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An investigation of the effects of disorder on the modes of vibration of nearly periodic 
structures is presented. It is shown that, in structures with close eigenvalues, small structural 
irregularities result in both strong localization of the mode shapes and abrupt veering 
away, or mutual repulsion, of the loci of the eigenvalues when these are plotted against 
a parameter representing the disorder in the system. Perturbation methods for the eigen- 
value problem are applied to predict the occurrence of strong localization and eigenvalue 
loci veering, which are shown to be two manifestations of the same phenomenon. Also, 
perturbation methods that handle the dramatic effects of small disorder are developed to 
analyze eigenvalue loci veering and strong localization. Two representative disordered 
nearly periodic structures are studied: a mistuned assembly of coupled oscillators and a 
multi-span beam with irregular spacing of the supports. 

1. INTRODUCTION 

It is well known that the presence of small irregularities in nearly periodic structures may 
inhibit the propagation of vibration and localize the vibration modes. Under conditions 
of weak internal coupling, the mode shapes undergo dramatic changes to become strongly 
localized when small disorder is introduced, thereby confining the energy associated with 
a given mode to a small geometric region. This phenomenon, referred to as normal mode 
localization, has excited considerable interest in solid state physics over the years [l-5] 
and more recently was rediscovered in the field of structural dynamics [6-153. 

To date, however, little attention has been paid to the behavior of the eigenualues of 
the system when strong mode localization occurs. Interesting questions arise: Is the effect 
of small disorder on the eigenvalues as drastic as the one on the mode shapes? Is there 
a typical phenomenon exhibited by the eigenvalues corresponding to mode localization? 
The present study is an attempt to provide answers to these questions. 

Generally speaking, the dependence of the eigenvalues upon a system parameter is 
often of interest in structural dynamics. This leads to a group of loci when the eigenvalues 
are plotted versus the system parameter. Such eigenvalue loci are known to have fascinating 
characteristics, which were first discovered by Leissa in a pioneer paper [16]. When two 
eigenvalue loci approach each other, they either cross or do not cross. Often in the latter 
case, even though the loci nearly intersect, in fact they do not but rather veer away from 
each other with high local curvature. This phenomenon, referred to as eigenvalue loci 
veering, or curve veering, has been thoroughly studied in both dynamics and physics 
[16-191. Curve veering was first thought by Leissa to be a phenomenon created by the 
discretization of continuous systems. However, in a recent paper, Perkins and Mote [ 191 
showed by a perturbation approach that curve veering indeed occurs in continuous as 
well as in discrete systems. 
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It has also been observed by Leissa and others [16-181 that when eigenvalue loci 
veering occurs, the eigenfunctions undergo dramatic, albeit continuous, changes in the 
veering region. Indeed, the eigenfunctions corresponding to each eigenvalue locus are 
interchanged during veering. However, to date, the occurrence of eigenvalue loci veering 
has never been associated with the occurrence of strong mode localization. 

Both eigenvalue loci veering and mode localization are catastrophic type phenomena, 
because small changes in the system parameters result in large variations in the eigenvalues 
and the mode shapes, respectively. Since both phenomena occur when a particular system 
parameter is varied (for mode localization, this parameter is a measure of disorder), one 
wonders whether the occurrence of these two phenomena might be related in any way. 

This paper describes an investigation of the effects of small disorder on the modes of 
free vibration of nearly periodic structures. Special attention is paid to the loci of the 
eigenvalues versus a parameter representing the amount of disorder in the system. It is 
shown that when small disorder is introduced in conservative nearly periodic structures 
with weak internal coupling, both strong mode localization and veering of the eigenvalue 
loci occur, indicating that these are two manifestations of the same phenomenon. This 
simultaneous occurrence is illustrated in section 2 with a simple two-degree-of-freedom 
(DOF) system. Section 3 presents perturbative approaches for both the prediction and 
analysis of mode localization and curve veering in self-adjoint disordered systems. In 
sections 4 and 5 the general theory is applied to two simple disordered systems, namely 
an assembly of coupled oscillators and a two-span beam whose localization of the modes 
has been previously studied by the author [12,13]. The (modified) perturbation method 
developed in references [12,13] for the analysis of strong mode localization is shown to 
apply to the analysis of curve veering as well. 

2. MODE LOCALIZATION AND CURVE VEERING-A SIMPLE EXAMPLE 

The system of two coupled oscillators shown in Figure 1 is considered. The free vibration 
eigenvalue problem is given in Appendix A for N = 2, Al, = 0, and Al,= Al. The two 
important parameters are the dimensionless coupling between pendulums, R2 = 
(k/m)/(g/l), and the dimensionless length deviation, Al. For Al = 0, the system is tuned, 
or ordered; otherwise, it is mistuned, or disordered. The modes of vibration of the tuned 
system are given in Appendix A. 

