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striatal activity in early childhood may account for the poor
impulse control in normal young children who do have some
behavioural characteristics akin to older children with
ADHD.

In the 7 dysphasic children without ADHD, there was
low flow to left prefrontal and central perisylvian region.
Hypotunction of the left hemisphere is also suggested by the
fact that 6 of the 15 language impaired children were left
handed. In a study of cerebral flow distribution in 9 children
with expressive language dysfunction Raynaud et al*¢ found
low flow to the left hemisphere. These indications of low
neural activity in the left hemisphere are consistent with
early reports on lateralised features in the EEG in
dysphasia.?”

In conclusion, we have shown that various developmental
learning disabilities are associated with regional cerebral
blood flow abnormalities as assessed with SPET. It may be
that the phylogenetically recent linguistic functions are
vulnerable to slight disturbances in regional cerebral activity
whereas attention control, a primitive capacity important for
survival, is protected from such changes.

Some of the patients in the control group were examined by Dr Sissel
Vorstrup and Dr Karen Taudorf at the department of neurology,
Rigshospitalet. The statistical analysis was carried out with the help of Dr Ole
Pryds, department of paediatrics, Rigshospitalet.
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Cyclosporin toxicity at therapeutic blood levels and
cytochrome P-450 lIIA

M.R.LUCcEY ].C.KOLARS
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D.A. CAMPBELL M. AILDRICH P.B. WATKINS

A 40-year-old male liver allograft recipient had
neurological dysfunction and renal failure while
his cyclosporin blood levels were in the
therapeutic range; these features recurred on
rechallenge. The hypothesis that this toxic effect
might have resulted from abnormal metabolism of
cyclosporin by liver cytochrome P-450 llIA was
investigated with the ['*Clerythromycin breath
test, which is a measure of this enzyme’s activity.
P-450 HIA activity was decreased compared with
that in controls, including other liver transplant
recipients. Pretreatment with rifampicin, an
inducer of P-450 llIA, increased enzyme activity.
After treatment with rifampicin the patient could
be rechallenged with cyclosporin at a dose almost
twice that which had previously been toxic. The
patient died during a second transplantation and
the microsomal content of P-450 IlA was found to
be low in the first transplant.

Lancet 1990; 335: 11-15.

Introduction

In general, the renal and neurological toxicity of cyclosporin
is associated with high daily doses and high blood levels of
the drug.! However, cyclosporin can induce renal and
neurological dysfunction in some patients while blood levels
of parent drug are not elevated,!? which suggests that
metabolites may be toxic. In most patients the major
pathway of elimination of cyclosporin is hydroxylation to a
metabolite, M-17; the blood concentration of M-17 can
exceed that of the parent drug several fold.! In rodents M-17
is not nephrotoxic and, compared with cyclosporin, is
rapidly eliminated in bile.? It therefore seems unlikely that
this metabolite alone is toxic. The liver enzyme responsible
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for production of M-17 is cytochrome P-450 IIIA,* which
appears to be the major phase I drug-metabolising enzyme
inducible by rifampicin.5® The catalytic activity of this
enzyme varies up to twenty-fold between patients”® and the
rate of production of **CQ, in breath after intravenous
injection of [**Clerythromycin is a useful measure of liver
P-450 I1IA actvity in vivo.’

We describe a liver allograft recipient who had recurrent
episodes of renal and neurological toxicity while blood levels
of cyclosporin were maintained within the therapeutic
range. We measured his in-vivo activity of >-450 I1IA by
the erythromycin breath test compared with that of other
patients, including liver transplant recipients, and we
attempted to increase his P-450 IIIA activity by
pretreatment with rifampicin.

Patients and methods

Patjents.—The erythromycin breath test was done in 5 male liver
transplant recipients in addition to patient A. Patient A’s history is
presented in the Results section and details of the 5 other patients
are shown in table 1. The normal range for the breath test in adult
males was established in 45 inpatients and outpatients. None were
receiving any medications known to influence P-450 IIIA.57#
Details on 19 of these subjects have been reported.> All patients
were studied according to protocols approved by the University of
Michigan Committee for the Conduct of Human Research, which
included the obtaining of informed consent.

Erythromycin breath test—Briefly, 2 ml 5% dextrose
containing [“C]N-methylerythromycin (0-1 wmol, 3 pCi) was
injected intravenously. Breath CO, was collected 3, 10, 20, 30, 40,
50, and 60 min later by the patient exhaling into vials containing
4 ml hyamine hydroxide/ethanol (1/1) and a trace of
phenolphthalein. A change from blue to clear indicates that 2 mmol
CO, has been trapped. The vials were capped and the specific
activity of **C was measured by scintillation counting. The rate of
14C exhalation was calculated from the endogenous output of CO,
(5 mmol/m? body surface area). Breath test results were expressed as
the percentage of administered radiolabel elimimated in 1 h (the
area under the exhalation rate vs time curve).

