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Abstract-The mass action kinetic model of the irreversible Michael&Menten reaction mechanism is 
mathematically intractable: an explicit analytical solution cannot be obtained. This difficulty is overcome by 
applying simplifying kinetic assumptions but a full understanding of their dynamic implications and 
applicability is not readily available. This paper shows how simple modal analysis can provide both a 
conceptually appealing insight into the reaction dynamics and justification of the commonly used quasi- 
steady-state and quasi-equilibrium assumptions. 

The key results are that the quasi-steady-state assumption is applicable when the initial enzyme 
concentration, e,, 
concentration, sO, 

is much smaller than the Michaelis constant, K,, or when the initial substrate 
is much greater than K,.These results show that the commonly accepted criterion e, < s0 

is incomplete and should be decomposed into e, < K, and K, 6 s,,. The quasi-equilibrium assumption is 
valid when e0 % K, and when the rate of product formation is much slower than reversion to the substrate 
from the intermediate state, or kZ + k- 1. The important dimensionless parameter ratios characterizing the 
reaction dynamics are e,/K,, so/K, and k,/k _ 1 

1. INTRODUCTION 

The simplest enzymatic reaction mechanism, first 
proposed by Henri (1903) but named after Michaelis 
and Menten (1913) is 

k, k, 
S+E +X+E+P (1) 
(s) (e) k-, (x) (P) 

where a substrate S binds reversibly to the enzyme E to 
form the intermediate X, which can break down to give 
the product P and regenerate the enzyme. The stan- 
dard notation is to have the k,s denote appropriate rate 
constants and the lower case letters denote the concen- 
trations of the corresponding chemical species. 
Historically the Michaelis-Menten scheme is the most 
important enzymatic reaction mechanism although 
today there is an increasing number of enzymes found 
that follow different kinetic mechanisms (Hill et al., 
1977). A detailed account of the early history of 
Michaelis-Menten kinetics is found in Segal (1959). 

As we will discuss below, a closed-form analytical 
solution to the mass action kinetic equations is at- 
tainable only by using simplifying kinetic assumptions. 
Two assumptions are used: the quasi-steady state 
assumption and the quasi-equilibrium assumption. 
The pioneering study by Chance (1943) on horseradish 
peroxidase showed, via both experimentation and 
computations, that the concentration profile for the 
intermediate complex is not stationary over a signifi- 
cant period of time. Chance’s results motivated a series 
of theoretical studies into the applicability of the quasi- 
steady-state assumption. A comprehensive review of 
these approximate solutions is found in Palsson (1984) 
and will not be repeated here. Perhaps the most 
complete results are found in Heineken et al. (1967) 
where singular perturbation theory was used to obtain 

separate asymptotic solutions to the fast and slow 
transients that this reaction normally exhibits. 

In spite of these extensive efforts we still lack a 
comprehensive view of the parameter combinations 
under which the two kinetic assumptions apply. 
Furthermore, the mathematical techniques employed 
do not give good qualitative insight into reaction 
dynamics. This paper illustrates the use of modal 
analysis to help resolve these two questions. Modal 
analysis is suitable for this purpose since it can predict 
both the inherent relaxation times and how the 
concentrations of the chemical species move on these 
time scales. A particularly elegant interpretation of 
commonly used kinetic assumptions is obtained. 
Linear analysis both confirms existing results and 
provides new ones. 

2. MASS ACTION KINETICS 

Applying the law of mass action to the 
Michaelis-Menten reaction mechanism, one obtains 
four differential equations, one on each of the chemical 

ds 

dt= 
-kk,es+k_,x, 

dx 
-= k,es-(k %+k,)x, 
dt 

de 
-= 
dt 

-kk,es+(k_l +k,)x, 

dp 
- = k,x, 
dt 

s(t = 0) = sg 

x(t=O)=O 

m 
e(t = 0) = e. 

p(t = 0) = 0. 

