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ABSTRACT 

A compartmental model is presented for the spread of HIV in a homosexual population 

divided into subgroups by degree of sexual activity. The model includes constant recruit- 

ment rates for the susceptibles in the subgroups. It incorporates the long infectious period 

of HIV-infected individuals and allows one to vary infectiousness over the infectious 

period. A new pattern of mixing, termed preferred mixing, is defined, in which a fraction of 

a group’s contacts can be reserved for within-group contacts, the remainder being subject 

to proportional mixing. The fraction reserved may differ among groups. In addition, the 

classic definition of reproductive number is generalized to show that for heterogeneous 

populations in general the endemic threshold is BDc,, where cr is the mean number of 

contacts per infective. The most important finding is that the pattern of contacts between 

the different groups has a major effect on the spread of HIV, an effect inadequately 

recognized or studied heretofore. 
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1. INTRODUCTION 

The AIDS epidemic has stimulated a large amount of research on the 
structure and variability of the human immune deficiency virus (HIV-l) and 
on the natural history and epidemiology of AIDS. Recently, a growing effort 
in modeling the transmission of HIV has emerged. The situation is unique in 
that modeling disease spread has been introduced into the discussions on 
epidemiology early in the process. Insightful modeling should help inform 
control efforts and provide a logical basis for designing the most informative 
population studies. 

We have started a series of model studies with the general goal of 
obtaining insight into the structure of the transmission process. Our primary 
aim in the work reported here is to examine the effects of different patterns 
of contact in a population that can be divided into subgroups by degree of 
sexual activity. We find that both the rates of spread in the groups and the 
steady-state levels of HIV in the groups depend strongly on the pattern of 
contacts between the groups. 

2. NATURAL HISTORY AND EPIDEMIOLOGY OF AIDS 

We review briefly the important features of the spread of the HIV virus 
and the development of AIDS. 

AIDS is caused by a retrovirus [l, 21, HIV-l (formerly HTLV-III or 
LAV), which infects T-helper cells. This virus was identified as the etiologi- 
cal agent of AIDS in 1983 by Barre-Sinoussi et al. [3] and by Gallo et al. [4]. 
A closely related virus, HIV-2, found in humans in West Africa, has also 
been claimed to cause AIDS [5]. Simile but less closely related viruses have 
been found in T-cell leukemia (HTLV-1) and hairy cell leukemia (HTLV-2) 
in humans [6]; in terms of nucleotide sequence, HIV-l is more closely related 
to visna virus [6]. There is also a related simian virus, SIV (STLV-3), which 
has caused problems as a contaminant in studies of human T-lymphotropic 
viruses. 

The course of infection and progression to AIDS is highly variable. 
Immediately after infection there may be an acute illness with fever, myalgia, 
diarrhea, and lymphadenopathy that has been likened to a bout of infectious 
mononucleosis [7]; acute encephalitis has also been described at this stage 
[8]. This acute phase may correspond with rising amounts of free virus in the 
blood. There is then a fall in free virus as antibodies appear. This appearance 
of antibodies has been reported to occur in 19-56 days [7] or longer [9, lo]; 
in chimpanzees inoculated with the virus, antibodies appeared m 3 months 
[ll]. The virus titer remains low for a variable period of years, but eventually 
the T-helper cell count begins to fall, virus levels rise, and antibodies to the 
viral core protein fall [12]. When the T-helper cell count falls below about 
50% of the normal level, the opportunistic infections that are signs of the 
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immune deficiency begin to appear. In addition, the virus eventually invades 
the brain, giving sign of dementia [S, 13-151; it has been shown that HIV-l 
inhibits neuronal responses to neurotropic factors in tissue culture [16]. 

The period from infection to apIjearance of first symptoms has been 
estimated to have a mean of 4.5 to 8 or tnore years [17-211. Lui et al. [17, 181 
fitted incidence data with a Weibull distribution and obtained a mean of 
4.5 years (90% confidence interval: 2.6-14.2 years) for cases infected by 
transfusion and 7.8 years (90% confidence interval: 4.2-15 years) for a 
cohort of homosexual and bisexual men. Medley et al. [20] use both Weibull 
and gamma distributions for the transfusion cases and obtain equally good 
fits; they report means of 2 years for children under 4, 8.23 years for those in 
the 5-59 age group, and 5.5 years for patients 60 years or older. Two 
problems have hampered accurate estimation of incubation times. For one, 
we have data only from the early phase of the epidemic of AIDS, so the data 
on distribution of incubation times are severely right-truncated [22, 231. That 
problem is compounded by a distribution of reporting lags that makes the 
most recent data the least reliable because of underreporting. It is clear that 
as more data have accumulated the estimated incubation times have in- 
creased [ 221. 

What fraction of those infected with HIV will eventually come down with 
AIDS? That too is uncertain, but the fraction has increased steadily as the 
data have accumulated. It may be that practically all will eventually suc- 
cumb [18, 22, 24, 251. Information on the nature of the virus is not 
encouraging. For the retroviruses, DNA transcripts of the viral RNA are 
incorporated into the genome of the host cell and may remain dormant for 
long periods. Stimulation of the cell by specific compounds may then 
activate synthesis of virus particles. It has been shown in tissue culture lines 
carrying HIV-l that mitogens increase the replication of HIV-1 [26, 271. In 
addition, the nucleotide sequence of HIV-l is similar to that of visna virus 
[6], a lentivirus that causes progressive meningoencephalitis in sheep. As a 
group, the lentiviruses cause slow progressive diseases with high eventual 
fatality rates; the case fatality rate for visna virus is up to 100% [22]. This 
ancillary information, along with the progressively increasing estimates of 
mortality and incubation period, suggests the possibility of an eventual 
mortality pushing 100% with a long mean incubation time and an incubation 
time distribution that has a long tail. On the other hand, there is evidence 
that progression to AIDS may differ for individuals carrying different alleles 
of the group-specific component Gc [28]. 

HIV is transmitted by transfusion of infected blood, by sharing of needles 
by drug users, and by sexual intercourse. The first cases of AIDS were 
reported in 1981 [29], although there is now evidence that there may have 
been sporadic, unrecognized cases as far back as the 1960s. The early cases 
in the United States were in homosexual men and IV drug users [30-321, but 
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heterosexual transmission has also been reported [33-361. The combination 
of drug use and prostitution could play an important role in spreading HIV 
to heterosexual groups [29], but a study in New York City shows that this 
combination has not yet made a large contribution there [37]. The transmis- 
sibility per sexual act appears to be low but has been inferred to be much 
higher for anal receptive intercourse than for any other type of sexual 
contact [38-421. However, accurate data on sexual contacts are difficult to 
obtain, and those available are for relationships that involve a variable, and 
often uncertain, number of contacts; so the estimates for transmissibility are 
subject to a number of uncertainties. 

Because of the long incubation period before AIDS develops, there is now 
a large pool of HIV-infected individuals, much larger than the number of 
reported cases of AIDS, and there is reason to believe that most of these will 
come down with AIDS. However, the incidences of urethral and rectal 
gonorrhea in homosexual males have been falling steadily since 1981, sug- 
gesting that behavioral changes in some of the high risk groups have 
decreased contact rates and/or the probability of transmission per act [43]. 

3. MODELING APPROACHES 

GENERAL DISEASES 

An extensive literature on the modeling of epidemics has developed over 
the last two decades. Most of this literature has dealt with stationary 
populations characterized by fractions S of susceptible individuals, I of 
infected individuals, and R of recovered and immune individuals who are 
still involved in the interactions that lead to transmission of the disease. 
Some models include a latent group E of individuals who have been infected 
but are not yet infective. A now relatively standard terminology classifies 
models as SI, SIS, SIR, SIRS, and SEIRS, depending on what happens to 
infected individuals. Thus, an SI model applies to diseases in which infected 
individuals do not recover to return to the population. In an SIS model an 
infected person recovers and is again susceptible, whereas in an SIR model 
an infected person becomes immune on recovery. For reviews, see [44-[50]. 
Appendix A contains the general equations for SIS and SIRS models and a 
description of the major results known about these models. 

Of relevance for the work on AIDS is the modeling of contacts between 
individuals in homogeneous and heterogeneous populations. The most com- 
monly used assumption has been that contacts are random; in a homoge- 
neous population this assumption gives “homogeneous mixing.” For a 
heterogeneous population divided into groups that have different contact 
rates, random mixing on the basis of activity gives “proportional mixing” 
[51-531. Anderson and May [54] have looked at age-related heterogeneity in 
transmission of infection. May and Anderson [55] have used homogeneous 
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mixing within groups and different uniform mixing rates between groups. 
Hethcote and Van Ark [53] have pointed out that the way in which May and 
Anderson defined their transmission parameter implies that the contact rates 
they use are proportional to group sizes. Travis and Lenhart [56] expanded 
the model of May and Anderson to include variable mixing rates between 
groups. Sattenspiel [57] and Sattenspiel and Simon [58] have used a migra- 
tion matrix approach to specify the probabilities of contact between sub- 
groups in a heterogeneous population in modeling an epidemic of hepatitis 
A. Ideally, one should estimate the contact rates both within and between 
groups. This was done for a model of influenza A [59]. The data needed to 
estimate contact rates are difficult to obtain. However, methods for estimat- 
ing some transmission parameters from data are available [60-621. 

A fair amount of work on modeling one sexually transmitted disease, 
gonorrhea, is available [63, 641. That work has stressed the importance of a 
highly active, promiscuous core group in spreading the disease. 

AIDS MODELING 

The number of efforts to model AIDS has grown rapidly. Pickering et al. 
[43] used a finite difference model for a homosexual population in which 
they assumed homogeneous mixing. They included changes in contact rates 
with time that were estimated from the changes in incidence of rectal and 
urethral gonorrhea. Knox [65] reported on equilibria and the dynamics of 
some finite state models of the SIS and mixed SIS and SIR type. For 
multigroup networks, he introduced the contact matrix, which gives the 
contact rates between different groups. For the parameter values he chose, 
his calculations predicted that the prevalence of AIDS in promiscuous 
homosexuals would reach equilibrium in approximately 13 years, whereas 
the prevalence in nonpromiscuous heterosexuals would not reach equilib- 
rium in 50 years. Kiesling et al. [66] also divide the population into groups 
based on sexual behavior. 

May and Anderson [67] and Anderson et al. [68] used proportional 
mixing in modeling the spread of AIDS in groups of homosexual males that 
have different rates of contact with new partners. In a subsequent paper, 
Anderson et al. [69] report that their model is very sensitive to changes in 
values of the epidemiologic parameters and so take a pessimistic view of the 
possibility of predicting the size of the AIDS epidemic. 

A number of models have been presented at meetings and have not yet 
appeared in journals. At the Los Alamos Conference on Nonlinearity in 
Medicine and Biology, Hyman and Stanley [70] reported their results with 
partial differential equation models of spread of HIV. The partial derivatives 
in their model arise from their treatment of risk as a continuous parameter. 
They show, as do we, that the degree of mixing between activity groups plays 
a major role in the spread of HIV into low-activity groups. At the same 
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meeting Dietz [71] reported on a model of spread in the heterosexual 
population that includes some of the effects of pair formation. Hethcote’s 
model [72] of HIV transmission emphasizes numerical simulations of the 
spread of the virus in major metropolitan areas, such as New York and 
San Francisco. It allows for 14 groups, including homosexuals, bisexuals, 
heterosexuals, and drug users, using proportional mixing for transmission in 
the homosexual community. Castillo-Chavez et al. [73] study a model that 
emphasizes the use of general survival functions to model the delays that 
occur in the transmission process and the use of contact parameters 
that vary with the size of the total population. 

We present a model of HIV spread in a homosexual population that 
incorporates what we believe are three major factors in HIV spread. One 
factor is the effect of the pattern of contacts between groups that differ in 
sexual activity. A second factor is the long period of infectiousness prior to 
the onset of AIDS, which we model by a series of compartments represent- 
ing stages an individual must pass through from the time of infection to the 
onset of clinical disease. Anderson et al. [74] have also used a chain of 
compartments to model stages and to introduce time lags in the numerical 
computations for their work on the demographic effects of AIDS [75]. The 
use of such a compartmental model permits one to examine a third factor, 
the effect of variation in transmission probability over the stages of infec- 
tiousness. We examine the effects of these three factors on the dynamic and 
steady-state behavior of the model. 

4. MODEL OF SPREAD IN A HOMOSEXUAL POPULATION 

ASSUMPTIONS AND NOTATION 

We assume a population divided into n groups based on sexual activity, 
the number of contacts per unit time. In this first model there is no 
migration between groups, but they interact by way of sexual contacts. 
Figure 1 shows a compartmental model [76] of the ith contact-rate group. 
For the ith group, X, is the number of susceptibles, x is the total number of 
infecteds, and Z, is the number with AIDS. From first infection to the 
development of AIDS, the infected pass through a series of m stages, 

FIG. 1. Compartmental model for group i 
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qi,. . . , x:, , with I: = E., y,. Those in Z, are presumed to be so ill with AIDS 
that they no longer take part in transmission. Thus the model consists of a 
set of n SI models that interact by way of contacts between the susceptibles 
and infecteds of the submodels. We assume that the recruitment rate rl, for 
the i th group, the number of new susceptibles entering the group per unit of 
time, is constant. 

