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ABSTRACT 

S-systems and Volterra systems have been developed independently of each other in 

different branches of biology. We show that these systems are mathematically equivalent. 

INTRODUCTION 

Two decades ago, the need for a nonlinear description of biological and 
other organizationally complex synergistic systems initiated the development 
of the power-law formalism [lo-161. In this formalism, the change of a real 
system in time is assumed to be governed by logarithmically differentiable 
functions. These are approximated by the constant and linear terms of their 
Taylor series in logarithmic space, which yields, independently of the specific 
mathematical features of the approximated functions, products of power 
functions in Cartesian space. Mathematically as well as biologically most 
fruitful and accurate is a variant of the power-law formalism in which the 
functional description of all processes that contribute to the synthesis of a 
system component and all those that contribute to its degradation are first 
“aggregated” into one functional description each and then approximated. 
The result is a system of nonlinear differential equations that has been called 
an S-system : 

The variables X, are defined as positive real quantities, the parameters cy, 
and /3, are positive real, and the double-indexed parameters g and h can be 
any real numbers. An enormous variety of phenomena from many different 
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areas of biology have been described and analyzed as S-systems (e.g. [16, 22, 

31). 
S-system descriptions of biological phenomena have an amazingly wide 

range of validity over variation in the system’s constituents. Several types of 
explanations and justifications for the validity and accuracy of the formalism 
have been proposed elsewhere [16, 21, 251. One argument is that a host of 
differential equations and “laws” in the natural sciences can be recast 
equivalently as S-systems. Prominent examples are linear systems [26], prob- 
ability functions [20], and growth laws [17, 191, which have been shown to be 
special cases of a two-variable S-system, many physical laws, for instance 
those describing electrical circuits, gravitation, and cooling and dilution 
processes [24], and to the so-called special functions in classical physics like 
those by Bessel, Chebyshev, and Laguerre [24]. In fact, we have not yet 
encountered an ordinary differential equation that we could not recast as an 
S-system. This variety of laws that are mathematically equivalent to S-sys- 
tems demonstrates that S-systems capture essential features of physical 
phenomena and suggests considering the S-system as a general formalism 
that underlies many processes in nature. 

Another approach to modeling biological systems uses Volterra systems 

161: 

The variables N, are defined as positive real, whereas the parameters u, and 
p,, can be any real numbers. Originally designed to describe populations in 
terms of interactions between a predator and a prey [5, 271, Volterra systems 
now are used for modeling a variety of phenomena in ecology [6] and 
epidemiology 11, 71 and also in physics (cf. [2]). Mathematical treatments can 
be found in [6] and [8, 91 and the literature cited therein. 

A comparison between Equations (1) and (2) shows that Volterra systems 
emphasize the additive nature of biological systems, whereas S-systems tend 
to emphasize their multiplicative nature. Therefore, these systems appear to 
be rather different, except for the original special case with one predator and 
one prey species [17]. In this report, we show that S-systems and Volterra 
systems are in fact mathematically equivalent. By “equivalent” we shall mean 
that any Volterra system can be transformed into an S-system that has 
exactly the same solution and that any S-system can be transformed into a 
Volterra system with exactly the same solution. These “equivalent” represen- 
tations can be considered as descriptions of the same process in two different 
languages, the Volterra-system formalism and the S-system formalism. 
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RESULT 

TfIEOREM 

S-systems and Volterra systems are equivalent. 
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(a) Each S-system can be formulated as a Volterra system. Starting with 
the original S-system (l), we define the variables Z,, . , Z,,, as 

(3) 

with 

p, = al* 
i 

ig {l,...,n}, 

-P,P,,, i E {n +1,...,2n} 

and 

iG {l,...,n), 

iG {n-t1 ,..., 2n}, 

where S,, is the Kronecker symbol 

Differentiation of Z, in Equation (3) yields 

=z, if!,(z,+z,+,). 
/=I 

If we define for i, j E {1,...,2n} 

(4) 

f I/ ’ jE {l,...,n}, 
e I/ = 

fr.J-"' jE { n+l,...,2n}, 
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2 II 

2, = Z, C e,,Z,, ifZ {1,...,2n}. (5) 
/=1 

Equation (5) is a Volterra system with m = 2n and a, = 0 [cf. Equation (2)]. 
The number of equations has increased from n to 2n. The number of 
parameters e,, formally is 4n*. However, since only half of these parameters 
are unique, in number they are the same as the number of g plus h 
parameters in Equation (1). The parameters LX, and j?, do not appear in 
Equation (5) explicitly, but specify the initial conditions Z,,, [cf. Equation 

(311: 

a, G,’ iE{l,...,?r}, 

z,,, = 
k=l 

- P,_,, x,:‘,,,, ii $0 “.A , i= {n+1,...,2n}. 
x=1 

Although the number of parameters plus initial conditions appears to be 
2n2 + 3n in Equation (l), but only 2n’ +2n in Equation (5) it is known that 
there are n redundant parameters in Equation (1). With suitable scaling, the 
new parameters (Y, equal p, [16, 241, and thus the numbers of independent 
parameters plus initial conditions are exactly the same in Equations (1) and 

(5). 
In fact, both representations describe manifolds of the same dimension. 

