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A simplified monomer-addition model with a first-order activation step is developed to describe the 
dynamics of growth of silica particles from alkoxides. In the fimit of slow hydrolysis, we obtain expressions 
for the evolution of the particle mass and particle polydispersity, as well as an expression for the particle 
size as a function of the hydrolysis rate constant, the polymerization rate constant, and the initial con- 
centration of  the orthosilicate. We find that the formation of the particles is adequately modeled by a 
reaction limited growth. © 1989 Academic Press, Inc. 

1. INTRODUCTION 

Hydrolysis and polymerization of silicon 
alkoxides in the presence of  ammon ia  lead to 
the formation of  a stable suspension of  parti- 
cles as opposed to gels obtained in the presence 
of an acid ( 1 ). The chemical reactions can be 
schematically represented as 

Si (OR)4 -~- x H 2 0  --~ 

S i (OH)  4-x + x R O H  (Hydrolysis) 

S i - -  O H  + O H - -  S i ~  --~ 

Si - -  O - -  SI-~-~+ H20  

(Polymerization),  

where OR is an alkoxy group, most  often the 
methoxy or ethoxy derivative. Interest in the 
ammonia-catalyzed system lies in the fact that 
the produced particles are spherical in shape 
and exhibit a remarkably narrow size distri- 
bution (2, 3). Furthermore, by controlling the 
concentration of ammon ia  it is possible t o  
form particles with sizes that cover almost the 
entire colloidal range. These characteristics are 
desirable in powder and ceramics technology 
as well as in the production of well-defined 
model systems for colloidal studies and in- 
s t rument  calibration. 
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Stoeber et al. (2) and Van Helden et al. ( 3 ) 
have reported detailed studies on particle 
morphology and size distribution as a function 
of  the reactants. The size is mostly sensitive 
to the concentration of  ammonia .  As the con- 
centration of ammonia  increases larger par- 
ticles are formed and so it is possible to pro- 
duce particles from 20 nm to about 2 #m in 
diameter. 

In terms of  growth dynamics, hydrolysis 
plays an important  role. It is a slow process 
and as shown in our previous paper (4) it is 
the rate-limiting step. Under  conditions of  ex- 
cess water concentration it is a first-order re- 
action in the alkoxide and is accelerated as the 
ammonia  concentration is increased. The goal 
in this work is to formulate a quantitative ap- 
proach to the growth and identify the factors 
that affect the size and polydispersity of  the 
particles. 

A picture of  this process can be constructed 
on the basis of  some general arguments. The 
stability of  the particle suspension is accounted 
for by electrostatic effects. The surface absorbs 
O H -  ions and the charge prevents interparticle 
bonding ( 1 ). This can be demonstrated by ad- 
dition of  salt which induces aggregation, oc- 
casionally leading to a gel. The absence of ag- 
gregation partly explains the narrow size dis- 
tribution. The rate of  nucleation is another 
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factor with a strong effect on the particle dis- 
tribution. In our previous work (4) we found 
that nucleation takes place for a limited period 
of  time in the early stage of  the process. Even- 
tually, growth becomes the dominant process 
and the number of  particles remains constant 
as the rate of nucleation decays to insignificant 
levels. This result reflects the dynamic com- 
petition between nucleation and growth. A key 
factor that controls the balance between the 
two competing processes is hydrolysis, the 
chemical step that releases the active mono- 
mer. In light of  these observations the growth 
can be described as a monomer-addition pro- 
cess in the presence of a rate-controlling ac- 
tivation reaction (hydrolysis). 

Monomer-addition models, a special case 
Of the more general aggregation processes, 
have generated considerable interest, primarily 
because of the very good characteristics of the 
morphology and polydispersity of the resulting 
particles. Of  particular interest is the question 
whether growth is reaction- or diffusion-lim- 
ited. Because the two mechanisms predict a 
different dependence of the growth rate upon 
the particle size, they also have a different effect 
on both the final size of  the particles and their 
polydispersity. In a related chemical system, 
Santacesaria et al. (5) used a reaction-limited 
model to describe the thermal precipitation of  
Ti20 from titanium sulfate. This process leads 
to the formation of small particles that even- 
tually agglomerate to form a wide distribution 
of aggregates. Jean and Ring (6),  on the other 
hand, found that the formation of large titania 
particles (0 .5- t .0  #m in diameter) from the 
alkoxide was diffusion-limited, and this con- 
clusion was supported by the time evolution 
of the polydispersity. 

