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Abstract-The mrzhan& bzhakior 01‘ fetal dura mater was investigated by means of a biaxial tension test 

designed to stmulate the constraints imposed on the membrane by the cranial bones. The experimental results 

are compared with the theoretical results obtained by using two published strain energy functions: one 

defined by Mooney and Rivlin (MR) and the other by Skalak, Tozeren, Zarda and Chien (STZC). The latter 

constitutive relations fit the experimental results consistently well. The STZC stiffness values from this series 
oftestsarecompared with those from membrane inflation tests performed previously and reported elsewhere 

by the authors. 

NOMENCLATURE 

point on membrane in initial state 

point on membrane in deformed state 
radial component of Q 

axial component of Q 
radial component of Q’ 

axial component of Q’ 

initial height 
outer radius of test specimen 

inner radius of test specimen 

meridional stretch ratio 

circumferential stretch ratio 

normal stretch ratio 
meridional arc length in initial configuration 

meridional arc length in deformed configuration 

membrane force in meridional direction 
membrane force in circumferential direction 

principal curvature in meridional direction 

principal curvature in circumferential direction 
differentiation with respect to r 

P* 
= Cl + (-_‘,‘]“-’ 

= no, 

initial nominal membrane thickness 
material constants In MR model with dimensions 

of stress 
= c,/c, 
material constants m STZC model with dimen- 
sions of force per unit length 

= 5;c 

Although relatively few infants in the United States die 
during birth (l-3 per 1000 live births), the cause of 

about half of the deaths remains unknown (Lillien, 
1970). The causes of mental retardation are also 
largely unexplained. Quilligan and Paul (1975) pos- 
tulate that a better understanding of labor and delivery 
would reduce by SOok the incidence of mental and 

Received I7 Jufx 1984; in rrrisrd jbrm 20 June 1985. 

physical handicaps incurred by the fetus intrapartum. 
During birth, the shape of the fetal head changes due 

to mechanical loading by the maternal birth canal in a 

process called fetal skull molding. Excessive molding 
has been implicated in conditions ranging in severity 

from subtle psychoneurological disorders to mental 
retardation, cerebral palsy and even death (Holland, 
1922; Churchill, 1970; Glenting, 1970; Willerman, 

1970 a, b; Fianu, 1976; Wigglesworth and Husemeyer, 
1977; Stewart and Philpott, 1980). Yet, intrapartum 

diagnosis of excessive molding is beyond the capa- 

biiities of present day obstetrics (Krieu-all and 
McPherson, 1981). 

Despite the undisputed importance of head molding 
in both normal and abnormal labor, few researchers 
have attempted to quantify the magnitudes and direc- 
tions of loads typically exerted on the fetus during 
delivery, or to define the response of the fetus to these 
loads. The problem may be divided into three distinct 
areas: (I) defining the geometry of the fetal head during 

and after birth, (2) measuring the material properties 
of the components of the fetal head, and (3) measuring 

the loads applied to the fetal head during labor. 
Information from each of these three areas may then 
be used to assemble a mathematical model of the fetal 
skull, similar to those developed for the adult skull. 
Such a model may, in time, assist a clinician who needs 
to manage dificult labors without introducing poten- 
tially harmful procedures. 

Preliminary data are available from previous investi- 
gations on the pressure distributions on the fetal head 

during normal labor (Lindgren, 1960; Schwartz ec al., 
1970; Hashimoto el al., 1980); the geometry of the fetal 
skull intrapartum (Bore11 and Fernstrom, 1958) and 
post-partum (Kriewall et al., 1977); and the mechanical 
properties of fetal cranial bone (McPherson and 
Kriewall, 1980 a; Kriewall ec al., 1981; Kriewall, 1982). 
These data have been used to construct a finite element 
model of the fetal parietal bones (McPherson and 
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Kriewall, 1980b). Results from that model indicate that 
the thinner, more Bexible preterm parietal bone is 
capable of undergoing larger deformations than term 
parietal bone under the same applied pressures. This 
may be a contributing factor to the increased incidence 
of birth trauma experienced by the preterm fetus. 