Figure 2 represents the loci of the two dimensionless eigenvalues versus disorder, Al. 
Mode shapes of angular amplitudes are also displayed for both tuned and mistuned 
systems. Figure 2(a) is for a strongly coupled system such that R = O-5. Observe that 
small disorder does not have much effect on both the eigenvalues and the mode shapes, 
as the modes of the mistuned system are merely perturbations of those of the tuned 
system. Also note that the two eigenvalues are far apart. Now consider Figure 2(b), 
which is for weak coupling, R = 0.025. While the mode shapes of the ordered system are 
still extended (in fact, this is the case for arbitrarily small coupling), the modes of the 

Figure 1. Two coupled oscillators. 
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Figure 2. Loci of the dimensionless eigenvalues of the two-pendulum system in terms of the disorder, Al; 
representative mode shapes are shown. (a) The strong interpendulum coupling case, R = 0.5; neither eigenvalue 
loci veering nor mode localization occur. (b) The weak interpendulum coupling case, R =0.025; both curve 
veering and strong localization occur. 

mistuned system become strongly localized about one pendulum when small disorder is 
introduced, a well-known phenomenon [6]. Indeed, these localized modes are perturba- 
tions of those of the decoupled mistuned system, not of those of the tuned system. Perhaps 
less expected, the behavior of the eigenvalues in Figure 2(b) is also quite different from 
that in Figure 2(a). One observes that for small coupling the loci seem to cross at the 
ordered state, although in fact they do not cross but veer abruptly from each other with 
high local curvatures. The loci cannot cross because there is no multiple eigenvalue for 
the system, which results in a mutual repulsion of both loci, or curve veering. For strong 
interpendulum coupling no such drastic phenomenon is observed. One concludes that 
both strong mode localization and eigenvalue loci veering occur for weak coupling between 
oscillators, that is, when the eigenvalues of the ordered system are close. This simultaneous 
occurrence is generalized in the next section. 

3. PERTURBATIVE ANALYSIS OF DISORDERED STRUCTURES 

3.1. PREDICTION OF STRONG MODE LOCALIZATION 

Even though classical perturbation methods fail to describe localization quantitatively 
because the localized modes are dramatically different from the unperturbed (extended) 
ones, they provide useful insight into the onset of localization. (The reader not familiar 
with perturbation theory for the eigenvalue problem is referred to references [20] and 
[21].) Consider an unperturbed (i.e., ordered) system represented by an operator Lo (a 
homogeneous linear differential operator for a continuous system or an n x n matrix for 
a discrete system). The free vibration eigenvalue problem is 

LOwOi=AOiwOi9 i=l,..., (1) 

where (hoi, Woi) is an unperturbed eigensolution. For a discrete system, there are n 
n-dimensional eigenvectors, while for a continuous system,t there is a countable infinity 

t The function space considered is the space of comparison functions [20]; thus all boundary conditions are 
satisfied. 
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of eigenfunctions of the space variables. For simplicity of presentation, a standard 
eigenvalue problem is considered, the eigenvalues are assumed to be simple, and Lo is 
taken to be self-adjoint, although this can be generalized. 

Denote by p the parameter(s) through which disorder is introduced into the structure. 
p can be a vector for a discrete system (e.g., the vector of pendulum lengths for a chain 
of pendulums) or a function of the space variable(s) for a continuous system. Let p0 be 
the unperturbed value to which corresponds L,, = L( pO). The introduction of disorder, or 
mistuning, perturbs p. as 

P=Po+dP=Po+P&, II Pll = 1, (2) 

where dp accounts for the structural parameter perturbations. In absolute value, the 
perturbation parameter E equals the Euclidean norm of dp. Note that E could also have 
been defined as an estimate of the standard deviation of the perturbations from the mean 
(as is chosen in section 4). The operator Lo is accordingly perturbed as 

L(p)~L=L,+dL=Lo+IE+mE2+..., (3) 

where dL is a perturbation operator that includes terms of the first and higher order in 
the parameter perturbations, dp. The (operator) norms of I and m are finite, on the order 
of one, and the norm of dL is first order, of order E. 

The eigensolution is accordingly perturbed to the second order as 

hi = Aoi + Shi + S2Ai, wi = wgi + SW, + PWi, (2) 

where 6Ai and 6wi (resp. a2Ai and a2Wi) are first- (resp. second-) order terms in E. One 
can show [12, 20, 211 that the first-order perturbations are given by 

(%6) 

where ( *, * ) denotes an inner product defined by (u, u) = j, uu dR for a continuous system, 
where 0 is the domain of the system. For a discrete system, (u, u) = uTv is a vector scalar 
product, where T denotes a transpose. The unperturbed eigenfunctions are normalized 
as (wok, war) = S:, where 8: is the Kronecker symbol. 