Keefer (7) used a Monte Carlo model to 
study the structure of  the particles. He found 
that fully hydrolyzed species give rise to uni- 
formly compact (nonfractal) particles with 
smooth boundaries. Partly hydrolyzed species, 
however, produced progressively irregular 
boundaries. His SAXS results indicated a 
transition from mass fractals to surface fractals 
with a decreasing concentration of water. 
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These findings provide useful information on 
the processes that control the morphology of 
the particle, but questions such as those con- 
cerning the effect of  the dynamic competition 
between nucleation and growth, a process that 
controls the final size and the polydispersity 
of the particles, have not been addressed. 

Hydrolysis has a direct effect on the final 
size. In the absence of  such a step, the nu- 
merical solution of  the growth equations for 
diffusion-limited growth showed (8) that at 
steady state, the particle distribution consists 
of oligomers with an average molecular weight 
of about 3. This is a result of the fact that any 
monomer  in this process can act as a nucle- 
ation site. Large particles cannot be formed 
because monomers are consumed primarily 
in the nucleation process. The picture is quite 
different in the presence of  a slow monomer-  
activation step. Only the hydrolyzed mono- 
mers are available for nucleation and the slow 
release of the monomer  acts as a mechanism 
that inhibits nucleation and, therefore, it pro- 
motes growth of  large particles. 

Solutions to problems more relevant to the 
silica system were developed by Hendriks (9),  
who considered the monomer-addition prob- 
lem with a variety of initial conditions for the 
monomer,  including fixed initial concentra- 
tion, a source of  constant strength, and an in- 
finite pool of  monomer.  His results show the 
effect of different growth mechanisms on the 
average size and the higher moments of the 
distribution. The silica system, described by a 
time-dependent source of the monomer  with 
a slow exponential decay (first-order hydro- 
lysis), does not fall in the above categories. 

In the following sections we formulate a 
monomer-addition model in the presence of  
a first-order initiation step and investigate the 
effect upon the steady-state mean size and 
polydispersity of the particles. The behavior 
of the system depends strongly upon the re- 
action kernel Ki, i.e., the rate constant for the 
reaction between a monomer  and an i-mer. 
We consider two cases: (i) reaction-limited 
growth which is characterized by a strong size 
dependence of the kernel on the size ( 10, 11 ), 
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and (ii) diffusion-limited growth with much 
weaker size dependence (8, 11 ). We empha- 
size that the terms reaction- and diffusion-lim- 
ited growth refer to the actual growth mech- 
anism, i.e., the bonding between a monomer  
and a particle, although the overall rate may 
be enveloped by the rate-limiting hydrolysis. 
For the above cases we develop relations be- 
tween the particle size and the hydrolysis rate 
constant K0. We also derive asymptotic 
expressions for the evolution of the polydis- 
persity, and we compare the predictions to 
available experimental data. 

2. T H E  M O D E L  

Let ci denote the concentration of species 
with molecular weight i ( in units of  the mono- 
mer),  c~ the concentration of the unhydrolyzed 
monomer.  Hydrolysis produces the active 
monomer  which subsequently reacts with ei- 
ther active monomers (nucleation) or with 
polymeric species C~ to produce Ci+l (growth). 
The model is based on the irreversible steps 

kh 
Co --~ C1 (Hydrolysis) 

kl 
2C1 --~ C2 (Nucleation) 

ki 
CI + Ci --~ Ci+~ (Growth). 

Assuming elementary steps, the equations that 
describe these reactions are in dimensionless 
form 

dno 
Kono [la] 

dt 

dnl 
= Kono- 2Kln21- n 1 ~  Kini [lb] 

dt i>~2 

dni 
K i _ l n i _ l n  I K i n i n l ,  [ l c ]  

dt 

where ni = ci/ c, Ki = ki/ kv, Ko = kh/ kpco, t 
= cokvr, r is real time, and Co is the initial con- 
centration of the unhydrolyzed monomer. We 
have assumed here that k~, the rate constant 
for the production of  i-mers, is written in the 
form 

k i  = k p r i ,  [ 2 ] 

where kp is the intrinsic rate constant and K0 
is a dimensionless function of the particle size 
i. Usually k v is normalized so that rl = 1 but 
we have chosen instead to let K1 arbitrary in 
order to investigate the effect of the nucleation 
rate constant to the particle size. It can be eas- 
ily verified that Eqs. [ 1 a ] -  [ 1 c ] satisfy the mass 
conservation which is expressed as 

