Lemma 2.38. In these cases 
either (iii) holds or Lemma 2.39 applies. Thus we may assume 
C,(d) c K,C,((K,, d)). The lemmas just mentioned assert that NKd(R) has 
no central factors on O,(N,&R)/R). As R 5. Kd n S, we have C,(d) c 
(S n Kc,- C,((G 4)). S ince J s K, E G,, we have S n K, c O,(N,(R)) n 
G, = Q and C,(K,) c C,(J); and (i) holds. 

We proceed to the proof of Lemma 6.6. In Lemma 6.7(ii, iii), D is 
conjugate in G, to B n J by Lemmas 2.7 and 2.8. Thus by Lemma 6.2 we 
may assume that Lemma 6.7(i) holds, and (ii) and (iii) do not hold. From 
Lemma 2.38, 2./l(iii) and 2,12(iii) or by Lemma 2.39(iii) we have 
G, = (Q, J,). Thus C,(J) acts on G,, and by Lemma 6.7(i) S acts on G,. 
Now S c QC,(G,); and as ( C,(G,) 1 is odd by Lemma 6.3, S s Q. 

Since S = N,(Q), we have P c Q. If P = Q, then [R, C,(J)] = 1 implies 
that C,(J) acts on (Q, Jo) = G, and Lemma 6.6 holds. In the contrary case 
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Z(Q) s C,(P) & P forces Z(Q) c PC Q. By Lemmas 2.13, 2.14, 2.15, we 
have G, = F,(q) or G, = A,(q),plq - 1, or A,(2), p = 3 or 7. In the first two 
cases [Q. Q 1 & R by Lemma 2.11 (i) whence Q centralizes P/R and R which 
forces Q c P. In the second case (J, P) = G, by Lemma 2.39(iii) and C,(J) 
acts on G,. Lemma 6.6 is proved. 

LEMMA 6.8. The following conditions hold: 

(i) L(C,(d)) E G, for d E D”: 

(ii) D rlormalizes everjl component of C,(d); 

(iii) ecerj> D-signalizer lies in M. 

Proof: Assertion (i) follows from Lemmas 6.5 and 6.6. If (ii) fails, then 
looking in C,(d) we find a component of C,(D) distinct from J contrary to 
Lemma 6.2. 

To prove (iii) let Q be D-invariant of order prime to p, We may assume 
that Q is an r-group for some prime r fp. By Lemma 6.2 we may assume 
Q= IQ- DI. 

We claim Q = ([C,(d), Dl Id E 0”). Indeed let P = ( [Ca(d), D] Id E 0”). 
If P # Q. we can find R such that P E R c Q, R 4 QD, and Q/R is an 
irreducible D-module. As Q = [Q, D], Q/R is not a trivial D module; but 
then C,)(Q/R) = (e) and [C,(e). D 1 c P covers Q/R, a contradiction. 

It suflices to show Qd = [C,(d), D] lies in M. By (ii). Qd = (Qd, D] 
normalizes K,. It follows that Qd acts as inner automorphisms on Kd whence 
Qd c K,C,(Kd) 5 M by Lemmas 6.5 and 6.6. 

LEMMA 6.9. (i) If (JD)K c M, then g E M; 

(ii) N,(K,) c Mfor d E D’; 

(iii) C,(d) L Mfor d E D*; 

(iv) C,(G,) = 1. 

Proof: For (i) let K = Jg. E = D”. It follows from Lemma 6.3 that 
K g G,. Now E = E,,, acts on G, and centralizes a nontrivial 2-group in K. 
By the result of Bore1 and Tits {7] or [9] E normalizes a maximal parabolic 
subgroup of G,. The proof of 152, (2.3)] h s ows that G, is generated by 2 E- 
signalizers. By Lemma 6.8(iii), G, c Mg’, and it follows easily that 
G, = (G,)” as desired. 

For (ii) we note that JD G B *K, C,(K,) (1 NG(Kd) and 
B*K,C,(Kd) G M by Lemmas 6.5 and 6.6. Now (i) yields (ii). 

Let V be the subgroup of C,(d) which normalizes all components of 
C’,(d). From Lemma 68(ii), JD C_ V 4 C,(d). From (i) and (ii) we get (iii). 

To prove (iv) pick TE Syl,(J) and let N = N&T), Q = O,(N). The action 
of D forces Q 5 M. By Lemma 6.3, X= C&G,) has odd order. Since 
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T~G,,XcN;andsinceXaM,wehave [Q,X]gQnX=l. AsGisof 
characteristic 2-type, we conclude X = 1. 

Choose P E Syl,(M) with B * E P. We will analyze fusion in P. 

LEMMA 6.10. The following conditions hold: 

(i) B* is the unique elementary abelian subgroup of its rank of P; 

(ii) P E Syl,(G); 

(iii) any two elements of B* which are conjugate in G are conjugate in 
Nc;(B*); 

(iv) No element y E P induces a field automorphism on G, unless 
p = 3, G, = Da(q). C,J I’) = ‘D,(q”‘). 

Proof: Suppose G, # D4(q). If any y E P induces a field automorphism 
of order p on G,, then as p% 1 C,(G,) 1, we may assume 1 y/ = p. By Lemma 
2.45(ii) we may choose y to centralize B*. But now y E B* contrary to 
Hypothesis VI at the beginning of this section. We conclude that P acts as 
inner . diagonal automorphisms on G, whence by Lemma 2.35, B* is the 
unique elementary abelian subgroup of its rank in P. Clearly (i) implies (ii) 
and (iii). 