Immunochemistry of P-450 isozymes.—Microsomes prepared
from patient A’s liver postmortem were subjected to quantitative
immunoblotting.” The blots were developed with a monoclonal
antibody thar selectively binds P-450 IIIA or antibodies that bind
other human major liver cytochromes belonging to the P-450 11
(HLx), P-450 I1E (HL)j), P-450 IIC (P-450MP), and P-450 I
(HLd) gene families. Purification of these proteins and the
preparation of specific antibodies have been described.”91?
(Antibodies to HLx, HLj, P-450MP, and HLLd were gifts from
Dr Steven Wrighton, Eli Lilly, Indianapolis.)

Cyclosporin assay.—Blood cyclosporin levels were measured by
high-performance liquid chromatography.'* Unless expressly
stated, all blood were drawn predose (“‘trough’) at 0800 before
morning administration of cyclosporin.

Results

A 40-year-old man with cryptogenic cirrhosis (patient A)
received an orthotopic liver transplant in October, 1987. His
preoperative serum creatinine was 106 ymol/l. He had no
history of renal or neurological disease. Fig 1 shows the
clinical course during the first 120 days after transplantation.
The immediate postoperative regimen consisted
of methylprednisone, azathioprine and Minnesota
antilymphoblast globulin. Antimicrobial and antifungal
prophylaxis consisted of gentamicin, co-trimoxazole,
cephalothin, and nystatin. Moderate hypertension was
treated with labetalol. On the fourth postoperative day the
patient was alert, lucid, and breathing without assistance.
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Fig 1—Clinical course of patient A during first 120 days after
orthotopic liver transplantation.

Cyclosporin, administered by nasogastric tube, was started
on day 5. Antilymphoblast globulin was withdrawn on day 8
and the patient was maintained on prednisone, azathioprine,
and cyclosporin. Renal failure developed four times. The
first occurrence, on day 14, followed a large volume
thoracocentesis and was associated with oliguria and
hyperkalaemia; thus prerenal azotacmia was a likely
precipitating event. Haemodialysis was done once at this
time and cyclosporin was not interrupted. All of the three
subsequent episodes of renal failure did not have identifiable
causes and were successfully managed by stopping
cyclosporin. Haemodialysis was required during one of
these episodes.

Patient A was intermittently confused and agitated
throughout the first 120 postoperative days and these
symptoms were worse during periods of reduced renal
function (fig 1). Furthermore he had two other distinct
neurological abnormalities. Firstly, from day 36 to 52, he
had a parkinsonian-like syndrome with pill-rolling tremor,
cog-wheel rigidity, and apathetic facies. These symptoms
were initially attributed to haloperidol, which had been
prescribed at 2 mg every 4 h as required to treat agitation.
Although haloperidol was stopped after 14 days and
benzhexol 1 mg twice daily was started, the symptoms
persisted for a further 14 days until cyclosporin was
withdrawn. Secondly, on day 108, the patient had status
epilepticus with recurrent grand mal seizures, which was
managed by stopping cyclosporin, starting phenobarbitone
and phenytoin, and by a short period of assisted ventilation.
There were no clinical features of hypertensive
encephalopathy and serum magnesium and calcium levels
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Fig 2—Erythromycin breath test results.
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TABLE I-CLINICAL DETAILS IN 5 LIVER TRANSPLANT
RECIPIENTS AT TIME OF ERYTHROMYCIN BREATH TEST

Days| Cycin Total Breath

Patient post| blood Creat AST bili AP | test
(sex/age [yr])| Tpx | (ng/mi) { (umol/1) | (1U/1) | (mmoi/1) | (TU/1)] (%)
1 (M, 33) 82 188 123 16 10 109 | 1-72

2 (M, 45) 194 143 106 91 19 526 | 276
3(M, 39) 137 134 70 10 7 83 | 228

4 (M, 31) 300 87 97 30 9 187 | 2-67

5 (M, 26) 67 72 62 47 102 691 | 201

Tpx=transplantation; Cyc=cyclosporin, Creat=creatining; AST=
aspartate  aminotransferase; bili=bilirubin, and AP =alkaline
phosphatase.