However, unlike the rigid adult skull, the fetal skull 
is composed of flexible plates with an underlying soft 
tissue membrane, called the dura mater, that adheres 
closely to the inner surface of the bones and forms the 
connections, or sutures, between the plates. Thus, dura 
mater is an essential structural component of the fetal 
skull. Because the initial model did not include the 
restraining effect of the soft tissues, results from the 
model indicated that the posterior portion ofa parietal 
bone could cross the sagittal plane and hence ‘overlap’ 
the opposite parietal bone. Such a condition is not 
observed clinically. The next phase of model develop- 
ment, then, must include the restraint effects of the 
dura mater. 

Fetal dura mater has previously been tested and 
analyzed in biaxial tension induced by inflation 
(Kriewall et al., 1983). The inflation test is a basic 
materials testing technique developed for membran- 
ous materials (Wineman, 1976). Such a basic materials 
test is the best approach to study the interdependence 
between the stiffness of a material and physiological 
variables such as gestational age, since the material 
characterization parameters are not dependent on test 
geometry. In fact, results from the inflation study 
showed that the stiffness of the dura was significantly 
correlated to birthweight (p < 0.05), although the 
sample size was admittedly limited. However, it is 
unclear how the stiffness values derived from the 
inflation test relate to the physiologic state, as the 
boundary conditions are much different. The purpose 
of this study is to characterize fetal dura mater in a 
biaxial tension test specifically designed to simulate the 
constraints imposed on the dura mater by the cranial 
bones. 

Previous studies on adult dura mater have indicated 
that it, like other soft tissues, is anisotropic and 
viscoelastic, but that the general variability in the tissue 
tends to overshadow those effects (Melvin et al., 1970). 
Fetal dura is assumed to behave similarly. Therefore, 
anisotropy and viscoelasticity will be ignored in this 
initial model. In addition, the birth process is relatively 
slow, and fetal skull molding is a large deformation 
process. Bore11 and Fernstrom (1958) found that the 
biparietal diameter may increase as much as 10 mm, a 
change of about 10%. This is consistent with the 
findings of Kriewall et al. (1977). For these reasons, our 
model assumes that dura mater is an isotropic, non- 
linearly elastic, incompressible, and homogeneous ma- 
terial undergoing large static deformation. The theory 
of nonlinear elastic membranes undergoing large 
deformation is described by various authors (e.g. 
Green and Adkins, 1970; Feng and Yang, 1973; Yang 
and Feng, 1970; Benedict et nl., 1979; Bogen and 
McMahon, 1979). 

.MATERIALS AND METHODS 

Dura mater was excised from calvaria of fetuses that 
died from causes that would not be expected to affect 
the development of the dura. The estimated gestational 
ages ranged from 30 to 42 weeks; fetal weights ranged 
from 987 to 3612 grams-force (gr). The mean of the 
nominal thicknesses was 0.57 mm. Table 1 presents 
data regarding the fetuses and their dura mater. 

After excision, the dura was immediately stored in 
Ringer’s solution. Some specimens were acquired prior 
to test development and were frozen. The others were 
refrigerated at 5°C until testing began. Although the 
small sample size precluded the study of storage effects 
on the stiffness of the dura, the two fresh specimens 
will be seen to exhibit loading curves within the range 
of the frozen specimens. 

Just prior to testing, the dura was allowed to warm 
to room temperature. Its thickness was measured with 
a dial indicator in at least four randomly selected 
locations. The measurements were taken upon initial 
contact with the membrane, before obvious tissue 
compression occurred. The dura was kept wet at all 
times. Circular specimens 40 mm in diameter were cut 
from sections of membrane taken from the parietal or 
frontal cranial bones. 

The clamping assembly, shown in Fig. 1, consisted 
of an inner disk and outer concentric ring. The 
contacting sides of both clamps had hard knurled 
rubber surfaces to minimize slippage. A centering 
mount below the lower disk and a companion piece 
used to center the upper disk (not shown in the figure) 
ensured easy alignment of the apparatus. The dura 
mater was placed between the clamps. Four holes were 
punched through the dura for the screws that joined 
the inner clamps. 

The resulting free ring ofdura had an inner diameter 
of 15 mm and an outer diameter of 25 mm, hence an 
average circumference of 63 mm. This circumference is 
on the order of suture lengths and the width of free 
dura is approximately the suture width of a full-term 
fetus. The average nominal thickness of the samples 
was 0.57 mm. The width to thickness ratio of the free 
dura was about 10: 1, so tensile forces predominated, 
as in oivo. 

