
Physiea D 38 (1989) 377-383 

North-Holland, Amsterdam 

HULL-GENERATING WALKS 

Robert M. ZIFF 

Department ot Chemtt'al Engineering. The l 'mvernty of ,lhchtgan. .4nn .4rbor. .it! 48109.2130. ( 'S.t 

A hull-generating walk ( HGW ) ts a type of  kinettc random v, alk that generates the hull or perimeter of a percolat.on cluster. 

and thus has a fraetal d.mension of 1.75. Some examples of HGWs for stte and bond percolatton on a square latttce are described. 

I, Introduction 

A percolation cluster is a collection ofoccupied sites 

connected to each other  by paths along nearest- 

neighbor pairs of  sites, and surrounded inside and 

outside by vd~ant sites. (For  bond percolation, thts 

defin,tion holds b.~. relbrmulating the problem as site 

percolation on the covenng ~attice. ) A closed circuit 

along the bounda~'  of  adjacent occupted and vacant 

s~tes is called a perimeter or the hull of  the cluster. 

The term "'hull'" was first used by Mandelbrot [ ! ] to 

describe the island of  points enclosed by the external 

boundary of a cluster, but it has been gene.altzed to 

refer ~o the boundar)' as ~ell, and that meaning ~tli 

be used here. One can have both external hulls, m 

whtch the occupied sites are on the ins;de and the ~a- 

cant sites on the outside, and internal hulls, in which 

the occupied sites are on the outs:de and the vacant 

sites are on the inside. 
Mandelbrot 's influence on the study of  percolation 

hulls goes far beyond the co;nmg of  the name, of  

course. Tile invention o f  fractak and the resulting in- 

tel :st m the study of  growth processes and geomet:'tc 

properttes has sumuiated a great deal oi'~xork on per- 

colatton clusters and their hulls, x~ htch are am.e.~g "he 

s,mplest and most elegant of random fracta~s. 2ne 

which result from man,, growth and epidemic models 

ise~. for example refs. [2-41 ~. While perimeters of 

percolation cluste~ have been studied tbr many ,,,ears 

in the cont~:xt of  cluster stattsttcs[ 5.61 or boundary 

properties [ 7 ]. the mtroauction of fractals has led to 

,)-ss.i.xs m hottour of  Benotl B. Mandelbrot 
Fra¢lab m Ph.~s~c~- -X. 4haron.~ and J Feder ledt tors l  

substanttal advances in the understanding of  their 

properties. 
Indeed, the fractal nature turned out to be the ke.~ 

to the discover)' ofexpress:ons for all the critical ex- 

ponents of  percolatton hulls. In their investigation of  

the scaling of  percolation-gradient f,ontters (hulls). 

Sapcval. Rosso and Gouyet [8] ~ere led to the con- 

jecture that the I~ctal dimension of the hull is exactly 

~-': I + I, ' t  = I . 7 5 ,  (I'.. 

s~ here v= - ,  ~ "l ts the correlauon-lengt h exponent. T lus 
con.iLcture ,s supposed b.~ ,~umencal sludlcs I S- I I ! 
Then. b.~ scah:.Ig argumenL~. ( I ~ x~as ,.ho,~,~ [ 10 !2 ] 
to gl~ c s imple ~alucg for li~c odlc~ critic&, cxpua,.,-v,~, 
such as y' = 2  ( for  the mean hull-size exponent ) and 
/~ '= I / 3 .  Finally, Saleur and Duplant ier  [ I  3i de- 
r ived exact expressions for these 2xponents fro',n f irst 
pr inciples,  thus ver i fy ing ( I ) by scaling. Theoret icai  
arg',ments for ( i ) have also been given by Bunde and 

Gou.~et [ 14 ]. This wark has "hogan that perco]m,.m 

hulls ha~e s~mplcr critical exponents than the clus- 

ters themselves. 
Many t.~ pes of kmeuc rando~ 1 ~ a,..ks "~ ~,',: .a, m~ -:- 

,i,~r,~ im~e been found to general: pcr~,.,',at~m-~:~.,,,.: 

i.,u!!s • ~ (re:: .q~dc u.-,e ,p,:ci:al.~. V,ha, .-c.ak,: ~ a g,., ,:..~ 
)~.a.l', a percolm:on-c;.us'~c.: h u h ,  .ha: ~: ~- gc;:.~,:..~eJ 

