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ABSTRACT: In this article we review the important statistical properties of the urn random- 
ization (design) for assigning patients to treatment groups in a clinical trial. The urn 
design is the most widely studied member of the family of adaptive biased-coin de- 
signs. Such designs are a compromise between designs that yield perfect balance in 
treatment assignments and complete randomization which eliminates experimental 
bias. The urn design forces a small-sized trial to be balanced but approaches complete 
randomization as the size of the trial (n) increases. Thus, the urn design is not as 
vulnerable to experimental bias as are other restricted randomization procedures. 

In a clinical trial it may be difficult to postulate that the study subjects constitute 
a random sample from a well-defined homogeneous population. In this case, a ran- 
domization model provides a preferred basis for statistical inference. We describe the 
large-sample permutational null distributions of linear rank statistics for testing the 
equality of treatment groups based on the urn design. In general, these permutation 
tests may be different from those based on the population model, which is equivalent 
to assuming complete randomization. 

Poststratified subgroup analyses can also be performed on the basis of the urn 
design permutational distribution. This provides a basis for analyzing the subset of 
patients with observed responses when some patients' responses can be assumed to 
be missing-at-random. For multiple mutually exclusive strata, these tests are corre- 
lated. For this case, a combined covariate-adjusted test of treatment effect is described. 

Finally, we show how to generalize the urn design to a prospectively stratified trial 
with a fairly large number of strata. 

KEY WORDS: Randomization, urn design, adaptive biased-coin design, permutation tests, stratified 
analysis, missing data, selection bias, accidental bias 

I N T R O D U C T I O N  

One  of the fundamenta l  statistical issues in comparat ive clinical trials is 
the determinat ion of the me thod  of assigning patients to t reatment  groups,  
say a and  b. In mos t  trials, eligible patients become available sequentially for 
s tudy  and mus t  be assigned shortly thereafter to receive either t reatment  a 
or b. A l though  the target size of the trial can be determined beforehand,  the 
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actual number of patients entered into the trial may not be known in advance. 
For example, in a prospectively stratified trial, patients are often grouped into 
several strata based on some important demographic or clinical factors, almost 
always by clinic. If the number of strata is not too large, one generally treats 
each stratum as a separate independent subtrial. In this case, the actual num- 
bers of patients who fall in each stratum are impossible to know in the be- 
ginning of the study. Therefore, in a staggered-entry clinical trial, it is pref- 
erable to have a treatment assignment rule that maintains some degree of 
balance between the numbers of patients assigned to a and b at any stage of 
the trial. 

On the other hand, randomization plays a vital role in the control of bias. 
Complete randomization [1], analogous to tossing a fair coin, reduces or 
eliminates bias in treatment comparisons. However, in a small- or moderate- 
sized trial, complete randomization may result in a severe imbalance between 
the numbers of patients assigned to the two groups. In fact, it has been 
recommended [1,2] that one should not use complete randomization for a 
single-stratum trial with a target sample size under 200. 

Several restricted randomization rules have been proposed, including the 
permuted-block design [3], the biased-coin design [4], the urn design [5], and 
the adaptive biased-coin design [6]. In particular, the urn design forces a small 
trial to be balanced but behaves like complete randomization as the size of 
the trial increases. As a result, the treatment assignments within a sequence 
generated by the urn design are not as predictable as those of other restricted 
randomization procedures, and the vulnerability to bias is likewise reduced. 

In this article, we review the important statistical properties of the urn 
design along the lines described in ref [7]. We describe the balancing and bias 
reduction properties of the urn design. We then describe permutation tests 
of the equality of two groups based on the urn randomization distribution 
for the family of linear rank tests. We also discuss how to perform a post- 
stratified permutation test or subgroup analysis based on the urn design. 
Finally, we describe the generalization of the urn design to a prospectively 
stratified study for which the number of factors is so large that it is not feasible 
to employ an independent  randomization within each possible stratum. 

THE URN DESIGN 

The urn design is a generalization of the class of biased-coin designs (BCDs) 
that were introduced by Efron [4] and which can be described in the following 
manner. Suppose that after n assignments, na as and nb bs have been assigned. 
We then let d, be some function of na and nb such that d, = 0 if na = nb. 
Efron suggested d,  = n~ - n b .  Then the following rule is used: if d = 0, 
assign the patient to either treatment with probability 1/2; if d < 0 (excess of 
bs), assign the patient to a with probability p; if d > 0 (excess of as), assign 
the patient to b with probability p. A value for p is used such that p >/1/2. 
Thus, the BCD(p) forces the trial to tend to be balanced. However, it may 
not be satisfactory in some situations because the probability of assignment 
(p) is constant regardless of the magnitude of the imbalance. To alleviate this 
problem, Wei [5,6] proposed the family of adaptive biased-coin designs in 
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which p fluctuates as a function of the degree of imbalance. The urn  design 
is the most  widely studied member  of this family of designs. 

A generalized Fr iedman's  urn  model  [8] can be used to explain the u m  
design. An urn  contains a white and  a red balls originally. For a t reatment  
ass ignment  a ball is d rawn at r andom and replaced. If the ball is white, 
t rea tment  a is assigned; if red then b is assigned. Furthermore,  [3 additional 
balls of the opposite color of the ball chosen are added  to the urn. Here (x 
and  [3 can be any  reasonable nonnegat ive numbers.  This drawing procedure 
is repeated for each assignment.  This urn design is designated by UD(% [3). 
Note that  the UD(oL, 0) is simply complete randomization.  