The outer ring was mounted to the crosshead of an 
Instron tensile test machine. The inner disk was 
connected to a load cell; a linear variable differential 
transformer (LVDT) measured displacement. An x-y 
recorder plotted load vs deflection. The load was 
applied along the vertical centerline of the system. To 
ensure only vertical load transmission, a universal joint 
coupled the fixture and the load cell. Each specimen 
was preconditioned by cycling at least six times to 
increasingly higher loads at a rate of 0.02 mm s- ‘, then 
loaded to failure. 

Two biaxial tension tests were performed on 0.5 mm 
thick sheets of styrene butadiene rubber from the same 
stock of material to check the reproducibility of the 
experimental procedure. Rubber may be regarded as 
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Table I. Biographical data for test material 

Calvarium No. 

Estimated 

gestational 

age (weeks) Sex 

Storage 

Weight Nominal temperature 

(g,) thickness (mm) I Cl Cause of death 

I5 Parietal 

left 

16 Par&al 

left a 

Parietal 
left b 

Frontal 

left 

Frontal 

right 

I7 Parietal 

left 

I8 Parietal 

left a 

Parietal 

left b 

I9 Parietal 

right 

20 Parietal 

right 

21 Parletal 

right 

42 F 2850 0.66 

39 F 2922 0.60 

0.61 

0.61 

0.61 

30 M 987 0.62 

40 M 3612 0.55 

0.53 

40 M 2550 0.40 

33 M 1783 0.57 

30 F 1400 0.53 

-10 

-10 

-IO 

- IO 

-IO 

-10 

-10 

-10 

-10 

5 

5 

Hypoplastic 
Icft heart 

Aortic atresia 

Cystadenomatoid 

malformation lung 

Diaphragmatic 

hernia 

Trisomy 21 

(G-G) 

Respiratory 

distress syndrome 

Respiratory 

distress syndrome 

an isotropic and incompressible material with a strain 
energy function of the Mooney-Rivlin type (Green 
and Adkins, 1970). It has been studied experimentally 
and theoretically elsewhere (Wineman, 1976). 

GJ 
n c?” ANALYSIS 

Centering Mount 

The geometry of the membrane in its initial and 
deformed configurations is shown in Figs 2 and 3. The 
loading and geometry are axisymmetric. The point Q 
defined by the coordinates (r, z) in the initial configur- 
ation is displaced to point Q’ defined by (p. 5) in the 
deformed configuration. The initial state of the dura 
mater was represented as a truncated cone because it 
was not possible to place the dura flat in the test fixture 
relative to the measuring capability of the LVDT, and 
because the stiffness of soft biological tissues at small 
strains is very small (Decraemer et ol., 1980). The 
equation of this reference configuration is 

Z = a(60 -r)/(b,-bi) (I) 

where bi and b, are the inner and outer radii, respect- 
ively, of the truncated cone and a is the initial height. 
The problem is to determine the deformed configur- 
ation when the initial configuration and load are given. 

The equilibrium and compatibility equations are 
obtained in a manner similar to that presented else- 

Fig. 1. The membrane is clamped into the fixture shown for where for a spherical cap inflation problem (Wineman 
the biaxial tension test. ec al., 1979; Pujara and Lardner, 1978; Kriewall er al., 
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DEFORMED 

Fig. 2. Geometry of the biaxial tension test is shown. 

DEFORMED 
CONFIGURATION 

-CONFIGURATION 

Fig. 3. Stretch ratios are defined by comparing the axisymmetric membrane in its initial and deformed 
configurations. 

1983). The only differences arise from the negative meridional, circumferential, and normal directions. 
curvature of the deformed membrane profile and the The stretch ratios in these directions are i.r, A2 and &, 
absence of internal pressure. However, the develop- respectively. By definition, 
ment will be repeated here for the sake of 
completeness. 1, = dS/ds CW 

Governing equations 

The principal directions of the stresses and stretch 
A, = P/r (2b) 

ratios at each point on the membrane are in the where dS and ds are the meridional arc lengths in the 
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deformed and undeformed configurations. From 
incompressibility 

i.,,&i., = 1. W) 

For an element cut from the membrane of revol- 
ution of Fig. 3 in the deformed configuration, the force 
balance equations in the principal directions are 

dT,ldp+(T, -T,)/P =0 (3a) 

K,T,+K2Tz =0 (3b) 

where Tl and Tz are the membrane forces in the 
principal directions and K L and K2 are the principal 
curvatures. 