The initial conditions shown are for typical initial rate 
experiments where the substrate and free enzyme are 
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mixed together at time t = 0; e, and s,, denote the 
initial concentration of enzyme and substrate, respect- 
ively. No mass exchange occurs with the environment 
and the total concentrations of enzyme and substrate 
stay constant. Hence we have two mass conservation 
equations: 

e0 = e+x (3) 

sg =s+x+p. (4) 

Consequently only two of eqs (2) are independent and 
choosing the substrate (s) and the intermediate com- 
plex (x) concentrations as the two independent vari- 
ables the reaction dynamics are described by: 

ds 
dt= 

-kk,e,s+k_,x+k,sx, s(t = 0) = s(J (5) 

dx 
-=kk,e,s-(k_l+k2)x-klsx,x(t=0)=0. (6) 
dr 

The major problem with this mass action kinetic 
model is that it is mathematically intractable 
(Hommes, 1962): eqs (5) and (6) can be reduced to an 
Abel-type differential equation whose solution cannot 
be obtained in a closed form. Further discussion of 
Abel-type differential equations and biomolecular 
reactions are found in Darvey et al. (1978a,b). 

3. KINETIC ASSUMPTIONS 

To get around the mathematical intractability of the 
mass action kinetic model, eqs (5) and (6), simplifying 
kinetic assumptions are applied. 

The quasi-steady-state assumption (Briggs and 
Haldane, 1925). The rationale behind the quasi- 
steady-state assumption is that after a rapid transient 
phase the intermediate X reaches a quasi-stationary 
state in which its concentration does not change 
appreciably with time. Applying this assumption for- 
mally to eq. (6) gives the concentration of the inter- 
mediate complex as: 

e0s xq= =--- 

K,-ts 

where K, = (k-, +kz)/k, is the well-known 
Michaelis constant. Substituting xqss into the differen- 
tial equation for the substrate, eq. (5), gives the rate law 

ds - k2e,s -= 
dt K,+s. (8) 

By differentiating eq. (4) one finds that dp/dt = 
- ds/dt. 

Initially the quasi-steady-state assumption was justi- 
fied based on physical intuition but some justification 
is found within the theory of singular perturbations 
(Bowen et al., 1963). Equation (8) can be shown to be 
the first term in an asymptotic series solution derived 
from singular perturbation theory (Heineken et al., 
1967; Meiske, 1978; see review in Palsson, 1984). 
Formally the time derivative of x is taken to be zero 
which is not correct. The more appropriate statement 

is that the absolute value of the rate of change of x is 
much slower than that of s. 

The quasi-equilibrium assumption. Here one as- 
sumes that the binding step quickly reaches a quasi- 
equilibrium state (Henri, 1903; Michaelis and Menten, 
1913) where 

se s(eo-x) k_, e0S 
-Tz z--c= =p (9) 
X X 

k, st or Xqe 
K,+S 

holds. Henri (1903) and Michaelis and Menten (1913) 
obtain the rate law 

dp k,e,s -= 
dt K,+s 

(10) 

by using relationship (9) in the differential equation for 
P. It should be noted that the same result is obtained by 
assuming that ds/dt = 0. 

Equation (10) resembles eq. (8) but they differ in two 
ways: first, eq. (10) describes the rate of formation of 
the product dp/d t as opposed to the disappearance of 
the substrate ds/dt, and second, it contains the 
dissociation constant K, as opposed to the Michaelis 
constant K,. A differential equation for the substrate 
is obtained differentiating eqs (4) and (9) as 

ds - k,e,-,s 

dt= 
K,+s+e 

S 

and therefore dp/d t # - ds/d t. 

(11) 

4. LINEAR ANALYSIS 

Linearizing the mass action kinetic model yields an 
approximate description of reaction dynamics in the 
vicinity of the point around which the linearization is 
carried. The linear description is of course only an 
approximation to the exact solution but, as we will see, 
is valuable for providing qualitative information about 
reaction dynamics and a guide to model simplification. 

