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Abstract-This paper presents a novel scheme for the use of linear programming to calculate muscle 
contraction forces in models describing musculoskeletal system biomechanics. Models of this kind are 
frequently found in the biomechanics literature. In most cases they involve muscle contraction force 
calculations that are statically indeterminate, and hence use optimization techniques to make those 
calculations. We present a linear programming optimization technique that solves a two-objective problem 
with two sequential linear programs. We use the technique here to minimize muscle intensity and joint 
compression force, since those are commonly used objectives. The two linear program model has the 
advantages of low computation cost, ready implementation on a micro-computer, and stable solutions. We 
show how to solve the model analytically in simple cases. We also discuss the use. of the dual problem of linear 
programming to gain understanding of the solution it provides. 

INTRODUCrION 

There is considerable interest in learning what muscle 
contraction forces are used to perform various physical 
tasks. Since these are dificult to measure in uioo, they 
are often calculated from biomechanical consider- 
ations. When an external moment must be equilibrated 
across a joint, a biomechanical model of the joint and 
its muscles can be established, and a set of muscle 
forces that equilibrate that external moment found. 

However, most joints of the human body are crossed 
by a large number of muscles. There are at most six 
equations of equilibrium (three force equations and 
three moment equations) to be satisfied, but there are 
often more than six muscle forces to be calculated. For 
example, Seireg and Arvikar (1973) in their model of 
the lower extremity incorporated 29 muscles, Chao 
and An (1978) in their model of the hand included 18 
muscles, Schultz et al. (1983) in their model of the 
lumbar trunk included up to 22 muscles, and An et al. 
(1984) in their model of the elbow included nine 
muscles. In such models, the calculation of the muscle 
contraction forces constitutes a statically indeter- 
minate problem. 

An approach often taken to solve this indeterminate 
problem is to use an optimization technique. For 
example, Seireg and Arvikar (1973) minimized sums of 
muscle contraction forces, Crowninshield and Brand 
(198 1) minimized the sum of the cube of the muscle 
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contraction forces; An et al. (1984) minimized the 
muscle contraction intensity (force per unit cross- 
sectional area); and Schultz et al. (1983) approximately 
minimized the muscle contraction intensity and the 
spine joint compression force. These optimization 
procedures usually provide good solutions. That is, 
they lead to predicted sets of muscle contraction forces 
that correlate well with experimentally measured levels 
of muscle myoelectric activity. 

The techniques of Seireg and Arvikar (1973), Schultz 
et al. (1983) and An et al. (1984) are applications of 
linear programming [Hillier and Lieberman (1980), 
Dantzig (1963)]. Linear programming techniques for 
optimization are robust enough to encompass many 
formulations of interest, simple enough to program on 
a micro-computer, and theoretically well enough de- 
veloped to provide good insight into the nature of the 
solutions obtained. 

2. LlNEAR PROGRAMMlNG 

A linear program is an optimization model which 
can be stated in the following form: 

minimize i cjxj (the objective function) 
j=l 

subject to: 

i aijxj 2 bi, i = 1,2 . . . , m (the constraints) 
j=l 

~~20, j=l,2 ,..., n 
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where cj, bi and aijare known parameters and xj are the 
unknown variables. For example, in the muscle con- 
traction force problem, the known parameters include 
moment arm length, line-of-action orientations, 
muscle cross-sectional areas, and external moments. 
The unknown variables are the muscle and joint 
reaction forces. The important feature of such models 
is that the objective function and the constraints must 
be linear in the unknowns. The constraints may be 
inequalities or equalities. 

2.1. Formulation of a force calculation as a linear 
program 

Consider a biomechanical model of a joint which 
requires that the three components of an external 
moment be equilibrated by muscles crossing the joint. 
Suppose we wish to minimize the muscle contraction 
intensity necessary to resist the external moment. The 
intensity is the force exerted by the muscle divided by 
its cross-sectional area. Let m be the number of muscles 
modelled, aij the component of the moment arm of 
muscle j about axis i, bi the component of the external 
moment about axis i, and dj the inverse of the cross- 
sectional area of muscle j. These are the known 
parameters of this problem. The unknowns are the 
muscle forces, xj for muscle j, and the resultant 
maximum intensity, I. The problem is: 

min I 

subject to: i aijxj = bi, i = 1,2,3 
j=l 

djxj<I, j=l,2 ,..., m (1) 

xj 2 0, j = 1,2,. . . , m. 