d oo 
dt (n° + ~ ini) O. [3] 

i=1 

We define the ruth-order moment  of the par- 
ticle distribution as 

Mm = ~ imni. [4] 
i>~2 

Note that the definition refers to the particles, 
that is, species with a molecular weight of  2 
or higher. Neither the unhydrolyzed nor the 
active monomer  is included. We choose this 
definition because we want to focus on the 
particle distribution. In addition, this defini- 
tion is consistent with what we observe in light 
scattering experiments. The intensity scattered 
by the particles scales as the square of  the par- 
ticle mass, thus weighing the larger particles 
more heavily than the smaller ones. As a result, 
the monomer  is virtually invisible in both 
static and dynamic light scattering when siz- 
able particles (in the nm range) have been 
formed. Following the definition, M0 is the 
number of  the growing particles, M1 their 
mass, and M2 the second moment  of  the dis- 
tribution which scales as the intensity of the 
scattered light. Multiplying Eq. [1 c] by im and 
summing over all i >~ 2 we obtain the equation 
for M m  : 

dMm _ 2turin2 
dt 

+ ~ [ ( i +  t)m--im]Kininl.  [5] 
i>~2 

2.1. Growth Kernels 

In order to proceed with the solution of  
these equations it is necessary to establish a 
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functional dependence between the growth 
reaction rate and the size of  the particle. It is 
typical for growth processes to assume a 
power-law dependence of  the form ri = i a (9, 
10). On grounds of  physical arguments (10) 
we expect the exponent a to lie in the interval 
0 ~ a ~< 1. The constant kernel (a  = 0) cor- 
responds to a growth process whose rate is in- 
dependent of  the particle size. Such is the case 
of  linear-polymer growth (fixed number  of  re- 
action sites per particle). The proportional 
kernel (a  = 1 ) describes a process where all 
the monomers  within a particle (or a fixed 
fraction thereof) are potential sites for growth. 
Real cases lie in between. Two cases are of  
particular interest, reaction- and diffusion- 
limited growth. In a reaction-limited process 
the growth rate is limited by the bonding re- 
action and is proportional to the number  of  
possible bonding configurations between the 
m o n o m e r  and the particle. The growth kernel 
scales as the particle surface area and for 
smooth particles a = ]. However, any surface 
roughness with fractal properties will push this 
number  closer to 1 (7). In the diffusion-limited 
process the growth rate is limited by the col- 
lision frequency between a m onom er  and a 
particle. In this case the growth kernel is given 
by (8 ,  11) 

Ki = (rl + ri)(D1 + Di),  [6] 

where rl, ri are the radii of  a m onom er  and 
an i-mer, D1 and Di are their respective dif- 
fusivities. Using the Stokes-Einstein relation 
riDi = const (8),  we can distinguish two cases 
and further simplify the kernel. At short times 
i is not significantly larger than 1 and we can 
approximate m ~ 1 or a = 0. At longer times, 
i ~> 1 (also ri ~> rl and Di ~ DI ), therefore 

Ki ~ Dlri  ~ ri ~ i 1/3. [7] 

Fractional powers, however, introduce non- 
integer moments  and analytical handling of  
the equations is not as simple. 

In the following sections we investigate the 
behavior of  the reaction system in the hydro- 
lysis-limited regime (Ko ~ 1 ) for the cases of  
a = 1 and a = 0 as approximations to reaction- 
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and diffusion-limited growth, respectively. 
Aside from the mathematical  simplification, 
there is additional justification. While the pro- 
portional kernel overestimates the strength of  
the reaction-limited process, it retains the 
characteristic strong size dependence and it is 
a reasonable approximation for the early stage 
of the growth when the oligomeric species that 
act as nuclei have sufficiently open structure. 
The constant kernel underestimates the 
strength of  the diffusion-limited process, but 
it is not in large error during the early stages 
of  the growth, or for distributions with only 
moderate polydispersity. 

The simplification to the system of the dif- 
ferential equations is considerable. First we 
note that for integer values of  m,  Eqs. [ lb]  
and [4 ] take the form 

d n  1 

dt 
- kon0 - 2~ln~ - nlMa [8] 

m--1 

dMm _ 2mKln~ + n, ~ (f')Ml+a- [9] 
dt 1=o 

More specifically, for a = 1 and a = 0 the 
infinite set of  Eqs. [1 ] is reduced to a set in- 
volving no, nl, and a finite number  of  the lower 
integer moments .  

