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HULL-GENERATING WALKS
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A hull-generating walk (HGW ) 1s a type of kinetic random walk that generates the hull or perimeter of a percolauon cluster.
and thus has a fractal dimension of 1.75. Some examples of HGWs for site and bond percolation on a square lattice are described.

1. Introduction

A percolation cluster is a collection of occupied sites
connected to each other by paths along necarest-
neighbor pairs of siies, and surrounded inside wnd
outside by va-ant sites. (For bond percolation. this
defin.ition holds by reformuiating the problem as site
percolation on the covering !attice. ) A closed circuit
along the boundary of adiacent occupied and vacani
sites is called a perimeter cr the hull of the cluster.
The term “hull™ was first used by Mandelbrot [1] to
describe the island of poirts enclosed by the external
beundary of a cluster. but it has been genealized o
refer 10 the boundary as well, and that meaning wili
be used here. One can have both external hulls, 1n
which the occupied sites are on the inside and the va-
cant sites on the outside, and internal hulls, in which
the occupied sites are on the outs:Ge and the vacant
siles are on the inside.

Mandelbrot's influcnce cn the study of percolation
hulls goes far beyond the cofming of the name, of
course. The invention of fractals and the resulting in-
ter :stn the study of growth processes and geometric
properiies has sumuigied a greal deat of work on per-
colation clusters and their hulls. which are among “he
simplest and most clegant of randum {ractais. ana
which result from many growth and epidemic models
tsec for example refs. [2-41). While perimeters of
percolation clusters have been studied for many years
in the contcat of cluster statistics [ 3.6 | or boundary
properties [ 7]. the introguction of fractals has fed 10
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substanuial advances in the undersianding of their
properties.

Indeed, the fractal nature turned out to be the ke
to thc discovery of express’ons for all the critical ex-
ponents of percolation hulls. In their investigation of
the scaling of percolation-gradient frontiers (hulls).
Sapcval. Rosso and Gouyet [8] were led to the con-
jecture that the fracial dimension of the hull 1s exactly
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where r=- /s the correlation-lepgth exponent. This
conjecture . supported by aumernical siudics FS-11)
Then. by scahag arguments, (1) was shown {10 2]
to giv e simple values for tae sther cridar Cypuiiits,
such as 3" =2 (for the mean hull-size exponent ) and
£ =1/3. Finally. Saleur and Duplantier [I3] de-
rived exact expressions for these 2vponents frotm first
principles. thus verifving { 1} by scaling. Theoreticai
arg-'ments for ( i ) have also been given by Bunde and
Gouvet [14]. This work has chown that percolat.on
hulls have simpler critical exvponents than the clus-
ters themselves.

Many 1y pes of Kinelic randos 1 waths 7 iw e il -
Sons ave Deen found (0 2enNerats PeroinLiion-ciusnt
hotls - often giic uneapedical, Whaomakosa g on

path a pereolavon-ciusier hull v that 11 genceated
with the same probability (weight! as it would b
found on 2 lattrce that has been randomhy popuiated
with occupied and vacant sstes. In this paper | am
concerncd with these walks. which [ call huli-gener-

ating walks { HGW's)
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'n general, HGWs  ve the following properties:

(1) They are generated on a lattice that starts out
completely blank (untasted). except perhaps for one
or two sites to stari the walk.

(2) They lcave a path of both occupied and vacant
sites, or some equivalent representation of a cluster
boundary.

(3) Their growth process is local {depending only
upon a local set of sites) and kinetic (they grow step
by step).

{4) They eventually close to form a completed loop
‘on an infinite lattice).

{5) Once th~y closz, they are no longer kinetic in
nature. meaning that their probability of growiug
{weight) is no longer dependent upon the stariing
roint.

(6) When closed. their weight is that of the corre-
sponding perimeter of a percolation cluster. If the oc-
cupied sites are on the outside. then the path repre-
sents an esternal perimeter, while if the occupied sites
are in the inside then the path represents an internal
perimeter.

(7) Their fractal dimension 1s 1.75.

HGWs were first introduced by Ziff. Cummings.
and Stell [15.16] for the specific purpose of gener-
ating percolation clusier perimeters. They were in-
dependently fcind 10 result from quite difY2rent con-
sideranons. Kremer and vyklema [17] devised an
indefinitely growing self-avoiding walk (IGSAW ) on
a square latticc which satisfies properties (1)-(3)
above. but not the rest beczuse the walks never close.
However, Weinrib and Trugmaan {12] siudi=d a sim-
tlar walk on a honeycomb lattice. which they call the
smart kinetic walk (SKW ). and found that it is pre-
cisely a HGW for site percolation on the dual (tri-
angular) lattice. Gunn and Oruiio [ 18] considered
a random system of sites on a lattice tnat have the
nropeny of roating the direction of a walk passing
through them by given amounts. and found under
certarn circumstances thai the paths are equinalent to
a HGV for bond percolation on the square lattice. A
similar walk was used by Grassberger |11 ]. Re-
cently. Ruun eval. {19] have introduced a Sien-by-
step tiling process that is equévalent (o the Gunn and

Ortuno model and also to the representation by
Saleur and Duplantier [13]. and thus is ecuiv-lent
to the bond-percoiation HGW. These models will be
described in more detail below.