This can be seen most easily from the nonzero steady-state solutions of fully 
determined systems. In the S-system formalism, they are obtained by invert- 
ing the S-system equations, which are linear in logarithmic space; a unique 
solution is obtained because the rank of the n X n matrix (g,, - h,,) is equal 
to n for a determined system [16]. The steady-state solution of the corre- 
sponding Volterra system is obtained from 2n equations. However, the 
2 n X 2n system matrix is underdetermined and has the same rank as the 
S-system matrix, n. The constraints provided by the transformation and the 
initial conditions ensure that the solution to the Volterra system is uniquely 
determined and identical to that of the original S-system. 

(b) Euch Volterra system can be formulated as an S-system. It has to be 
shown that the i th equation of the Volterra system can be written as a 
difference of products of power functions. This can most directly be seen if 
we define the trial solution 

N, =exp(a,t) fi y,’ 
k=l 

(6) 
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with variables W,, that have to be specified. A motivation for this kind of 
definition will be presented elsewhere [26]. The double subscripts are intro- 
duced for convenience. Differentiating and substituting Equation (6) in 
Equation (2) yields 

a, exda,t) kIJl Wil +exp(a,t) 2 (- %,F;‘)k~l KL’ 
j=l 

=exp(a,t) fi &;’ 
k=l 

a, - I? P,,exp(a,f] I? f+$’ 
j=l k=l i 

3 (7) 

which reduces to 

R,W,;‘-p,,exp(u,t) _iil wl;:’ =O. 
k=l i 

(8) 

A solution of the following set of differential equations (9) is a solution to 
Equation (8): 

*t;,=a,&3 

k=l 

i,jG {l)...) m}. 
(9) 

Equation (9) is a special type of S-system in which each equation contains 
only one product of power functions and either a or j3 is equal to zero [cf. 
Equation (l)]. The variables in the n = m* + m equations can be identified as 

xJ=wJo, 

X ml+, = Y/;/Y i,jE {l)...) m}. 

The parameters a, and p,, in Equation (9) correspond to either an OL, or a /3, 
parameter, depending on whether the a, and pIJ are positive or negative; all 
g and h parameters are either 1, 0, or - 1. 

The initial conditions in Equation (9) are highly redundant. m* among 
them can be chosen arbitrarily, and then the remaining m are uniquely 
determined. For instance, at the initial time 1, we can specify that 

Y,(Q =I, jE {O,...,m-1}, 

and then the remaining initial conditions are given uniquely by 

Ym(hl) = 
i 

exp(u,to) [N,(t~)l~', N,(h) +O, 
0, N,(t,) =o. 
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With such a definition, the number of independent parameters plus initial 
conditions, m2 + m, is again the same for the original Volterra system (2) 
and the transformed system (9). 

Two features of the transformations between Volterra systems and S-sys- 
tems should be mentioned: 

(1) Equation (6) for &, is almost “inverse” to Equation (3) particularly 
if all parameter values a, are equal to zero. 

(2) Transformation of a general S-system yields a special Volterra system 
(u, = 0), and transformation of a general Volterra system yields a special 
S-system ((Y, or j3, = 0). If a general Volterra system is transformed into an 
S-system and this S-system is transformed into a Volterra system, all 
constants u, of the resulting Volterra system are equal to zero. This shows 
that the general Volterra system is mathematically equivalent to a Volterra 
system with a, = 0 (cf. [S]). Similarly, transformation of a general S-system 
into a Volterra system and transformation of this Volterra system into an 
S-system eliminates the a-term or p-term in each equation of the S-system, 
showing that the general S-system is equivalent to an S-system with either (Y, 
or p, = 0 (cf. [26]). 

DISCUSSION 

It has long been realized that models for interactions between species in 
ecology and for chemical reactions show a close similarity on the structural 
level. Both can be formulated in terms of populations (of organisms or 
molecules), interactions or collisions (between predator and prey or between 
molecules), and intermediate complexes (hosts infected with parasites or 
enzyme-substrate complexes), and both can be represented by the same type 
of schematic diagram with pools and arrows. Nevertheless, the S-system and 
the Volterra system, which have developed to model these structurally similar 
phenomena in biochemistry and ecology, respectively, have appeared to be 
quite distinct, except for the original one-predator one-prey system [17, 191 
and other trivial special cases. Because Volterra systems are formulated as 
sums and S-systems as products, they have seemed to represent different 
parts of the nonlinear world. We have now shown that S-systems and 
Volterra systems are mathematically equivalent. Does that mean that one or 
the other of these formalisms henceforth will be obsolete? Several arguments 
oppose this conclusion. 