We define the following parameters: 

c,, the number of persons contacted (sex acts) per person in group i per 
unit time. This has dimensions t- ‘. For very small populations the number 
of contacts per person per unit time might well be a function of the size of 
the population. We assume that we are not in that range and take a constant 
value for c,. 

p,,, the proportion of the contacts of a person in group i made with 
persons in group j; it is dimensionless, and E/pi, = 1. The matrix P = [( p,, )] 
is the mixing matrix or contact fraction matrix. 

/3,,,, the transmission fraction. The fraction of contacts between a suscep- 
tible person in group i and an infected person in y, that transmits the virus; 
dimensionless. In this paper we look only at /?,j, that vary with r, the stage 
of the infection, but do not depend on i and j. 

k, the fractional transfer rate from E;, to y.,+ i; dimension t-l. 
p, the fractional rate at which members transfer out of the groups for all 

reasons other than the development of AIDS. We call it the competing 
mortality rate, assumed constant for X, and y and assumed small relative 
to k. 

6, the mortality rate for those with AIDS; dimension tp’. This need not 
be used in the model (8 = 0); if it is not used, Z, represents the total number 
who have developed AIDS, living and dead. We do not model the progres- 
sion of the disease. 

Note that the probability of transmission and the contact rates are often 
combined into one parameter. We carry them as distinct parameters because 
eventually we want to estimate them as such and we believe that various 
control measures may affect them independently. 

THE EQUA TIONS 

With the parameters so defined, the rate at which susceptibles in group i 
are infected by contact with members of qr must be 

In this expression, c,X. is the total number of contacts of Xi per unit time, 
pIJ gives the fraction of these contacts that are with group j, Y,,/( Xj + y.) is 
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the probability that the contact with group j is with a person in the r th 
infectious subgroup, and Bij, is the fraction of those contacts that result in 
transmission. Thus the equation for the rate of change of X, is given by 

J;; = - c,x, i pij f /3,,,& -px,+u. 
j-1 r=l J J 

The equations for &, . . . , yrn and Z, are then 

%I = ci4C PijcWjr& -(k+P)Y, 
J r J J 

~,=q,_,-(k+p)& r=2 ,..., m (3) 

ii = k y,,, - SZ,. (4 

This model differs in important ways from models frequently used in 
epidemiological modeling: 

(1) With some exceptions [68, 741, the models commonly used are for a 
system of constant population size in which births equal deaths. We look at 
a population with constant rates of recruitment into the different groups. In 
the absence of AIDS and competing deaths, such populations would grow at 
constant rates. In the absence of HIV and with p > 0, each population comes 
to a constant equilibrium population. We start with such equilibrium popu- 
lations, introduce HIV, and follow the dynamics, seeking the conditions that 
give endemic steady states. 

(2) The model explicitly includes a sequence of stages of infection that 
may differ in infectiousness, a feature also used by Anderson et al. [74, 751. 

(3) We introduce a new type of mixing, preferred mixing, in which a 
fraction of each group’s contacts can be reserved for intragroup contacts, a 
different fraction for each group. 

An important consequence is that the rates of change of the susceptibles 
are not quadratic in susceptibles and infectives but are more complicated 
nonlinear, rational functions of the susceptibles and infectives, as illustrated 
by Equations (1) and (2). 

MODELING THE STAGES OF INFECTION 

The subgroups &, . . . , y:, give the progression through the stages of 
infection up to the development of AIDS. If /.L = 0, the density function of 
incubation times for a chain of m compartments with uniform fractional 
transfer coefficient k is the gamma distribution, Equation (5), with integer 
m [76]: 

f(t> = kmt"-le-kr 
(m-l)! ’ (5) 
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This distribution has mode (m -1)/k, mean m/k, and variance m/k2. For 
p > 0 and for unit impulsive input into & at t = 0, the amount leaving y,,, 
at t is 

r(t) = kmf’-$(P+k)r 

(m-l)! 

The amount leaving y,,, is the fraction km/( k + p)” of the amount injected; 
the normalized density function for those that exit x, is Equation (5) with 
(cc + k) replacing k. 

It is also possible to model the distribution of transit times through the 
stages of infection with a series of compartments that have different frac- 
tional transfer coefficients. That option provides more freedom in shaping 
the density function of transit times, but at the expense of an increase in 
algebraic complexity in the analysis of the endemic steady states. 

5. MIXING AND THE MIXING MATRIX 

Mixing between groups is specified by the contact fraction matrix, (pi,), 
which we also call the mixing matrix. The elements p,, give the proportion of 
the contacts of an individual in group i that are made with individuals in 
group j. This matrix was used by Nold [51] in defining proportional mixing 
and corresponds to the migration matrix of Sattenspiel [57] and Sattenspiel 
and Simon [58]. Note that Knox [65] used a contact matrix rather than a 
contact fraction matrix. 

CONSTRAINTS 

One is not free to choose the elements of the mixing matrix. By its 
definition it is subject to two constraints. First, since the elements are 
proportions, the sum of each row must be 1: C/p,, = 1. In addition, there is a 
symmetry constraint. The number of contacts per unit time of group i with j 
must equal the number of contacts of j with i, giving 

C, ( X, + y) Pi j = cj ( x, + 5 ) P,I ’ (7) 

Only mixing matrices that satisfy these constraints are admissible. We shall 
examine the model results for three types of mixing: restricted, proportional, 
and preferred mixing. 

RESTRICTED MIXING 

In restricted mixing all contacts are restricted to within-group contacts. 
Consequently, p,, =l and P is the identity matrix. This matrix trivially 
satisfies the constraints. 
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PROPORTIONAL MIXING 

An assumption frequently used in epidemic models involving heteroge- 
neous populations is the proportional mixing assumption [?l, 531. In propor- 
tional mixing, the fraction of the contacts of group i with group j is equal to 
the fraction of total contacts made by the population that are due to group j. 
The total number of contacts by all groups is given by the equation 

c=&,(x,+r,). 

Therefore, the p,, for proportional mixing are given by 

y, xi--+ 
PI, = c, c (9) 

for all i, j. Consequently, P is a matrix all of whose rows are the same. 

PREFERRED MIXING 

In her work on heterogeneity in disease transmission, Nold [51] compared 
transmission for isolated groups (restricted mixing) and for groups with 
proportional mixing. She also looked at the case in which the mixing matrix 
was a linear combination of restricted and proportional mixing. Such mixing 
was also used by Hethcote et al. [77] in work on gonorrhea modeling and by 
Hethcote and Van Ark [53]. This approach is equivalent to reserving a 
fraction of the contacts of each group for within-group contacts, the same 

fraction for all groups. We have generalized that type of mixing so that 
arbitrary and different fractions of each group’s contacts are reserved for 
within-group contacts; the nonreserved contacts are subject to proportional 
mixing. We have named this preferred mixing. 

For preferred mixing, the elements p,, and P,~ are given by 

Pt,=Pi+(l-Pi) 
c,(l-p,)(x,+T) 

&A(l- Pk)( x/c + r,) 
(10) 

and 

c,(!-p*)(x,+y,) 
p~J=(l-pJ~kCk(l-pk)(Xk+Yk)’ j# 2. (11) 

In equations (10) and (ll), pi is the fraction of group i’s contacts reserved 
for contacts within the group. Note that “pi = 0 for all i” is full proportional 
mixing, while “pi = 1 for all i ” is restricted mixing, and “0 < p, < 1 but all p, 
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the same” is the case examined by Nold. Preferred mixing satisfies the 

constraints on the p,,, 
We note that with their model of age-structured contact rates, May et al. 

[78, 791 compare the effects of mixing restricted to people of the same age 
with those of mixing in which there is a constant probability of mixing with 
people of all ages. This is equivalent to comparing the effects of restricted 
mixing and proportional mixing in a finite state model. 

6. MATHEMATICAL PROPERTIES OF SYSTEM (l)-(4). 

As discussed above, the system of Equations (l)-(4) that we use to model 
the spread of AIDS differs in three significant ways from the usual SI, SIS, 
SIR, and SIRS systems of mathematical epidemiology. First, they include 
death from the disease and consequently are rational expressions of X, and 
5, not simply quadratic expressions. Second, they include multiple stages of 
the disease; and finally, they allow for variable contact rates in a number of 
ways. In Appendix A, we write out a typical SIS or SIRS system and 
formally state a theorem that summarizes the current state of the theory for 
such equations. In summary, such systems have a compact, convex invariant 
domain C, and there is always a no-disease stationary solution. Furthermore, 
there is a function of the parameters f(1) and a threshold b with the 
property that when f(1) < b, the no-disease equilibrium is unique and 
globally asymptotically stable. When f(x) > b, there is a unique new equi- 
librium that arises in the interior of C. This new endemic equilibrium is at 
least locally asymptotically stable and probably globally so. 

How much of this general theory carries over to our system (l)-(4)? The 
following theorem summarizes our theoretical results for this system. 

THEOREM I 

Consider the system (l)-(4) with p > 0 and with restricted, proportional, or 
preferred mixing. Then: 

(i) There is a compact (i.e., closed and bounded), convex invariant set C 
in the nonnegative orthant, so that all solutions that start in C stay in C for all 
t > 0. 

(ii) The no-disease steady state X, = Llj/p, y = 0 for all i, is always a 
stationary solution of (l)-(4). 

(iii) There is a function f of the parameters and a constant b with the 
property that when f(A) < b the no-disease equilibrium is the only stationary 
solution, and when f(X) > b the no-disease equilibrium and an interior, en- 
demic equilibrium are the only stationary solutions of (l)-(4). 

(iv) For the case of restricted mixing, when f(X) < b the no-disease 
equilibrium is globally asymptotically stable, and when f(X) > b the no-disease 
equilibrium becomes unstable and the endemic equilibrium is locally asymptoti- 
cally stable. 
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FIG. 2. Phase diagram for simplified system with one group and one stage for p > 0 

and X -(.4 + II) negative. 

For p = 0, the no-disease equilibrium occurs at 4 “equal to infinity” and 
y = 0. In this case, there is no compact invariant set. 

The proofs of parts i, ii, and iv of Theorem 1 are presented in Appendix 
A. The existence of the threshold and the endemic equilibrium is computed 
in Section 7 for p= 0 and in Appendix C for p > 0. Section 8 describes how 
these thresholds and endemic steady states depend on the parameters of the 
model. 

To further the reader’s intuition about system (l)-(4), we present in 
Figures 2 and 3 the planar phase diagrams for a simplified version of (l)-(4) 
with one subgroup, with deaths, and with only one stage. The one subgroup 
condition is equivalent to restricted mixing. The one-stage hypothesis is 
made so that our system will be planar. The equations for the spread of the 
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FIG. 3. Phase diagram for simplified system with h -(k + p) positive 

disease in this case are 

k=-gy-px+u, h=pC, 

Y=Ey-(k+p)Y, (12) 

i=kY-SZ. 

Since the first two equations are independent of Z, we can work with just 
these two, without loss of generality. May et al. [78, 791 give the phase plane 
diagrams for the same system of equations in terms of Y and N = X+ Y. 

In Figures 2 and 3, the threshold condition is whether or not h - (k + p) 
is negative or positive. When it is negative, the {Y= 0} isocline yi lies in the 
second and fourth quadrants and crosses the { k= 0} isocline y2 in the 
fourth quadrant, as illustrated in Figure 2. In this case, the no-disease 
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equilibrium is the only stationary solution, and it is globally asymptotically 
stable with V( X, Y) = Y a Lyapunov function for the system. When X - 
(k + cl) is positive, the isocline yi lies in the first and third quadrants and 
crosses isocline yz in the positive quadrant at the endemic equilibrium, as 
pictured in Figure 3. Our analysis of this situation in Appendix A shows that 
the endemic equilibrium is globally asymptotically stable in this case. Note 
that the endemic equilibrium arises when the Y coordinate of the crossing of 
yi and y2 becomes positive and in this case the stability of the system 
transfers from the no-disease equilibrium to the endemic one. 

Figures Al and A2 in Appendix A study the same phenomenon for the 
case p=O. 

7. ENDEMIC STEADY STATES AND THRESHOLDS 

In this section we derive the steady-state results and thresholds for p = 0. 
The results for p > 0 are more realistic in that the population groups come to 
stationary states even if some of the groups are below their infectious 
thresholds. However, the algebra for p > 0 becomes so cumbersome that it is 
difficult to see the forest for the trees. Moreover, the pattern of the 
derivation is the same for p > 0 as for p = 0. Therefore, we present 
the results for n = 0 as a template for the derivation for p > 0. The results of 
the calculations in this section and in Appendix C are summarized in Tables 
1 and 2. The interpretations of the thresholds are presented in Section 9. 

THE STEADY STATES FOR p = 0 

There is a steady state in the Y;‘s when there are no infected individuals 
in the population; T = 0 for all j. But then X = (/I and the susceptible 
populations grow without bound. We look for steady states at which X!, and 
t are both zero for all i. We write q and y for the values of X and Y at 
the stationary solutions. For p = 0, Equations (l)-(3) reduce to (13)-(16) at 

the steady state. 