HGWs are useful for finding the percolation
threshold [10,20]: in fzot using the gradient-proba-
bility inethod [20] they appear 10 be the most effi-
cient Monte Carlo way to find p.. HGWs allow one
to generate the hull of the backbone of a percolation
cluster [21], and also the ““accessible perimeter™ of
Grossman and Aharony [22], as discussed below.
Coniglio et al. [23] and later Duplantier and Saleur
[24] and Bradtey [25] have argued that the HGW is
appropriate 1o represent a two-dimensional polymer
chain at the or ¢ point, and so these walks are more
than just a mathematical curiosity but have physical
significance as well.

In general. a HGW can be constructed for a given
system by the following procedure [15]: First devise
an algorithm to trace out the perimeter of an existing
civster. Then repeat the same algorithm on a blank
runtested) lattice, with the modification that when
the state of any site that is still untested is needed.
that site is made “occupied™ with probability p and
“vacant” otherwise, and the algorithm is continued
according 10 that decision. Moreover, the state of the
site must be remembered so that it it is ever visited
again it will be treated the same way. The perimeter
produced by this walk has the same weight as the cor-
responding perimetcr on a populated lattice, be-
cause, in random percolation, the state of a site (or
bond) is assigned with statistical independence, and
itisirrele ant whether the choise ot the state is made
beforehand or during the walk.

An interesting aspect of the HGW is the behavior
when p 1s increased beyond p.. For p<p.. external
hulls are more likely. while for p> p. the internal hulls
are mora likely [15), Houever, the existence of the
infinite cluster is not evident — there is no hull asso-
ciated with 1. The internal ,-ulls that are produced
when p>p. my be holes within the infinit= clusier.
or holes within a "arger finite cluster. There is a nat-
urai symymetry for the behavior of the walks about p,.
which forsite percolation on the triangular lattice and
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be.ad percolation on the square lattice is perfect be-
cause of the identity of matching lattices.

By considering different lattices and definitions of
the perimeter. a great variety of HGWs can be con-
structed, all of which satisfy properties (1}-{7)
above. Furthermore, even for the same system one
can devise different walks that generate the perime-
ter. This will be illustrated by some eiamples of
HGWs for site and bond percolation 01 a square
lattice.

2. Site percolation on a square lattice
In fig. 1 21 simple cluster of five occupied sites
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(shaded circles) and ninc vacant sites (open circies )
for site percolation on a square lattice is shown. First
consider the walk that follows tne occupied sites at
the boundary. which is illustrated in fig. 1a. To follow
that boundarv, the walker moves from occupied site
to occupied site, always keeping vacant sites to its
right. The walker “looks™ first to the right. then
straight, then left, then back, where “straight™ is the
direction of the previous sten. The HGW that results
from this process follows the following rule on a ini-
tially untested lattice: If the site being looked at is

(1) occupied: the walker moves to it;

(2) vacant: the walker looks to the next site in
counter-clockwise order:

(3) untested: the site is made “occupied™ with

Fig. 1. Sit2 percolation on a square latuce: (a) rhe walk that connects occupied sies (shaded circ'es) of the penmeter. (b the 2qun alent
blind ant” walk. (¢) the generic walk that move; along the vacant sites (open circles) of the p ‘nimeter, and (d) a new more eflicien:
walk that goes along diagonals from vacant sues and vertical and horizontal lines from accupied sites.
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probability p and ( 1) 1s followed. otherwise the site
is made “vacant™ and (2) is followed.

The walk is started by placing down the occupied-
vacant site pair (marked X and O in fig. 1a), and
finishes when the walker returns 10 X and a.tempts
to go in the direction of the first step. Also in fig. la,
the occupied sites are numbered according to the or-
der in which they are created. and the vacant sites are
labelled with a prime. double prime. etc.. and a num-
ber corresponding to the occupied site where the
walker was when the vacant site was created. Thus
after the walker reaches occupied site 1. the vacant
site 1 1s first created. before the occupied site 2 is
created. Because of the three vacant sites created
around 2. the walker must backirack to site |. which
is allowed here. When the walker reaches occupied
site 3. it first looks o the right and sees 2™ . which was
already made vacant before. and so goes on to site 3
- and so on. This walk was simulated very exten-
sively inrefs. [10.15.20]. where the scaling relations
and (1) were verified. and the value of . (square)
was found. all to high accuracy.