By writing the principal curvatures in terms of the 
principal stretch ratios ii and A*. substituting them 
into equations (3), and transforming the resulting 
equations to the initial configuration, the equilibrium 
equations result 

r; = -q(T, -T2)frA2 (W 

T, (719 -1, v’)/cX:(~: -t12)o.5] 

-[T,(x: --r~~)~.~]/i&A~ = 0 (4b) 

in which 

( )‘=d( )/dr 

rl=p’ (5) 

1, = i,R 

n = [ 1 + (z’)y 

The compatibility condition is 

n; = (rj --A&/r. (6) 

In their most general forms, the constitutive equations 
express Tl and T2 in terms of Ii and A2 as follows 

T, = F(&, A213 T2 = G(A,, 12) (7) 

where F and G are general functions. Substituting 
equations (7) into equations (4) we obtain 

(8) 
A’ = G& (A2 - l)/rF12 (9) 

where A = 1, /q. The compatibility condition, equa- 
tion (6), can be written as 

1; = (1, /rA) - (AZ/r). (10) 

Equations (8). (9) and (10) suffice to determine the 
three unknowns xi, A2 and A. 

The boundary conditions for r = bi are 

x1=&, 1,=1, A=Ai (11) 

in which xi is assumed to be given in the numerical 
procedure and A, is allowed to vary in the numerical 
solution. The boundary condition at r = b, is L2 = 1. 

Once the membrane forces in the conical membrane 
are determined, the external force applied on the 
inner disk can be calculated from equilibrium 
considerations. 

Consriturire relations 

In studies of elasticity of bodies undergoing finite 
deformation, a commonly used approach is to pos- 
tulate the form of an elastic potential, or strain energy 
function (Green and Adkins, 1970). A discussion of 
various functions can be found in Crisp (1972) and 
Fung (1981). The constitutive equations selected for 
the present study are the material models of Mooney 
and Rivlin (MR) (Green and Adkins, 1970) and of 
Skalak et al. (STZC) (1973). 

The MR constitutive relations are 

T, = [2~C,(1~-~;2L;2)(1+crL~)]/E.,i2 (12a) 

T2 = [ZhC,(I: -1;2A;2)(1 +al:)]/J.,i, (12b) 

where h is the initial, uniform thickness of the mem- 
brane, a = C2/C1, and C, and C2 are the material 
constants with dimensions of stress. 

The STZC constitutive relations are 

T, = (CL,/2L2)[I(1:-l)+l$(l:L:-1)] (13a) 

T2 = (CI,/ZI,)[I-(I: - l)+l;(l:L: -l)] (13b) 

where f = B/C, and B and C are the material const- 
ants with dimensions of force per unit length. 
Equations (8), (9) and (10) were solved with the 
Runge-Kutta method. The numericaal integration was 
started at r = bi and the generator of the membrane 
was divided into a mesh of twenty equal divisions. The 
solution was completed when the radius of the de- 
formed membrane at the last mesh point was equal to 
the initial outer radius within a specified error 
tolerance. 

RESULTS 

Figure 4 compares the experimental and analytic 
results. Plotted in Fig. 4a are both SBR experimental 
loading curves, and poit.ts derived from the MR and 
STZC models. The similarity of the experimental 
curves demonstrates that the test protocol produced 
repeatable results. The two analytic curves clearly 
show that the MR model is able to describe the shape 
of the SBR curve, whereas the STZC model predicts a 
material that is too soft at low loads and too stiff at the 
higher levels. These features, however, are required to 
describe the response of the dura mater, as shown in 
Fig. 4b. Here, the STZC results are clearly superior. 
This was consistently true for all the dura tests. 

Figure 5 presents all eleven dura loading curves with 
the STZC stiffnesses (C) that best fit. The mean and 
sample standard deviation of the Cs from all tests, in 
g, cm- t. are 2000 and 840, respectively. 

