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Abstract--Simple approximate solutions due to Jaffar and Johnson for the indentation by a rigid 
frictionless punch of a thin elastic layer on a rigid foundation are extended to the corresponding 
general three-dimensional problem. Results are given for the case where an incompressible layer is 
indented by an ellipsoidal punch and an analogy is demonstrated between the flat punch problem 
with arbitrary plan-form and the St Venant torsion problem. 

1. I N T R O D U C T I O N  

In a recent paper, Jaffar [1] used an elementary formulation due to Johnson [2] to obtain 
asymptotic results for the contact pressure between a frictionless axisymmetric rigid indenter 
and a thin elastic layer supported by a rigid foundation. The same technique can in fact be 
generalized to the arbitrary, three-dimensional problem for the thin elastic layer. 

Following Jaffar, we consider the three limiting cases of (1) a frictionless unbonded layer, 
(2) a bonded layer for a compressible material (v # 0.5) and (3) a bonded incompressible layer 
(v = 0.5). 

For simplicity, we shall follow Jaffar's notation wherever possible. We denote the contact 
surface of the layer by z = 0 and define a two-dimensional Cartesian coordinate system x 1, x2 
in the plane of the layer. The suffix notation and summation convention will be taken 
through i =  1, 2 only. In-plane displacements of the layer are denoted by the two- 
dimensional vector u with components ul, u 2. 

2. F R I C T I O N L E S S  U N B O N D E D  L A Y E R  

For this case, Johnson's approximation is to assume that plane sections within the layer 
remain plane, so that u is independent of z. 

It follows that the in-plane components of strain 

l [Su~ Ouj'~ 

are also independent of z, whilst the only non-zero strain out of the plane is e~z = -w / t ,  
where w is the local indentation and t is the layer thickness. 

The in-plane stress components are therefore 

~u = 26ij(ekk --  W/t)  + 2#eiS (2) 
where 2, # are Lam6's constants for the layer material. 

Substituting into the in-plane equilibrium equation, 

t~t~iJ = 0 

c~x i 

and writing the strain components in terms of the displacements, we obtain 

(~2U k ~2U i ~, (~W 

(2+")Sx~+#8~Sxj t Ox i" 

(3) 

(4) 
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We seek a particular solution of this equation in the form 

0¢ 
u, = bT,' (5) 

where ~b is a scalar two-dimensional pol~ential. 
The governing equat ion for 4~ is then obtained by substituting (5) into (4), with the result 

~ X i ~ X k ~ X  k - -  ( 2  ~1_ 2p)t t3x i (6) 

a sufficiently general solution of  which is 

~2~ /~W 
=-- V2qb -- (7) 

~ X k ~ X  k (2 + 2/~)t" 

Finally, we recover the contact  pressure p(x 1, x2) as 

p(xl, x2) = - a =  = - 2(ekk -- w/t) + 2pw/t 

= -- ~.VZ~b + (2 + 2#)w/t 

2pw(xl, x2) 
- (8) 

(1 - v ) t  

from equations (1, 5, 7). 
The indentation w is the local interpenetration between the indenter and the layer in the 

undeformed state. Thus, if we assume that the contact  area is identical with the indentat ion 
area (i.e. with the area in which w > 0), and if the indenter is smooth,  we shall find that w ~ 0  
at the edge of  the contact  area and hence equation (8) defines a pressure which satisfies p --, 0 
at the edge of the contact  area. This therefore constitutes the general solution of the 
unbonded  contact  problem, despite the fact that  it was developed as a particular solution 
through the assumption (5). 

3. BONDED COMPRESSIBLE LAYER 

For  this case, Johnson 's  approximat ion involves the assumption ei~ = 0. In other words, 
plane sections remain plane and do not  move. It follows immediately that 

p(x 1, x2) = - a=  = - (~. + 2~t)e=z 

w E ( 1 - v ) w ( x l , x 2 )  

=~ 'Z+2uJ7 '  ~ = (1 + v ) ( 1 - 2 v ) t  
(9) 

4. BONDED INCOMPRESSIBLE LAYER 

For  this case, following Jaffar and Johnson,  we approximate  the in-plane displacement ui 
by the quadratic expression 

U i = Ci(z 2-t2).  (10) 

The equilibrium equat ion (3) can now only be satisfied in terms of force resultants and 
leads to the equation 

f i  &riJ 7 d z + ' r i  = 0, (11) 
t?xj 

where z~ is the component  of shear stress in the i direction at the layer-substrate interface 
and is given by 

{~ul  ~ u z \  
z i = # ~ , &  + &~ci)=ZptC i (12) 

since u= = 0 at the layer substrate interface. 
The in-plane constitutive law for the incompressible material is 

O'ij = - -  A a i j  Jr- 2]Agij  , (13) 
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where A(x  1, x2) is a two-dimensional  scalar potential ,  representing a state of  hydrosta t ic  
compression.  

