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ABSTRACT 

We define two levels of parameters. The basic parameters are associated with the model 

and experiment(s). However, the observations define a set of identifiable observational 

parameters that are functions of the basic parameters. Starting with this formulation, we 

show that an implicit function approach provides a common basis for examining local 

identifiability and estimability and gives a lead-in to the problem of optimal sampling 

design. A least squares approach based on a large but finite set of observations generated at 

initial parameter estimates then gives a uniform approach to local identifiability, estimabil- 

ity, and the generation of an optimal sampling schedule. 

I. INTRODUCTION 

The overall problem of determining the parameter values of a system 

from input-output data, i.e. the parameter estimation problem, is often called 
the identification problem. The identifiability problem, on the other hand, is 
more circumscribed: given a model of the system and specific input-output 
experiments, we ask, if the data were error free, would the parameters of the 
model be uniquely determined? The identifiability problem is concerned with 
the theoretical existence of unique solutions and so is strictly a mathematical 
and a priori problem. Note that it refers to specific experiments on a specific 
model, so it is properly model identifiability for the given experiments and 
not system identifiability. Unfortunately, the term system identifiability is 
used widely in the literature and really confuses the issue. The identification 
problem and identifiability have been recognized in a number of fields, 
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including statistics and econometrics [1,2] and control and systems engineer- 
ing [3,4], and have received increasing attention in compartmental analysis 
since the paper by Bellman and Astrom [S], which introduced the term 
structural identifiability. However, it is important to remember that the two 
terms are not always used with exactly the same meanings in all of these 
fields. 

Identifiability is such an intriguing problem in basic theory that a large 
literature has developed on local and global identifiability of linear systems, 
and now there is a considerable stir about extending this to nonlinear 
systems. In fact it has received so much attention that we tend to forget at 
times that it is just one aspect of a larger problem, the inverse problem, which 
includes identifiability and identification. In a general sense the inverse 
problem is the scientist’s problem: determine the structure and functioning 
of a system from experiments and studies of its behavior. The inverse 
problem encompasses all of the steps involved in determining the structure of 
a system. It is an iterative process in a number of stages, viz. 

(i) Hypothesis generation. This includes specification of one or more 
models based on the information available at that time. 

(ii) Definition of experiments. Not all conceivable experiments can be 
done, so the choice of experiments is restricted. Availability of re- 
sources imposes more constraints. 

(iii) Design of experiments. Try to design the experiments so that the 
model parameters essential for testing the hypotheses can be estimated. 
This is a large problem that properly includes examination of the 
effects of varying all facets of the possible experiments that are under 
the control of the experimenter. Two important steps concern us: 

(a) Identifiability and estimability (defined below). 
(b) Optimal sampling design. 

(iv) Performing the experiments. 

(v) Analysis of data and testing of hypothesis. 

Identifiability is more than an interesting problem in theory. It is an 
important step in the inverse process. We are not just interested in whether or 
not a model is identifiable for a given experiment; even if it is not, we want 
to know which parameters are identifiable, because we may only need to 
estimate some of the parameters to test a hypothesis. Furthermore, a set of 
parameters may be identifiable, but the interactions between the parameters, 
as measured by correlations for example, may be such as to make numerical 
estimation of the values of individual parameters difficult. Thus, a parameter 
can be identifiable but poorly estimable for a given experiment. We want to 
design the experiment [5] to optimize the estimability of the pertinent 
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identifiable parameters. Then we want to choose an optimal sampling design 
to minimize the errors of estimation. Identifiability, estimability, and optimal 
sampling design should go together as linked steps in parameter estimation. 

Optimal sampling design requires that we have an initial estimate of the 
parameter values, and in the biological sciences we often do have initial 
estimates. That suggests a uniform iterative approach: for the possible 
experiments, test local identifiability at the initial estimates, look at estimabil- 
ity at the initial estimates, and then obtain the optimal sampling design at the 
initial estimates. Note that we require only local identifiability of particular 
parameters. 

Our long term goal is to develop a practical, uniform method for testing 
local identifiability and generating an optimal sampling design for the locally 
identifiable parameters, a method which can be incorporated into a system of 
modeling such as SAAM or MLAB. In this paper we concentrate on the 
identifiability problem but propose an integrated approach that includes 
optimal sampling design. To that end Section II briefly reviews the current 
state of the art in identifiability. Section III presents the basic theory of local 
identifiability based on implicit function theory and explores the use of the 
correlation matrix for the information it contains about local identifiability 
and estimability at the initial estimates. Section IV then gives a series of 
examples from compartmental analysis. Section V briefly reviews optimal 
sampling design and outlines an integrated approach to testing local identifi- 
ability and to obtaining an optimal sampling design. 

The work in this paper was first conceived in the context of compartmen- 
tal analysis, and the exposition reflects that influence, but the results are 
applicable more widely. 

II. REVIEW OF IDENTIFIABILITY 

For linear time invariant models let x be the vector of state variables, u a 
vector of possible inputs, and tl the vector of model parameters. The 
equation of the model is 

k=A(e)x+B(e)u, x(0) = Jql, (1) 

in which A and B are stationary matrices which are functions of the 
parameter vector. The vector of observations, y, is given by 

y=C(B)x+D(8)u. (2) 

For compartmental models we usually have D(e) = 0 and B a known 
matrix not dependent on 0. 
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For nonlinear models the corresponding equations are 

i=f(x,Bu,e,t), x(0) = xg 7 (3) 

y = C(x,Bu, 0, t). (4) 

Note that A(0) and f specify the model, Bu specifies the input for a 
particular experiment and y the observations. An experiment is specified by 
the initial conditions x(O), the inputs Bu from among some set of possible 
inputs u, and the observations y. 

