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Abstract-In practical structural optimization problems it is often desirable to obtain solutions where all 
or some of the design variables take their values from a given set of discrete values. As structural 
optimization problems typically include large models that are expensive to compute, one of the major 
demands for optimization algorithms is that the number of structural evaluations (i.e. calculations of 
deformations and stresses) that are needed during the iterative optimization process is as small as possible. 
In this article an ~go~t~ is developed that meets this requirement, while finding global solutions for 
the mixed-discmte problem. The method is based on a combination of the well established branch and 
bound method with a sequential linearization procedure. Branch and bound is applied within a 
subproblem that is based on a linearization of the original problem. After a brief literature survey the 
method is described, followed by some comments on its algorithmic implementation. The algorithm is then 
applied to several structural optimization problems of different type and size to demonstrate its efficiency, 
All results are compared with solutions obtained by branch and bound. 

INTRODUCTION 

Structural optimization problems (SOP) can generally 
be represented as nonlinear mathematical program- 
ming problems (NLP) of the following standard form: 

minimize f(x) 

subject to h,(x) = 0 j=l...q 

gjCx) Q O j=(q+l)...p 

Zf < x, < ui i = z ’ . . . n, (11 

where f, hj and gj are scalar objective, equality and 
inequality constraint functions, respectively, and ui 
and 1, are upper and lower bounds for the design 
variables x (see Table 1). Most optimization 
algo~thms are applied under the ass~ption thatf, 
h, and gj are C2-continuous functions on the n-dimen- 
sional Euclidean space @, and that the design 
variables x can hold arbitrary real values. This is true 
for a large variety of structural optimization tasks 
(e.g. most of the shape and geometry optimization 
problems). In many situations, however, it is 
desirable to obtain solutions where all or some of the 
design variables take their values from a given set of 
discrete values. Examples are cross-sectional values 
of standardized profiles, standard thicknesses of 
sheets, available dimensions of machine parts, num- 
ber of layers or orientations of fiber angles in a fiber 
composite structure and material selection problems. 

t To whom correspondence should be addressed. 

A variable that can take only integer values is called 
an integer variable, while one that can take its value 
only from a set of discrete ones is called a discrete 
uariable. Since integer variables are aIso discrete the 
term ‘discrete variables’ will refer to both integer and 
discrete variables, and ‘integer variables’ to integer 
variables only. When some variables are discrete and 
some are continuous the problem is a mixed-discrete 
one. The presence of discrete variables makes the 
solution of NLP problems substantially more difficult. 

Equality constraints cannot usually be satisfied 
when the variables are discrete, or if satisfied they can 
be eliminated by a variable reduction and elimination 
procedure, at least theoretically. For example, the 
equation x:x* + x: - 21 = 0 has no solution when x, 
and x, must be integers. Hence, research has focused 
mostly on problems with on& inequality constraints. 
This restriction is not crucial for SOP as the usually 
occurring equality constraints are the system 
equations of the mechanical structure which are 
generally given implicitly by numerical procedures, 
such as finite element analysis, and can be solved 
separately. Thus, the term faxed-secrete Nonlinear 
~rogramm~g (M~NLP) problem is used here for 
mathematical models stated as: 

minimize f(x) 

subject to gjtx) G O j=l...p 

lr 6 xi < tij i- . ..n 1 

xa%-cBd x $I+-” 

f:5-4 g1: I-42. (2) 
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Table 1. Notation and abbreviations 

Notation 
Y 

A 
X 

x1 

xi 

script uppercase denotes a set or vector 
space 
bold uppercase denotes a matrix 
bold lowercase denotes a point or a vector 
bold lowercase with subscript refers to a 
particular point (or vector) 
normal lowercase with subscript refers to 
a component of a vector 

Abbreviations 
SOP structural optimization problem 
NLP nonlinear programming 
MDNLP mixed-discrete nonlinear programming 
SLP sequential linear programming 
SW sequential quadratic programming 
BBM branch and-bound method - 

In this model, x is a design point in an n-dimen- 
sional design space and consists of ddiscrete variables 
and (n -d) continuous variables. &B denotes a dis- 
crete set for each of the discrete variables and W is the 
real continuous space. We assume that f and g, are 
C*-continuous functions and that the MDNLP has a 
continuous solution when relaxing the discreteness 
requirement. 

LITERATURE SURVEY 

One of the main approaches to treat MDNLP 
problems is the branch and bound method (BBM). Its 
first use for mixed-discrete linear programing is 
attributed to Land and Doig [2], whose algorithm was 
subsequently modified by Dakin [3]. In branch and 
bound procedures subproblems are created by 
partitioning the feasible domain to force the integer 
variables to take integer values. The partitioning is 
done perpendicular to the axis of the integer 
chosen for the branching. Reinschmidt [4] used the 
BBM for the plastic design of frames by posing the 
problem as an integer linear programming problem. 
Gupta and Ravindran [5] applied Dakin’s method to 
nonlinear mixed-integer problems, using a general- 
ized reduced gradient method to solve the nonlinear 
continuous subprobl~ at each node. Sandgren [6] 
used basically the same approach as Gupta, but 
included cases with equality constraints having O-l 
variables. He applied the method to solve various 
design problems. 