(13) 

(14 

y=ly_l=$, forr=2,...,m. (15) 

From (15) it follows that 

(16) 
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At the endemic steady state, the size of the infected population is a rather 
simple expression (16) which is independent of the type of mixing under 
consideration. This fact makes the calculations for a = 0 much simpler than 
the corresponding calculations for p > 0. 

THE STEADY STATES DEPEND ON THE MEAN VALUES OF&,, 

In this paper we will be concerned with transmission fractions that 
depend only on the stage of HIV infection, so we can write p,,, = &. From 
(15) and (16), vr = v/m. Substituting into (13) and rearranging gives 

Note that the summation over r in (17) is the mean value B over the stages 
in a group. 

RESTRICTED MIXING 

For restricted mixing, Equation (17) simplifies to 

(18) 

Multiplying (18) by (X,’ + y), substituting r = (m/k)q, and solving for 
F gives 

(m/k)q 
‘= Ps(m/k)-1 ’ 

(19) 

Since y is (m/k)C/1, the steady-state infectious fraction for group i is then 

s 

x yy’ = &m/k -1 
I I pc,m/k 

(20) 

The numerator of (20) [the denominator of (19)] must be greater than zero 
for there to be an endemic steady state. Note that pc,m/k is the initial 
reproductive rate R, [46, 53, 55, 801 and must be greater than 1 for an 
epidemic to start. This condition also defines an endemic threshold in p for 
group i; if we think of c, and m/k as being determined, then p must be 
greater than 
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for the existence of an endemic state with infected fraction greater than zero. 
With this notation, the steady-state infected fraction can be written as 

(21) 

PROPORTIONAL MIXING 

We turn next to proportional mixing where pi, is given by expression (9). 
Substituting Equation (9) for plj into Equation (17) gives, for the steady 

state, 

Sum Equation (22) over i and solve for C,c, Xy: 

c CJ x; = 
wk>@cJq/q)q 

J 
( pm/k)(ccJq/cq) - 1. (23) 

It is convenient at this point to introduce an average of the contacts of the 
infected individuals in the population: 

CJc,Y, cv = - cjq . 

Note that this average changes with time; at the steady state, y = U,(m/k) 
and Cv becomes C,: 

Substituting CU into (23) yields 

We define K,y by the equation 

(25) 

(26) 

(27) 

The number K,, is the fraction of group i’s contacts that are with infectious 
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individuals. Using the pi, for proportional mixing from Equation (9), we 
find that Kiy is independent of i: 

K,, = KY = =c,Y, 
xc, x, +cc,r, . 

At the steady state, substitute (26) into (28) to obtain 

Ks = &Cm/k) -1 
Y &(m/k) . 

Now, substitute (29) into (22) and solve for y: 

u 
X:=Bc,= 

(m/k)W 
c,(&(m/k) -1) ’ 

(28) 

(29) 

(30) 

The fraction infected in group i at the steady state can now be written as 

5 (ci/G,)[ih(m/k)-ll 
&= l+(c,/ZU)[&,(m/k)--11 (31) 

For an endemic state, the numerator of (31) [the denominator of (30)] 
must be greater than zero. This condition once more defines a threshold in 
transmission rates but one that is the same for all groups, that is, a 
population threshold: 

” = E,(rtr,k) ’ (32) 

In this notation, we can write (31) as 

(ci/6/)[(ij/i%-1] &= l+(c,/~u)[(p/~T)-l] 

PREFERRED MIXING 

In the case of preferred mixing, plug the mixing fractions p,, from (10) 
and (11) into the steady-state equation (17) to obtain the equation for the 
steady-state value X,:: 

Y=P'ixS x;“+y 

- i 

Cc.(l-p)Y” 
~+(l-Pi)zc(~_pjx~+~c,(;_p)y~ 

i 
. (33) 

I I I I 
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In analogy with definition (27) in the proportional mixing case, we define K, 

by 

(34) 

Here K, is the fraction of the contacts subject to proportional mixing that 
are with infectious individuals; K, is the same for all groups. However, at 

the steady state K, = Kc we no longer have a simple expression for Kc 
corresponding to expression (29) for full proportional mixing. 

We cannot find a closed solution for &J in this preferred mixing case, but 
substituting K”, from (34) into (33) and rearranging yields a quadratic 
equation for X;r: 

= 0. (35) 

We use the quadratic formula to write the solution to the quadratic (35) as 

(36) 

where 

~=gC,(m/k)((l-pi)K~+p,)-l, 
Q,=@c;(m/k)(l-dG 

We have used the positive root in the quadratic formula to guarantee that y 
is nonnegative. The coefficients in (36) depend on K’,, which in turn 
depends on r. We have calculated solutions iteratively by first estimating 
KG, then calculating &? using (36), then calculating KG using (34) and so 
on. This iteration procedure converges rapidly. In Appendix B, we show why 
this iteration works so well, and we prove that the endemic solution is 
unique. We also compute the threshold for endemicity: 

(37) 

When r < 1, there is a unique endemic equilibrium; when r > 1, there is no 
endemic equilibrium. Furthermore, this condition reduces to our earlier 
threshold for the proportional mixing case, when all the pi’s equal 0. As we 
discuss at the end of Appendix B, it is also consistent with the threshold 
conditions we derived for restricted mixing (p, = 1 for all i). 

The steady-state results are summarized in Tables 1 and 2. 



HIV TRANSMISSION: EFFECT OF CONTACT PATTERNS 137 

TABLE 1 

Steady State Results for Different Mixing Matrices for p = 0 

Restricted Proportional Preferred 

x, (m/k)U (m/k)U, 
&(m,‘k)-1 (c,/?U)(&,(“/k)-l) 

I 

u,-P,+,,'P,'+Q,) 

2pc, (1 - p, ) Iv;. 

Y U,(m/k) U,(m/k) U,(m/k) 

End. Thr.” p,c;$>l p&T > 1 

PT., 
1 

c,m/k ?,,(ti,k) 

1 h 

CL (m/k) 

Y’ l-%.,/B (%%,[(mT)-ll :Q, 
x: + r;’ l+(m/,[(P/P,)-11 :Q,-P,+{G 

“End. Thr. = endemicity threshold. 

hAssumes 1- pc,p,(m/k) > 0 for all i. 

TABLE 2 

Steady-State Results for Different Mixing Matrices for p > 0 

Restricted Prouortional Preferred 

“End. Thr. = endemicity threshold. 
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In Table 1, 

JOHN A. JACQUFZ ET AL. 

cciV cu- cy ’ 

P,=pci(m/k)[(l-p,)KS+p~] -1, 

Qi=4pc,(m/k)(l-p,)K", 

and 

In Table 2, 

-p,+\lP,2+Q, 
Al= 2c&(l-P,) ’ 

and 

8. DEPENDENCE OF EQUILIBRIA ON THE PARAMETERS 

Since we have been able to compute the endemic equilibria and thresh- 
olds of endemicity in our rather complex dynamic model, the next natural 
step is to calculate how the parameters in the model affect the values of the 
equilibria and thresholds. The sensitivities of the steady states to changes in 
the parameters provide important information to guide educational efforts 
and control strategies. For restricted and proportional mixing, we need only 
compute the derivatives of the entries in the middle two columns of Tables 1 
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and 2 to understand these sensitivities. However, for preferred mixing, 
this process is more difficult because we have only implicit equations 
for the equilibria. The calculations for preferred mixing are carried out in 
Appendix D. 

We will treat each of the parameters 

ci 3.. ., c, 3 P, Pl ,...,P,,U,,...,U,,m/k 

one at a time. We will prove our results for p = 0. The corresponding results 
for p > 0 either follow directly by the same method or hold automatically for 
p small and positive because of the continuous dependence on the parame- 
ters. [The only results that do not carry over to p > 0 are the zero derivatives 
of y with respect to most parameters, because of the very simple expression 
(39) for y in the p = 0 case.] 

The Rate of Sexual Activity c,. For restricted mixing and preferred 
mixing, 

For proportional mixing, 

axs 
---c-e0 and 
ac, (39) 

for all i, j. As sexual activity in any group rises, the infected fraction in that 
group rises. 

For preferred mixing, (38) holds for all i and (39) holds for all groups i 
whose infected fraction is less than average: 

(40) 

Increasing the sexual activity of such low-activity groups increases the 
infected fractions of all groups. On the other hand, increasing the sexual 
activity of a very active or highly infected group could deplete the equilib- 
rium population of that group so badly that there are fewer members of that 
group available for interactions with other groups. This scenario would 
actually decrease the infected fractions of the other groups. 

The value of the threshold for subgroup i falls as ci rises for restricted 
mixing and as any c, rises for proportional and preferred mixing. In other 
words, the higher the level of sexual activity in any group, the more likely it 
is that the system will reach an endemic equilibrium. 
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The Transmission Fraction /3,Jk. As we computed in Section 7, the 
equilibria and thresholds depend only on the mean transmission fraction 

so we need only work with p, which is itself an increasing function of the 
&,r. For all three types of mixing, 

As any probability of transmission increases, the infected fraction increases; 
furthermore, the threshold condition becomes easier to satisfy, so that it is 
more likely that an endemic equilibrium will be reached. 

The Subgroup Recruitment Rate V,. The results for the recruitment 
parameter (5 depend very much on the type of mixing under study. For 
restricted mixing, 

the infected fraction is independent of the rate of recruitment, as is the value 
of the threshold. For proportional and preferred mixing, a y/a r/l is still the 
positive number m/k, but the effects on X,! and on the infected fractions 
depend on the characteristics of the subgroup. For proportional mixing, 

ax,_ m/k Q(m/k)x,(c, -c,)q 
aq-2 - 

CU 
[P&T -11 - c$,q)‘[ pc,: -112 ' 

ax,_ U(m/kP,(c,+-c,)U, 
(41) 

au,-- 
c,(qv,)‘[ p?,T -I]* ’ 

h f i. 

The term in the square brackets in (41) is always positive for an endemic 
equilibrium by the threshold condition. If x3, ( ci - c, )U, is negative-for 
example, if c, = min, c, -then ax,s/ay is positive; for low-activity groups, 
increasing recruitment increases both X,’ and y. However, if 1, (c, - c,)U, 
> O-for example, if c, = max, c, -then a X,!/aU, may be negative. In fact, 
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if c, is big enough relative to the other parameters, we could find 
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as the rate of recruitment into a very active group increases, the equilibrium 
size of the group may actually decrease. For i # h, one can see directly in 
(41) how the size of c,, relative to the other c,‘s determines the impact of an 
increase in U, on the size of Xy. In particular, increases in the recruitment 
rate of a very active or very infective subgroup have a negative effect on the 
equilibrium populations of other groups. 

For proportional mixing, the effect of an increase in U,, on the equilibrium 
infected fraction of any group i is the same for all groups i and is 
determined by the sign of C, (c,, - c,)U,. If c,, = max c,, then all infected 
fractions increase as U, increases; if c,, = min c, , then all infected fractions 
decrease as (/h increases. 

The effect of 4 on the threshold condition also depends on the sign of 
Cj(c, - c,)q; for groups with a relatively high activity rate, an increase in 
the recruitment rate will make the endemicity threshold easier to attain, with 
the opposite for groups with low contact rates. 

For preferred mixing, the results are even more complex than they are for 
proportional mixing. In Appendix D, we show that for a group i with a low 
activity level or a lower than average infected fraction, increasing the 
recruitment rate increases the equilibrium size of the noninfected population 
X;r; however, it has an indeterminate effect on the populations of the other 
groups. 

The Proportion of Within-Group Activity p,. Any discussion of the effect 
of a change in the proportion p of activity that is reserved for within-group 
interactions applies only to preferred mixing. For groups with a lower than 
average activity level, as quantified by (40), increasing within-group mixing 
decreases the infected fraction for that group since it cuts down on interac- 
tions with the more highly infected groups. See, for example, Figure 4 
(Section 11). The effect on the infected fractions of other groups is indeter- 
minate. On the other hand, if group i has a higher than average equilibrium 
infected fraction and if c, (1 - p,)y and c,(l - p,) Xy are much larger than 
the other c,, (1 - p,,) X, and ~~(1 - ph)Yh , then decreasing group i’s outside- 
the-group activity decreases group j ‘s infected fraction. 

The effect of a change in p, on the threshold of endemicity is rather 
complex because of the complex form of this threshold. If, for example, p, is 
small, then increasing p, makes an endemic equilibrium easier to reach. 

The Mean of the Incubation Times, m/k. Recall that m represents the 
number of stages of the disease and k is the fractional transfer rate from one 
stage to the next. For p = 0, these parameters appear only as m/k in Table 
1. Recall from Section 4 that m/k is the mean of the density of incubation 
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times for a chain of m compartments with uniform fractional transfer 
coefficient k. One computes directly from the entries in Table 1 that for all 
three types of mixing, as m/k rises, 

Each q falls. 
Each v rises. 
Each infected fraction v/( X;r + y) rises. 
The endemicity threshold rises, so it is more likely for the endemic 

equilibrium to arise. 

Note that m/k rises as either the number m of stages rises or as the 
fraction k that moves per unit time from one stage to the next falls. 