By analogy with equat ion (5), we seek a solution for C as the gradient  of a scalar potential  
~k, i.e. 

0111 
C i = ~ (14) 

in which case, equat ions  (1, 10-14) yield the governing equil ibrium equat ion 

OA 4pt2 ( 03111 ) 0111 
Oxi 3 ~xOXiOXkOXk + 2 P 0 x / =  0" 

(15) 

Also, the incompressibil i ty condi t ion demands  that  

e . d z  = - f i   =dz = w (16) 

and hence 
2t 3 c3C i 2t 3 
3 0x~ - 3 V20 -- w. (17) 

We can use (17) to substitute for the second term in (15), f rom which we deduce that  
equat ion  (15) will be satisfied if 

A = 2/.t(0 + w/t). (18) 

We can then recover the contact  pressure as 

P(Xl 'X2)=A+21~wt = 2 / ~ ( 0 + 2 t )  

,19, 

In this expression, the second term is small of order  (t/a) 2 compared  with the first, where a 
is a representat ive dimension of the contac t  area. It  can therefore be neglected in the 
asympto t ic  solution, giving the simple expression 

p = 2/,111. (20) 

4.1. Boundary  condit ions 
As before, we require that  p --+ 0 and hence 111 --' 0 at the edge of the contact  area. However ,  

we also must  impose  the condi t ion u, = 0 at the bounda ry  and hence 01] I / O n  = 0, where n is 
the normal  to the boundary .  This is a generalization of Johnson  and Jaffar 's criterion " that  
there should be no change in volume of the mater ial  under  the indenter". This bounda ry  
condi t ion is a consequence of the fact that  the layer outside the contact  region offers no 
restraint  to lateral expansion.* 

4.2. Example  
As an example,  we consider the indentat ion of the bonded  incompressible layer by an 

ellipsoidal indenter, defined by the in terpenetra t ion function 

w = v* - A x  2 - B x  2. (21) 

Equat ion  (17) shows that  the function 111 must  be a four th-order  po lynomia l  in x 1 , x 2 and 
the bounda ry  condit ions are clearly satisfied by the function 

111=o(1 2 a2 ~ , ] ,  (22) 

where the contact  area is an ellipse of semi-axes a, b. 

tThis is not exactly true, but it is easily demonstrated that the resistance is small in comparison with the 
prevailing contact pressure and hence that a more exact description of the boundary condition would involve only a 
second-order correction. 
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Substituting (21, 22) into (17) and equating polynomial coefficients, we obtain 

8Dt 3 [ 1 1 "~ 

8Dt 3 [ 3 1 "~ 

8Dt 3 / 3 1 \ 
B =  3b 2 ~b2+a2).  

If v*, A, B are given, these equations are sufficient to determine a, b, D i.e. the semi-axes 
of the contact area and the multiplying constant in equation (22). The contact pressure can 
then be obtained from equations (20, 22). 

Jaffar's results for the axisymmetric Hertz problem can be recovered by setting A = B and 
the Johnson solution for the corresponding plane problem by setting B = 0. 

As in the usual Hertzian indentation problem, we note that the ellipticity of the contact 
area differs from that of the interpretation function (21). 

5. F L A T  P U N C H  P R O B L E M S  

We can also extend the above analysis to the case where the layer is indented by a flat rigid 
punch, in which case the contact area is determined by the plan-form of the punch. 

For the compressible layer (bonded or unbonded), we must relax the condition that the 
pressure at the edge of contact area be zero and the resulting contact pressure will clearly be 
uniform throughout the contact area. 

For the more interesting case of the incompressible bonded layer, we can argue as before 
that the surrounding material offers negligible restraint to lateral expansion, so that the 
hydrostatic component A ~ 0 at the boundary. It therefore follows that the contact pressure 
still tends to zero at the boundary despite the sharp corner of the indenter. However, we 
clearly have to relax the "constant volume" assumption, since otherwise the punch would be 
unable to move. In practice a bulge of layer material will be produced just outside the 
contact region. 

The problem of the bonded incompressible layer indented by a flat rigid punch of plan- 
form fl therefore reduces to the determination of a function ~ satisfying the equation 

3v* 
V2~ - 2t 3 (23) 

in ~ and equal to zero on the boundary of fL where v* is the punch indentation. 
This problem is formally equivalent to the St Venant torsion problem (see, e.g. [3]) and 

hence the solution to many problems can be written down. In particular, it can be shown 
that the total indenting force, 

fa 3p~K, P = 2p ~9 dr2 - 4t z (24) 

where K is the torsional stiffness of a bar cross-section ft. Exact and approximate values of K 
for a wide variety of cross-sections are given in Table 20 of [4]. 
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