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STUDYING ARTIFICIAL LIFE WITH CELLULAR AUTOMATA* 
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Biochemistry studies the way in which life emerges from the interaction of inanimate molecules. In this paper we look into 
the possibility that life could emerge from the interaction of inanimate artificial molecules. Cellular automata provide us with 
the logical universes within which we can embed artificial molecules in the form of propagating, virtual automata. We suggest 
that since virtual automata have the computational capacity to fill many of the functional roles played by the primary 
biomolecules, there is a strong possibility that the 'molecular logic' of life can be embedded within cellular automata and that, 
therefore, artificial life is a distinct possibility within these highly parallel computer structures. 

1. Introduction 

Biochemistry is the study of the molecular basis 
of life. Lehninger, in the introduction to his classic 
text on biochemistry [22], asks: 

If living organisms are composed of mole- 
cules that are intrinsically inanimate, why is it 
that living matter differs so radically from non- 
living matter, which also consists of inanimate 
molecules? Why does the living organism ap- 
pear to be more than the sum of its inanimate 
parts? Philosophers once answered that living 
organisms are endowed with a mysterious and 
divine life-force. But this doctrine, called vital- 
ism, has been rejected by modem science, which 
seeks rational and, above all, testable explana- 
tions of natural phenomena. The basic goal of 
the science of biochemistry is to determine how 
the collections of inanimate molecules that con- 
stitute living organisms interact with each other 
to maintain and perpetuate the living state. 

The molecules of which living organisms are 
composed conform to all the familiar laws of 
chemistry, but they also interact with each other 
in accordance with another set of principles, 
which we shall refer to collectively as the 
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molecular logic of the living state. These princi- 
ples do not necessarily involve new or as yet 
undiscovered physical laws or forces. Instead, 
they are a unique set of relationships char- 
acterizing the nature, function, and interactions 
of biomolecules . . . .  

In this paper we will explore the possibility of 
implementing the 'molecular logic of the living 
state' in an artificial biochemistry, based on inter- 
actions between artificial molecules. These artifi- 
cial molecules are modeled as virtual automata, 
which are free to roam around in an abstract 
computer space and interact with one another. We 
use cellular automata to implement the abstract 
computer space within which the virtual automata 
reside. We show that cellular automata are capa- 
ble of supporting virtual automata that are equiv- 
alent to Turing machines and can thus perform 
any computable task. On this basis, we propose 
that the notion of the 'molecular logic of the 
living state' can be captured by the interactions of 
virtual automata and thus that the existence of 
artificial life within cellular automata is a distinct 
possibility. 

We will approach this study in the following 
manner. First, we will discuss some of the major 
functional roles carried out by biomolecules. Then 
we will look at cellular automata and a study of 
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the way in which systems of interacting artificial 
molecules can arise spontaneously in these highly 
parallel computing structures. Next, we will look 
at these artificial molecules as 'virtual' automata 
and examine their potential for carrying out the 
kinds of functional roles that are carried out by 
the various biomolecules. We then show examples 
of some artificial biochemistries and two examples 
of systems of virtual automata that support other 
'life-like' behaviors: a simulated insect colony and 
a self-reproducing structure. We conclude with a 
brief discussion of how such systems might by 
applied to the study of emergent behavior in gen- 
eral. 

2. The functional roles of biomolecules 

In order to understand how to build artificial 
molecules, we need to understand the functional 
roles they must perform if they are to participate 
in anything like an artificial biochemistry. 

There are four major classes of biomolecules: 
proteins, nucleic acids, polysaccharides, and lipids. 
From the point of view of 'molecular logic', the 
first two classes (the proteins and nucleic acids) 
cover most of the important functional roles. The 
primary functional roles provided by these two 
classes are: 

Catalysis. Proteins constitute enzymes, which are 
primarily responsible for mediating the chemical 
interactions between the biomolecules of the cell. 
Enzymes mediate the chemical interactions be- 
tween biomolecules by acting as catalysts: entities 
that enter into a chemical reaction and speed up 
the rate at which that reaction reaches equi- 
librium. The rate of speed up is so large (a factor 
of 10 8 or more) that for all practical purposes 
enzymes determine which reactions happen and 
which do not. Thus, enzymes constitute "molecu- 
lar machines", which are active agents in the logic 
of life. Their function includes the capacity to 
recognize specific structures and to effect changes 
in them. 

Transport. Proteins are primary vehicles for 
molecular and ionic transport. Many proteins are 
finely tuned to bind to substrate material in areas 
where it is in plentiful supply and to release the 
substrate material in areas where it is in short 
supply. 

Structure. Proteins constitute many of the build- 
ing blocks out of which cellular components and 
tissues are constructed. Certain protein conforma- 
tions, such as the a-helix and r-sheet, provide 
excellent material for rigid, flexible, or high-tensile 
strength cellular or extra-cellular structures. 

Regulation. Proteins constitute the repressors and 
hormones that cells and organisms use to regulate 
the production and interactions of biomolecules. 
In this role, they function primarily as messengers 
that trigger changes in catalytic activity or protein 
synthesis. 

Defense. Proteins constitute the immunoglobulins 
and antibodies that fight against invasion by for- 
eign or disruptive agents. These functions involve 
the recognition of non-native molecules or 
organisms and the subsequent production of 
molecular machines to bind together or break 
down the foreign material. 

Information. The nucleic acids DNA and RNA 
provide for the storage of genetic information and 
its translation in the processes of protein synthe- 
sis. The DNA of a cell is typically covered by a 
swarm of polymerase enzymes, which initiate the 
transcription of DNA sequences to some form of 
RNA: messenger RNA (mRNA), transfer RNA 
(tRNA), or ribosomal RNA (rRNA). The 
m R N A -  which may be further edited-is guided 
to ribosomes in the cytoplasm. Ribosomes are 
made up primarily of rRNA, and function as 
machines for making proteins. They are assisted in 
this task by molecules of tRNA, which transport 
amino-acid building blocks to the ribosomes for 
incorporation into a polypeptide string in the order 
dictated by the sequence of bases on the mRNA. 
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This polypeptide string will 'fold up' into the 
characteristic shape that will determine its func- 
tion as a protein. Other enzymes cause the DNA 
molecule itself to be replicated. These processes 
involve the storage, transmission, transcription, 
translation, and replication of information. 

The additonal functional roles provided by 
polysaccharides and lipids primarily involve the 
storage of energy, although they also provide im- 
portant structural elements. 

Thus, biomolecules fill a wide range of func- 
tional roles in the molecular logic of living sys- 
tems. If we want to implement an artificial version 
of this logic, we must provide entities that can fill 
a similar set of functional roles. Note that, while 
we ask for functional similarity~ we do not require 
structural similarity as well. We are not trying to 
simulate biomolecules themselves, we are merely 
trying to find other entities that can fill similar 
functional roles. 

3. Properties of the molecular logic of life 
distributed 

The molecular logic of life is a dynamic distrib- 
uted logic. An initial set of operators and oper- 
ands goes to work producing more operators and 
operands, which immediately enter into the ongo- 
ing logical 'fray'. Some of these new operators and 
operands are distributed as new initial sets in the 
process of self-reproduction. This dynamical char- 
acter of the molecular logic of life is unlike a 
typical formal logic which, although it provides an 
initial set of operators and primitive operands, has 
no internal dynamics of its own. Instead, formal 
logics of the standard variety provide people with 
convenient tools, but they are passive tools not 
active ones. They must be applied by something or 
somebody outside of the logical system. 

Although the proteins and the nucleic acids are 
the principal operators in the molecular logic of 
life, they also constitute many of the operands on 
which the operators 'operate'. Thus, a fundamen- 
tal property of this logic is that its operators can 

operate on each other. This property of having 
operators being able to operate on each other 
provides a logic with special properties, as was 
demonstrated by G~del in his famous incomplete- 
ness proof [24]. This same property underlies the 
power of the standard ' von Neumann' stored-pro- 
gram computer, in which a program stored in 
memory is available as data to another program, 
or even to itself. The principle requirement for 
such self-operation is that operators and operands 
be implemented (or represented) in the same lan- 
guage, i.e., out of the same 'building blocks.' 

A program running on a computer captures 
some of the dynamical spirit of the molecular 
logic of life. A program in a computer can be 
started from an initial state and left to run through 
its instructions and perform its functions on its 
own. However, most computer programs are de- 
signed specifically to avoid modifying themselves 
or other programs; their attention being focused 
strictly on data that are not intended to be ex- 
ecuted. Even in the field of artificial intelligence, 
where the LISP programming language makes it 
very easy to write programs that modify (or create) 
other programs, this capacity is little used. 

In short, neither the static formal logics nor the 
more active logics implicit in current computer 
programming languages come close to capturing 
the dynamic spirit of the molecular logic of life. 
At any one time in a single cell there may be 
hundreds of thousands of molecular operators 
actively engaged in the processes of creating, mod- 
ifying, and destroying other such operators. Fur- 
thermore, this massive, ongoing dynamical logic is 
superbly regulated by the very processes out of 
which it is constituted. It is this kind of dynamic 
interaction of operators as operands that we seek 
to implement in an appropriate computational 
medium. 

4. Cellular automata 

In order to simulate the molecular logic of life 
efficiently, we need very special computers. Many 
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of the architectural requirements for such com- 
puters can be derived from the nature of the 
dynamical interactions between molecular oper- 
ators. 

First, the computer structures must support 
massive parallelism, which is to say that they must 
have many, many computing elements in order to 
provide for the simultaneous interactions of many, 
many operators. 

Second, the many computing elements need only 
be locally connected, since almost all of the ac- 
tions of molecular operators are taken solely in 
response to local conditions. This local connection 
property is fortunate indeed when dealing with 
potentially massive parallelism, because it means 
that the number of connections per processing 
element can be independent of the number of 
processing elements. 

Third, since molecular operators depend on 
being able to move around relatively freely within 
the various compartments of the cell in order to 
encounter their 'operands', the computer must 
support the motion of operators through the field 
of processing elements. Although there are archi- 
tectures that support motion of operands through 
a field of processors containing the operators (e.g., 
'systolic' arrays), few if any existing or proposed 
machines allow the operators to meander about at 
will, modifying each other as well as the data. 
Thus, an architecture for simulating molecular 
logic must have the capacity to support the free 
motion of operators as well as operands. 