2.2 The Proportional Kernel (a = 1, ri = i) 

In this case the equations of  interest take 
the form 

dno 
dt - rono [10a] 

dnl 
- Kono - 2Kln~ - n l M l  [10b] 

dt 

dMo _ Kln2 l [10el 
dt 

dMl = 2Kin 2 + nlM1 [10d] 
dt 

dM2 _ 4Kin 2 + nlM1 + 2nlM2 [10e] 
dt 

with initial conditions no(0) -- 1, n l (0)  
= M0(0)  = M I ( 0 )  = m2(0)  = 0. 



G R O W T H  M O D E L  F O R  SILICA P A R T I C L E S  17 

2.2.a. S i ze  o f  the particles. We are inter- 
ested in obtaining a relationship between the 
final particle size r and the hydrolysis constant 
r0 when hydrolysis is the rate-limited step (K0 

1). The equation for no is not coupled 
to the rest and it yields the solution no 
= Koe K0t. The mass balance takes the form no 
+ n~ + M1 and can also be written as 

nl + M1 = 49 [ l l a ]  

49 = 1 - e -c°t . [ l l b ]  

When K0 ~ 1, 49 changes slowly in t ime and 
we can approximately write 

49dt ~ d49t [12a] 

dn---249 ~ d ( ~ ) .  [12b] 

Initially the concentration of the active 
m o n o m e r  n~ increases but it must  eventually 
fall as growth becomes the dominant  process. 
This transient becomes faster as the process is 
further pushed in the hydrolysis-limited re- 
gime. Mo depends on n~ only; therefore we 
expect the evolution of  both Mo and nl to be 
fast and essentially completed during the early 
period of the process, during which the fol- 
lowing approximations are valid: 

49 ~ Kot [13a] 

KO e - Kot 1 

492 ~ 49t" [13b] 

We divide both parts of  Eq. [ 10b] by 492 and 
making use of  the above approximations we 
finally have 

d(nl /49)  

49 ~-~, [141 

the solution of  which must  be of  the form nl /  
49 = F(49t) or n l  = 49F(49t), where F i s  a func- 
tion which depends on K l, but not explicitly 
on KO. With this expression for n~ we can in- 
tegrate Eq. [ 1 0c ] for Mo to obtain 

We let z = 49t (z --~ ~ as t --~ ~ ). For short 

times 49 ~ Kf~oZ and finally we get for M0 

yo 340 = ~ Kl~ZF2(z)dz. [161 

At steady state Mo ~ ~K0 since the integral on 
the right-hand side calculated from 0 to infin- 
ity is a constant independent of  Ko. Because 
F ( z )  depends upon rl we cannot obtain a re- 
lationship between the number  of  the particles 
and the nucleation rate constant. 

We also note that 1/Mo is the number  av- 
erage size of  the particles at steady state 
(2141 (oo) = 1 ). At steady state Mor 3 ,~ M1 = 1 
and the final particle size r is related to the 
dimensionless hydrolysis constant Ko through 

r " ~ ( l l l / 6 : { k p C ° l  1/6 [ 1 7 ]  

2.2.b. First moment .  Making use of  Eq. 
[1 la]  the equation for M1 becomes 

dMl  
- (49 - MI)(2K1 + (1 -- 2K1)MI). [18] 

dt 

We use the same approximations as above 
(Eqs. [12a] and [12b]) and after integration 
we finally obtain for Mz 

M1 = 49W(49t) 

1 - -  e - s t  

W(49t) = 1 + ((1 - 2K1)/2KI)e -*t" [19] 

When K0 ~ 1, e -st  ~ O. Therefore, 
W(49t)---~ 1 andM1 ~ 49 = 1 - e- '°t ; i .e. ,  the 
rate of  growth is asymptotically equal to the 
rate of  monomer  release, as we would expect 
for the hydrolysis-limited case. 

