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C O M M E N T S  O N  A N I S O T R O P I C  Y I E L D  C R I T E R I A  

W. F. HOSFORD 
Department  of  Materials and Metallurgical Engineering, University of  Michigan, Ann Arbor, 

MI 48109, U.S.A. 

(Received 25 July 1984) 

Summary - -L imi t a t i ons  of  several anisotropic yield criteria are discussed. Hill's 1948 criterion 
overestimates the variation of yield strength with direction, while the specializations o f  Hill's 1979 
theory assume planar isotropy. Shear stress terms cannot simply be included in either the author 's  
1979 criterion or in Hill's 1979 general criteria. 

It is suggested that the author 's  criterion be modified so that it is expressed in terms of  principal 
stresses rather than referring stresses to the symmetry axes. 
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N O T A T I O N  

exponenl in author 's  yield criterion 
constants in Hill's 1979 criterion 
parameter involving R, P and Q use to relate strengths along different loading paths 
constants in Hill's 1948 criterion 
coefficient of  shear stress term, zxr 
exponent in Hill's 1979 criterion 
strain-hardening exponent 
strain ratios in rolling, transverse and 45 ° tension tests 
yield strength 
true normal stress 
shear stress 
true normal strain 
engineering shear strain 
angle between tensile axis and x-direction 
angle between principal stress and strain axes 

rolling, transverse and thickness direction 
tensile axis and width direction of a tensile specimen 
principal stress directions 

I N T R O D U C T I O N  

For analyses of sheet-metal forming, an anisotropic yield criterion must be assumed. To be 
useful for engineering purposes it must reasonably describe the material behavior but be 
simple enough so its parameters can be easily evaluated, preferably by uniaxial tension tests. 
The purpose of this paper is to point out limitations of several anisotropic yield criteria and 
suggest a modification of one of them. The yield criteria considered are Hill's 1948 criterion 
[1]. Hill's 1979 generalized criterion with his four specializations [2] and a criterion 
suggested by the author in 1979 [3]. 

Y I E L D  C R I T E R I A  

The arguments  which follow are addressed to the loading of  sheet metals and therefore out-of-plane shear terms 
are neglected. 

Hill's 1948 criterion 
This may be written as: 

F (or r - a:) 2 + G(a: - ax) 2 + H(trx - %12 + 2Nz~r = ~2. (1) 

With the corresponding flow rules the constants may be expressed in terms of  strain-ratios measured in the x, y and 
4 5  directions, 

Pa~ + Rtr~ + RP(a~ - trr)2 + (2Q + 1)(R + P ) ~ r  = P(R + 1)Y 2, (2) 

where R = Ro, Q = R45, P = Rgo and )~ is the flow stress in an x-direction tension test. This is the only criterion 
which includes shear-stress terms. 
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Hill's 1979 criterion 
In its general form this is written as: 

f ~ a ~ - 0 - 3 ~ " ~ a 3 - 0 - ' ~ h ~ 0 - ~ - a 2 7  ~ a ~ 2 a t - a 2 - a 3 ~ b ~ 2 a z - a ~ - a t l m ~ c I 2 a ~ - a ' - a ~ - ~ " = ~ e "  , ~3~ 

where the constants f, g, h, a, b, c and m are to be evaluated with various tests. Hill considered four special cases with 
0" 3 = O: 

(1) a = b = h = O ,  f = e so 
cl0-t + a21" + f (I at in' + 10-'-I") = 7r" (4) 

(2) a = b , c = f = 9 = O  so 

(3) a = b ,  f = o , c = h = O  

(4) a = b = f = 9 = O  so 

a(120-, -0-zl ' ' +  12°'= -0- ,  [ ' )  + ht0-t -0-~1" = 

so 

a(120- , - t r o t "  + 120-z - 0 - , t " )  ÷ f ( l ~ ,  t" + 10-,.t ~') = re" 

t5) 

(6) 

c[o-, +0-2[" +hi0-, -0-2[" = e'* (7) 

The general form recognizes the possibility of  planar anisotropy, but since the 1, 2 and 3 axes are the principal axes 
of  anisotropy, it cannot be used for loading conditions which involve shear relative to these axes. In the lour special 
forms a = b and f =  g so planar isotropy is assumed. With planar isotropy the 1 and 2 axes may be oriented in any 
direction in the sheet so shear-stress terms are not necessary. 