The main advantage of branch and bound is 
that a proper fathoming rule guarantees finding 
the global minimum. The bounding process 
assumes that at a discrete minimizer the objective 
function value is a lower bound on the discrete 
minimum of any other node in the tree, an assump 
tion valid for objectives that are at least pseudo- 
convex and constraints that are convex. For 
non-convex problems branch and bound cannot 
guarantee finding the global minimizer, since it may 
end up fathoming nodes that should not have been 

fathomed. However, branch and bound usually finds 
a good solution for these cases. A major drawback is 
that a large number of nodes are created during the 
branching process and this number tends to increase 
exponentially with the number of discrete design 
variables. As structural optimization problems often 
include large structural models that are very costly 
to be solved in terms of cpu time, the BBM is 
becoming computationally impractical when the 
number of discrete design variables exceeds three or 
four. 

This fact motivated many researchers to develop 
heuristic methods to get approximate discrete or 
mixed-discrete solutions starting from the continu- 
ous solutions. One common practice is to round off 
the continuous solution to the ‘next’ feasible discrete 
point using some heuristic rules (see, e.g. Ringertz [7]). 
This approach generally leads to non-optimal 
solutions, and it may even indicate that no feasible 
point exists in the neighborhood of the continuous 
solution. As will be seen later, the mixeddiscrete 
solution of an SOP can be relatively ‘far away’ 
from the continuous solution and may even result 
in unexpected alterations of the structural 
configuration. 

Another approach is to treat discrete requirements 
as explicit constraints and construct an objective 
function penalizing deviations from discrete values. 
Davydov and Sigal[8] devised a number of penalty 
functions for O-1 problems and convex problems with 
regularly spaced discrete intervals. Gisvold and 
Moe [9] offered a similar method for discrete 
variables with arbitrarily spaced intervals. Shin ef 
al. [lo] recently applied a penalty method to the 
optimization of truss structures. There are two main 
problems which arise in employing this method, both 
difficult to overcome. As in the continuous penalty 
method, penalty parameters are difficult to set a 
priori, with different parameters leading to different 
results. Unless one has some knowledge about 
the discrete solution, it is difficult to decide whether 
the result obtained is optimal or the parameters 
need adjustment to continue iterating. The more 
serious difficulty is that adding a penalty for moving 
away from a non-discrete point creates a local 
optimum for each discrete point. This makes finding 
global optima with a continuous method even more 
difficult. 

Schmidt and Fleury [l l] used a Lagrangian 
relaxation approach, originally developed for linear 
problems by Geoffrion fl2], to solve nonlinear dis- 
crete SOP. The problem is replaced by a sequence of 
convex and separable approximate subprobblems 
that are solved using Lagrangian relaxation and 
minimizing the dual function with a subgradient 
method. This strategy does not guarantee finding 
global solutions as the subproblems, being convex in 
the continuous case, are becoming non-convex when 
discrete variables are introduced. The method was 
applied by Ringertz [7] to solve six structural 
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optimization problems, and the results were 
compared with those using branch and bound. 
It turns out that the minima obtained for these non- 
linear structural problems are very close or equal 
to those given by branch and bound, but the 
design variable values obtained are different. For a 
more general survey of mixed-discrete optimization 
methods, see [l, 131. 

DESCRItTION OF THE ALGORITHM 

Branch and bound is a reliable method for finding 
global mixed+liscrete solutions, but it generally 
needs far too high a number of objective function 
and constraint evaluations to be used for practical 
structural problems. On the other hand, it is well 
understood in continuous nonlinear programming 
that approximation methods, such as sequential 
linear programming (SLP), the method of moving 
asymptotes or sequential quadratic programming 
(SQP), provide highly efficient tools for solving 
NLP formulations of structural problems. The new 
idea here is to apply the concept of sequential 
approximation to MDNLP by combining an 
SLP technique with a branch and bound algorithm. 
John et al. [18] have recently proposed a similar 
coupling, but their algorithm is set up in a 
different way and has apparently been devel- 
oped specifically for purely discrete truss sizing 
problems. 

The global iteration scheme of the proposed 
algorithm can be outlined as follows. 

Step 1: Choose a starting point x,, , let the iteration 
index k = 0. 

Step 2: Given an iteration point xk, computef, g, 
Vf and Vg. 

Step 3: Generate a linear subproblem Lk. 
Step 4: Solve L, by a branch and bound 

method, using a Simplex algorithm as 
linear solver. 

Step 5: Check convergence criteria: if satisfied, 
stop; if not, continue with step 6. 