An architecture that satisfies these criteria was 
proposed by John von Neumann in the early 
1950's, based on a suggestion from Ulam [2, 29]. It 
is not merely coincidental that the architecture he 
proposed should be suitable to the simulation of 
life, for he was attempting to model the process of 
natural self-reproducton when he suggested it. The 
architecture he proposed is known as a cellular 
automaton and it can best be understood by look- 
ing at an example. 

A potentially infinite two-dimensional euclidean 
space is divided up into an array of unit squares 
each of which is called a cell. Each cell contains 

an identical copy of the same finite automaton, 
which can be in any one of k discrete states and 
changes state as a function of its own state and 
the states of the automata in its immediate neigh- 
borhood. Time progresses uniformly in the array in 
discrete steps with all cells changing state simulta- 
neously. The automaton used by each cell is de- 
fined by a transition function, O, which is the same 
for every cell. O maps the states of a local neigh- 
borhood to a new state for the cell at the 'center' 
of that neighborhood at the next time step. Two 
common neighborhoods are: the five cell neigh- 
borhood, a cell together with its neighbors to the 
N, E, W, and S, and the nine cell neighborhood, 
which is just the five cell neighborhood plus the 4 
cells to the NE, NW, SE, and SW. 

five cell neighborhood nine cell neighborhood 

If there are n cells in the neighborhood of a cell, 
including itself, then there are k" possible neigh- 
borhood-states. For each of these, O must specify 
one of the k cell-states as the next state for the 
cell at the center of the neighborhood. There are k 
states to choose from, so there will be k (kn) differ- 
ent possible O mappings. For example, if k - - 8  
and n = 5 then. there will be 85 or 32,768 possible 
neighborhood states. For each of these, there are 
eight choices for assigning the next state of the 
center cell. Thus, there are 8 (85) = 8 32,768 possible 
O mappings, an exceedingly large number. 

By convention, there is usually one special state 
(out of the k states possible for each cell) called 
the quiescent state. A neighborhood that consists 
entirely of cells in this special quiescent state 
results in the center cell remaining in the quiescent 
state at the next time step. Thus, an entirely 
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quiescent space will remain so indefinitely. Later, 
when we are discussing activities in the array 
taking place against a quiescent background we 
will mean not just that the background is un- 
changing, but that the background consists of cells 
in the special quiescent state. 

Cellular automata provide computing structures 
that satisfy the criteria we derived above for 
simulating the molecular logic of life. They are 
highly parallel devices with the property that their 
basic computing elements, the cells, are only lo- 
cally connected. Furthermore, it turns out to be 
rather easy to define 'operators' that can migrate 
freely throughout the array interacting with one 
another. Indeed, it turns out that such operators 
can emerge 'spontaneously' in cellular automata. 

5. Cellular automata as dynamical systems 

There are two general approaches to the study 
of behavior in cellular automata: 

1) Start with specific behaviors in mind and 
derive a O function that will support those behav- 
iors; 

2) Start by specifying a 0 function and observe 
the resulting behavior. 

The early investigations with cellular automata 
were of the former variety [2, 5, 29]. Von 
Neumann was attempting to discover the logical 
principles underlying the natural phenomenon of 
self-reproduction when he first introduced cellular 
automata. More recently, physicists have been in- 
vestigating cellular automata using the latter ap- 
proach [8, 10, 28]. Physicists have become inter- 
ested in cellular automata because they constitute 
discrete space/t ime dynamical systems. A 
dynamical system is one in which the system's 
variables change as a function of their current 
values. Thus the behaviors of many dynamical 
systems are governed by systems of nonlinear 
differential equations, making them difficult to 
analyze. 

The study of a dynamical system involves the 
analysis of its 'phase space', which is the space 
defined by all of its variables. The phase space 
covers all possible states of the system: each point 
in phase space represents a unique value for each 
of the system's variables. The system's behavior in 
time is represented as a path through its phase 
space, and the study of dynamics involves the 
characterization of the geometry of these paths 
[1, 3, 6, 23]. In general, when a physical system is 
started from some initial state, the point repre- 
senting its state will travel around in some re- 
stricted region of the phase space. 

There are three possibilities for the long term 
behavior of the path of a system's behavior in 
phase space: it will stop moving altogether, it will 
fall into a closed cycle, or it will not close on itself 
at all. In the first case, the system is said to have 
evolved to a fixed point or limit point, in the 
second case to a limit cycle, and in the third case 
to something called a strange attractor. Actually, 
all three are kinds of attractors, the name deriving 
from the fact that if a system is in a state that is 
'near' an attractor in phase space, it generally 
evolves 'toward' the state or cycle represented by 
that attractor. The set of all points in phase space 
from which a system can be started and still end 
up at the same attractor is termed the basin of 
attraction for that attractor. The path between the 
point in phase space at which a system is started 
and the attractor it ends up at is termed a tran- 
sient. There may be many attractors in the phase 
space of a system, and hence many basins of 
attraction. Systems governed by the third class of 
attractor, the strange attractors, are associated with 
behaviors that are termed chaotic, and give the 
appearance of being random and unpredictable. 
Thus, unless we simulate every step of their time 
evolution, we must resort to probabilities when 
describing the behavior of such systems, even when 
the rules governing their behavior are completely 
deterministic. 

The analogue of the phase space for a cellular 
automaton is its 'state space'. At any one time 
there is a unique distribution of states over the 
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cells of the automaton and this distribution is 
represented as a point in stale space. The time 
evolution of a cellular automaton can be studied 
by observing the 'path'  that it follows in its state 
space. It turns out that attractors often abound in 
the state spaces of cellular automata as well. It is 
primarily this feature of cellular automata that has 
'attracted'  the attention of physicists. Cellular au- 
t oma ta  can exhibit behaviors characteristic of all 
three of the classes of attractor mentioned above. 

Stephen Wolfram has undertaken a detailed 
study of cellular automata and their relationship 
to dynamical systems [32, 33]. He has identified 
the following four qualitative classes of cellular 
automaton behavior: 

• Class 1 evolves to a homogeneous state. 
• Class 2 evolves to simple separated periodic 

structures. 
• Class 3 yields chaotic aperiodic patterns. 
• Class 4 yields complex patterns of localized 

structures, including propagating structures. 
Wolfram finds the following analogues for his 

classes of cellular automaton behavior in the field 
of dynamical systems [33]. 

• Class 1 cellular automata evolve to limit 
points. 

• Class 2 cellular automata evolve to limit cycles. 
• Class 3 cellular automata evolve to chaotic 

behavior of the kind associated with strange at- 
tractors. 

• Class 4 cellular automata 'effectively have 
very long transients, and no direct analogue for 
them has been found among continuous dynami- 
cal systems' *. 

Thus, cellular automata seem to provide a nice 
'bridge'  between theoretical physics and the for- 
mal theory of automata. Physical behaviors that 
have been captured in cellular automata can be 
subjected to logical analysis from the perspective 
of automata theory, which may provide new in- 
sights into the nature of the low level physical 
phenomena generating the behaviors. Our purpose 
in this paper is to argue that cellular automata 
constitute an equally useful bridge between au- 

* We will have more to say about this in section 8. 

tomata theory and theoretical biology by provid- 
ing a convenient and simple formal system within 
which life-like behaviors can be 'captured' and 
analyzed, in isolation from their physical basis. It 
is a matter of no small import that biologists and 
physicists could use the same formal system to 
capture and analyze their respective behaviors of 
interest. By 'transitivity', cellular automata pro- 
vide a useful bridge between theoretical biology 
and theoretical physics. 

6. Notes  on the simulations 

In the sections that follow, we will consider the 
results of some empirical studies of cellular au- 
tomaton behavior. These results were obtained 
using a general purpose cellular automaton simu- 
lator, CELLSIM, developed by the author. The 
simulator is written in the C programming lan- 
guage, and runs on Apollo Corporation DN600 or 
DN660 color workstations. Plate 1 shows the 'con- 
trol panel' of the virtual CELLSIM machine. 

CELLSIM allows simulations of one- or two- 
dimensional, finite cellular automata, with array 
sizes of up to 256 × 256. The most convenient 
working size has turned out to be a 64 × 64 array. 
The CELLSIM simulator will update a 64 × 64 
array almost 16 times per second on a DN660, 
which gives the experimenter a good visual under- 
standing of the dynamics of the processes going on 
in the array. CELLSIM will allow total transition 
functions to be defined for up to sixteen states per 
cell over the five cell neighborhood, and up to four 
states per cell over the nine cell neighborhood. 
The edges of the  arrays are wrapped around, 
yielding the topologies of a torus for two dimen- 
sional arrays and of a circle for automata of one 
dimension. All of the simulations discussed below 
take place on a finite, unbounded torus using the 
five cell neighborhood. Most of the simulations 
use 8 states per cell]'. 

]'It is very difficult to convey dynamical activity via static 
pictures and figures. Thus, a video-tape containing the se- 
quences  from which the figures were taken will be available 
from Aerial Press, Box 1360, Santa Cruz, CA 95061, USA. 
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7. Emergent behavior in cellular automata 

It is convenient to think of a cellular automaton 
as a logical universe all of its own, with its own 
local physics: the transition function @. This uni- 
verse can be populated with objects by specifying 
an initial assignment of non-quiescent states to 
some of the cells in the array. Once O and the 
initial state of this logical universe have been 
specified, the universe can be started and the 
resulting global behavior observed. As might be 
surmised from the number of O mappings, there 
is quite a wide range of possible behaviors. 

One of the things that is so interesting about 
cellular automata is that any behavior that ap- 
pears on scales larger than that of a single cell will 
be emergent behavior. No global behavior is 
specified in the O function explicitly: global be- 
havior will emerge h ierarchica l ly-on the 
'shoulders' so to speak- of the local behavior. 

In this section, we will take the approach of 
generating O functions and then observing the 
resulting behavior. We want to do two things. 
First, we want to get a general feeling for the 
kinds of global behavior that can emerge in ceUu- 
lar automata. We will do this by observing the 
behavior yielded by a succession of randomly 
generated O functions, each supporting more 'ac- 
tivity' in the array than the previous one. Second, 
we want to investigate further some subset of 
these global behaviors that shows promise for 
supporting a kind of 'artificial biochemistry'. This 
requires that we find a way to produce @ func- 
tions that will yield behavior that falls in the 
relevant subset. 