Author's 1979 criterion 
This is also a special case of  Hill's 1979 criterion in which a = b = c = 0, so 

Fl0-y-0-=1° + ~ 1 , ~ : - ~  + HI0-~ -o-d" = ~ (8) 
which may be rewritten as 

Pa~ + Ra~, + RP(0-~ - o-y)" = P(R + 1 ) Y ~ (9) 

ifa is an even integer. Upper-bound calculations of  yield loci for rotationally symmetric textures in fcc and bec metals 
suggest that the best exponent, a, is 6 or 8. (3) This criterion does recognize planar anisotropy but is restricted in its 
present form to loading with principal stress axes coinciding with the principal axes of  anisotropy. 

V A R I A T I O N  O F  Y I E L D  S T R E N G T H  W I T H  D I R E C T I O N  

Hill's 1948 theory predicts: 

Yo [ P ( R +  1) 1½ 
~ =  ( 2 Q + l ) ( R + P ) c o s 2 O s i n 2 0 + R P ( c o s 2 0 _ s i n 2 0 ) z + p c o s 4 0 + R s i n , ,  0 . (10) 

For 0 = 90 ° and 45 °, this simplifies to 

Ygo/ Yo = [ P(R + I ) /R(P + l)] ½ (111 

and Y4s / Y0 = [2P(R + 1)/( Q + l)(R + P)]½ (12) 

For a material which obeys power law work-hardening, ~ = K~,  the ratio of  tensile flow stresses in different 
directions at the same strain is given by ref. [6] 

ae/ao = A "+ l (13) 

where A is the right-hand side of equation (10), (11) or (12). 

The author's criterion 
Attempts to generalize equation (9) to include a shear-stress term z~y leads to an unreasonable criterion as shown 

below. By considering a 45 ° tension test it can be shown that the coefficient. K, of  the ~*~r term would be (2Q + I)(R 
+ P) (see Appendix 1), so the criterion would be written as 

(2Q + 1 ) (R + P)zaxy + Pa~ + Ra~ + RP(a.  - at) ° = P(R + I)Y~. (14) 

If a 45 ° tension test (a.  = ay = r.y = Y45/2) is reconsidered, the predicted flow stress would be 

I P ( R + I )  l ' a y 0 .  
Y4s=2  2 ( Q + I ) ( R + P )  

If this is applied to a material with planar isotropy (R = P = Q and Y45 = Y~) it reduces to 41 ,a = 2. so the exponent a 
would have to be equal to 2, and equation (14) would reduce to Hill's 1948 criterion (equation 1 ). Since equation (9) 
was proposed with exponents much larger than 2 to account for deviations from Hill's 1948 criterion, this is not a 
satisfactory conclusion. It should be noted that similar difficulties will arise if shear terms are introduced into Hill's 
1979 general criterion, equation (3). 

N E W  A P P R O A C H  

A simple alternative to including shear-stress terms in an anisotropic criterion is to abandon the convention of  
expressing the stress components  along the symmetry axes (i.e. "principal axes of  anisotropy') and assume that 
principal stress and principal strain axes coincide, whether or not they are parallel to the symmetry axes. It is 
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recognised that this assumption may introduce errors, but  these are likely to be much less than the errors that arise 
from assuming planar isotropy. Using this assumption the I and 2 axes are the axes of  principal stress, so the author 's  
criterion can be modified to: 

R2tT~ + R1o'2 + RIR2(ol - 0 2 )  ° = R2(RI + l)Y~. (15) 

where R 1 and R2 are the strain ratios measured in the l and 2 directions, and Y~ is the tensile yield strength in the 1- 
direction. The corresponding ttow rules are: 

de~ : d t a : d ~  = 

R2o~- ~ + R ~ R2(ol - o2) ~- 1 : 
R~o~2 -1 + R1R2(o2-o l  )°-I : (16) 

- R : ~ -  i _ R : ~ -  1. 