The first set of constraints requires that the three 
equations of moment equilibrium be satisfied. The 
second set of constraints requires that the intensity of 
each muscle contraction be not greater than the 
maximum intensity, I. The last set requires that all 
muscle forces be non-negative since muscles do not 
sustain compression forces. 

This formulation is equivalent to that used by An et 
al. (1984) for the elbow. This formulation provides a 
unique set of forces for some sets of parameters, but its 
solution is not unique in general, as is demonstrated in 
Section 3.1. 

Force calculations involving other objectives can be 
formulated as linear programs. For example, if the 
objective were to minimize the sum of muscle contrac- 
tion forces, given a fixed maximum intensity, the model 
would be: 

min C xi 
j=l 

subject to: F aijxj = bi, i= 1,2,3 
j=l 

djxj G I, j = 1,2, . . . , m (2) 

xj > 0, j = 1,.2,. . . m 

where I is now considered fixed and only the xi are the 
unknowns. 

The following discussion of solution techniques and 
sensitivity is valid for any problem that can be 
formulated as a linear program. 

2.2. Solution of the linear program 

The method most commonly used to find the 
optimal solution to a linear program is Dantzig’s 
simplex algorithm. A feasible solution is defined as any 
solution that satisfies all the constraints, regardless of 
optimality. The set of feasible solutions to any linear 
program can be shown to be a polyhedron such as that 
in Fig. 1. Since muscles can produce finite maximum 
forces, the feasible region is bounded (a polytope). 
Hence, it is known that an optimal solution must lie 
at one of the corners of the feasible region. The simplex 
method moves from one corner to the next until the 
best solution is found. While the number of corners 
can be large, this technique is efficient and moves 
quickly to the optimal corner. 

Many software packages are available for both 
mainframe and micro-computers to solve linear pro- 
grams. The computational results presented later in 
this paper were run on a mainframe using a package 
called LPSUB [Davisson (1969)] and on an IBM PC- 
XT using LP.BAS and the MATRIX-lOOenhancement 
for BASIC [both by Stanford Business Software 
(1984)]. 

To illustrate these ideas, consider a hypothetical 
two-muscle model of the lumbar trunk required to 
equilibrate one moment. Suppose the muscle moment 
arm lengths are 6.5 cm and 1.0 cm and the muscle 
cross-sectional areas are 10 cm2 and 100 cm*, respect- 
ively. Areas this large are chosen since the model 
muscles would represent several smaller muscles. 
Suppose that the external moment is 58 Nm and that 
contraction intensity is not to exceed 40 N/cm*. To 
minimize the total force exerted by the two muscles 
requires: 

min x1 +x2 

subject to: 0.065~~ +0.01x2 = 58 

(N) 

(Nm) 

X2t t- OBJECTIVE FUNCTION 

DECISION CONSTRAINTS 
VARIABLE 

2 

OPTIMAL ’ 
SOLUTION 

I 

DECISION VARIABLE I 7 

Fig. 1. Typical problem having two unknowns with objective 
shown for minimum values that are feasible. 
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FEASIBLE REGION 
INEOUALITY CONSTRAINT 

0.01X26 40N/cm* 

FORCE 

MUSCLE 2 

OBJECTIVE 
FUNCTION 

400 000 xl 

FORCE OF MUSCLE I (N) 

Fig. 2. Two muscle examples with two inequality and one equality constraints. 

0.1x1 $2 40, 0.01x, < 40 (N/cm’) 

x1 3 0, x2 >, 0. (N) 

Figure 2 shows the polyhedron formed by the 
feasible region. In this example the feasible region 
collapses to a line segment. The optimal solution must 
lie at one of its two endpoints. The objective function 
has values of 4277 N at the left endpoint and 3600 N at 
the right. The optimal solution is at the right endpoint, 
where x1 = 400 N, x2 = 3200 N. 

