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Entropy Production in Flames 

VEDAT S. ARPACI and AHMET SELAMET 

Department o f  Mechanical Engineering and Applied Mechanics, University o f  Michigan, Ann Arbor, MI  48109 

Thermodynamic foundations of the thermal entropy production are rested on the concept of lost heat, (Q /T)  ST. The 
thermomechanical entropy production is shown to be in terms of the lost heat and the lost work as 

, s  

where the second term in brackets denotes the lost (dissipated) work into heat. 
The dimensionless number II, describing the local entropy production s" in a quenched flame is found to be 

l-Is - (Per °) - 2, 

where Yl, = s M 12/k, I = ~/Su ° (a characteristic length), k thermal conductivity, c~ thermal diffusivity, Su ° the 
adiabatic laminar flame speed at the unburned gas temperature, Per ° = Su°D/t~ the flame Peclet number, and 
D the quench distance. 

The tangency condition 0Pe~°//~0b = 0, where 0b = Tb/Tb0 Tb and Tb° denoting, respectively, the burned 
gas (nonadiabatic) and adiabatic flame temperatures, is related to an extremum/n entropy production. The 
distribution of entropy production between the flame and burner is shown in terms of the burned gas 
temperature and the distance from the burner. 

N O M E N C L A T U R E  

Cp specific heat at constant pressure 
d thickness of reaction zone 
D quench distance 

E activation energy 

J5 body force 
H enthalpy 

k thermal conductivity 
K kinetic energy 
1 a characteristic length 
p pressure 
Pe Peclet number 
qi heat flux in xi 
Q heat flow 
R universal gas constant 
s entropy/mass 
s m rate of entropy generation/volume 

siy rate of deformation 
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S entropy 

Su laminar flame speed at unburned gas temper- 
ature 

t time 
T temperature 

u internal energy/wass 

u ~' rate of energy gel eration/volume 
U internal energy 

v specific volume 

vi velocity in xi 

V volume 
W work 

x, xi coordinate axis 

Greek Symbols 

a thermal diffusivity 

0 = T / T b  ° 
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variable defined by Eq. (37) 
lq entropy number 
p density 
rij stress 

potential energy 

Subscripts 

A available 
b burned 
D quench distance 
g, G generation 
L lost 
s entropy 
u unburned 
I first order Ferguson and Keck model 
II second order Ferguson and Keck model 
III Clarke model 

Superscripts 

K conduction 
0 adiabatic or stagnation 

INTRODUCTION 

The foundations of entropy production go back to 
Clausius and Kelvin's studies on the irreversible 
aspects of the Second Law of Thermodynamics. 
Since then the theories based on these foundations 
have been elaborated by the efforts of natural 
philosophers and later utilized by applied scientists 
and engineers (see, for example, Bejan [1, 2] for 
applications involving heat transfer and fluid 
mechanics, and Arpaci [3, 4] and Arpaci and 
Selamet [5] for extension to gas radiation). Yet, 
the entropy production associated with flames 
appears to remain untreated and is the motivation 
of this study. As is well known, the entropy 
production results from dissipative processes (in- 
volving mass, species, momentum and/or heat 
transfer, electromagnetic, or nuclear transport). 
Less known is the fact that the dissipation may 
have a diffusive or hysteretic origin, the diffusion 
being directional and the hysteresis being cyclic. 
However, except for a few cases (such as strain 
hardening and magnetic saturation), the majority 
of dissipative processes including the one in 

flames is of diffusive nature and is the concern of 
the study. 

The study consists of six sections: following this 
introduction, Section 2 clarifies the thermody- 
namic foundations of the entropy production, 
Section 3 develops the transport aspects of this 
production, Section 4 applies the entropy produc- 
tion to flame quenching and interprets the tan- 
gency condition of laminar flame quenching by 
an extremum in entropy production, Section 5 
deals with the distribution of entropy production in 
quenched laminar flames, and Section 6 concludes 
the study. 