Let 4 be value of 8 that gives the response of a model to a given 
experiment, i.e. a solution of Equation (2) or (4). A parameter vector is 
(structurally) locally identifiable if for almost any solution 4 the solution is 
unique in some neighborhood of 1. The term “almost any solution” means 
except for possibly a set of zero measure. This caveat is included because 
there may be some special combinations of parameter values for which a 
unique solution cannot be found. The definition of (structural) global iden- 
tifiability is the same except that the solution must then be unique for the 
entire domain of 8, not just a neighborhood of 8. 

Linear identifiability has been reviewed by Nguyen and Wood [6]. For a 
more general review see the monograph of Walter [7], and for compartmental 
systems see Anderson [8] and the brief review by Jacquez [9]. For more detail 
References [lo-271 are recommended. A detailed review and discussion of 
the different ideas and terminologies in this field will be found in the recent 
thesis of Delforge [28]. 

To put the remainder of this paper in context we review briefly the major 
approaches that have been used to check identifiability for linear time 
invariant compartmental systems. The equations for such a system are 

k=Ax+Bu, x(0) = x0 1 (5) 

y = cx. 

In general B is a matrix of known elements; C is often known, but may 
include unknown elements, i.e. parameters. At the simplest level B and C are 
known, so the identifiability problem reduces to whether the nonzero ele- 
ments of A are uniquely specified by the observations y for the given inputs 
Bu. The following methods handle unknown parameters in B and C as well. 

A. THE TRANSFER FUNCTION OR IMPULSE RESPONSE METHOD 

Consider the experiment given by Equations (5) and (6) but with a zero 
initial state. If the impulse response were determinable without error, that 
would specify the transfer function. Take Laplace transforms of (5) and (6) 
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Y = C( xI-A)~‘BU. (7) 

Let us call H(s) = (sI- A)-’ the transfer function for the model, because 
H,,(S) gives the observation in compartment i for unit impulse into j. Then 
C( s I - A)- ’ B is the transfer function for the experiment, because it specifies 
what combinations of the H,,(s) are available from the experiment with 
input Bu and observation y. We assume the transfer functions are written in 
a canonial form, i.e., common factors in numerator and denominator are 
canceled and the transfer function is simplified so that the coefficient of the 
highest power of s in the denominator is always 1. The problem then reduces 
to an examination of the coefficients of the terms in the transfer function for 
the experiment to determine whether all of the nonzero components of A are 
uniquely specified, and this is a problem in solving simultaneous nonlinear 
equations. 

Closely related to the transfer function approach is the examination of the 
Markov parameters [29], which is also used in the testing of controllability 
and observability in control system theory. 

Anderson [8] has taken initial steps toward solving the simultaneous 
polynomial equations obtained from the transfer function by making use of 
the particular structure of these equations. Also see the paper by Raksanyi 
et al. [30] in this issue on solving simultaneous polynomial equations ob- 
tained from the transfer function and other approaches. 

B. THE SIMILARITY TRANSFORMATION METHOD 

Another approach is to seek all models that have matrices related to A by 
a similarity transformation and that also satisfy all constraints on the model 
and give the same input-output response for the experiment. The first attack 
on the identifiability problem for compartmental models was by Berman and 
Schoenfeld [31], who used the similarity transformation approach to generate 
the set of output-indistinguishable models. The more recent definitive work is 
due to Travis and Haddock [24], Walter and Lecourtier [27], and Vajda [26]. 

Let P be nonsingular and replace A by P-‘AP in Equation (5). Taking 
Laplace transforms, again for x(0) = 0, gives 

Y = CP-‘( si-A)-‘PBU. 

Thus P-‘AP must satisfy all of the constraints on the model, and for the 
input-output response to remain unchanged, CPml = C and PB = B. If on 
applying these conditions to determine the elements of P, we find P = I, then 
the model is uniquely identifiable. The same results are obtained by taking P 
as a nonsingular transformation on x, x’ = Px. 
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C. THE MODAL MATRIXAND EIGENVALUES 

Assume the eigenvalues are distinct, a not unreasonable assumption in 
many applications. There is a map from the n* elements of A to the n’ 
independent components of the eigenvectors and eigenvalues, so instead of 
trying to identify the elements of A one might try to identify the eigenvalues 
and the matrix of eigenvectors, the modal matrix [17,18,22,23]. 

Let M be the modal matrix, and A be the diagonal matrix of eigenvalues. 
Then A = MAM- ‘, and the impulse response can be written 

y = c~MAM-‘~B = CM&M-‘B, (9) 

Let r,T be the ith row of M, and c, the jth column of M ‘. The relations 
between elements of A and M are 

A,, = r,'Ac, , (10) 

A, = - c r,%z, , (11) 

r,‘c, = 6,, 

For zero initial state the impulse response of compartment i for unit input 
into j at t = 0 is given by 

x, = r,TeArc 
I’ (13) 

The problem is to use all available observations plus any known constraints 
on the A,, to see if the elements of M and A are uniquely specified. 

Another method examines the coefficients of the Taylor series expansion 
of the observations to see if all parameters are uniquely identifiable [25]. 

All of these methods work well with small compartmental systems but 
become increasingly difficult to apply as the system increases in size. Such 
limitations, taken in conjunction with the need for practical methods, pro- 
vides another argument for emphasizing local identifiability for particular 
significant parameters rather than global and model identifiability. 