Step 6: Select a new point xk + , , let k = k + 1 and 
go on with step 2. 

The main advantage of this approach is that the 
BBM, expensive in terms of function evaluations, is 
applied to a linear subproblem, where the function 
evaluations are computationally ‘cheap’. This implies 
that only one structural analysis and one gradient 
calculation must be performed in each iteration k. As 
the BBM solves the linear subproblems exactly the 
convergence of the algorithm basically depends on 
the approximation quality of the linear subproblem 

Lk* 

It will now be explained in more detail how the 
steps 3-6 must be implemented in order to obtain an 
effective algorithm. 

Step 3: The mixedaiscrete linear subproblem at a 
point xk is: 

minimize Vf(%Y(X-%I 
subject to g(x0) + Vg(xo)r(x -x0) G 0 

XEZ-^c& x &?+-4. (3) 

As in the case of the continuous SLP method, 
decreasing step bounds or move limits have to be 
incorporated to achieve convergence [15], so 
constraints are added to the model: 

with 

1, < xk < ak 

li4 = max 
1 

xik + 4 (ui - Ii), Ii 
1 

, i = 1 . . . n 

uik = min 
i 

xik + 4 (ui - &), ui 
1 

, i=l...n. 

There are many possibilities for choosing a. Compu- 
tational experience suggests that the following recur- 
sive formula be applied whenever a is changed (see 
step 6): 

This formula generates the geometric series 
1”” 9293,495”” 

Step 4: The branch and bound method of Dakin [3] 
is applied in a slightly modified form to solve the 
linear subproblem [3]. The method was extended to 
handle arbitrarily distributed discrete design vari- 
ables. Following a recommendation of Gupta [5] the 
branching was done from the variable with the most 
fractional part. For selecting the expansion node the 
node with the lowest objective function value was 
used. 

Step 5: Convergence is considered to be achieved 
when 

(5) 

where xbeJ, denotes the c-feasible point with the lowest 
objective function value that has been found in 
previous iterations, the so-called incumbent. A point 
xk is said to be ~-feasible for an MDNLP model, if 
xt satisfies the discreteness requirement and if 

i A gj G 6, Agj=gj, g,>O. (6) 
1 

With 6 being a small value, eqn (5) implies that two 
different subproblems yield approximately the same 
mixed-discrete solution and so no better feasible 
point can be found. Note that for MDNLP there are 
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not sufficient optimality conditions, such as the 
Karush-Kuhn-Tucker equations for convex NLP. 

Step 6: A point X~ is accepted as an incumbent, when 
either 

or 

h Gfbest 9 if xk is cc-feasible (7a) 

{$A&}kG{$A&]k_l~ if xk_ , is e-feasible. (7b) 

The parameter 6 essentially enlarges the feasible 
domain of an NLP model by an amount t for each 
constraint. The above given acceptance rule man- 
dates that for a given E a new point is accepted if it 
improves c-feasibility of an c-infeasible incumbent, or 
if it strictly improves the objective without sacrificing 
t-feasibility. Numerical test studies have shown that 
it is beneficial for the convergence speed of the 
algorithm to adapt the feasibility acceptance rule (6) 
during the optimization process, i.e. to introduce an 
intermediate feasibility parameter c, starting with a 
relatively large value and reducing it whenever eqn 
(7a) is fulfilled, until a final user-defined feasibility 
parameter t: is achieved. If neither (7a) nor (7b) is 
satisfied xk is rejected and a new linear subproblem is 
constructed at xk_ , with a reduced step bound size 
according to eqn (4). 

The above described algorithm will usually termi- 
nate quickly if the problem is purely discrete, as the 
number of possible solutions is finite. However, this 
is not necessarily true for the mixed-discrete case 

when some of the design variables are continuous. As 
in the continuous SLP algorithm, cycling can occur 
between upper and lower step bounds, and the 
convergence speed will mainly depend on the step 
bound reduction scheme. This effect is amplified by 
the fact that the discreteness ~q~rement leads to a 
smaller number of active inequality constraints 
compared to the purely continuous problem. The 
convergence can however be stabiIized by modifying 
step 4 as follows: 

Step 4a: Solve Lk by a branch and bound method, 
using a Simplex algorithm as linear solver. 

Step 4b: Solve the follo~ng ~ntinuous subproblem 
for x, with fixed xdk: 

subject to 

x se-d), c (8) 

where xdk is the discrete design vector part, whereas 
x, contains the continuous design variables. Any 
continuous NLP-code can be used for solving eqn (8). 
In order to save cpu time it is advisable to skip step 
4b when the sum of the constraint violations resulting 
from step 4a exceeds a certain degree, since then 
eqn (8) may have no feasible solution. 