All patients received prednisone, azathioprine, and cyclosporin. In
addition, patient 1 received spirolactone and sucraflate; patient 2
received cimetidine and quinine; and patient 5 received ox bile, acyclovir,
docusate sodium, and paracetamol.

were normal. Serial computerised axial tomographs of the
head with and without contrast were normal.
Electroencephalography during a seizure showed evidence
of ictal activity but at other times showed a nonspecific
pattern consistent with toxic or metabolic encephalopathy.
The patient’s serum cholesterol had been 141 mg/dl during
the first week after transplantation.

Throughout the first 120 days, whole blood cyclosporin
levels (fig 1) were within or below our target (therapeutic)
range for liver transplant recipients (100-300 ng/ml). The
typical daily dose of cyclosporin after clamping the T-tube
was 320480 mg (4-6 mg/kg) and was adjusted according to
blood levels. By day 111, 3 days after stopping cyclosporin,
the patient was well, breathing without assistance, and lucid.
He continued to take phenytoin until day 160 but had no
further seizures. We concluded that in this patient
cyclosporin treatment had resulted in renal and neurological
dysfunction despite therapeutic blood levels of the drug.
Because the seizures were life-threatening, continued
treatment with cyclosporin was contraindicated; the patient
received only azathioprine and prednisone for the next 3
months.

The erythromycin breath test was developed soon after
patient A showed cyclosporin toxicity. In 45 male patients,
the mean amount of radioactivity exhaled during the hour
after injection with labelled erythromycin was 2-:2% (fig 2).
This value was similar in 5 liver transplant patients receiving
various drugs, including cyclosporin (table 1). We concluded
that neither transplantation itself nor the administration of
immunosuppressives significantly influenced the breath test
values in these patients compared with control patients. To
study whether P-450 IIIA was intact in patient A, we
administered the erythromycin breath test on days 169 and

TABLE {l—CLINICAL DETAILS OF PATIENT A AT TIME OF
ERYTHROMYCIN BREATH TEST

Days Cyc Cyc Total Breath
post | dose |inblood| Creat | AST bili AP test
Tpx |(mg/day)| (ng/ml) | (umol/l) | (1U/1) | (mol/l)| (1U/1) | (%)
169 .. .- 88 248 19 1110 | 086
202 . .. 90 93 54 965 | 0-50
205* .. .. 114 83 54 865 | 24
211* 160 . 106 105 156 920 | 291
214* 160 <20 106 188 226 975 | 1-67
220* 640 <20 90 228 374 925 | 1-81
233 .. .. 290 206 730 2175 | 028

*Includes rifampicin treatment. Other relevant medications: prednisone,
azathioprine, and labetalol on all days; acyclovir and co-trimoxazole on
all test days except day 169; antithymocyte globulin and ox bile on days
214 and 220; and cephalothin on day 220.
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Fig 3—Immunoblots from patient A developed with antibodies
that bind five different cytochrome P-450 isozymes.

Only regions of blots reacting with antibodies are shown. For
comparison, microsomes prepared from another patient (no 23) were
analysed on same biots. Microsomes from this patient have been
previously shown to have typical concentrations of each protein assayed.”

202 after transplantation. Each time the eliminated
radiolabel was low compared with the two reference groups
of men (fig 2). It was unlikely that this was due to general
liver dysfunction because on these occasions conventional
liver integrity tests were only mildly abnormal (table 11) and
similar to those seen in the other liver transplant recipients
(table I). Therefore the donor liver was probably deficient in
P-450 I11A activity. We postulated that this defect may have
resulted in aberrant cyclosporin metabolism and
accumulation of a toxic metabolite. Next we investigated
whether patient A’s breath test could be increased by oral
pretreatment with rifampicin 600 mg per day. There was a
dramatic rise in the breath test result after just 2 days (fig 2).

Patient A had progressive cholestasis on days 200-210
and liver biopsy consistent with chronic rejection and
intrahepatic venous congestion. The clinical features of
chronic rejection and cholestasis worsened despite use of the
anti-T lymphocyte monoclonal antibody OKT3. We
decided to re-start cyclosporin, which provided an
opportunity to test our hypothesis that deficiency in P-450
III A had resulted in accumulation of a toxic metabolite.
Rifampicin was administered daily and the erythromycin
breath test was done twice a week. Initially rifampicin
600 mg was given orally and then 300 mg after 3 days. This
dose maintained a breath test result greater than 1-5% (table
11). The breath test was done before the daily dose of
cyclosporin, which was administered at 0800; rifampicin
was given at 1500.