If G, = Dj(q), p = 3, and some y E P induces an outer automorphism on 
G,, then the argument above convinces us that we may choose y so that 
1 y = 3, and for any such choice either y induces a graph automorphism or y 
induces a field automorphism with C,O(y) = ‘D,(r), r3 = q. In any event 
CGO(y) has 3-rank 2 by Lemma 2.45(iii) and any elementary abelian 
subgroup E c P with m(E) = m(B*) = 4 acts as inner-diagonal 
automorphisms on G,. Apply Lemma 2.35 again. 

LEMMA 6.11. If b E B*, C,(b) EM and y = bg E M, then one of the 
following holds: 

(i) gEM; 

(ii) Go=A,-,(q),plq- l,p>5; 

(iii) G, = *Ap-,(q),plq + Lp > 5; 
(iv) G, = D,(q), p = 3, pi q - 1, and y acts on G, as a graph 

automorphism with L(C,J y)) z A*(q). 

Further tf (i) does not hold, then y is not conjugate in M to any element of 
B*. 

Proof. First suppose ym E B* for some m E M. Since N,(B*) c M, 
Lemma 6.IO(iii) ensures that we may choose m so that y” = b whence 
gm E C,(b) c M and (i) holds. 
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Now we assume that (i) fails and show that one of (ii)- holds. Without 
loss of generality (y, b) c P. Also y is not fused in M to an element of B*. 
Using Lemma 6.1O(iv) we see that the possibilities for G, and y are listed in 
Lemma 2.45(iii). We choose g so that (C,Jy))“-’ c C,&,(b) = C,(b). Since 
C,,,(b)/L(C,+,(b)) is solvable. 1 L(C,& y)): Z(L(C,& y)) 1 divides ) K: Z(K) 1 for 
some component K of C,Jb). Consider the set of all components of C,Je) 
as e ranges over (B*)#; the same divisibility condition holds if we take K to 
be an element of this set which is maximal with respect to inclusion. Apply 
Lemmas 2.25 and 2.26 and conclude that one of (ii)- holds. Note that 
m,,,(M) > 4 rules out the analog of (iv)with 314 + 1 and L(C,“(y)) = ‘AI(q). 
Likewise p must be at least 5 in (ii) and (iii). 

LEMMA 6.12. Suppose conclusion (i) of Lemma 6.11 fails and (ii) or (iii) 
holds; then m(B*) =p - 1 and OP’(CoO(b)) does not have any summands 
A,(q) or *A,(q) with k > 2. 

Proof Take E = 1 if G, = A,(q), and E = -1 if G, = ‘A,(q). By Lemma 
6.10, P induces inner . diagonal automorphisms on G,. Assuming 
y = bg E P, we have P = (y) T where T = C,(B*) is abelian. Otherwise 
y E Q,(T) = B* and yr = b for some r E N&B*) c M contrary to Lemma 
6.10. 

Let M, be the subgroup of M inducing inner-diagonal automorphisms on 
G,. C,(G,) = 1 by Lemma 6.9(iv) whence M, is isomorphic to a subgroup 
of PGL(n, q) or PSU(n, 9). Take the usual matrix representations (i.e., 
matrices we determined up to scalar multiplication) for these groups with the 
Hermitian form represented by the identity matrix in the second case. For 
any m E M, let Y(m) be the matrix representing m. Arrange things so that 
H(t) is diagonal for all f E T and X(y) is monomial. Suppose m E M, is 

fused in M to I E M, and H(m) has eigenvalues &, 1 < i < p. There exists a 
scalar ,D and an integer P relatively prime to the order of each the eigenvalues 
such that the eigenvalues of, l(I) are p(Ai)‘, 1 < i <p. In particular if the 
eigenvalues of. Y(m) are distinct, so are those of. I([). 

As y is not fused in M to 6, the standard module is an irreducible (J(y))- 
module. Multiplying J(y) by a scalar if necessary so that (J(y)) is a p- 
group, we have (, H(Y))~ = A.7 where ,-Y is the identity matrix, ,I is a 
primitive pU-root of unity, and p” 1 q - E. Thus the determinant of J( y) is a 
primitive pO-root of unity and y induces an outer-diagonal automorphism on 
G,. Since B* = Q,(C,(B*)) by Lemma 6.10, it follows that m(B*) =p - 1 
and we have proved the first part of the lemma. 

Assume OP’(CGO(b)) has one of the forbidden summands; it sufftces to 
reach a contradiction. The fusion of y to b can be carried out in steps by 
means of a conjugation family. Consider the first point at which an element 
whose matrix acts irreducibly on the standard module is fused to one whose 
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matrix acts reducibly. (Since P G M,,, every element of P has a matrix 
representation.) Replacing J by an appropriate G-conjugate if necessary, we 
may assume this point occurs at the first step. Thus there exists Q c P with 
the following properties: 

.vEQsP; 
J’ is fused in N,JQ) to e; 

R(e) acts reducibly on the standard module. 

It follows from the action of H(e) that e is fused in M to B*. As e is fused 
in G to 6. Lemma 6.11 implies that e is fused in M to b. Further M(e) is 
diagonalizable and we may choose it so that 

..R(e)P = 3. 

If e E P - T, then M(e) is monomial and J(e)” = 7 implies that the 
product of the nonzero entries is 1. We see that the characteristic polynomial 
of. Y(e) is 9 + 1 = xp - 1 whence the eigenvalues of J(e) are the p distinct 
pth roots of unity. Considering the summands of OP’(CGO(b)) we see that 
H’(b) has three identical eigenvalues. Thus e cannot be fused in M to b. We 

conclude e E T. 
Now IQ: C,(e)] < IP: T] =p implies ]Q: C,(y)] <p whence [e,y,y] = 1. 

r/J(y) is the product of a permutation matrix 9 and a diagonal matrix 
whence 

We may assume that conjugation by .9 moves each diagonal entry of J(e) 
into the next and the last into the first. Picking an appropriate root of unity 1 
and letting the diagonal entries of. H(e) be 

Ail,..., /lip 

we find that the commutator condition above amounts to a difference 
equation of degree 3 for the J;s. We must have 

ij=kj2 +lj+m 

for some integers k, f, m. We know from the fact that e is fused in M to b 
that for three values ofj, ii is the same. Since ij is given by a polynomial of 
degree 2, ij must be constant whence e = 1. But then b = 1, G = C,(b) c M 
and Lemma 6.1 l(i) holds. 