Statistics were computed for the STZC stiffnesses. 
No correlation was found between fetal birthweight 
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-* STYRENE BUTADIENE 10 - - E..perunenral 

Erperemenrnl 
16 PLb 

- Terr 1 a- AW+llC 

----TWZ --.-Mooney R,vfrn 
c.= 12,000 gt:cm’ 

ANALYTIC = d = 0.25 

. Mooney Rlvlln 
JI 6- 

f 

c, = 3800 yf Cd 
a = 0.25 2 -----STi!C 

54 C = 3200 gf:cm 
0 STZC l-=025 

c 500 yf cm 

l-=025 2L 

I I 
5 10 15 20 0 2 4 6 8 10 

(a) DEFLECTION IW) 

(b) DEFLECTION hml 

Fig. 4. (a)The MR model adequately characterized the behavior of styrene-butadiene rubber; whereas, 
(b) the STZC model was superior to the MR model for characterizing the behavior of fetal dura mater. 

and the stiffness of the dura mater. Such a correlation 
was found with the stiffnesses derived from the 
membrane inflation test performed previously 
(Kriewall et al., 1983). A larger sample size is required 
before strong conclusions may be drawn. From para- 
metric and nonparametric analyses of matched pairs 
from the two sets of tests, it was concluded that the 
mean of the inflation stiffnesses (C = 3800gccm-‘) 
was greater than that of the biaxial tension stiffnesses 
(p < 0.05). A difference was expected, since the ma- 
terial parameters depend on the boundary conditions. 
Thus, the stiffnesses measured in this test are 
physiologically valid only insofar as the test boundary 
conditions simulate the in uioo conditions, as designed. 

DISCUSSION 

Assuming physiologic strains of about 10% based 
on intrapartum radiographic measurements of bi- 
parietal diameter changes (Bore11 and Femstrom, 
1958), the lowest portion of each ldading curve is most 
relevant clinically. However, no direct measurements 
of the deformation of the soft tissue connections 
between the cranial bones have been reported. If such 
measurements are made, tangent moduli may be 
defined from these data, simplifying subsequent 
modeling. 

The STZC strain energy function requires two 
constants, C and r, to specify one curve from a family 
of curves. f can range from zero to one. The choice of 
I- is not critical because the STZC stiffnesses for these 
data change only slightly over a fairly wide range of I- 
(r = 0.25* 0.20). 

The numerical procedure requires the specification 
of an initial deflection and thickness. Both were easily 
measured to within tolerances needed for repeatable 
analytic results. Because the SBR tests gave such 
similar results and the numerical methods yielded 
consistent results with variables easily specified from 
the experiments, we concluded that the source of the 
stiffness variance is the material itself. 

All curves of Fig. 5 are the final cycles, taken to 
failure. As the stiffnesses at the lower cycling levels are 
less than the overall stiffness reported, the given Cs are 
more correctly upper bounds. 

Failure occurred within the ring of free dura mater 
in all but one of the tests. In that exception (No. 
16PLa), a tear propagated from one of the punched 
holes. There was never any apparent slippage from the 
clamps. 

CONCLUSION 

Fetal dura mater exhibits nonlinear load-deflection 
behavior when subjected to biaxial tension under 
geometric conditions similar to those encountered by 
the fetal cranium during delivery. This behavior may 
be approximated over a wide load range by the 
constitutive relations proposed by Skalak et of. (1973). 
Further models of the fetal skull may incorporate 
stiffness values and failure criteria derived from these 
data. These models may help us to define mechanical 
factors that cause birth trauma, and subsequently, help 
us to avert some of the human tragedy that may be the 
result of those factors. 

Clearly, much more remains to be understood about 
the birth process and its effects on the fetus. The system 
is very nonlinear and is affected by many biological 
variables such as fetal age, fetal presentation, maternal 
pelvic diameters, and, indeed, any maternal or fetal 
health factor tending to induce dystocia. This study 
was not intended to present conclusions based on a 
mechanical model of the birth process. On the con- 
trary, we hope our initial attempts encourage other 
investigators to apply advanced engineering methods 
to this very complex system. After all, every one of us 
has traveled this perilous path. Most of us escaped 
unscathed, Then again, maybe we didn’t. HOW much 
better could we be? Although the risk is small, the 
consequences of birth trauma can be severe and last a 
lifetime. Obstetrics could truly benefit from the appli- 
cation of engineering techniques to its unique 
problems. 
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