Figure 1 shows a global flow chart of the 
algorithm. A more detailed description of the 

f START 1 

.%%kCt Xk+l 
Set k=k+l 

1 

Compute f,g 
and Gradients 

1 
t 

Generate Linear 
Subproblem Lk 

I 

Solve i.k by BBM& 

Fig. I. Global flow chart of the mixed4iscrete SLP method. 
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( START ) 

Fig. 2. Interactive mixeddiscrete design process. 

algorithm including convergence proofs is given in 
[ 1,131. Elaborate numerical studies are reported in [ 141. 

INTEGRATION INTO AN OPTIMIZATION PROCEDURE 

The algorithm has been programmed in Fortran77, 
and the resulting code, named MINSLIP, has been 
implemented into a structural optimization package, 
called SAPOP [15]. The latter provides several 
structural analysis methods, optimization algorithms 
and standardized pre- and post-processors (i.e. for 
sizing and shape optimization). The discrete values 
can be either generated equidistantly, or taken from 
a user-provided file. In general, it is of interest for the 
designer to compute first the continuous solution for 
the problem in order to obtain a lower bound on the 
objective function. This solution provides at the same 
time a good starting point for MINSLIP. Further- 
more, the designer will typically want to compare the 
solutions obtained with different sets of discrete 
variables, e.g. from different catalogs of manufactur- 
ers. These ideas lead to an interactive implementation 
of the algorithm, as shown in Fig. 2. 

Table 2. Criteria to compare numerical results 

f w optimal objective function value 
xlopl optimal value for design variable i 

n/ number of function evaluations needed to 
achieve the optimal solution 

% number of gradient evaluations needed to 
achieve the optimal solution 

nsub number of equivalent evaluations to solve the 
continuous subproblem, eqn (8), 
when using finite differences to compute the 
required gradients 

ntat total number of equivalent evaluations when 
using finite differences to 
compute the required gradients, 
ntol =n,+n .ng+nrub 

1 WJ cpu time needed on an Apollo 4000 computer 

EXAMPLES 

Four structural optimization problems serve to 
demonstrate the convergence behavior of MINSLIP. 
The first two examples, well known in the literature, 
are used to show principally the convergence charac- 
teristics of the algorithm. The last two examples 
exhibit the efficiency of the SLP approach in handling 
larger problems, when the number of design variables 
is high and/or the structural analyses are computa- 
tionally expensive. Table 2 summarizes the criteria 
utilized in this section in order to compare the 
numerical results. 

In addition to computations with MINSLIP, the 
problems are solved with the program BBSQP, a 
branch and bound method where a SQP method 
(program VMCWD by Powell [ 161) is applied to solve 
the NLP problems created by the branching pro- 
cedure. The same SQP algorithm is used to determine 
the solutions of the continuous subproblem, (8), with 
MINSLIP. The BBSQP program is straightforward; 
more details on it can be found in [l]. 

Example 1: Three -bar truss 

The weight of the three-bar truss structure shown 
in Fig. 3 needs to be miminimized, subject to stress 

-byb4 
Fig. 3. Three-bar truss. 
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Table 3. Solutions and numerical comparison for Example 1, purely discrete case 

Discretization D, Discretization D, 
Continuous (SQP) BBSQPt MINSLIPt BBSQPt MINSLIPt 

14.648 14.697 14.697 14.703 14.703 
557.7 570.0 570.0 582.0 582.0 
288.5 260.0 260.0 227.0 227.0 
557.7 570.0 570.0 582.0 582.0 

16 109 (124) 8 (13) 60 (75) 5 (6) 
15 108 (123) 7 (12) 59 (74) 4 (5) 

f,,, (kg) 
xlopt (mm*) 
x20pl (mm*) 
xjopt (mm*) 
“I 
% 
ntot 61 433 (493) 29 (49j 237 (297) 17 (2i) 

t Numbers in parentheses are achieved when starting at x,, instead of x,,,. 

constraints in the three members. The structure is 
loaded by three forces under two loading conditions: 

Load case L, : F, = F2 = 105N, F, = 0; 

Load case L, : F, = 0, F2 = F3 = 10’N. 

The design variables are the cross section Ai of the 
bars (discrete variables) and the distance b (continu- 
ous variable). The design model can thus be posed as 
follows: 

mhf(x> = 1 Pi1i(x4>xi, 
1 

subject to 

gj(x) = $ - 1~0, j=l,2,3(L,),4,5,6(L,) 

(9) 

1mm2~xi~1000mm2, i=l,2,3 

400 mm < xq < 2000 mm 

x EXC& x W’, 

where li denotes the length of the bar i, 0, the normal 
stress in bar i and crca the maximum allowable stress. 
The fixed design parameters are: 

E = 2.1 x lo6 N/mm2 

p = 7.85 x 10m6 kg/mm’ 

rrrea = 200 N/mm2 

h = 1000 mm. 

Two different discretizations are defined: 

D,: Small, regular discrete steps 1, 10, 20, 30, 
40 . . . 1000 (mm2). 

