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One-dimensional cutting stock decisions for rolls 
with multiple quality grades 
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Abstract: This paper  presents a procedure for solving one-dimensional cutting stock problems when both 
the master rolls and customer orders have multiple quality gradations. 

The procedure described here is a two-stage sequential heuristic. An innovative shadow price-based 
procedure is first used to select slitting patterns for master  rolls with variable quality characteristics. Then 
a residual problem for the available first-quality (' perfect ') master rolls is solved with a linear program- 
ming model. 

An important characteristic of this approach is its robustness. The procedure can deal effectively with 
problems of varying size and complexity and can also easily be adapted to changing circumstances with 
respect to production quality and demand. 
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One-dimensional cutting stock (trim loss) prob- 
lems arise when production items must be physi- 
cally divided into pieces with a diversity of sizes in 
one dimension (e.g., when slitting master rolls of 
paper  into narrower width rolls). Such problems 
occur when there are economies of scale associ- 
ated with the production of the large master rolls. 
In general, the objectives in solving such problems 
are to: 

(1) minimize trim loss, 
(2) avoid production over-runs, a n d / o r  
(3) avoid unnecessary slitter setups. 
This paper  presents a procedure for solving 

such problems when both the master rolls and 
customer orders have multiple quality gradations. 
Solution procedures for problems with these char- 
acteristics have not been previously published. 

The procedure described here is a two-stage 
heuristic. A sequential, shadow price-based proce- 
dure is first used to select slitting patterns for 
master  rolls with variable quality characteristics. 
Then a residual problem for the available first- 
quality ( 'perfect ' )  master rolls is solved with a 
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G i l m o r e - G o m o r y  [1,2] type linear programming 
algorithm. An important  characteristic of the pro- 
cedure is its robustness. It  can deal effectively 
with problems of varying size and complexity and 
can also easily be adapted to changing cir- 
cumstances with respect to production quality and 
demand. 

The basic one-dimensional cutting stock problem 

The problem of interest here is a variation on 
the basic one-dimensional cutting stock problem, 
which was described by Pierce [6] as follows: 

Suppose that a mill has received customers' 
orders for rl, r 2 . . . . .  r m rolls of a certain grade 1 
of paper ,  these rolls to be of widths 
w 1, w E . . . . .  w m and (the same) diameter D. The 
mill has one paper  machine which can manu- 
facture the desired grade, this machine produc- 

In the paper industry, 'grade' is used to denote substantially 
different products. In this paper, 'style' will have the mean- 
ing and 'grade' will refer to quality variations within a style. 
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ing rolls of width W (where W>_- w; for all i). 
Since customer widths demanded are smaller 
than, or equal to, the production width of the 
paper machine, the production scheduler tries 
to find combinations of the customers' widths 
(patterns) with which to fill out the width W of 
the paper machine rolls. Usually there will be a 
'side roll' of trim loss left over from such 
combinations which is reprocessed or disposed 
of in some other manner. The paper trim prob- 
lem, then, is to find the trimming combinations 
of customer widths and to determine the num- 
ber of machine rolls to be produced and cut 
according to each combinat ion--so as to satisfy 
customers' demand most efficiently. 

For this basic problem, efficient production can 
be defined as the solution to the following integer 
programming problem. 

(IP) Minimize ~ ~ x j  (1) 
j = l  

s.t. ~ aijxj = r i, (2) 
j = l  

i = 1 , 2  . . . . .  m, 
xj >1 0 and integer, 

j =  l ,  2 , . . . ,  n, 

where 

x~ is the usage of pattern j,  
a,j  is the integer number of times width w, ap- 

pears in pattern j. 

For pattern j to be feasible, it must conform to 
the following restriction on its trim loss ~:  

= W -  ~ a i j w  ~>~0. 
i=1 

In (IP), the constraints (2) ensure that all de- 
mand is satisfied, while the objective function (1) 
minimizes the total amount of trim loss. Because 
of the large number of possible cutting patterns, 
exact solution methods are not practical and the 
answers are usually found by rounding solutions 
to the relaxed linear programming (LP) formu- 
lation of the problem. In rounding the LP solution 
to integers, issues such as avoiding slitter changes 
and overproduction can be dealt with by the use 
of specialized heuristics as described by Haessler 
[4,5]. The deliberate production of inventory rolls 

to reduce trim loss can be easily dealt with in the 
LP solution by externally setting the shadow prices 
for those inventory widths as described later in 
this paper. 