For the case a = 0 and  [3 > 0, namely UD(0, [3), either t reatment  a or b 
will be chosen with  probability 1/2 for the first assignment.  This particular 
design has the following interesting property. Again let na and nb be the 
number  of prior assignments to a and b after n assignments. Then the (n + 1)th 
patient  will be assigned to a with probability p, ÷ a = ndn (or to b with prob- 
ability 1 - p,+a = ndn), regardless of the value of [3. That is, the probability 
of having t reatment  a on the next ass ignment  equals the proport ion so far 
assigned to b. This particular design can easily be implemented  and  has an 
efficiency similar to the random allocation rule [1], which has been claimed 
to be a nearly op t imum design [9,10] in the case where  the size of each 
t rea tment  group is predetermined.  This design is also a member  of the class 
of adaptive restricted randomizat ion designs studied by Wei [6,11], Smith 
[12], and  Wei, Smythe,  and Smith [13]. 

BALANCING PROPERTY OF THE URN DESIGN 

Consider  the general UD(c~, [3) design. Let D, be the absolute value of the 
difference between the numbers  in the two t reatment  groups after the nth 
assignment .  Then D, forms a stochastic process with possible values d E {0, 
1, 2 . . . . .  n}. Initially Do = 0. The (n + 1) stage transition probabilities are 

Pr(D,+I = d - 1 I D. = d) = 1/2 + [3d/[2(2a + [3n)] = P(d, n) 

Pr(D.+I = d + 1 [D .  = d) = 1/2 - [~d/[2(2~ + [3n)], (1) 

Pr(D,+I = l I D ,  = 0) = 1, 

where  1 ~< d ~< n [5]. We note that  P(d, n) is monotonically increasing with 
respect to d, monotonical ly decreasing with  respect to n, and  tends toward 
to 1/2 as n increases for fixed d > 0. Therefore, the UD(o~, [3) forces the trial 
to be more balanced w h e n  severe imbalance occurs and  also forces a small- 
sized experiment  to be balanced. However ,  as n increases, the UD(a, [3) 
behaves like the complete randomizat ion design. 

The transition probabilities in eq. (1) can be used  recursively to calculate 
the probability of an imbalance of degree d at any  stage of the trial as 

Pr(D,+~ = d) = Pr(D,+~ = d i D ,  = d - 1)Pr(D, = d - 1) (2) 

+ Pr(D,+~ = d[ D, = d)Pr(D. = d) 

for 0 ~< d ~ n + 1. A comparison among  the UD(0, [3), the BCD(2/3), the 
pe rmuted  block design with length 10, and  the complete randomizat ion UD(oL, 
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Table  I Probability" That  a Trial Is Exactly Balanced After n 
Allocations for Small n 

Design 2 4 6 8 .10 

UD (0,13) 1.00 0.667 0.550 0.479 0.430 
BCD (2/3) 0.667 0.593 0.560 0.541 0.530 
Permutated blocks 0.556 0.476 0.476 0.555 1.000 

with length 10 
Complete 0.500 0.375 0.313 0.273 0.246 

randomization 

"From refs. 4 and 5. 

0) is given in Table 1. Table 1 presents  the probabilities that a small trial 
(n ~< 10) will be exactly balanced.  Notice here  that the UD(0, ~) forces the 
exper iment  to be much  more  balanced than the other  designs. 

For a modera te  or large n, the probabili ty of imbalance, Pr(D~ > d), for the 
UD(u, 13) can be approx imated  by 2 ~ [ - Z e ] ,  where  

d + 0 . 5  
Z~ [n(c~ + ~ ) ] ~  (3) 

L313+ 

[14] and  where  ~(.)  is the distr ibution function of the s tandard  normal  variate. 
For the UD(0, 1), Ze = (d + 0.5)/ v'-n-~. With complete  randomiza t ion  
Pr(D,  > d) can be approx imated  by 2cb[-  (d + 0.5)/V'n]. In terms of the pro- 
port ions of ass ignments ,  let q~ = max(n~, nb)/n. It then  follows that the_prob- 
ability of an imbalance Pr[qu > r] i s app rox ima te ly  2 ~ [ -  2(r - 0.5)V3n] for 
the UD(0, 1) and 2 ~ [ - 2 ( r  - 0.5)X/n] for complete  randomizat ion.  Since the 
s tandard ized  deviate increases on the order  of %/~n with UD(0, 1) versus  
X~n with complete  randomizat ion ,  as n increases imbalances are increasingly 
far less likely with UD(c~, 13) than with complete  randomizat ion.  

