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Abstract— Non-similur solutions are established for the boundary layer flow of a homogeneous
incompressible fluid of second grade past a wedge placed symmetrically with respect to the flow
dircction. The variation of the skin-friction with respect to the non-Newtonian parameters is
discussed.

INTRODUCTION

In recent years there has been some interest in the boundary layer flows of non-Newtonian
fluids. Srivatsava [1 ] and Rajeswari and Rathna [2 ] investigated boundary layer flows of the
incompressible Rivlin—Eriksen fluid of second order for the stagnation flow problems. Beard
and Walters [3] studied boundary layer flows of more general elastico-viscous fluids by
employing a perturbation analysis. Recently, Rajagopal et al. [4] have looked at the
boundary layer flows of fluids of second grade and they point out that care has to be exercised
in such analysis which could otherwise be fraught with inherent inconsistencies.

In this paper we study the Falkner-Skan flows of a homogeneous incompressible fluid of
second grade, i.e., the flow past a wedge placed symmetrically with respect to the flow
direction. The Cauchy stress T in a fluid of second grade is related to the fluid motion in the
following manner (cf. Truesdell and Noll [5])

T = —‘pl + #A] + a1A2 + azAf, (1)

where p is the pressure, i the coefficient of viscosity and a, and «, material moduli which are
usually referred to as the normal stress coefficients. The kinematical tensors A, and A, are
defined through (cf. Rivlin and Ericksen {6])

A, = gradv + (gradv)", (2a)

d
A, = d_tA' + A, (gradv) + (gradv)A, (2b)

. d s .
where v denotes the velocity and I the material time derivative.

The model (1) has been the object of detailed study in recent years. While the model (1) can
be considered as a second order approximation of a simple fluid in the sense of retardation (cf.
Coleman and Noll {7]), since the relation (1) is properly invariant it has also been employed
as an exact model for some fluids. An analysis based on the assumption that the model is
exact and is compatible with thermodynamics in the sense that all motions of the fluid meet
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the Clausius—Duhem inequality and the assumption that the specific Helmholtz free energy
be 4 minimum in equilibrium yields (cf. Dunn and Fosdick {8])

=200, 20and a; + a, =0. 3t

In this paper we shall assume that (1) is 2 model in the sense of a second order
approximation.

BOUNDARY LAYER EQUATIONS
We now proceed to derive the boundary layer equations for the plane flow of an

incompressible fluid of second grade. Substituting (1) into the balance of linear momentum

dv

divT + pb = ,
wil +p pd[

(4)

and making use of the fact that the fluid can undergo only isochoric motion since it is
incompressible, ie.,

divy = 0, (5)
we obtain the equation of motion

BAY + a AV, + o (Awxv) + (o + o) {A;Av + 2div([grad v]{grad v]")}

— pv, — pwxy = grad P, (6a)
where
w = curly, (6b)
1
and P=p—ov:Av - Qa; + a;)|A]* + Eplvl2 + po. (6¢)

We have assumed that the body force b is conservative, i.e.,b = grad ¢. Also, A denotes the
Laplacian, v, denotes the partial derivative of v with respect to time, |v| and |A,} the usual
norm of a vector v and the trace norm of A, respectively.

In the case of steady plane flow, equation (6) reduces to

R TR B A
"o l(?y_ péx  p\dx?  By? p ox dy
4(@16_2_11 608214) o (60 au) 62(6u 8u)

o (U + v + = (U= + v—
oxay \ dox oyl ayP\l dx oy

ox?

+ —_————
Ox Ox*  Ox Ox?