III. BASIC THEORY FOR LOCAL IDENTIFIABILITY 

We develop a general approach to local identifiability which makes use of 
linearization in parameter space around the initial estimates and application 
of implicit function theory. Grewal and Glover [12] have shown that local 
identifiability of the linearized form of a nonlinear model implies local 
identifiability of the nonlinear model. It is possible, however, for the nonlin- 
ear model to be locally identifiable and for the linearized form not to be. The 
development starts from the recognition that there is a common general 
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structure to the identifiability problem, that in applications we are primarily 
interested in identifiability for the parameters falling in certain ranges of 
values, and that in fact we often have initial estimates for the values of the 
parameters. 

A. GENERAL STRUCTURE OF THE IDENTIFIABILITY PROBLEM 

Choosing a model specifies the state variables (x) and the parameters of 
the model (0*, a p*-vector). An experiment specifies the initial state, the 
input Bu from some vector of inputs u and the observations. The model 
response to input Bu for the initial conditions is the solution of the structural 

equation (14) for the initial conditions 

F(x,k ,..., 8*,Bu, t) = 0, x(0) = XC]. (14) 

F may be a function of derivatives but need not necessarily be so. It should 
be noted that for some inputs only a subset of the parameters may actually 
appear in the model response. The observations are given by some function 
of the state variables, the input Bu, and a vector of parameters, (cp, an 
m-vector): 

We distinguish between three types of parameters, structural, experimen- 

td, and observational. The structural parameters are inherent to the model 
and so appear in the structural equation (14). But, and we repeat for 
emphasis, for some inputs it is possible that only a subset of the parameters 
in fI* actually appear in the solution of the structural equations for that 
input. Appropriate choice of Bu is needed to make sure all structural 
parameters appear in the solutions of Equation (14); this is the condition of 
input reachability [15,32] for compartmental models. 

The experiment specifies initial conditions [the input Bu] and the observa- 
tions [Equation (15)], and may introduce parameters by way of each of these. 
We call such parameters experimental parameters and denote them by tl’, a 
vector of p’ components. These are at the same level as the structural 
parameters, so the basic parameter vector is 8 = [B*T f3’T]Tof order p = p* + 

p’. The initial conditions are often fully specified in biological experiments, 
and we shall not here consider cases in which experimental parameters are 
introduced through the initial conditions. But, as one of the referees has 
pointed out, even when specified, some initial conditions may be parameters 
that need to be measured, and just as it is possible for some structural 
parameters not to influence the observations, some of the initial conditions 
may not influence the observations. The inputs Bu may also introduce 
experimental parameters, but that is not often true in biological experimenta- 
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tion, so we pay little attention to it. Note that the structural parameters plus 
those experimental parameters introduced through initial conditions and 
inputs have the potential to appear in the solutions to the structural equa- 
tions for the given initial conditions and inputs. The other experimental 
parameters, those introduced by the process of observation, cannot appear in 
the solution to the structural equations, but must appear in the equations for 
the observations (15); such experimental parameters are not uncommon in 
biology. If we could be assured that the initial conditions are fully known, as 
in some experiments with radioactive tracers, then we could think of the 
experimental parameters as those introduced by way of the inputs and the 
observations. 

Finally there is the vector of observational purameters, cp, a vector of m 

components. These are, by definition, the uniquely determinable parameters 
obtainable from the equations of the observations; the observational parame- 
ters are functions of the structural and experimental parameters that appear 
in the observations. Thus q, is at a level different from 8. All of the 
components of 8* may not appear in 8zp, so cp is generally a function of 8’ 
and of those components of 8* that are passed on to the observations; in 
general m < p, and often m < p. Note that the cp are not necessarily unique 
in functional form; their functional form depends on the approach used to 
examine the observations (i.e. transfer function or other), but all approaches 
must generate uniquely determinable sets of observational parameters that 
contain the same information about 8. Thus, the structural invariants of 
Vajda [26] and the exhaustive summary of Walter [7] are observational 
parameters. 

Now we can reformulate the identifiability problem: Are the structurd 

and experimental parameters uniquely determined by the obsercntionul 

parameters? If the experiment introduces no new parameters, we have the 
identifiability problem in its simplest and cleanest form: Do the obseroational 

parameters uniquely determine the structural parameters? Note that only 
certain components of ll may need to be identifiable to test a particular 
hypothesis; then we need only test whether the relevant structural and 
experimental parameters are uniquely determined by the observational 
parameters. 

Finally, we emphasize that the method we develop makes use of the idea 
of observational parameters in the derivation, but it is not necessary to 
generate a specific set cp in order to determine whether particular compo- 
nents of 0 are locally identifiable. 

B. TUEOR Y OF OBSERVATIONS IF J IS A SCALAR 

We develop the basic theory assuming y to be a scalar; the extension to a 
vector of observations is straightforward and adds only algebraic complexity. 
For local identifiability the theory can be developed as an integral theory or 
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based on a finite number of samples; the latter path is taken here for 
uniformity with the optimal sampling theory. 

In optimal sampling theory (Section v) we assume a finite number of 
samples, n, with measurement error c, added to the observation y, , as in 

~,=y,+~,=G(x,,~p,Bu,r,)+r,. (16) 
We then linearize the observations around initial estimates tl” of the parame- 
ters. These initial estimates are “true values” for the simulated data gener- 
ated from a model. A least squares approach is then used to find optimal 
sampling times. 