~vhh t~e same probabih~3 I,~emght! as ,t wouM b: 

found on a latitce that has been rap, domf.x po.puiated 

with occupted and vacant sttes. In th~s paper i am 

concerned ~ith these ~alks. which ! call hull-gener- 

ating ~alk~ i H.GWs ) 

,.)1~,T-2750.'S o '$03 5U ¢L, Elso tcr Science Publishers B V 
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In general, HGWs 've the following properties: 

( I ) They are generated on a lattice that starts out 

completely blank (untested).  except perhaps for one 

or two sites to start the walk. 

( 2 ) They leave a path ofboth occupied and vacant 

sites, or some equivalent representation of  a cluster 

boundat3'. 

( 3 ) Their growth process is local (depending only 

upon a local set of  sites) and kinetic (they grow step 

by step ). 
( 4 ) They eventua!ly close to form a completed loop 

', on an infinite lattice ). 

( 5 ) Once th"y close, they are no longer kinetic in 

nature, meaning that their probabilily or' growiug 

(weight~ is no longer dependent upon the starting 
point. 

(6)  When closed, their weight is that of  the corre- 

sponding perimeter e r a  percolation cluster. If the oc- 
cupied sites are on the outside, then the path repre- 

sents an external perimeter, while if the occupied sites 

are in the inside then the path represents an internal 
perimeter. 

17 ) Their fractal dimension ts 1.75. 

HGWs ~cre first introduced b3 Zif f  Cummings. 

and Stell [ 15, i 6 i for the specific purpose of  gener- 

attng percolation clusler perimeters. They ~sere m- 

dependentb fc,md to result from quite diff-.-rcnt con- 

slderatlons. Krerner and L3klema [171 devised an 

mdefin!lely growing self-avoiding walk (IGSAW) on 

a square lattict which satisfies properlies ( 1 ~ - ( 3 i  

above, but not the rest because the walk; never close. 
Hosteler. Weinrib and Trugman [ 12] studied a stm- 

i!ar walk on a honeycomb lattice, which they call the 
smart kinetic walk (SKW).  and tbund that it is pre- 

cisel~ a HGW (or site percolation on the dual ~trt- 

angularl lattice. Gunn and Onufio [I ~. ] considered 

a random system of sites on a lattice tnat have the 

properly of rotatm~ the direct!or: of  a ,~a!k passing 

through them b.~ given anaounts, and Ibund under 
cer~.:~ clrcur~sta~ces that the paths a,e equix alem io 

a HGW Ibr bond percolation on the square lattice. A 

s,mdar ~xalk was used by Grassberger [ I l l .  Re- 

ccntl.~. Ruu, e, al. [191 have introduced a step-by- 
Sled Iihng process that ts equ!xalenl to the GUnla and 

Onuf~o model and also to the representation by 

Saleur and Duplantier [13], and thus is equivalent 

to the bond-percolation HGW. These models will be 
described in mc~re detail below. 

HGWs are useful for finding the percolation 

threshold [ 10,20]: in fr.:t using the gradient-proba- 

bility method [20] they appear to be the most effi- 

cient Monte Carlo way to find Pc. HGWs allow one 

to generate the hull of  the backbone of a percolation 

cluster [21 ], and also the "accessible perimeter" of  

Grossman and Aharony [22],  as discussed below. 

Coniglio et al. [23] and later Duplantier and Saleur 

[24] and Bradley [25] have argued that the HGW is 

appropriate to represent a two-dimensional polymer 

chain at the 0or  O" point, and so these walks are more 

than jusl a mathematical curiosity but have physical 
significance as well. 

