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Abstract. A novel approach to the development of an appropriate formalism for representing 
organizationally complex systems began in the mid 1960’s with a search for a general systematic 
formalism that would retain the essential nonlinear features and that would still be amenable to 
mathematical analysis. The set of nonlinear differential equations that most closely approached this 
goal was called an “S-system”, because it accurately captures the saturable and synergistic 
properties intrinsic to biological and other organizationally complex systems. In the early 1980’s it 
was found that essentially any nonlinear differential equation composed of elementary functions 
could be recast exacf/y as an S-system. Thus, S-systems may be considered a canonical form with 
the ability to represent an enormous variety of nonlinear differential equations. This has given rise to 
new strategies for the mathematical modeling of nonlinear systems. 
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INTRODUCTION 

A set of ordinary nonlinear differential equations of the following 
form has been defined as an S-system because of its ability to 
capture the essential saturable and synergistic characteristics 
of biological and other organizationally complex systems 
(Savageau, 1969b; 1979; 1985). 

d)(i,dt = oi “;I” Xi gii _ pi “Am Xi h’) i=l ,...,n (1) 

The variables ‘;d, the systel’ Y, are positive real, the 
multiplicative (“rate constant”) parameters or and PI are non- 
negative real, and the exponential (“kinetic order”) parameters 
grj and hij are real. The system is autonomous if m=O, but 
when there are independent variables (“forcing functions”) 
present mz0. These equations have remarkable properties 
that recommend them for the modeling of complex nonlinear 
systems. 

S-systems consist of a simple collection of mathematical 
elements that nonetheless is sufficient to represent an 
enormous range of nonlinear phenomena in nature, as we shall 
see shortly. These elements are: (1) derivatives, (2) power-law 
functions, (3) products, and (4) differences. Where did this 
particular form originate and what is the basis for its 
justification? 

THE POWER-LAW FORMALISM 

Backqround 

In searching for an appropriate general formalism to 
characterize biological and other organizationally complex 
systems one cannot help being influenced by the paradigm of 
linear systems. The linear formalism is attractive because it is a 
general symbolic formalism, because there are powerful 
mathematical methods for analysis, and because there are 
cases of successful application in a variety of fields. However, 
it has distinct disadvantages in that it cannot adequately 
represent most biological systems, which are nonlinear. 
Nevertheless, even in cases for which it is inappropriate as a 
representation, linear mathematics provides us with useful tools 
for analysis and a guide in our search for analogous nonlinear 
techniques. 

The only widely used nonlinear approach to biological systems 

is that provided by the Michaelis-Menten Formalism. This 
approach too has its attractions. It has been shown to provide 
a good approximation for many specific processes, and there 
are well-recognized procedures for estimating the parameter 
values in simple cases. One of the principal disadvantages lies 
in the fact that it is not a general formalism -- general in the 
sense that there is an explicit mathematical structure within 
which all the special cases are contained. Each system must 
be developed on an ad hoc basis. Such systems are difficult to 
analyze symbolically and to compare with alternatives; 
furthermore, computer implementation is unsystematic and 
conventional general-purpose algorithms often are expensive to 
run. For further discussion see Savageau (1972; 1976) and 
Voit & Savageau (1987). 

Derivation 

Fruitful development of a general nonlinear formalism -- general 
in the sense given above -- that would retain many of the 
advantages of these existing alternatives began with the hint 
that rational functions, which provide a good representation for 
many processes, often can be approximated over a wide range 
by a straight line in a log-log plot (Bode, 1945). This property 
suggested the Power-Law Formalism (Savageau, 1969a; b), 
analogous to the Linear Formalism, based on Taylor’s Theorem 
but in a logarithmic space (Savageau, 1972). Thus, the rate of 
a process is approximated by the first two terms of its Taylor 
series in logarithmic space. 

log Vi(Xi,...,Xn) = IOg h(XlO,...,XnO) 

n a [log ~,(xi~,...,x,~)i 

+C 

j=l a UOCI x,1 
(log Xj - log Xjo) 

+ (2) 

where vi(Xt,...,X,) is the rate of the process in question, and 
the X,‘s are variables that affect the process. The additional 
“0” subscript signifies evaluation about a given operating point, 
and, in the case of derivatives, evaluation at the operating point 
after performing the appropriate partial differentiation. By 
regrouping terms, Eqn. (2) can be rewritten as 

log V,(Xl,..., X”) = log c(i + giI log X1 +... + gin log Xn (3) 

and then, when it is transformed back into Cartesian 
coordinates, expressed as a product of power-law functions 

546 



Proc. 6th Int. Con$. on Mathematical Modelling 547 

(Savageau, 1969b). 