14 THE LANCET

JAN 6, 1990

Neither renal nor neurological dysfunction developed
while the patient was receiving cyclosporin plus rifampicin.
However, as shown in table 11, therapeutic blood levels of
cyclosporin were never achieved during the 10 day course of
treatment (days 211-220). Because absorption of
cyclosporin depends in part on intraluminal bile, we
assumed that the patient’s progressive cholestasis had
caused poor absorption. However, from day 213 onward,
cyclosporin was administered with ox bile. Although the
cyclosporin dose of 8 mg/kg per day was almost twice that
which resulted in toxicity during the first 100 postoperative
days, the drug was virtually undetectable in blood, even
during the first 6 h after the oral dose (data not shown). The
reason for the poor systemic availability was obscure. The
patient continued to eat meals and did not have diarrhoea
during this period. Cyclosporin and rifampicin were
stopped on day 222 because of a continued decline in hepatic
function. The patient subsequently had hepatic failure with
grade 3 encephalopathy. By day 235, the erythromycin
breath test result was once again low (table I1).

On day 236 the patient underwent an attempted second
transplant during which he died; liver was obtained about
30 min later. The concentration of each P-450 protein
assayed, including P-450 I11A, was low compared with that
in microsomes prepared from a representative “normal”
patient (fig 3). However, the content of P-450MP was
relatively preserved in patient A’s liver.

Discussion

We have presented a liver transplant recipient who had
repeated episodes of renal failure and neurological
disturbances while receiving cyclosporin. Although these
events were not related to elevated blood levels of
cyclosporin, we attribute them to this drug because other
causes, such as significant systemic hypertension or
electrolyte abnormalities, were not present. Furthermore,
on three separate occasions, toxicity promptly resolved
when cyclosporin was stopped.

There is an association in liver transplant recipients
between cyclosporin toxicity and blood cholesterol levels
lower than 120 mg/dl in the first week after transplantation.?
Since cyclosporin circulates in blood largely bound to
lipoproteins, low cholesterol levels may be associated with a
larger proportion of unbound, biologically active drug. Our
patient’s cholesterol was 141 mg/dl at the time he first
manifested toxicity and therefore a significant increase in
unbound cyclosporin seems unlikely. However, we twice
demonstrated that this patient had low P-450 I11A activity
as assessed by the erythomycin breath test. Cytochrome
P-450 IIIA appears to catalyse the major route of
metabolism of cyclosporin in most patients.*® The liver
received by our patient may have been deficient in P-450
I1TA activity because: (1) low P-450 I1IA activity was nota
consequence of liver transplantation since 5 male transplant
recipents had breath test results that were similar to those in
45 control patients; (2) there were no serological or clinical
indications of general liver dysfunction in patient A at the
time of his initial breath tests; (3) we were able to increase
significantly P-450 ITIA activity by treating the patient with
rifampicin; and (4) a defect in P-450 I11A was supported by
our post-mortem examination of patient A’s liver. Our
observation that the concentrations of all five cytochrome
P-450 isozymes were low in patient A’s liver microsomes
was expected, given the severe general hepatic dysfunction
at the time of death. However, P-450MP was relatively

preserved in these microsomes (fig 3). Taken together, the
observations suggest that the donor liver received by patient
A had a defect, presumably genetic, in P-450 ITIA protein or
regulation.

Inherited defects in liver cytochromes P-450 are
common.? The best studied example is deficiency in
cytochrome P-450 11D activity, which results in decreased
ability to hydroxylate debrisoquine and many other drugs
normally.'3* Deficient P-450 IID activity is found in up to
1 in 10 patients and is inherited as an autosomal recessive
trait. This selective defect can have adverse pharmacological
consequences. For example, poor metabolisers of
debrisoquine are at increased risk of liver injury due to
perhexiline, presumably because P-450 11D is involved in
detoxification and/or elimination of this drug.'® It is likely
that interpatient differences in response to several drugs
result in part from inherited defects in individual
cytochromes P-450.12

P-450 IITA cytochromes are highly conserved in
mammalian species. They are the major drug metabolising
enzymes in man, accounting for up to 25% of the total
cytochrome P-450 in human liver.® P-450 IIIA may be
especially active in detoxification because rodents pretreated
with inducers of P-450 IIIA are resistant to the toxic effects
of many drugs,'® and appear resistant to hepatic
malignancies induced by dimethylnitrosamine.’

We do not know why a deficiency of P-450 IT1A activity
may have contributed to cyclosporin toxicity in our patient.
At least 29 metabolites of cyclosporin have been identified
in man,’ making it likely that multiple enzymes can
metabolise this drug. Deficiency in the P-450 I1IA mediated
pathway might “shunt’ cyclosporin to alternative pathways
that may lead to toxic metabolites. Alternatively, since
P-450 IIIA appears to catalyse reactions that produce at
least two other major metabolites of cyclosporin,* P-450
IITA may detoxify or help eliminate a toxic metabolite
generated by other enzymes: deficiency in P-450 IIIA
activity would therefore result in accumulation of the toxic
metabolite.