We want to follow a similar path to check local identifiability of the 
parameters at their initial estimates 8’. But identifiability is an a priori 

problem; there are no measurement errors. Examine small deviations in 8 
around 8’ by expanding y, in Taylor series: 

(17) 

Here aG,(‘/&J$ is the derivative evaluated at O”, and e, is the contribution of 
higher order terms, the error of approximation by linearization. Form the 
sum of squared deviations for the linearized form, equation (18). 

i=l J=l ae, 

(18) 

S is simply the square of the sum of the higher order terms in the Taylor 
expansion, so S is zero at B = 0’. Note that n is some large number of points 
at which we generate observations from the model. 

Taking derivatives with respect to Ad, gives the normal equations for the 

estimates X5, : 

2,~ &-G;)$, k =l,...,p. (19) 
r=l h 

Let z,=y,-GF, SO z=(zl ... z,,)~, G = (2,). ,Gp)‘. Define the ma- 
trixgby 

aG; acp 
- . . . - 

a4 a% 
g= ; . . 

aco ac” 
2 . . . n 
a01 a*, 

(20) 
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The sum of squares and normal equations are given by 

S=(z-gA8)T(z-gA6), (21) 

grg To= gTz. (22) 

Now note that we can repeat this derivation in terms of the observational 
parameters to obtain 

g, is given by 

g;g&-= g;z 

Let J be the Jacobian of cp with respect to 8, 

J= 

(23) 

(24) 

(25) 

Then g = g, J and grg = JTgGg, J. 
_. 

In anticipation of the review of optimal sampling theory and the sequel, 
Section V, it is worthwhile emphasizing the uniformity of basic theory in that 
both local identifiability and optimal sampling theory are developed with a 
least squares approach. For local identifiability the errors of observation are 
zero, so z, = y, - G,’ is simply the deviation of y, from its value at 6’. For 
the optimal sampling derivation, random errors of known variance are added 
to the calculated values. 

C. IMPLICATIONS FOR LOCAL IDENTIFIABILITY 

In all that follows we assume that enough samples have been generated so 
that n > p, n > m. 

By assumption the ‘p, are linearly independent, so the rank of gcgq is m 

and gcgq has an inverse. The identifiability problem is to examine grg to see 
if the components of 8 are identifiable, so we examine the rank of g7‘g and its 
relation to gGgv. The rank of gTg must be M. 
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I. Rank of g’g and Model Identifiability. Now we examine as series of 
generic situations that occur in compartmental systems analysis to see what 
they imply for the rank and inverse of gTg. 

(i) One of the structural parameters does not uppear in the observutions. 
Assume it is 0,. Then &Go/ 80, = 0 for i = 1,. . , n. In consequence column j 
of g is null, so row j and column j of gTg are null and lgrgl = 0. Note that if 
19, does not appear in the observations, none of the observational parameters 
are functions of q, so acp, /L%‘, = 0, i = 1,. , M. Then column j of J is null, 
and so is column j of g = gP J. For what sort of situations do we find that a 
component 0, does not appear in the observations? In compartmental models 
there are two types of experiments in which this occurs. The first is when the 
model is not input reachable, so that some compartments are not influenced 
by the input. In that case, fractional transfer coefficients for paths that can 
be traversed only from compartments that are not input reachable to 
observed compartments do not appear in the observations; such parameters 
do not even appear in the model response, i.e. the solution to (14). The other 
situation occurs when the model is not output reachable. In that case there 
are transfers from some compartments that do not appear in the set of all 
possible paths to the observed compartments. The fractional transfer coeffi- 
cients for those transfers may appear in the model response equations, but 
not in the observations [Equation (15)]. 

(ii) All basicparameters 0 appear in the observations. If m < p, Ig’gJ = 0. 
Since gTg = JTgcgV J, we have that gTg is a product of rectangular matrices; 
andforaproductAB,ifAisnxm,Bismxn,andm<n,thenIABJ=O 
[33]. If m = p then J is m X m, and since the rank of g,+, is m, the rank of 
gTg is determined by the rank of J. If lJTJl f 0, the model is locally 
identifiable; but lJTJl f 0 is a sufficient not necessary condition for local 
identifiability [28]. 

In both situations (i) and (ii), if lgTgl = 0 then lJTJl = 0. But, as we will 
see in Section III.C.3, we need not generate J explicitly to test for local 
identifiability. 

2. Parameter Identifiability and Structure of g’g. Rank conditions tell us 
about model identifiability, but in applications it may be more important to 
find out which parameters are identifiable. That information lies in the 
relations between the cp and 8. The important question is whether one can 
get at it even if one does not know what the exact functional relations are 
between the components of cp and of 0. To that end we first look at the 
structure of grg. For other approaches see Walter [7, Chapter 31 and 
h4ilanese and Sorrentino [34]. 

To see what the implications for the structure of gTg are, we classify the 
parameters 8 into three groups. To simplify matters we number the compo- 
nents of 8 in a particular order, so the structure of gTg obtained results from 
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row and column interchanges if the components were not originally num- 
bered in that order: 

(i) Locally idenfifiable. Let or,. . , 0, be the parameters that are locally 
identifiable. There are u relations of the form 

(26) 

for which the Jacobian J, generally has nonzero determinant, lJuI + 0. Note 
that it is possible for p,,] = 0, but that occurs on a set of measure zero and so 
will not hold for almost all nearby points in the parameter space. 