Note that SAi is always a first-order term that is a measure of the first order perturbation 
operator le. However, it is not a good measure of the amount of disorder, as if 1 is 
proportional to Lo for instance (i.e., no disorder), (woi, IWO,) does not vanish. On the other 
hand, the magnitude of 6wi is determined by the values of the ratios (Woj, IWoi)E/(A,i - Aoj). 
If all the eigenvalues are well separated, then SWi is effectively first-order. However, if 
two eigenvalues, say A,, and ho,, are close, such that Iho, -Aos] is of the order of or 
smaller than I( wOr, lwOr).s], then 6w, and SW, are not first-order any longer, but of the order 
of one or larger. The assumptions for the use of asymptotic expansions in perturbation 
theory are then violated, and the perturbation analysis fails, thereby indicating that the 
modes undergo a dramatic change. Indeed, for disordered structures made of coupled 
component systems, the failure of the perturbation analysis indicates the occurrence of 
strong localization, as follows. 

For the system of coupled oscillators shown in Figure 3 [ 121, the distance between the 
unperturbed eigenvalues is proportional to the coupling between oscillators, R2 (see 
equation (A2)). Similarly, for the two-span beam shown in Figure 4, the distance between 
the eigenvalues of a pair of modes is also a measure of the coupling between spans, as 
it is proportional to l/c for large c, where c is the stiffness constant of the torsional spring 
at the intermediate support [13]. More recently, it was shown by the author [14] that for 
nearly periodic structures made of coupled component systems, the eigenvalues are 
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Figure 3. Disordered chain of n coupled oscillators. 
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Figure 4. Geometry of disordered two-span beam. 

clustered in groups whose width decreases with the coupling between the component 
systems. Therefore, in periodic structures made of coupled component systems, Iho, - Aocj 
is a measure of the internal coupling. Moreover, ( wOr, Iw,& is a measure of the disorder, 
where E indicates its magnitude and (wOr, Iw,,) its spatial distribution. For example, if I 
is proportional to L,, (no disorder), then ( wOr, Iw,,) = 0. 

Previous studies [6-141 have shown that strong localization occurs in structures made 
of coupled component systems when the internal coupling is of the order of or smaller 
than the disorder. The above discussion indicates that an equivalent criterion for localiza- 
tion is when the distance between two of the unperturbed eigenvalues is of the order of 
or smaller than the inner product of the corresponding eigenfunctions through the operator 
perturbation: 

Iho, - &A G O(l(%S, &AeI) (7) 

The occurrence of strong localization is then indicated by the failure of the perturbation 
analysis. Note that if (woS, Iwo,) = 0 (e.g., no disorder in the system), the criterion (7) 
predicts that the perturbation analysis is valid no matter how close the eigenvalues are, 
and thus that no strong localization occurs-a consistent result. 

Therefore, there are two key parameters involved in the occurrence of localized modes. 
The first one is the spacing between the eigenvalues of the ordered system [6,12]. The 
second parameter, rather than the perturbation la, is the coupling of the unperturbed 
eigenfunctions through rhe operator perturbation. Finally, note that, for nearly periodic 
structures made of coupled component systems, two “couplings” are involved in the 
occurrence of localization. The first is a physical coupling between component systems, 
which determines the distance between eigenvalues, and the second is the coupling 
between mode shapes through the parameter perturbations, with localization occurring 
if the former is of the order of or smaller than the latter. 

3.2. EIGENVALUE LOCI VEERING 

While the first-order perturbation formulae (5) and (6) provide insight into the occur- 
rence of localization, interesting and useful behavior can also be observed by considering 
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the second-order eigenvalue perturbations [ 11,211: 

62A, = c (wOj9 IwOi)(wOjf l*wOi) e*+(wo_ 
I I, 

mw 
hOi - AOj 

_)E* 

01 > 
jfi 

(8) 

where * denotes the adjoint of an operator. If all the eigenvalues are well separated, then 
6*hi is indeed second order. However, if two eigenvalues Aor and Aos are close, such that 
]Ao, - Aos] is on the order of or smaller than (was, IwOr)~, then S*A, and S*A, are of order 
E or larger, which violates the assumptions of perturbation methods. Thus, for systems 
with close unperturbed eigenvalues, the failure of the perturbation approach is indicated 
by both thefirst-order perturbation of the eigenfunctions and the second-order perturbation 
of the eigenualues. Note that since the first-order eigenvalue perturbations always remain 
well behaved (of order E), a first-order sensitivity analysis may completely overlook the 
drastic changes due to irregularities, hence, the importance of systematically performing 
a second-order eigenvalue sensitivity analysis. 