9. THE REPRODUCTIVE RATE, THRESHOLDS, AND 
ENDEMIC STATES 

In this section we relate the classical ideas of reproductive rate and the 
thresholds derived therefrom with the results we have obtained. 

THE REPRODUCTIVE RATE 

A key idea in the mathematical theory of epidemics and of endemicity is 
the number of secondary cases that a case can generate during its infectious 
period. First used by MacDonald [81], the idea is now a standard basic 
concept in the epidemiology literature [82, 831; but we note here that it was 
introduced from consideration of homogeneous populations. Let D be the 
mean infectious period, let c be the number of contacts per unit time, and let 
/3 be the probability of transmission in a contact. Then one infective has 
X = /3c contacts per unit time that can lead to transmission (effective 
contacts). If S is the fraction of susceptibles in the population, only ,BcS 
effective contacts per unit time occur with susceptibles, and then /?cSD is 
the number of effective contacts with susceptibles during the infectious 
period for one infective. This number is therefore the number of cases 
generated per infective and is called the reproductive rate R. Hethcote [46, 
531 calls R the infective replacement number. If one infected is introduced 
into a large susceptible population, S =l, and R is then called the initial 
reproductive rate, R, = BcD. 

From R and R, one obtains the classical thresholds. For an epidemic to 
take off after the introduction of one infected, R, must be greater than 1, 
giving the condition PcD >l. If an epidemic develops, the fraction of 
susceptibles decreases and the epidemic wanes; how it wanes depends on 
whether infecteds recover with or without immunity or die. If more suscepti- 
bles appear, by recruitment of new ones or by recovery without immunity, 
an endemic state can appear when each infected is replaced by exactly one 
infective, i.e., PcDS = 1. Since 0 < S < 1 in an endemic state, this also gives 
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the condition 
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@D>l. (42) 

This is all very sensible for a homogeneous population with random 
mixing. For a heterogeneous population with random, i.e., proportional, 
mixing, May and Anderson obtain Equation (42) but with c replaced by a 
quadratic weighted average [67, 681. [In addition, see Equations (C24) and 
(C25) in Appendix C.] Can this idea be generalized to heterogeneous 
populations with nonrandom mixing? 

GENERALIZATION TO HETEROGENEOUS POPULATIONS 

Consider a heterogeneous population made up of n subgroups. The 
natural extension of the idea of a reproductive rate is to consider a reproduc- 
tive or replacement rate matrix R; the element R,, is the number of cases 
generated in group i by one case in j. Thus, R,, must be the product of 

(1) The number of contacts per unit time of one infected in j with people 
in i, c,pji, 

(2) The transmission fraction for transmission from j to i, fiji, 

(3) The fraction susceptible in i, S,, 

and 
(4) The mean duration of infectiousness for a person in j, 0,: 

R,, = CjPji&B/,D,. (43) 

For the purposes of this paper, we consider populations for which the 
transmission fraction and mean duration are the same for all groups, b,, = /3 
and D, = D. Then, if S is the diagonal matrix of susceptible fractions and C 
is the diagonal matrix of contacts per unit time, we can write 

R = /3DSPTC. 

Here, P is the mixing matrix. 
Now let Y” be the column vector of infecteds at the steady state. The 

conditions for detailed endemicity must be 

y” = R”y” = jjDSsPsTCy”, (44 

in which P” is the value of P at the steady state. By detailed or stable 
endemicity, we mean that the vector Y” is reproduced by components. We 
can also define an overall endemicity by requiring only that the total number 
of infectives be constant but allowing the distribution over the subgroups to 
vary with time. We do not explore the latter interesting possibility here. 
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We can also look for epidemic thresholds by assuming the introduction of 
one or a few infecteds into some subgroups and asking whether the first few 
terms of the series 

Y k+l = RkYk 

form an increasing series for the sums of the components of Yk. Then, for 
the introduction of one infected, there are n cases to explore; there are 
interesting facets to this that we cannot explore in the context of this paper. 

A GENERAL THRESHOLD FOR OVERALL ENDEMICITY FOR 

HETEROGENEOUS POPULATIONS 

We now demonstrate a general threshold for overall endemicity for 
heterogeneous populations of all kinds. 3‘ 

Form the column sums of Equation (44): 

c Y = PDC c S:C,P;,~. 
I J 1 

(46) 

Equation (46) can be written in the form 

(47) 

Now note that Cc,y,’ is the total number of contacts of infecteds and the 
term in square brackets is the fraction of those contacts that are with 
susceptibles, which we call S,,. . 0 < Sx, < 1. Dividing Equation (47) by Xr;” 

gives us the condition for endemicity: 

1= ~DS,,C,. (48) 

Here, Z, is the infecteds’ weighted average of the contact rates, Equation 
(24). Since we assumed CT > 0, we conclude that 0 < S,, ~1, and we 
obtain the threshold condition 

/ID?, > 1 (49) 

as the general analog of Equation (42). 
Equation (49) is obviously a general threshold statement for all popula- 

tions and provides considerable insight. However, to use it for any particular 
problem, one has to know the v, and that involves solving for the endemic 
steady states for that model. Note that Cr does not depend explicitly on the 
structure of the mixing matrix; it depends on it implicitly through its effect 
on the y. 
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RELATION TO RESULTS OBTAINED ON OUR MODEL 

Now we compare the results obtained on our models with this general 
threshold condition (49) for heterogeneous populations. 

Restricted Mixing. For restricted mixing, p,, = 1 and p,, = 0 for i # j. 

We see immediately that the thresholds obtained from the model are the 
same as those given by the requirement of detailed endemicity, for p = 0 and 
for p > 0: 

pDS;Fc, = 1. (50) 

Multiplying (50) by y and summing, one obtains the condition for overall 
endemicity: 

which is the same as Equation (48) and gives the endemicity condition 
PDC, > 1. 

Proportional Mixing. For p = 0, we obtained the threshold condition 
PDF, > 1, Equation (32), which is the same as (49) since Z, = Cr for p = 0. 
In Appendix C, we obtain two thresholds for p > 0; one is the general 
relation (49), and the other is (52) or (C25): 

pDC* >l, (52) 

where c* = Cu + a’/?, = Xc,‘(i, /&,q. What is the relation between these 
two? Using relation (C20) for y for proportional mixing, one obtains 

~ _ T,cjq/(P+ c&G) 
’ - ~cjU,/( ~ + c,~KC) (53) 

Thus, c* = Z, calculated for KG = 0, which is just the condition used in 
deriving this threshold in Appendix C. Note that Equation (53) differs from 
the quadratic average used by Anderson et al. [68]. 

Preferred Mixing. If one substitutes the steady-state values of y ob- 
tained in Section 7 and Appendix C into Equation (44) one obtains the 
same equations for the endemic state as are given by the differential 
equations, so the solutions must be the same. 

For p = 0, we obtained (B7) in Appendix B, which is the same as our 
overall threshold for endemicity. For p> 0, the relation between Equation 
(C40) of Appendix C and our general threshold condition is not obvious, 
and we have not pursued this. 
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TABLE 3 

Contact Activity Groups 

Group 

Number of 

partners/year 

Pooled groups 

from Fig. 40 of May 

and Anderson 1671 Fraction 

1 12 1 0.24 

2 24 2 0.24 

3 48 3-5 0.32 

4 96 6-10 0.14 

5 192 >lO 0.06 

1.00 

10. PARAMETER VALUES AND INITIAL CONDITIONS 

For the numerical studies of the dynamics and the steady states, we had 
to choose contact activity groups, recruitment rates for these groups, initial 
sizes of the groups, and values for the transmission fractions. 

CONTACT ACTIVITY GROUPS 

We use the data reported in Figure 4a in May and Anderson [67] on the 
distribution of the number of partners per month in a group of 
homosexual/bisexual males in London. The data were pooled into five 
activity groups after dropping the group with zero contacts per month and 
are reported in Table 3. 

COMPETING DEATH RATES 

The competing death rate p is really the total rate at which members 
leave the groups from all causes other than the development of AIDS. From 
the U.S. vital statistics, the actual deaths from all causes in white males in 
the 20-SO-year-old group would give a 1-1 on the order of 0.003 per year. If 
we assume that the average length of time a homosexual remains sexually 
active is 40 years, we obtain p = 0.025 yr-‘. We have run simulations for 
p = 0.03 yr-’ and p= 0.012 yr-‘. 

RECRUITMENT RATES AND INITIAL CONDITIONS 

For the steady-state studies we chose a hypothetical population that 
recruits a total of 100 per month (1200 per year), divided into activity groups 
according to the fractions given in Table 3; for example, 24 per month in 
group 1. For p = 0.03 yr- ’ and in the absence of HIV, that would give a 
steady-state population of 40,000 individuals: 9600 in each of groups 1 
and 2, 12800 in group 3, 5600 in group 4, and 2400 in group 5. With p= 
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0.012 y-l and in the absence of HIV, the steady-state population consists of 
100,000 individuals: 24,000 in each of groups 1 and 2, 32000 in group 3, 
14000 in group 4, and 6000 in group 5. For given p, we used the stationary- 
state population in the absence of HIV for the initial values for the 
simulations of the dynamics after introduction of HIV. 

INCUBATION TIMES 

As has been pointed out, Weibull and gamma distributions have been 
used for the distribution of incubation times [17, 18, 201. The gamma 
distribution has a skewed shape similar to the Weibull distribution and is a 
natural choice for us because a chain of compartments gives a lag with a 
gamma distribution. For the numerical studies we have chosen two mean 
values: 5 and 10 yr. Most of the simulations were done with m = 6 and 
k =1.2 yr-l; these give a mean of 5 yr, a mode of 4.17 yr and a standard 
deviation of 2.04 yr, figures close to one of the estimates of Lui et al. [17]. 
For comparison we have also run some simulations with m = 6 and k = 

0.6 yr-i; these give a mean of 10 yr, a mode of 8.33 yr, and a standard 
deviation of 4.08 yr. 

THE TRANSMISSION FRACTION 

Data from which one can estimate transmission probabilities are limited, 
and the corresponding estimates are subject to uncertainties. For one, from 
what we know of sexually transmitted diseases and the mucosal protective 
barrier, we expect that any breaks in continuity of mucous membranes in a 
partner in a sex act should increase the probability of transmission to that 
partner. Thus, for any given mode of transmission, the population may be 
heterogeneous in transmission probability. For a discussion of many of 
the problems of interpretation of the data, see May and Anderson [84]. 
Peterman et al. [42] reported data on heterosexual transmission from a 
spouse infected by a blood transfusion; the number of contacts from 
infection of spouse to detection of HIV in a person varied markedly. If one 
treats the data as independent runs of variable length, of independent trials, 
the maximum likelihood estimate for transmission probability per contact is 
0.0013 for male-to-female and 0.0005 for female-to-male transmission. On a 
per-partnership basis, the corresponding figures are 0.189 and 0.08. Grant 
et al. [40] provide estimate of per-partnership infectivity for anal receptive 
intercourse in homosexuals of 0.102, with a 95% confidence interval of 
0.043-0.16; data on numbers of contacts were not obtained. 

Given the uncertainties, we have run simulations with a range of values. 
For the steady state, we have examined results for a number of values of the 
mean transmission fraction in the range 0.005-0.1. For the studies of 
dynamics, we compared a series of cases that had the same mean transmis- 
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TABLE 4 

Distributions of Transmission Fraction Examined in Studies of Dynamics” 

Case 

I 

Case 

11 

Case 

III 

Case 

IV 

1.0 2.2 2.5 0.25 

1.0 0.2 2.5 0.25 

2 

1.0 0.1 0.25 0.25 

1.0 0.2 0.25 0.25 

1.0 1.0 0.25 2.5 

1.0 2.3 0.25 2.5 

“Table entries are multiplies of fi. 

sion fraction, p = 0.005 and 0.01, but different distributions over the infec- 
tious period (Table 4). Case II with high transmission fraction early and late 
in the infectious period is intended to simulate the reported increase in free 
virus that occurs early after contracting HIV and again late just before the 
appearance of AIDS. 

In this study, we have not tried to simulate details of survival once AIDS 
is diagnosed. For that, Z, could be replaced by a sequence of compartments 
with mean transit time set equal to the mean survival time. 

11. RESULTS OF STUDIES OF THE STEADY STATE 

Figure 4 shows the steady-state infected fraction for p = 0.01 and 1_1= 
0.03 yr~’ for k =1.2 yrr’ as a function of the fraction of contacts reserved 
to each group if the reserved fraction p, is the same for all i. For compari- 
son, we also show the results of two cases in which the reserved fraction 
increases from 0.05 to 0.98 for groups ci =12 yr-’ to c5 =192 yr-’ and the 
inverse of that, i.e., one in which pi = 0.98 and ps = 0.05. Those results are 
connected by dashed lines. The results for p = 0 differ slightly from those for 
p = 0.012 or 0.03. 