In general, a HGW can be constructed for a given 

system by the following procedure [ 15 ]: First devise 

an algorithm to trace out the perimeter p lan  existing 

clt,~ter. Then repeat the same algorithm on a blank 

~untested) lattice, with the modification that when 

the state of any site that is still untested is needed. 

that site is made "'occupied" with probability p and 

"'vacant" otherv, ise, and the algorithm is continued 

according to that decision. Moreover, the state of  the 

site must be remembered so that if it is ever visited 

again it wdl be treated the same ~'a.~. The perimeter 

produced by this walk has the same weight as the cor- 

responding perimeter on a populated lattice, be- 

cause, in random percolation, the state e r a  site (or 

bond ) is assigned with statistical independence, and 

it is irrele ant whether the choise of the stale is made 
beforehand or during the walk. 

An interesting aspect of  the HGW is the behavior 

when p is mcreased beyond p~. For l '< Pc, external 

hulls are more likely, whde tbr p> p,. the internal hulls 
are mnr,-~ tlk~!~ [ I *, ] l-lnl~,~l,,:~r thr- eXig lene ,  ~ cd" t h e  

infinite cluster is not e~ ident - there is no hull asso- 

ciated ~i'.h it. "r. he internal ,.ulh Ihat are produced 

~hen p>p¢ ma3 be holes within the infinit-~ cluster. 

or holes within a 'arger finite cluster. There is a nat. 

ural s.vmmetr3 for the behavior 3fthe walks about p,. 

~htch Ibr site percolation on t h e  triangular latlice and 
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bc.td percolation on the square lattice is perfect be- 
cause of the identity of  matching lattices. 

By considering different lattices and definit ions of 
the perimeter, a greal variety of HGWs can be con- 
structed, all of  which satisfy properties ( l ) - { ' t l  
above. Furthermore,  even for the same system one 
can devise different walks that generate the perime- 
ter. This will be illuslrated by some e::amples of  
HGWs for site and bond percolation o a a square 
lattice. 

2. Site percolation on a square lattice 

In fig. I -t simple cluster of five occupLed sites 

(shaded circles ) and nine vacant sites ( open circles ) 
for site percolation on a square lattice is shown. F:.rst 
consid,.~r the ~.alk that follows tne occupied sites at 
the boundary,  which is tllustrated in fig. l a. To follow 
that boundaE,,  the walker moves  from occupted stte 
to occupied site, always keeping vacant sites to its 
right. The  walker " looks" first to the fight, then 
straight, then left, then back, where "straight" is the 
direction of  the previous steo. The HGW that results 
from this process follows the following t~de on a ini- 
tially untested lattice: if the s;te being lookeo at is 

( ! ) occupied: the walker raoves to it: 
( z )  vacant: the walker looks to the next site in 

counter-clockwise order: 
(3)  untested: the site is made "occupied'" ~.i,h 

® ® a 

®........(] 

. . . . . . . .  ( 

® (D ® 

) b 

.......-"iX,, 
...... : ; o  

"-....:,.-" "'..:,.-" , d  J 

I J d 

Ftg. I. Stte percolation on a square latttee:( a ) the walk that connects occupied sties (shaded ctrc~es ) of the perimeter. ( b ~ the equB alent 

"'blir, d ant" walk. (c) the genetic walk that move.; along the vacant s~tes (open c=rcles) of the p "nmcter. and { d ) a hey, more ¢fl-:clen, 

walk that goes along diagonals from vacan~ s~,es and vertical and horizomal lines from o,:cupied sqes. 
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probabihi.v p and { i ) is followed, otherx~ ise the site 

is made "'vacant" and ( 2 ) is followed. 

The walk is started 0y placing do,~n the occupied-  

vacant site pair (marked X and O in fig. In), and 

finishes when the walker returns to X and a.,tempts 

to go in the direction o f t h e  first step. Also in fig. In, 

the occupied sites are numbered according to the or- 

der in which they are created, and the vacant site~ are 

labelled with a prime, double prime, etc., and a num- 

ber corresponding to the occupied site where the 

walker was when the vacant site was created. Thus 

after the walker reaches occupied site I, the vacant 

site I' i~ first created, before the occupied site 2 is 

created. Because of  the three vacant sites created 

around 2. the walker must backtrack to site I, which 

is allowed here. When the ~.alker reaches occupied 

site 3. iL first looks to the right and sees 2" ,  which was 

already made vacant before, and so goes on to site 3' 