D,: Large, irregular discrete steps, values taken 
from Deutsche Industrie Norm, DIN1028, 
single profiles (see Table Al, Appendix). 

Let us first consider the purely discrete case, i.e. the 
length b is fixed to b = 1000 mm and the design 
variables are the cross sections only. The initial design 
isx, = (1000mm2, lOOOmm*, 1000mmZ)T,f = 29.9 kg. 
Table 3 summarizes the results obtained with 
MINSLIP and BBSQP, both starting from the 
continuous solution x,,* . The numbers in parentheses 
denote the numerical effort when starting from x, 
instead of h, . In a second, mixeddiscrete case, the 
length b is additionally defined as design variable x,, 
with the starting value x., = 1000 mm. The results for 
this model are given in Table 4. 

The following conclusions can be drawn from the 
above reported results. 

(a) MINSLIP always finds the same solution as 
BBSQP. 

(b) In every case MINSLIP needs a consider- 
ably smaller number of function and gradient 
evaluations than BBSQP to achieve the optimum. 
The differences are more obvious in the purely dis- 
crete case than in the mixed-discrete case, as in the 
latter the solution of the continuous subproblem 
requires additional function calls (see numbers nsub in 

Table 4). 

Table 4. Solutions and numerical comparison for Example 1, mixed-discrete case 

Discretization D, Discretization D, 

Continuous (SQP) BBSQPt MINSLIPt BBSQPt MINSLIPt 

f,,, 04 14.173 14.176 14.176 14.338 14.338 
xlopt (mm*) 753.74 750.0 750.0 691.0 691.0 
x2cpt (mm*) 1.0 1.0 1.0 112.0 112.0 
x3.rt (nun*) 753.74 750.0 750.0 691.0 691.0 
xbpt (mm) 657.99 669.14 669.14 734.25 734.25 
a/ 30 16 (45) 7 (16) 37 (66) 7 (10) 
“8 29 15 (44) 6(15) 35 (64) 6 (9) 
&ub 146 71<221) 36 (89) 177(321) 37 (44) 
tot 67 (165) 68 (90) 

t Numbers in parentheses are achieved when starting at x,, instead of x,,,. 
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(c) MINSLIP terminates earlier when the discrete 
steps are larger (compare discretization Di with Or). 
Figure 4 clarifies this fact. In the case of small spaces 
between the discrete values (as in discretization 0,) 
many possible solutions are lying very closely 
together and the algorithm cycles for some iterations 
between different points with small differences in the 
objective function values. This effect vanishes with an 
increasing size of spaces. 

(d) One further conclusion can be made 
concerning the characteristics of the discrete or 
mixed-discrete solutions. The optimal design can be 
located relatively far away from the continuous 
solution. In Table 4, for instance, we see that due to 
large ‘jumps’ in the available cross-sectional areas of 
discretization D2, the optimal value of bar 2 is not 
1 mm2 (i.e. ‘removal’ of the bar), as it is for the 
continuous solution and discretization D,. This 
shows that adding the discreteness requirement to 
a continuous SOP can even result in a different 
topology of the optimum design. 

Example 2: Ten-bar truss 

Consider now the classical IO-bar truss problem 
shown in Fig. 5. We seek the minimum weight of this 
structure, subject to stress and displacement con- 
straints. The design variables are the cross-sectional 
areas of the 10 members. The design model is thus: 

minf(x) = 5 pil,xi 
I 

subject to 

gj Cx) = 
c,(x) 
‘-l<O, j=l 

%a 

0.1in2<xi<40in2, i=l 

XE%-CP, 

. . . 10 

10 

(10) 

where li denotes the length of bar i, ui the normal 
stress in bar i, cfea the maximum allowable stress, Sp 
the vertical deflection of nodal point P, and a,, the 

20 

do 2 4 Q s lb Ii lh I’a 
Iteration k 

Fig. 4. Convergence history of MINSLIP. 

Fig. 5. Ten-bar truss. 

associated maximum allowable deflection. The design 
parameters are: 

E = 10,000 ksi 

F = 100,000 lbf 

p = 0.1 lb kg/in3 

dlcs = 25 psi 

S,, = 2 in. 

a = 360 in. 

Let us define two cases concerning the constraint 
definition: 

Case I: Only the stress constraints g, -gio are 
considered. 

Case II: Constraint g,, is defined additionally. 

As in the first example, two different discretizations 
are considered: 

D,: Uniform discretization, 0.1, 1,2. . .40 (in2) 
D2: Discretization according to DIN1028, double 

angle profiles (see Table A2, Appendix). 

The results are given in Tables 5 and 6. In three of 
the four runs identical solutions could be achieved by 
MINSLIP and BBSQP, the latter algorithm, 
however, requiring a very large number of function 
evaluations, as up to 700 branching nodes are 
generated. MINSLIP shows a better convergence in 
Case I than in Case II. Case I/D, reveals the same 
effect that we observed in Example 1: some bars are 
not ‘removed’ from the structure, in contrast to the 
continuous solution. 