2 fown, avao a
oy \dxdy  dxadyl}’
dv v _  1dp 2% 4 v\ o 5 0% | ov . ov
"ox dy  pody Hlox? oy? p | oy? “ox v@y
6u¢32_u+@6’2_v + 02 u6u+ ou
dydyt  dydy?] dxdy | ox U&y
22 [ év dv 0 [0udu v v
A LA g [ucun  ovovii 7
NFre (“ax + Uay) +26x ox 6y+5x ay)} (76)

t The restrictions imposed by (3) do not preclude the possibility that a second order approximation to a simple
fluid of the form (1) could hold with a, < O and a, + a; # 0. Of course it precludes an exact model which obeys the
Clausius—-Duhem inequality in all motions with «; < 0 and a; + a, # 0. We refer the reader to {8] and [9] for
further details.
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ou 0*u 0
The usual boundary layer arguments that u, %, Ex_l;’ 5% be O(1) and y be O(4) lead to (cf.
2D
ou  Ou lap+ 02u+a1 6uazv+u63—u+iu€2}i N i@z} (82)
“ax Tay T Toax a2 T ol aar T e Tax a7 Tex ) I
1ép o, 0 {(614)2}
———+2——<|=] =0, (8b)
poy  pdy\dy
where terms of O(d) have been neglected.
Defining

du\?
p* =p -2 (5;),

equations (8a) and (8b) can be rewritten as

ou ou 1(3p*+;162u a 6u620+003_u+i u@) 92)
“ox dy  pdx pdyr ploydyr T ay' | ax | 0)?
*
oty (9b)
p Oy

both v(=p/p)and a,/p being O(5?), é being the boundary layer thickness. It follows from (9b)
that p* = p*(x) and consequently

ou, 1 dp*
“ax - T pox (10)

U

where U, is the velocity of the main flow outside the boundary layer. Equation (9) can be
non-dimensionalized in the usual manner by scaling the velocities with respect to U, and the
lengths x and y with respect to a characteristic length L. The Reynolds number can also be
eliminated from the above equation by the use of a further transformation which scales
velocities with the square root of the Reynolds number.

Thus, we obtain the following non-dimensional forms of the continuity and boundary
layer equations (the bar quantities representing the non-dimensional forms)

ou ov

% + 6_5) =0, (11)

_aa+_aa_UdU,+aza+ 0 ﬁaza +6ﬁ6217+_53ﬁ 0
"% Ve T TG e T Tl (12)

a‘ .
where ¢ = ————, R being the Reynolds number.
pL*(/R)
The appropriate boundary conditions are

u=0=0 at y=0, (13a)

> U/(x) as j— . (13b)
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The stream function ¢ defined through

A
,—(/j=Tl£,=0 at ¥y=0
oY

oy

FALKNER-SKAN FLOW

(14)

(16a)

(16b)

In this section we study the boundary layer flow of an incompressible second grade fluid
past a wedge placed symmetrically with respect to the flow direction. Included as special

cases are the flow past a flat plate and the flow near a stagnation point.

We shall assume that the stream function ¥ can be expanded in a4 power series in & (cf.

Beard and Walters {37])

U= ) + o (RF) + - 4 (T F) + -

(17

On substituting (17)into (15) and (16a)and (16b) and equating powers of ¢ one obtains the

following equations at zero-th and first order, respectively:

Flp" ("le(‘ - (‘[po (‘\ZJU _ U dU(’ + (As‘p()
oY ORCY O Ox 02 “ d¥ A
&y, O
,‘/i"= K,.zo al T=0
X 3
oy _
ﬂ‘//_"—» UJA¥) as T=—x
cy
A 2T o RSN » ~27 AT
‘wu( l//l ‘7'100“//1_(_%"% _( ltbu(l//)
y CXGy - OXAY O Ox Gy p? O
__ AJI/’! + i fl/j_.npj.l—’n _ (‘*Zwa (‘\‘5.//0 _ ("lpa(“‘l]/‘n
o R W OF Ay v Ot
T - T
( {
f”_‘: Yi_o a =0,
CX )
Y
#—»0 as y— «
cy

Introducing the similarity transformation

m+ 1 ¥y
n= —
‘/ 2 5=

(18)

(19a)

(19b)

(20)

(21a)

(21b)
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and

+1

Jo(n) = z W (23)

we can reduce equation (10) to the following ordinary differential equation

o +Jofd 2m 2)=0. (24)
The appropriate boundary conditions are
L0)=7'0)=0 at n=0, (25a)
Jo{w)=1 as n- oo, (25b)
provided
U,=3x". (26)

In equation (24), the primes are differentiations with respect to 5. Equation (24) is the
classical Falkner—Skan equation for boundary layer flow of Newtonian fluids with main
stream velocity given by equation (26).