It can also be shown  that  the efficiency of the UD(0, 13) compares  favorably 
to that of the r andom allocation rule which yields perfect  balance. Suppose  
that Ya and Yb are responses  of pat ients  t reated by a and b with a c o m m o n  
v a r i a n c e  o -2 and means  I.JLa and txb, respectively. At some stage, let n~ and n~, 
be the numbers  assigned to a and b. Then  the variance of Y~, - ?a, an est imator 
of txb - txa, is (r2[1/na + 1/nb], where  Wa and ?~ are sample means  for a and 
b, respectively.  If the total sample size n = 2m is prespecified,  a perfectly 
balanced design with n~ = nb = m can be obtained with a r an d o m  allocation 
rule [1] for which the quant i ty  -q = [1/n~ + 1/nb] is minimized at ~ = 2/m. 
Now,  if n is not  known  beforehand ,  it is interest ing to know h o w  m an y  extra 
observat ions are needed  for the UD(0, 13) to reduce ~ to be less than or equal 
to 2/m. That is, we cont inue taking observat ions until  na and nb satisfy 

1 1 2 
- -  + - -  ~ - - .  ( 4 )  

na nb m 

If we write na + nb = 2m + U, then  U is the n u m b er  of addit ional observat ions 
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required by the UD(0, 13) to satisfy this condition. It follows from Wei [6] that 
for any given u and large m, 

(5) 

For large m, Pr[U ~ 4] is approximately 0.9995, and thus the UD(0, 13) needs 
at most four extra observations to satisfy the above inequality, that is, yield 
the same efficiency as the perfectly balanced random allocation rule. By way 
of comparison, for complete randomization, Blackwell and Hodges [15] show 
that Pr(U ~ u) --- ~(u i) - ~(-u~) .  In this case, Pr[U ~ 4] ~ 0.95. 

REDUCTION OF EXPERIMENTAL BIASES 

As reviewed by Lachin [7], a measure of the selection bias of a treatment 
assignment rule is the expected number of correct guesses of treatment as- 
signments in excess of that possible by chance alone which the investigator 
can make if he guesses optimally. This was termed the expected bias factor, 
designated as E(F) [7]. 

Consider the case of even sample sizes, n = 2m. For complete randomi- 
zation E(F) = 0 and there is no expected selection bias. With respect to the 
BCD(p), the expected number of excess correct guesses in 2m assignments 
asymptotically approaches (~ - 1)m/2% where ~/ = p/(1 - p) [4]. For the 
UD(tx, [3), the probability of guessing correctly on the (n + 1)th assignment 
is 

E ( D,)f3 
g,+l = 1/2 + 2(2c~ + f~n) (6) 

[5], where E(D,)  = £~=o d Pr(D, = d) can be obtained by the recursive 
relationship in eq. (2). Therefore, the expected number of excess correct guesses 

~--- ~i=1 g i  - -  m .  after 2m assignments for UD(R, ~) is E(F) 2m 
Figure 1 shows a comparison among the UD(0, f~), the random allocation 

design with length 2m, the permuted block design of block length 10, and 
BCD(2/3). The expected bias factor for the random allocation rule is described 
in ref [1] and for the permuted-block design in ref. 3. For the BCD(p), it 
follows from ref. 4 that E(F) = (r - 1 )m/2r ,  where r = p/(1 - p). Each of 
these has greater potential for selection bias than the urn design. Also, since 
g,÷l in eq. (6) converges to 1/2 as n increases, the UD(oL, ~) again tends to 
behave like complete randomization as n increases, thus gradually eliminating 
selection bias for future assignments. 

As also reviewed by Lachin [7], another kind of bias is accidental bias [4], 
which may be caused by an imbalance between treatment groups in the 
distributions of a prognostic factor, known or unknown to the investigator. 
One way to evaluate the vulnerability of a design to such bias is to examine 
P,,k = Cov(Tn, T,÷k) for all positive integers n and k, where T, = 1, if the nth 
patient is assigned to a and - 1 if to b. For the UD(o~, 13), it can be shown that 
for any given k, P,,k --~ 0 as n ---* 00 [6]. This indicates that the components of 
the tail of the vector of treatment assignments T = IT1 . . . . .  T . . . . . .  Tn+k] 
are almost uncorrelated for the UD(o~, ~). Therefore, asymptotically the urn 
design is free of accidental bias. 
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TWO-SAMPLE PERMUTATION TESTS 

As reviewed by Lachin [7], there is a fundamental difference between a 
population and a randomization model as a basis for constructing a statis- 
tical test of the difference between treatment groups. Under a population 
model, the patients in the trial are assumed to be a random sample from a 
well-defined homogeneous population. In this case, the distribution of a test 
statistic under the null hypothesis can be generated on the basis of the as- 
sumption that the patients' responses are independent and identically dis- 
tributed random variables. However, in a clinical trial there is usually no 
sampling basis for a population model, and such a model can only be pos- 
tulated. Instead, a randomization model [16, chap. 1] can be utilized to test 
the null hypothesis H0 that there is no difference between a and b among 
the patients entered into the trial. With this approach, the distribution of 
the significance test is generated by the experimental randomization design 
actually employed. For any given sequence of patients' responses, one can 
tabulate all possible patterns of treatment assignments to patients using the 
restricted randomization rule and calculate the corresponding probabilities 
of treatment assignments. This will generate the null permutational distri- 
bution of a test statistic and a test for H0. 

An example of a permutation test is presented in Table 1 of ref. 7. For 
complete randomization, the unconditional reference set consists of the 2 n 
possible sequences of assignments, each of which has equal probability. Like- 
wise, the conditional reference set consists of the nCna equiprobable sequences 

with na or n assignments. In Table 2 we present the same example to illustrate 
the permutation test with a UD(0, 1) randomization. There are four patients 
and the realized treatment assignments are abba. The patients' treatment 
responses are {Yj} = {2, 1, 5, 6} with corresponding ranks {c j} = {2, 1, 3, 4}. 
The test statistic S used here is the ordinary Wilcoxon rank sum statistic 
computed as the sum of the ranks in group a minus its expected value. Note 
that the {Yj} and their corresponding ranks {cj} are treated as constants, while 
the treatment assignments generated by the randomization utilized in the 
trial are treated as the random component of the trial. The observed value of 
S is 1. We now wish to see how unlikely it is to observe a value equal to or 
larger than 1. 