In case II/D, MINSLIP fails to 8nd the global 
solution located by BBSQP. The reason for this is 
that the discretization steps are extremely large in the 
upper region of the discrete value table (see Table A2, 
Appendix) and no further progress can be achieved in 
the linearized problem due to large approximation 
errors. However, MINSLIP locates the global sol- 
ution when doing an inverse variable transformation 

1 
zi = - , i=l...n 

Xl 
(11) 

CAS 37,&o 
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Table 5. Solutions and numerical comparison for Example 2, Case I 

Continuous (SQP) 

Discretixation D, Discretization D, 

BBSQP MINSLIP BBSQP MINSLIP 

f,, (lb) 
xlopt (in2) 
x20pt (in2) 
x3,rt (in2) 
x30ppt (in2) 
xSopt (in2) 
.kpt (in2) 
x70pt (in2) 
x8,,, (in2) 
xsopl (in2) 
xloopt (in3 
“f 
“a 
ntot 

1593.18 1688.30 1688.30 1706.4 1706.4 
7.9379 8.0 8.0 8.525 8.525 
0.1 0.1 0.1 0.347 0.347 
8.0621 9.0 9.0 8.525 8.525 
3.9379 4.0 4.0 3.813 3.813 
0.1 0.1 0.1 0.1 0.1 
0.1 0.1 0.1 0.347 0.347 
5.7447 6.0 6.0 5.592 5.592 
5.5690 6.0 6.0 5.592 5.592 
5.5690 6.0 6.0 5.592 5.592 
0.1 0.1 0.1 0.347 0.347 

24 239 4 244 5 
17 213 3 238 4 

194 2549 34 2624 45 

Table 6. Solutions and numerical comparison for Example 2, Case II 

Discretization D, Discretization D, 

Continuous (SQP) BBSQP MINSLIP BBSQP MINSLIP 

5022.9 
30.126 
0.1 

22.93 1 
15.394 
0.1 
0.1 
7.242 

20.751 
21.771 
0.1 

59 

“z 33 
ntot 389 

5051.65 5051.65 5100.32 5153.90 
30.0 30.0 28.080 33.703 
0.1 0.1 0.1 0.1 

22.0 22.0 28.080 19.180 
16.0 16.0 14.290 17.170 
0.1 0.1 0.1 0.1 
0.1 0.1 0.1 0.1 
7.0 7.0 7.192 8.525 

19.0 19.0 19.180 23.680 
22.0 22.0 23.680 19.180 

0.1 0.1 0.1 0.1 
2556 6 630 5 
2505 7 606 4 

27,606 76 6690 45 

and using zi as new design variables. It can be shown 
easily that this transformation leads to ‘less nonlin- 
ear’ stress and deflection constraints for sizing prob- 
lems and hence to more precise linearizations [19]. 

Example 3: Three -dimensional tower 

We now consider a more complex mixed-discrete 
problem taken from [17], where it has been treated 
as a continuous problem. We want to determine 
the minimum weight design of the 39-bar tower 
shown in Fig. 6, subject to stress constraints in the 
bars and a single deflection constraint under three 
loads applied at the nodes 13, 14 and 15 in the 
positive y-direction. The mathematical formulation 
of the design model is similar to eqn (10). The three 
bottom nodes (1,2 and 3 have coordinates (0,4,0), 
(- 2,/‘?, - 2, Q) and (2 J’ 3, - 2,0), while the three top 
nodes (13, 14 and 15) have coordinates (0, 1.12,16), 
(-0.56& -0.56, 16) and (0.56& -0.56, 16); all 
coordinates in m (meters). The other coordinates are 
defined as design variables in the following way (see 
Fig. 6): xi, x2 and x3 define the z-coordinates of three 
levels as shown in Fig. 6; x, = the distances AS, BS, 
CS in the x-y-plane at the level of the nodes 4,5 and 
6; xs = the distances AS, BS, CS in the x-y-plane at 
the level of the nodes 7, 8 and 9; xg = the distances 
AS, BS, CS in the x-y-plane at the level of the nodes 
10, 11 and 12. Moreover, we have five sizing 

variables: x, = the cross-sectional area of the 
elements defined by the node-pairs (1,4), (2,5) and 
(3, 6); xg = the cross-sectional area of the elements 
defined by the node-pairs (4,7), (5,8) and (6,9); 
xg = the cross-sectional area of the elements defined 
by the node-pairs (7, lo), (8,11) and (9,12); xi0 = the 
cross-sectional area of the elements defined by the 
node-pairs (10, 13), (11, 14) and (12, 15); xii = the 
cross-sectional area of the rest of the elements. 

Fig. 6. Three-dimensional tower. 
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Fig. 7. Truss geometry for initial design (left), continuous solution (middle) and final mixed-discrete 
design (right). 