The required fusion cannot occur and Lemma 6.12 is valid. 

LEMMA 6.13. If b E B*, C,(b) G M and J’ = bg E M, then either g E M 
or the following conditions hold: 

48 I ‘80/2-I5 
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(i) G,=A,-,(q) andplq- 1 or G,= *A,-,(q) andp)q+ 1; 

(ii) p > 5; 

(iii) m(B*) =p - 1: 

(iv) @“(CC;,,(b)) has no summands Ak(q) or ‘Ak(q), k > 2. 

In particular if b E D, then g E M. 

ProoJ Notice that if b E D, then C,(b) c M by Lemma 6.9. If conditions 
(i)-(iii) hold, then J = Op’(CGO(D)) = A,(q) or ‘A,(q) with k > 2. Hence the 
first part of Lemma 6.13 implies the last assertion. Thus Lemma 6.13 
follows from the preceding two lemmas once we rule out the possibility that 
Lemma 6.11 (iv) holds. 

Suppose Lemma 6.1 l(iv) holds. In particular (~7) acts on G, as a graph 
automorphism of order 3. If M contained elements acting as field or graph- 
field automorphisms of order 3, then P would contain an element acting as a 
standard field automorphism contrary to Lemma 6.lO(iv). Thus 
P = ( y)(P n G,). 

Three of the five G,-classes of elements of order 3 are fused in M. The 
centralizers in G, of the three M-classes are 

(1) A,(q) x z,-1. 
(2) A,(q)XA,(q)XA,(q)XZ,~,, 
(3) (W&q) x Z,m,. 

The last centralizer is evident inside the first one. Classes (1) and (3) are 3- 
central in G, and are also the classes appearing in 0’. Thus the centralizers 
in G of elements in these classes lie in M. As class (1) splits into 3 G,- 
classes, every element of order 3 which is 3-central in M lies in class (3). 

Analyzing the fusion of y to b in G, we may assume y E Q s P with 
C,(Q) C_ Q and N&Q) @ M. There exists an element z E Q n Z(P) with 
Iz 1 = 3 and C,(z) E M. Applying Lemma 6.11 to z, we see that we may 
assume z is fused to y in NG(Q). Thus C,(y) is isomorphic to a subgroup of 
C,(z) = C,(z). Since CGO(y) has a section isomorphic to A*(q), we must 
have L(CGO(y)) = L(C,(y)) g SL(3, q). But then y” = z implies that n 
conjugates Z(L(CGO(y)) = ( ) w to (z) = Z(L(CGo(z))). As all elements of 
order 3 in P which lie in the commutator subgroup of Sylow 3-subgroups of 
their centralizers in G, lie in class (3), (no) is fused in G, to (z) whence 
n E G, C,(z) s M which is impossible. 

We have now reached our initial goal: M controls strong fusion of D in G. 
Before beginning the tinal phase of the proof of Proposition 6.1 we wish to 
control strong fusion of other elements of B*. 
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LEMMA 6.14. If bE B* and C,&b) has a component L with 
m(C,,.(L)) < 2, then L is subnormal in C,(b). 

Proof: IfG,=A,(q),plq-l,orG,=*A,(q),p(q+l,thenbisfusedby 
N,,,(B*) to an element of D. M controls strong fusion of b in G by Lemma 
6.13 whence C,(b) E M and L a a C,(b). 

Otherwise let N = C,(b), T = C,w(b); if E is any M-conjugate of D lying in 
T, then T controls strong fusion of E in N. By Lemma 3.14 every component 
L , of T lies in a component K, of N. Let L lie in the component K of N. As 
we may assume K e T, K is E-invariant by Lemma 3.13. We will find a 
configuration satisfying Hypothesis 3.16 inside Aut(K). 

Our conditions imply that L(T) is the central product of the groups 
L( T n K,) as K, ranges over the components of N. Let If = E(K n T); we 
have that L(H) = L(K n T) is a product of components of Lie type over a 
field of characteristic 2. By Proposition 2.22, IZ(L)I is odd. Further from the 
structure of T we know that E acts on each component of L(H) as inner- 
diagonal automorphisms and H/L(H) is solvable. Similarly since 
C,,(e) & K f~ T for e E E#, we see that L(C,(e)) is a product of components 
of Lie type over fields of characteristic 2. 

Let V = C,(K). As v/vn K is isomorphic to a subgroup of E and 
[ V, vn K] c [V, K] = 1, V is nilpotent. E acts on V and Vcr T by Lemma 
3.13. Let W = EK and w = W/V, by Lemma 3.11, e controls strong fusion 
of E in w. All the conditions of the preceding paragraph carry over to w, 
and to check that Hypothesis 3.16 holds (with @ and I’? in place of G and 
H) it suffices to show that O,(H) = 1. 

Let P/V= 02( I?‘) and Q = O”(P). Q covers P/V; and as 1 W: KI is odd, 
Q s K. Thus [Q, V] = 1 whence Qc02(P). We have 
Qc02(KnT)aa T. 