Vt(Xt,...,X,) = ai A Xj ‘ii (4) 
j=l 

treated in the Power-Law Formalism no differently than the 
descriptions of the component processes themselves 
(Savageau, 1969b; 1979). In general, 

where 

xt = Xt(Xi,..., xj (...) (10) 

and the constraint expression is represented in the Power-Law 
Formalism as 

Sij = (jog ViOY (log Xjl = ( Vid Xj)(XjdViO) 

and 

(5) 

n -9j 

ai = Vi0 n Xjo (6) 
j=i 

It should be emphasized that this formalism is valid for any 
function and for all types of variables, provided the logarithmic 
derivatives exist and the excursions of the variables about their 
nominal values are small. (Later, in the “Recasting” section, we 
shall see that this representation also can describe systems 
whose variables exhibit large excursions.) 

where 

ftj = Wda~)(Xjcd&0) 

and 

-ftj 
YtcXtO n xjO (13) 

j 

Alternative Representations for Svstems A common example is 

There are a variety of hierarchical levels at which systems can 
be described by this formalism (Savageau, 1969a; b; 1979; 
1985). At each of these levels, comparisons with experimental 
data show that this Power-Law Formalism is accurate over a 
surprisingly wide range of variation in concentrations in viva 
[e.g., see (Savageau, 1976; Voit & Savageau, 1982a)]. 

xt= c xj (14) 

For example, suppose we have a system given by the following 
equations: 

dXt/dt = Z V+ir - ZZ V-is i=l ,..,n (7) 
r S 

where there are a number of rate processes (the positive terms 
v+tr) that lead to an increase in X and a number rate 
processes (the negative terms v-is) that lead to a decrease in 
Xt. At one level, each process can be represented as a product 
of power-law functions, and the resulting equations become 

where the sum over the relevant dependent variables is an 
aggregate variable; in general the function need not be a simple 
sum. It may be considered an independent variable of the 
system or it might be a dependent variable; in either case, each 
such constraint reduces by one the number of differential 
equations for the system (Eqn. 9) [See Savageau (1979) for 
details.]. For the specific case in Eqn. (14) note that the 
exponent fq is simply the fraction of the aggregate represented 
by Xjo in the steady state, i.e., ftj = Xjo/Xa. 

We shall not deal explicitly with such algebraic constraints in 
this paper because, as indicated above, systems with these 
types of constraints can be reformulated and then treated in 
exactly the same fashion as systems without such constraints, 

n+m gijr n+m hijs 

dXt/dt = Z air II Xj - z Pis II Xj i=i,...,n (8) 
r j=l S j=l 

There is one equation for each of the n dependent variables, 
which may be thought of as variables “internal” to the system, 
there are m independent variables, which may be thought of 
as “external” variables that are determined by factors outside 
the system of interest (e.g., by the experimentalist, the 
environment, or other systems within the same organism), and 
the summation in each case is over the relevant processes. 

ADVANTAGES OF S-SYSTEM REPRESENTATION 

There is no way of obtaining an explicit steady-state solution for 
the general balance or conservation equations [e.g., Eqn. (1) in 
Savageau (1969b)] that characterize a system when these 
involve arbitrary nonlinear rate laws. Even specific numerical 
solutions are not always feasible for such equations. These 
severe difficulties for any general theory are overcome with the 
Power-Law Formalism, provided one chooses an appropriate 
form of aggregation. 