Formally the linearization is carried out by expand- 
ing the non-linear right-hand sides of eqs (5) and (6) 
into a Taylor series and truncating the series after the 
linear term: 

f(Y)=f(Y,f)+J(Y-Yy,,,)+ ..’ (12) 

where f represents the non-linear right-hand sides of 
eqs (5) and (6), y is the concentration vector (s, x)t and J 
is the Jacobian matrix (ii,, = dA/dy,). Linearizing the 
Michaelis-Menten kinetic equations gives a 2 x 2 
matrix description 

dY’ __ =f(yref)+.Iy’, y’= (S’,X’)’ 
dt (13) 

where the prime denotes that the variables are in terms 
of deviation from the reference conditions (i.e. s’ = s 
- s,,~ and x’ = x -x,,[). The Taylor series can be 

obtained around any reference point. The Jacobian 
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matrix is 

J= -k,e, k_, +kls, 

k,e, -(kZ+k_l +kls,) >. 
(14) 

The reference state here is taken to be the initial 
condition s,,r = so, x,,~ = 0, since we are interested in 
how the reaction moves away f-rom the initial 
conditions. 

The properties of J describe the dynamic charac- 
teristics of the linearized model. The properties of J 
that are of interest are basically two: 

(4 

(b) 

The eigenvalues, 1, ( = - l/tI) and AZ ( = - l/zZ) 
give the two relaxation times (7, , x2), intrinsic to 
the reaction. The eigenvalues are the two roots of 
the characteristic equation 

1*-tr(J)A+det(J)=O (15) 

where tr(J)= -_kt(K,+e,+s,)is the trace of 
the Jacobian matrix and det (J) = k, k2eo is the 
determinant. 
The two relaxation times are normally separated 
by more than one order of magnitude (Palsson, 
1984; Palsson and Lightfoot, 1984) leading to a 
dynamic response that contains two distinct time 
scales: a slow and a fast phase, which are normally 
referred to as the stationary and the transient 
phase, respectively. 
The normal modes, m = (ml, m2)‘. The modes are 
abstract mathematical quantities that are, by defi- 
nition, dynamically independent. The modes will 
give us information about how the concentrations 
of S and X move on the intrinsic time scales. 

The key point here is that the modes are dynamically 
independent: motion of mode 1 does not disturb the 
motion of mode 2. Then if the time constants are well 
separated and the smaller time constant represents 
dynamics that are faster than the time scales of interest, 
then one can relax the dynamic motion of the faster 
mode without changing the system behaviour signifi- 
cantly on the slower time scale. This key feature forms 
the basis for the interpretation of reaction dynamics 
and system simplification that follows. 

The modes are related to the concentration variables 
through the modal matrix M -I, which is comprised of 
the eigenrows, as 

(;:)=M-‘(;)=(;2 I’)(;) (16) 

where c1 and ca are the independent elements of the 
eigenrows, u1 = (1, c1 )and ua = (cZ, 1). The eigenrows 
are defined as: 

q(J--Ail) = 0. (17) 

The relationship between the motion of the modes 
and the concentration variables is given by differen- 
tiation of eq. (16): 

(moves on time scale 1) (18) 

dm2 ds dx 

-=YE+dt dt 
(moves on time scale 2). (19) 

Since the modes are dynamically independent their 
concentration composition give us an important insight 
into the reaction dynamics by allowing us to-examine 
the motion of the concentration variables on both time 
scales. The constants c1 and ca are measures of the 
dynamic interactions between the two dynamic vari- 
ables, s and x, since they indicate their relative 
contribution to the motion on the two time scales. 

5. ORDER OF MAGNITUDE ANALYSIS 

It can be shown (Palsson, 1984) that when the ratio 
det (J)/tr (J )* is small, the time constants and the 
interaction coefficients, cl, c2, take the limiting values 

i:, 
-tr(J) F--jIZ 

J21 

” * det(J) Cl - 
ill +_i22 

(20) 

-1 i2l 

72 -tr(J) 
c2 +-. 

522 

These results are obtained by using the first column of 
J. Identical results are derived by using the second 
column since the matrix ( J - AZ ) is singular. The ratio 
det ( J )/tr ( J )’ is: 

k,lk-, e0 
det(J) 1 +k2/km1Km 
tr(J)2= 

( > 

2’ (21) 
1+g+-Fo 

m 5” 

This ratio is small under four parameter combinations: 

(a) when e,e K,, 
(b) when so + K,, 
(c) when e, + K,, and 
(d) when k2 Q k_,, 

or combinations thereof. The limiting values of the lis 
and cis are shown in Table 1. 