Now, examine the loci of the eigenvalues versus a parameter representing the disorder 
in the system, E. A second-order expansion of the ith eigenvalue locus in the neighborhood 
of the ordered state is 

Ai=Aoi+(Woiy 1WOi)E+(WOi, mWoi)E2+ 1 
( wOj, IwOi)( wOj9 l* wOi) 

Ao~ - Aoj 
&*+0(&q. (9) 

j+i 

The slope of the ith locus at the ordered state (E = 0) is aAi/as]o = (Woi, ZWoi), always a 
well-behaved term, while the curvature of the locus at E = 0 is 

whose magnitude is determined by the distance between the unperturbed eigenvalues. If 
two eigenvalues, Aor and Ao,, are close such that their difference is on the order of or 
smaller than (was, lwOI).s, then the curvatures C, and C, of the loci of A, and A, are of 
order l/s or larger in the neighborhood of the ordered state of the system. Now consider. 
hol and AoS to be the smallest and largest eigenvalues of a group of eigenvalues. If 1 is 
self-adjoint, and taking Ao, < AOr, one observes from equation (8) that S’A, is negative, 
while S*A, is positive. Thus, from equation (lo), the curvature of the locus of A, is negative, 
while the one of A, is positive, both being large. One concludes that the two loci abruptly 
veer away from each other, as sketched in Figure 2(b). Hence, if some unperturbed 
eigenvalues are close, the introduction of irregularities may, in terms of eigenfunctions, 
localize the vibration modes and, in terms of eigenvalues, make the corresponding loci 
veer away rapidly with high local curvature. Moreover, if the “coupling” (was, IwOI)e is 
equal to zero (or one or more orders of magnitude smaller than [ho,-AolJ), then 6*A, 
and S*A, are second order and the loci do not veer away. One also notes from equation 
(7) that in this case no strong localization occurs, a consistent result. 

Since they obey the same criterion(7), eigenvalue loci veering and strong mode localiza- 
tion are indeed two manifestations of a single phenomenon occurring in disordered 
systems. Therefore, the investigation of the loci of the eigenvalues in the neighborhood 
of the ordered state is sufficient for determining the occurrence of strong localization. 
A second-order eigenvalue sensitivity analysis can be used as a simple criterion for 
localization. 

3.3. ANALYSIS OF CURVE VEERING AND LOCALIZATION BY MODIFIED PERTURBATION 

METHODS 

Once mode localization and curve veering have been predicted to occur by the 
perturbative approach described above, the next step is to analyze the characteristics of 
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the eigenvalue loci and localized modes of the disordered system. To do so, perturbation 
methods have to be modified to handle the dramatic changes resulting from small 
irregularities. Such an approach has been developed in references [12,13] to analyze 
localization in chains of coupled oscillators (Figure 3) and two-span beams (Figure 4). 
For both systems, the (small) coupling between component systems, which governs the 
(small) distance between eigenvalues, is treated as a perturbation while the parameter 
irregularities are included in the unperturbed system. This approach has been generalized 
to nearly periodic structures made of coupled component systems in reference [ 141. The 
extension of the method to the analysis of eigenvalue loci veering is illustrated in the 
next sections and in the appendices. 

Recall that the classical perturbation procedure fails when ratios such as 
( wO,, Iw,,)E/(&,, - Aoj) are of order one or larger. On the other hand, the modified method 
is defined by considering the (small) distance between the eigenvalues of the ordered 
system (or the width of the eigenvalue cluster) as a perturbation, while disorder (repre- 
sented by dL) is included in the unperturbed system in order to split the (modified) 
unperturbed eigenvalues; thus, the modified perturbation method makes quantities appear 
similar to the (small) inverse of these ratios in the eigensolution perturbations, and 
therefore is particularly well adapted to the treatment of close eigenvalues and thus of 
localized modes and of loci presenting veerings. However, even though it detects the 
change in direction of the loci, the modified approach fails for very small disorder (of 
order E’ or smaller), that is, in the veering region, in which case one must use a classical 
procedure. Therefore, both procedures complement each other. 