I n  order to generate random O's we start with 
an effectively undefined transition function and 
then fall it in by assigning the next-state of each 
different neighborhood rule at random. In order 
do this in some sort of orderly fashion, we define a 
parameter h that measures how many neighbor- 
hood states are mapped to a non-quiescent state 
as opposed to the special quiescent state for a 
particular @ function. Specifically, h is defined 

as  

h = number of neighborhood states that map to a 
non-quiescent state/total number of 
neighborhood states ( = k" ). 

~, can be used to generate @ functions as well, 
and should provide us with a rough control of the 
overall level of activity supported by a @ function. 
For more than two states per cell ( k >  2) we 
expect that with low values of ~ most of the 
neighborhood-states will map to the quiescent state 
and so there will probably be little activity in the 
array, while with high values for ~, most of the 
neighborhood-states will map to non-quiescent 
states, so there will probably be a great deal of 
activity in the array. In the case where k - 2, high 
values of h will tend to reverse the roles of the 
quiescent and the non-quiescent state, so there 
will probably be little activity in the array for high 
values of X in cellular automata with only two 
states per cell. 

For our simulations, which use eight states per 
cell and the five cell neighborhood, there are 85 or 
32,768 possible neighborhood-states. We will des- 
ignate state zero (0) as the quiescent state and 
assign it as the image of the neighborhood-state 
consisting of all five cells in state zero. The other 
seven states will all be considered to be active 
states. Now, starting with the function undefined 
except for the quiescent neighborhood transition, 
we want to go through the remaining 32,767 
neighborhood rules, one by one, and assign a 
'next-state' image to each one. We pick a ~ be- 
tween 0 and 1, and let it represent the probability 
that, for any particular neighborhood rule, we 
assign a non-zero state as the next-state of the 
center cell of that neighborhood. For example, if 
we pick ), -- 0.2, then each possible neighborhood 
rule will be mapped to the quiescent state with 
probability 1 - h = 0.8. The remaining probability 
of 0.2 is distributed evenly among the other 7 
states. Thus there is a 0.2/7 = 0.02857 chance for 
each neighborhood rule that it will map to any 
specific one of the 7 non-quiescent states, and a 
0.8 chance that it will map to the quiescent state. 
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Some caveats are in order concerning generating 
random O functions with the ~ parameter. First, 
this procedure will generally yield O's that do not 
support rotational symmetry. That is, neighbor- 
hood states that differ only by rotation will gener- 
ally not map to the same next-state. This means 
that the 'universes' controlled by these 0 func- 
tions will be non-isotropic and so there will be 
preferred directions. The simulations that follow 
do not enforce rotational symmetry, however the 
procedure is easily modified so that all rotations of 
a neighborhood-state will map to the same next- 
state. The structures in which we will be interested 
are more readily observable in non-symmetric 
spaces, but occur in symmetric spaces as well. 

Second, the ~ parameter can only be an ap- 
proximate measure of activity because there will 
be special cases when even a very low value for h 
will result in a very small set of neighborhood 
rules that, by chance, all trigger each other and 
cause a great deal of activity in the array. Simi- 
larly, ongoing activity in the array may depend on 
the presence of very specific configurations which 
we have little chance of discovering accidentally. 
Thus, the h value of a 0 function is an aggregate 
statistic that is correlated with, but not a certain 
predictor of, a certain le,;,el of behavioral complex- 
ity. In this sense it is like a Reynold's number, 
which is correlated with the tendency of a geomet- 
ric object to produce turbulence in a fluid flowing 
over its surface. 

Third, since we are interested in the emergence 
of ongoing dynamical activity in the array, we 
should be interested in contrasting dynamic be- 
havior against all possible forms of inactivity, 
whereas the ~, parameter only takes into account 
the kind of inactivity associated with the special 
quiescent state. 

Fourth, the association between specific values 
for h and specific 'levels' of activity in an array 
seems sensitive to the size of the neighborhood, 
the number of states per cell, and the degree of 
symmetry. These dependencies have not yet been 
thoroughly explored and so specific correlations 

should be taken with a grain of salt. For the 
present, overall trends are sufficient for our pur- 
poses. 

The above notwithstanding, the h parameter 
still serves as a useful first approximation of the 
potential for activity provided by a particular O 
function. It gives us a 'knob'  we can use for the 
coarse tuning of activity level, a knob that we can 
turn to different settings in order to generate 
different O maps that will support widely different 
categories of behavior. 

We will now look at the kinds of behavior 
associated with different settings for h between 0 
and 1. When we start a random initial configura- 
tion in our simulated array under the O's that we 
generate by the procedure above, we uncover the 
following behavioral spectrum (plate 2). For ~,-- 
0.0, of course, a l l  cells become quiescent at the 
next time step. For ~ close to 0, there may be one 
or two neighborhood states that map to a non- 
quiescent state, but they will most likely be iso- 
lated, and will become quiescent by the next time 
step. As we raise h further, we begin to notice that 
some areas of the array may hold activity for 
several time steps before becoming quiescent. 

When h is around 0.2, something new happens. 
We find that a single state will persist, either fixed 
in place or propagating steadily in one direction. 
What has happened is that a rule for a neighbor- 
hood state that is quiescent except for one cell, 
maps to the same non-quiescent state. If the one 
non-quiescent cell was the center cell of the 
neighborhood, then it will remain at a fixed posi- 
tion in the array. If the one non-quiescent cell was 
one of the bordering cells of the neighborhood, 
then that state will propagate steadily through the 
array. One could call such a rule a self-triggering 
rule in that, once its conditions are satisfied, it 
helps to set up the conditions necessary for itself 
to fire again. It is also possible that several neigh- 
borhood rules that map to different states get 
'linked' together, so that a repeating cycle of 
states stays fixed in place, or propagates across the 
array. 
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As k is raised still higher (e.g., to around 0.3) 
the activity in the array increases dramatically. 
We have crossed a threshold into a region of the 
behavioral spectrum where ongoing activity in the 
array is almost certain*. Many neighborhood rules 
will now participate in setting up the conditions 
for other neighborhood rules to fire, and the activ- 
ity in the array becomes, in a sense, self-sustain- 
ing. Whereas the simple, isolated propagating 
states observed for h around 0.2 did not interact 
with each other, one now begins to see several 

species of propagating structures travelling in 
different directions in the array and engaging in 
complex interactions when they encounter one 
a n o t h e r .  These propagating structures, consisting 
of packets of 2 to 6 co-travelling states, may cycle 
through several different configurations periodi- 
cally as they propagate:~. They may also leave 
behind a trail of 'debris', which can consist of 
fixed or periodic structures, some of which may 
propagate themselves. 

Much of the activity in the range of h between 
about 0.2 and 0.4 takes place against a largely 
quiescent background. By the time k is in the 
range of 0.5 or more, the activity largely dominates 
the quiescent behavior. In this range, the activity 
in the array has become quite chaotic and defies 
simple description. In these chaotic reactions, the 
individual propagating structures have become like 
virtual particles, emerging briefly from one com- 
plex process only to be absorbed instantly by the 
next one. Furthermore, these complex processes 

*This amounts to having crossed a critical percolation 
threshold for X. See [27]. 

~fThe glider in Conway's cellular automaton game of 'life' is 
a familiar example of one of these propagating structures. See 
[11]. The 'life' transition rule has X = 0.27. 

:l:In order to visualize these propagating structures, imagine 
that there are many people standing in a circle who will sing 
the two part round 'row-row-row your boat' in the following 
manner. Each person sings the round through only once, 
starting 'row-row-row...' when the person on his fight starts 
singing 'merrily-merrily-merrily...'. If one person starts sing- 
ing the round, it will propagate around the circle of singers, 
with at most two people engaged in singing the round at any 
one time. This is analagous to a two-cell propagating structure 
progressing around a circular, one-dimensional cellular au- 
tomaton. 

are no longer just temporary consequences of the 
collision of propagating structures, they are ongo- 
ing processes in their own right, which occasion- 
ally emit and absorb propagating structures. 

As X approaches 1, of course, the transition 
function becomes saturated with transitions to 
non-quiescent states and the activity in the array 
becomes one large complex process; all localized, 
isolated processes in the array having been en- 
gulfed. 

We might think of the h scale as a temperature 
scale. For low h 'temperatures' we observe pre- 
cipitate-like behavior, where everything is stable 
and nothing changes, while for high temperatures 
we observe the behavior of a hot gas where every- 
thing changes and nothing is stable. For tempera- 
tures in between, where we have the chance of 
both stability and changeability, we observe more 
interesting dynamics. It is interesting to note that 
life on our planet has evolved in an intermediate 
range of the Kelvin temperature scale. Thus, at 
least one example of life has emerged in physical 
conditions that allow for both stasis and change, 
which is one of the properties that we have ob- 
served for cellular automaton behavior in roughly 
the middle region of the X scale. 

To conclude this section, let us take a look at 
what the analysis using the X parameter has 
accomplished. By providing a 'knob'  that controls 
the amount of activity in a cellular automaton, we 
have the opportunity to catch emergent behavior 
in the act of emerging. As we raise h a little way 
from 0, we begin to get isolated periodic struc- 
tures. As h is raised further, we begin to get 
propagating periodic structures that can interact 
with one another in interesting ways. With 2, still 
higher, we begin to see interactions between the 
local interactions of these propagating structures, 
which begin to dominate the activity in the array. 
As h approaches 1, the behavior we see has be- 
come so chaotic that it approaches the random- 
ness of pure white noise. Thus, we see that, up to a 
point, behavior emerges hierarchically with in- 
creasing X; the behavior of structures at one level 
providing the basis for more complex structures at 
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higher levels. After some point however, the 
hierarchies of complex structures break down into 
chaotic, seemingly disordered behavior. The emer- 
gence of these hierarchies of self-sustaining 
processes is of fundamental importance to the 
study of cellular automata. 