The difference between the effects of the mixing patterns on the steady- 
state fraction infected in high- and low-activity groups is striking. For the 
high-activity groups, the mixing pattern has only small effects on the 
fraction infected. However, for the low-activity groups, the fraction infected 
is markedly increased by mixing with high-activity groups, just as predicted 
by the theory in Section 8 and in Theorem D.4. Even though the contact 
rates remain constant, the less mixing with high-activity groups, the lower 
the prevalence of HIV infection in the low-activity groups. 
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for within- group contacts 
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FIG. 4. The steady-state infected fraction for p = 0.01, p = 0.03 yr-‘, k = 1.2 yrml. 

Solid lines show how the fraction infected varies from proportional to restricted mixing if 

all groups have the same fraction of their contacts reserved for within-group contacts. The 

dashed lines connect the different groups in simulations in which the groups had different 

p,. Groups: 0, c1 = 12; 0, c2 = 24; A, c3 = 48; n , c, = 96; 0, c5 =192 per year. 

The time courses to the steady states emphasize even more strongly the 
differences in the effects of mixing on low- and high-activity groups, as can 
be seen in the following results of the studies on dynamics. 

12. STUDIES ON DYNAMICS 

For the first studies on dynamics, the compartmental modeling software 
CONSAM~~ [85, 861 was used on the ATT Unix PC. This software package 
can be used to integrate the system equations and to estimate parameters. 
However, the software we have is limited to systems of 25 compartments or 
less, so we ran only groups 1, 3, and 5 in the dynamics. The simulation 
studies with all five groups were run using STELLA [87] on a Macintosh II. 
We have run simulations for B = 0.005 and 0.01 for the four cases shown in 
Table 4, for p = 0.012 and 0.03 yr-‘, and for various pi. In addition, runs 
have been made with /3 = 0.02 and also for a model in which the infectious 
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FIG. 6. Number of infecteds for the same runs as in Figure 5 
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period was modeled with four compartments with different k values (k, = 
0.5, k, = 3, k, =l, k, =l) and &,, = 0.03, &,z = 0, ,B,,, = &,4 = 0.03 for vari- 

ous values of p,. 
In the runs, one infected person in stage 1 of infection was introduced 

into each group that was at stationary state for the given /.L at t = 0, and the 
dynamics was followed out to or close to steady state. The output plotted 
was the number of susceptibles X,, the number of infecteds y:, and the 
percent infected x/(X, + E;), by groups, plus the infected ratio, the sum of 
susceptibles and infecteds, and the incidence of AIDS for the total popula- 
tion. 

Although the quantitative results vary some, the different simulations 
gave qualitatively similar results. We present one set of results for @ = 0.01 
for a mean incubation period of 5 yr (k =1.2 yrrl) in detail for case II 
(Table 4) and show the effects of a change in p and k and then compare the 
results with some runs on cases III and IV. Figures 5-7 give the results for 
all groups for case II for p = 0.01, k = 1.2 yr~‘, k = 0.03 yr-i for propor- 
tional mixing (p, = 0), preferred mixing (p, = 0.3 and 0.7) and restricted 
mixing (p, = 1). In these runs the fraction of contacts reserved to within-group 
contacts (p, ) was the same for all groups. For those values of the parameters, 
group 1 is below threshold for restricted mixing but not otherwise. Note that 
the fraction infected does not differ much eventually for the high-activity 
groups, no matter what the pattern of mixing, a result already shown in 
Figure 4. However, the fraction infected rises sooner for high-activity groups 
as one approaches restricted mixing because contacts with the low-activity 
groups slows down spread in the high-activity groups. However, for the 
low-activity groups, contact with high-activity groups increases spread. 
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FIG. 8. The fraction infected for the total population, Xy/(XX, +Cy), for the simula- 

tion shown in Figures 5-7 for p, = 0, 0.3, 0.7, 0.9, and 1.0. 
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FIG. 9. The size of the population, susceptibles plus infecteds, for the runs shown in 

Figures 5-8. 

The curve for the infected fraction in the population as a whole (Figure 8) 
reflects the effects of mixing. The epidemic develops more slowly in full 
proportional mixing because, as seen in the curves on individual groups, the 
contact between low- and high-activity groups slows down the spread in 
high-activity groups. As mixing is decreased, the epidemic in the population 
takes off more rapidly because it spreads more quickly in the high-activity 
groups although more slowly in the lower-activity groups. If mixing between 
groups is very limited, the curve becomes biphasic, reflecting the marked 
differences in spread in the almost isolated subgroups. Figure 9 shows the 
effect of AIDS on the size of the population and the effect of the mixing 
thereon; the more mixing between groups the more AIDS cases in the 
lower-activity groups, as Theorem D.4 asserts. The high-activity groups are 
badly hit for all patterns of mixing. Figure 10 shows the total incidence of 
AIDS for the population and shows how strongly the pattern of the epidemic 
depends on the mixing pattern in the population. 

Figure 11 is included to show what happens in group 1, which is below 
threshold for pi =l, as pi approaches 1. The steady-state fraction infected 
falls steadily, and as it does, the rate of take-off of the curves decreases. 

Figures 12 and 13 show the effects of decreasing p to 0.005, all other 
parameters being the same as for the runs in Figures 5-10. The steady-state 
levels of the fraction infected decrease, as Theorem D.3 predicts; but in 
addition the time course of spread is slowed. For restricted mixing, groups 1 
and 2 are now below threshold. As is shown in Figure 13, the epidemic of 
AIDS is much smaller and develops more slowly. 
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FIG. 10. T’he incidence of AIDS (number of cases per year) for the runs shown in 

Figures 5-9. 
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FIG. 11. Ratio of infecteds for 1 (cl group = 12 yrml) for p, = 0, 0.3, 0.7, 0.9, 0.95, and 

1 .O. Group 1 is below threshold for = 1.0. p, 

Figures 14 and 15 are the same as Figures 12 and 13, respectively 
(p = O.OOS), but for a longer period of infectiousness (k = 0.6 yr-‘). Increas- 
ing the infectious period (i.e., decreasing k) markedly increases the growth 
of the infected fraction and the steady-state level of the infected fraction, as 
we computed in Section 8, but has only a small effect on the epidemic of 
AIDS because the rate of movement from the infected state to AIDS is 
slower. 
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FIG. 13. Incidence of AIDS for the runs shown in Figure 12. 

Figures 16 and 17 show the difference between infected fractions for cases 
III and IV. In case III, infectiousness is high immediately after onset of the 
infection, whereas in case IV it is high late in the infectious period, but both 
have the same mean p. Clearly, there is a marked effect on the rate of 
growth of the infected fraction. We include these to emphasize the impor- 
tance of obtaining estimates of the pattern of infectiousness over the period 
of infectiousness. 

Figures 18 and 19 show the dynamics when there are marked differences 
in the reserved fractions. In Figure 18, it was assumed that most mixing in 
the low-activity groups was reserved for with-in group mixing. In Figure 19, 
the pattern of reserved fractions was the inverse of that for Figure 18. Again 
there are only small effects on high-activity groups; it is the low-activity 
groups that show large increases in infected fraction as mixing with high- 
activity groups increases. 

13. DISCUSSION AND CONCLUSIONS 

We emphasize that these studies cannot simulate the time course in real 
poplJlations because we have not included subgroups such as bisexuals, 
heterosexuals, drug users, and prostitutes. Nor have we included the nature 
of the contacts between them or the effect of pair formation. This study 
focuses on the effects of the structure of contacts between different activity 
groups and the effect of variation in infection fraction over the course of the 
infectious period in a homosexual population. The results emphasize the 
dominant influence of the pattern of the contacts between different groups. 

The effect of activity level is obvious and expected. Those individuals 
with the highest level of sexual activity are at greatest risk for the infection, 
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With the longer infectious period, there is a large increase in the fraction infected. 
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FIG. 15. The incidence of AIDS for the runs shown in Figure 14 (p = 0.005, k = 0.6 

yr-1). 

while those with the lowest levels of sexual activity are at least risk. 
However, the effect of the structure of the contacts between the groups on 
the rate of development of the epidemic in the different activity levels is less 
obvious and is quite striking. The effects of the contact structure are small 
for the high-activity groups. Increasing contact between high-activity groups 
and other groups slows the rate of spread of the infection within the 
high-activity groups a little. However, the rate of spread of the infection 
within the low-activity group is markedly affected by the degree of contact 
with higher-activity groups. A slight increase in the amount of interaction 
between individuals with low levels of sexual activity and individuals with 
high levels of sexual activity results in a significant increase in the risk for 
infection of all individualswithin the low-activity level. There was both an 
increase in the rate of spread of the infection and an increase in the overall 
proportion of the group that ultimately became infected, despite the fact that 
the total number of contacts and the transmission probabilities remained the 
same. 

Do our results have any implications for the spread of HIV into the 
heterosexual population? Most of the heterosexual population can be thought 
of as pairs in a number of low-activity groups, because most of the activity is 
between members of a pair, and the activity involved in spread is between 
pairs. Bisexuals, prostitutes, and highly promiscuous individuals form a 
bridge of contacts to the currently heavily infected groups, contacts that 
repeatedly introduce HIV into the heterosexual population. Thus the time 
scale of spread of HIV should be more like that found in our low-activity 
groups with low mixing with high-activity groups. Consequently, the appar- 
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Infected Fraction -- Pattern A 
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FIG. 18. The time course of the fraction infected for a population with the same 

parameters as for the population shown in Figure 7, but with different reserved fractions 

for each group. Pattern A: p, = 0.98, pz = 0.90, ps = 0.50, p4 = 0.10, ps = 0.05. The steady 

state is shown in Figure 4. 
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FIG. 19. The same as Figure 18, but with the reserved fractions the reverse of those 

used for Figure 18. Pattern B: Pt = 0.05, oz = 0.10, ps = 0.50, n4 = 0.90, ns = 0.98. The 

steady state for this population is also shown in Figure 4. 
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ently slow rate of spread in the heterosexual population does not mean that 
the heterosexual population is safe; it could mean that the dynamics is very 
slow in developing. 

The transmission of HIV infection is effectively restricted to sexual 
contact and blood contamination. This implies to us that intricate patterns 
of transmission contact deviating dramatically from random mixing pat- 
terns are inevitable. The exploration of one likely determinant of contact 
patterns in this paper, namely the preference for sexual partners with one’s 
own frequency of sexual contacts, demonstrates that actual contact patterns 
are likely to have a dramatic effect on the course of the epidemic. This is 
consistent with the results of Hyman and Stanley [70]. Other factors that will 
create other influential patterns of contact no doubt include geography, 
sexual preference (especially bisexuality), prostitution, needle sharing, and 
age. 

Epidemiology has not developed a discipline devoted to examining the 
effects of contact patterns in populations on the behavior of transmission in 
those populations. Little has been done to postulate the effects of contact 
patterns or to collect data relevant to this issue. John Fox, Lila Elveback, 
and Gene Ackerman began an effort to examine contact pattern effects 
using Monte Carlo simulation models; the results of that endeavor have been 
summarized [88]. No large body of investigators is pursuing this line of work, 
but the original model continues to be elaborated by Ackerman and his 
colleagues. 

The deterministic differential equation modeling of infection transmission 
has developed a broader body of investigators following its traditions than 
has Monte Carlo simulation of transmission. Until recently, heterogeneities 
of populations were not a major focus of this tradition. Now much more 
attention is being paid to the effects of heterogeneities in populations 
[51-581. Almost all AIDS models have some population heterogeneities 
[67-721. However, all published models have assumed random mixing be- 
tween heterogeneous groups. We have shown that the effects of the assump- 
tions of heterogeneity are likely to be quite important and are likely to 
complicate some of the aspects of transmission dynamics that might be most 
important to us. 

As the AIDS epidemic progresses and our ability to control it improves 
with new therapeutic agents and vaccines, many questions about setting 
priorities for different types of programs in different types of groups will 
arise. Are there key contact groups in which we must employ expensive 
direct contact methods to ensure that our educational efforts are successful? 
Which population groups deserve special case-finding methods to ensure 
that we find all infected individuals and offer them the therapy or education 
at our disposal? Which groups will require 90%, 99%, or higher vaccination 
rates in order to significantly reduce overall population infection rates? 
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These questions could be addressed by second-stage models that build on the 
models presented here. However, to do so, not only are more models needed 
but better data are needed to estimate parameters. Key parameters besides 
the contact rates are the transmission probabilities at different stages of 
infection. Techniques have recently been developed by Longini et al. [60-621 
that enable one to estimate transmission probabilities as multivariate func- 
tions of risk factors from observational data that can be cross-sectional. The 
use of these techniques, combined with investigational efforts to determine 
just what the real mixing patterns are, could begin to form the basis of a 
science examining the effects of contact patterns in populations on HIV 
transmission. The demonstration here of the dramatic effects of con- 
tact patterns on transmission dynamics attests to the need for such a 
development. 

APPENDIX A. MATHEMATICAL PROPERTIES OF 
MODEL EQUATIONS 

The most studied system of differential equations in mathematical epi- 
demiology is the system of 3M equations: 

(AlI 

i; = - b,Z, - Kiz, + y,y:, 

for i=l,..., M. In this model, X,, Y;, and Z, denote the number of 
susceptible, infected, and removed individuals, respectively, in subpopula- 
tion i, and A$ denotes the total size of population i, which is assumed to be 
constant. Here, b, is the birth and death rate of subpopulation i, X,, is the 
effective contact rate between individuals in group i and infectives in group 
j, y, is the recovery rate for group i, and K, is the rate at which recovered 
individuals lose their immunity. All parameters are nonnegative. This system 
includes the general SI, SIS, SIR, and SIRS models that are used to study 
the spread of contagious diseases. 