These formalisms have been developed in different areas of biology: 
Volterra systems in ecology, S-systems in biochemistry, genetics, and cellular 
and molecular biology. Both are established entities within these fields, and 
their variables and parameters have assumed particular meanings such as 
numbers of individuals, proliferation rates, interaction terms in Volterra 
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systems of ecology, and concentrations, apparent kinetic orders, and rate 
constants in S-systems describing biochemical networks. If one system is 

transformed into the other, variables and parameters are redefined, aggre- 
gated, or separated. As a consequence, variables and parameters in the 
“new” systems have a different meaning and cannot be directly interpreted 
as before. Because language and terminology influence thinking, this loss of 
the old parameters might be considered a negative consequence. However, 
such rearrangement might have positive consequences. It might yield new 
insight and, in fact, lead to parameters that can experimentally be measured 
or have a meaning that is easily understood, whereas the parameters of the 
“old” system were aggregate measures including many parts of the system 
and hence were difficult to obtain experimentally. 

“Recipes” have been developed for translating a biological phenomenon 
into an S-system [16, 231. Similarly, one can translate proliferation and death 
rates and interactions of populations into the variables and parameters of a 
Volterra system. However, since Volterra systems emphasize the additive 
nature of a phenomenon but S-systems aggregate interactions into products, 
the outcomes will generally be different. Again, this duality might yield 
fruitful insight and can lead to interesting results if a Volterra system is not 
compared with the mathematically equivalent S-system but with the S-sys- 
tem that results from applying the translation recipe. In particular, the 
duality raises the question of accuracy of different approximations and 
consequently the question of optimal strategies for modeling biological 
phenomena. 

In some situations, one or the other formalism may be easier to under- 
stand or may present a more intuitive way for including well-established 
“laws.” For example, allometric relationships, which constitute an almost 
universal law underlying organismic growth, are readily seen in the S-system 
formalism [18], whereas they are not obvious in the formalism of the Volterra 
system. 

Mathematical equivalence in the sense we have used this term does not 
necessarily mean that the systems are equal in every aspect. One important 
difference is their mathematical and computational tractability. Both systems 
have a very clear structure that implies specific numerical techniques that 
take advantage of these structures. An efficient program to solve and analyze 
S-systems already has been developed [4] and it has been shown for a variety 
of systems that more efficient solutions can be obtained by transformation 
into S-systems. A similar program has been developed for solving Volterra 
systems and is expected to be particularly efficient for systems that are 
primarily additive rather than multiplicative. 

These arguments show that it is useful to maintain both formalisms as 
separate entities. Nevertheless, the equivalence between these systems is of 
great importance. It allows us to study one system with methods of analysis 
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developed for the other. The equivalence also unites the ranges of application 
and classes of special cases of each formalism, thus increasing the power and 
generality of both. Now it should be possible to translate the mathematical 
properties of one system and all the theorems related to it into the other 
formalism. Mathematical analysis of a particular problem then can utilize 
results and methods from each formalism. For certain steps, one representa- 
tion might be used because of its advantages, and then one would transform 
the problem into the alternative formalism whenever it is advantageous to do 
so. 

All equations that can be recast in one formalism can now be recast in the 
other. Once equations can be recast in the same formalism, a rational system 
of classification and taxonomy becomes possible. Such a classification is a 
first step toward a general understanding of nonlinear differential equations 
and might yield criteria for solvability in terms of elementary functions. 

Furthermore, since very many, if not all, ordinary differential equations 
can be recast as S-systems, the formalism of S-systems and Volterra systems 
appears to provide the basis for a very general nonlinear systems theory. As 
of yet, the most powerful theory of differential equations is strictly linear. 
Both, Volterra systems and S-systems, are nonlinear but have some features 
that are very similar to linear systems: In Volterra systems, the nonzero 
steady state is obtained by the solution of a linear algebraic system; in 
S-systems, the nonzero steady state also is obtained by the solution of a 
linear algebraic system, which is produced by a simple logarithmic transfor- 
mation [16]. The S-system formalism contains linear systems as a special case 
[26] and hence is an extension of the linear theory into the nonlinear domain. 
Thus, the formalism of S-systems and Volterra systems is a structure that is 
not unrelated to the existing linear theory, but the linear theory is naturally 
embedded in the emerging nonlinear systems theory based upon S-systems 
and Volterra systems. 

This work was supported in part by U.S. Public He&h Service grunt GM 
30054 to M. A. S. from the National Institutes of Health. We thank D. Irvine, 

B. Palsson, and C. Simon for criticism of the original manuscript. 
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