Two limits are of particular importance: limit (a), 
since the total enzyme concentration is much less than 
the Michaelis constant for typical batch kinetic exper- 
iments (Srere, 1967, 1970; Masters, 1977), and limit (d), 
since this situation is found for many enzymes 
(Hammes and Schimmel, 1970; Cleland, 1975; Albery 
and Knowles, 1976, 1977). 

Dynamic behaviour 
Limits (a)-(d) represent the fundamental functional 

dependences of the time-scale separation on the in- 
trinsic dimensionless property ratios (see Section 6). 
Combinations of the above limits will also produce 
time-scale separation. One particular combination, 
e, 4 sO, is of historic importance and this situation will 
be discussed in Section 7. 

We will now use modal analysis to interpret the 
reaction dynamics. The predictions obtained are con- 
firmed by direct numerical integration in Section 7 
below. 
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Table 1. Limiting values of the time constants and the interaction coefficients, a = &,/km,, 6 = co/K, and 
c = Q/K, 

None+ 

(b) 
K,<s, 

cp1 

(cl 
%@K, 
b%-1 

&+b+c 

1 1 +c 

-(H-- k, b 

Ic ls, 
_-=-- 
k, b kz eo 

1 

k, 

b -- 
1tc 

0 

0 

--*co 

b ___ 
1fC 

tGenera1 expressions derived by using the first column of the Jacobian matrix. 
Same results for the limiting expressions are found by using the second column of J. 

Limit (a), e0 < K,. Here the limiting value of c2 is 
zero and the modes can be written as: 

dm, - = 
dt 

d(s ‘J,“’ x, (slow mode) 

(22) 
dmZ dx 
dt =dt 

(fast mode). 

Consequently we obtain the following interpretation 
of reaction dynamics: 
The fist motion. Only x moves significantly on the 

faster time scale. The concentration of X wilt relax 
towards a quasi-steady-state value xqSS given by the 
solution of dx/dt = 0, eq. (7). 

The slow motion. Once the rapid motion has relaxed 
the two concentrations move in a fixed relationship 
to one another given by eq. (7), which leads to the 
quasi-steady-state approximation. 

Hence modal analysis yields an elegant interpret- 
ation of the reaction dynamics: the fast transients 
described by mode 2 are only those of x and if one 
wishes to ignore these dynamics without disturbing 
the slow motion one can apply dm,/dt = dx/dt = 0. 
Hence the quasi-steady-state assumption should 
apply. 

Limit (b), K, -+ s,,. This leads to a similar simplifi- 
cation as occurs in limit (a) and zeroth-order kinetics. 
When K, d so, the composition of the modes is 

dml d(s+x) dp 
- = ___ = ---= 
dt dt 

(slow mode) 

dm, dx 
dt=dt’ 

(fast mode) 

(23) 

The fast motion. As for limit (a), the fast motion is 
essentially that of x. 

The slow motion. The motion on the slower time scale 
is that of a “pool” of s + X. 

The differential equation describing the slow motion 
is 

dml d(s+x) dp - k2e0s _dt E--r= --= 
dt 

-k2x = p. (24) 
K,+s 

The value of x used here is the one given by eq. (7). 

Limit (c), e, s K,. The modes become 

dm, d(s+x) 
___ = ~ (slow motion) 
dt dt 

dm, ds 

dt =dt 
(fast motion) 

(25) 

in this limit. The interpretation of the reaction dy- 
namics is as follows: 
The fast motion. The opposite situation to limits (a) 

and (b) occurs: the fast motion is essentially that of 
the substrate. Relaxing differential eq. (5) leads to 
the equilibrium relationship for the binding step, eq. 
(9). 

The slow motion. As for limit (b) the slow motion is 
that of the pool s + x. 
Based on linear analysis we expect a rapid motion 

towards the equilibrium state by motion of s. The 
quasi-equilibrium assumption should give good 
results. 