8. Placing emergent behavior in context 

If we compare Wolfram's classes of cellular 
automaton behavior with the spectrum of behav- 
iors associated with h we find the following corre- 
spondances*: 

• Class 1 (hmit point) behavior is found in the 
range 0.0 < h < 0.2. 

• Class 2 (limit cycle) and class 4 (complex 
periodic and propagating periodic) behaviors are 
found in the range 0.2 < h < 0.4. 

• Class 3 (chaotic) behaviors are found in the 
range 0.4 < X < 1.0. 

Thus, we identify three regions of interest, within 
the spectrum of behavior associated with X: 

• Region 1) Activity tends to die out. We could 
call this the quiescent region. 

• Region 2) Activity tends to periodic struc- 
tures, both fixed and propagating, and their local- 
ized interactions. We could call this the balanced 
region. 

• Region 3) Activity tends to fully developed 
chaos. We could call this the chaotic region. 

The interesting thing about these correlations is 
the location of class 4 behaviors. The primary 
difference between Wolfram's class 2 and class 4 
behaviors is that, although both contain localiT.ed 
periodic structures, in class 4 there can be periodic 
structures that propagate themselves in space, 
whereas there are only localized periodic struc- 
tures in class 2. Without the possibility of interac- 
tion, the localized periodic structures of class 2 
give rise to global limit-cycle behavior. In class 4, 
however, the existence of propagating structures 
means that there can be arbitrarily complex inter- 

* Keeping in mind the caveats of the previous section. 

actions between localized periodic structures and 
propagating periodic structures. This means that 
the global behavior of a class 4 cellular automaton 
is potentially in the chaotic regime. 

It seems the Wolfram's class 4 behaviors are 
associated with the onset of chaotic behavior in 
cellular automata. Thus, this behavior properly 
lies between the hmit cycle dominated behavior of 
class 2 and the fully developed chaotic behavior of 
class 3. Rather than calling them 'class 4' behav- 
iors, perhaps there should be a sub-division of 
class 2 behaviors into class 2a -  limit cycle behav- 
io r -  and class 2b-  partially developed chaotic be- 
havior-reserving class 3 for fully developed 
chaotic behavior. 

Von Neumann proved that cellular automata 
are capable of universal computation by showing 
that a universal Turing machine could be em- 
bedded in a cellular array [29]. Of his four classes 
of behavior, Wolfram identifies class 4 as the only 
class within which universal computation could 
take place [32]. From the point of view of compu- 
tation then, systems in the '  balanced' region of the 
h scale are the most likely to hold useful computa- 
tional structures. For systems capable of universal 
computation, there will be questions that can be 
asked about computations that will be undecid- 
able in the general case [17], questions such as 
'will this computation halt or not?' Thus, the 
'balanced' region represents a dynamics that, al- 
though balanced delicately between collapse to 
fixed point or limit cycle behavior and explosion 
to fully developed chaos, is a meta-stable dy- 
namics. It is impossible in principle to predict in 
the general case whether the forces tending to- 
wards chaos or the forces tending towards quie- 
sence will ultimately dominate the dynamics of 
the system or whether, for that matter, neither one 
will ever dominate. Indeed, for many such sys- 
tems, the conflicting pulls toward order and chaos 
seem to provide an essential tension which keeps 
the ongoing dynamics on an indefinitely extended 
transient, far from equilibrium. 

From the point of view of artificial life, the 
most interesting region of the spectrum of behav- 
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ior associated with the h parameter is also the 
'balanced' region. It is a region characterized by 
the existence of relatively stable, fixed and propa- 
gating periodic structures together with their inter- 
actions, which can support an ongoing dynamics 
that is far from equilibrium. The behavior of these 
propagating periodic structures is just the kind of 
behavior we would expect from our artificial 
molecular operators, and it is because of the ex- 
istence of such structures that this region shows 
the most promise for supporting an artificial bio- 
chemistry. 

We would like to incorporate these fixed and 
propagating periodic structures into a 'molecular 
logic', involving propagating periodic structures as 
molecular operators with the capacity to operate 
on themselves as well as on fixed periodic struc- 
tures. If we can do so, there is every reason to 
believe that such systems could support some kind 
of artificial life. 

9. Virtual automata 

We now take a closer look at the periodic, 
propagating structures in cellular automata whose 
interactions dominated the balanced region we 
observed in our h analysis. 

Some dynamical systems governed by nonlinear 
differential equations involve solitary waves: par- 
ticle-like waves that are capable of complex inter- 
actions. A soliton is an example of a special kind 
of solitary wave that preserves its shape during 
interactions with other solitons. The analogues of 
solitary waves in cellular automata seem to be the 
propagating periodic structures that we have ob- 
served in our h analysis and that distinguish 
Wolfram's class 4 from class 2 behaviors. It is 
even possible to have soliton-like propagating 
periodic structures that preserve their identity dur- 
ing interactions with one another. Thus, from the 
point of view of dynamical systems theory, these 
propagating structures are essentially periodic, 
solitary waves of state-change propagating through 

the array. Due to the discrete nature of cellular 

automata, these structures constitute digital soli- 
tary waves. From the point of view of automata 
theory, a propagating structure in a two-dimen- 
sional cellular automaton is essentially a finite 
automaton operating on a two-dimensional tape. 

A finite automaton is an entity that consists of a 
finite set of states and a set of transition rules that 
dictate how the automaton will change its state in 
response to an input symbol. The transition rules 
map the current state and input symbol onto the 
next state of the automaton. The input symbols 
are drawn from a finite alphabet and are consid- 
ered to be supplied on an input tape (although 
any source of input such that an input symbol 
arrives at each time step will suffice). A finite 
automaton may produce output but it cannot read 
its own output nor may it go back and review its 
past input. Thus, its memory is limited to the size 
of its state set. 

The finite bound on the size of its memory 
restricts the computational power of a finite au- 
tomaton. If we consider a finite automaton that is 
augmented so that: a) it can write onto its tape as 
well as read from it; b) it can move in either 
direction on the tape; and c) the tape can be 
indefinitely extended, then we have removed the 
restrictions on its computational power. This k ind  
of machine is known as a Turing machine and it is 
believed that such a machine can compute any- 
thing that can be computed in principle: there are 
no further modifications that can be made to a 
Turing machine that will allow it to compute 
a larger class of functions [17]. There is even such 
a thing as a universal Turing machine that can 
simulate the computation of any simple Turing 
machine. It does so by being augmented by a 
special tape that contains the transition rule for 
some simple Turing machine, and then emulates 
that machine by looking up the requisite transi- 
tions on this special tape. This is, in essence, what 
confers generality on general purpose, stored pro- 
gram computers. When they are given a specific 
program, they are emulating the special purpose 
machine that is specified by the program. 
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If  we define one of the states of a finite automa- 
ton as the initial or start state and another as the 
halt state, we can use the automaton to classify 
input strings into one of two classes depending on 
what state it is in just after it consumes the last 
input symbol. The automaton is said to accept the 

set of all strings that leave it in the halt state and 
it rejects all others. The (potentially infinite) set of 
strings accepted constitutes the language recog- 
nized by the automaton. Due to their greater 
computat ional  power, Turing machines can recog- 
nize a wider class of languages than finite au- 

tomata. 
We can view the periodic propagating structures 

we have seen above as automata that are operating 
on a (potentially infinite) two-dimensional tape. 
They cycle through a set of states as they move, 
and they can mark or read the states of the cells in 

the array that they encounter in the course of their 
propagation.  Whether they are most correctly 
viewed as finite automata or as Turing machines 
depends on how they operate. If  they can never 
encounter their own previous input or output, 
then their memory  is limited to their set of states 
and they will function as finite automata. If, how- 
ever, they can encounter previous input or output, 
then they are potentially Turing machines*. 

It  is important  to note that both fixed and 
propagat ing periodic structures that span more 
than one cell are emergent phenomena: they are 
not explicitly coded in the transition function. If 
we call the finite automaton that occupies every 
cell of a cellular array a first-order automaton, 
then periodic structures that span more than one 
cell can be called second-order automata. If we 
combine second order automata in interesting ways 
we can generate automata of even higher order. 
We will refer to first order automata as physical 
automata (because they are explicitly coded in the 
transition function) and all higher order automata 

as virtual automata. 

* In the case of a finite cellular array, these Turing machines 
will be limited in principle to the class of space bounded 
computations. See [17]. 

A fixed virtual automaton always occupies the 
same set of physical cells, wheras a propagating 
virtual automaton occupies a constantly changing 
set of physical cells. If  a propagating virtual au- 
tomaton can ever encounter physical cells that it 
has traversed before, then it is potentially a virtual 
Turing machine; if not, then it is a virtual finite 
automaton. This distinction is complicated by the 
fact that it is possible that the output of a virtual 
au tomaton may itself propagate through the array, 
in which case a virtual automaton may encounter 
some of its own previous output even if it never 
retraces its path. 

There are a number of observations that follow 
when we view periodic structures as virtual au- 
tomata.  In order to have a convenient name, we 
will refer to virtual automata as virtual state ma- 
chines (VSM's), whether they are functioning as 
finite automata  or as Turing machines. 

• VSM's are embedded in the very tape upon 
which they are operating. Both machine and data 
are represented as states of the same medium: an 
array of cells. Thus, VSM's are both processes and 
data at the same time. 

• Since VSM's are both processes and data at 
the same time, writing on the "tape' of the enviorn- 
ment is equivalent to construction. 

• Since VSM's can 'write '  the special quiescent 
state, they can erase as well as construct. 

• Because VSM's could cycle into quiescence 
altogether, they can be self-erasing, which is the 
ultimate form of halting. 

• Since constructed configurations can also be 
viewed as either data or processes, VSM's can 
construct other VSM's (plate 3). Likewise, VSM's 
can erase other VSM's. 

• Because they are both processes and data, 
VSM's can treat other VSM's as 'data' and read or 
modify their structure. 

• Because configurations can occur on all 
scales, VSM's can be embedded in other VSM's. 
Thus VSM's can be hierarchically composed of 
smaller VSM's. 

Identifying these propagating structures a s  vir- 
tual automata  provides us with a good, formal 
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foundation upon which we might base a logic of 
interacting virtual automata. We want to view 
such a logic as a dynamic logic for the composi- 
tion of finite automata (or Turing machines) that 
have the capacity to operate on each other di- 
rectly. 