4. EXAMPLE l-CHAIN OF COUPLED OSCILLATORS 

The equations of motion for the assembly of coupled pendulums shown in Figure 3 
are given in Appendix A. Two important parameters are the dimensionless coupling 
between pendulums, R*, and the dimensionless length deviation from the nominal value 
for the ith pendulum, Al,. The vector of parameter perturbations is Al= 
[Al,,. . . , AI,, . . . , Al,,lT. The mean of the Ali’S is taken to be zero; thus the absolute value 
of the parameter F (defined by equation (2) as the norm of Al) is also an estimate of the 
standard deviation of the irregularities multiplied by &. Here, the eigenvalues are to be 
plotted versus the parameter E’= E/G, whose absolute value is the standard deviation 
of the irregularities, a, and thus is a good measure of disorder. In order to study the loci 
of the eigenvalues, the amplitude of the mistuning distribution, E’, is varied for a given 
random-like pattern of mistuning. One can write 

Al = in’ (11) 

where i, listed in Table 1, has a standard deviation of 1-O and E’ can be negative. Even 
though such a deterministic calculation cannot be substituted for a probabilistic treatment 
of disorder, it is believed to describe the behavior of the system representatively. 

The loci of the eigenvalues of a chain of six coupled pendulums versus mistuning 
strength are shown in Figure 5(a) for strong coupling, R = O-5. No curve veering is 

TABLE 1 

The components of the vector i 

[, = 1.341 & = -0.146 
r_2 = 0.610 L5 = -1.293 
I, = -0.976 16=o*439 
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Figure 5. (a) Loci of the dimensionless eigenvalues of a chain of six strongly coupled pendulums, for R = 0.5, 
versus disorder parameter E’; no loci veering occurs; both exact method and classical perturbation method 
results are shown. (b) Mode shapes of an ordered assembly of six pendulums. (c) Mode shapes of a disordered 
chain of six strongly coupled pendulums, for R = 0.5 and E’= 3%. 

observed. The loci on Figure 5(a) have been obtained by both the exact method and the 
(classical) perturbation method for strong coupling case outlined in Appendix A. The 
modes of the tuned and mistuned systems are displayed in Figures 5(b) and 5(c) for 
CT = [&‘I = 3%. The tuned modes are sinusoidal in space, and the mistuned modes are 
merely perturbations of the tuned ones. Hence, there is no significant effect of irregularities 
in the strong coupling case. 

The eigenvalue loci versus mistuning are displayed in Figure 6(a) for weak interpen- 
dulum coupling, R = 0.05. One observes that the eigenvalues globally veer away from each 
other in the neighborhood of the tuned state, E’ = 0. Veering away is most pronounced 
for the smallest and largest eigenvalues. Note that in the small coupling case the tuned 
eigenvalues are very close, and thus, the abrupt veering away of the loci is expected. 
However, curve veering was shown to occur in section 3.2 for self-adjoint perturbations 
only, while for the pendulum system the (classical) perturbation matrix is not symmetric 
(equation (A3)). A close look at the perturbation matrix, though, reveals that for small 
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Figure 6. (a) Loci of the eigenvalues of a chain of six weakly coupled pendulums, for R = O-05, versus 
disorder e’; strong curve veering occurs. (b) Mode shapes of a disordered chain of six weakly coupled pendulums, 
for R=0*05 and ~‘=3%. 

(first-order) coupling the symmetric part of the matrix is first order, while the skew- 
symmetric part is second-order. Therefore, the perturbation matrix is essentially self- 
adjoint, and loci veering can be predicted by the approach of section 3.2. 

The modes of the mistuned system with weak coupling are shown in Figure 6(b) for 
u = E’ = 3%. Observe that the modes are strongly localized about one pendulum-a drastic 
change from the extended tuned modes. Therefore, as predicted in section 3, both mode 
localization and eigenvalue veering occur. Both phenomena become more pronounced 
as the interpendulum coupling decreases, because the distance between eigenvalues 
decreases with R2 and the curvature of the loci is proportional to l/R’. 

Note that besides the global veering of the eigenvalue loci, local veerings also occur. 
Since this system has only simple eigenvalues, two loci converging toward each other can 
only veer away and interchange their slope, instead of crossing. On Figure 6(a), one of 
these local veerings can be easily mistaken for a crossing, and expensive enlargements 
are required to exhibit the veering. Therefore, veerings and crossings can be very difficult 
to distinguish, as noted in reference [19]. 

An interesting special case is the one of decoupled pendulums, R = 0. Since the tuned 
system has an n-fold multiple eigenvalue, the eigenvalue loci cross at E = 0. For arbitrarily 
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small mistuning, though, the modes of the system become completely localized, as they 
consist of oscillations of decoupled pendulums at slightly different frequencies. Moreover, 
for R = 0 and arbitrarily small (but non-zero) mistuning, the eigenvector coupling through 
the parameter perturbation can be readily seen in Appendix A to be equal to zero. (Here 
the unperturbed system must be slightly mistuned as the tuned system has a multiple 
eigenvalue for which the perturbation expansions (6) and (8) are not valid.) Therefore, 
the curvatures of the eigenvalue loci, as well as the eigenvector perturbations, are equal 
to zero. This enables the loci to cross locally in a linear fashion, as seen in Figure 7. 