If the quasi-equilibrium assumption is invoked one 
can no longer use so as the initial value for s since it 
moves significantly on the faster time scale. A new 
initial value must be provided. By assuming that m, 
stays at its initial value during the relaxation of m2 one 
obtains 

ml = sqe+xqe = sO. (26) 

By combining this result with the equilibrium relation- 
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ship for the binding step one gets 

s&+(K,+eo--ss,)s,,-ss,K, = 0. (27) 

The appropriate initial vlaue is the positive root of 
eq. (27). 

Limit (d), k, < k _ , In this limit the composition of 
the modes is 

dmI d (s + x) -=_ 
dt dt 

(slow mode) 

(28) 

dm2 d&s+x) ~ = 
dt dt 

(fast mode). 

Relaxing the dynamics of m, leads to the equilibrium 
relationship for the substrate binding step and the 
following interpretation of the reaction dynamics is 
obtained: 
The fast motion. The fast mode describes motion 

towards the equilibrium state for the binding step, 
by motion of both s and x. 

The slow motion. Again the slow motion is that of the 
pool s + x. 
Hence, we expect to see a two-phase transient 

response: a rapid approach to a quasi-equilibrium state 
for the binding step and a slow motion in which s and x 
are dynamically equivalent. Again, modal analysis 
predicts the use of the quasi-equilibrium assumption 
and gives us a clear physical interpretation of the 
reaction dynamics. 

As for limit (c), one cannot use s(t = 0) = s,, and 
x (c = 0) = 0 as initial conditions since both variables 
move significantly on the faster time scale. The inftial 
conditions have to be adjusted using eq. (27). 

6. SCALING 

The above analysis suggests that there are three 
dimensionless property ratios of interest: 

a = k,/k-,, b = eJK,, c = so/K,. (29) 

The first dimensionless group, a, is a ratio consisting 
only of kinetic constants, k,/k_, This ratio has been 
called the “stickiness number” (Palsson, 1984), since a 
substrate is said to stick well to an enzyme if k2 > k _ 1 ; 
once X is formed it is more likely to break down to 
yield the product than to revert back to the substrate. 

The second dimensionless number e,/K,, is a 
dimensionless concentration parameter; the total 
enzyme concentration relative to the Michaelis con- 
stant. This quantity varies from one situation to 
another and takes particularly different values under in 
vitro and in vivo conditions. In vitro the enzyme 
concentrations used arc several orders of magnitude 
lower than the K, values (Srere, 1967, 1970; Masters, 
1977). Typically, in vivo enzyme concentrations can 
approach the same order of magnitude as K,. 

The third dimensionless ratio, so/K,, is the initial 
condition for the substrate concentration. Typical 
values for this ratio for both in vivo and in vitro 
situations are of the order of unity. 

A natural choice of reference scales for the concen- 
trations are: 

for the substrate, c = s/K, 

and for the intermediate, x = x/ee. 
(30) 

Casting the differential equations into dimensionless 
form gives 

do 1 
-= 
dr 

--o+p 1 +,3c+xo, 00 = c 

bg=o--):--Xo, 
(31) 

x0 = 0 

where time is scaled as r = k, e, t. The quasi-steady- 
state and quasi-equilibrium concentrations of the 
intermediate in scaled variables are: 

0 
xqss = - l+Cr 

0 

Xqe= 1 

-+o 
l+a 

7. NUMERICAL SOLUTIONS 

The full dynamic description of the kinetics of the 
reaction, eqs (5) and (6), can be obtained by direct 
numerical integration. The numerical solutions are 
obtained using the EPISODE ordinary differential 
equation integrator (Byrne and Hindmarsh, 1975). 
Here we use the equations in their more compact 
dimensionless form, eq. (31). 

The results are most conveniently shown on a phase 
portrait along with the transient response of the 
concentrations on both the fast and slow time scales. 
The following results ascertain the predictions from 
full linear analysis. 

Limit (a), e. 4 K,. 
Figure 1 shows the full numerical solution for b 

= 0.01 and the other groups assume the value of unity. 

The phase plane. The phase plane is shown in Fig. 
l(a) and it shows how the reaction rapidly approaches 
the quasi-steady-state line and then moves along that 
line towards the equilibrium point, u = 0, x = 0. 