Variables x,-x, are treated as continuous variables, 
variables x,-x,, as discrete variables, the values of the 

latter again taken from DIN 1028 and listed in Table 
Al (Appendix). Bounds are defined for the geometry 
variables as listed: 500mm~x,~4OOOmm; 
1000 mm < x, Q 5000 mm; 2000 mm < xj < 6000 mm; 
1OOOmm~x,~4OOOmm, i=4,5,6. 

The design parameters are: E = 2.1 lo6 N/mm’; 
p = 7.85 10T6 kg/mm’; orea = 150 N/mm2. 

The displacement constraint limits the deflection of 
the top nodes 14 and 15 in the positive y -direction to a 
maximum of 3 mm. We solve this design problem in 
two different ways, both starting with the continuous 
solution: 

Case I: Fix the continuous variables describing the 
geometry of the structure and solve for the 
discrete variables only. 

Case II: Solve the complete mixed-discrete problem. 

As a matter of fact, Case I only gives an approxi- 
mate solution of the problem, but the numerical effort 

should be less than that of Case II. The differences 
between the two solutions should be an indicator of 
how strongly the geometry and sizing variables are 
coupled. The inverse transformation scheme (10) is 
applied to the sizing variables x~x,, for both BBSQP 
and MINSLIP, in order to improve convergence. 
Figure 7 shows the geometry of the initial design, the 
continuous solution and the mixed-discrete solution. 
Table 7 summarizes the results of the computations, 
revealing two interesting points, as follows. 

(a) The results of Cases I and II differ consider- 
ably, both in the objective function and the con- 
straints. This indicates a relatively strong interaction 
between sizing and geometry variables. 

(b) Compared with Case I, MINSLIP requires a 
relatively high number of function calls in Case II, 
most of which are needed for repeatedly solving the 
continuous subproblem [eqn (8)] by the SQP method. 
Attempts to achieve the solution without executing 
step 4b of the algorithm fail; the method terminates 
with an infeasible design. 

Table 7. Solutions and numerical effort for Examnle 3 

Continuous (SQP) 

7020.32 
1558.6 
3563.5 
4532.6 
3386.4 

2726.5 1720.3 

1719.9 1215.3 
736.98 
239.34 
215.67 
129 
75 
- 

954 

Case I case II 

BBSQP MINSLIP BBSQP MINSLIP 

7571.14 7571.14 7238.79 7238.78 
1558.6 1558.6 1563.3 1567.0 
3563.5 3563.5 3760.9 3756.1 
4532.6 4532.6 6000.0 6000.0 
3386.4 3386.4 3740.9 3738.8 

2726.5 1720.3 2726.5 1720.3 3004.8 1990.6 3004.3 1994.6 

1920.0 1230.0 1920.0 1230.0 1920.0 1220.0 1920.0 1220.0 
870.0 870.0 691.0 691.0 
267.0 267.0 227.0 227.0 
227.0 227.0 227.0 227.0 
125 3 1589 31 
343 2 658 30 

- - - 1373 
968 20 8827 1734 
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Example 4: Rod panel Table 8. Results and numerical comparison for Example 4 

An example with a larger mechanical model 
serves to demonstrate the efficiency of the proposed 
SLP method. We want to minimize the structural 
weight of a shear panel, reinforced in both directions 
with welded rods that have axial stiffness only 
(Fig. 8) subject to stress constraints with the 
maximum allowable stress of ufea = 200 N/mm2 in 
sheet and rods. The structure is loaded by forces 
F, = 49.05 kN and F2 = 49.05 kN defining two load 
cases L, and L, respectively. The finite element model 
to perform the structural analysis consists of 144 
four-node plain stress elements and 109 truss 
elements. 

The design variables are defined as follows: 
x, = cross-sectional area of rods R, and R,; x2 = 
cross-sectional area of rods R2 and Rq; x3 = cross-sec- 
tional area of rod R3; x, = cross-sectional area of rod 
&; xs = cross-sectional area of rod R,; x6 = cross- 
sectional area of rod R,; x, = cross-sectional area of 
rod R,; x8 = thickness of sheet areas P, to P4; xg = 
thickness of sheet areas Ps to P,; and x,,, = thickness 
of sheet areas Ps to P,*. 

Continuous 
(SQP) 

1.452 
295.61 

10.00 
622.21 
451.49 
306.58 
311.08 
314.85 

1.537 
0.952 
0.519 

24 
23 

254 
0.586 

BBSQP MINSLIP 

7.582 7.582 
308.0 308.00 

10.00 10.00 
691.0 691.0 
379.0 430.0 
308.0 308.0 
328.0 328.0 
319.0 328.0 

1.25 1.25 
1 .oo 1.00 
0.80 0.80 

2337 5 
1271 4 

15047 45 
41.66 0.167 

The bounds for the design variables are: 
10mm2<xi<1000mm2, i=1...7 and O.Olmm< 
xic3mm, i=8...10. 

with exactly the same objective function value, a fact 
that shows the non-convexity of the discrete problem. 
However, the BBM requires 200 times the compu- 
tational time needed by MINSLIP, for it creates 141 
branching nodes, which means that 141 NLP 
problems have to be solved. This result indeed shows 
that the SLP approach considerably enlarges the 
application range of the BBM method. 