If maximum intensity is to be minimized, the model 
changes to: 

min I (N/cm2) 

subject to: 0.065x, +O.O~X*~ = 58 (Nm) 

0.1x., $ I, 0.01x, 6 I (N/cm’) 

x, z 0, x2 3 0. (N) 

The solution to this is x, = 351.52 N, x2 = 3515.15 N, 
and I = 35.15 N/cm’. This solution has a lower maxi- 
mum intensity, but higher total muscle force, which 
results in higher joint compression force. These exam- 
ples, show the trade-off between the objectives of low 
contraction intensity and low joint compression force. 
The theory of linear programming allows us to 
evaluate this trade-off. 

2.3. Sensitioity of solutions 

Associated with every linear program is another 
linear program called its dual problem. In general, the 
dual has one constraint for each unknown in the 
original problem, and one unknown for each con- 
straint in the original problem. Hillier and Lieberman 
(1980) and Dantzig (1963) discuss duality in linear 
programming in depth. We will discuss only the 
optimal solutioq to the dual problem and its provision 
of information about sensitivity of the solution in the 
original problem. We will illustrate this with our 
example of the intensity vs compression trade-off. 

While the optimal solution to a linear program gives 
the contribution to the objective function of each 
variable (the muscle forces in our example), the 
solution to the dual problem gives the contribution of 
each constraint to the same objective. In our example, 
the dual solution shows how much of the total muscle 
force arises because of the external force, and how 
much because of the upper bounds on intensity. In 
other words, it describes how the objective value would 
change if the bi and I values were changed. 

The optimal solution to the dual of a linear program 
has the economic interpretation of an internal price for 
an additional unit of some scarce resource. In the linear 
program formulated above the prices for the moment 
equation tell how much intensity would change if an 
additional Nm of external moment were applied. This 
concept will be demonstrated below. Most computer 
packages to solve linear programs report the prices 
when the problem is solved. It is not necessary to solve 
the related dual linear program; this information is 
available directly from the solution to the original 
linear program. 

2.4. Example: four muscle, two moment model of the 
lumbar trunk 

Consider a model of the lumbar trunk at the LSjSl 
level that incorporates four single-equivalent muscles, 
the erector spinae, latissimus dorsi, oblique abdomi- 
nals, and the psoas (Fig. 3). Suppose the moment arms 
for the erector spinae and latissimus are 7.4cm and 
9.8 cm, respectively, and these muscles lie in the mid- 
sagittal plane. The oblique and psoas muscles have 
moment arms of 14.7 cm and 6.0 cm, respectively, and 
lie in the coronal plane passing through the center of 
the vertebral body. Further suppose the external 
moment is 58 Nm in flexion, and 41 Nm in lateral 
bending. This would correspond to holding approxi- 
mately a 200 N weight at a distance of 35 cm from 
LSjSl disc. Take muscle cross-sectional areas as. 
respectively, 31, 3, 13, 5 cm’. The linear program to 
minimize the maximum muscle contraction intensity 
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EXTERNAL LOAD LOCATI 

SOAS EQUIVALENT 

OBLIQUE MUSCLES 

IV 
LATISSIMUS OORSI EQUIVALENT 

Fig. 3. Hypothetical four muscle torso model with moment arms and cross-sectional areas selected as 
suggested by Schultz et al., 1983, Reid and Costigan, 1985 and Nemeth and Ohlsen, 1986. The muscle lines of 
action have been located so that the erector and latissimus dorsi muscles act to only resist X-axis moment, and 
psoas and oblique muscles act to only resist Y-axis moment created by 200 N load acting 35.5 cm from L5jSl 

disc. 

to equilibrate the moments is then: 

min 1 (N/cm’) 

subject to: 0.068~~ +0.091x, = 58 (Nm) 

0.073x, +0.023x4 = 41 (Nm) 

0.03226~~ ,< I, 0.33333~~ < I (N/cm*) 

0.07692x3 < 1, 0.2~~ < I (N/cm’) 

xj 2 0, j = 1,2, 3,4. (N) 

An optimal solution yields muscle forces of erector 
spinae = 698 N, latissimus dorsi = 116 N, abdominal 
oblique = 501 N, and psoas = 193 N, respectively, 
and requires a maximum intensity of 38.5 N/cm’. The 
intensity for each individual muscle is 22.5, 38.5, 38.5, 
38.5 N/cm’, respectively. 