7’he fast motion. Figure l(b) shows the changes in 
the concentrations during the faster time scale. As 
predicted by modal analysis, the intermediate con- 
centration exhibits a significant fast motion while the 
substrate does not move far from its initial value. 

7’he slow motion. The changes in the concentrations 
during the slower time scale are shown in Fig. l(c). 
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Fig. 1. Dynamic behaviour of the Michaelis-Menten reaction mechanism for k2 / k- I = 1, co/K, = 0.01, 
so/K, = 1. (a) The phase plane (solid line, quasi-steady-state solution; dashed line, full numerical solution). 
(b) The fast transients. (c) The slow transients (solid line, full numerical solution; dashed line, quasi-steady- 

state solution). 
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Both cr and I! decay towards zero. During the decay 
process y: is in a quasi-stationary state and the motion 
of 0 drives the reaction dynamics. The quasi-steady- 
state solution gives a good description of the events on 
the slower time scale. 

Limit (b), s0 % K,. Figure 2 shows the reaction 
dynamics when c = 50 and the other two groups are 
unity. 

7%e phase plane. Figure 2(a) shows the motion in the 
phase plane. As for limit (a), the reaction approaches 
the quasi-steady-state line primarily by change in the 
intermediate concentration. After the fast transients 
relax, the reaction is in the zeroth-order regime. 

Thefast motion. Figure 2(b) shows that, as for limit 
(a), the fast motion essentially is the motion of x 
towards a quasi-steady state. 

The slow motion. The slow transients, Fig. 2(c), are 
those of a zeroth-order reaction where the inter- 
mediate is in a quasi-steady state. 

Limit (c). e, % K,. 
The reaction dynamics when b = 100 and a = c = 1 

are shown in Fig. 3. 

The phase plane. The phase portrait is shown in Fig. 
3(a). As predicted in Section 5, a motion towards the 
quasi-equilibrium line primarily by change in the 
substrate concentration is found. Then the reaction 
path lies along the quasi-equilibrium line. 

The fast motion. The fast dynamics are essentially 
those of the substrate as shown in Fig. 3(b). 

The slow motion. After the fast dynamics have 
relaxed, (T and x move in a quasi-equilibrium state, Fig. 
3(c). The transients on the slower time scale are 
adequately described using the quasi-equilibrium as- 
sumption if the initial conditions are adjusted accord- 
ing to eq. (27). 

Limit (d), k, 4 k _ 1 
The reaction dynamics for a = 0.01 and b = c = 1 

are shown in Fig. 4. 

The phase plane. The phase plane, Fig. 4(a) shows 
how the reaction moves towards the quasi-equilibrium 
line by motion of both cs and x. Then once in the quasi- 
equilibrium state the reaction moves along the quasi- 
equilibrium line towards the equilibrium point. The 
quasi-steady-state and quasi-equilibrium line are es- 
sentially identical in this limit, cf. eq. (32). 

The fast motion. Figure 4(b) shows the transient 
changes in the concentrations during the approach 
to the quasi-equilibrium state. Both concentrations 
undergo significant changes. 

The slow motion. Figure 4(c) shows the slow tran- 
sients of the reaction and the quasi-equilibrium solution 
is adequate to describe these transients if the initial 
conditions are properly adjusted, eq. (27). 

Comment on the criterion e, 4 s0 
The commonly accepted and quoted criterion for 

the applicability of the quasi-steady-state assumption 
is that the initial concentration of the enzyme must be 
much smaller than that of the substrate. Our analysis 
above indicates that this is an incomplete criterion and 
the proper dimensionless groups to use are b and c. 
Limit (a) is still valid even though the value of se is 
much below K,. Figure 5 shows the reaction dynamics 
for a = 1, b = c = 0.01 which is analogous to Fig. 1 
except that the initial substrate concentration is now 
100 times smaller than K,. In other words, we have 
that e, = se -+ K, and as demonstrated in Fig. 5, the 
quasi-equilibrium assumption is applicable. 

8. CONCLUSIONS 

Through simple modal analysis we are able to 
conceptualize and justify the applicability of the 
kinetic assumptions used to simplify the mass action 
kinetic model of the Michaelis-Menten reaction mech- 
anism. Linear analysis predicts the following basic 
parameter combination for the validity of the kinetic 
assumptions: 

for the quasi-steady state assumption, 
Km .% so; 

for the quasi-equilibrium assumption, 
k2 < k_I. 