2. THERMODYNAMIC FOUNDATIONS 

Under the influence of thermomechanical effects 
only, the First Law of Thermodynamics for a 
differential control volume (Fig. la) is 

d H  ° = 6Q - ~ W, (1) 

where 

H ° =  U + p V + K +  • (2) 

is the stagnation enthalpy, V the volume, K the 
kinetic energy and • the potential energy. The rest 
of the notation is conventional. For later conven- 
ience, rearrange the heat through control surface 
as 

(3) 
o r  as 

~Q = ~QA + ~QL. (4) 

8(Q/T) 
~Q 

\ w  i , , 

SG+6S G 

(a) (b) 

Fig. 1. First and Second Laws of Thermodynamics. 
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Let 

and 

(5) 

denote the available 1 (balanced) heat and the lost 
(dissipated) heat, respectively. Also, let 

~W= --tS( WA + WE), (6) 

~5 WA and/t WE being the available (balanced) work 
and the lost (dissipated) work related to stress (or 
shaft) (Fig. 2a). The explicit (tensorial) form of 
6 W (and other work terms) need to be delayed to 
the next section. Now, rearrange Eq. (1) in terms 
of Eqs. (4) and (6). Thus 

d(U+ K +  0) = (~QA + 6QL) 

-d(pV)+(~WA +fWL). (7) 

The mechanical energy balance, obtained either by 
eliminating thermal effects from Eq. (7) or di- 
rectly from Newton's Second Law of Motion, is 

d ( g + t b )  = - Vdp+6W A. (8) 

Clearly, for a steady, incompressible and inviscid 
flow, Eq. (8) reduces to the Bernoulli equation. 

For any (reversible or irreversible) process, the 
Second Law of Thermodynamics for the differen- 
tial control volume (Fig. lb) is 

dS=~5(Q)+tSSc, (9) 

No relation to the concept of availability. 

~SG denoting the entropy production (or genera- 
tion). For a reversible process, 6SG = 0 and T = 
constant, and Eq. (9) reduces to the familiar form 
of the Second Law. Equation (9) multiplied with 
temperature, 

TdS=Tts(Q)+T(SS~, (lO) 

may be rearranged in terms of Eq. (5) to give the 
energy equivalent of the Second Law (Fig. 2b), 

T dS=tSQA + T 6So. (11) 

Now, subtract Eqs. (8) and (11) from Eq. (7). 
Thus, 

dU- TdS=SQL-p dV-  T6Sc+6WL, (12) 

which, in view of the Gibbs (thermodynamic) 
relation, 

dU= T dS-p  dV, (13) 

reduces to 

1 
(~SG =" "~ ((~(~L -t- (~ WL). (14) 

I 

This result shows the contribution of thermal 
dissipation, as well as that of mechanical dissipa- 
tion, to entropy production [the sign of 6 WL in Eq. 
(6) is assumed to yield the sign of dfWL in Eq. 
(14)]. Clearly, under the influence of chemical, 
electromagnetic, and nuclear effects, Eq. (14) 
needs to be augmented by including the dissipation 
resulting from these effects. 

6. 6QA ~QA 

\ 

"~"- T6SG I 
\\ (6W L + ~50 L ) ~ I I 

~ - - - ~  °+dH° +dS) 

(a) (b] 
Fig. 2. (a) First Law in terms of available and lost work and heat. (b) Energy equivalent of 
Second Law balanced with entropy production. 
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3. LOCAL ENTROPY PRODUCTION 

Although the concept of lost heat continues to 
escape the attention of classical thermodynami- 
cists, its counterpart in a nonequilibrium flow, 
identified as the (thermal part of) local entropy 
production, is well-known (see, for example, 
Arpaci and Larsen [6]). The following brief 
review on this production is for the convenience of 
the proceeding section. 

The nonequilibrium aspects of entropy produc- 
tion require the explicit consideration of the 
momentum balance, as well as the conservation 
of mass and thermal energy. For the Stokesean 
fluid, this balance in terms of the usual nomencla- 
ture is 

Dvi ap Orij 
. . . . .  4---+pjS. (15) P Dt Oxi Oxj 

The local entropy balance (the Second Law 
balanced by the local entropy production) is 

P Dt Ox~ +s", (16) 

where s "  denotes the local entropy production. 
Also, the conservation of  total (thermomechan- 
ical) energy including the heat flux expressed in 
terms of the entropy flux, 

#xi Oxi 

= T - -  + 
Ox~ ~x~' 

is 

o N , ,+~v ,  = 

(17) 