10. Virtual automata as artificial molecular 
operators 

Information. VSM's can be 'read' by other VSM's 
and thus can function to store information. They 
can therefore be used as DNA is used: as a 
repository for the descriptions of other VSM's (or 
molecular operators). Some VSM's can take on 
the roles of the various RNA's in mediating the 
transcription and translation of VSM descriptions 
into operating VSM's. Others can initiate the rep- 
lication of the descriptions themselves. 

From the point of view of the molecular logic of 
life, the VSM's of section 9 are ideal candidates 
for filling the roles of molecular operators. Let us 
look at a comparison between the roles played by 
the various biomolecules that we identified in sec- 
tion 2, and the potential behaviors for VSM's that 
we have pointed out above. 

Catalysis. VSM's can perform arbitrary acts of 
construction. They can operators that recognize 
and interact with other operators, possibly chang- 
ing or modifying their structure or function. Thus 
they have the capacity to function as artificial 
enzymes. 

Transport. VSM's can 'transport' structures by er- 
asing them where they encounter them and re-con- 
structing them elsewhere in the array. 

Structure. VSM's can be fixed in place and can 
thus constitute static 'structures'. 

Regulation. VSM's can be seen as data as well as 
processes. Thus they can be interpreted as mes- 
sages. Propagating VSM's can travel between pro- 
cess in the array and fixed VSM's can function as 
markers, being sensed by propagating VSM's. 

Defense. VSM's, acting as language recognizers, 
could detect 'foreign' VSM's because they would 
not recognize their structure as being part of the 
language of self. This could trigger the construc- 
tion of VSM's that can recognize the structure of 
the invader and whose action upon recognition 
would be to incapacitate it in some manner. 

We must emphasize again that we are interested 
primarily in simulating the functions of biomole- 
cules, not the biomolecules themselves. We are 
after a simulation of the logic of life, not of the 
biological 'wet-ware' in which we have found this 
logic to be implemented. Thus the term 'artificial 
life' is appropriate. 

In The Sciences of the Artificial [26], Simon 
says: 

Artificiality connotes perceptual similarity but 
essential difference, resemblance from without 
rather than within. The artificial object imitates 
the real by turning the same face to the outer 
system.. ,  imitation is possible because distinct 
physical systems can be organized to exhibit 
nearly identical behavior.. .  Resemblence in be- 
havior of systems without identity of the inner 
systems is particularly feasible if the aspects in 
which we are interested arise out of the organi- 
zation of 'the parts, independently of all but a 
few properties of the individual components. 

Thus, it would appear that virtual automata 
have the computational capacity to fill many of 
the functional roles played by biomolecules in the 
molecular logic of life. The specification of a tran- 
sition function for a cellular automaton is also the 
specification for an implicit logic of virtual au- 
tomata. Thus, many of the 0 rules with ~, in the 
balanced region will yield molecular logics. Some 
may even provide molecular logics that are suffi- 
ciently rich to support a kind of artificial life. 
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11. Examples of systems of virtual automata 

In this section, we will look at several cellular 
automaton systems that illustrate various aspects 
of the dynamical behaviors that are possible in 
systems of interacting virtual automata. Each of 
these systems incorporates its, own molecular logic, 
involving operators that can operate on each other 
in interesting ways. 

We first look at two artificial biochemistries 
governed by transition functions that were 
produced by the methods of section 7. This method 
involves first generating transition functions and 
then observing the behaviors that they support. 

Next, we look at two systems controlled by 
transition functions that were carefully crafted to 
support other kinds of 'life-like' behavior. The 
first of these shows an attempt to capture the 
dynamics of an insect colony. It demonstrates the 
way in which simple VSM's can interact with one 
another in complex ways, and suggests that one 
might identify systems of interacting VSM's at the 
level of social systems as well as at the molecular 
level. The second of these examples demonstrates 
a composite structure of VSM's that reproduces 
itself. We discuss the nature of the problem of 
self-reproduction and suggest how the process of 
natural selection among variants might be achieved 
in cellular automata. 

11.1. Artificial biochemistries 

In sections 7 and 8, we found a 'balanced' 
region in the spectrum of behavior associated with 
the h parameter, which showed promise for sup- 
porting artificial biochemistries. This region 
included h values in the approximate range of 0.2 
to 0.4. 

Plate 4 shows an example of one of these sys- 
tems that seem so nicely balanced between quies- 
cence and chaos (k = 0.218). In order to maintain 
this balance dynamically, there must be some 
mechanism for self-regulation embodied in the 
activity of the array. Although it is not easy to tell 
from the static picture, there are two types of 

propagating structures interacting in this system. 
Type z¢ travels to the left in the figure and 
produces a trail of type ~ propagating structures, 
which travel upwards in the array. When ~ ' s  run 
into each other, they occasionally produce a type 
~¢. When ~ ' s  run into ~ ' s ,  both are generally 
annihilated. Thus, the population of type ~ ' s  is 
maintained by a kind of negative feedback. A 
large population of .aC's produces many more 

's, which collide with and annihilate ~ ' s  faster 
than they produce them, thus reducing the popula- 
tion of ~¢'s. A small population of ~¢'s spread 
thinly provides enough space for ~ ' s  to collide 
with each other and produce ~¢'s faster than they 
destroy them, thus raising the population of ~¢'s. 
This process results in the maintenance of the 
population of ~¢'s at a dynamic equilibrium. The 
equilibrium population density is such that there 
is a good chance that the population will become 
extinct in an array of 64 × 64 cells. So far, the 
population has not been observed to become ex- 
tinct in arrays of 128 × 128 or larger. 

Plate 5 shows another example of one of these 
'balanced' systems (~ = 0.218). Structures in this 
system are propagating downward and also to the 
right in the figure. The population of downward 
propagating structures is maintained dynamically 
by mechanisms similar to those discussed above. 
Downward propagating structures occasionally 
emit a series of rightward propagating structures, 
which cause a burst of dynamical activity. Down- 
ward propagating structures also occasionally leave 
trails of regularly spaced, fixed states, resulting in 
the vertical dotted lines visible in the figure. As 
above, the population of propagating structures, 
though ever changing, is maintained in a dynamic 
equilibrium. 

This dynamic maintainance of a population 
density of propagating structures is a common 
feature of systems in the 'balanced' region of the 
X spectrum of behaviors. This demonstrates how 
easy it is to get systems of interacting virtual 
automata to behave in a self-regulating manner. 
Self-regulating systems of VSM's occur 'naturally', 
in a sense, in cellular automata governed by a 
certain class of transition functions. 
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11.2. An artificial insect colony 

A common aggregate organization in nature is 
that of a society. The global behavior of a society 
is an emergent phenomenon, arising out of all of 
the local interactions of its members. From our 
previous discussion of cellular automata as 
dynamical systems, we know that complex behav- 
ior can emerge from the interaction of very simple 
parts. Colonies of social insects provide good sub- 
ject material for the study of artificial life because 
they so readily exhibit complex behavior emerging 
from the interaction of very simple living parts. 

Simon has made an interesting point about the 
seeming complexity of the behavior of an ant: 

An ant, viewed as a behaving system, is quite 
simple. The apparent complexity of its behavior 
over time is largely a reflection of the complexity 
of the environment in which it finds itself *. 

This is true enough for a solitary ant, as in 
Simon's discussion. It is quite an understatement 
when the environment in which the ant finds itself 
is largely dominated by other ants. If an ant's 
behavior is indeed a 'reflection of the complexity 
of its environment', then the behavior of an ant in 
an ant colony is based on reflections of reflections 
of reflections. E.O. Wilson has written extensively 
on the social insects [30, 31], and has identified 
many phenomena occurring at the level of the 
aggregate colony: phenomena such as mass com- 

munication, which he defines as ' the transfer, 
among groups, of information that a single indi- 
vidual could not pass to another.' 

One could use an ant colony as the model for a 
variant form of a cellular automaton, one in which 
each individual cell is mobile and can move about 
semiautonomously. Each cell would still change 
state by virtue of the states of the other cells in its 
immediate neighborhood. Now, however, instead 
of consisting of a fixed set of cells, this neighbor- 
hood would, consist of a constantly changing set of 
cells. The dynamics of the resulting colony au- 
tomaton (a large space filled with these mobile 

* From Simon's  The Sciences of the Artificial [26], p. 24. 

cells) would depend on the many individual cells 
being driven around the territory that the colony 
occupies, encountering one another and engaging 
in complex interactions. We have seen that this is 
just the kind of interactive dynamics that VSM's 
are capable of supporting. Thus, we can simulate 
artificial ants with virtual automata in cellular 
arrays. 

Plate 6 shows a solitary 'virtual ant' (which we 
will call a rant)  residing in a quiescent back- 
ground. It is roughly 'V' shaped and will travel in 
the direction of the apex of the 'V'. 

The rules governing the motion of a oant are 

simple. Vants reside in an environment that con- 
sists of uniformly spaced, fixed cells that are in 
one of two states (either blue or yellow in the 
following figures). A rant travels in a straight line 
in empty space. If it encounters a blue cell, it 
turns fight and leaves the cell colored yellow. If it 
encounters a yellow cell, it turns left and leaves 
the cell colored blue. Thus, the rant leaves a 'trail', 
wherever it goes. More accurately, a rant operat- 
ing in such an environment can identify whether a 
cell has been passed over an even (blue) or an odd 
(yellow) number of times, zero times being even. 

Even for the case of a solitary rant, the resulting 
behavior is quite complex. Plate 7 shows the path 
followed by a single oant when started in a uni- 
form environment of even (blue) fixed cells. The 
complexity is due to the fact that the rant keeps 
running into its own path. Since its own past 
behavior serves to complicate the environment it 
finds itself in, its current behavior is always par- 
tially a reflection of its past behavior. Thus it is, in 
fact, operating as a virtual Turing machine. 