The strength under balanced biaxial tension (01 = (72) must  be independent of  the orientation of  the axes. In this 
case 

= r R2(Rl -.F l) ll/a 
ol [ R ~ - ~ 2  J Y1 = c o n s t a n t  (17) 

substituting (R 1 = R, R2 = P, YI = Y~) and (Rj = Rs, R2 -- P~+9o, Yl --- Y0) into equation (17), the variation of  
tensile flow stress with direction can be written as 

Ys [ -P(R+I) (Rs+R.+9o) I ' / °  (18) 

For the 90 and 45" eases this reduces to 

Yy F P(R + I) I ' /° 
~ = [ ~ _ l  (19) 

and 
Y45 [- 2 P ( R + I ) :  1 TM 

T = (R + J (20) 

which are identical to equations (I I) and (12) except for the exponent. 
Again equation (I 3) can be used to compare tensile flow stresses at the same strain level. Now 

090 FP(R+ I) T+'/° 
o--~ = L R ~-VA-+-~ _) (21) 

o,,s 2P(R + 1) ] .+l jo 
"~-o = [ (R + p ) - - = ~ l ) d  (22) 

In Fig. 1, experimental results from tension tests on various steels at 0, 45 and 90" [4-8]  are compared with equations 
(21) and (22). Reported ratios of  O9o/Oo and o4s/Oo are plotted against 

_) and I_ (R-=+--P-)(Q + I) ' 

respectively. It is clear that a = 8 represents the data much  better than a = 2 (Hilrs 1948 criterion). 

D E V I A T I O N  O F  P R I N C I P A L  S T R E S S  A N D  S T R A I N  A X E S  

Only Hill's (1948i theory can quantitatively predict how much the principal stress and strain axes may diverge. 
Consider a tension test along an axis, x', oriented at an angle 0 to x and let y' be the width direction o f  the specimen 
(Fig. 2}. Using the flow rules associated with Hill's 1948 criterion the ratio of  shear strain d 7x.).. to de,. - de)., is shown 
(see Appendix 2) to be: 

d 7~r (K - 4RP :-- 2P) cos 3 0 sin 0 - (K - 4RP - 2R)sin a 0 cos O 

de~. - de~. = P(2R + 1 )cos 4 O + R (2P + l )sin'* 0 + (2K - 4RP - R - P)cos:  0 sin 2 0 '  (23) 

where K = (2 0 + 1 )(R + P). The Mohr ' s  circle relations can be used to find the angle, ~b, between the principal stress 
and strain axes: 

tan(2~, ) d)'~.y. (24) 
de~. - de).." 

Unless there are extreme differences between R, Q and P, the predicted values of  ¢, are small; Table 1 shows the 
extreme predicted values of  ~ for several materials and the corresponding values of  O. 

To check the predictions of  equations (23) and (24), tensile tests were made on four duplicate specimens of  the dual 
phase steel cut at O = 25 °. and four specimens of  the brass cut at 0 -- 22 °. Each specimen was griddcd prior to testing 
and measurements  of  the grids before and after testing were used to make four measurements  of  ~b on each specimen. 
The measured values of  ~b were - 1.15 -l- 0.47 ° for the dual-phase steel and + 1.99 ° _+ 0.37 ° for the brass where the 
+ 0.47 and _+ 0.37 represent the standard deviations. These measured values are significantly lower than the values of  
¢, predicted from equations (23) and (24) ( - 4.08 ° for the dual-phase steel and + 3.56 ° for the brass). Since the tensile 
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FIG. I. Experimental ratios o f  flow stress ago/a0 and a4s/a0 compared with parameters for predicting these ratios. 
Data are for various grades of  steel (ref.[4--8]). 