- ~ - ~ ( P ' )  

a 
+ ~ (~,m) + pA~, + u ' ,  

(18) 

where u "  denotes the local energy generation. 
Now consider, the difference 

Total energy - (Momentum)v/- (Entropy) T, 

(19) 

which, in terms of Eqs. (15), (16), and (18) and 
the conservation of mass, 

Do + p Ovi 
~S ~=o ,  (20) 

yields 

( Du Ds Dv ) 
P -Dt T - ~ + p - ~  

-~- - -  ff'-gi+TijSij+U m - T s  m , (21) 

where sij is the rate of deformation. For a 
reversible process, all forms of dissipation vanish, 
and 

( Du Ds Dv ) 
- ~  r - f f + p - ~  =o, (22) 

which is the Gibbs Thermodynamic relation. For 
an irreversible process, Eq. (22) continues to hold 
provided the process can be assumed in local 
equilibrium. Then, the local entropy production is 
found to be 

1 [ (qi'~(OT'~+ ] 
sm = -  _ (23) 

where the first term in brackets denotes the 
dissipation of thermal energy into entropy (lost 
heat), the second term denotes the dissipation of 
mechanical energy into heat (lost work), and the 
third term denotes the dissipation of any (except 
thermomechanical) energy into heat. In terms of 
the usual conductive constitution the local entropy 
production is found to be 

s"  = -r L-r \ ~ / + ~,js,j + u - . (24) 

The next section is devoted to an application of the 
foregoing concepts to flames. 

4. FLAME QUENCHING 

Consider a flat flame anchored to a porous-plug 
flameholder, suggested originally by Hirsehfelder 
and eoworkers [7-9] for experimental studies. 
Such flameholders were designed and utilized 
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earlier by Botha and Spalding [10], Kaskan [11], 
and recently by Ferguson and Keck [12, 13]. The 
local entropy production in such a flame obtained 
from dimensional considerations on the thermal 
part of Eq. (23), is 

s " - ~ . \ - - - ~ j \  ~ j , (25) 

D being the quench distance (the thickness of 
reaction zone is d, and d < D), and T. and Tb 
unburned and burned gas temperatures, respec- 
tively (Fig. 3). Rearrange Eq. (25) in terms of the 
conduction law, 

rb-r  
qX_ k , (26) 

D 

as 

k 
• (27) 

In view of the fact that most of the reaction occurs 
close to the highest temperature, use Tb for the 
characteristic temperature in Eq. (27). Accord- 
ingly, 

( S " - -  1 T b ]  D - - ] '  (28) 

or, in terms of a characteristic length I = ,~/S, °, 
being the thermal diffusivity and S, ° the adiabatic 
laminar flame speed at the unburned gas tempera- 
ture, assuming T./Tb < 1 and introducing dimen- 

- -  fleictlon 

Lumlnoul 
~ Ptoh~t / 

i 

Flsmo 

D-~q d<<D / 

Fig. 3. Quenched laminar flame, 

sionless entropy production Ils, 

$n'12 
Ils = _ (peDO)- 2 (29) 

k 

where 

o D Su°D 
PeD =- -  = (30) 

1 

is the flame Peclet number. Accordingly, 

l-Is =f(PeD°), (31) 

where 

Pep ° =f(D)  and D =f(0b), 

and Ils depends on the flame temperature only 
through the Peclet number (or the dimensionless 
quench distance). The U-shaped nature of D = 
f(0b) is well documented in the literature (see 
Ferguson and Keck [12, 13], Clarke and McIntosh 
[14], and McIntosh and Clarke [15] for the case 
excluding radiation, and Arpaci and Tabaczynski 
[16, 17] for the case including radiation; also, see 
Kooker [18] and Sohrab and Law [19] for the 
importance of radiation on quenching processes, 
and Lee and Tien [20] for the effect of condensed 
fuels on this process). References [12, 13, 16, 17] 
follow the usual practice and evaluate the mini- 
mum quench distance from the tangency condi- 
tion, 

0 
b00-- (PeD0) = 0, (32) 

which actually corresponds to an extremum/11 the 
entropy production, that is, 

0Ils 2 O 

00b (Pep°) 3 00b 
(Per) °) = 0. (33) 

This result, in view of the fact that Pep ° ~: 0, is 
equivalent to Eq. (32), and provides the physical 
justification for the tangency condition. 