0.9401 I i A -1 i 1 t 1 I I 
-4.1 -2.46 -0.62 0.0 0.62 2.46 4.1 

Disorder, c’(%) 

Figure 7. Loci of the dimensionless eigenvalues of a chain of six decoupled pendulums (R = 0) versus disorder 
E’. Linear crossing occurs. 

Curve veering has also been analyzed by both classical and modified perturbation 
methods outlined in Appendix A (see reference [ 121 for details). Figure 8 compares the 
loci of the smallest and largest eigenvalues in the weak coupling case by the exact method 
and the classical perturbation method. As shown in section 3.2, the first-order calculation 
predicts a smooth linear variation of the loci that completely misses the veering and, 
therefore, the high sensitivity of the system. The second-order calculation, represented 

-4.1 -2.46 -062 0.0 0.62 2.46 4.1 

Dsorder, ??‘(%) 

Figure 8. Loci of the smallest and largest eigenvalues of a chain of six weakly coupled pendulums (R = 0.05) 
versus disorder E’, by both the exact method (-) and the first- (- - -) and second-order (- - -) classical 
perturbation methods. 
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by a tangent parabola, detects the large curvature of the loci and therefore curve veering 
and localization. It is only valid in the veering region (for very small mistuning, of order 
.r2), though, and does not describe the loci for small mistuning (of order E). But while 
the first-order analysis can be dangerously misleading, the second-order analysis is useful 
since it indicates the high sensitivity of the system and describes the loci near the veering. 

The modified perturbation approach developed in reference [12] to analyze localized 
modes has been extended to deal with eigenvalues. Recall that the disorder is included 
in the (modified) unperturbed system, while the perturbation consists of the interpendulum 
coupling. From Appendix A, the first- and second-order modified perturbations of the 
eigenvalues can be shown to be 

h,“i=l-Al,, Sh:=2R2-S;R’, a2Am = R4 1-s; 1-6; 
AIi_~-AI,fAIi+,-Ali 1 + Al;. (12) 

These modified perturbation results are compared to the exact solution in Figure 9 in the 
weak coupling case. Both smallest and largest eigenvalues are plotted. For “not too small” 
mistuning (of order E), i.e., when strong localization occurs, the first-order calculation is 
a fair approximation of the exact loci, while the second-order analysis agrees very well 
with the exact results. In particular, the modified procedure detects the change in slope 
of the loci. Note, however, that it cannot be used in the veering region where mistuning 
is too small (of order &2 or smaller): that is, too small for strong localization to occur. 
Indeed, for very small a’( <O-3%), the second-order modified perturbation terms become 
very large as E’ goes to zero, as can be seen from equation (12). In this case, however, 
the classical perturbation method can be used effectively-see Figure 8. 

-4.1 -2.46 -0.62 0.0 062 2.46 4.1 

Disorder, cl(%) 

Figure 9. Comparison between the exact method (-) and the first- (-- -_) and second-order (- - -) 
modified perturbation methods for the, case of Figure 8. 

5. EXAMPLE 2-TWO-SPAN BEAM 

The loci of the eigenvalues of the two-span beam shown in Figure 4 are considered. 
The exact solution procedure and the perturbation methods used are outlined in Appendix 
B and can be found in detail in reference [13]. Due to lack of space, only the lower 
pair of modes is considered here. Figure 10 displays the loci of the lower two natural 
frequencies for strong interspan coupling, c = 0 (no restoring moment at the constraint 
location), by the exact method. Typical modes of tuned and mistuned systems are also 
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shown in Figure 10. Observe that the natural frequencies of the tuned beam are not close, 
therefore, neither loci veering nor mode localization occurs. On the other hand, Figure 
11 is for weak interspan coupling, in which case the tuned eigenvalues are close (the 
distance between tuned eigenvalues is approximately proportional to l/c [ 131) and, 
accordingly with the theory of section 3.2, the natural frequency loci veer away abruptly 
and the modes, from extended, become strongly localized in one of the spans. 

Both classical and modified perturbation methods are outlined in Appendix B for the 
two-span beam with strong and weak interspan coupling, respectively. In the classical 

Al 

Figure 10. Loci of the lower twz dimensionless natural frequencies of a two-span beam with strong interspan 
coupling, E = 0, versus disorder Al. Typical mode shapes are represented. 