- and so on. This walk was simulated very exten- 

sively in reg. [I 0.15,20 ], where the scaling relations 

and (1)  were ~erified, and the value of  A(squa re )  

v, as found, all to high accurac.,,. 

in this algorithm it is assumed that the walker us 

able to "'look'" at a neighboring s~ie befo,'e deciding 

tO toO% i2 [0 it, In this case the walker i; called a "'ms- 

e p i c '  ant [-!. ]. lethe xxalker does not hax e this abittt.~ 

i t  is a " 'bhnd'"  ant ). then it must raox e :o e, or3. site 

in the perimeter. "-  " "' . , ,u ,a¢ waB" of fig. Ib results. Here 

a x acant site rotates the walk by x. while an occupied 

site rotates it by -7 t /4 .  and evidently this is a walk 
of  the Gunn-Ortufio type. 

The basic idea behind the walk of  (ig. I b can be 

used to define a "'generic" walk for an) site-percola- 

tion problem: the vacant sites send the ~alker back 

{A0=~rl ~xhile an occupied site rotates the walk to 

the next direction of the  lattice, t I arbitrarily use neg- 

ative ,?to define the i~e~t direct!on he,e.) a similar 

~ a]'; along the ,acant  sties can be made by going Io 

:l:e dual lanicc and :e,.ers~ng Ih¢ r,Yes of ih," sRtes 

In fig. I c the generic walk thai joins the vacant sites 

Of Ihls :ame clusler is shown. The' xacanl site: satisfy 

the connectuvit.~ of the dual lattice, wh,ch m this case 

~s lhe square ]atlnce wni':'~ nearest-neighbor and next- 
,qcarest-neledbol c o m m u n i c a l l o r l .  

Inspection of  fig,. Ib and Ic shows that many of  

the steps are redundant in that a walker sometimes 

goes to a site that is guarranteed to be of  a certain 

state by virtue of  the walker's previous position. In 

fig. Id a simpler, more efficient walk that visits both 

the occupied and vacant sites pea  perimeter is shown. 

in this walk. the occupied sites rotate the walk to the 

first vertical or horizontal direction to the right, and 

the vacant sites rotate it to the first diagonal direction 

to the left. The angles of  rotation are ihu~ not fixed 

but either +_ n / 2  or _+ 3,t/4 dependino, upon the di- 

rection from which the site is approached. The asym- 

metry between the occupied and vacant sites reflects 

the different nature of  these two sites on this lattice. 

3. Bond percolafan on a square lattice 

A gtval variety of  HGWs for bond percolation on 

a square lattice have been found, and i will briefly 

describe them here. 

in fig. 2a a bond-percolation cluster with five oc- 

cupied bonds Isolid lines) and ten ~acant bonds 

(shaded lines) is shown. The arrows Ibllow a step- 

b.v-slep path from bond center to bond cenler that 

traces o'.,t the boundar3 of  this cluster. 

in fig. 2b the same process is shown on the equix- 

alent cox.ering site-percolation latlice, where the sites 

are placed at the centers o f the  bonds and each site is 

connected to six other sites. The path of  the con- 

heeled arrows is precisely the walk of Gunn and 

O,'tufto [ 18 ] in a system containing sites that rotate 

the x,,alk b) either -~ t /2  or x /2 .  corresponding to the 

occupied bonds and the vacant bonds, respectively. 

In contrast, the generic walk for lhis s~stem is shown 

in fig. 2c, x~ htch is evidentl.~ more complicated. A ge- 

.. _11 . . . .  b,2 ~PIC  I~lii l~l. tal] ~ iSO tUff.lllLltilt' lda IIIdl'l''" S[OpS IIt)lill"-. i id .  

c . in t  s i te to , ,acqnl site, ana logous  to fig. Ic. N o I I f C  

lhat in fig. 2b the v, alker checks onb the diagonals of  
the lattice. 