In this alponithm it is assumed that the walker 1s
able to “look™ at a neighboring siie before deciding
to morve 1ot In this case the walker 15 callad a "'my -
oprc’ ant [4]. Ifthe walker does not have this abints
titis a blhind™ wrt). then it must move 10 e on site
in the perimcter. and ilic wal% of fig. 1b results. Here
a v acant site rotates the walk by n. while an occupied
site rotates it by —n/4., and evidently this is a walk
of the Gunn-Ortufio type.

The basic idea behind the walk of fig. 1b can be
used to define a “generic™ walk for any site-percola-
tion problem: the vacant sites send the walker back
{A@=n) while an occupied site rotates the walk 1o
the nextdirection of the lattice. (1 arbitrarily use neg-
ative 1o define the next direction heie,) A similar
walk along the vacant sites can be made by going 1o
the duallattice and reversing the ro'es of the sites

In fig. Ic the generic walk that joins the vacant sites
of this came cluster is shown. The vacant sttes satisfy
the connecuvity of the dual lattice. which in this case
is the square lathice wiil nearest-neighbor and neat-
nearest-nel.nbor communication.

Inspection of fig.. I1b and ¢ shows that many of
the steps are redundant in that a walker sometimes
goes 10 a site that is guarranteed to be of a certain
state by virtue of the walker’s previous position. In
fig. 1d a simpler, more efficient walk that visits both
the occupied and vacam sites of a perimeter is shown.
In this walk. the occupied sites rotate the walk to the
first vertical or horizontal direction to the right. and
the vacant sites rotate it to the first diagonal direction
1o the left. The angles of rotation are thiis not fixed
but either *n/2 or * 31/4 dependire upon the di-
rection from which the site is approached. The asym-
metry between the occupied and vacant sites reflects
the different nature of these two sites on this lattice.

3. Bond percolat®on on a square iattice

A gicat variety of HGW:s for bond percolation on
a square lattice have been found. and | will briefiv
describe them here.

In {ig. 2a a bond-percolation cluster with five oc-
cupied bonds (solid lines) and ten vacant bonds
(shaded lines) is shown. The arrows lollow a step-
by-step path from bond center to bond center thal
traces out the boundary of this cluster.

In tig. 2b the same process is shown on the equi -
alent covering site-percolation lattice, where the sites
are placed at the centers of the bonds and each site is
connected to six other sites. The path of the con-
nected arrows is precisely the walk ol Gunn and
Ortuiio [18] in a system containing sites that rotate
the walk by either —n/2 or n/2. corresponding to the
occupied bonds and the vacant bonds, respectively.
In contrast. the genaric walk for this sysiem is shown
n fig. 2c, which is evidently more complicated. A ge-

walk can 3ls0 be construcied ihat sieps itom va-
cant site 1o vactnt site, analogous to fig. Ic. Notice
that in 1ig. 2b the walker chocks only the diagonals of
the lattice.

Manna and Guttmann [26] have pointed cut that
the paths of connected arrows in fig. 2a or 2b are ki-
netic growth trails (KGTs) [27]. also called growing
self-av oiding irails ¢:GSATs) {28]. on the directed
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L-lattice. in which at each site there is a pair of ar-
rows pointing in and a pair poinuingout. A KGT isa
kinetic walk on a lattice that can visit each site with-
out restriction but each bond only once. On the L-
lattice. the KGT is auqtomatically a SKW because 1t
never gets trapped except 1o close.

In fig. 2d the random uling model of Roux et al.
[19] is shown. In this model. the 1we tiles shown in
the upper right-hand corner of that tigure are ran-
domly placed with equal probability en a square lat-
tice (rotated by n/2 here) and connecied paths are
formed. The tiles evidentiy have the effect of rotating
the direction of the walk 1s in tig. 2b. and thus this
process 1s equit alent to the bond HGW', as shown by

Fig. 2. Bond percolauion on a sauare latiice (at a Juster with
arrows showing an csternal pernimeter path equaalent 1w the
Gunn-0rtuio | 18] or Grassberger (V1] walk, th site percoic-
uon of the covenng latuice. v ) the genene waik algonthmar whioo
all neighbors are cheched, (d) i equivakoni BliNg vl Ruascto .
[19].and (e) the cluster placed on a Manhattou lawice on which
the penmeter 1s simply a KGW [23.26].

Duplantier [29]. and Manna and Guitmann {216].
Note that the two tiles do not correspond directly 10
occupied and vacant sites, however. If one thinks of
the lattice as being a checkerboard. then the occupied
sites will correspond 1o uiles of one type on the white
squarcs but the ules of the opposite type on black
squares [29]. Reus et al. [19] always found crical-
1y FOF 3y miniere O 1¢ two nfes randem’y pui on
ali squares. since ihey thus always creaixd an cgual
number of vacant and occupied ponds {however.
placed with a spauial bias towards different colors on
the checkerboard ).