65.6 - 

Figure 11. Loci of the lower two frequencies of a two-span beam with weak interspan coupling, E= 1000, 
versus disorder. Representative modes are shown. 
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analysis, the mistuning Al is the perturbation. In the modified case, the unperturbed 
system consists of two decoupled mistuned spans, and the perturbation is the dimension- 
less coupling between the spans, l/E Figures 12 and 13 display the comparison between 
the exact method and the classical and modified perturbation methods in the weak 
interspan coupling case. Results are similar to the ones of Figures 8 and 9 for a chain of 
coupled pendulums. Both first- and second-order clas&cal analyses yield erroneous results 
when localization occurs, but the second order calculation indicates the high sensitivity 
of the modes to disorder through the detection of the veering as well as describes the 
loci near the veering. The first-order modified approach gives a good approximation of 

Figure 12. Comparison between the exact method (-) and the first- (- - -_) and second-order (- - -) 
classical perturbation methods for the case of Figure 11. 

60.4 - 

Figure 13. Comparison between the exact method (-) and the first-order modified perturbation method 
(- - -) for the case of Figure 11. (Note that the entire dotted line was obtained by perturbation of the first 
eigenvalue locus, even though this perturbation result approaches the second locus for very small mistumng. 
For the second eigenvalue locus the agreement between the perturbation and the exact results is so good over 
the whole mistuning range (even for very small mistuning) that the dotted and solid lines cannot be distinguished.) 
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both the eigenvalue loci and the localized modes if mistuning is not too small. If mistuning 
is very small (of order E*), it is interesting to note that accurate perturbation results are 
still obtained for the second eigenvalue, while results are erroneous for the first eigen- 
value-this is expected, as the classical perturbation method should be used for very 
small mistuning to describe the veering. Finally, note that the classical first-order eigen- 
value perturbation is zero because of symmetry; therefore, the high sensitivity is completely 
unnoticed by the first-order classical perturbation analysis. 

6. A NOTE ON THE MEMBRANE PROBLEM 

Since loci veering occurs for systems known to be susceptible to mode localization, 
conversely, one wonders whether some kind of localization always occurs in systems that 
exhibit curve veering phenomena. The problem of curve veering for a rectangular mem- 
brane studied by Leissa [ 161 and Perkins and Mote [19] is considered. Leissa has 
shown that when solving for the modes of a clamped rectangular membrane using a 
three-term Galerkin solution, the loci of h,3 and h3, in terms of the side length ratio, 
a/b, veer away from each other in the neighborhood of the square shape, a/b = 1. (In 
this case veering is due to the discretization and does not occur for the exact solution.) 
This loci veering is displayed in Figure 14, which is taken directly from the literature 
[ 161. Typical corresponding modes are also illustrated by their nodal pattern (lines of 
zero deflection) in Figure 14. For a/b = 1, a square membrane, the nodal patterns consist 
of (approximately) a circle and 2 diagonals, while for (a/b)* = 0.95 the nodal patterns 
are two (nearly) horizontal and vertical lines. This drastic change in the modes associated 
with veering has been analyzed by Leissa [16]. 

In light of the discussion of the previous sections, a tuned or ordered membrane can 
be defined as a square one, and the small difference between the length of the sides can 

(a/b? 

Figure 14. Loci of the square of the natural frequencies of the 13 and 31 modes of a clamped rectangular 
membrane versus side length ratio, (a/b)‘. Representative modal patterns are shown [16,19]. 
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be regarded as disorder. Moreover, it has been shown by Perkins and Mote [19] that, for 
the discretized solution, disorder couples the mode shapes and therefore results in a 
veering of the loci. It can be seen in Figure 14 that, in some sense, disorder also results 
in the “localization” of the modes. The nodal patterns of the tuned membrane (circle 
and diagonal) extend equally in two directions. On the other hand, each of the nodal 
lines of the disordered membrane is “localized” in one direction. Therefore, by splitting 
the eigenvalues of the ordered membrane, the discretization creates a coupling between 
the modes through the disorder that results in both eigenvalue loci veering and “directional 
localization.” Of course, a classical perturbation method that considers the deviation of 
the side length ratio from unity as a perturbation could analyze neither the slope change 
of the loci nor the directional localization of the modes, as it would only be valid in the 
veering region. Developing a modified perturbation approach would require one to include 
disorder in the unperturbed system and to consider the distance between unperturbed 
eigenvalues as a perturbation. This distance, however, results from the Galerkin discretiza- 
tion, and it seems difficult to identify the parameter that governs it. Therefore, it may not 
be possible to develop such a modified approach for the membrane problem. This note, 
however, points out that the concepts of disorder and localization indeed apply to other 
structures than those with spatial periodicity. 

7. CONCLUSIONS 

For self-adjoint free vibration problems, strong mode localization and eigenvalue loci 
veering are two manifestations of the same drastic phenomenon occurring when some 
type of disorder is introduced into nearly periodic structures with close eigenvalues. 