Multiple quality grades 

In the case where multiple quality grades are 
considered, a master roll for a given style of 
material may have random variations in quality 
across the width of the roll. These manifest them- 
selves as lengthwise lanes of different quality 
gradations (see Figure 1). A lane's grade is defined 
by the worst quality occurring within it over the 
length of the roll. The number, position, and 
quality level of the lanes are random and can only 
be determined after the rolls are produced. Like- 
wise, when orders are accepted, they specify a 
minimum acceptable quality level. The highest 
quality material (grade 1) can be used to satisfy 
orders for any quality level, grade 2 material can 
be used for all orders except grade 1, and so forth. 

In this situation, there is clearly a value in 
assigning material to the highest quality orders 
possible. In general, the importance of doing so 
depends on the revenue differentials between the 
various quality grades. However, even in those 
cases where the differences are relatively small, 
such assignments are still important if the produc- 
tion batch contains so much lower quality material 
that it may constrain satisfaction of higher quality 
orders. In addition, even if the current production 
batch were relatively rich in good quality material, 
it would still be better to have any master rolls 
held over for future orders to be of the higher 

Figure 1. Example of variable quality on a master roll 
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quality material because of its greater flexibility 
for future use. 

Therefore, except in unusual circumstances, it 
is important to place some priority on matching 
the quality of material to the quality of the order 
for which it is used. The level of importance 
depends on both economic factors and on the 
balance between supply and demand for the vari- 
ous quality grades. 

The mathematical formulation for the basic 
one-dimensional problem assumes master rolls 
which are uniform in both width and quality. It 
also assumes that the same, single quality level 
applies for all orders. For the problem considered 
here, each non-perfect master roll can be unique 
and a slitting pattern's feasibility depends not 
only on its total width, but also on the positioning 
of ordered widths to correspond to the quality 
requirements. 

Literature review 

Although it has been more than twenty years 
since Gilmore and Gomory [3] presented a recur- 
sive approach for considering the value of one-di- 
mensional patterns when the quality of the master 
rolls vary, there have been few subsequent articles 
which consider quality in the context of a cutting 
stock problem. The majority of those that do are 
concerned with two- or three-dimensional prob- 
lems. 

The only author who deals with quality in a 
one-dimensional problem is Sculli [7]. However, 
the problem he describes is not at all similar to the 
one presented here. He presents a probabilistic 
analysis for knife positioning when the width of 
the master roll is a random variable and only one 
ordered width is allowed in a pattern. The eco- 
nomic issue is the tradeoff between setup time and 
the amount of edge waste resulting from the varia- 
tion in usable width. 

Overview of the proposed solution procedure 

It would be preferable, of course, to solve these 
problems globally by simultaneously considering 
all master rolls in a large mathematical program- 
ming model. Because that approach is not compu- 
tationally viable, a two-stage heuristic procedure is 

arated by 
(2) the 
(3) the 
(4) the 

grade). 

used instead. Figure 2 provides a flow chart for 
this procedure. References in this section to steps 
shown on the flow chart will be indicated with a 
"STEP"  designation. 

During the first stage of the procedure, slitting 
decisions are made for the non-perfect master 
rolls. The second stage of the procedure ( "DO 
PERF")  is an LP model that solves the residual 
problem for remaining demand using the available 
perfect master rolls. This model is the same as the 
one presented in Haessler [4]. 

There are three points at which the operator 
provides control  parameters  to the model 
(PARAM 1, PARAM 2, and PARAM 3). In com- 
bination, these parameters affect the model's pri- 
orities on yield, inventory, and the degree to which 
material is downgraded for inferior quality orders. 
Therefore, they can be used to deal with changes 
in production quality or in business conditions. 
Although some of the parameters affect the solu- 
tions in well understood, easily predictable ways, 
for others the effects are more subtle and there are 
still opportunities for further research. Nonethe- 
less, the key points are that the procedure is able 
to operate under varying conditions and that these 
parameters provide the user with controls to make 
the procedure perform as desired. 