At another level, one first could aggregate the individual 
processes into two net processes, one for the positive terms in 
Eqn. (7) and one for the negative terms, and then represent 
each of these by a product of power-law functions. The 
resulting equations become 

In steady state, the time derivatives are equal to zero, and the 
S-system [Eqn. (9)] can be written in conventional matrix 
notation as 

(Alvl = bl 

where 

d)(i,dt=% “;lmXjgij -pi ‘;lmXj ‘j i=l,...,n (9) 

j=l j=l 

This is the S-system representation described in the first 
section. 

yi = log xi 

b = log (pi/q) 

aij = grj - hij 

It must be emphasized that these two representations -- Eqn. 
(8) and Eqn. (9) -- are equally valid for infinitesimal variations 
about a steady state for the system (Voit & Savageau, 1987). 
Nevertheless, as we shall see, there are distinct advantages to 
aggregation in the form of Eqn. (9). 

In the other representations there is no simple algebraic 
equivalent to Eqn. (15); e.g., the logarithmic transformation of 
Eqn. (8) does not produce a linear system because of the form 
of aggregation used. 

Existence theorem 
Alqebraic Constraints 

Algebraic constraints among the variables of a system are 
A system described by Eqns. (9) and (15) has a positive 
steady-state solution provided 

(12) 

(15) 
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rank [A] = n (16) 

If the system is autonomous (i.e., it has no independent 
variables), then Eqn. (16) can be expressed as 

IAl j 0 (17) 

where ]A] is the determinant of the matrix [A]. Thus, an nxn 
determinant of the differences between the corresponding 
exponential parameters (kinetic orders) for net increase and net 
decrease -- and only these parameters -- determines whether 
or not a positive steady-state solution for the system will exist 
(Savageau, 1969b). 

In the other representations, e.g. Eqn. (a), there is no 
corresponding existence theorem that can be obtained explicitly 
in a general symbolic form for the steady-state solutions. 

Explicit solutions 

When the existence theorem is satisfied, Eqn. (15) can be 
solved to yield the “internal” (or dependent) variables as an 
explicit function of the parameter values and the “external” (or 
independent) variables of the system (Savageau, 1971): 

ylin = Ll~lex + Wlbl (18) 

where y]in and ylex are vectors whose elements are the 
logarithms of the internal and external variables, [L] and [M] 
are matrices determined by inversion of the underdetermined 
system in Eqn. (15) and composed of elements that are 
functions only of the exponential parameters, and b] is a 
vector whose elements are functions only of the multiplicative 
parameters (rate constants) (c.f. Eqn. 15). 

From Eqn. (9) and the solution in Eqn. (18) the net rates follow 
trivially. From the general symbolic solution in Eqn. (18) one 
can calculate directly systemic properties and exhibit their 
relation to the parameters of the underlying molecular 
mechanisms, as was first shown by Savageau (1971). These 
same systemic or global properties also can be obtained 
graphically from appropriate experimental data plotted in log-log 
coordinates (Savageau, 1971; 1976). 

In the other representations, steady-state solutions cannot be 
obtained explicitly in a general symbolic form analogous to Eqn. 
(18) but only numerically in specific cases, and this may not 
always be feasible. 

Telescooic properties 

It has been realized for decades that complex systems exhibit 
not only organizational (or structural) hierarchies but also 
temporal hierarchies, because of the wide spectrum of 
relaxation times that characterize such systems. Consciously 
or unconsciously, one studies systems at one hierarchical level 
and often attempts to relate behavior at this level to that at 
adjacent levels. For this one requires a formalism that is 
capable of representing different hierarchical levels and that 
retains its mathematical character as one focuses upon more 
refined component behavior or upon larger aggregates of 
systems behavior. I have called this the “telescopic” property 
(Savageau, 1985). 

When the first k variables of the S-system are temporally 
dominant and the remaining n-k variables have relaxed to a 
quasi-steady state, then the last n-k variables can be obtained 
algebraically in terms of the first k variables. These quasi- 
steady state relationships can be substituted back into the first 
k dynamical equations to obtain k equations having exactly 
the same S-system form as the original n equations [e.g, see 
(Savageau, 1976 Ch 15; 1979; 1985)]. Conversely, one can 
take any subsystem in quasi-steady state and expand it into a 
full dynamic model and the resulting equations for the entire 
system again will have exactly the same S-system form. 