(ii) Locally nonidentifiable but observable. If a parameter is transmitted 
into the observations, we say the parameter is observable. Note this is 
different from Kalman’s [35] observability of the state vector. Let e,,, 1,. . , O,, 
be the parameters that are not locally identifiable but which do appear in the 
observations: 

vu+1 = vu+1 (e,,...,e,,e,+l,...,e,,), 

(27) 

The Jacobian, J,, is of rank m - U. 
(iii) Nonobservable and nonidentifiable. Finally we have a subset, 

e (,+ 1,. , 6,) of parameters which do not even appear in the observations. 
They cannot be identifiable. With this partition of the parameters 8i,. , 0, , 
J must have the structure 

J= 

ld I ” 1 
I 

P 

a’p1 aql I I 
I 

a4 ae, / 
I 
I 

I 
I 0 / 0 

a(P, atp, j 
I 
I 
I 

a4 at I I 

_---------------- J___________-;_______ 
aqu+l aqu+l I aqu+l I - . . . - , . . . 
a4 at I as,./ 

I 
I 

aim . . . 
at 

/ 0 
I 
I 
I 
I 
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Partition gv conformably as 
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(29) 

l-h.ls 

AJ,+Bx 1 

[_ 

BV; 0 
gT J = -ti-;-6g:-tiv:-o , 

I I 1 (30) 
U 

l4 I L’ I P 

(AJ,, +BX)‘(AJ, +BX) j (AJ,+BX)~BV j 

+(CJu +DX)T(CJu +DX) j +(CJ,,+DX)‘DV I 
0 

gTg= u -__----_----_--------,--_--------------;-----_ 

(Bv)~(AJ, +BX) 1 (Bv)‘(Bv) j o 

+(DV)T(CJu +DX) I +(DV)T(DV) I 
” _____________________L______________L______ 
P 0 I 0 I 0 

(31) 

3. The Parameter Correlation Matrix and Parameter Identifiability. The 
structure of g’g clearly points to the parameters which do not appear in the 
observations. But the identification of all three types of parameters is not so 
obvious. Provided we are not at one of the points where IJ,,I = 0, the 
parameter correlation matrix provides considerable information to separate 
the three groups. To show this we start with Equation (23) which has for its 
solution 

But z = 0, so the solution is &= 0, as expected. 
group of parameters are 

JUGU =X& = 0, 

(32) 

The equations for the first 

(33) 
- 

in which A8, and kqU are the restrictions of the parameters to the first u 

components. Here A0, = 0 because &I # 0. 
Now consider the equations for set (ii): 

(34) 

a’p, - 
--At+, 

hb--- 
at+, + . . . + TAe, = 0. 

v 
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We have already shown that z, = 0 for i = 1,. , u, so the terms correspond- 
ing to these have been dropped from (34). There are more unknowns than 
equations in (34), so this is an underdetermined set of equations. 

Finally, 0,,+ i,. . , 8, are completely independent of the other parameters; 
they do not appear in the observations. 

Now examine the correlations between the parameters. The correlation 
matrix has the following structure for off-diagonal elements: the diagonal 
elements are always 1. 

(1) Locally identifiable parameters will have correlations with all parame- 
ters - 1 < r,, < 1, but usually nonzero because they are generally not orthogo- 
nal. 

(2) For all parameters in set (ii), each parameter has a correlation of + 1 
or of - 1 with at least one other parameter of the set. Because the equations 
(34) are functionally underdetermined, a small change in a parameter can 
always be compensated by another change in at least one other in the set. 
This gives a pattern of correlations of + 1 and - 1 to define set (ii). The 
correlations between a member of set 1 and one of set (ii) fall between + 1 
and - 1. Note that parameters in set (ii) are locally unidentifiable for the 
linearized equations (34). It is possible for a locally identifiable parameter to 
appear in this set; the local identifiability can then only be determined from 
examination of higher order terms in the expansion of cp [28]. 

(3) Since the observations are independent of the parameters in set (iii), 
the correlation between members of set (iii) and all of the remaining 
parameters must be zero. 

Remark. In applications it is possible to generate sample sets that carry 
information primarily on combinations of locally identifiable parameters, 
and as a result of roundoff come up with apparent correlations of * 1. 
Checks of other parameter ranges then give correlations that are not i 1. For 
nonidentifiable parameters a correlation of + 1 does not change as one 
changes parameter values. 

IV. EXAMPLES 

In this section we present a few examples to show how the methods 
developed in the previous section work on problems involving linear com- 
partmental models. We present the model and a number of possible experi- 
ments. For each experiment we tell whether the model is input reachable and 
output reachable [32], and exhibit the elements of cp as defined by the 
coefficients in the transfer function for the experiment. Then we give the 
results of a simulation study for a given set of parameter (fl”) values, the rank 
of grg, and finally the correlation matrix, which was calculated with the use 
of the modeling software package SAAM. 
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FIG. 1 

A. EXAMPLE 1 

For the simplest example we use the model shown in Figure 1 for 
impulsive inputs into compartment 1. 

Experiment 1 a: Input into 1, Observe 1. 

Input reachable (IR): yes. 
Output reachable (OR): no. 
Transfer function: Q, = l/( s + f0i + fzi). 
‘pi = fol + fzi; fo2 does not appear in the observations. 
Simulation: fz, = 1.0, fo2 = 2.0, fol = 0.5. 
G(x, B,Bu, t) was calculated at 50 uniformly spaced points over the 

interval [O,l]. 
grg is of rank 1; ]grg] = 0. 
The correlation matrix obtained is 

CM= 
1 0 -1 

Note that fo2 = 8, is not observable and therefore not identifiable, and the 
correlation coefficients riz, rz3 are zero. Furthermore ‘pi = fil + f,i is iden- 
tifiable, but f2i and fOi are not individually identifiable, and as expected, 

r13 = -1. 