Manna and Guttmann [26] have pointed out that 

the oaths of  connected arrows in fig. 2a or 2b are ki- 

netic growth +rails < KGTs ) [ 27 ]. also called gro~ ing 

selfa~oiding trails iGS-tTs~ [28]. on the directed 
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F~g. 2. B o n d  per~:olal=on o n  a s q u a r e  lali¢¢c ( a l  a c luster  v, tth 

,~rro~s sho~lng an c'dernal per lmctc i  palh t'qt-,,~31c~t IO th :  

L;unr~-Orit~f~o i lSI or Gra , , sbe rec r  111 [ ~alk.  ~b~ ,,~w per , :oL-  

t lon of  Lhc .:ox c rmg  latlnct'. ~ ,." I Ihc generic ,.,...Ilk a!gonlhn~ ~p v. h~,. , 

,all ncng, hbor~, a[~ <hocked.  i d I t,~e v t lu , , . ak  nl hhn~. ul K,.,ta,, ,.t , , .  

[ I q I. a n d  ( e ) the  c lus te r  p laced  o n  a M a n h a t t a ,  lau~ce o n  ~,, h nc-n 

the  p e r i m e t e r  ,s s~mply a K G W  [ 25 .26  ]. 

L-lattice. in which .at each site there is a pair of  ar- 

rows pointing in and a pair pomt,ng out. A KGT is a 

kinetic walk on a lattice that can visit each site with- 

out restriction but each bond only once. On the L- 

lattice, the KGT is a..atomaticall.~ a SKW because tt 

ne~ er gets trapped except to close. 

in fig. 2d the random tiling model of  Roux etal .  

[ 1O] is st,o~n. In this model, the two tiles sho~ n in 

the upper right-hand corner of that figure are ran- 

domly placed wuth equal probability on a square lat- 

tice (rotated b~ rt/2 here) and connec'ed paths are 

formed. The tiles e~ identiy have the effect of  rotating 

the direction of the walk as in fig. 2b. and thus th,s 

process ns equi, alert, to tht bond HGW. as sho~n by 

Duplantier [29l. and Manna and Guttmann i26]. 

Note that the two tiles do not correspond directl} lO 

occupied and vacam sites, however. If one thinks ..,f 

the lattice as being a checkerboard, then the occupted 

sites ~ ill correspond to toes prone t}!~e on t,.e ~ hire 

squares but the tdes of the opposi te t., pe ¢:  bla:k 

squares [29 I. Reux etal. [I q i ah~a.~s Ibund crtt~cal- 

ali squares, since Lhe~ ih-s  al~a.~s crea~.:-d an cq-a~ 
number of vacant and occupied bonds (howe~er. 

placed ~.ith a spatial bias to~ ards d~fferen, colors on 

the checkerboard ). 
In fig. 2e the clusler is placed en an underl}~ng 

Manha~lan lattuce ~,ith half the latl~ce spacing of the 
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percolation lattice. The arrows of ihe x,,aik around the 

cluster are seen to obey the restnclions of  th~s latuce, 

as shown by Bradley [25] and by Manna and Gutt- 

mann [ 26 ]. Each step on this lattice corresponds to 

either a cut of a vacant bond or a step parallel to an 

occupied bond. Because of  the propemes o f the  Man- 

hattan lattice at each step there are two possible di- 

rections to cnntinue. The walk is a simple kinetic 

growth walk q KGW ). A KGW is a walk which steps 

with equal probability lo any neighbonng site that was 

not previously visited [30-32] .  On the Manhattan 

lattice, the K(.;W is therefore a SKW [25,26]. 
.I n Sllmrwqr~,. the fallowing walks are HGWs for 

bond percolation on a square lattice: 

( I ) The generic walk on the covering site lattice, 

which can be constructed to step between either the 

occupied ( fig. 2c ) or vacant sites. 

(2)  The paths on the + x / 2  model of  Gunn and 
Ortufio [18]. 

( 3 ) Hull percolation on the random tding of  Roux 
etal.  [ I.Ol. 

4) The KGT (orGSAT~ on an L-lattice [26].  

i -3 b The KGW on a Manhattan lau~ce [25.26].  