The dual solution gives us six sensitivities for this 
example: one for each moment equation and one for 
each intensity bound. Their valuesare 0 Nm, 0.94 Nm, 
0 N/cm2, 0 N/cm2, - 0.89 N/cm’, - 0.11 N/cm2. The 
0.94 signifies that if the external moment in the lateral 
plane were increased from 41 to 42 Nm, the required 
maximum intensity would increase 0.94 N/cm’ from 
38.5 N/cm2 to 39.4 N/cm2. However, if the moment in 
the sagittal plane were increased, no change in the 
maximum intensity would be necessary. This occurs 
because of the slack in the intensity of the erector 
spinae contraction (22.5 required vs 38.5 N/cm2 
allowed). 

3. A DOUBLE LINEAR PROGRAMMING METHOD 

3.1. Background 

We propose a new method for calculation of muscle 
contraction forces using biomechanical models of the 

musculoskeletal system. We will describe that method 
through an illustration in the four muscle, two moment 
model of the lumbar trunk, although its applicability is 
more general than this. 

Schultz et al. (1983) described lumbar trunk models 
that minimize the compression on the spine while, at 
the same time, minimizing maximum muscle contrac- 
tion intensity. Such models provide results that are in 
better agreement with experimental measurements 
than those provided by less sophisticated models. The 
method we propose efficiently meets such double 
objectives. 

Compression on the spine is a function of the muscle 
contraction forces, body segment weights, external 
forces and moments, and perhaps intra-abdominal 
pressure. Usually, the only quantities in this list that 
are not prescribed are the muscle contraction forces. 
The objective to minimize spine compression is equi- 
valent to the linear program described by Relations (2) 
listed in Section 2.1. 

The bounds on muscle intensity arise from our 
objective to minimize maximum contraction intensity. 
If these bounds are too low the resulting model will be 
infeasible. That is, there will be no combination of 
muscle forces, bounded by that intensity, that can 
equilibrate the external loads. If the intensity value is 
too high, muscles with larger moment arms will be 
recruited before those with smaller ones, contrary to 
what is observed experimentally. 

Schultz et al. (1983) solved this problem by solving a 
sequence of linear programs of the type described by 
Relations (2), each with a different upper bound for 
intensity selected by a step-wise procedure, as follows. 
They began with low intensities which lead to in- 
feasible models, and gradually increased I until the first 
feasible solution was found. The difficulties of this 
approach are its substantial computational require- 
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ments and instability of solutions as intensity values 
are changed slightly. The instability results when an 
optimal solution occurs at one corner of the feasible 
polyhedron for a given I value, but jumps to another 
corner with a very small change in I. 

We propose an alternative to this procedure which 
involves formulating and solving two linear programs 
sequentially. First, as in An et al. (1984b), minimize 
maximum muscle intensity using Relations (1). Let the 
optimal intensity value from this solution be I*. 
Second, solve the linear program using Relations (2) to 
minimize the sum of the muscle forces, using I* as the 
intensity limit. The first linear program determines the 
lowest intensity value which allows feasible solutions. 
The second linear program chooses amongst these 
solutions to minimize spinal compression. Hence, this 
scheme addresses both of the stated objectives. 

This approach gives results which differ from those 
of previously published techniques. To demonstrate 
this, consider the four muscle, two moment model 
introduced in Section 2.4 (Fig. 3). Results using four 
approaches are compared in Table 1. The approaches 

are (1) minimize compression with no constraint on 
maximum muscle intensity, (2) minimize largest nec- 
essary intensity, (3) minimize both through a sequence 
of solutions, and (4) minimize both through the two 
linear program approach just outlined. Approaches 
(l), (3), and (4) determine unique solutions. Approach 
(2) may have many optimal solutions. Since there are 
multiple optima, the particular optimal solution 
chosen by the code will depend on the ordering of the 
unknowns and constraints, and tie-breaking conven- 
tions in the code. Three optimal solutions are listed in 
the table denoted by ‘2a’, ‘2b’, and ‘2~‘. Note that the 
ignored compression objective changes between the 
three optimal solutions. 

In this simple case, if muscle intensity is not 
constrained while seeking to minimize compression 
(Model 1). the maximum stabilizing forces will be 
allocated to the muscles with the largest effective 
moment arms (latissimus dorsi and abdominal oblique 
muscles). This results in a lower compression force on 
the spine but muscles are not necessarily recruited as 
observed in nivo and will be highly stressed. 