System (Al) has been well-studied and some of its important properties 
have been demonstrated [46, 58, 63, 89-911. 

(1) There is a compact, convex set B in R’,” such that all solutions of 
(Al) that start in B remain in B. 

(2) & = X, + y + Z, is a conserved quantity; that is, it is constant along 
solutions of (Al). 
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(3) The no-disease equilibrium, X, = fl:, y = Z, = 0, is always a rest point 

for this system. 
(4) There is a function G(y,, X,,, K,, b,) of the parameters of the system 

(Al), called the threshoM, with the property that when G < 1, the no-disease 
equilibrium is locally asymptotically stable, and when G > 1, it is unstable. 

(5) When G < 1, the no-disease equilibrium is the only equilibrium, and it 
is globally asymptotically stable. 

(6) When G > 1, a unique new equilibrium X*, the endemic equilibrium, 
arises in B; it is locally asymptotically stable. 

(7) For SI and SIS models, X* is globaltj asymptotically stable in 
B - 6JB. (Whether this is true in SIR and SIRS models is a major unsolved 
problem in mathematical epidemiology.) 

The system (l)-(4) of differential equations that we use to model the 
spread of the HIV virus differs in three fundamental ways from the generic 
system (Al): 

(1) The interaction terms are no longer quadratic but are the rational 
functions with variable denominators 

(2) The model incorporates different stages of infectivity with different 
degrees of contagion. 

(3) The contact fractions p,, may depend on the sizes of the various 

subgroups and thus could vary over time. 

From our many simulations, it appears that properties l-7 still hold for 
our more complex system. Proving all these properties mathematically seems 
like a herculean task. In this appendix, we describe the progress we have 
made on this program. 

PROPERTY la 

For p > 0, let fl. = X, + y1 + . ’ + + y,,, + Z,. If N(O) d y/p, then A$(t) 
< y/p for all t. In particular, the box 

c= {(X, ,...) zM): x,+y,+ *.. +z,<q//l, 

X,20, yr>O, Z,,>Oforalli,r} 

is a compact, convex invariant set in Rc”. 

Proof. By summing Equations (l)-(4), one finds 

A!=-j.lN,+q-(&p)Z,, (fw 
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where 6 - p > 0. Multiply the inequality 
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by ep’ and integrate from 0 to T to prove that if q(O) Q y/p, then 
q(T) G y/u for all T. 

To finish showing that C is invariant, we must show that solutions that 
start on X, = 0 or J& = 0 boundaries of C move into C. This is straightfor- 
ward. For example, when X, = 0, *i = U; > 0, and orbits move into C; when 
qr = 0, E, > 0, and orbits move into C. 

PROPERTY lb 

For p, = 0, the solution with initial conditions T.(O) = To > 0, Y&(O) = 

0, Z;(O) = 0 is T(t) = l_Jt + &f, Y:,(t) = Zi( t) = 0, which tends to infinity as 

t+ccI. 

PROPERTY 2 

& is no longer conserved. For example, if 6 = p in (A2), N, satisfies 

N,(t) = floe-P’ + Q/u, which varies with t and tendr to Q/u. 

PROPERTY 3 

For p > 0, 

xl=y/u, YI = . . . = y, = z, = 0 

is the no-disease equilibrium. For u = 0, the corresponding state is 

q.=oO, YI = . . . =r;,=z,=o. 

PROPERTIES 4,5,&l 

The calculations behind Tables 1 and 2 in Section I and Appendix B 
compute the existence of a threshold with the property that when the parameters 
of (l)-(4) lie below this threshold, the no-disease equilibrium is the only 

equilibrium; and when this threshold is exceeded, a unique new endemic 

equilibrium appears. These endemic equilibria are listed in Tables 1 and 2. We 
have not yet completely tied this threshold to the stability characteristics of the 
two equilibria, as has been accomplished for the simpler system (Al). We now 

present some calculations with simplifications of our model that preserve some 
of its unique features. These calculations illustrate that this threshold is related 
to the change in stability of the no-disease equilibrium that occurs for system 
(Al). Our hundreds of simulations of (l)-(4) with different parameter value 
thoroughly support this link, They also suggest that the endemic equilibrium is 
globa& asymptotically stable in our model, as has been proved for the SI model 
by Lajmanovich and Yorke [63] and conjectured for the SIR model by a 
number of people. 
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Two special features of our model are the role of death from the disease 
and the multiplicity of stages of the disease. We will study two generaliza- 
tions of our system (l)-(4) that bring these complications in one at a time. 
To keep the mathematics tractable, we will work only with restricted mixing 
at this first stage. In this case, there is no interaction between subpopula- 
tions, so we can study a single population without loss of generality. 

We first bring deaths into the study. The equations for the spread of the 
disease become 

k=-~y-pX+U, c=gy-(k+p)y, i= kY- 6Z. 

(A3) 

Since the first two equations are independent of Z, we can work with just 
these two, without loss of generality. We first consider the case p = 0: 

XXY x=- x+y+u, 
* XXY 

Y=X+y-kY. 

The { k= 0} isocline is the curve Y = UX/( X X - (I); the ( Y = 0) isoclines 
are the lines 

Y=O and y=X-k TX. 

There are two cases depending on the sign of A - k. If A - k -c 0, the line 
Y = [(X - k)/k] X misses the positive quadrant and the isoclines intersect as 
in Figure 20. In this case, as can be seen in Figure 20, all orbits tend to 
X = cc, Y = 0, amplifying the statement in Property lb. All orbits are mono- 
tonically decreasing in Y, so V( X, Y) = Y is a Lyapunov function for this 
system. 

When X - k > 0, the isoclines are as in Figure 21. Note that the threshold 
X - k appears as the denominator of the X value of the endemic equilib- 
rium, just as it does for our calculations of the threshold that are summa- 
rized in Tables 1 and 2. Furthermore, one can prove directly that the 
Jacobian derivative of system (A4) has a positive determinant and a negative 
trace so that both of its eigenvalues have negative real part. This means that 
the endemic equilibrium is locally asymptotically stable, when it exists. 

To prove that it is globally asymptotically stable, we use the Bendixson- 
duLac criterion to rule out the existence of periodic orbits (see [92] or [93]). 
First, multiply both equations of (A4) through by l/Y. This will change the 
length of the vector field of (A4) but not the direction of the vectors and 
therefore not the phase portrait. The new system is 

xx u . xx x=- x+y+Jb Y= X+Y-k. 
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FIG. 20. Phase diagram for simplified system. p = 0 and h - k -C 0. 

FIG. 21. Phase diagram for simplified system, k = 0 and X - k > 0 
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The trace of the Jacobian of this system is 

169 

ab a? hY XX x 
ax + ay = - _- 

(x+Y)z- (XSY)2 = x+y’ 

which is negative for all (X, Y). But this is precisely the Bendixson-duLac 
criterion, which rules out the existence of periodic orbits in Figure 21 and 
guarantees, by the Poincare-Bendixson theorem, that all orbits must tend to 
the endemic equilibrium. Alternatively, one can use Olech’s theorem [94] and 
similar calculations to prove directly that the endemic equilibrium is globally 
asymptotically stable. 

We next turn to the p> 0 case, system (A3). The { X= 0} isoclines are the 
curves 

x(u-I.4 
y= (X+p)X--u’ 

The {Y= 0) isoclines are the lines 

Y=O and Y= h-(k+pL) x 
k+p ’ 

Once again, there are two phase portraits, depending on whether or not 
X - (k + p) is negative or positive. 

Case 1. X - (k + c) < 0. The isoclines for this case are drawn in Figure 
2. It is clear that the ho-disease equilibrium is the only nonzero steady state, 
that it is globally asymptotically stable, and that V( X, Y) = Y is a Lyapunov 
function, i.e., that the number of infecteds decreases monotonically to zero 
alemg any solution curve. 

Case 2. A - (k + p) > 0. The isoclines for this case are drawn in Figure 
3. As the threshold A - (k + p) becomes positive, the denominator of the Y 
coordinate of the other equilibrium becomes positive, and the no-disease 
equilibrium becomes unstable. One can easily use the Jacobian at the 
endemic equilibrium to show that this equilibrium is locally asymptotically 
stable when it exists. Furthermore, one uses the Bendixson-duLac criterion 
or Olech’s theorem exactly as in the p= 0 case to prove that the endemic 
equilibrium is globally asymptotically stable, when it exists. 

CONCLUSION 

For p > 0, the seven conclusions of the generic SIR system (Al) still hold 
for equations (A3), which model the spread of a disease in which death plays 
a role, but with restricted mixing and a single stage of infection. 
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Finally, we expand this model by allowing multiple stages of the disease: 

cj4T -- x=-cxx+y px+u 

P=cx#-(k+p)q (A5) 

$=kY,_,-(k+p)Y,, for j=2,...,m. 

Recall that our model (l)-(4) for the spread of HIV has m stages of disease. 
The no-disease equilibrium is X= U/p, 5 = 0 for j = 1,. . . , m. Use the 
change of coordinates S = U/p - X or X = U/p - S to move the no-disease 
equilibrium to the origin. In these new (S, Y,, . . . , Y,) coordinates, system 
(A5) becomes 

s=*ycB,r,-ps 
j 

%=eYCPjq-(k+P)Y, (A61 
i 

$=kq_,-(k+p)YJ, j=2 ,...,m. 

Use 

+y=l-&y 

to expand the right-hand side of (A6) into a Taylor series of order one. Then 
write this system in matrix form as 
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Lettingx=((S,Y,,..., Ym)r, we can write this system as 

k=Ax+Q(x), 

where 
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(1) A=( ;” iI), 
(2) A, is a Metzfer matrix in that all off-diagonal entries are nonnega- 

tive; in fact, A and A, are compartmental matrices, 

(3) QW = 44, i.e., QW/l!4l+ 0 as x -+ 0, 
and 

(4) Q(x) Q 0 for all x in the domain of definition. 

We use the proof in [63] as modified in [58] to prove that when x = 0 is 
locally stable, it is globally stable, The threshold is the Perron-Frobenius 
eigenvalue of the Metzler matrix A,. We will just sketch the proof here; the 
details can be found in the referenced works. 

We assume that all the c, p,, k are strictly positive. This implies that A, is 

irreducible, i.e., that some power of A, has no zero entries. Because A, is an 
irreducible Metzler matrix, so is its transpose AT. By the Perron-Frobenius 
theorem, AT has a unique eigenvalue r of largest real part; this eigenvalue r 

is real, has algebraic and geometric multiplicity 1, and has an eigenvector v 
in R” with only positive components. When r < 0, then A:, A,, and A have 
only eigenvalues with negative real part. In this case, x = 0 is locally 
asymptotically stable. To show that it is globally asymptotically stable, use 
the Lyapunov function 

v( S,Y) = (O,vy-( S,Y) = vTY. 

For 

ti(‘(s,Y) =vTA;Y+(O,v)-Q&Y) 

= rvTY+(O,v) .Q( S,Y) 

d 0, 

since v > 0, Y 2 0, Q Q 0, and r < 0. Furthermore, the set { V= 0} is the 
{Y = 0} subspace on which the system (A6) tends globally to (S,Y) = (0,O). 
These statements imply that all orbits of (A6) tend to the no-disease 
equilibrium. 

When r > 0, the origin becomes unstable, and most orbits tend away 
from 0. The argument in [58] shows that a new equilibrium must exist inside 
C. The computations in Section 7 and Appendix B show that this endemic 
equilibrium is unique. We prove now that it is locally asymptotically stable 
and conjecture that it is globally asymptotically stable. 
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For simplicity of notation, we will prove local stability of the endemic 
equilibrium for the p= 0 case. This automatically implies local stability for 
p > 0 and small enough. However, a similar proof works for general p > 0. 

Also, for simplicity of notation, we will treat m = 2. The generalization to 
m > 2 is straightforward. In this case, system (AS) becomes 

x=-g+vl+w21+~, 

r,=~ymy,+&y,l-~Y,, (A7) 

?2=kY,-kY,, 

where Y = Y, + Y,. As we show in Section 7, the unique endemic equilibrium 
is 

(XYr,,y,) =y -&‘l’lj. ( 
The threshold condition for an endemic equilibrium is 

cprn 
- >l. 

k 

(A81 

(A9) 

The Jacobian derivative of (A7) at the endemic equilibrium (A8) is 

I UY U-&X u - &cX _ 
x(x+Y) x+y x+y I 

DF= UY 
x(x+y) 

&cx-u_k &X-U . 
x+y x+y 

\ 0 k -k 

The characteristic polynomial of DF is 

A3 + a,A* + a,X + a3 = 0, (A101 

where a, = (-l)‘+’ times the sum of the i x i principal minors of DF. We 
show that each ai is positive. Then, by Descartes’ rule of signs, every root of 
(AlO) must be negative or have negative real part. It follows that the 
endemic equilibrium (A8) is locally asymptotically stable. 