To obtain the solution of the first-order equation, we employ the following transformation
in addition to the transformations (22) and (23)

y / 1
xi 2

In this case the equation (20) becomes

m+1 = m+ 1
) 1 + ./ofl l)fofl fl
3m -1 l
{(3m VA "’2 TR } =0 (28)
The appropriate boundary conditions are
NH0)=/1(0)=0, [fim)—-0 as n- o0 (29)

SOLUTIONS AND DISCUSSIONS
Numerical solutions for the zero-th order perturbation, namely equations (24) and (26),
are well known (cf. Moore [10]). The initial slopes, f7(0), for different positive values of £'s
are given in Table 1.
We next solve (28), subject to the boundary conditions (29). The equation (28) is first
written as a first-order system. The derivatives are then approximated by centered-difference
gradients and averages centered at the midpoints of the net defined by

Nne=0m;=n;_;+h;,j=12,..J Ny =g (30)
A non-uniform grid h; is defined through

hj=khj-, (31)
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2
Table 1. f,(0) for various fi's (/} =" )

m+ 1

s 1.40) B Jo(0)
0.05 0.531130 0.60 0.995836
0.10 0.587035 0.80 0.120268
0.20 0.686708 1.00 1.232585
0.30 0.774755 1.20 1.335722
0.40 0.854421 1.60 1.521514
0.50 0.927680

where the ratio of adjacent intervals, k, is a constant is employed. The distance from the
surface to the jth station is given by:

ki —1

n; = h; j=012,....,J. (32)

Linearization is achieved by the method of quasilinearization and the resulting system of
algebraic equations are then solved by a block-tridiagonal factorization technique (cf.
Na[11]). The method is unconditionally stable and second-order accurate.

Table 2 gives the initial slopes of the first-order solution, f7(0), for the same f’s as in Table
2, and plotted in Fig. 1.

Equation (34) indicates that when f is small and ¢ is negative, the skin friction decreases
with increasing |e¢|. However, if f is large and ¢ is negative, the skin {riction increases with
increasing le|. Such a reversal is the result of the change of sign of f7(0) shown in Fig. 1. On the
other hand, if ¢ is positive, the skin friction increases with ¢ for small f and decreases with ¢ for
large B.

Figures 2 and 3 show the variation of f(n) with respect to # for §=0.1 and f§ =1,
respectively. The curves, as can be seen, are qualitatively different.

Table 2. f7(0) for various fi’s

B 170) B 110
0.05 0.82139 0.60 —0.34086
0.10 0.52959 0.80 -0.71638
0.20 0.30086 1.00 - 1.13902
0.30 -0.14178 1.20 —1.60638
0.40 -001118 1.60 - 266413
0.50 -0.17077
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Fig. 1. f"(0)vs f8.
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Résumeé :

On établit des solutions non similaries pour 1'écoule-
ment de couche limite d'un fluide homogene incompressible
du second ordre devant un coin placé€ symétriquement par
rapport 3 la direction de 1'écoulement. On discute la
variation du frottement de peau par rapport aux paramétres

non Newtoniens.

Zusammenfassung:

Fuer die Grenzschichtstroemung einer homogenen und inkom=
pressiblen Fluessigkeit zweiten grades ueber einen in
Bezug auf die Stroemungsrichtung symmetrisch angeordineten
Keil werden nichtaehnliche Loesungen aufgestellt. Die
Veraenderung der Oberflaechenreibung bezueglich der nicht-
newtonschen Parameter wird diskutiert.