Several other interesting behaviors have been 
discovered for solitary oants. Plate 8 shows a oant 

that has settled down into building a periodic, 
self-limited pathway. Once a oant enters into such 
a pattern, it will continue constructing it in- 
definitely, unless it runs into some other pattern in 
the array. After I demonstrated these oants at the 
Evolution, Games, and Learning conference at 
Los Alamos National Laboratory, Jim Propp of 
Berkeley [25] discovered a solitary oant behavior 
that is reminiscent of web-building (plate 9). In 



c.G. Langton / Studying artificial life" with cellular automata 135 

building this 'web' the rant lays out several 'orbs' 
of the web and then very 'fussily' goes about 
re-positioning them before it goes on to lay out 
more orbs. 

For interactions between many rants, the be- 
havior gets much more complex. Now, each rant 

is responding, not just to its ,own behavior, but to 
the past behavior of all of the rants collectively. 

Thus, the rants can cooperate in performing tasks 
en masse that are beyond the capabilities of any 
one of them individually. 

There are so many ways that these virtual ants 
can encounter one another that the transition rules 
have not yet been worked out for all of the possi- 
ble encounters. The only encounters worked out 
to date involve pairs of rants that collide at one of 
the uniformly spaced environment cells. In this 
case, they essentially pass through each other, 
each responding to the environment cell as it 
would in the absence of the other. Thus, the rants 

interact indirectly through their effects on the en- 
vironment rather than by directly affecting each 
other. Nonetheless, what has been observed has 
shown interesting ways in which the behaviors 
common to solitary rants can, when aggregated 
together, become building blocks for higher order 
behaviors. 

Plate 10 shows how two rants can cooperate in 
building an ever expanding 'circular' trail. This 
behavior involves two rants engaging jointly in 
'trail displacement', an activity that can be ob- 
served in solitary rants. Plate l l a  shows the long 
term result of eight rants interacting with one 
another after being started from a symmetric ini- 
tial state. After a great deal of meandering around 
and many interactions with one another, four of 
the rants have headed off in opposite directions, 
constructing self-limited pathways, while the re- 
maining four are still involved in pairwise interac- 
tions at opposite ends of the central construction. 
Plate l l b  shows a similar evolution from a slightly 

different starting configuration, which shows how 
sensitive the global behavior is to slight differences 
in initial conditions. 

These systems of interacting rants exhibit some 
of the aggregate phenomena known from the study 

of insect societies. As we have seen previously for 
systems of interacting VSM's, macro-level behav- 
ior is highly dependent on micro-level behavior. 
E.O. Wilson describes an important phenomenon 
in insect societies that involves this sensitive de- 
pendence between levels: the multiplier effect: 

A small evolutionary change in the behavior 
pattern of individuals can be amplified into a 
major social effect by the expanding upward 
distribution of the effect into multiple facets of 
social life*. 

Wilson provides a nice example that illustrates 
both the multiplier effect and another fundamen- 
tal property of emergent phenomena in social 
organizations. The following is taken from a dis- 
cussion of the way in which M. bellicosus termites 
go about building a part of their nest. 

The Macrotermes workers give every ap- 
pearance of accomplishing their astonishing feat 
by means of what computer scientists call dy- 
namic programming. As each step of the oper- 
ation is completed, its result is assessed, and the 
precise program for the next step (out of several 
of many available) is chosen and activated. Thus 
no termite need serve as overseer with blueprint in 

hand. The opportunities for the multiplier effect 
to operate in the evolution of such a system are 
obviously very great. A slight alteration o f  the 

termite 's  response to a particular structure will 

tend to be amplified to a much greater alteration 

in the f inal  productJf. 

The r a n t s  exhibit both of these phenomena 
nicely. Any alteration in the very simple rules that 
the vants obey will result in enormous changes 
in the 'structures' that they produce. Plate 12 
shows the result of starting the same initial con- 
figuration of eight oants that gave rise to the 
structure in plate l lb,  but with the small change 

*Wilson [31], p. 11. 
tWilson [31], p. 12. Emphasis added. 
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that when a oant encounters a yellow cell it goes 
straight, rather than turning left, after changing 
the state of the cell back to the blue state. The 
large scale structure that results is quite different, 
an illustration of the multiplier effect. Further- 
more, it is clear that the oants are not obeying any 
'overseer with blueprint in hand'. The structures 
'emerge' as a result of each individual oant choos- 
ing its next action solely on the basis of its local 
conditions. 

When looked at as resulting from the interac- 
tions of VSM's, these two phenomena were to 
have been expected. Any change in the rules that 
govern the behavior of an automaton will change 
the 'function' that the automaton is computing. 
Thus the global function that an aggregate of 
automata is computing on a shared two-dimen- 
sional tape will show sensitive dependence to the 
nature of the individual computations of which it 
is composed. Furthermore, individual automata 
take their actions solely on the basis of their own 
state and the current symbol on their tape, without 
the benefit of any overseer program that makes 
reference to a 'blueprint' of the final structure. 

These simple, simulated ants, whose behavior is 
dictated by an extremely simple set of rules can, 
when they act collectively, exhibit some of the 
phenomena exhibited by large societies of much 
more complex organisms. From this example, we 
can begin to get an idea of the arbitrariness of the 
relationship that exists between some of the com- 
plex phenomena exhibited by living systems and 
their underlying hardware of implementation. 

In 'reality' these behaviors are just the result of 
the interactions of a specific kind of VSM. The 
interpretation of their behavior as that of simu- 
lated ants resides entirely in our heads. Thus, this 
example can equally well be viewed as another 
example of an artificial biochemistry, based on the 
interactions of artificial molecular operators. By 
keeping the arbitrariness of our interpretations of 
these behaviors clearly in mind, we can see that 
complex, vsM-like dynamics might be possible in 
any system that involves the interactions of many 
simple parts, be they systems at the molecular 
level or at the level of societies. 

11.3. Artificial self-reproduction 

The capacity for self-reproduction is probably 
the most characteristic property of living 
organisms. John yon Neumann made the first 
rigorous investigations into the logic of self-repro- 
duction in the study that introduced cellular au- 
tomata [29]. 

Von Neumann's approach to the problem of 
self-reproduction was a classically logico-mathe- 
matical one: If self-reproduction is being carried 
out by some kind of complex biochemical machin- 
ery, then that machinery's behavior is describable 
as a logical sequence of steps, i.e., as an algorithm. 
If an algorithm can be carried out by any ma- 
chine at all, then there is a Turing machine that 
can implement the same algorithm. Thus, von 
Neumann set out to demonstrate the existence of 
a Turing machine that could effect its own re- 
production. Since he was able to demonstrate that 
such a machine can exist, it becomes plausible 
that many, perhaps all, of the processes upon 
which life is based are algorithmically describable 
and that, therefore, life itself is achievable by 
machines. 

Von Neumann demonstrated that self-reproduc- 
tion was a logical consequence of the existence of 
a certain kind of 'machine ' -a  unioersal construc- 

t o r -  and showed how such a machine could be 
embedded in a cellular automaton. The concept of 
a universal constructor is an extension of the 
concept of a universal Turing machine. Recall that 
a universal Turing machine can compute any 
function that can be computed by a simple Turing 
machine by using a description of the simple 
Turing machine to guide its computation. Simi- 
larly, a universal constructor can read the descrip- 
tion of any machine from a tape and then proceed 
to build that machine. If such a machine is given 
its own description, it will build a copy of itself. 
This is not quite self-reproduction, however, be- 
cause the first machine had a description of itself, 
whereas the constructed copy does not, and hence 
cannot build another copy. It does not help, by 
the way, to provide the initial machine with a 
description of the description of itself, in addition 
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Captions to color plates 

Plate 1. 

Plate 2. 

Plate 3. 

Plate 4. 

Plate 5. 

Plate 6. 

Plate 7. 

Plate 8. 

Plate 9. 

Plate 10. 

Plate 11. 

Plate 12. 

Plate 13. 

The control panel of  the CELLSIM cellular simulator. The pattern displayed is a stage in the 
evolution of a two-dimensional cellular automaton governed by a modulo-8 addition rule over 
the five-cell neighborhood. 

Representative global configurations for various settings of ,~. a) ~ = 0.17: b) ~ = 0.19, c) 
= 0.22; d) ~ = 0.33; e) ,~ = 0.45; f) ,k = 0.86. Figures b) and c) were ' smeared '  over several 

time steps to convey a feeling for the dynamics of the propagating structures. 

A VSM propagating to the right producing other VSM's which are propagating upward. 

An example of an 'artificial biochemistry' (~k = 0.218). 

Another  example of an 'artificial biochemistry' (h  = 0.218). 

A solitary rant in a quiescent background. 

An early stage in the travels of a single oant operating in an originally uniform environment. 

A self-limiting periodic structure, which the oant will continue to build indefinitely. 

A web-like structure built by a oant that initially travels up an empty tube in an otherwise 
regular field. 

An ever expanding 'circular' structure being built cooperatively by two oants. 

Two structures resulting from the interaction of eight oants. The oants in b) were started in a 
slightly different initial configuration from the oants in a). 

The structure resulting from the interaction of eight oants started from the same initial 
configuration as were the oants in fig. l l b ,  but  with a slight change in the oant's behavioral 
responses to their environment. 

Several stages in the development of a colony of self-reproducing loops from a single initial 
loop. 
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to just the description of itself. This will result in 
the offspring machine having just the description 
of itself so that, although now it can construct a 
copy of itself, its offspring will not have a descrip- 
tion of itself. Thus this strategy leads to an infinite 
regress. 

To avoid the infinite regress, von Neumann 
designed a machine M that consists of three parts: 
a universal constructor A; a tape copier B; and a 
control C. This machine is then given a tape that 
contains a description of itself: ~ (M)  -- ~(A + B 
+ C). Now, when M is started, it reads the de- 
scription ~(M),  builds a copy of itself M', makes 
a copy of the description ~ '(M),  and attaches the 
copy of the description ~ ' (M) to the copy of itself 
M'.  Thus, the machine M has reproduced itself 
completely, and its copy M'  can go on to repro- 
duce itself completely, and so forth. 

The crucial property that is evident from the 
above discussion is that the information contained 
in the description on the tape must be used twice, 
in two fundamentally different ways. First, the 
information must be interpreted, or translated, as 
instructions for building a machine, Second, the 
information must be copied, or replicated, without 
interpretation, in order to provide the offspring 
with a copy of the description so that it too may 
reproduce itself. 