Linear systems also possess this telescopic property. 
Michaelis-Menten systems (characterized by rational function 
nonlinearities), on the other hand, do not. If one attempts to 
solve for the relaxed variables in this case, one can obtain 
transcendental functions. When these are substituted back into 
the temporally dominant equations, these will no longer have 
the same form as the original system of equations. 

In spite of the mathematical advantages possessed by the S- 
system representation, one might continue to use other 
representations if they had some overriding practical advantage 
such as accuracy of representation. This after all is the 
motivation for going beyond the Linear Formalism in search of a 
general nonlinear formalism. 

We have therefore examined in some detail the relative 
accuracy of the Linear Formalism, the S-system representation, 
and alternative representations within the Power-Law 
Formalism (Savageau, 1969b; Voit 8 Savageau, 1987). The 
results can be summarized as follows. Processes for which the 
change in rate is a monotonically decreasing (or increasing) 
function of the variables (e.g., Michaelis-Menten rate laws) are 
always represented more accurately by power law than linear 
functions. Processes for which the change in rate increases, 
goes through an inflection and then decreases as a function of 
the variables (e.g., Hill rate laws) are in some cases best 
modeled by power-law functions, in other cases by linear 
functions. Aggregation of processes and representation in the 
S-system form almost always improves the accuracy over the 
alternative power-law representation with such aggregation. 
This improvement in accuracy is one of several factors that 
contribute to the wide range of validity of S-system 
representations. Other contributing factors have been 
discussed elsewhere (Savageau, 1976). 

Efficiencv of dvnamic solutions 

Although the steady-state solutions in the S-system 
representation are readily obtained, the dynamic solutions pose 
a more substantial difficulty. Explicit solutions have been 
obtained for a subclass of the n-2 case (Voit & Savageau, 
1984) that is important because almost all of the growth laws 
and probability distribution functions fall within this class 
(Savageau, 1979; 1982). A general explicit solution for S- 
systems appears to be impossible because they include as 
special cases well-known functions, such as the elliptical 
equations, which have no solution in terms of elementary 
mathematical functions (Courant, 1955). For these reasons we 
have focused attention on the development of efficient 
algorithms for solving S-systems numerically. 

It was shown that the logarithmic transformation not only 
facilitates the steady-state solution, but also improves the 
efficiency of dynamic solutions (Savageau, 1970). A package 
of interactive programs for numerical solution and graphical 
display were developed for IBM-type mainframe computers 
during the 1970’s, for the most part utilizing available numerical 
methods. These programs have greatly facilitated the analysis 
of S-system models [e.g, see (Voit & Savageau, 1982a;b)l. 

More recently, we have gone back to first principles and 
designed a numerical integration algorithm specifically for S- 
systems (Irvine & Savageau, submitted). Tests to date show 
that this algorithm is typically one to two orders of magnitude 
faster than other state-of-the-art general purpose algorithms. 
The S-system algorithm is particularly efficient for large systems 
requiring high accuracy. This and other algorithms designed 
specifically for S-systems have been incorporated into a user- 
friendly interactive package called ESSYNS that runs efficiently 
on the IBM-PC microcomputer (Irvine & Savageau, submitted). 
These S-system algorithms, when coupled with the results 
discussed in the next section, provide an new approach to 
efficient general purpose solution of nonlinear differential 
equations. 
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RECASTING NONLINEAR EQUATIONS IN CANONICAL 
S-SYSTEM FORM 

The applications of S-systems and the Power-Law Formalism 
prior to 1976 were largely restricted to biochemical and genetic 
systems with relatively few variables. While on sabbatical in 
Goettingen during 1976-77 I began to consider large complex 
systems and the analogy to statistical mechanics. Suppose the 
S-system representation is a reasonable description of the 
elements in a large complex system, in much the same way 
that Newtonian mechanics applied to point masses undergoing 
elastic collisions is a reasonable description of the molecules in 
a gas. What would be the implications for the macroscopic 
behavior of the system? Would the inaccuracies in the local 
descriptions “average OUt” and accurately predict 
phenomenological laws, analogous to the the gas laws, on the 
macroscopic level? The discovery that a great many nonlinear 
functions could be recast exactly as S-systems was a by- 
product of this line of investigation. 