5. DISTRIBUTION OF E N T R O P Y  
P R O D U C T I O N  

So far we have discussed the foundations of 
entropy production in flame quenching following 
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some dimensional considerations. Now we pro- 
ceed to a qualitative distribution of this production 
by referring to a thermal model for steady plane 
flames on a porous plug. A number of simple 
models have been proposed, all describing the 
chemistry by a single-step global Arrhenius reac- 
tion, and differing especially in the way the heat 
losses are taken into account. Among these, 
Carrier et al. [21] use a step function heat sink in 
the preheat zone whereas Clarke and coworkers 
[14, 15, 22] follow the model proposed earlier by 
Hirschfelder and coworkers [7-9]. The close 
agreement between these models, except for the 
interpretation of "cold boundary" (see, for exam- 
ple, Williams [23, p. 145]) and the model by 
Matkowsky and Olagunju [24] based on a modi- 
fied step function, which yields results different in 
some important respects, are well-known. Also, 
there exist two models, proposed by Ferguson and 
Keck [12, 13], for interpretation of their experi- 
mental studies. The last two models are conven- 
iently utilized here for a qualitative demonstration 
of the entropy production in flames. Following 
Ref. [12], we have the first order model 

PeD ° = puSu°cp D 
k 

= ( 0 b - 0 u ~  

(34) 

where 0u = TulTb ° and Ob = TblTb 0 are dimen- 
sionless temperatures, Tb ° being the adiabatic 
flame teml~rature, E the activation energy, and R 
the universal gas constant. Also, following Rcf. 
[13] we have the second order model, 

PeD° = puS.°cp 
T = 

x exp ~ - 1  . (35) 

Now, employing Eqs. (34) and (35), we get the 
distribution of entropy production from Eq. (29) 
and plot the results in Fig. 4. On the same figure, 
also shown is the variation of Peclet number. The 

Pe~ 

4C 

30 

20 

10 

0 
0.5 0.6 0.7 0.8 0.9 1.0 

0b-T b/T o 

Fig. 4. First and second order PeD ° and 0b = Tb/Tb °. 

0.08 

0.08 

IIs 
0.04 

0.02 

Peclet and entropy production curves labeled by I 
and H correspond to the first and second order 
models evaluated, respectively, from Eqs. (34) 
and (35). The U-shape of the PeD°-0b relation and 
the inverse quadratic dependence between IIs and 
Pep ° [recall Eq. (29)] readily explain the maxi- 
mum as well as the relatively squeezed shape of 
the IL-0b relation. 

For the spatial distribution of entropy produc- 
tion between the burner and flame, consider the 
temperature distribution from Ref. [13], 

Tb 0- Tti ~ ~ ~ / \ e P - ~ - D  -~ 1 ' (36) 

where 

~x dx' 
~ = p , S ,  cp Jo k " (37) 

Rearrange Eq. (36) in terms of 

T l n ( 1 - 0 , ~  
0 = Tb 0 and PeD = \ l - - ~ b /  (38) 

to obtain 

0(~)= 0.+0b-- 1 +(1 --0b)e ~ (39) 
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and Note that for 

dO 
- -  = (1 -- 0b)e  ~, (40) d~ 
Now, for the thermal part of entropy production, 
Eq. (24) gives 

Sm12 12 ( d T ~  2 (41) 

n,=----k--=-~q \ dx / , 

which may be rearranged as 

IIs = ~ (42) 

In terms of I = ot/Su ° and for a constant k, 

x pucpS,°x Sux/a 

! k Su/Su ° '  

or  

x _  ~ (43) 
! & /&o"  

Now, in terms of ~, Eq. (42) becomes 

n ,  = ~ , (44) 

which, with the experimental correlation 

~ ,  °=exp  2Rrb ° Oh-- 1 (45) 

of Kaskan [H],  yields 

1-Is=~ e x p - ~ - ~ b  o ~b--1 . 

(46) 

Finally, referring to Eqs. (39) and (40) for 0 and 
do/d~, Eq. (46) may be rearranged as 

(1 - -  0b)e  ~ 2 

ns= L0.+0~i ~-~-0b)e~] 

× exp Z - 1  • (47) 

0u + 0b = 1 (48) 

Eq. (47) reduces to 

IIs = exp - ~ - 1 , (49) 

which, for a fixed E/RTb ° and 0b, becomes 
constant. Figure 5 shows IIs versus ~/PeD for 0u = 
0.2 and E/RTb ° = 10. The entropy production 
between the flame and burner appears to be almost 
uniform. Since the quench distance is rather small, 
say 0.5-1 mm (see Ref. [13]), this result is not 
surprising. For 0b = 1 - 0u, this production 
becomes exactly uniform. However, for 0b > 1 -- 
0u, the behavior of production drastically changes 
as demonstrated in Fig. 5 with 0b = 0.96. The 
uniformity of, as well as the drastic change in, 
entropy production does not accept a ready inter- 
pretation. It may be more a property of the model 
rather than the reality. The quantitative difference 
between the model and experimental results (see 
Fig. 6 of Ref. [13]) for 0b > 1 -- 0u adds some 
credence to this statement. 