In the first place, al is the negative of the trace of DF. The (1,l) and 
(3,3) terms of DF are clearly negative. Use (A9) to write the (2,2) entry as 

&X- u _ k = 

x+y y$---(mc[&-mp]+[k-dm]). (All) 
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The first square-bracketed factor in (All) is negative since rnp = Cp,; the 
second is negative by the threshold condition (A9). Therefore a, is positive. 

The coefficient a2 in (AlO) is the sum of the three principal 2 X 2 minors 
DF. The (1,3) minor is positive by inspection. The (1,2) minor is positive by 
a straightforward calculation. By a longer calculation, the (2,3) minor equals 

which is positive by (A9). Therefore, a2 is positive. 
Finally, since a3 is the negative of the determinant of DF, we need only 

compute this determinant. This calculation is made simpler by first adding 
row 1 to row 2 and then adding the new row 2 to row 3, operations that do 
not change the determinant. The resulting matrix is upper triangular (row 
echelon form), and its determinant is easily seen to be - k’UY/X( X+ Y). 
Since this number is negative, a3 is positive. Therefore, all the coefficients of 
(AlO) are positive, and so all its roots are negative or have negative real part 
-a sufficient condition for the local stability of the endemic equilibrium. 

APPENDIX B. CALCULATIONS FOR THE PREFERRED MIXING 
EQUILIBRIUM AND THRESHOLD FOR /J = 0 

In this appendix, we will prove the uniqueness of the equilibrium for the 
preferred mixing case with p= 0, and we will derive the threshold condition. 
In the process, we will show why the iteration procedure described after 
Equation (36) works so well. 

After plugging y = Qm/k into Equation (34), we can consider (34) and 
(35) as n + 1 equations in the n + 1 unknowns Xf,. . . , Xi, K”. In this ap- 
pendix we drop the superscript s and use K for KS,. It is natural to construct 
a mapping 

K-T(K) 

from [0, l] to [0, l] as follows: 
For any choice of K E [O,l], (36) determines a mapping 

for i = 1,. . . , n. Furthermore, (34) defines a mapping 

(xl ,..., X,)-+K=G(X, ,..., X,). 

Let 

T(K) =G(X,(K),..., X,(K)). 
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Since the range of G is [O,l], the range of T is naturally [O,l]. Then, 
X,, . . . , X,, , K is a solution of the n + 1 equations (34) and (36) if and only if 
K=T(K) and X,=&(K) for i=l,...,n. Therefore, the fixed points of T 
correspond to the endemic equilibria of our system. Of course, the maps X,, 
G, and T depend on the parameters U,c, p, p. 

To study the fixed points of T, we write out the map T explicitly by 
plugging I: = Qm/k and the expression for X(K) from (36) into the 
definition (34) of K: 

T(K) = 
(m/k)Ccj(l-Pj)q 

(1,‘2fiK)U4(-P,+/+e,)+(m,‘k)~c,(l-~$4 

= (l,Z~fiK)Zu,( -; +\1m) +1 
(Bl) 

where fi = (m/k)Ejcj(l - pj)uJ. Note that T(0) = 0. However, by (34), this 
fixed point corresponds to some X; being infinite. Since we are looking for a 
finite endemic steady state, we need a strictly positive fixed point of T. 
Using (Bl), we can write the fixed point equation T(K) = K as 

which can be rearranged to 

-&(-P,+IIP:+Q,)=l-K. W) 

The graph of K c) 1 - K is the negatively sloped line in Figure 22. We will 
show that the graph of the function on the left-hand side of Equation (B2) is 
a positively sloped curve. This implies that if it starts below the graph of 
K ++ 1 - K, it must cross it exactly once; if it starts above the graph, it won’t 
cross it at all. This naturally leads to the uniqueness of the endemic 
equilibrium and to the threshold condition! 

To prove that the function on the left-hand side of (B2) is an increasing 
function of K, we need only prove that each 

g(K)=-P,(K)+[P,(K)2+ 

is an increasing function of K. We first observe 

og s, < 2. 

Qj(K)]l” 

that 

(B3) 



HIV TRANSMISSION: EFFECT OF CONTACT PATTERNS 175 

FIG. 22. Equation (B2). 

For, dropping the subscript j for ease of notation, we compute 

where b=&(m/k). 

We next prove that &S/aK > 0. Note that S + P = /fi. Squaring 
both sides leads to the equation 

S*+2SP=Q. 

Letting a prime denote the derivative with respect to K, we find 

2SS’+ 2S’P + 2SP’= Q’ or s,= Q'-2=" 
2(s+ P) . 

The denominator in (B4) is positive since S + P = /G. By the defini- 

(B4) 
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tions of P and Q in (36), 

JOHN A. JACQUEiZ ET AL. 

Q’= 4b(l- p) = 4P’. (B5) 

Substituting this into the numerator of (B4), we find 

Since P’ 2 0 by (B5) and 2- S > 0 by (B3), the numerator of (B4) is 
nonnegative. Therefore, each S,(K) is a nondecreasing function of K, and 
the left-hand side of Equation (B2) is a nondecreasing function of K. If this 
left-hand side is less than or equal to 1 at K = 0, as in Figure 22, then the 
two graphs must cross and T has a nonzero fixed point, positive or zero; if 
the left-hand side is greater than 1 at K = 0, T cannot have a nonnegative 
fixed point. It follows that the value of the left-hand side of (B2) at K = 0 
gives the threshold for the preferred mixing case: 

036) 

If r < 1, then there will be a unique endemic equilibrium; if r > 1, then there 
is no endemic equilibrium. 

The reader can easily check that this result simplifies to our earlier result 
for proportional mixing, by setting each pj to zero. On the other hand, for 
the restricted mixing case (pi =l for all i), the denominator of 7 is zero. 
Unless the numerator is zero also, we can consider r > 1. Then, the only way 
for T to be less than 1 is if 

for all j. But this is the threshold condition we derived in Section 7 for 
restricted mixing. 

If 1 - Bc,(m/k)p, > 0 for all j, the threshold condition reduces to 

xj[l--B(m/k)CjP,] UJ <1 

P(m/k)CjCj(l- Pj>U, ’ 
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which simplifies to 

1 < P(m/k)C,c,U, - 
=,u, =P(m/k)S,. 

Condition (B7) gives, as the threshold for @; 
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(B7) 

which is the same as the threshold found for proportional mixing in Sec- 
tion 7. 

APPENDIX C. STEADY STATES FOR Jo > 0 

EQUATIONS FOR STEADY STATES 

For steady states characterized by J?J = 0, t, = 0, Equations (l)-(3) be- 
come 

NOTA TION 

The two factors in (C4) appear frequently in this appendix, so we develop 
special notation for them. Let (Y = k/(k + p). The term (1- am) can be 
written in the form 

(1-a”) =l- (ky)” = (;y$[l+g(g)], (C5) 

in which g(p/k) is given by 

Equation (CS) is useful because 

l-am m 
+O and --+-- 

p k aspdO. 
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We can use these facts to compare our results for Jo > 0 with those for /.t = 0. 
In our calculations in this appendix, we will write 6, for (1- a”)/~. 

Furthermore, define q by 

Then (C4) becomes 

THE STEADY STATE DEPENDS ON A WEIGHTED MEAN OF THE &,r 

Following the same path as in Section 7, we use (C3) and (C4) to derive 
the generalization (C7) of (17): 

,,j.&=&~ k’ml’(k+p)l P;jr 

I J J J r t[l-(&) ] 
=- q:y il m(&)+l+ q), &Jr (c7) 

The coefficients of piJr are yr /Tf and add to 1; so the summation over r 
again gives a mean transmission fraction, but a weighted mean because the 
vr are no longer equal in the steady state. Again we will be concerned with 
/3’s that depend only on r, not on i or j; so we define &: 

((3 

As p + 0, BP in (C8) approaches fi for p = 0. With (CS), Equation (Cl) 
simplifies to (C9), the generalization of (18): 

+/lx;. (C9) 

RESTRICTED MIXING 

For restricted mixing, pij is 0 if i f j and 1 if i = j. In this case, Equation 

(C9) reduces to 
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Equating q - pq in (C4) and (ClO) gives 
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Py;” (Q-jtX)(l--m) 

XY= c;&(l-P-p = c,&(/-,m)-I, . 
(Cl11 

Solving for Xf gives 

xs= _ (l-a”)U 
’ c,$(l-a”)-/&’ 

Substituting in (C4) gives y: 

The steady-state infected fraction then becomes 

(Cl4 

(Cl3) 

(Cl4 

For an endemic state, the numerator of (C14) [and (C13)] must be positive, 
giving the threshold condition for 8,: 

Note that this reduces to the result found for p = 0. For F and r;S to 
remain finite, the denominators of (C12) and (C13) must also be positive. 
However, that condition is already satisfied when the numerator of (C14) is 
positive and so provides no additional constraint. 

With the threshold condition given by (CU), the endemic infected frac- 
tion is given by the same expression as Equation (21) for p= 0: 

PROPORTIONAL MIXING 

By using the pij for proportional mixing, Equation (C9) becomes 

q = c&y 
i 

CC,T 

cc,x; +Qjyf + PT. 1 

(Cl61 

(Cl7) 
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Define KG as in Equation (28) but for the steady state: 

((38) 

We will write K for KC for the rest of this discussion. Then, 

and 

Thus the equilibrium fraction infected in group i becomes 

cc211 

Substitute (C19) and (C20) into (C18) and simplify: 

K= 
1 

CC,x, 

xc,y, +l 

= 
1 

ecu I- 
’ J~fc,$K 

CJ 
+1 

Kp,e,cc u 
J ‘p+cJ&K 

K 

This has a solution K E (O,l] if and only if 

ECU l- 
H(K) = 

’ J~+cJPpK 
=l- K. ((32) 

Clearly, K +B 1 - K is a decreasing function of K. We will show that 
H’(K) > 0 and then conclude, as we did at the end of Appendix B, that 
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H(K) is an increasing function of K. Consequently, as pictured in Figure 22, 
their graphs can cross at at most one point and (C22) has at most one 
solution. By the quotient rule, 

2 

H’( K, 

= - p,&,q c,(p+ c,P,K) 
(~+c;&K)~ Cc” (~+c,ti~K)* 

which is 2 0 by the Schwatz inequality (see, for example, [95]). In the last 
line, we have used A, for c,V,/(p + cj8,K)*. 

Since H is an increasing function of K, (C22) has at most one solution. It 
will have exactly one solution if and only if the graphs of H starts below the 
graph of K - 1 - K, that is, if and only if H(0) -C 1, which is therefore the 
condition for the existence of an endemic equilibrium. It is straightforward 
to compute that 

CC,u, 

H(o) = s,e,p;q ’ 

so the endemicity condition can be written as 

(C23) 

Note that Cc,t_$/Cl_$ = E, and CcjV,/ZV, = a2 + Zi, where a2 is the 
variance of the c, for weights Uj. Thus, 

and (C23) can be written in the form 

(C24) 

(CW 
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giving a threshold &, r in $. This has the same form as Equation (32) but 
with 6, replacing m/k and c* replacing C,. Anderson et al. [68] used a 
similar quadratic average, but they used the total number in each group as 
the weight, not the recruitment rate; but see under Proportional Mixing 
Section 9 and Equation (53). 

It is of interest to carry out the steady-state calculations in a pattern 
following that used for p = 0. Define Cr as in Equation (24). Then at the 
steady state Cr becomes Z,, as defined in the equation 

Sum (C17) to obtain 

Solve (C27) for Cc, X;: 

Plug (C23) and (C28) into the definition of (C18) of K to obtain 

(C26) 

(C27) 

(C29) 

Substitute (C29) in (C19) and (C20) and solve for y and r: 

(C31) 

In order for an endemic equilibrium to exist, the numerator of y in (C31) 
must be positive, giving an endemicity threshold 

(C32) 

which is analogous in form to Equations (32) and (C25). Finally, the infected 
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fraction in group i becomes 
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(C33) 

These last five expressions should be compared with the corresponding 
equations in Section 7. 

PREFERRED MIXING 

For preferred mixing, Equation (C9) becomes 

- 

[ 

P,Y 
v-cLX=$c,x: q+ys + 

(I- Pm,(l-P,)y 1 Cc,(l-p,)T+Ec,(l-p,)y . (C34) 

Using w = q - pXf and K and K” as in Equation (34), (C34) becomes 

+(I- P,)G 1 
Multiplying this expression out and using y = 9,,y:, one obtains a quadratic 
equation in X:, similar to Equation (35): 

where we write K for KC for the rest of this appendix. We seek a solution of 
(C35) that is the analogue of (36): 

&T= 
+!+\Ip,z+e,) 

2P,ci(l_P,)K (C36) 

where 

e.=P,c;8,((1-p,)K+p,)-1 and Qi =4,8,c,‘p(l- P,)K. 