When clinical circumstances indicated that further use of
cyclosporin might save patient A’s liver graft, we hoped to
avoid toxicity by manipulating expression of cytochrome
P-450 IIIA activity with rifampicin. We were successful in
maintaining normal erythromycin breath test results and in
avoiding renal and neurological toxicity. However, we could
not achieve therapeutic blood levels of cyclosporin nor could
we control allograft rejection. The reason why systemic
availability of oral cyclosporin was poor in our patient is
unclear. Because cyclosporin is highly lipophilic and
requires bile for its absorption,'® our patient’s severe
cholestasis may have prevented absorption. However, the
patient had good oral bicavailability of cyclosporin earlier in
his postoperative course when his bile was drained
externally through a T-tube and refed via a nasogastric
cannula. Moreover, systemic availability was not improved
when cyclosporin was administered with ox bile,

An alternative or additional explanation is that rifampicin
may have induced P-450 IIIA activity in the enterocytes
lining the gut. P-450 IIIA is present and inducible in
enterocytes'® and, at least in rats, intestinal P-450 ITIA can
metabolise cyclosporin.?® Therefore significant metabolism
of cyclosporin may occur within the gut.?* We believe that as
we increased the donor liver P-450 IITA activity with
rifampicin, we also significantly induced the patient’s
intestinal P-450 IIIA, thus limiting the systemic availability
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of oral cyclosporin. Qur next plan had been to administer
cyclosporin  intravenously. However, concern that
cholestasis was due in part to either rifampicin or
cyclosporin forced us to abandon concomitant treatment
with these agents.

Conney?? has predicted that “cytochrome P-450 doctors™
will create a new subspecialty in the future. Knowledge of
inherited defects in cytochromes P-450 has already proved
useful in establishing appropriate dosing of some drugs.??
Our study is the first attempt in man to induce a specific
cytochrome P-450 in pursuit of a defined, therapeutic effect.
As knowledge about the induction of human liver P-450
isozymes increases, these manoeuvres may become
commonplace in clinical practice.

We thank Ms Pam Evans for typing the manuscript and Ms Elizabeth Wilson
for preparing the figures. This work was supported by grant GM-38149 from
the National Institutes of Health. P. B. W. receives a Veterans Administration
research associate award.
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Detection of sickle cell anaemia
mutation by colour DNA
amplification

FARID F. CHEHAB YUET WAI KAN

A fluorescence assay to detect the mutation in
sickle cell anaemia has been developed.
Oligonucleotides homologous to the normal or the
mutant DNA sequence are labelled with
fluorescein and rhodamine, respectively, and used
to prime the polymerase chain reaction. Amplified
DNA products with the normal sequence fluoresce
green, whereas those with the mutant sequence
fluoresce red; heterozygous (AS) DNA fluoresces
yellow. The results can be read by eye and the
procedure could be automated.

Lancet 1990; 335: 15-17.

Introduction

For many years, postnatal diagnosis of sickle cell anaemia
was  routinely  accomplished by  haemoglobin
electrophoresis. More recently, techniques that permit
prenatal detection of the sickle gene have been developed: at
first, these techniques required fetal blood,! but
recombinant DNA technology has enabled analysis of
amniocytes or chorionic villi acquired in early pregnancy.
DNA analysis techniques have evolved from indirect
linkage analysis? to direct detection with restriction
enzymes?* or oligonucleotide probes.® DNA amplification
by the polymerase chain reaction (PCR)® has made possible
the rapid identification of DNA sequence variations in the
human genome, and is a rapid, non-radioactive way to detect
these variations. After PCR, mutations can be detected by
various methods such as restriction enzyme analysis,’
dot-blot  hybridisation, chemical cleavage,®® or
denaturation and gel electrophoresis’—but these
techniques may not be generally available. We have
described a detection method by which fluorophores are

ADDRESSES: Applied Biosystems Inc, Foster City, California
(F. F. Chehab, PhD); and Departments of Laboratory Medicine
and Medicine, and Howard Hughes Medical Institute,
University of California, San Francisco, California, USA (Prof
Y. W. Kan, FRS) Correspondence to Dr F F. Chehab, Department of
Human Genetics M4, Cetus Corporation, 1400 53rd Street, Emeryville,
CA 94608, USA.