If the assignments were made by complete randomization, each of the 2 4 
sequences in the unconditional reference set have equal probability (= 1/16) 
and the unconditional p value is 4/16 (see Table 1 of ref. 7). Unlike complete 
randomization, however, with the urn design each of the 2 4 possible patterns 
of assignments in t h e  reference set does not have the same probability of 
occurance, and some sequences are eliminated (probability = 0). For exam- 
ple, Pr(abba) = (1/2)(1)(1/2)(2/3) = 1/6, whereas Pr(abba) -- 1/12. Also, the 
sequence aaba could not occur since Pr(aa) = 0. Table 2, therefore, shows the 
resulting permutational probability distribution for S based on the urn design. 
Unconditionally, there are eight possible sequences for which S t> 1 with 
probability (1/12) + (1/6) = 3/12. By coincidence, this is the same as the un- 
conditional p value (1/4) obtained assuming complete randomization. 

For restricted randomization designs, such as the urn design, Cox [17] 
suggested the use of a conditional permutation test, whereby the significance 
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Table 2 Exact Uncondi t ional  and Condit ional  Permutat ional  
Tests Based on the UD(0,1) with Realized Treatment  
Ass ignments  a, b, b, a and Observed  Responses 
Y/ = {2, 1, 5, 6} a 

Possible Assignments UD(0,1) Test Statistic 
(Unconditional Reference Set) Probability S 

aaaa 0 0 
aaab 0 ~- 1.5 
aaba 0 - 0.5 
aabb b 0 - 2 
abaa 1/12 1.5' 
abab b 1/6 0 
abba b 1/6 1' 
abbb 1/12 - 0.5 
baaa 1/12 0.5 
baab b 1/6 - 1 
baba b 1/6 0 
babb 1/12 - 1.5 
bbaa b 0 2 C 

bbab 0 0.5 
bbba 0 1.5 c 
bbbb 0 0 

~For each permutation, the test statistic is the Wilcoxon rank sum statistic 
computed as the sum of the ranks q = {2, 1, 3, 4} in group a, less the mean 
rank (2.5) times n~ for that permutation. For the actual assignment abba, 
S = 6 - 2(2.5) = 1. 
~'Conditional reference set 
cs ~ 1.0 

level is c o m p u t e d  condit ionally on the difference be tween  the final numbers  
of patients assigned to a and b, or some other indicator of the final imbalance. 
For the above example, the observed t reatment  ass ignment  pat tern is abba. If 
we restrict ourselves to those sequences of t reatment  ass ignments  where  the 
difference be tween  the final numbers  of patients to a and b is zero, then only 
six pat terns remain in the condit ional  reference set of permuta t ions  (Table 2). 
The p values of this conditional test are 2/6 for complete randomizat ion  and 
1/4 for the UD(0, 1). 

With a small sample size, there can be a substantial difference be tween 
the conditional and  uncondi t ional  p values. For example, had  the actual se- 
quence of ass ignments  in Table 2 been abaa, then S = 1.5, and the uncon-  
ditional p value compu ted  from Table 2 is 1/12. The conditional reference set, 
however ,  changes  from that s h o w n  in Table 2 and now includes the four 
possible sequences with three as and one b {aaab, aaba, abaa, baaa}. Over this 
set, the condit ional  p value is 1/2. 

The marked difference be tween  these uncondi t ional  and conditional p val- 
ues is due to the fact that  the sequences with an imbalance (such as abaa) are 
less likely under  restricted randomizat ion  and  thus contribute differentially 
to the uncondi t ional  p value. The conditional p value, however ,  is computed  
only from sequences with the same imbalance as that observed.  Therefore, 
the conditional p value is preferred. This is similar to the traditional a rgument  
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for condit ioning in a populat ion model  wherein  na and nb are ancillary statistics 
that  provide no information regarding the true t reatment  difference. 

The calculation of an exact, permutat ional  p value becomes rather unwieldy,  
even for a moderate-sized trial. Recently, Mehta,  Patel, and Wei [18] have 
s tudied an efficient algorithm for comput ing exact p values with various re- 
stricted randomizat ion rules and test statistics. Their me thod  can easily handle  
a trial with n up to 50 or to 80, depending  on the nature  of the scores used 
in the rank statistic. 

For a large trial, Smythe and Wei [19] and  Wei, Smythe,  and Smith [13] 
have s tudied the asymptotic  null permutat ional  distribution of linear rank 
statistics for testing the equality of the two t reatment  groups based on the 
randomizat ion  model .  More specifically, suppose that  {Y~ . . . . .  Y,} is the 
sequence of responses actually observed from the patients. Let the corre- 
sponding  scores of the Ys be denoted  by {Cl . . . . .  c,} with overall mean  d, 
where  cj may  be a function of the rank of Yj among  all ys. Formally, the cj 
should be writ ten as cj, to designate that  the j th score may  change with n. 
Also, let {1"1 . . . . .  ~',} be a sequence of binary indicators for t reatment  as- 
s ignment ,  ,rj = 1 if a, 0 if b. The linear rank statistic Used to test the null 
hypothes is  H0 is 

j= l  

As described in ref. 7, under  a populat ion model  or a simple randomizat ion 
model ,  appropriate choice of scores {c j} yields the algebraic equivalent of the 
chi-square test for 2 x 2 tables, the Wilcoxon rank sum test, and  the log-rank 
and Peto-Peto-Prent ice-Wilcoxon tests for survival data, among m a n y  others. 