This dual use of information is, of course, found 
in the process of natural self-reproduction as well. 
The information on the DNA is transcribed into 
messenger RNA and then translated into poly- 
peptide chains at the ribosomes*. This involves 
interpreting the information as instructions for 
constructing a polypeptide chain. The information 
of the DNA is also replicated to form two copies 
of the original information. This involves merely 
copying the information without interpretation. 
Notice, however, that both uses involve construc- 
tion of some form. 

Laing [19] designed a clever variant of the 
yon Neumann plan that doesn't require that a 
description b e  provided from the outside. His 

* In  a sense,  r ibosomes  funct ion as universal  constructors .  

machine generates its own description by self- 
inspection. This makes use of the fact that the very 
structure of a machine can serve as its own de- 
scription, given that the structure can be fully 
determined non-destructively. 

Von Neumann worked out the details for his 
self-reproducing machine in a cellular space using 
29 states per cell and the 5 cell neighborhood 
[2, 29]. Codd [5] found a simpler cellular base for 
von Neumann's construction by showing a self-re- 
producing machine that required only 8 states per 
cell. Both of these constructions occupy many tens 
of thousands of cells. As far as I know, neither 
construction has been implemented in an 'actual' 
simulation. Both of these constructions depend on 
the demonstration of the capacity of their mac- 
hines for universal construction to make the argu- 
ment go through. Hence, they need not actually be 
run to demonstrate that they can reproduce them- 
selves. Self-reproduction is a simple and direct 
consequence, once universal construction and tape 
copying capacity have been demonstrated. 

In a previous publication [21], I demonstrated 
an extremely compact structure that makes dual 
use of the information contained in a description 
to reproduce itself (plate 13). The structure con- 
sists of a looped pathway with a construction arm 
projecting out from it. The description consists of 
a sequence of VSM's that cycle around the loop. 
When a VSM encounters the junction between the 
loop body and the construction arm, it is repli- 
cated, with one copy propagating back around the 
loop again, and the other copy propagating down 
the construction arm, where it is translated as an 
instruction when it reaches the end of the arm. 
The first six of the eight VSM's that constitute the 
description extend the arm by one cell each. The 
final two VSM's cause a left-hand corner to be 
constructed at the end of the arm. Thus, with each 
cycle of the VSM sequence around the loop, 
another side of the offspring loop is constructed. 
When the construction arm eventually runs into 
itself, the VSM's encounter new local conditions 
and get interpreted in different ways. Now, they 
cause the connection between the parent loop and 
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the offspring loop to be broken, and cause a new 
construction arm to be built in both the parent 
and the offspring loops. When the connection 
between the two loops is broken, the fragments of 
two separate copies of the VSM sequence that 
were trapped in the offspring loop get merged 
together to become one complete sequence. Hence 
the offspring loop can go o~a to reproduce itself. 

Since this structure occupies an area of only ten 
by fifteen cells, its capacity for self-reproduction 
can be demonstrated by running it and watching it 
reproduce itself. Plate 13 shows several stages in 
the development of the colony that results from 
starting up a single loop in a cellular array. Each 
loop will produce at least one offspring and will 
then produce further copies of itself as long as it 
continues to find an empty site 90-degrees coun- 
ter-clockwise from where it built its previous off: 
spring. If it tries to build an offspring at a site 
already occupied by another loop, it will retract its 
construction arm and erase the cycling VSM se- 
quence, leaving an empty loop. Thus, the colony 
grows indefinitely outward, consisting of a repro- 
ductive outer fringe surrounding a growing "dead" 
core. 

Although each loop contains the same sequence 
of cycling VSM's, they will behave differently in 
different environments. The initial loop, which is 
surrounded by empty space, will reproduce itself 
four times. Its offspring will each reproduce them- 
selves twice before they run into their parent and 
stop reproducing. The first offspring of each of the 
original loop's 'children' will reproduce itself twice, 
while the second offspring will reproduce only 
once. Thus a loop's behavior will be partially 
determined by features of the environment it finds 
itself in, the relevant environmental factor being 
the local concentration of other loops. 

This self-reproducing structure demonstrates 
how VSM's can be composed to form more com- 
plex, higher order virtual automata. If we modify 
the behavior slightly so that instead of being 
erased, the VSM sequence is left cycling around 
the loop and is subjected to yet another interpreta- 
tion, we might get the loop.s to interact with one 

another. Since the loops can respond differently to 
different environments, the final interpretation of 
the cycling instruction sequence might be different 
for different loops, which would mean that the 
loops had differentiated. 

Because of the regular spacing of the loops, we 
could also have something very much like an 
embedded cellular automaton, where each of the 
higher-order 'ceils' is composed of a loop covering 
a square of 10 x 10 first-order cells. If this could 
be achieved, then there could be much higher 
order VSM's embedded in this higher order cellu- 
lar automaton. The point here is that given a large 
enough array and the right conditions, the 
hierarchical level at which VSM's might emerge is 
unbounded. Some of these levels might, in princi- 
ple, be behaving very much like other levels, albeit 
at different time scales. 

In his discussion of self-reproducing machines, 
yon Neumann points out that one could augment 
the description of a self-reproducing machine with 
the descriptions of other 'machinery'. As long as 
these extra bits of machinery don't interfere with 
the process of self-reproduction, they will be con- 
structed right along with the self-reproducing 
machine. 

This suggests a couple of interesting extensions 
to a simple self-reproducing machine. If we com- 
plicate the task of the machines by requiring them 
to perform other tasks in the environment before 
they can reproduce, then insofar as the extra bits 
of machinery aid in the performance of these tasks 
they will be aiding in their own reproduction. 
Thus, they might set up a symbiotic relationship 
with the reproductive machine. 

Furthermore, suppose that the extra bits of 
machinery can detach themselves from one ma- 
chine, move over to another self-reproducing ma- 
chine, and write their own description, possibly 
many times over, onto the tape that that machine 
will use to reproduce itself. Then one has the 
behavioral equivalent of a oirus that can infect a 
population of machines, using the reproductive 
machinery of the true self-reproducers to get copies 
of itself made. 
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If we generalize from these two extensions, we 
have the notion of a small colony of different 
machines, all of which share centrahzed reproduc- 
tive machinery, and which cooperate in perfor- 
ming the tasks necessary to furthering their own 
descriptions through the reproduction of the col- 
ony. Although the self-reproducing machine by 
itself might not be considered alive, this small 
cooperative colony seems much more like a living 
cell. If we could populate a large area with multi- 
ple copies of such reproducing colonies, and intro- 
duce Variation into at least the portion of the 
description that codes for the extra machinery, we 
would have all of the raw material necessary for 
natural selection to operate among variants and 
hence we would have a sufficient basis for the 
process of evolution. 

There seems to be no reason in principle why 
such a colony of machines cannot be implemented 
by a set of interacting VSM's. Thus there is reason 
to believe that one could implement systems of 
VSM's in cellular automata that would evolve over 
time. 

12. Discussion 

In this section, I wish to discuss several issues 
that  have arisen in my thinking about systems of 

' virtu~ automata and their potential for support- 
ing artificial life. 

12.1. Virtual automata in general aggregate systems 

The emergence of dynamical systems of inter- 
acting virtual automata is a very important prop- 
erty of cellular automata. However, there is no 
reason why the emergence of such systems should 
be limited to cellular automata. Indeed, VSM-like 
dynamics shouM be possible in principle in many 
aggregate systems, provided that the rules control- 
ling the individuals out of which an aggregate is 
built cause them to respond selectioely to condi- 
tions in their environment. VSM-like dynamics 

should arise in aggregate systems in which the 
individuals are responsive to their environmental 
conditions but not ooerly so, yielding the kind of 
balance between action and inaction that we have 
observed for cellular automaton behaviors in the 
'balanced' region of the X scale. 

General aggregate systems may vary in many 
respects from the rather specialized cellular au- 
tomata. In general, the individuals of aggregate 
systems may not be identical to one-another, time 
may progress in a continuous flow rather than by 
discrete steps, individuals may update their state 
asynchronously instead of synchronously, individu- 
als might be mobile as well as sessile (fixed in 
place), and so on. Since cellular automata are just 
one instance of a more general class of aggregate 
systems, it is reasonable to expect that the VSM 
behavior that occurs in cellular automata would 
belong to a more general class of such behaviors 
to be found in the more inclusive class of aggre- 
gate systems in general. 

In an aggregate system whose individuals are 
mobile, as in an insect colony or a flock of birds, a 
VSM-like process may continue to occupy the 
same fixed set of individuals as it propagates*. In 
an aggregate whose individuals are sessile (as in a 
cellular automaton) the set of individuals that 
constitutes a VSM must be constantly changing if 
the VSM is to propagate. Even in an aggregate of 
mcbile individuals, however, the set of individuals 
constituting a VSM could be a transient one, with 
some mobile individuals getting temporarily 
caught up in the 'spirit' of a VSM and shouldering 
its propagation for a while, before passing the role 
on to other mobile individualst. 

Thus, it would seem worthwhile to investigate 
the possibility that systems of interacting VSM-like 
processes are implicated in the dynamical behav- 
ior of many naturally occurring aggregate systems, 
including fluids; gases, and especially societies and 
brains. 

* Do individual birds fly south in a flock, or does the flock 
fly south and bring its birds with it? 

"['Douglas Hofstadter  has hypothesized that such processes 
are 'a foot '  in ant  colonies [14]. 
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12.2. Parallel computation 

Parallel computers are examples of aggregate 
systems to which the notion of interacting virtual 
automata might usefully be applied. As a cellular 
automaton is one kind of parallel computer, such 
processes are clearly possible for parallel com- 
puters. 

In a standard 'von Neumann' serial computer, 
the functions of processing and data storage are 
implemented by two physically distinct structures: 
the CPU and the memory, respectively. Processes 
in such a computer reside in the memory as static 
data structures until one of them is summoned up 
from memory by the CPU, one instruction at a 
time, at which point it becomes semi-active, as the 
point of execution cycles around through the body 
of its constituent instructions. 

In the standard approach to parallel compu- 
tation, or multi-processing, many processors and 
memories can be operating together simulta- 
neously, but the treatment of individual processes 
by each individual processor is pretty much the 
same as in the standard von Neumann machine: 
instructions are fetched one at a time from either 
local or shared memory. Although more finely 
distributed, the functions of processing and data 
storage are still handled by separate modules. 