2.3. The  Constant  Kernel  (a = O, ki = 1) 

In this case the equations read 

dno 
dt - Kono [20a] 

dnl 
- K0n0 -- 2Kln~ -- nlMo [20b] 

dt 
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dMo 

dt 

dM1 

dt 

dM2 

dt 

~ =  Kln~ [20c1 

- -  = 2rln~ + nlMo [20d] 

= 4rln~ + 2n lMl  + nlMo [20el 

n l (0)  with initial conditions no(0) = 1, 
= Mo(O) = MI (O)  = M2(O) = O. 

2.3.a. S i ze  o f  the particles. Here we follow 
a different procedure. When KO ~ 1 the con- 
centration of the active monomer is essentially 
zero (the monomer  reacts as soon as it is pro- 
duced).  We can write then 

dnl 
0 [lOf] 

dt 

to obtain an algebraic equation for n~, 

2tin21 + nlMo -- Q = 0, [10g] 

where Q = roe -"°t. The concentration of  the 
hydrolyzed monomer  n~ is given by the posi- 
tive root 

- M 0  + ~/Mo 2 + 8KIQ Q 
n l =  4~1 ~ M 0 '  [21] 

where we used ~[Mg + 6 - f ~ o  ~ 6 /2Mo ,  6 
= 8KIQ ~ 1, valid for K 0 < I. We return the 
expression for n~ to Eq. [20c] and after inte- 
gration we obtain 

M o ( t )  = (3 K O K I ) I / 3 ( 1  - -  e:~ot)!/3 [221 

We see that in the limit of  very slow hydrolysis 
the number of particles M0 has again a power- 
law dependence upon K0 but his time the ex- 
ponent is equal to ~. The corresponding re- 
lation for the particle radius is 

r ~ ( 1 11/9 = (kpCo~ 1/9 
\Ko/ \ ~ ]  . [23] 

From Eq, [23] we also find that M0 ~ K~/3. 
AS we would expect, larger particles are formed 
as the nucleation rate constant KI becomes 
smaller, 

We have verified these asymptotic relations 
numerically and we show the results in Fig, 1. 

,2 
-2 

- 4  

-12 

[] constant kernel 
( •. = 1 ) slope=l/3 

1 . d  
o proportional kernel / /  

' = "  = 

I I r I I 

-t0 -8 -6 -4 -2 0 

Log (Ko) 

FIG. 1. The n u m b e r  of  the particles M0 as a function 
of  the hydrolysis constant  ro = Kjlq, co for ri = i and  Ki 
= 1. Results obt ined f rom numerical  solution of  Eqs. 
[8] and [24] with KI = 1, In the limit of  slow hydrolysis 
(K0 -'~ 0) ,  Mo scales as K~, with X = ½ for the constant  
kernel and 2, = ½ for the proport ional  kernel. 

A point to observe is that for the same value 
of K0 the constant kernel produces smaller 
particles (larger Mo)  than the proportional 
kernel. 

2.3.b. First moment .  The evolution of the 
particle mass may be obtained using Eqs, [ 21 ], 
[ 22] and the mass balance given by Eq. [ 11 ]. 
The result is 

e 0, 
Mx = 49 - m e_2,ot)l/3 . [24] 

K1] (1 

As in the case of the proportional kernel, when 
K0 ~ 1, M~ ~ 49 = 1 - e-"°t; i,e., the growth 
rate is asymptotically equal to the rate of  hy- 
drolysis. 

2.4. Growth Kernels and  Polydispersity 

When the particle size becomes appreciable, 
the constant and proportional kernels repre. 
sent increasingly poorer approximations of 
diffusion- and reaction-limited growth, re- 
spectively. To assess the effect on the polydis- 
persity, we must deal with the exact, nonin- 
teger kernels, In general, we assume that the 
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long-time evolution of the variance 0 -2 has a 
power-law dependence on the average size ~1, 

a 2 ~ #1 ~, [251 

where the normalized variance a2 is defined 
a s  

~r 2 _ M o M 2  - M 2 
M2 [26] 

and the number  average mass of  the particle 
tzl is given by #l = M l / M o .  For the special 
cases of  a = 0 and a = 1, we can solve Eqs. 
[10d], [10e] and [20d], [20el to find 13 = 1 
and/3 = 0, respectively. In the case of  diffusion- 
limited growth we find (12) 

a = ~, /3 ,~ 1, a 2 ~ #11 ~ r -3, [27] 

a result virtually identical to that of  the con- 
stant kernel. Similarly, for the reaction-limited 
model we find 

a = ~ ,  f l ~ 2  0-: ~ r - 2 .  ~, ~ #12/3 [281 

From Eqs. [27] and [28] we see that in both 
reaction- and diffusion-limited growth the 
polydispersity decreases with increasing size 
but with a different exponent. We may utilize 
this result in order to identify the growth kernel 
during the later stages of  the growth. 