Assuming that there are non-perfect master rolls 
to be processed ("ANY NP"),  the first step in the 
procedure sorts the non-perfect master rolls in 
order of their increasing flexibility of use. Any 
other sequence would increase the likelihood of 
incurring trim or inventory penalties when the less 
flexible rolls are matched later with the reduced 
set of demand widths. 

Non-perfect master rolls will generally increase 
in flexibility as the widths of their usable sections 
increase and as their quality improves. The follow- 
ing are, therefore, reasonable examples of the kinds 
of measures which can be used to establish 
processing sequences: 

(1) the number of usable sub-sections (sep- 
waste lanes), 
widths of the usable sub-sections, 
number of quality grades, 
amount of usable material (by quality 

In the course of establishing the sequence in 
which the non-perfect master rolls will be 
processed, the operator provides a parameter 
(PARAM 1) which is used to assign a value to 
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Figure 2. Flow chart of the solution procedure 

NP = NON-PERFECT 
MASTER ROLL 

RV = ROLL VALUE 

PV = PATrERN VALUE 

PERF = PERFEC"r MASTER 
ROLLS 

SP = SHADOW PRICES 

* RULES FOR NP SEQUENCE 
* RULES FOR NP RV 

* INVENTORY MULTIPLIER 

PARAM 3 

* MAX PATrERN5 TO 
EVALUATE PER N'P ROLL 

each master roll ("SET RV"). If a cutting pattern 
for the master roll is found which meets or ex- 
ceeds that value ( " P V >  RV"), the pattern is 
accepted. If no such pattern can be found, the 
master roll is held back for use with some subse- 
quent demand batch. Pattern values are derived 
from the shadow prices from an LP solution for 
net demand ( " C A L C  SP's F O R  D E M A N D  
WIDTHS") .  The details of that procedure are 
discussed later in this section. 

Each master roll's value is determined by the 
fol lowing formula: 

v~ = ( ~ -  C ) / w ,  

where 

V~ = the value for master roll i, 
U~ = the usable width (waste excluded) for master 

roll i, 
Cg = the parameter for master roll i, 
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W= the maximum possible usable width (for our 
example, 120"). 

The parameters for each of the master rolls 
(PARAM 1 in Figure 2) are determined experi- 
mentally. They can be thought of as approxi- 
mately equal to the trim loss permitted on a roll. 
The goal is to set them in such a way that the 
probability of roll usage (i.e., pattern acceptance) 
is approximately equal to a predetermined target 
(P) .  The value selected for P will determine the 
mean and variance for the level of master roll 
inventory. P should be set high enough so that it 
is unlikely that master roll inventories will exceed 
capacity. It should also be high enough so that 
master rolls can be expected to be used within a 
reasonable amount of time. If  neither of the above 
concerns are limiting, however, P should be set so 
that the expected level for the inventory is eco- 
nomically optimal. It  would correctly trade off 
master roll carrying costs against the marginal 
improvement in performance to be gained from 
having a greater variety of uncut master rolls to 
choose from (improvements would be in the form 
of higher yield a n d / o r  lower inventory). 

Because it is intended that rolls will be processed 
in sequence from least to most flexible, and be- 
cause a larger roll parameter  is an indication that 
greater trim or inventory sacrifices may be neces- 
sary in order to accept patterns with the desired 
regularity, the parameters should be non-increas- 
ing for the sequence in which master rolls are 
processed. 

If individual master rolls are held for longer 
periods than would be reasonable given their 
targeted probabili ty of use, it is an indication that 
the roll sequencing scheme may be inadequate. 
Once the rolls have been held for some extended 
period of time, they should be given a lower value 
and processed earlier in the solution procedure, 
when there are more combinations of demand 
widths available. 

By setting the master roll value hurdles higher, 
each master roll is more likely to be eventually 
used in a more desirable way with a more ap- 
propriate set of demands. As a master roll's value 
is lowered, the probability of the roll's usage in- 
creases at the possible expense of decreased yield 
a n d / o r  increased inventory. 