The most common macroscopic behavior of biological and 
other organizationally complex systems is growth. Abundant 
experimental data is available and numerous phenomenological 
growth laws have been developed to account for these data. 
Could these well-known growth laws be deduced from the 
essential characteristics of the elemental processes as 
represented by their S-system description? By assuming only 
S-system descriptions and a limited number of temporally 
dominant processes, one could show that the macroscopic 
behavior of the intact system also would be described by an S- 
system with a limited number of variables. It then became 
necessary to show that all the well-established growth laws 
were special cases of a general growth law consisting of a low 
dimensional S-system. This was done in the fall of 1977. The 
principal tool was the chain rule of differentiation, which takes 
composite functions and decomposes them into products of 
simpler functions. These results were summarized in two 
papers (Savageau, 1979; 1980). A third paper (Savageau, 
1982) extended these results to probability distribution 
functions, which are closely related to growth laws. 

By the early 1980’s many additional specific cases of recasting 
were discovered, and, although a few of these were reported 
[e.g., (Savageau & Voit, 1982)], most have never been 
published. The recasting of equations that contain sums of 
terms had been accomplished in various ad hoc ways, but it 
was not until 1985 that a systematic procedure for reducing 
sums was developed in our laboratory by Eberhard Voit. It then 
became clear that linear systems are special cases of S- 
systems, and that there are a number of equivalent nonlinear 
canonical forms including S-systems, Generalized Mass Action 
systems (arbitrary sums of products of power-law functions), 
Half systems (S-systems with oi or 81 =0 for all i), Binary 
systems (Half systems with all exponents either 1 or 0), and 
Volterra systems (Voit & Savageau, 1986). Peschel & Mende 
(1986) independently have come to the same conclusions. 

Our algorithm for recasting can be stated in terms of three rules 
that are applied iteratively: 

Translocate all variables into the positive orthant 

Decompose composite functions into products of 
power-law functions by the chain rule of 
differentiation 

Reduce sums of products of power-law functions by 
the product rule of differentiation. 

With these methods one can recast any nonlinear function 
composed of elementary functions, or nested elementary 
functions of elementary functions. For further information see 
Savageau & Voit (1987). 

This concludes my brief overview of recasting; this topic will be 
treated more fully in the following paper by Dr. Voit. 

STRATEGIES FOR NONLINEAR MODELING WITH 
S-SYSTEMS 

We have seen that S-systems arise in two different contexts: in 
the exact recasting of known nonlinear functions, and in the 
approximate nonlinear representation of unknown (or known) 
processes. ln each domain, questions of modeling strategy 
present themselves because one always has a variety of S- 
systems from which to chose. 

Variations in Recastinq 

As a simple example, consider the conventional Monod 
equations for microbial growth in a chemostat: 

dXt/dt = a, X1X2/(X2+1) - XI Xl(O) = Xl0 
(19) 

dXz/dt = (X,-X2) - 82 X1X2/(X2+1) X2(0) = x20 

where X1 is concentration of cells in the chemostat, X2 is 
concentration of growth-determining substrate normalized with 
respect to the Monod constant Ks, Xr is the constant 
concentration of Xp in the reservoir normalized with respect to 
Kz, time is normalized with respect to the dilution rate D of the 
chemostat, at is the exponential growth rate constant for the 
cells when substrate concentration is in excess, and 82 is al 
divided by the yield coefficient Y [see Pirt (1975) for details]. 