4. Otscussmn 

Thus, we haxe seen that man.,,' walk-forming pro- 

cesses, which have mostly arisen independently from 

a xariety of problems, are in fact different forms of  

HGW. This paper has been mainl.~ a pedagogical re- 

xiew. although the ~alk of  fig. Id is a new and effi- 

cient HGX~,' for si~e percolation hulls. A tiling proce- 

dure to generate th~-~e rjaths can also be gixen. 

ahhough it ~s not as el "gant as the tdlng Ibr bond per- 

co]at~on. Th~s walk can also be generalized for site- 
Oond percola:~on. 

The pcnmeters considered here are related, but not 

~dent~cal. Io ~he accessible perimeter introduced by 

Grossm'm and Aharon.~ [22 ]. The accessible per~m- 

or, e, '..s the external perimeter of a cluster that can be 

pr6bed bs a particle of a g~xen si:e moxing along a 

~,ath of nearest-neighbor vacam sites from infimL~. 

When lh,s .panicle Is s~ffielemh, laige ~dcpendin~ 

upon the lattice), the invaginations of the cluster are 

cut offand the remaining hull ts found to have a frac- 

tal dimension of  ~ 4 / 3  rather than the 7 /4  of  the 

complete perimeter, and thus of  a different univer- 

sality class. Note that for a perimeter generated by 

the HGW, we can define the accessible perimeter as 

all sites that can be reached from infinity without 

crossing any path of  the HGW, which is thus a defi- 

nition independent of  the size of  a probe particle and 

the type of  lattice. To generate the accessible perim- 

eter by a walk process, one must first generate the 

complete perimeter in the usual way with a HGW, 

and then car~' out another scouting walk around the 

perimeter to identify the "'hull" of  the hull [21,22].  

in fact, this new hull is more in the spirit of  Mandel- 

brot 's original definition of  the word than the more 

common usage as ~ny perimeter, and furthermore the 

fractal dimension ( 4 / 3 )  is exactly identical to the 

value conjectured b~ Mandelbrot [ I ] for the Brown 

hull (which is the accessible perimeter of the Brown 

trail ), based upon the value lot the self-avoiding ran- 

dom walk. There is no local ba lk  that can generate 

the accessible perimeter from scratch, which is per- 

haps celated to its being of  a different universality 
class. 

The connections between HGWs and KGWs, 

SKWs. IGSAWs. etc. a:e numerous hut their exact 

nature is dependent upon the specific lattice and sys- 

tem being considered, in many cases, such walks are 

nol precis.ely HGWs but o f lhe  same universahty class. 

One example is the IGSAW of  Kremer and Lyklema 

[ 171 on a square lattice. While the growing end of  

the IGS.-V~V never gets trapped, the non-growing end 

easdy does [ 17] In contrast, for the IGSAW (or the 

SKW ~ on the honeycomb lallice introduced in ref. 

[ 12 ] neither end xsill gel | rapped and the walk will 

al~a.~ s e~ entually close, o.:cause it ~s a HGW. 

it is useful to make this distinction between "'being 

o f the  same um,~ersahty class as a HGW'" and "'being 

a ~.,,pe of  a HGW".  which is a stronger statement. ~.s 

we hax e seen. there are man3 random walks that are 

a t.~pe of  HGW. which means that ant', results of  their 

simulation apply equall.~ to percolation hulls. This can 

lead to ambiguity x,hen refering Io such walks - do 
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they represent SKWs. or percolation hulls [23 ]? The 
answer depends upon the lattice - for site percolation 
on the triangular lattice the HGWs are both, while 
for the square lattice the HGW (fig. i ) is somewhat 
different than the SKW or IGSAW. I would also like 
to point out that in ref. [ 23 ], the very extensive sim- 
ulations ofref. [ I0] ,  which gave 1 / D = 4 / 7  + 0.0005, 
were misquoted to a much lower precision. 

The various considerations given here for the 
square lattice can be applied to the many other two- 
dimensional lattices, including directed ones, to yield 
a great variety of  interesting HGWs. 
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