Table 1. Solutions using various approaches 

Model Erector Latissimus Abdominal Necessary Spinal 
objectives: spinae dorsi oblique Psoas intensity camp. 
minimize (N) (N) (N) (N) (N/cm’) (N) 

1 Spinal camp. 0.0 591.8 278.9 0.0 197.3 870.1 
2a Net. int. 694.7 67.2 278.9 0.0 22.4 1040.8 
2b Net. int. 694.7 67.2 241.1 92.7 22.4 1095.7 
2c Net. int. 694.7 61.2 233.2 112.1 22.4 1107.2 
3 Sequential LP 692.4 69.0 278.9 0.0 23.0 1040.3 
4 Double LP 694.7 67.2 278.9 0.0 22.4 1040.8 

Fig. 4. Schematic diagram of the 10 muscle model. The 10 unknown muscle forces are computed to predict 
the minimum compression force C on the disc using the new multi-objective, double linear program method, 

(adapted from Schultz et al., 1982a). 
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3.2. Solution sensitivity 

In addition to the advantages of low computation 
cost and stability of solutions, an advantage of the 
double linear programming approach is that it pro- 
vides the sensitivities which can be used in our example 
to calculate the trade-off between spine compression 
and muscle intensity. The intensity determined in the 
first linear program, I*, becomes a constant in the 
second linear program, forming there the right hand 
side of the intensity upper bound for each unknown 
force. When the second linear program is solved, 
sensitivities are determined for each of these con- 
straints. The sensitivity for constraint djxj < I* is the 
change in compression that would result from that 
constraint if the intensity were increased by one 
N/cm2. Since the same value of I* is found in each such 
constraint, the total effect is the sum of the sensitivities 
for each intensity upper bound. 

In the four muscle, two moment model, the sen- 
sitivities from the second linear program were 13.5,6.8, 
0, - 1.0, 0, and 0 cm’, the first two corresponding to 
the moment equilibrium equations, and the last four 
corresponding to the intensity upper bounds. The sum 
of the sensitivities corresponding to the intensity 
bounds is - 1.0 cm2. Hence, if intensity is allowed to 
increase one N/cm2 from 22.4 to 23.4, spine compres- 
sion would decrease 1.0 cm2 x 1 N/cm2 = 1.0 N. 

The sensitivities can also be used to determine the 
change in spine compression per unit change in 
external moment in some direction. In this case we 
have two countering effects. A larger moment requires 
larger muscle forces, and hence spine compression, to 
counter it. However, with higher forces, the necessary 
intensity previously is no longer valid. A larger value 
will be necessary and, as seen above, leads to reduced 
compression. 

Consider an increase of 1 Nm of moment in the 
sagittal plane. Let n,’ and XI be the sensitivities of the 
lateral moment constraint in thC first and second linear 
programs, respectively. Let n: be the sum of the prices 
for the four intensity upper bounds in linear program 
two. Then the net change in compression due to a unit 
increase in moment in the sagittal plane is 

nf + rc;n: . 
In our example this value is 13.1 N. An additional 
effect is that minimum intensity increases 0.39 N/cm’ 
(= 7c:,. 

3.3. Single moment models 

If only one moment equation appears in the model, 
the two linear program model is equivalent to minimiz- 
ing the maximum intensity. In this case the solution to 
the first linear program is known to have a unique 
solution. Hence, the second linear program has only 
one solution to choose from. Moreover, it is not 
necessary to solve any linear programs. The optimal 
solution can be determined analytically. 

The muscles in this model can be separated into two 

groups: those working to counter the external moment 
(agonists), and those adding to the external moment 
(antagonists). As in Chaffin and Park (1973), we know 
that the antagonistic muscle forces can be set to zero 
without loss of optimality. If any antagonistic muscle 
acted, some agonist muscle would be forced to higher 
intensity to counter this antagonistic effect, resulting in 
a potentially inferior solution. This assumption cannot 
be made if more than one external moment is present 
since the ‘antagonistic’ muscle may be an agonist in 
resisting the other moment. 