I Oh'o's° 0.08~ o.7a 

0 04 ~ / '  ~ ' ~ ~ - ~  0.74 

0.70 

0.60 

Ol i ' A , 
0 0 2 0.4 0.6 0.8 1.0 

~ /Po o 

Fig. 5. Spatial distribution of entropy production. 

0.12 
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Among the flame models existing in the litera- 
ture, the foregoing Ferguson and Keck models 
were employed because of their simplicity. A third 
and somewhat more involved model, based on 
studies of Clarke and coworkers [14, 15, 22], and 
resting on the flame speed 

Su (Tb'~ 2 [ E ( 1  
Su----8= \ TbO] exp 2RTb o ~- 

readily yields 

p e o o = l  ln (1-Ou ~ 
#b 2 \ 1 - Ob / 

×e p 

or  

(PeD°)m = 0b- 2 (pevo)u 

and 

(IL)m = 0b4(IIA~, 

l)], 
(5O) 

, (51) 

(52) 

(53) 

where subscripts II and HI, respectively, refer to 
the second order Ferguson and Keck model and 
the Clarke model. A numerical comparison be- 
tween these models shows that, in spite of its 
relative complexity, the Clarke model relative to 
the Ferguson and Keck models appears to provide 
a limited improvement in approximating real 
flames. 

The range of 0u is 0.12-0.25 and the range of 
E/RTb ° for ordinary hydrocarbon fuels (say, 
methane, propane, and octane) reacting with air is 

E/RTb°= 5-15. 

Figure 6 shows the variation of Per ° and II, based 
on the second order Ferguson and Keck model. 
Here, E/RTb ° = 10 qualitatively represents (for 
the stoichiometric mixture with air) a lower bound 
for propane and an upper bound for (n-octane), 
and E/RTb ° = 15 an upper bound for methane. 
Actually, there remains a considerable disagree- 
ment in the literature on the activation energy of 
methane (see, for example, the tables in Kanury 

lo 

- ,ol ., 
,o/ \ , z , . /  1 o.o' 

O ~  0 
0.5 0.6 0.7 0.8 0.9 1.0 

0h=Tb/T 2 
Fig. 6. Effect of activation energy on Pep ° and II,. 

[25, p. 109], Mullins [26, pp. 201-202], and 
Kaskan [111). This disagreement is a result of the 
difficulties associated with CI-I4 oxidation 
(Westbrook and Dryer [27] and Glassman [28, p. 
81]). Here, we utilized, somewhat arbitrarily, the 
values suggested by Kaskan [11]. 

6. CONCLUSIONS 

The concept of lost heat is originated as opposed to 
that of lost work. It is shown that all forms of 
energy are dissipated into heat and describe the 
nonthermal part of entropy production while the 
heat energy is dissipated into entropy and de- 
scribes the thermal part of this production. A 
dimensionless number for entropy production is 
introduced. This number is evaluated in terms of 
an illustrative case which involves the entropy 
production in the luminous zone of a quenched 
flame. The production is found to be inversely 
proportional to the Peclet number. The tangency 
condition, usually considered in the literature to 
determine the minimum quench distance, is related 
to an extremum of  entropy production. The 
distribution of entropy production between the 
flame and burner appears to remain constant for 0 
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< 1 - 0u This result is not surprising in view of 
the magnitude of the quench distance. The rapid 
and unusual change in distribution of entropy 
production for 0b > 1 -- 0u is quite surprising and 
does not appear to be readily justifiable. This may 
well be a result of the nature of the models which 
for 0b > 1 -- 0u begin tO deviate from experimen- 
tal results as shown in Ref. [13]. 

Future research on real flame entropy should 
first be related to existing models of the prediction 
of flame structure rather than to one-dimensional 
models (such as those employed in this study) 
which are based on the assumption of negligible 
flame thickness. Examples of models incorporat- 
ing flame structure are the studies by Westbrook 
and Dryer [27], and Warnatz, Miller, Kee, and 
coworkers (see Ref. [29]). 
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