The procedure for generating and testing alter- 
native patterns to consider for use with a master  

Table 1 

W = 120" 

r I = 10 w 1 = 60" 
r 2 = 20 w 2 = 50" 
r3= 4 w3 =10" 

roll is lexicographic ( " F I N D  H I G H E S T  VALUE 
FEASIBLE PATTERN") .  The procedure at- 
tempts to select patterns for a non-perfect master 
roll which are composed of widths that are rela- 
tively difficult to combine with other demand 
widths. Such a pattern is denoted as being more 
'valuable ' .  By doing so, those difficult items are 
removed from the demand list and the quality of 
solutions to the residual problem is preserved. 

The pattern 's  value is assumed to be the sum of 
the shadow prices for its component  widths. The 
shadow prices carry ' informat ion '  regarding the 
ease or difficulty of combining those widths into 
low trim loss patterns. A pattern's  value will be 
relatively high if such difficult widths are included 
and relatively low if they are not. The usage of 
high value patterns during the sequential proce- 
dure will tend to enhance the quality of the solu- 
tions to the residual problem by satisfying de- 
mand for hard to fit widths and preserving de- 
mand for those widths which combine more easily 
into high yield patterns. The shadow prices are 
found by solving the LP relaxation of IP for the 
residual orders assuming perfect master rolls. The 
LP solution itself is not used. 

Consider the sample trim problem in Table 1. 
The optimal solution is depicted in Table 2. The 
shadow prices are 

u 1 = 0 . 5 ,  u 2 = 0 . 5 ,  u 3 = 0 .  

When determining which sizes are to be cut 
from imperfect master rolls, the 50"  rolls have the 
highest value per unit of material. The 10" rolls 
have no value because they can be cut from what 
would otherwise be trim loss. Note that if r 2 is 
changed to 2, the shadow prices for u 2 and u 3 will 

Table 2 

Patterns Usage 

2-60" 5 
2-50" 8 
2-50", 2-10" 2 
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become 0.417 and 0.083, respectively (i.e., w/W). 
Because they respond in this way to the combina- 
tions of demand widths remaining, shadow prices 
are recalculated after each non-perfect master roll 
is cut. 

If optional inventory widths are allowed, the 
LP problem is expanded by the addition of new 
'demand' constraints for each inventory width. 
The RHS for each new role is the maximum 
allowable inventory for that width. An artificial 
shadow price is assigned to each of these new 
rows. The shadow prices for the inventory widths 
are some fraction of the ratio of the inventory 
width to the master roll width (=  Fw/W): Low 
values for F (PARAM 2) discourage the inclusion 
of inventory widths in the LP's optimal patterns; 
high values for F have the opposite effect. For 
example, the following problem includes 1 de- 
mand width and 2 inventory widths (master rolls 
are 120" wide): 

Width: 35" 25" 10" 
Demand: 6 0 0 

If F = 0.10, only 'free' inventory cuts are included 
in the optimal solution: 

2 master rolls 3 5 " - 3 5 " - 3 5 " - 1 0 "  

(230" used). 

If F =  1.0, inventory cuts are used to improve 
yield: 

3 master rolls 3 5 " - 3 5 " - 2 5 " - 2 5 "  

(360" used). 

At some intermediate value of F (about 0.92), an 
indifference point between these two solutions 
exists. 

During the lexicographic evaluation of alterna- 
tive patterns for a non-perfect master roll, each 
candidate pattern's value is compared to an in- 
cumbent pattern's value. If it is greater in value 
(or equal in value but with greater yield), it is 
tested for feasibility against the quality character- 
istics of the master roll (" F IND HIGHEST VAL- 
UED FEASIBLE PATTERN").  To avoid evaluat- 
ing patterns which offer a very small marginal 
improvement, patterns are not considered if their 
value is only slightly greater than the incumbent's 
value or, for value 'ties', if there is only a slight 
yield improvement. Reasonable values for these 
cutoff parameters vary depending upon the specific 

circumstances in which the procedure is imple- 
mented. 

Pattern feasibility is tested by conceptually 
packing its widths against the left edge of the 
master roll and sliding them to the right until the 
leftmost cut is found to be either feasible or 
impossible. Once a feasible location for a cut is 
found, the next width to the right is similarly 
tested. Eventually, the pattern's feasibility is either 
proved or disproved. Before a candidate pattern's 
feasibility can be confirmed, it may be necessary 
to test each permutation of the pattern's widths. 