Experiment lb: Input into I, Observe 2. 

IR: yes. 
OR: yes. 
The transfer function for the observations is 

f 
Q2=S2+(f~~+f~Z+f2~;S+f~l(fnl+f~~)’ (36) 
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so we choose for ‘pi, q,, and ‘ps 

cpl = f21 9 

9% = f21 + fo2 + h, 7 (37) 

‘p3 =foz(f21 +hx>. 

This is particularly interesting problem because it illustrates the difference 
between the solution of the nonlinear and the linearized equations. First note 
that f2i is obviously identifiable. There remain two equations in fez and fzi. 
For the nonlinear equations (for (p2 and (us), if foZ f f,i + f2i, there can be 
one or two solutions, depending on the relative values of for, fol, fil ; if 
fez = fol + fi2, there is only one solution. Thus, fOi and fo2 are locally 
identifiable. For the linearized equations there is only one solution if fo2 + fai 
+ fi2, but the determinant of the linear equations is zero if fo2 = fOi + fi2. 
The latter is an example of a subset of values of locally identifiable parame- 
ters for which the parameters appear to be unidentifiable from the analysis of 
the linearized equations. 

Simulation: Same as in Experiment la. 
The correlation matrix obtained is 

f21 /02 101 

- 

CM= 

1.0 0.89 - 0.88 

1.0 -1.0 

1.0 1 (38) 

Note that rzs = - 1; when the parameter values were switched to f,i = 2.0, 

fez = 0.5 r2s became - 0.78. 

Experiment Ic: Input into I; Observe 1 and 2. 

IR: yes. 
OR: yes. 
The transfer functions Q, and Qz have been given in Experiments la and 

lb. Now we have more components than we need: 

‘pl = fil 9 

(P2 = f21 + fo2 + fm 7 

v3 = fo2 ( f21 + A> 9 

(39) 

v4 = f21 + fol . 

f21r fez, and fol are each locally identifiable. For the simulation used for 
Experiments la and lb we obtain the correlation matrix 

/21 /02 JO1 

0.93 - 0.96 

1.0 -0.92 

1.0 1 (40) 
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f 21 

I 

I--=1 

2 

f 01 f fo2 12 

FIG. 2 

Note that now all off-diagonal elements are not i 1, but that the correla- 
tions are extremely high, reflecting the nonorthogonality of the fractional 
transfer coefficients in compartmental kinetics. 

B. EXAMPLE 2 

For the next example consider the model shown in Figure 2, again for 
impulsive inputs into compartment 1. 

Experiment 2a: Input into I, Observe 1. 

IR: yes. 
OR: yes. 

The transfer function for the observed compartment is given by 

Thus we have for cp 

(42) 

None of the parameters are locally identifiable. 
Simulation: f2i =1.5, fi2 =1.25, &=0.75, fo2 = 2.0. G(x,B,Bu,t) was 

calculated at 50 points over the interval [O,l]. Now grg is of rank 3. 
The correlation matrix obtained is given by 

(43) 

Note that all off-diagonal elements are f 1. 
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Experiment 2b: Input into 1, Observe 2. 

IR: yes. 
OR: yes. 
The transfer function for the observed compartment is given by 

The components of cp are 

(45) 

Now f2i is locally identifiable, but the remaining transfer coefficients are 
not. 

For the same simulation used in Experiment 2a, the correlation matrix is 
now 

CM= 

/?l fi2 /OL fo2 

1 - 0.04 - 0.05 -0.05 

1 1 -1 

1 -1 

1 

(46) 

Note again that the off-diagonal elements for the submatrix corresponding to 
the non-identifiable transfer coefficients are k 1. 

Experiment 2c: Input I; Observe 1 und 2. Now cp has four components 
-those given in (42) and (45)-and all fractional transfer coefficients are 
locally identifiable. For the simulation used for Experiments 2a and 2b the 
correlation matrix now becomes 

- 0.65 0.61 

- 0.29 

- 

0.28 

1 -0.95 1 (47) 

1 

C. EXAMPLE 3 

Now consider the catenary system shown in Figure 3. Again we consider 
experiments with impulsive inputs into 1. 
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FIG. 3 

Experiment 3a: Input into 1, Observe 1. 

IR: yes. 
OR: yes. 
The transfer function is given by 

Q, = 
s* + 4fi2 +_f32 +f*3 +fo3)+(fi*f*3 +fi2.f03 +fo3.f32) 

A 7 (48) 

where 

+ 4fiZf23 +flZ.h3 +fO3f32 +f21f32 +f2lf23 +fO3f2d+fO3f21f32’ 

The coefficients give the following components for cp: 

9% = I-12 + f3* + f23 + h3 9 

‘p2 = fl2f23 + fiZfO3 + fo3f32 3 

(P3 = fn + f21 + f23 + f32 + f”3 = ‘pl + f2l) 

(P4 = f,*f*3 + fiZfO3 + fo3f32 + f2lf32 + f21f23 + fo3f21 
(49) 

= 92 + f21f32 + f21f23 + fo3f21 9 

‘ps = fo3f21f32. 

For the simulation the following values were used: f& = 2.0, fi2 = 3.0, 
f32 = 1.5, f23 = 1.0, fo3 = 2.25. Go was calculated at 50 points over the interval 

[O, 101. 
The correlation matrix obtained is given by 

(50) 
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Note that although all parameters appear to be locally identifiable at 8”, 
one must anticipate difficulties in estimating the parameters because of the 
high correlations between them. 