9. DISCUSSION 

Full linear analysis, including the consideration of 
the normal modes, gives the capability to resolve some 
long-standing questions about the kinetic behaviour of 
the Michaelis-Menten reaction mechanism. The par- 
ameter combinations under which the commonly used 
quasi-steady-state and quasi-equilibrium assumptions 
apply are predicted by modal analysis and confirmed 
via full numerical integration. Furthermore, linear 
analysis leads to an elegant interpretation and a clear 
conceptualization of the reaction dynamics. 

Our analysis shows that the commonly accepted 
criterion e. -& so for the applicability of the quasi- 
steady-state assumption is incomplete. The assump- 
tion of quasi-stationary behaviour is found to depend 
on the relative magnitude of e. and se to K, [limits (a) 
and (b)], both of which are concentration-dependent 
effects. For instance, we can have the condition 
e, = so < K, and still apply the quasi-steady-state 
assumption (cf. Fig. 5). What is of particular import- 
ance here is that as long as the initial enzyme concen- 
tration is small compared to the Michaelis constant, 
the quasi-steady-state solution is valid regardless of the 
initial concentration of the substrate. As pointed out in 
Section 5, e, 4 K, is a commonly found situation for 
initial rate experiments. However, in uivo the concen- 
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Fig. 2. Dynamic behaviour of the Michael%-Menten reaction mechanism for kz/k ~I = 1, e,,/K, = 0.01, 
%lK = 50. (a) The phase plane (solid line, quasi-steady-state solution; dashed line, full numerical solution). 
(b) l%e fast transients. (c) The slow transients (solid line, full numerical solution; dashed line, quasi-steady- 

state solution). 
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tration of the enzyme can approach the K, value and 
the quasi-steady-state solution could lead to erroneous 
results. Further discussion is found in Palsson (1984). 

Crooke er al. (1979) have discussed the importance 
of the ratio Q/K,,, for Michaelis-Menten kinetics. 
Their analysis showed that when the ratio e,/K, is 
small, the quasi-steady-state assumption holds and 
when it is large the quasi-equilibrium assumption is 
valid. This agrees with our results for limits (a) and (c), 
respectively. In a wider context, the e,/K, ratio can be 
interpreted as a measure of the relative magnitudes of 
dsldt and dx/dt; this is evident when one looks at the 
composition of the fast mode in limits (a) and (c). 

The quasi-equilibrium assumption holds if e, + K, 
or when k, G k _ 1 [limits (c) and (d), respectively]. The 
condition k, G k _ f is a kinetic one and will not change 
with the total concentrations e, and s,,: it is an intrinsic 
kinetic property of the enzyme. The above results show 
that appropriate use of the quasi-equilibrium assump- 
tion to describe the motion of the substrate must 
include adjustment of the initial conditions. Otherwise 
erroneous results follow from the analysis of initial 
rate data. 
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K, 
m17m2 

P 
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S 
t 
Ul, u2 

x 

X 
Y 

NOTATION 

dimensionless group, k,/k ~ 1 (the “stickiness 
number”) 
dimensionless group, co/K, 
dimensionless group, so/K, 
independent elements of the eigenrows 
concentration of the free enzyme 
free enzyme species 
general non-linear function 
ik-th element of the Jacobian matrix 
Jacobian matrix 
kinetic constant 
Michaelis constant, (k, + k _ ,)/k, 
dissociation constant, k _ l/k, 
normal modes 
concentration of the product 
product 
concentration of the substrate 
substrate 
time 
eigenrows 
concentration of the intermediate complex 
substrate--enzyme intermediate complex 
concentration vector 

Greek letters 

219 A2 eigenvalues of the Jacobian matrix 
u dimensionless substrate concentration, s/K, 
T dimensionless time, k, eo t 

x dimensionless intermediate complex concen- 
tration, x/e, 

qss quasi-steady state 
qe quasi-equilibrium 
0 initial condition 

Superscript 
t transpose 
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