We need only show R = Oz(7’) = 1. By Lemma 6.9, M acts faithfully on 
G,. By the structure of T, R n G, = 1; and it follows that R cannot acts as 
inner . diagonal automorphisms on G,. As G,B* a M, [B*, R] C_ 
[Tn G,B*, R] G G,B* nR = 1. Now check in [52, (8.9), (8.10), $191 that 
for all choices of G, and for any involution r E R either Oz(C,u(r)) = 1 or 
q,G;,,B*W < W*). 

Lemmas 3.17, 3.18, and 3.22 yield the following possibilities (as 
L(HnK)=l). 

A,,,p=5,s=2,3,4 A, 
C,(2), P = 3 D,(2) 
C,(2),p=3 ‘A,@) 
A2(4),p= 3 4 
F,,,P = 5 D,(2) 
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In the first case 1 C,,(L) <p* forces m(B*) < 3, not the case. In the last case 
G, is defined over a field of order q with p = 5 dividing q f 1. In particular 
q > 2 and as b acts on G, as an inner . diagonal automorphism, L is defined 
over a field of order a power of q which contradicts L = D,(2). Likewise an 
examination of the possibilities for G, reveals that L = A, does not occur. In 
the other cases by examining the possibilities for G, we find that we can 
choose E so that C,(E) contains a subgroup isomorphic to A,(2). However 
the lemmas listed above guarantee that Cd,??) is a p-group; and this 
contradiction completes the proof of the lemma. 

LEMMA 6.15. Suppose b E B* and C,Jb) has a component L with 
m(C,,(L)) < 2, then M controls strong fusion of b in G. 

Proof As in the preceding proof we may assume that we do not have 
G,=A,(q),plq- 1 or G,= ‘A,(q). plqf 1. By Lemma 6.13 it suffices to 
show C,(b) c M. 

Let E = C,,(L) and A = B* n L. Our conditions imply IB*: AEI <p with 
equality unless some element of B* induces an outer . diagonal 
automorphism of L. From the preceding lemma (b) a Q C,(b). Thus if 
D n (b) L # 1, then C,(b) G M as desired. In the contrary case IE 1 =p*, 
AE # B *, and B * = AE(d) for some d E D”. 

Let X = C,(b) n C,(L). By Lemma 2.22, PI(IZ(L)I. Thus 
m&LX) < m,(B*) implies m,(X) < 3. In fact since some element in B* 
induces an outer automorphism on L, the uniqueness of B* (Lemma 6.10(i)) 
implies m,(LX) < m,(B*) whence m,(X) = 2. We claim that if Y a X and 
E !$ Y. then mp( Y) = 1 and Y has a normal p-component. The second 
assertion follows from the first as b E Z(Y), so assume mp( Y) > 2. Pick a 
B*-invariant subgroup F s Y, F z E,? with (b) c F. Fn B* g C,.(L) = E, 
so Fn B* = (b\. It follows that [B*, F] g (b). As B* contains all elements 
of order p in C,(B*), F acts as a transvection on B* contrary to Lemma 6.3. 

Take I’ to be the largest normal subgroup of X lying in M. Suppose 
E c Y. For some fE Es (fl: = C,.(L,) where L, is a component of C,,(j) 
containing L. Thus M controls fusion off in G and YL a a C’,(b) gives 
C,(b) S G. We may assume b E Y but Es& Y. 

By Lemma 3.13(i) Y contains every p-solvable normal subgroup of X. 
Thus L(X/Y) # 1, and it follows from the structure of Y that 
K = L,.(X) # 1. Every p-component K, of K contains an element of order p 
in K, - O,,,,(K,) lest K, have a normal p-complement by a theorem of 
Frobenius. As m,(K(bj) = 2. K must be a single p-component. Further 
C,(K/Y) has p-rank 1 and contains b whence C,(K/Y) has a normal p- 
complement. The action of D forces C.,(K/Y) CM, and we conclude 
C,(K/Y) = Y. 

We will find a configuration satisfying Hypothesis 3.16 inside X/Y = X. 
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We proceed as we did in the proof of Lemma 6.14. Let T = C,(b); T 
controls strong fusion of D in X and likewise for T, D and 2. As 
T a a C.,,(b), Lemma 3.14 implies L,(T) is a p-component of L,,(C,,,(b)) 
and (from the structure of C,,(b)) T/L,.(C,,,(b)) is solvable. In fact, if 
L,,,(T) # 1. then as every p-component of C,,(b) is a component, Lemma 
3.14 implies that K is quasisimple. In this case the argument used in the 
proof of Lemma 6.14 yields that Hypothesis 3.16 holds. 

Suppose L,.(T) = 1; then T is solvable. Further condition III(f) of 
Hypothesis 3.16 is satisfied because m&K(b)) = 2. Thus Hypothesis 3.16 
holds in this case too. Applying Lemmas 3.17, 3.18, and 3.22 we obtain the 
following possibilities. 

i? = K/0,3.,(K) l? = T/O,<.,(K) 

A,,P=~ F”(H) = ii 
A2(4),~= 3 F*(H)=A,orHnK=‘A1(2) 
zc2(25), p = 5 HnK=z, * z,, 
A,@),p= 3 HnK=Z, -Z, 

Further b E K in the first two cases but not in the last two. Also in the first 
two cases D acts on K as inner automorphisms. From the decomposition 
B* = A(d) E given above it follows that d acts on i? as an element of E. 
Thus B * = A, x E with (K, A, 1 = 1. We can find an element of N,(E) which 
induces a transvection on B*, not the case. Likewise in the last two cases d 
acts nontrivially on a B*-invarient Sylow p-subgroup Q of K with Q z-Z+. 
Further E = (b, e) with (e) = En Q # 1. As A(b) centralizes K, it 
centralizes Q whence the action of Q on (d, e) induces a transvection on B*, 
which is impossible. This contradiction establishes the lemma. 

