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Abstract-Non-similar solutions are cslablishcd for the boundary layer flow of a homogeneous 
incompressible Ruid ol second grade past a wedge placed symmetrically with respect to the flow 
direction. The variation of the skin-friction with rcspccl IO the non-Newtonian parameters is 
discussed. 

INTRODUCTION 

In recent years there has been some interest in the boundary layer flows of non-Newtonian 
fluids. Srivatsava [ 11 and Rajeswari and Rathna [2] investigated boundary layer flows of the 
incompressible Rivlin-Eriksen fluid of second order for the stagnation flow problems. Beard 
and Walters [3] studied boundary layer flows of more general elastico-viscous fluids by 
employing a perturbation analysis. Recently, Rajagopal et al. [4] have looked at the 
boundary layer flows of fluids of second grade and they point out that care has to be exercised 
in such analysis which could otherwise be fraught with inherent inconsistencies. 

In this paper we study the Falkner-Skan flows of a homogeneous incompressible fluid of 
second grade, i.e., the flow past a wedge placed symmetrically with respect to the flow 
direction. The Cauchy stress Tin a fluid of second grade is related to the fluid motion in the 
following manner (cf. Truesdell and No11 [5]) 

T = -PI + PA, + ci,A2 + a,A;, (1) 

where p is the pressure, /l the coefficient of viscosity and a1 and a2 material moduli which are 
usually referred to as the normal stress coefficients. The kinematical tensors Al and A2 are 
defined through (cf. Rivlin and Ericksen [6]) 

A, = grad v + (grad v)~, (2a) 

A2 = :A, + A, (gradv) + (grad?)A, (2b) 

d 
where v denotes the velocity and - the material time derivative. 

dr 
The model (1) has been the object ofdetailed study in recent years. While the model (1) can 

be considered as a second order approximation of a simple fluid in the sense of retardation (cf. 
Coleman and No11 [7]), since the relation (1) is properly invariant it has also been employed 
as an exact model for some fluids. An analysis based on the assumption that the model is 
exact and is compatible with thermodynamics in the sense that all motions of the fluid meet 
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the Clausius-Duhem inequality and the assumption that the specific Helmholtz free energy 
be a minimum in equilibrium yields (cf. Dunn and Fosdick [S]) 

~1 2 0, aI 2 0 and a, + a2 = 0. (3H 

In this paper we shall assume that (1) is a model in the sense of a second order 

approximation. 

BOUNDARY LAYER EQUATIONS 

We now proceed to derive the boundary layer equations for the plane flow of an 
incompressible fluid of second grade. Substituting (1) into the balance of linear momentum 

divT+pb=pg, 

and making use of the fact that the fluid can undergo only isochoric motion since it is 

incompressible, i.e., 

divv = 0, (5) 

we obtain the equation of motion 

~Av + a,Av, + ar(Awsv) + (al + a,){A,Av + 2div([gradv][gradv]‘)), 

- pv, - pwsv = grad P, @a) 

where 

and 

w = curlv, 

P = p - a,v*Av - (2a, + a2)IA,12 + kpl~[~ + p+. 

(6b) 

(6~) 

We have assumed that the body force b is conservative, i.e., b = grad 4. Also, A denotes the 
Laplacian, v, denotes the partial derivative of v with respect to time, /VI and /AlI the usual 
norm of a vector v and the trace norm of A, respectively. 

In the case of steady plane flow, equation (6) reduces to 

‘. 0) 

tThe restrictions imposed by (3) do not preclude the possibility that a second order approximation to a simple 
fluid of the form (1)could hold with a, < 0 and 3, + a2 # 0. Of course it precludes an exact model which obeys the 
Clausius-Duhem inequality in all motions with a, < 0 and 11, + a2 # 0. We refer the reader to [S] and [9] for 
further details. 
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The usual boundary layer arguments that U, &, 2,: be O(1) and y be O(b) lead to (cf. 