Experiment 3b: Input into 1; Observe 2. Now the transfer function for 

the experiment is 

e 
2 

= f21 s + f21( f23 + fo3 1 
A 

The components of cp are 

‘pl = f217 

(P2 = f21f23 + f21fo3 9 

‘p3 

i 

(P4 same as in (49). 
95 

(52) 

All parameters are locally identifiable if f21 - fo3 - f23 # 0. 
For the same simulation used for Experiment 3a the correlation matrix is 

/21 112 f32 f23 /in 
1 0.62 - 0.05 0.92 0.63 

1 - 
CM= 

0.80 0.71 0.99 

1 -0.15 -0.76 (53) 

1 0.75 

1 

1 
Again all parameters are identifiable, but estimation of the parameters 

should be much easier than in Experiment 3a. If one has the choice, 
Experiment 3b is better for estimating most of the parameters. 

Experiment 3c: Input into I, Observe 3. 

IR: yes. 
OR: yes. 
The transfer function for the experiment is 

e3=b!$ 

Now there are only four components to cp: 

‘pl = f21f32 Y 

(P~,(P~,(P~ aethesmeas tp3,v4,v5 of(@). 

(54) 

(55) 
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Thus, all parameters cannot be identifiable; fo3 is identifiable from ‘pi 

and (~4. 

The correlation matrix obtained was 

f 21 fl2 f32 f23 fo3 

1 

1 0.93 -1.0 -1.0 -0.20 

1 
CM= 

-0.93 -0.95 - 0.16 

1 1.0 0.20 1 (56) 
1 0.19 

1 

Note that f2i,f3* ,fz3 clearly fall into set (ii). But fiZ appears to be locally 
unidentifiable, and we are not certain yet whether not finding + 1 or - 1 for 

r12, r2,, and rz4 is a result of numerical problems in the calculation or results 

from an incomplete analysis of all possibilities for members of set (ii). 

Experiments 3d and 3e. For an experiment in which compartments 1 and 
3 are observed, the correlation matrix is 

I 1.0 0.22 - 
CM= 

0.01 

1 0.96 (57) 

1.0 

Note that the correlations have decreased markedly but the interactions 
between f2i and f2i and between f23 and f32 remain high. 

For observation of compartments 2 and 3 the correlation matrix becomes 

f21 fl2 f32 f23 fo3 

1.0 0.92 -0.04 -0.02 -0.15 

1.0 -0.28 
CM= 

1 

- 0.26 - 0.20 
1 0.99 0.00 . 1 (58) 

1.0 0.04 

1 

Note that rjs = 0.00 is not a zero correlation that indicates a parameter is 
missing from the observations; it is a very small correlation rounded to 0.00 
and indicates practically zero pairwise correlation between f32 and fo3. 

V. OPTIMAL SAMPLING DESIGN AND LOCAL IDENTIFIABILITY 

The term “design of experiments” is used for a broad class of problems 
involving optimization of various facets of the experiments, including the 
choice of inputs and observations, number of samples, and sampling times. 
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Once an experiment is chosen, extraneous constraints such as costs of the 
experiment and biological limitations on what can be done pretty well put 
bounds on the maximum sampling time and on number of samples that can 
be taken. What remains is to optimize the times at which the samples are 
taken so as to make parameter estimation most efficient. In brief the optimal 
sampling problem can be formulated as follows: given 

(i) an initial estimate for the parameter values, 
(ii) that sampling is restricted to the interval in time 0 -C t < T, 

(iii) that the number of samples to be taken is n, 
(iv) the variance of the sampling errors (sometimes information on distri- 

butions is available), 

find the distribution of sampling times in (0, 7’1 that optimizes the expected 
value of some function of the variances of the parameter estimates. The 
choice of criterion function depends on the error structure as well as on the 
goals of the experiment. 

A. THE CLASSICAL APPROACH BY LEAST SQUARES 

Again we start with the linearized form of the observations, but with 
additive error e,, a random variable of known variance a,‘, as in Equation 
(16). However, now weighted least squares must be used 

(59) 

with w, =1/u,*. The solution for G is now given by 

(gTWg)iG= gTWz, W=diag(w,,w, ,..., w,,). (60) 

If the model is locally identifiable, then gTWg has an inverse and z is given 

by 

X4= (gTwg)P1gTwz. (61) 

Here (gTWg)- ’ is an approximation to the covariance matrix of G. The idea 
in optimal sampling theory is to choose the sampling times t, , . , t, in (0, T] 

so as to minimize some measure of the variance of the estimates. 
If the model is locally identifiable, a number of criteria for choosing 

t,,..., t, have been proposed. Box and Lucas [36] pointed out that J(gTWg)) ‘1 
is proportional to the volume of an ellipsoid of constant AS about the 
estimate and suggested minimizing ](gTWg))‘(. A design derived from this 
criterion is called a D-optimal design. Minimizing the maximum eigenvalue 



IDENTIFIABILITY AND OPTIMAL SAMPLING DESIGN 223 

of (grWg)-’ is called an E-optimal design. For the maximum likelihood 
approach, minimizing a functional of the covariance matrix of the estimates 
means maximizing the same functional of Fisher’s information matrix. The 
designs obtained from quite a few criteria have been studied by now; for a 
discussion of the properties of these designs see Landaw [37] and Fedorov 

[3gl. 