As discussed previously (Savageau & Voit, 1982), these 
equations can be recast exactly into an S-system by letting X2 
+l =X3 and X,-X2=X4. 

dXt/dt = ot X1X2X3-1 - Xt Xl(O) = Xi0 

dXs/dt = X4 - p2 X1X2X3-1 X2(0) = X20 

(20) 

dXs/dt = X4 - p2 X1X2X3-7 X3(0) = X20+1 

dX4idt = p2 X1X&- - X4 X4(0) = Xr -X20 

Alternatively, one could let Xp = X4X5 and (X2+1)-t = XsX7 
and the following S-system would be obtained: 

dXl/dt = o, XtX4X5XsX7 x1 Xl(O) = Xl0 

dXa/dt = XrX5-t - X4 X4(0) = X20 

dXs/dt = - 82 XtX5XsX7 X5(0) = 1 (21) 

dXddt = 82 X1X4X5X$X$ - X,XS2X7 X6(0) = (X20+1)-1 

dX7ldt = X4X5XeXT2 X7(0) = 1 

For detailed considerations of recasting equations by this 
method see Savageau & Voit (1987). There are other 
alternatives to Eqn. (20), but Eqn. (21) is sufficient for the 
purposes of this introduction. 

In each case, recasting has increased the number of variables, 
This may be considered analogous to the conversion of a single 
nth order differential equation into n first-order differential 
equations by introducing new variables for the higher 
derivatives. This increase in number of variables may be seen 
as the price one pays for reducing the rational function 
nonlinearities to the simpler canonical form involving a product 
of power-law functions. It also implies a cost in terms of 
efficiency of numerical solution. However, this cost is more 
than recouped by efficiencies in ESSYNS, an algorithm 
designed for solution of equations in the S-system canonical 
form. Dr. Irvine will have more to say on this topic in a 
subsequent paper. 

The first method has several attractive features. (1) The 
original variables X1 and X2 are retained in the recast 
equations. (2) The behavior of the original system on the two- 
dimensional plane corresponds to the behavior of the recast 
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system on a two-dimensional manifold within the four- 
dimensional space. (3) The nonzero stable steady stale of the 
original system is preserved as a rest point of the recast 
system. A notable disadvantage of this method is that one 
must have the insight to define new variables in such a way that 
the extra sums in the original equation are avoided and that all 
the variables are nonnegative. Such choices are generally not 
obvious. 

The second method of recasting can be done according to a 
straightforward prescription [see (Savageau & Voit. 1987)]; this 
is its principal virtue. On the other hand, it has a number of 
disadvantages. (1) There is one extra variable in the recast 
system and one of the original variables (X2) is no longer 
present explicitly. (2) Although the behavior of the recast 
system still is exhibited on a two-dimensional manifold within 
the five-dimensional space (Savageau & Voit, 1987), this is not 
as obvious as it is in the first method. (3) The nonzero stable 
steady state of the original system now corresponds to a “stable 
steady-state trajectory” in the recast system. By this I mean the 
following. Different initial conditions X10,X20 lead to different 
trajectories for the recast system, but as time increases these 
trajectories all approach a “stable steady-state trajectory” 
asymptotically. This trajectory corresponds to increasing values 
of X5 and decreasing values of X4 such that &X5 = constant 
[=(a~-1)-l] , increasing values of X7 and decreasing values of 
Xs such that XsX7 = constant [=(al-l)/al] , and a fixed value 
of x1 [=a,P2-‘(al-l)~l(alXr -X, -i)]. 

At this point there is no definitive strategy for recasting that is 
optimal. This is a topic for further study. 

Various Approximations 

All mathematical models of the real world are approximations to 
some degree. One generally cannot claim to know exactly the 
“actual” process under study. Thus, there are various 
approximate representations of a system in the Power-Law 
Formalism that yield different mathematical solutions. These 
different representations are the result of different strategies for 
aggregating the elemental processes before making the power- 
law approximation. 

One of the most common issues in modeling networks such as 
biochemical pathways is the treatment of branch points. In the 
simplest case of diverging pathways XI is converted to two 
different products X2 and Xs 

xyx2 
‘Lx, 

Fiq. 1. Model of a diverqinq branch point. 