LEMMA 6.16. Suppose Go = D,(q),plq - 1, and bEB* with 
L(CGO(b)) = A ,(q) x A ,(q) x A ,(q); then M controls strong fusion of b in G. 

ProojI Use the method of proof of the two preceding lemmas. If L is one 
of the components of CGO(b), then L c K, a component of C,(e). If L # K, 
then Lemmas 3.17, 3.18 and 3.22 give q=4, L =A,(4)rA, andp= 5. But 
p = 3 in this case, so we have L = K and L(CGO(b)) a a C,(e). 

By Lemma 6.13 it suffices to show C,(b) G M, and to do that we need 
only find e E L(C,“(e)) with M controlling strong fusion of e in G. Let e be 
the product of two elements of order p lying in distinct components of C,(e). 
CGO(e) has a single component K = A,(q) with C,.(K) = (e), so Lemma 6.15 
applies. 

LEMMA 6.17. Suppose b e B* and CGO(b) has a component L with p, L 
and G, not listed below. Then M controls strong fusion of b in G. 
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L P Restriction on G, 

54,(2), C,(2)‘, D,(2) 3 
A,(4), ~,@I 5 
A,(q) Pl4- 1 Go =A&) 
A,(q) Pl4f 1 Go = 24(d 
A,(d) all p 

In the preceding table q is the order of the field of definition of G, (which is 
the fixed field if G, is twisted). 

ProoJ: As in the preceding three proofs L c K where K is a component 
of C,(b) and D acts on K if K g M. Likewise Lemmas 3.17. 3.18, 3.22 and 
the exclusions in the first two lines of the table above force L = K. Once we 
show C,(b) 5 M Lemma 6.13 and the next two lines of the table imply that 
M controls strong fusion of b in G. 

We will find e E B* n L such that M controls strong fusion of e in G. As 
L a a C,(B). we immediately obtain C,(b) s M. 

If G, = A,,(q) or ‘A,(q), use the standard matrix representations. The 
restriction in the last line of the table quarantees that L contains an element 
eEB* represented by a matrix of determinant 1 with fixed points of 
codimention 2 on the standard module (except the codimension is 3 if 
G, = A, ,(2), p = 7). Further e is conjugate in NGo(B*) to an element of D, so 
e is the desired element. 

If G, = E,(2), p = 7. then we see by Lemma 2.21 that every b E B* 
satisfies the hypotheses of Lemma 6.15. Thus we are done in this case. 

In all the remaining cases p 19’ - 1. Exhibit C,(b) as in Section 2 so that 

G, = 02’(Cc(u)). 

u = I”.“uq or I,, 2 04 

and O”(C,o(b)) corresponds to a subsystem c’,, of the root system 2 of G’. 
Further uy and ‘uq are standard with respect to some fundamental set of 
roots. I,,.” is an inner automorphism of G corresponding to i11~ in the Weyl 
group of G. If pJq- 1. bl*O is the identity while if plq + 1 u’, interchanges 
positive and negative roots. Letting 2 be generated by the root groups of G 
corresponding to roots in c’, we have 

@‘(Cc,.,(b)) = 02'(C,(u)). 

We see that L corresponds to a subsystem 2, g T,,. 2, is either a connected 
component of fO or two such components interchanged by u. However the 
latter possibility is excluded by the last line in the table above. 

Let a’ be the highest root in 2, and let J be generated by the root groups 
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corresponding to cr’ and -15. Since B* consists of all elements of order p in 
C,(a) where 7 is a maximal torus of G’ leaving all root groups of G 
invariant, and since (a) acts on J by choice of a’, B* acts on 

J= C&)rA,(q). 

As B* contains every element of order p in its centralizer, there exists 

eEB*nJ. 

As Jc L, we need only show that e and CGO(e) satisfy the hypotheses of 
Lemma 6.15 or Lemma 6.16 to complete the proof. Let @ be the Weyl 
group of G. Since the (a)-orbits of c” correspond to roots in the root system 
Z of G, and C,(u) acts as the Weyl group of C, a’ is conjugate by an 
element of C,(u) to p, the highest root of its length in 2. 

Let J, be generated by the root groups of c’ corresponding to B and -$. 
Our conditions imply that 7, is conjugate to J by some element of 
C,(u) n NC(T) which projects to an appropriate element of C,(u). In other 
words C,“(e) 2 CGO(e,) for some e, E B* n .&. As we have already treated 
the cases where 2 has type A,, we have that e,centralizes all but one 
fundamental root group of G; that is all root groups corresponding to roots 
orthogonal to /I. It follows that C,.(O”(C,O(e,)) is cyclic. Further except 
when c’ has type D,, O”(C,o(e,)) . is either quasisimple or a product of a 
quasisimple group with a group isomorphic to A,(q). In either case the 
hypotheses of Lemma 6.15 are satisfied. 

Finally if c’ has type D,, then Q,(M) > 4 forces pi q - 1 and G, = Ill(q) 
by Table B in Section 2. O”(C,,Je)) is a product of three A,(q)‘s and 
Lemma 6.16 applies. 

The proof of Lemma 6.17 is complete. We will complete the proof of 
Proposition 6.1 by showing that M controls strong fusion of (r) for some 2- 
central involution r E M. Of course we are done if M = G. so we assume 
M # G and consider the action of G on the cosets G/M. By a result of Holt 
[ 42, Theorem 1 ] G is identified as an alternating group or a Bender group. 
But one sees easily that these groups do not satisfy the hypotheses on G, so 
we must have M = G after all. 

We proceed to study C,(r) where r is a root involution of G, lying in a 
long root group if G, is any twisted group. We know that Y is 2-central in M. 
Further except in the cases (*) (**) of Lemma 2.38 we may assume 
[D, r] = 1. 