B. AN APPROACH BY WAY OF SENSITIVITY OF LEAST SQUARES 

The above results are well known, but they provide little insight and no 
guidance on what to do if the concern is to obtain optimal estimates of a few 
locally identifiable parameters in a model that is not locally identifiable. A 
more general approach, which is very instructive, is to note that in general we 
want to maximize the sensitivity of S to change in each of the parameters to 
be estimated. The derivation is easy and generally more instructive for the 
practitioner; it starts with the sum of squares without linearizing G: 

S= i ~,[9,-G(x,,g,,Bu,t,)]*. (62) 
i=l 

Now expand S: 

(63) 

As before the superscript ’ indicates that the term is evaluated at tl = 8’. 
The terms in (63) are given by 

(64) 

(65) 

(66) 

$=O=-2xw,[q,-G;]$, 
J I J 

d2S0 
-=-2&[n,-G;]$$ 
aeJ aek , Jk I 

Note that aS’/a$ must be zero at the minimum in S. With (64)-(66) (63) 
may be rewritten as 

S-S”=~~~ 
acp ac,o 

i j k 

-w,(~~-G~)~ 
J k 

+ WixF Ae,Aek. 
J k 1 

(67) 
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But E[n, - Gp] = 0, so we neglect the first term in (67) to obtain 

(68) 
= AgTgTWgAtl 

For given Ae,, AB, we want to pick the samples so as to maximize their 
coefficients, i.e. the proper elements of gTWg; that choice maximizes the 
sensitivity of S to change in 0, and 8k around the minimum So. So either 
approach leads us to look at the effect of choice of t,, . . , t,, on the elements 
of g’Wg. But with this approach, it is clear we need not concern ourselves 
with whether or not gTWg has an inverse; simply look at the appropriate 
components of grWg. 

It should be obvious by now that if we have initial estimates of the 
parameters, then local identifiability, estimability, and optimal sampling 
design involve rather similar considerations, with the difference that for local 
identifiability and estimability no error is involved, but the u,’ for the 
measurements must be taken into account for optimal sampling. Further- 
more, both are then inherently iterative processes, and we can expect rapid 
improvement in design as soon as the estimates become based on data. For 
applications, we foresee writing software for optimal sampling design in 
which the check of local identifiability is built in as a first step. 

VI. DISCUSSION 

To recapitulate, for practical application to the design of experiments we 
emphasize the following: 

(1) An important distinction is made between structural, experimental, 

and observational parameters. 
(2) It is important to focus on the parameters significant for the problem 

at hand, so we need to develop practical approaches to examining local 
identifiability for particular parameters, whether or not the model is locally 
identifiable. 

(3) It is important to look at local identifiability and estimability at 
specific values of parameters, the initial values. In some problems it may be 
necessary to examine these for a number of values for the parameters. 

(4) Local identifiability based on linearization around initial estimates has 
led us to examine the information contained in the a priori correlation 
matrix. By “a priori ” correlation matrix we mean that calculated in the 
identifiability stage from generated data without addition of error. We have 
proposed the term estimability for the a priori problem of determining 
interdependence of locally identifiable parameters, and suggest the use of the 
a priori correlation coefficient to measure estimability. 
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(5) We want to distinguish three classes of parameters: those that are 
locally identifiable, those that are observable (i.e. appear in the observations, 
but are not locally identifiable), and those that do not appear in the 
observations. The a priori correlation matrix provides information on these 
three classes. 

(6) The approach to identifiability and estimability at initial estimates 
and by way of least squares on a finite sample generated for the initial 
estimates fits directly into the approach to optimal sampling theory, so the 
latter is then a direct extension from the identifiability study. 

In this study we have been led to look at the u priori correlation matrix, 
and we emphasize the need for more work on it. It clearly separates the 
parameters that do not appear in the observations from those that do, and 
also gives information on local identifiability and on estimability of the 
locally identifiable parameters at the initial estimates. We are not sure we 
have found all of the possible patterns of correlations between parameters in 
set (ii), but since poor estimability is in practice almost as big a problem as 
local unidentifiability, the occurrence of either suggests one should search for 
other experimental designs. If a parameter is not identifiable, it is not 
estimable; but a parameter may be identifiable and still be poorly estimable. 
Brown and Godfrey [39] used the term determinacy for a broader idea that 
included estimability; determinacy included experimental design conditions 
and effects of measurement error. We also point out two approaches to 
estimating parameters that may not be locally identifiable. One [9,40] is to 
use other information to fix enough parameters to make those that are of 
interest identifiable; the estimates obtained are then conditional estimates. 
The other is interval identifiability or quasiidentifiability, due to DiStefano 
[41]; the idea here is to try to restrict parameters to intervals small enough so 
that they are “identifiable for practical purposes.” 

The development summarized above focuses on one model of a system 
and a given experiment. It should be pointed out that the method given can 
also be used to compare the values of different experiments on one model 
and thus is useful for choosing the best experiments. A natural extension is to 
the comparison of the predictions of a number of models for a series of 
experiments. All of these are important for the design of experiments in the 
broad sense and for distinguishing between models. 

Finally it is important to emphasize that the identifiability problem refers 
to identifiability of the parameters of a model, and the optimal sampling 
design obtained is for the model in question, so both can be done on the 
model without reference to the real system. But the applicability of the 
results depends on whether the model is indeed a good model of the system. 
The difference between results obtained on the real system and a model 
includes model bias, or model misspecification error, and is important for 
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testing models. We have not examined those issues here, but want to 
emphasize their importance and point to some references on that important 
problem [7,42]. 

We thank Drs. John Hearon and Eric Walter for their incisive reviews of two 

prior versions of this paper. 
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