D I S C U S S I O N  

The major  difficulty in experimentally as- 
sessing the validity of  these models comes from 
the fact that growth is limited by the slow hy- 
drolysis. In such a case the total particle mass 
MI evolves as a first-order process with a t ime 
constant equal to that of  hydrolysis indepen- 
dently of  the actual growth mechanism, as 
shown by Eqs. [ 19 ] and [ 24 ]. For moderate 
polydispersity, the second m o m e n t  is approx- 
imately proportional to the square of  the total 
particle mass Ml .  The evolution of the lower 
moments  is insensitive to the reaction kernel 
Ki and, consequently, dynamic experiments of  
the type we reported earlier (4) do not actually 
provide useful information to discriminate 
between the two mechanisms. Equations [ 17 ] 
and [23] on the other hand are open to ex- 
perimental testing. While it is true that kp and 
kh cannot be varied independently or in a well- 

defined manner  (ammonia ,  for instance, af- 
fects both rate constants),  we can vary Co, the 
initial concentration of the alkoxide, and ob- 
serve the effect upon the final size of  the par- 
ticles. The results are shown" in Fig. 2 for dif- 
ferent concentrations of  ammonia .  Particles 
were grown in ethanol in a procedure similar 
to that described in our earlier paper (4) and 
sizes were calculated using dynamic light scat- 
tering. We see that the solid lines which are 
drawn with a slope of  ~ provide a good de- 
scription of  the dependence well for a 10-fold 
change in Co, in a range recommended by 
Stoeber et  al. (2) for the production of  a nar- 
row distribution. Given the simplicity of  the 
model and the fact that no fitting of adjustable 
parameters is involved, we conclude that the 
proportional kernel describes the formation of 
the particles fairly well. 

At this point we cannot assess the sensitivity 
of  our results to non!nteger values of  a.  In the 
general case a should be of  the form a = d s /  

3 (10), where ds, t he  s u r f a c e f r a c t a l  d i m e n s i o n ,  

is bounded by 2 ~< ds ~< 3. When the particle 
surface is smooth, ds = 2 in which case a = ~. 

1000 

Ammonia concentration 

A 0.393 moles/1 

O 0.315 

[] 0.263 
= E V 0.100 

~ 100 

1 0  i I 1 I I I I I 

0.01 0.1 

c O (mol/1) 

FIG. 2. Size of  the part icles as a funct ion  of  the in i t ia l  
concen t ra t ion  of  the  a lkoxide  for different concen t ra t ions  
of  a m m o n i a .  The  solid l ines  are d rawn wi th  a slope of  1 

predic ted  by Eq. [ 15 ] for reac t ion- l imi ted  growth of  nuclei  
wi th  fairly open s t ructure  (a  = 1 ). The  concen t ra t ion  of  

H20  was 5.5 M,  in large excess above the 4:1 s toichiometr ic  
rat io in order  to assure pseudo-firs t-order  k ine t ics  of  the 

hydrolysis.  
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Electron micrographs show the larger particles 
( 100 to 300 nm in diameter) to be nearly per- 
fectly spherical with smooth boundaries. The 
situation with smaller particles is, however, 
different. Keefer (7) measured the surface 
fractal dimension ds of small silica particles 
(less than 25 nm in diameter) grown under 
water-deficient conditions and obtained values 
in the range 2.5 to 2.8. These correspond to 
values of  a from 0.8 to 0.9. The limiting value 
of  a = 1 corresponds to totally "transparent" 
particles, in which the monomer can penetrate 
freely and react at any length. This case must 
not be totally dismissed as physically unreal. 
Its applicability can be argued for the early 
part of the process, when small nuclei such as 
cyclic oligomers (1),  for instance, have a 
structure sufficiently open to be described by 
the proportional kernel. 