For the UD(~, 13), Smythe  and Wei [19] and  Wei, Smythe and  Smith [131 
showed  that  if 

max (cj - ~)2 
l~j~, ~- 0, for large n, (8) 

j = 1  

then the distribution of the test statistic S can be approximated by a normal  
n 

distribution with  mean  0 and variance V = } Y~ ~ ,  where  
j = l  

" [ 2 ~  + ( j  - 1)13] 13(cl- t) 
b j - - - ( c j - ~ ) -  ~ [2e,+(l - i~131-[-~o,+(/- -2)131 '  l ~ j ~ n ,  ~ =1  (9) 
b . = ( c . - e ) .  

For the UD(0, 13) design, eq. (9) then reduces to 

bj = (cj - e) - 
(c, ~)(j 1) 

~=j+i (I 1)(I 2)' I ~ j ~ n, 
(10) 

b. = ( c . - e ) .  

However ,  if complete randomizat ion is utilized, then  bj = (cj - 8) and  the 
n 

variance V is s imply ¼ E (c] - 8)~. In each case, the liner rank statistic 
j= l  

W = S / V  i is asymptotically distributed as s tandard  normal.  
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The condit ion (8) on the scores cj is rather mild. For example, if cj is the 
rank of Yj among {Y1 . . . . .  Yn}, (8) is trivially satisfied and  the test statistic 
S is the usual  Wilcoxon test statistic. 

For the u rn  design UD(0, f~), the large-sample approximation to the null 
permutat ional  distribution of the test statistic S given the final difference 
d, = n~ - nb is given in Wei, Smythe,  and  Smith [13] and  later is justified 
by Smythe  [20]. For large n, the conditional distribution of S given d, can be 
approximated asymptotically by a normal distribution with  mean  

dn[E/b/bj] 

(11) 

and  variance 

V =  4 1 (12) 

where  bj is obtained from eq. (9) with n -~ in place of (cj - d). Under  this 
conditional distribution, the statistic W = (S - jx)/V ~ is asymptotically dis- 
tr ibuted as s tandard normal [20]. This approximation is surprisingly good 
even for a moderate-sized trial, say n = 20 [18]. 

AN ILLUSTRATION OF PERMUTATION TESTS 

As an illustration, we now apply these tests to the data presented in Table 
3 from the V.A. Cooperative Urologic Research Group (VACURG) Trial of 
estrogen (-r = 1) versus placebo (~" = 0) in the t reatment  of prostatic cancer 
[21,22]. For each patient, Table 3 presents  the death  or censoring time and 
death-censoring indicator variable. The sequence of randomized  t reatment  
assignments  (a and  b) presented in Table 3 was generated using the UD(0, 
1) design with no stratification. Note that the actual randomizat ion procedure 
for this s tudy  has not  been reported in the literature. 

Table 3 Survival or Censoring Time with  Indicator (5) for Survival 
(5 = 1) or Censoring (5 = 0) from the VACURG Study 
[21, 22] with Patients Arranged in Sequence According to a 
UD(0,1) Randomization.  Addit ional  Hypothetical  Data 
Include a Trend Variable 

Treatment Time 5 Trend 

0 84 1 0.2460 
1 84 1 8.9887 
0 32 1 - 0.1433 
1 20 1 7.8792 

0 142 1 2.4582 
1 61 1 10.3714 
1 45 1 8.1106 
1 63 1 4.2394 
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Table 3 ( c o n t i n u e d )  

Treatment Time 8 Trend 

0 178 0 2.6265 
1 151 0 10.5294 
0 5 1 2.7364 
0 89 1 1.6887 

0 173 0 9.0533 
1 75 1 7.6867 
1 30 1 6.0447 
1 163 0 - 1.2359 

0 89 1 4.8903 
1 117 1 9.5883 
1 0 1 3.2329 
1 68 1 -0.9706 

1 0 1 9.8879 
0 166 0 6.6266 
0 111 1 5.8767 
1 55 1 9.0169 

0 133 1 7.5006 
0 163 0 12.1874 
0 110 1 0.0114 
0 192 0 11.0004 

0 98 1 10.2382 
1 199 0 5.6023 
0 95 1 15.1311 
1 172 1 16.3684 

0 155 0 0.4070 
1 140 1 10.9962 
0 93 1 19.7615 
1 37 1 8.6910 

0 155 0 16.6296 
0 70 1 3.2987 
1 157 0 24.3988 
1 19 1 5.9929 

0 29 1 13.8394 
0 112 1 5.3194 
1 144 0 9.4257 
1 14 1 10.6037 

0 46 1 19.9926 
1 77 1 9.0209 
0 65 1 18.3835 
1 4 1 15.8348 

1 143 0 22.2053 
0 45 1 10.1928 
0 60 1 16.9262 
0 142 0 20.4779 

1 6 1 19.2374 
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Table 3 (continued) 