PI) 

au au I ap a5 
u_+-_= ---++7+a, 
ax ay P ax ay [ 

duds a% _-++_+- u- +2___ - 

P aYaY* a9 ii ( :;I) : (ij’]~ (8a) 

---+2”la du* 0 1 dP 

P ay p aJj ay = 9 Ii ii (*b) 

where terms of O(6) have been neglected. 
Defining 

au * p* = p - 2a, - , ( I ay 
equations (8a) and (8b) can be rewritten as 

au au 

uz+vdy= 
i ap* p a2u al aua2v ---+-,+- 
P ax P ay [ 

ah a a% 

p aYaY 
-7+vv++ UT ay ( 11 ay Pa) 

1 w o 
---= 

P ay Pb) 

both v( =p/p) and al/p being O(S*), 6 being the boundary layer thickness. It follows from (9b) 
that p* = p*(x) and consequently 

au 
k.-& 

i ap* = --- 
p ax' 

(10) 

where U, is the velocity of the main flow outside the boundary layer. Equation (9) can be 
non-dimensionalized in the usual manner by scaling the velocities with respect to U, and the 
lengths x and y with respect to a characteristic length L. The Reynolds number can also be 
eliminated from the above equation by the use of a further transformation which scales 
velocities with the square root of the Reynolds number. 

Thus, we obtain the following non-dimensional forms of the continuity and boundary 
layer equations (the bar quantities representing the non-dimensional forms) 

g+g=o, 
Y 

(11) 

ati _aii 9 - 
cz+v3= UP ds ay* 

( afii I E 5 ,. + aiia*fi I Ee 

[i 1 ax ay* ay a?* ay 1 
(12) 

where E = 6 

PL2&m 
R being the Reynolds number. 

The appropriate boundary conditions are 

ii=ij=O at J=O, U3a) 

U3b) 
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The stream function I,& dctincd through 

satisfies equation (11) automatically. Equation (12) reduces to 

a$ ?‘rJ ?$?‘I$ _ di? ------_---_.= c/ _.z+ 
sji &C, c’.\- (92 

I’ ds 

and the boundary conditions are 

(‘V -=- 
c’s (27 

=o at F=O, (16a) 

F-ALKNER~ SKAN FLOW 

In this section we study the boundary layer flow of an incompressible second grade fluid 
past a wedge placed symmetrically with respect to the flow direction. Included as special 
cases are the flow past a flat plate and the flow near a stagnation point. 

We shall assume that the stream function $ can be expanded in a power series in I: (cf. 
Beard and Walters [3]) 

-_ 
3 = $,,(s,y) + UJ, (4.T) + . + f:“lJ”(.y,)‘) + . (17) 

On substituting (17) into (15) and (16a) and (16b) and equating powers ofr: one obtains the 
following equations at zero-th and first order, respectively: 

(18) 

(l9a) 

(19b) 

Introducing the similarity transformation 

(22) 
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and 

we can reduce equation (10) to the following ordinary differential equation 

JT’ + Lx + -$(’ -j:2) = 0. 

(23) 

(24) 

The appropriate boundary conditions are 

_L(O) = j'(0) = 0 at q = 0, (25a) 

provided 

/‘:(co) -+ 1 as r] + 00, (25b) 

ii, = Y. (26) 

In equation (24) the primes are differentiations with respect to q. Equation (24) is the 
classical Falkner-Skan equation for boundary layer flow of Newtonian fluids with main 
stream velocity given by equation (26). 

To obtain the solution ofthe first-order equation, we employ the following transformation 
in addition to the transformations (22) and (23) 

In this case the equation (20) becomes 

(27) 

(28) 

The appropriate boundary conditions are 

.f~(o) =Si(O) = 0, S;(v)-0 as y-+ 00. (29) 

SOLUTIONS AND DISCUSSIONS 

Numerical solutions for the zero-th order perturbation, namely equations (24) and (26), 
are well known (cf. Moore [lo]). The initial slopes,fI(O), for different positive values of B’s 
are given in Table 1. 