In the exceptional cases Lemma 2.38( *), (**) it is necessary to switch 
from D to E where D z E, E c B*, and E centralizes a long root group of 
G, . We define E = (d, e) for d E D# and e E B * - D. The elements d and e 
are chosen as follows: 

For G,=A .+,(2) = (A,(2), A ,,,,+ ,,f2,(4)), p = 3, consider the standard 
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module V and pick d E D” so that C,(d) has codimension 2 and 
C,“(d) zA,(2) X Z,. Let e be an N,“(B*)-conjugate of d chosen so that 
C,.(de) has codimension 4 and C,,,(de) 2 A ,(4) x A,-,(2) x Z,. Every 
fE I? is G,-conjugate to d or ed. 

For G,=A,,(2), p=7 and G,=‘A,(q), plq- I we proceed as above. 
The results are listed below. When G, = E,(2), p = 3. or ‘E,(q), plq - 1. 
label the fundamental system of roots 

and take d = [ qh. cr ], e = ]q, + qr, u] where G’ is the corresponding algebraic 
group, G, = 0’ (C,(a)), and ( lli] 1 < i < 6) is the dual basis of the root 
lattice corresponding to the labelling above. 

We list the possible centralizers of elements in E*. 

G” C,,,(.fhf~ E# 

A,,(4 x z3 
A,(4) XA,-2(2) x z3 

J4,,(2)vp= 7 A,(2) x z, 
A,(2) x z, x z, 
A ,C3) x A,(2) x Z, 

&,(2),p = 3 A,(2) x z, 
‘D,(2) x Z, 

%(qMQ - 1 

%(q).plq - 1 

2A,(2) x z+, 
A ,(q2) x 24k4 x z,,- I 
?A,@) x z+, x Z,,L , 
24(q) x z,-, 
'D,(q) x Z,:m, 
2A.&)XZ,:L,XZq-, 

By Lemma 6.17 M controls strong fusion of E in G. We fix 

E = D if we are not in one of the cases Lemma 2.38( *)( * *); 
E = (e, d) as above otherwise. 

In all cases M controls strong fusion of E in G and E centralizes R = Z(X) 
where X is a root group of G, corresponding to a long root if G, is any 
twisted group. Any r E R# is 2central in M. Fix such an r. 
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We will show C,(r) C_ M. Let N = C,(r), V= C,,,(r), P = O?(N), and 
Q = O,(V). The action of E on P forces P c Q. Since G is of characteristic 
two type, Z(Q) 5 C,(P) G P. 

Let V, be the subgroup of V which acts as inner - diagonal automorphisms 
on G,. Since C&G,) = 1 by Lemma 6.9(iv), the structure of V,, is given by 
Lemma 2.6. By Lemmas 2.11 and 6.9, Q c_ VO. Let L be defined as in 
Lemma 2.6 and let J be a summand of L. By Lemma 2.17, Q = IJ, Q] Z(Q). -- 

Define E = N/P. From the preceding two paragraphs [.I, Q] = 0. As 
JQ 4 a V, we see that JQ is a p-component of v if J is quasisimple. If J is 
not quasisimple, then by inspection we see that p = 3, J z S,, and L = JJ, - - 
where J, is quasisimple. Thus in this case @ Q V. V controls strong fusion 
of E in H. Lemma 3.14 is applicable when J is quasisimple and yields that - 
JQ lies in a p-component i? of N. It is easy to check that Lemma 3.15 is 
applicable when J 2 S,. We summarize the results so far. 

- 
LEMMA 6.18. Let J be a surnmand of L and Y = Op’(J). JQ normalizes 

ecer), p-component of fl. Further: 
- - 

(i) If J is quasisimple, then JQ is a p-component of I? and JQ lies in 
a p-component IT of E. 

- 
(ii) If J is not quasisimple, then p = 3, J= S,, JQ a I? and one of the 

following holds: 

(4 YQ c O,..,(@; 
(b) YQ c K for some p-component I? of fl, and iacts on K; 

(c) Jacts on a p-component i? of N and covers a section isomorphic 
to S, in the outer automorphism group of i?/O,,.,(@. 

- - 
Suppo_se we_can show JQ = g or JQ E O,.,(N) in all cases. If so, then since 
O,.,(N) & V by Lemma 3.13(i), we have Op’(LQ) G X a a N and Xc M 
for an appropriate subgroup X. By Lemma 2.9 there exists 1 # e E E r? LQ, 
whence N E M by Lemma 3.11 (i) and we have shown C’,(r) c M as desired. 

We proceed to consider the various cases. We may assume case (ii)(a) -- 
does not hold and E@ V. E acts on Z? by Lemma 3.13. Let F/P = O,(g) for 
any prime r #p. As P = O,(N), r # 2. F c V by the action of E. From the 
structure of V, [ YQ, F] s Q. Since F a V, [ YQ, F] s Q n F = P and we -- 
have [JQ, F] = 1. Likewise if F/P = L(O,.(N)), then F c V and from the 
structure of V, F= 1. Thus [g, F*(O,@))] = 1, which implies that K is 
quasisimple. As we have done before in the proof of Lemma 6.14 we will 
find a configuration satisfying Hypotheses 3.16 inside Aut(@. 
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Let K be the inverse image of i? in N and define W = KE, U = C&I?), 
T = Vn W. Let fl= W/U and denote the projection of any H 2 W into fi 
by 6. By Lemma 3.12. U 2 T, and, by Lemma 3. Il. f controls strong fusion 
of E in IF. 

We claim Q’= O,(f). Let A ,/Or = O,(F) and A = O”(A ,); clearly Q E A. -- 
It suffices to show Q = A. As 1 W: KI is odd, A c K whence [U, A] = 1 and x 
is nilpotent. Thus x = O?(x) E 0 = O,(T). It follows that A E Q as desired. 