Treatment Time B Trend 

1 65 1 12.8644 
0 130 1 18.6262 
1 128 1 17.5272 

1 177 0 16.0931 
0 156 0 14.7935 
0 146 0 7.9850 
1 171 1 24.3326 

0 26 1 14.7333 
1 93 1 22.2685 
1 33 1 12.3432 
1 5 1 30.7030 

0 76 1 22.2811 
0 38 1 20.5690 
1 26 1 9.9499 
0 61 1 25.4126 

0 131 0 15.0021 
0 28 1 14.9356 
0 38 1 19.9086 
1 140 0 10.1829 

1 136 0 21.1393 
0 113 1 18.1153 
0 125 0 17.7858 
1 66 1 20.2225 

0 120 0 21.8095 
1 13 1 23.0034 
1 117 1 26.4385 
0 56 1 28.6514 

1 107 1 25.9123 
1 108 0 12.2057 
0 148 0 20.9661 
1 0 1 21.3069 

1 12 1 19.7782 
0 114 1 27.3316 
0 117 0 17.9777 
0 119 0 14.0875 
0 103 1 20.4445 

Table 4 presents  the results of various analyses of these data. For each 
scoring function, the linear rank test was applied using the UD(0, 1) uncon-  
ditional permutat ional  variance obtained from eq. (10), and the UD(0, 1) 
condit ional  test based on the conditional mean  and variance in eqs. (11) and  
(12). These are compared  to the test us ing the conditional complete random-  
ization variance, that  is, the UD(1, 0) variance (eq. (3) in ref. 1). As shown  
in refs. 1 and 7, the uncondi t ional  complete randomiza t ion  test is asymptot -  
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ically equivalent to both the conditional test and the population model-based 
test. The scoring functions employed are the simple binary score (1, 0) cor- 
responding to simple mortality (i.e., dead vs. alive at the time last seen), 
which is equivalent to the chi-square test for a 2 x 2 table; and the log-rank 
scores and the modified-Wilcoxon scores for time of death (or censoring) [7]. 
In each case, the numerators of the rank statistic are equivalent for complete 
randomization and the UD(0, 1), each using E(¢j) = 1/2. Therefore, the dif- 
ferences between the statistics for the two randomization designs reflect dif- 
ferences in the variances. 

Since the treatment assignments were generated by the UD(0, 1), the proper 
analysis is that using the UD(0, 1) permutational variance. However,  the 
results are virtually identical using the variances based on the complete ran- 
domization distribution and based on the UD(0, 1), either unconditionally or 
conditionally. 

This raises the general question of whether the treatment-assignment rule 
used in a trial can be ignored in the analysis under the randomization model. 
That is, if the urn design was actually utilized in allocating patients to treat- 
ment groups, can a valid analysis be performed by acting as though complete 
randomization were used in the trial? In general, the answer is no. Mehta, 
Patel, and Wei [18] have generated several data sets with various time trends 
and demonstrated that the design should not be ignored in analyzing such 
data. 

To illustrate this phenomenon,  Table 3 also presents a variable (TREND) 
that displays a moderate time trend as represented by a Spearman rank order 
correlation of 0.761 with order of entry into the trial. The values shown in 
Table 3 were generated under H0 (no treatment effect). To introduce a treat- 
ment effect under the alternative hypothesis, the value 5¢j was subtracted 
from each observation. The analysis of these time trend measures using the 
Wilcoxon rank sum statistic (rank scores) is also presented in Table 4. Under 
both the null and alternative, there are substantial differences between the Z 
values for the unconditional and conditional UD(0, 1) analyses versus the 
UD(1, 0) complete randomization analysis. Also, these differences are more 
pronounced under the alternative hypothesis. In each case, the UD(0, 1) p 
value is substantially smaller than the complete randomization p value. A 
similar example of the effect of a time trend was also given by Halpern and 
Brown [23]. Such calculations with various degrees of time trend indicate that 
the ratio of the UD(0, 1) Z value to that for complete randomization increases 
as the magnitude of the time trend increases, as measured under H0 by the 
Spearman rank order correlation with order of entry. 

This is important because the null distribution of a two-sample test statistic 
based on complete randomization is the same as that generated under the 
population model. In analyses where a UD(0, 1) permutational analysis is 
approximately equivalent to a complete randomization UD(1, 0) permutational 
analysis, it may be reasonable to assume that the observations arose from a 
homogeneous population. However,  if there is an obvious discrepancy in the 
significance levels generated by the design actually used versus complete 
randomization for a given variable, then this indicates that the homogeneous 
population model assumptions may be violated. Often, this discrepancy will 
arise due to a time trend among the observations, in which case it would be 
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more plausible to invoke a time heterogeneous population model. This would 
suggest that additional analyses, for example, regression models, should in- 
corporate temporal sequence of entry into the model. 

We caution, however, that a simple monotonic temporal trend in the scores, 
as illustrated in Table 3, is only one way in which a difference between the 
UD(0, 1) and the UD(1, 0) complete randomization (or population model) 
analyses could arise. Therefore, it is highly recommended that the principal 
analyses of outcome measures be based on the permutational distribution 
under the randomization design employed, in this case, the UD(o~, ~). 