A feasible pattern is accepted for use only if its 
calculated value meets or exceeds the cutoff value 
for the master roll "PV > RV?". Otherwise, the 
master roll is held back for use with some subse- 
quent demand batch. 

Sample pattern for a non-perfect roll 

As an example of a typical problem, consider a 
case with demands for the the widths and quality 
grades in Table 3. Also included in the table are 
several allowable inventory widths. The demands 

Table 3 

Width Quality Demand Maximum 

quanti ty inventory 

40.5 1 1 0 

38.5 1 8 0 

38.5 3 0 5 

28.0 3 0 5 
25.0 3 0 5 

24.75 1 89 8 

24.625 1 25 0 

20.0 3 0 5 
19.0 1 20 0 
19.0 2 4 0 

18.5 3 0 10 

16.0 3 0 10 

Table 4 

Lane Lane 

width quality 

13 2 
31 1 

2 3 
36 1 

8 2 
30 1 
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Table 5 

Width Quality Shadow 
price 

40.5 1 0.333 
38.5 1 0.333 
24.75 1 0.222 
24.625 1 0.222 
19.0 1 0.111 
19.0 2 0.111 

Table 7 

Solution value: 0.9984 
38.5 (3) Inventory cut 
18.5 (3) Inventory cut 
24.75 (1) 
19.0 (2) 
19.0 (1) 
0.25 (W) 

Total usage: 119.75 

are to be satisfied from master rolls that are 120" 
wide.  An example of a typical non-perfect master 
roll which might be used to help satisfy the orders 
is provided in Table 4. 

If inventory widths are to be discouraged, a 
multiplier ( F  value) of 0.1 might be used in 
determining the shadow prices for the various 
widths. In such cases, the inventory widths will 
have relatively low values. The demand widths 
have the shadow price values which can be seen in 
Table 5. 

As the lexicographic evaluation of potential 
patterns proceeds, a sequence of incumbent solu- 
tions are developed as in Table 6. Each pattern 
consists of a list of cut widths and qualities (W 
signifies a waste cut). 

If inventory widths were to be encouraged in 
order to improve yield, a high value for the multi- 
plier ( F  value) would be appropriate. For exam- 
ple, if F = 1.0 the procedure recommends the pat- 
tern in Table 7. 

Conclusion 

This paper extends the literature on cutting 
stock problems by describing a class of problems 
not previously treated--i .e . ,  one-dimensional 
problems which include multiple quality grades. 

A solution technique for this important, com- 
plex problem has been provided that out-performs 
current manual approaches with respect to the 
criteria of yield maximization and inventory mini- 
mization. The company which is using the soft- 
ware estimates that its production yield has in- 
creased, by about 0.75% while simultaneously re- 
ducing the rate of inventory production from about 
14% of production to about 5% of production. 

The approach is robust with respect to the great 
variety of problems encountered and is also easily 
implemented. Because it provides very fast solu- 
tion times, the model can be used to generate 
alternative solutions or to respond to last minute 
changes in demand. 

Table 6 

Solution: 1 2 3 4 5 

Value: 0.6667 0.6833 0.7778 0.7944 0.8889 

Pattern: 13.00 (W) 13.00 (W) 13.00 (W) 19.00 (2) 19.00 (2) 
24.75 (1) 24.75 (1) 24.75 (1) 24.75 (1) 24.75 (1) 

8.25 (W) 8.25 (W) 8.25 (W) 2.25 (W) 2.25 (W) 
24.75 (1) 24.75 (1) 24.75 (l) 24.75 (1) 24.75 (1) 
19.25 (W) 20.00 (3) 19.00 (2) 20.00 (3) 19.00 (2) 
24.75 (1) 24.75 (1) 0.25 (W) 24.75 (1) 0.25 (W) 
5.25 (W) 4.5 (W) 24.75 (1) 4.5 (W) 24.75 (1) 

5.25 (w) 5.25 (w) 

Total 
usage: 74.25 94.25 93.25 113.25 112.25 
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Although the procedure is designed for a situa- 
tion in which the quality of production is variable, 
it is structured so that it would automatically 
adapt if production quality improved. In the ex- 
treme, if the quality were to improve to 100% first 
grade, the procedure reverts to the approach used 
for the basic one-dimensional problems. 
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