X '  X 

FIG. 2. Schematic illustration of tensile specimen. Equation (23) predicts a finite shear strain for nonsymmetric 
orientations. ~0 is the angle between the principal stress axis, x', and the principal strain axis. 

TABLE I. PREDICTED SHEAR STRAINS 

Material R P (2 0* $* 

Dual-phase steel I. 15 1.25 0.80 25 ° - 4.08 ° 
Annealed brass 0.81 0.67 1.00 22 ° +3.56: 
A K steel 1.90 2.32 1.52 25 ~ -3 .96  
6062 a luminum 0.67 0.75 0.51 25 ° - 3.06 ~ 

*For maximum value of I~1- 
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specimens were cut at angles for which the maximum values of  ~k were predicted, these preliminary results suggest 
that the assumption that principal axes of  stress and strain coincide should not lead to large errors. 

L I M I T A T I O N  

The proposed formalism provides no way of predicting the necessary parameters, Ro, from measurements of  R, Q 
and P as does Hill's 1948 theory. Hill's 1948 criterion does give a reasonable approximation to the variation of  Re 
with O, and at this time no alternative is proposed. 

C O N C L U S I O N S  

I t  is  s u g g e s t e d  t h a t  f o r  i n - p l a n e  l o a d i n g  e q u a t i o n  (15) w i t h  a = 6 o r  8 m a y  g ive  t h e  b e s t  

a p p r o x i m a t i o n  f o r  a n i s o t r o p i c  m e t a l s .  T o  a p p l y  t h i s  c r i t e r i o n  i t  is  f u r t h e r  s u g g e s t e d  t h a t  t h e  

a n g u l a r  v a r i a t i o n  o f  Re  b e  f o u n d  u s i n g  H i l l ' s  1948 c r i t e r i o n  t o g e t h e r  w i t h  e x p e r i m e n t a l  v a l u e s  

o f  R ,  P a n d  Q. 
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A P P E N D I X  1 

Assume a criterion of  the form 
Kz~, r + Pa~ + Rtr~ + RP (o~ - ay)" = af  . 

The corresponding flow rules would be 
de~, :d~y: dez : dy~y = 

Ptr*~- 1 + RP (o~ -o ) . ) ' -  1: R ~ -  1 + R P  (o r - o . )  °-  t: - R ~ -  l - R ~ -  1: K~.~ ] 

Consider a tension test along x' oriented at 45 ° to x and y. At yielding 

o x = try --- z,r = ½Y*5 

dex:der :de~:dr ,  r = P : R :  - ( R + P ) : K .  
The transverse strain de r, would be 

d~ r, = ½de, + ~de r - ½dy,r 
so the value of  Q = R4~ 

Q =--=de" (K - R - P)/2 

del R + P 
Solving for K. 

(A-I) 

(A-2) 

(A-3) 

- (2Q + I) (R + P). (A..4) 

A P P E N D I X  2 

For a tension test along x' the stresses will be ax = o~, cos 2 O, oy = a s, sin 2 O and z.r == o., cos 0 sin 0. Equation 
(A-I) becomes 

de. : d~r: dez : dyxy = 
Pcos 2 0 + RP(cos 2 0 - sin 2 0): 

R sin 2 O + RP (sin 2 0 - c o s  2 0): (A-5) 

- P  c o s  a 0 - R sin 2 0: 

K cos 0 sin 0. 

The tensile specimen will undergo strains 

dT~, r. = - 2dexcos 0 sin 0 + 2de r cos 0 sin 0 + d~.r(cos 2 0 - sin 2 0) (A-6) 

dex, = de~ cos:  0 + de r sin 2 0 + dYxr cos 0 sin 0 and 

de r, = de~ sin a 0 + de r cos 2 0 - d),~r cos 0 sin 0. 

Combining equations (A-5) and (A-6) results in equation (23). 