Next let X be the product of all the quasisimple summands of L lying in 
K. By Lemma 6.18 and the structure of V, F/J? is solvable. In particular 
20/Q’ = L( F/O,(n). It is immediate that conditions I, II and III(a)-(e) of 
Hypotheses 3.16 hold with &, i?, f in place of G, E, H. 

Check that Hypothesis 3.16 (IV) holds as follows: Let A/U = C@(Z) for 
some e E E#. As W = EK, A = E(A n K). on E = Z(K) implies that P 
centralizes (in K)/Z(xn K) whence Op(C&)) covers OP((ln K)/ 
Z(An Z?)). We conclude that Oa(Cw(E)) covers Op(Cti(q); and as C,.(e) 
covers C,(e) we have that OP(C,.(e)) covers Op(C+(eJ). Now Condition IV 
follows from the structure of C,(e) = C,(e). In particular if the quasisimple 
summand J of L lies in K, then L(F/O,(n) # 1 and we may apply Lemmas 
3.17. 3.18 and 3.22. We have 

LEMMA 6.19. Let J, K and T be as above; then I? is quasisimple, and ifJ 
is quasisimple either .@ = g or one of the following occurs: 

F,,,p = 5 D,(2) 
C,(2), p = 3 D&l 
C,(2). p = 3 44,(‘4 

Further in the last two cases Fnf? is isomorphic to 0+(8, 2) or O-(6,2), 
respectivel~~. 

Proof: The lemma follows from the preceding remarks. By checking the 
possibilities for G, and E observe that J= A, never occurs. - 

Suppose .@ = z. We have Kc JQU z v whence Kc P and K= JQ 
follows immediately. We will show that the possibilities listed in the table 
above do not occur. Since the field of definition of J is an extension of that 
of G,, and since G, is defined over a field of order q with p[q* - 1 (except 
for some cases when p = 7), the first entry on the table does not occur. 

We wish to eliminate the last two lines on the table. Assume one of these 
conclusions holds. Surveying the possibilities for G, we find 
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GO L J 

D,(2) D,(2) x A ,(2) D,(2) 
‘4 (2) %WXU2) ‘A,(2) 
‘A,(2) 24(2) ‘A,(2). 

To obtain a contradiction it suffices to find y E V such that C&j) !$ K 17 V 
and M controls strong fusion of 4’ in G. The centers of the root group 
containing r and its corresponding negative root group generate a group 
isomorphic to A,(2) which commutes with L. Thus we can choose 4’ E C,.(L) 
with 1.~ = 3. By Lemma 6.15, M controls strong fusion of y in G. Since V 
normalizes J, 7 acts on i?. But lis too large to lie in C&V) unless [x, jr] = 1 
whence CAY) !Z K n V as desired. 

We have reached the desired conclusion @ = K whenever J is a 
quasisimple summand of L. It. remains to consider the possibilities listed in 
Lemma 6.18(ii)(b, c). By inspection L = JJ, with J, quasisimple, and from -- 
the preceding discussion J, Q is a component of N. In particular Q= 1, 
Q = P = O,(N), and 7~ S,. Our conditions imply that F is solvable. Also 
by Lemma 2.9 we have ]B*: B* n J1 <p2 = 9. Further as B* is the unique 
elementary abelian subgroup of its rank in any Sylow p-subgroup of G, we 
must have m,(K) = 1. It follows that pl;JZ(@I and m,(@ = 1. We have 
verified condition III(f) of Hypothesis 3.16 and checking Lemmas 3.17, 3.18 
and 3.22 we find that Ja p, JZ S, is impossible. This contradiction 
completes the proof that C,(r) c hi. 

LEMMA 6.20. /M: G,( is odd. 

Proof. Suppose 2 ] ]M: G,(. Let G, = O”(C,-(o)) where G is an algebraic 
group and u is standard with respect to some choice of root groups and 
fundamental set of roots. The roots of G, correspond to (o)-orbits of the 
roots of G. Let t be an involution of M - G, which induces a standard field, 
graph, or graph-field automorphism of G, with respect to the root system of 
G, corresponding to that of G’. 

We may extend the action of t on G, to an action on G. If (I = u4 and t is 
a field or graph-field automorphism of G,, take t = CJ~,~ or ‘usi2. Otherwise 
take t to be the standard graph automorphism of G. 

It is straightforward to calculate CGo(t) = C&(t, a)) using the methods of 
[ 12, Chap. 13 ]. We see that G, = 02’(CGo(t)) is a simple group of Lie type 
defined over a field of characteristic two. The roots of G, correspond to 
(t. u)-orbits of roots of G’. 

Let a be the root of G’ of highest weight. As a is fixed by (t, o), it follows 
that a corresponds to the highest root of G, and of G,, Pick r to be an 
involution in the centralizer of (t, u) on the root group of G corresponding to 
a; r is also in the highest root groups of G, and G,. In particular C,,(r) has 
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the description given in Lemma 2.6 and we can check from our knowledge of 
the root system of G, that Oz(C,l(r)) c O”(C,,(r)). 

Let P, = Pn A4. Clearly G, normalizes P,, and P, normalizes 
G, = O”(CGO(l)). Thus [P,, G,] s P, n G, = 1 as Oz(G,) = 1. In particular 
C’,,(r) & P, by Lemma 6.19 whence [C,(r), G,] = 1. Hence C,,(r) centralizes 
C,(r) and it follows that O”(C,,(r)) centralizes P. As G has characteristic 
two-type, O”(C,,(r)) c P contrary to the conclusion of the preceding 
paragraph. Thus we cannot have 2 / 1 M: G,l, and Lemma 6.20 is proved. 