The kinds of processes we have been investigat- 
ing suggest a different model for parallel computa- 
tion. In this model, the functions of processing 
and data storage have been thoroughly inter- 
mixed, and now reside in the same simple module 
(e.g. the cell in a cellular automaton) which is 
iterated many times over. Thus, instead of lying 
dormant in static memory, processes execute where 
they lie in a dynamic memory. They need not await 
the summons of some distant and central CPU, 
because no such centralized, totalitarian author- 
ity exists outside of this uniform field of 
processing/memory modules. Furthermore, all of 
the structures residing in this dynamic memory are 
executing simutaneously. 

Several current efforts into parallel computation 
involve dynamic memories (e.g. the Connection 

Machine [4, 12], and the Boltzmann Machine [13].) 
Some of these even involve a computational tem- 
perature which controls the ongoing level of dy- 
namical activity in the machine in much the same 
way as the ~ parameter [13, 18]. However, such 
efforts do not seem to make use of the potential 
inherent in an ongoing dynamics of interactions 
among free-ranging operators. In fact, much of 
the research in parallel computation goes into 
eliminating the possibility of the emergence of a 
complex dynamics among the various processing 
elements rather than encouraging it*. One notable 
exception to this general rule is evident in the 
work of John Holland at the University of Michi- 
gan. He has been actively engaged in the attempt 
to evoke useful dynamics from parallel systems for 
many years [9, 15, 16]. 

Note that the processes of interest in  the VSM 
model of parallel computation are 'larger' than 
the individual processors (e.g. a VSM may occupy 
many cells). In standard models of parallel com- 
putation the processors are 'larger' than the 
processes of interest, many of which may reside 
within the local memory of each processor. In 
standard models of parallel computation, the 
processes residing in each processor work at a very 
high level of the 'dynamics' of the overall parallel 
computation. In the model we havebeen discuss- 
ing, the processes residing in the individual 
processors work at a very low level in the overall 
dynamics. This is the difference between 'coarse- 
grained' and 'fine-grained' models of parallel 
processing. Thus, the dynamics of interacting vir- 
tual automata shows promise for forming the 
basis of a model for fine-grained parallel comput- 
ing. 

12.3. Artificial intelligence 

Since the brain is obviously a highly parallel 
aggregate system, it is entirely possible that the 

*This has probably been due to the seemingly sensible 
assumption that one either has order or one has chaos. As we 
have seen, however, there is a third alternative inbetween the 
two where order and chaos can co-exist amicably. 
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dynamics of this massive neural-net involves the 
interactions of virtual automata in some form. 
Based on our interpretation of VSM's as artificial 
molecules, we could argue that our studies of 
emergent behavior in cellular automata provide 
evidence for the proposition that intelligence is a 
kind of artificial life which has evolved in the 
neural aggregate of the brain, supported by an 
artificial molecular logic of interacting virtual au- 
tomata. On this interpretation, the study of artifi- 
cial intelligence should involve the study of the 
ways in which interacting systems of virtual au- 
tomata embedded in highly parallel computer 
architectures might be applied to tasks requiring 
intelligence. Furthermore, on the view that learn- 
ing is a form of adaptation, the study of machine 
learning might benefit from an understanding of 
how the processes of natural selection and evolu- 
tion might be embedded in the dynamics of inter- 
acting virtual automata. 

12.4. Laing ' s artificial molecular machines 

The view that living systems have a great deal to 
teach us about computation was prevalent in com- 
puter science from its inception, largely due to the 
influences of von Neumann and Weiner, until the 
middle to late 1970's, when it seems to have 
passed from vogue, at least in the United States. 
In 1975, Laing [20] proposed artificial molecular 
machines, which would be dynamic 'tapes' that 
would interact with one another by reading and 
writing, and which would be both data and pro- 
cess simultaneously. Laing also showed how such 
machines might be embedded in cellular au- 
tomata. It turns out that VSM's are quite similar 
in principle to Laing's artificial molecular mac- 
hines. Although we have arrived at these struc- 
tures in the course of an empirical investigation 
rather then by specific design, this seems to be 
more than a coincidence. 'Machines' similar to 
Laing's arise 'naturally' in certain classes of cellu- 
lar automata. 

Thus, these kinds of VSM's may be fundamen- 
tal to unlocking the potential inherent in cellular 

automata for highly organized parallel processes, 
the kinds of processes that draw their promise 
from the unqualified success of similar processes 
implemented in a biochemical medium: the 
processes of life. 

12.5. Hypercycles 

The possibility that VSM's might become en- 
gaged in catalytic activity raises the question of 
whether these interactions themselves could be- 
come involved in the kinds of higher order cycles 
that Eigen and Schuster have termed hypercycles 
[7]. Hypercycles are multi-level hierarchies of cyclic 
catalytic reactions. Eigen and Schuster introduced 
their theory of hypercycles in order to provide a 
basis for understanding the driving forces behind 
pre-biotic molecular evolution. 

If we analyze the conditions of hypercyclic 
organization we immediately see their equivalence 
to the prerequisites of Darwinian selection. The 
latter is based on self-reproduction which is a kind 
of linear autocatalysts. The hypercycle is the next 
higher level in a hierarchy of autocatalytic systems. 
It is made up of autocatalysts or reproduction 
cycles which are linked by cyclic catalysis, i.e. by 
another superimposed autocatalysis. Hence a hyper- 
cycle is based on non-linear (e.g. second or higher 
order) autocatalysis*. 

It is indeed an intriguing property of cellular 
automata that VSM's and their interactions might 
provide the basis for precisely the same kinds of 
hierarchies of cyclic interdependencies that have 
been shown for catalytic reactions involving real 
proteins. It is further evideiace pointing to the 
possibility that some kind of 'life' could be created 
within a cellular automaton. 

Insofar as the theory of hypercycles correctly 
identifies the forces that drove pre-biotic molecu- 
lar evolution towards the emergence of life, we 
may argue that perhaps the best way to 'create' 
life in cellular automata will be to rely on the 

* From [7] p. vii, emphasis added. 
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'proven' method of providing a sufficiently rich O 
physics and initial configuration 'soup', and let- 
ting the hypercycles develop on their own, driving 
an analogue of pre-biotic evolution towards higher 
and higher levels of organization until structures 
emerge that must indisputably be called alive. 

13. Synthesizing life 

In trying to simulate the way that life emerges 
from the interactions of inanimate molecules, we 
are engaging in the process of synthesis, meaning 
' the combining of separate elements or substances 
to form a coherent whole'. This is exactly the 
opposite of analysis, which means ' the separation 
of an intellectual or substantial whole into con- 
stituents for individual study*. Thus, synthesis is 
simply analysis turned bottom-up. One starts with 
a set of behavioral primitives and uses them as 
building blocks in order to discover more complex 
behaviors. Synthesis in abstract computer models 
should be seen as the general study of emergent 
behavior, and is an important field of study on its 
own merits, regardless of whether the individual 
parts or the behaviors that emerge from their 
aggregate interactions have direct analogues in the 
natural world. 

By synthesizing 'life-like' behaviors in the study 
of artificial life, we want to try to distinguish 
between the relevant and irrelevant details of life's 
biochemical implementation in order to uncover 
the 'molecular logic' of life. The ultimate goal of 
the study of artificial life would be to create 'life' 
in some other medium, ideally a virtual medium 
where the essence of life has been abstracted from 
the details of its implementation in any particular 
hardware. We would like to build models that are 
so life-like that they cease to be models of life and 
become examples of life themselves. 

In many ways, the study of artificial life is to 
real life what the study of artificial intelligence is 

* Definitions from the American Heritage Dictionary of the 
English Language. 

to real intelligence. Each involves the study of 
artificial systems that exhibit behaviors normally 
associated with natural systems. Actually, the 
study of artificial life is really part of the study of 
natural life and the study of artificial intelligence 
is really part of the study of natural intelligence. 
However, life and intelligence as they are mani- 
fested in natural systems are too complex for 
direct analysis, hence the need for studying artifi- 
cial models. 

There are two reasons why studying life and 
intelligence are such difficult tasks. First, they are 
both nonlinear phenomena, in the sense that they 
are properties of whole systems: if we try to break 
them up into smaller pieces they disappear 
altogether. Second, all of the examples of living or 
intelligent organisms that are available to us for 
study are the result of the long process of evolu- 
tion under the specific history of physical condi- 
tions on the planet Earth. This makes it very hard 
to distinguish the features of living or intelligent 
systems that are fundamental to life or intelligence 
from those that are merely present due to a com- 
bination of local historical accident and common 
genetic descent. 

The study of artificial life might alleviate both 
of these complicating factors to a certain extent. 
First, as part of a general study into the way in 
which complex behavior can be synthesized from 
the interaction of many simple parts, we can hope 
that the study of artificial life will contribute to a 
better understanding of certain nonlinear systems 
for which analysis has proven impotent. Second, 
the synthesis of artificial living systems could ex- 
tend the corpus of empirical evidence upon which 
biology is based, leading to a firmer foundation 
for a theoretical biology that will be capable of 
making the kind of universal statements that can 
be made in theoretical physics. 

Thus, although the study of artificial life can be 
seen as the study of artificial systems that exhibit 
behaviors characteristic of natural living systems, 
it should not be seen solely as an attempt to 
simulate living systems as they occur in 'nature' as 
we know it. Rather, it should be seen as an 
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attempt to 'abstract from natural living systems 
their logical form.' In this sense, it should be seen 
as the study of not just organic life, but of life in 
principle. 

14. Summary 

Biochemistry studies the way in which life 
emerges from the interaction of inanimate mole- 
cules. In this paper we have looked into the possi- 
bility that life could emerge from the interaction 
of inanimate artificial molecules. Cellular au- 
tomata proxide us with good artificial universes 
within which we can embed artificial molecules in 
the form of virtual automata. Since virtual au- 
tomata have the computational capacity to fill 
many of the functional roles played by the primary 
biomolecules, there is a strong possibility that the 
'molecular logic of the living state' can be em- 
bedded within cellular automata and that, there- 
fore, artificial life is a distinct possibility within 
these highly parallel computer structures. 
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