We can also show that maximum intensity is 
minimized when all agonist muscles have equal in- 
tensity. Givenany solution where this was not the case, 
redistributing some of the load from the muscle 
contracting with highest intensity to muscles with 
lower intensities would decrease maximum intensity. 
Then for each muscle, j, the intensity djxj equals I for 
some intensity value uniform over the muscles. Hence, 
xj = i/d> Substitute this into the moment equation to 

get 
n I 
1 oj(I/d,) = b = I C (oj/dj). 

j=l j=l 

Hence, I = b/[x$ 1 (oj/dj)] and xj = I/d) 
For example, consider the two muscle, single 

moment example in Section 2.2. Then 

I= 

= 35.15 N/cm2, 

and 

x1 = I/O.1 = 351.52 N, 

and 

x2 = I/O.01 = 3515.15 N. 

This analytical technique results in the same solution 
found by the linear program in Section 2.2. 

We have not made any assumption to simplify the 
problem to a determinate one, but rather, have analyti- 
cally found the optimal solution to the indeterminate 
system. 

4. COMPUTATIONAL TESTING 

Linear programming provides a powerful method of 
studying complex muscular actions. The double linear 
programming method presented here seems superior 
to linear programming schemes used earlier. We will 
further illustrate its application using 10 muscle model 
of the lumbar trunk developed by Schultz et al. (1982) 
(Fig. 4). In all calculations, a linear program is solved 
first to find the lowest maximum muscle intensities 
necessary to resist the external moment applied to the 
L5/Sl trunk cross-section and second, using this 
intensity bound, to select the muscle actions which 
minimize the compression force on the L5/Sl disc. 
Note that data used for these tests are not related to the 
example data from Sections 2 and 3. 
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Fig. 5. Predicted muscle contraction and LS/Sl compression forces with 222 N load acting at 38 cm from 
disc using multi-objective, double linear program approach. 

External moments were systematically varied from a 
pure sagittal plane moment to a pure coronal or frontal 
plane (lateral bending) moment. We assumed an 
average-sized male was standing erect and holding a 
weight of 222 N. This weight was shifted in the 
horizontal plane from directly in front of the body to 
the right side, on a circular arc of radius 38 cm from the 
LS/Sl disc center. Muscle forces were computed at 
each 30” of angular displacement of the weight. 

From the calculated muscle contraction and spine 
compression forces (Fig. 5) we conclude: 

(1) When the external moment is purely a flexion 
moment, only the erector spinae muscles (LES and 
RES) are active. These agonist contractions account 
for approximately 60% of the spine compression force, 
with the components of body weight and weight held 
in the hand accounting for the remainder. 

(2) When the held weight is shifted as little as 30” to 
the right of the mid-sagittal plane, the left internal 
(LlO) and external oblique (LEO) muscles become 
active, while the right erector spinae (RES) contract 
less than at 0”. 

(3) At 60” of rotation from the mid-sagittal plane, 
the left oblique and left erector spinae muscles can 
equilibrate the external bending moment, and the right 
erector spinae are not needed. 

(4) As the weight is rotated 90” from mid-sagittal 
plane (i.e. a pure right lateral bending moment is 
induced) both left oblique muscles become quite active. 
Also some rectus abdominus activity and right internal 
oblique activity become noticeable. Such behavior has 
been documented by Schultz et al. (1982) with 
myoelectric measurements. The right oblique and 
rectus abdominus musctes are acting to stabilize the 
column against the complex effects of the left obliques. 
Because of this complex recruitment pattern, the 
overall compression force is highest when the bending 
moment is purely lateral direction, as opposed to 
purely sagittal plane flexion. 

5. SUMMARY 

The use of double objective linear programming 
methods provides a means to study musculoskeletal 
biomechanics. Systematic investigations of these 
mechanics have been impeded in the past by the 
magnitudes of the computational efforts required. The 
double linear programming method is particularly 
attractive because efficient linear programming codes 
are now available on personal computers. 

We have used models of the low-back to illustrate 
how our method can be used to solve complex 
biomechanical problems. Our scheme can be for- 
mulated in many different ways to solve particular 
problems. We have shown how use of the solution to 
the dual problem provides insight into solution 
sensitivity. 

The methods presented provide the means to for- 
mulate and solve more complex biomechanical prob- 
lems than previously practical. Attention can now 
more readily be concentrated on comparisons of 
model predictions with measured human performance 
data. 
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