Once the total number  of particles reaches 
a steady state, growth continues by addition 
of  monomer  with no further nucleation. At 
this stage of the process, the growth kernel 
controls the distribution of  mass among the 
particles and, thus, the polydispersity. We ex- 
pect kernels that favor the larger particles more 
than the small ones to produce a wider distri- 
bution and indeed we observe that the expo- 
nent /3, a measure of the sharpening of the 
distribution, becomes smaller as a increases. 
In order to further test the applicability of the 
reaction-limited model, we followed the evo- 
lution of  the particle distribution in time using 
TEM. Typically, 200-500 particles were used 
to calculate the average size and standard de- 
viation. In Fig. 3 we plot the normalized vari- 
ance as percentage standard deviation squared 
vs the particle size. In logarithmic axes we ob- 
tain a linear relationship with a slope o f -  1.75 
_ 0.2, very close to the value o f - 2  predicted 
by the reaction-limited model and certainly 
above the value of - 3  which corresponds to 
the diffusion-limited kernel. 

Hydrolysis has a direct effect upon the final 
particle size and our results quantify this de- 
pendence that we expect intuitively: As long 
as monomers react much more quickly than 
they are produced, their concentration re- 

O 

slope = -1.75 + 0.2 

8 

.01 i f ~ i 

I00 Diameter (nm) 1000 

FIG. 3. Evolution of the variance of the particle popu- 
lation as a function of the average size during the growth. 
The variance has a power-law dependence on the size with 
an exponent -1.75 + 0.2, in reasonably good agreement 
with the predicted value of - 2  for particles with smooth 
surface (a  = ] ). The particles were grown in ethanol from 
0.044 M TEOS and 5.5 M H20 in the presence of 0.315 

M NH4OH. 

mains low. Therefore, growth, which is first 
order in nl, is favored over nucleation, a sec- 
ond-order process. We can generalize these 
remarks and conclude that factors that inhibit 
hydrolysis, inhibit nucleation as well, and vice 
versa. In a sense, hydrolysis acts as a time- 
programmed monomer  release, a process 
which is required in the production of powders 
with a narrow size distribution, because it 
provides an initial burst of  nuclei that subse- 
quently grow without further nucleation 
( 13, 14). 

Equation [ 17 ] also helps us to rationalize 
the effect of ammonia. It is known that hy- 
drolysis kinetics are accelerated and larger 
particles are formed as the concentration of  
ammonia is increased. The obvious effect of 
ammonia is to accelerate hydrolysis, the rate- 
limiting step. On the other hand, it is known 
that the increased concentration of  O H -  cat- 
alyzes the growth reaction ( 1 ). In order to rec- 
oncile this fact with the observed size increase, 
we must conclude that while both/% and kh 
increase, their ratio actually decreases. In the 
framework of our dimensionless equations this 
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means that the system is pushed further into 
the hydrolysis limited regime and the result, 
according to Eq. [ 17 ], is larger particles. 

4. CONCLUSIONS 

In the presence of  hydrolysis as the rate- 
limiting step, the evolution of  the mass of  the 
particles, M1 and their second moment,  M2, 
is not sensitive to the actual growth mecha- 
nism. The final particle size and the polydis- 
persity, on the other hand, exhibit a distinct 
dependence upon the growth kernel and this 
can be used to experimentally identify the 
mechanism by which particle growth occurs. 

The formulation of  the proposed growth 
schemes is the simplest possible which con- 
tains the important characteristics of  the pro- 
cess, while not introducing adjustable param- 
eters. Simplified in many respects, this model 
based on monomer-addit ion growth in the 
presence of  a slow initiation step (hydrolysis) 
provides a good basis for a semiquantitative 
description of  the formation of  silica particles 
from alkoxides in the presence of  ammonia. 

APPENDIX: NOMENCLATURE 

a growth exponent of  growth kernel 
Co initial concentration ofunhydrolyzed 

monomer  
ds surface fractal dimension 
kh, /co dimensional hydrolysis and polymer- 

ization rate constants 
Mm ruth-order moment  of the particle 

distribution 
no dimensionless concentration of  un- 

hydrolyzed monomer  
ni dimensionless concentration of  par- 

ticles of  molecular weight i 
Q = K0e -K°t source term for the produc- 

tion of  hydrolyzed monomer  
r final particle radius 
t dimensionless time 

Greek Symbols 

Ko dimensionless hydrolysis constant 
K~ dimensionless rate constant of  growth 

of  an i-mer 

#1 = M 1 / M o  number average molecular 
weight of the particles 

4~ = 1 -  e -K°t combined concentration of 
free (nl)  and bound (M1) 
monomer  

cr 2 normalized variance of the particle 
size distribution 

real time 
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