In fig. 2¢ the cluster is placed on an underiving
Nanhauan latice with hali the lattice spacing of the
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percolation lattice. The arrows of the walk around the
cluster are scen 1o obey the resirictions of this lattice,
as shown by Bradley [25] and by Manna and Guut-
mann [26]. Each step on this lattice corresponds to
either a cut of a vacant bond or a step parallel to an
occupied bond. Because of the properties of the Man-
hattan lattice at each step there are two possible di-
rections 1o cuontinue. The walk is a simple kinetic
growth walk tKGW). A KGW is a walk which steps
with equal prcbability lo any neighboring site that was
not previously visited [30-32]. On the Manhartan
lattice. the K(;W is therefore a SKW [25.26].

In summany the followine walks are HGWs for
bond percolation on a square lattice:

{ 1) The generic walk on the covering site lattice,
which can be construcied to step between either the
occupied (fig. 2¢) or vacant sites.

{2) The paths on the *rn/2 model of Gunn and
Ortuiio [18].

(3) Hull percolation on the random uiling of Roux
etal. [19].

(4) The KGT (or GSAT ) on an L-lattice [26].

5 The KGW on a Manhattan lawnice [23.26].

4. Discussion

Thus, we have seen that many walk-forming pro-
cesses, which have mostly arisen independentl. from
a variety of problems. are in fact different forms of
HGW. This paper has been mainly a pedagogical re-
view. although the walk of fig. 'd is a new and effi-
crent HGW for siie percolation hulls. A uling proce-
dur¢ 1o generate thes2 paths can also be given.
although it 1s not as el~gant as the uling for bond per-
colation. This walk can also be generalized for site—
bond percolation.

The penimeters considered here are relaied. but not
tdentical, 10 the accessible perimeter introduced by
Grossmon and Aharony [22]. The accessible perim-
¢te 1 the eaternal penmeter of a cluster that can be
probed by a particie of a given size moving along a
path of nearest-neighbor vacant sites irem infimty.
When this parucle 1s sufficiemly large i depending

upon the lattice). the invaginations of the cluster are
cul oif and the remaining hull 1s found to have a frac-
tal dimension of ~4/3 rather than the 7/4 of the
complete perimeter, and thus of a different univer-
sality class. Note that for a perimeter generated by
the HGW., we can define the accessible perimeter as
all sites that can be reached from infinity without
crossing any path of tie GGW, which is thus a defi-
nition independent of the size of a probe particle and
the type of lattice. To generate the accessible perim-
eter by a walk process, one must first generate the
complete perimeter in the usual way with a HGW,
and then carry out another scouting walk around the
perimeter to identify the “hull” of the hull [21.22].
In fact, this new hull is more in the spirit of Mandel-
brot’s original definition of the word than the more
common usage as 4y perimeter, and furthermore the
fractal dimension (4/3) is exactly identical to the
value conjectured by Mandelbrot [1] for the Brown
hull (which is the accessible perimeter of the Brown
trail ). based upon the value for the self-avoiding ran-
dom walk. There is no local walk that can generate
the accessible perimeter from scratch. which is pcr-
haps related to its being of a different universality
class.

The connections between HGWs and KGWs,
SKWs. IGSAWs, etc. are numerous but their exact
nature is dependent upon the specific lattice and sys-
tem being considered. In many cases. such walks are
not precisely HGWs but of the same universality class.
One example is the IGSAW of Kremer and Lyklema
117] on a square lattice. While the growing end of
the IGSAW never gets trapped. the non-growing end
easilv does [17] In contrast. for the IGSAW (or the
SKW) on the honeycomb lattice introduced in ref.
{ 12] neither end will get traoped and the walk will
2lways eventually clese, vrcause st isa HGW.

1t 15 useful to make this distinction between “*bcing
of the same unnersaiity class as a HGW™ and “being
atype of a HGW™, which is a stronger statement. As
we have seen. there are many random walks that are
atype of HGW. which means that any results of their
simulation apply equally 10 percolation hulls. This can
lead to ambiguiy vhen refering to such walks - de
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they represent SKWSs. or percolation hulls [23]? The
answer depends upon the lattice - for stte percolation
on the triangular lattice the HGWs are both, while
for the square lattice the HGW (fig. 1) is somewhat
different than the SKW or IGSAW. I would also like
to point out that in ref. [23], the very extensive sim-
ulations of ref. [10], whichgave 1/D=4/7 £ 0.00053,
were misquoted to a much lower precision.

The various considerations given here for the
square lattice can be applied to the many other two-
dimensional lattices, including directed ones. to yield
a greal variety of interesting HGW's.
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