The net rate of utilization of X1 can be formulated as 

Vrlet = vi2 + vi3 (22) 

where vii is the rate of the process converting xi to Xj 

In the Power-Law Formalism without aggregation, each process 
is represented by an individual power-law function. 

Q21 931 

Vnet = a2 Xl + aaX (23) 

Alternatively, one can aggregate the two rate processes ~12 
and ~1s into a single mathematical function and then represent 
the net process in the Power-Law Formalism. 

hr 
vnet = p1 Xl (24) 

This difference in representation gives rise to Generalized Mass 
Action systems in the case of Eqn. (23) and to S-systems in the 
case of Eqn. (24) (see also the “Alternative Representations” 
subsection). 

In the “Advantages” section, reasons were given for preferring 
the S-system to the Generalized Mass Action representation. 
In the present context we are interested in which is more 
accurate. Recent results (Voit & Savageau, 1987) have shown 
that the aggregate representation [Eqn. (24)] is more accurate 
than the representation without aggregation [Eqn. (23)]. Similar 
results have shown that aggregation of converging processes 
also leads to greater accuracy (Voit & Savageau. 1987). 

Another common issue in modeling biochemical pathways is 
the explicit treatment of reversible processes. 

v12 v23 
c 

x, - x2 - X3 

v21 ‘32 

Fiq. 2. Model of a reversible process. 

Without aggregation, each irreversible process is represented 
by one power-law function: 

gi hi hs 93 
dXz/dt = al Xi - PI x2 - P3 x2 + a.3 x3 (25) 

With aggregation there are several alternatives. One could 
aggregate ~12 with ~32 and ~21 with ~23. and then form the 
power-law representation: 

921 923 h22 
dXn/dt = c12 XI X3 - P2X2 (26) 

Each of these two aggregations involving irreversible processes 
is of the type considered in Voit & Savageau (1987), and thus 
one can expect that this aggregate representation [Eqn. (26)] 
would be more accurate than the case without any aggregation 

[Eqn. (25)i. 

One also could aggregate ~12 with ~21 and ~23 with ~32, 

and thus consider the change in Xp to result from the 
difference between net influx from XI and net outflux to X3. 

Q21 922 h22 h23 
dX2idt = a2 Xl Xp j32 x2 x3 (27) 

This situation is quite different from those treated previously 
because differences rather than sums of positive-valued 
functions are being aggregated. 

The point I wish to make here is that reversible pathways can 
be aggregated in a large variety of ways. The question is 
whether it is advantageous to aggregate at all and, if so, which 
types of aggregation yield the best results. Dr. Sorribas has 
been exploring these questions and we shall hear about his 
interesting results in another paper. 

NEW TOOLS FOR THE ANALYSIS OF S-SYSTEMS 

There is no fully developed nonlinear systems theory currently 
available. However, the identification of a canonical form for 
nonlinearities seems to be an important step in initiating the 
development of such a theory, which would provide the basis 
for a general classification of differential equations and for the 
development of general techniques for treating nonlinear 
differential equations with analytical or numerical methods. As 
yet, such general techniques are known only for linear systems, 
one reason being that no unifying structural form was known 
that included arbitrary nonlinear equations as special cases. 
However, I wish to mention two recent examples of 
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methodological development along these lines that already example, parameter estimation, was used to indicate the need 
have significant practical implications for nonlinear modeling for new analytical and numerical tools for analyzing S-system 
with S-systems. models. 

I made reference in an earlier subsection to an efficient 
numerical algorithm for the solution of S-systems (ESSYNS) 
that has been developed in our laboratory by Dr. Irvine. It is not 
surprising that this algorithm is generally superior to existing 
methods for the numerical solution of this class of problems, 
often one to two orders of magnitude faster. Usually, what one 
gains by such specificity, one loses in terms of general 
applicability. However, because a wide range of nonlinear 
equations can be recast exactly as S-systems, ESSYNS is in 
fact a general purpose method. It compares favorably with 
other state-of-the-art general purpose methods. It seems to be 
particularly advantages for the solution of large systems 
requiring stringent tolerances. In such cases it can be as much 
as loo-times faster than other methods (Savageau & Voit, 
1987). 
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