Finally, we note that the urn design can easily be generalized to the case 
of multiple-group comparisons. The mechanism of assignments is exactly as 
described previously, where ~3 balls of each treatment other than the chosen 
one are added to the urn after each assignment. The balancing and random- 
ization properties of this generalization are described by Wei [11,14]. Also, 
the permutation test of the hypothesis that there is no difference among two 
or more treatment groups based on the UD(o~, (3) was investigated by Wei, 
Smythe, and Smith [13]. 

PROSPECTIVELY STRATIFIED RANDOMIZATION 

In clinical trials often there are one or more prognostic factors that are 
known or thought to affect the patients' responses to treatment, and each 
factor has several levels. A stratum is defined as a group of patients who 
have one particular combination of factor levels in common. If the number 
of stratification factors is small, each stratum is generally treated as a separate 
independent  subtrial in which the treatment assignments may be based on 
a separate UD(oL, ~) randomization. For example, in multicenter trials it is 
customary that the randomization be stratified by clinical center. The ran- 
domization and balancing properties of this prospectively stratified urn scheme 
have been studied by Wei [11]. 

Let n~k, nb~, and nk = n,k + nbk refer to the sample sizes in the kth strata, 
k = 1 . . . . .  K. For a prospectively stratified UD(o~, ~), eqs. (1)-(3) can be 
used to calculate the probability of imbalance within any particular strata, or 
in aggregate over all strata combined. As for complete randomization [1], 
using eq. (3) it is easy to show that the probability of an total imbalance, say 
d = I Y'k[rlak --  rtbk] I, using an UD(o~, ~3) separately within each stratum, is 
asymptotically the same as a single-stratum design with n = ~ r / k .  

In addition, the extension of the permutational linear rank test of Ho with 
a prospectively stratified randomization is presented in eq. (7) in ref. 7. For 
the kth stratum, let Sk be the corresponding stratum-specific rank test with 
null expectation P-k and variance Vk. For an unconditional UD(o~, ~) test, ~k = 0 
and Vk is presented in eq. (9). For a conditional test, ~k and Vk are as presented 
in eqs. (11) and (12). The stratified test is then provided by 

Y, 00~(Sk - ~k) 
W = [~k ~o2 G] ~ " (13) 

which is distributed as standard normal under Ho for any set of weights {00k}. 
The choice of weights is discussed in ref. 7. 
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POSTSTRATIFIED (SUBGROUP)  ANALYSES A N D  MISSING D A T A  

Subgroup  Analyses  
It is a common practice in clinical trials that various poststratified or subgroup 

analyses are pe r fo rmed  using factors that  were  not  used  in the beginning of 
the trial to stratify the randomiza t ion  of t rea tments  to patients.  These  post- 
stratified analyses may  be conduc ted  to explore whe the r  there is a t rea tment  
effect within a particular s t ra tum or w h e th e r  there  is an interaction be tween  
t rea tment  and the various strata of a particular factor. They  may  also provide  
a covariate-adjusted assessment  of t rea tment  effects. In the latter case, the 
investigator may  wan t  an aggregate test for the equality of two t rea tment  
g roups  or an estimate of t rea tment  difference combined  over  the strata to 
yield an overall evaluat ion of t rea tment  effects. 

Under  complete  randomizat ion ,  the permuta t iona l  distribution of a test 
statistic c o m p u t e d  wi thin  any  subset  of pat ients  is the same as if that  subset  
had been  obta ined by prestratif ied randomizat ion ,  and therefore  the stratum- 
specific statistics are independen t .  Likewise, u n d e r  a popula t ion  model ,  the 
statistics for different  strata are independen t .  Therefore,  in these cases, a 
poststrat if ied or subgroup  analysis is s traightforward.  However ,  for the ran- 
domiza t ion  model  with a restricted randomiza t ion  rule the analysis is not  
obvious.  

For the urn  design, the large-sample theory  of two-sample  poststrat if ied 
pe rmuta t ion  tests for testing the null hypothes i s  /4o and other  hypo theses  
has been  invest igated by Davis [24]. More specifically, suppose  that in a single- 
s t ra tum trial, the poststratification factor in which  the investigator is in teres ted 
has L levels. Also, let Hi be the hypothes is  that there is no difference be tween  
a and b for the / th  stratum, l = 1 . . . . .  L. For the jth patient, let vj = (v~j . . . . .  
VLj)', where  vlj = 1, if the level of the factor for this p a t i e n t  is l, and 0 
otherwise.  Fur thermore ,  let the scores of the Ys be deno ted  by c j, j = 1 . . . . .  
N. The scores are a funct ion of the responses  {Y] and the indicator vector {v}. 
For example,  cj may  be the rank of Y/ among  Ys for pat ients  w h o  fall into 
the same level of the factor as the j th patient.  The mean  of the scores within 
t h e / t h  s t ra tum can be deno ted  as Ct. 