Classical perturbation methods are useful in predicting this phenomenon. However, it 
should be borne in mind that first-order eigenvalue perturbation analyses do not reveal 
the high sensitivity to small disorder, and therefore, second-order eigenvalue perturbation 
terms that describe the loci in the veering region must be included. 

Modified perturbation methods that consider the (small) distance between eigenvalues 
as a perturbation and include disorder in the unperturbed system effectively analyze the 
change in slope of the loci due to veering as well as strong localization. 

The occurrence of curve veering indicates that, similarly to spatial localization, direc- 
tional localization also occurs in structures with some kind of irregularities or asymmetry. 
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APPENDIX A: CHAIN OF n COUPLED PENDULUMS 

The free vibration eigenvalue problem can be shown to be [ll, 121 

([Al-~i[~l)xi ~0, 
l+A1,_1 1 

-R2p* - 
l+A1i ’ l+Ali 

+(2-6;)R’; . 641) 
[I] is the n x n identity matrix; [A] is a tridiagonal matrix; AIi is the ith pendulum 
dimensionless length deviation form the nominal length, 1; Ai = of/(g/ 1) is a dimensionless 
eigenvalue, where wi is a free vibration natural frequency; xi is the corresponding 
eigenvector of n angular amplitudes &, k = 1, . . . , II; and R2 = (k/ m)/(g/l) is the 
dimensionless coupling. The other parameters are defined in Figure 3. The tuned eigen- 
solution is [22] 

i=l,...,n. (A2) 
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Classical perturbation method for strong coupling. The Ali’s are the perturbations. The 
unperturbed eigensolution is given by equations (A2). The unperturbed and first-order 
perturbation matrices are 

[Ai]=[tridiag(-R2; 1+(2-Sy)R’; -R’)], 

[SAC] = [tridiag (-R2(Ali-, -AZ,); -Al, ; -R’(A&+, - Ali))]. (A3) 
Modified perturbation method for weak coupling. The Ali’s are included in the unperturbed 
system; R* is the perturbation. The unperturbed and perturbation matrices are 

[A,“]=[diag(l-A&)], [SA”]=[tridiag(-R’; (2-&‘)R2; -R*)], 

[S2A”] = [tridiag (R2(AIi - Al,_,); Alf; R2(Al; -A/i+,))]. (A4) 
The unperturbed eigensolution is 

Ag=l-AIi, xc = e, (canonical vector). (A9 

APPENDIX B: TWO-SPAN BEAM 

The system shown in Figure 4 is analyzed by a Rayleigh-Ritz procedure detailed in 
reference [ 131. The transverse deflection is expanded in terms of the modes of a single-span 
beam of length 1 pinned at both ends, with the constraint conditions enforced by means 
of Lagrange multipliers. The frequency equation can be shown to be 

{ 

NM sin’ (i?rX,) 
c i=l (i7r)“-fi2 I{ 

1 _+ x (i~:~;;~~I)} _ { y (ir) sin(i(f ; (W)J’ = o. 
S 

(B1) 
i=, 

d = R/JEI/ l4 ’ m 1s the dimensionless frequency, where EI is the bending stiffness and 
m the mass per unit length; NM is the number of component modes in the Rayleigh-Ritz 
procedure; and X, = f -a is the dimensionless location of the intermediate support, where 
a = Al/ 1; E = 2cf/ EZ is the dimensionless torsional spring constant. 
Classical perturbation method for strong interspan coupling. The unperturbed system is 
the tuned beam and the perturbation is 3. One has 

6!=&+8fi++*d+~.0~ . . 032) 

where ii,, is the solution of equation (Bl) for a= 0, and 80 and 8’0 are first- and 
second-order perturbations in x. The substitution of expression (B2) into equation (Bl) 
and subsequent expansion yields 

sfi=o, s2fi = -(cy/p)(P/2~i), (B3, B4) 
where 

and zi = ( irr)4 - ai. 
Modijiedperturbation methodfor weak interspan coupling. a is included inthe unperturbed 
system and l/E is a perturbation. fir are the natural frequencies of pinned-clamped 
spans of lengths 3 -a and ++a, obtained by solving equation (Bl) for l/E = 0. Sd”’ is 
the first-order perturbation in l/E. One obtains [13] 

sfim=l_’ c NM sin2( i7rZ,) 
E 2fl,“Y i=l yf ’ 

(W 
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where 

NM sin* (i7r2,) NM 
r=C y, 

c (ir) * cos* (id,) NM sin* (id,) NM 

Yf 
+c 

Yf 

c (ip) * cos* (i?rf,) 
i=l i=l i=l i=l 

_2 y (ii) sin (i?rf,) cos (imf,) y (i7r) sin (id,) cos (id,) 

Yi 

i=l 

and yi = (ir)* - (fir)*. 

Yi i=l Y2 