Let 

Ai=Ai(K) = 
-c+/m 

w-3$ - P,) ’ 

so that, dropping the s superscript, 

4. = yA,/K. (C37) 
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Plug in w = Q - PX, into (C37) and solve for X, to find 

x,=UjA,/(K+k4). (C3g) 

On the other hand, 

and 

Substitute (C38) and (C39) into the formula for K, to obtain T(K): 

T(K) = 
k(l-P,)l: 

Cc,(l-pi)X, +ECi(l-~,)~ 

1 

= %(1-&)x, 
Ec;(l-p;)y; +l 

1 

(C39) 

kh)u,~ 
’ +1 

Eci(l-PiJYep* 

We are looking for a nonzero solution K of T(K) = K, that is, a solution of 

H(K) = 
Eci(l-Pi)U.* 

’ =1-K. 

e&(1-Pi)Q& 
I 

As illustrated in Figure 22, the graph of K -+ 1 - K is a negatively sloped 
straight line. As we did in Appendix B and in the calculations for propor- 
tional mixing, we will show that the graph of H(K) slopes upward, i.e., that 
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H’(K) > 0. Write xi for c,(l- p,)y. By the quotient rule, 
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>-XX; A, 

(K+PA,)~ 
cx.1 

’ K-tpA, 

+xX 

(since A’ 2 0 by the argument in Appendix B) 

=-Ch, A; xx, 
K+PA, 

(K+PA,)~ (K+@,)* 

+ xx; (A,K+Gf) 
(K+d2 cx l (K+cL~)* 

= -&xi A, 
(K+/d2 

xx, A1 
(K+PA,)~ 

> 0, 

by the Schwatz inequality again. 
Since H’ > 0, the graph of H curves upwards as in Figure 22. Therefore, 

the graph of H and the graph of K e 1 - K can cross at most at one point. 
Furthermore, they cross if and only if the graph of H starts below 1, i.e., if 
and only if H(0) < 1. As in Appendix B, the threshold condition is given by 
H(0): 

4 (0) 

H(0) = 
Eci(l-&)~o+pA,(0) 

Cci(l-Pt)U = 

epEci(l-Pi)U,O+p~~(0) 

1 

I 
e&(l-d~A,(0) 

k(l-P,)Ls 
= eJ$Cc,“(l- pi)% 

1 

‘m={O,l-c,P,$k} 

( C40) 

Note that for proportional mixing, pi = 0 for all i and (C40) reduces to 
(C23), the condition derived for proportional mixing. 
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APPENDIX D. DEPENDENCE OF THE EQUILIBRIA AND 
THRESHOLDS ON PARAMETERS 

In this appendix, we calculate the effect of varying the parameters of the 
model (l)-(4) on the equilibria X: and y/(x + r) for preferred mixing. 
Since the equilibrium equations (33) for the Xf are implicit equations, the 
equations for the partial derivatives of the Xs are a system of linear 
equations Ax = b, where xi is the derivative of X;r with respect to some 
parameter. The matrices A = ((a,,)) that arise in these calculations are all 
dominant diagonal matrices with positive diagonals and nonpositive off- 
diagonals: 

a,,>O, aij<O (i+ j) and Ca,,>O for all i, j. (Dl) 
h 

Such matrices arise frequently in economic analysis (see [96]) and in biologi- 
cal models (see [76]). In economic models, however, we usually have b, > 0 

for all j and can conclude that each component x, of the solution x is 
positive. In our systems, the b, have different signs. The following theorem 
provides the information we need to keep track of the signs of the xi. See 
[97] for its proof. 

THEOREM D.1 

Let b be a fixed n-vector. Suppose that b, > 0 and that 

b,+ c b,>O, whereS= {i=l,..., n: b,<O}. 
its 

(JW 

(1) Then, for any matrix A satisfying (Dl), the jth component x, of the 
solution of Ax = b is positive. 

(2) If (D2) is violated, then there exist matrices A, and A, both satisfying 
(Dl) such that the jth component xj of the solution of A,x = b is positive 
and the jth component x, of the solution of A,x = b is negative. 

Remark 1. Condition (D2) is easily seen to be equivalent to 

b,+ c b,>O forallsubsetsTof{l,..., j-l,j+l,..., n}. (D3) 
icT 

This is the condition we will often use in applying this theorem. 

Remark 2. If x* is the solution of Ax = b, then -x* is the solution of 
Ax = - b. It follows that if, in the above notation, b, < 0 and b, +& ( b,: 
b, > 0} < 0, then xj < 0. 

Remark 3. Throughout this appendix, we will omit the superscript s on 
the steady-state X,!, y;“, and KS for ease of notation. 
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DEPENDENCE ON c, 

THEOREM D.2 

For preferred mixing with p = 0, 
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ax 
ac,'O and 

foralfi. If y/(X,+Y;)<K,, then 

ax. 
--‘<O and aci 

for all i and j. 

Proof Without loss of generality, we will work with i = 1; the same 
proof carries over for general i. Differentiate with respect to c1 each of the 
following n equations: 

+(l-Pi) 
vJ(l-PJ)y, 

~jc,(l-Pj)X,+~:,c,(l-P,)~ 

(D4) 

for i=l 2 , ,..., n. The result is the following systems of linear equations in 
the n variables aX,/ac,,..., aX,/ac,: 

where 

ajj = 
pj cj TJ 

+c,(1-p,)K2+ 
cj(l-pj)KC h+jCh(l-Ph)Xh 

(xv + 9’ [ChCh(l-Ph)Xh+~hCh(l-Ph)Yhl ‘O 

- cj(l- Pj)Kci(l- P!)X, 

al, = [ChCh(l-ph)~+E:hC~(l- P/J&] <O, ‘#j 

(l- PIIKE hzAl(l- Ph)x, 

[~hCh(l-Ph)Xh+Chch(l-PPh)Yh] +(1-P1)K2 1 c1(1- PA F 
-~(l-p~)[~hc~(l-ph)x~+CLc,J1-ph)&](l-K)io 

bj = - x,(1- pJ)cj 
(l-p,)Y,(l-K)-(l-p*)X,K 1 [~hCh(l-ph)Xh+ChCh(l-pPh)Yh] ’ J=27...Tn. 
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One computes that for each column j of the matrix A = ((aij)), 

and for the right-hand side b, 

i &=-[p$ 
i=l 

+(lpl)(X,K2+~(1-K)2)] 
(l-P,)x,~~=,+,c,(l-P,)x, 

- ChCh(l--ph)Xh+~:hCh(l-Ph)Yh <O. 

Since A satisfies (Dl), bl < 0, and &bi -C 0 for any subset J of {2,. . . , n}, 
13X,/f3c, < 0. Since LJY,/ac, = 0, 

a yi 
ac, xl+q ‘O; ( 1 

the infected fraction in group 1 increases as sexual activity in group 1 
increases. Furthermore, if 

Y,(l-K)-X,K>O, (D5) 

then all the b, are negative, and for every i, 

ax 
--x0 and 
% 

Condition (D5) is equivalent to 

Y 
----<K,. x, + r, 

DEPENDENCEONF 

THEOREM D.3 

For preferred mixing and p = 0, 

ax 
d<O and 
ap 

for all i. 
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Proof. Once again differentiate the n equations (D4), this time with 
respect to j?. The result is a linear system: 

a,, ... %I 
. , 1: . : . . 

a . . . nl a II” 

where 

BPjcJq2 Bc,(l-Pj)KX,cj(l-Pj) 
aj, = 

( X” + $ 
+&Tj(l-pj)K- 

[ChCh(l-Ph)Xh+~hCh(l-Ph)Yhl ‘O 

-pcj(l-pj)Kci(l-p,)x, 

aiJ= [E:hCh(l-ph)Xh+~:hCh(l-ph)Yh] <O, I+’ 

b,=-XjcJ pJ&, 
[ 

+(1-p,)K <o for all j. 
J J 1 

Once again the matrix A is a dominant diagonal matrix. 
right-hand-side vector b has every component negative. By 
each solution a Xi /@ is negative. Since a Y /6’s = 0, 

This time the 
Theorem D.1, 

Since 6 is a weighted average of the &,, , it follows immediately that if any 
of the /Iijk rises, each X,, decreases and each equilibrium fraction infected 
increases. 

DEPENDENCE ON p, 

THEOR EM D.4 

For preferred mixing with p = 0, if 7 /( X, + yl) < K,, then 

ax -->o 
ap, 

and 

In this case, 

2 rJ 
i 1 api x, + r, 

is indeterminate. On the other hand, if q;/( X, + q) > KY, and if Ci(l- pi)q 
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is large compared with c,,(l - ph) X, for h # i, j, then 

. 

Proof. For ease of notation and calculation we will work with a, = 1 - p, 
for i=l,...,n. Then (D4) becomes 

(D6) 

for i=l,..., n. As usual, we will work without loss of generality with ul. 
Taking the derivative with respect to u, of each of the n equations in (D6) 
leads to the linear system _ 

where 

2 

+ C/u+_ 
CjC!&u$ 

&A% Xh +~hCh%yh 

a,, = - 
ciu,X;cjujK 

Llc+%XfI +LlcAYh 
for i # j 

o1c,Y,k#o,x,) - oIc,X,Gc,o/IY,) 

G?J,x, +Lcho,Y,)2 

LZI(%%h + WI%) 

ch(chuhx, + %qh%) 

b = _ cl?ciu, &(z/~~/r’h xh) - clqC~u~ -%(~hchuh%) 
1 

(&rChuhxh +chchuhy,)2 

‘i ‘i X, 

=c~(~+~)Ch(ChuhXh+ChuhYh) 

Once again the matrix A is a dominant diagonal matrix since each off-diago- 
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nal entry is clearly negative, but each column sum is 
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Ca,, = c,o- 9) 
q’ 

+c,b,K-c/?K LC,~,x, 
r (x,+I;12 &lcll~h Xtl +-clwhYh 

=c,(l-a,) 
7’ 

(x,+yI)’ 
+ cjojK - c,~K(l- K) 

> 0. 

Furthermore, 

zb,=-c,(X,+Y,) 
h 

K-$&)'<O. 

If Y1/( X, + Y,) -C K, then 

b,-=O, b,>O(i#l), and cb,<O. 
h 

By Theorem D.l, aX,/8a, -C 0. By the definition of q, 

ax, 
ah 

> 0. 

Since a Flap, = 0 for all i, j, 

a r, -~ 
ap, xl+rl <O. i i 

If YI/(XI+YI)>K, then b,>O and b,<O for all i#l. In this case, 

b, + b2 -e 0 if and only if 

c202 x2 

&+l(chuhxh + chuhY,) 

if and only if 

Cl(Jl 4 + C262 x2 

xh ( chub x, + chub r, ) 
CD71 
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Note that (D7) implies that 

JOHN A. JACQUEZ ET AL. 

x, 
l- K’ x, + Y, Or 

r, 
x,+r, ‘K. 

Therefore, if (D7) holds, then by Theorem D.l, ~3X,/aa, < 0, which in turn 
implies 

DEPENDENCE ON u, 

THEOREM D.5 

For preferred mixing with p = 0, let 

Xf 
Ul+YJ* 

+(1-pl)(l- K)’ 

Zf w > 0, then 

Two conditions that imply that w > 0 are 

r, 
xl+Yl <K and c,jq Cl. 

Proof. A usual, we work with i = 1. Once again, differentiate the n 
equations of (D4), this time with respect to U,. The resulting linear equation 
is 

where 

( all ... al, 

c;(l-p;)x,K&,(l-p,) 

afj=-Ch~h(i-Ph)xh+~h~h(i-Ph)Yh <Oy 
i#j 

X,’ ~1=l-c3h(xl+y,)2 _c1_ p1) c$(m/k)(l- K)c~(l- PI) X, 
ChChtl-Ph)Xh+~ChChtl-Ph)Yh 

b = _tl_p 

J 

) dtm/k)tl- K)cjtl-Pj)Xj 

* ~:hCh(l-Ph)Xh+~hChtl-Ph)Yh <O, j#l. 
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Once again, the matrix A is a dominant diagonal matrix because 
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i a,JEc_fPj( ~)2+cj(1~P~)~K2>o* 

r=l 

In addition, 

Pi(Xi~*Y)* +(1-&)(1-Q2 
1 

We first show that b, is positive. Equations (D4) and (16) imply that 

m - 

[ 

Xl 
l=pP P1xl+yl +(l-p,)y . 

1 
(D9) 

Substitute (D9) into the expression for b, to obtain 

[ 

Kx, (l-K)C,(l-P1)X, x T- - ChCh(l-Ph)Xh +chch(l-Ph)yh 11 . 

But the term in square brackets equals 

c1(1- Pi) x, 

c,(l-p,)Y,{~:hCh(l-Ph)Xh+~:hch(l-Ph)Yh}2 

x cc,~l-P,~x,+cc,~l-P~~~)(~~~~l-p,)y,) 
[( h h h 

- 
(cc,(l-P,)x,)c,(l-P,)Y, 

h 1 
which is positive; so b, is positive. 

Now plug (D9) into (D8) to obtain 

cb,=$$ 
h 

Pltx;-;)2 +h)[$+-K)21j. 
1 

If Y, /( Xi + Y,) -C K, then KX,/Y, > (1 - Q2 and C,, b, is positive. Then, 
by Theorem D.l, 

ax, 
acl,‘O. 

In addition, if c, py c 1, then C, b, > 0 and a Xi /a U, > 0. 
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