For simplicity we describe the uncondi t ional  UD(0, 1) test. Consider  the 
test statistic St for testing Ht within t h e / t h  stratum, where  

n 

S~ = ~ v , j (c  i - e,)['r i - E(I"~ - 1/2)] (14) 
i=1 

and 
n 

vii C) 
cl - i=1 (15) 

Yq u~j 

for I = 1 . . . . .  L. Let Bj = (bil . . . . .  bj~), where  
n 

b ,  = e,)  - • - - 1 ) ]  
,=j+~ b (i - 1)(i - 2) J '  j = 1 . . . . .  n. (16) 

Then  unde r  the mild condit ions on  the cs equivalent  to eq. (8), for large n 
the distr ibution of the vector of rank statistics S = ($1 . . . . .  So)', can be 
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approximated by a multivariate normal with mean 0 and L x L covariance 
matrix A, where 

1 ~ , (17) k = ~ BjBj. 
i = 1  

Note that eq. (16) is an obvious extension of eq. (10). Likewise, the bj from 
eq. (9) can be so modified for the UD(% 13). Unfortunately, the poststratified 
permutation test has not been developed to condition on the numbers of as 
and bs in each stratum. 

This large-sample permutation test based on S can be used to test the 
hypothesis Ht separately within the Ith stratum using the normal deviate 
W~ = S~/K~, where ku is the Ith diagonal element of A, or to test the L hy- 
potheses (1-11, 1-12 . . . . .  IlL) simultaneously using S'A-1S, which is distributed 
as chi-square on L df under H0. Furthermore, if there is no obvious interaction 
between treatment and strata, then the {S~} can be combined in a linear fashion 
using a vector of weights (o = ((ol . . . . .  (OL)' in 

(o'S 
W -  ((o,A(o) ~ (18) 

in order to make an overall inference about the treatment difference [7, eq. 
(7)]. 

These methods can be generalized in an obvious manner to a poststratified 
analysis on one factor (say F) in a trial that employed a randomization stratified 
by another factor (say G). In this case, the poststratified analysis on F is 
conducted separately within each level of G, and then the results are pooled 
over levels of G using eq. (13), where Sk is actually the numerator of eq. (18) 
for the kth level of G and the Vk is likewise the denominator. Since this is an 
unconditional analysis, P~k = 0. 

Missing Data 
As described by Lachin [7], when some patients' responses are missing, a 

permutation test of treatment effect can be justified as a post hoc stratified 
subgroup analysis under the missing-at-random assumption. This assumption 
states that missingship is statistically independent of treatment. If this as- 
sumption is plausible, a test can then be performed as previously described 
using the single stratum of patients with observed responses. 

THE USE OF THE URN DESIGN WHEN THE NUMBER 
OF STRATA IS LARGE 

In a stratified randomization, when the number of strata is large, each 
stratum may contain very few patients. In this case, it is difficult to use the 
prospectively stratified design, that is, to each stratum as a separate inde- 
pendent  trial. However, we still can use the urn scheme to construct an overall 
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treatment assignment rule that forces treatment balance simultaneously across 
all factor levels. A detailed illustration is presented in Wei [14]. 

Consider that there are Q factors at fi levels for each, i = 1 . . . . .  Q. Stra- 
tum-specific randomization would require a separate UD(cx, ~) or "urn" for 
each of the ~r~=l fi strata. Here, however,  only E/fi "marginal" urns are used, 
one for each stratifying factor level. For an income patient, the urn chosen is 
the one that has the greatest proportionate imbalance for whichever of the 
patient's factor levels. A ball from that urn is chosen and replaced, and then 

balls of the opposite color are added to all the urns for that patient's factor 
levels. 

For example, suppose three factors are used: clinic with ten levels, pre- 
treatment (none, radiotherapy, or chemotherapy) and sex (male or female). 
Thus, 15 "urns" are used, each with white and red balls to represent treat- 
ments a and b, respectively. Suppose the next patient is a male from clinic 5 
who had prior chemotherapy. Therefore, we would only consider using the 
clinic 5 urn, the male urn or the pretreatment-chemotherapy urn. Suppose 
the respective imbalances of white to red balls are 2 : 0, 5 : 6, and 8 : 11 in 
each urn. Here the greatest proportionate imbalance (2 : 0) is in the clinic 5 
stratum for which the actual numbers of white and red balls are 1 and 3, 
respectively. Thus, for this patient, using the clinic 5 urn, treatment a will be 
assigned with probability 0.25, b with probability 0.75. After selection, ~ balls 
of the other color are added to that patients stratum factor level urns: the 
clinic 5, male, and pretreatment-chemotherapy urns. 

CONCLUSIONS 

The properties of the urn procedure can be summarized as follows. The 
urn procedure is relatively easy to implement, especially via computer. It 
forces a small-sized trial to be balanced but  approaches complete randomi- 
zation as the sample size increases. It has less vulnerability to selection bias 
than does the permuted-block design, biased-coin design, or random allo- 
cation rule. As n increases, the potential for selection bias approaches that of 
complete randomization for which the expected selection bias is zero. Like- 
wise, as n increases, the potential for accidental bias approaches that of com- 
plete randomization. The urn design can also be extended to the prospectively 
stratified trial when the number of strata is either small or large. 

For the family of linear rank tests, which includes the popular log-rank 
and modified-Wilcoxon tests for survival data, the urn design permits explicit 
large-sample permutation tests. The urn design also permits a poststratified 
or subgroup analyses. These tests are not available in standard statistical 
computing packages, but  can be programmed easily. 

The UD((x, [~) permutation test values may differ substantially from those 
based on a population model analysis that ignores the design actually em- 
ployed. In fact, a difference should be expected if there is an obvious time 
trend in the scores employed in the rank statistic. In general, therefore, the 
data should be analyzed the way the study was randomized, with the ap- 
propriate UD(cx, f~) permutational analysis, including stratification if appro- 
priate. 
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