LEMMA 6.2 1. Ifr’EM, thengEM. 

Prooj By Lemma 6.20 it suffices to show that r is fused to rK in M. We 
will assume r is not fused to t = rg and obtain a contradiction either by 
showing C,,,(t) is not isomorphic to a subgroup of C,&,(r) or by producing x 
of order p in C.,,(t) such that M controls strong fusion of x in G. In the latter 
case Y ’ E C,(t) g M implies g E M. 

The centralizers in G, of involutions in G, are given by Aschbacher and 
Seitz 131, and the rest of the proof amounts to checking that one of the two 
conditions above holds for C’,(t) as r runs through representatives of all G,- 
classes. 

First suppose G, = A,(q) or ‘A,(q). In terms of the usual matrix represen- 
tations t is represented by 

I, 0 0 

ST, = ( 0 I, 0 4 0 4 i 
and the Hermitian form is represented by 

( 0 I, 0 0 0 I, 0 I, 0 ) 
where 21f k= n + 1. Suppose plq- 1 of G, =,4,(q) and p/q + 1 if 
G,, = *A,(q). In the first case n > 4, while in the second case n > 5 lest 
m2,,(kf) < 4. Let e, ,..., e2/+k be the usual basis elements of the standard 
module for the matrix representation of G,. Suppose k # 0. Unless pin + 1 
and m(B*) = n - 1, we may take x to be the element whose matrix (deter- 
mined up to scalars) acts as follows: 

ei + ef, i=[+ 1, 

eft I -‘Left I, 

where A is a primitive pth root of unity. As x is fused in G, to an element of 
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D, M controls strong fusion of x in G. When pin + 1 and m(B*) = n - 1, 
the same conditions hold if the matrix of x acts as 

e, -+le,. 

e,+k+l-+h+k+~~ 

e, + ei for all other i. 

Suppose k = 0. Unless p( n + 1 and m(B*) = n - 1, take the action 

e, + Je,, 

cl+ 1 -+ %+, . 

e, + e, for all other i. 

Again x is fused in G, to D. Finally if k=O, pin + 1, and m(B*) =n - 1, 
take 

e, + le,, 

e2 -+X’e2, 

e,+, -‘Je,+,y 

e,+2-,A-‘e,+2, 

e, +ei for all other i. 

Here .r is not fused in G, to D, but Lemma 6.17 yields that M controls 
strong fusion of x in G unless G, = AS(q), ‘A,(q), or ‘A,(2), n = 6, 7. Since 
IZ + 1 = 21 is even and divisible by p, we actually have p = 3 and G, = A,(q) 
or ‘AS(q). In both these cases (and only in these cases) we show that C,,,(t) 
is not isomorphic to a subgroup of C,&,(r). Since JM: G,J is odd by the 
preceding lemma, it suffices to show that H = Oz’(C,Jt)) is not isomorphic 
to K = O”(C,O(r)). Let P = O?(H) and Q = O,(K). Suppose G, = AS(q); a 
similar argument works when G, = *A,(q). P z Eq9 and H/P z A,(q). As r is 
in the class represented by 4 with I= 1, Q is special of order q9 and 
z = K/Q z A,(q). Further, commutation induces a nondegenerate bilinear 
form over F, on Q/Z(Q) whence any abelian subgroup of Q has order at 
most 
li?iz = \$ 

5 Assuming - IPnQjG2’ and 
iA,(q)l, >q’ > q6~~~q)/z =“;,I, zi:hn is impossible. 

The same sort of argument works for G, = A,(q), pjq - 1 or G, = *A,(q), 
p)q - 1, and all the other classical groups. The conjugacy classes of 
involutions are represented by the matrices ,...4 above, and the matrix for x is 
chosen as above except that instead of being diagonal it has one or two 2 x 2 
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(or 3 X 3 in the case G, = A,,(2), p = 7) blocks along the diagonal. Lemmas 
6.15, 6.16 and 6.17 suffice to show that M controls strong fusion of x in G. 

Finally consider the exceptional groups of Lie type. Exhibit G, as 
O”(C,(a)) for the standard endomorphism u. The possibilities for t are given 
in [3], as products of elements from various root groups of G,. When 
G, = ‘E,(q) we may express each such element as a product of at most two 
such elements from root groups of G’. Thus in all cases I is given as a 
product of elements of root groups of G, and by inspection we can find for 
each t a root a’ which is orthogonal to all roots involved in t and fixed by u. 

Let f be the maximal torus of C? corresponding to our choice of root 
groups for G, and let J’be generated by the root groups corresponding to 6 
and -a’. Clearly C,(o) c O”(C,(a)) = G,; and as B* consists of all 
elements of order p in Cl(u) or Cp(u) f~ G, _(when G, = E,(q), p = 3, 
m(B*)=5), we can pick XE B*nJ. Clearly [.Z, t] = 1, and Lemma 6.15 
yields that A4 controls strong fusion of x in G. 

When plq + 1, pick a as above so that in addition a is fixed by the 
element w0 of the Weyl group of G’ which interchanges positive and negative 
roots. Taking 

where Z,,,0 is an inner automorphism of G corresponding to w,,, and exhibiting 
G, as O”(C&)), we see as above that B* nJ contains an element y which 
satisfies the hypotheses of Lemma 6.15. By Lemma 2.18(ii) there is an inner 
automorphism of c’ which carries Cc@) to C,(u) and C,-@) to CAu). Taking 
x to be the image of 4’ under this automorphism, we see that x has the 
desired properties. 

We must also consider G, = E,(2), p = 7. Here by Lemmas 2.2 1 and 6.15, 
M controls strong fusion of all elements of order p in G,, so it suflices to 
check in [ 3 ] that 1 C,&t) 1 is always divisible by 7. 
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