We next solve (28), subject to the boundary conditions (29). The equation (28) is first 
written as a first-order system. The derivatives are then approximated by centered-difference 
gradients and averages centered at the midpoints of the net defined by 

q0 = O,qj = qj-1 + hj,j = 1, 2,...,J VJ = qcc (30) 

A non-uniform grid hj is defined through 

hi= khj-1 (31) 
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0.05 0.531130 0.60 0.995836 
0.10 0.587035 0.80 0.1'0268 
0.20 0.686708 1.00 1.232585 
0.30 0.774755 I.20 1.335722 
0.40 0.854421 1.60 1.521514 
0.50 0.927680 

where the ratio of adjacent intervals, k, is a constant is employed. The distance from the 
surface to the jth station is given by: 

ljj = hj “k’: ; ---,j = 1, 2 ,..., J. (32) 

Linearization is achieved by the method of quasilinearization and the resulting system of 
algebraic equations are then solved by a block-tridiagonal factorization technique (cf. 
Na [ 11 I). The method is unconditionally stable and second-order accurate. 

Table 2 gives the initial slopes of the first-order solution,f’r’(0), for the same /?s as in Table 
2, and plotted in Fig. 1. 

Equation (34) indicates that when p is small and E is negative, the skin friction decreases 
with increasing 1~1. However, if p is large and E is negative, the skin friction increases with 
increasing 1.~1. Such a reversal is the result of the change ofsign off;‘(O) shown in Fig. 1. On the 
other hand, ifs is positive, the skin friction increases with E for small p and decreases with I: for 

large fl. 
Figures 2 and 3 show the variation of S;(q) with respect to rl for ,G = 0.1 and p = 1, 

respectively. The curves, as can be seen, are qualitatively different. 

Table 2. I;'(O) for various /fs 

0.05 0.82139 0.60 -0.34086 
0.10 0.52959 0.80 -0.71638 
0.20 0.30086 1.00 - 1.13902 
0.30 -0.14178 1.20 -1.60638 
0.40 -0.01118 I.60 -2.66413 
0.50 -0.17077 
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Fig. I. f”(O) vs /I. 
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Fig. 3. ,f'(q) vs q. 

REFERENCES 

I. A. C. Srivatsava. The flow of a non-Newtonian liquid near a stagnation point, 2. atrgen. Mar/~. Phys. 9. 8-84 

(1958). 
2. G. Rajeswari and S. L. Rathna. Flow of a particular class of non-Newtonian visco-elastic and visco-inelastic 

lluids near a slagnation point, Z. clngu,v. Murk. Phj~ 13, 43-57 (1962). 
3. D. W. Beard and K. Walters. Elastico-viscous boundary layer flows. Pm-. Comb. phi/ Sot. marh. ~A_Ls. Sci. 

667-674 (1964). 
4. K. R. Rajagopal. A. S. Gupta and A. S. Wineman. On a boundary layer theory For non-Newtonian fluids. Lerr 

Appl. Sci. EIIRII~. 18. 875.-883 (1980). 



320 K. R. RAJAGOPAL PI (I/. 

Risume’: 

On itablit des solutions non similaries pour l’&oule- 
ment de couche limite d’un fluide homog‘ene incompressible 

du second ordre devant un coin placi sym6triauement oar 
rapport a’ la direction de I’icoulement. On 

variation du frottement de peau par rapport 
non Newtoniens. 

discute ia 

aux paramitres 

Zusatmnenfassung: 

Fuer die Grenzschichtstroemung einer homegenen und inkom- 

pressiblen Fluessigkeit zweiten grades ueber einen in 
Bezug auf die Stroemungsrichtung symnetrisch angeordineten 
Keil werden nichtaehnliche Loesungen aufgestellt. Die 

Veraenderung der Oberfiaechenreibung bezueglich der nicht- 
newtonschen Parameter wird diskutiert. 