Ten stress constraints are defined for the different 
panel parts according to the above given variable 
definition. The Huber-von Mises stress criterion is 
applied to compute equivalent stresses for the sheet. 
The variable linking and constraint linking capabili- 
ties of SAPOP [15] are used to set up the model. The 
size of the problem is designed in such a way that we 
are still able to compute the solution with BBSQP for 
comparison within an acceptable CPU time. 

The discrete values of the rods are again taken 
from DIN1028 (see Table Al, Appendix). The sheet 
parts may have the thicknesses (in mm) 0.8, 1 .O, 1.25, 
1.5, 1.75,2.0,2.5 and 3.0, according to DIN1016. The 
design parameters for this problem are: E = 
2.1 lo6 N/mm’; p = 7.85 10m6 kg/mm3; b = 1200 mm; 
h = 600 mm. 

Table 8 compares the results achieved by BBSQP 
and MINSLIP, including the required cpu time for 
solving the problem on an Apollo 4000 workstation. 
BBSQP and MINSLIP located different solutions 

One remaining question is: What is the maximum 
number of design variables that can be practically 
handled by MINSLIP? To come closer to that limit 
the rod panel problem is formulated with 21 design 
variables, i.e. the thickness of each sheet section and 
the cross-sectional area of each rod represent one 
design variable. MINSLIP needs 12 iterations to 
solve this problem, a number that is comparable to 
the lo-variable problem. However, the number of 
nodes created by BBM within the linearized problem 
rises up to about 4000, compared with 200 in the 
lo-variable case. Already about 60% of the total 
computational time is needed to solve the linearized 
subproblem (3) by BBM, compared with ca 10% in 
the lo-variable problem. This result indicates that the 
application limit of the method is determined by the 
problem size dependent performance of the BBM, 
and should lie somewhere in the region of 20 to 30 
discrete design variables. 

F2 

F2 

Fig. 8. Rod panel. 

CONCLUSIONS 

In this paper a method for solving mixed-discrete 
structural optimization problems based on a sequen- 
tial linearization technique was presented. It applies 
the well-established branch and bound method within 
the linearized subproblems and can therefore save 
function evaluations that can be extremely computa- 
tionally intensive. The method was used to solve 
several structural optimization problems, where the 
available discrete values for the design variables are 
either generated equidistantly or selected from 
standard tables, the latter case being the more usual 
one in engineering practice. 
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The new method generally locates solutions that 
are equal or very close to those computed by the pure 
branch and bound method, requiring, however, a 
significantly smaller number of function evaluations. 
The latter fact makes the method applicable to larger 
structural optimization problems than would be 
practical for branch and bound. The application 
range of the method is for medium size design models 
containing not more than, say, 20 to 30 discrete 
design variables. The method shows the best conver- 
gence behavior for purely discrete problems. In the 
mixed-discrete case it tends to require a ~latively 
high number of function evaluations for solving the 
continuous subproblem, the total number of 
evaluations, however, being still much smaller than 
the number required by branch and bound. 
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APPENDIX: DISCRETE VALUE TmLgS 

Table Al, Available cross sections for Examples 1, 3 and 4, 
single angle profiles, values taken from Deutsche Indus- 

trienorm (DIN) 1028 

i 

1 
2 
3 

: 
6 
I 

: 
10 
11 
12 

4 (mm3 
112.0 
142.0 
174.0 
185.0 
227.0 
267.0 
308.0 
328.0 
349.0 
379.0 
430.0 
480.0 

i dj (mmr) i d, (mm*) 

13 
14 
15 
16 
17 
18 
19 
20 
21 

569.0 
582.0 
656.0 
691.0 
870.0 
903.0 
935.0 
940.0 

1010.0 
‘1150.0 
1190.0 
1220.0 

25 1230.0 
26 t510.0 
27 1550.0 
28 1920.0 
29 2120.0 
30 2270.0 
31 2320.0 

22 
23 
24 

Table A2. Available cross sections for Example 2, double 
angle profiles, values based on DIN1028 

i di(in2) i di (in’) i di (in2) 

1 
2 
3 
4 

: 
7 
8 
9 

10 
11 
12 

0.347 13 3.131 25 17.170 
0.440 14 3.565 26 19.180 
0.539 15 3.813 21 23.680 
0.954 16 4.805 28 28.080 
1.081 17 5.952 29 33.700 
1.174 18 6.572 
1.333 19 7.192 
1.488 20 8.525 
1.764 21 9.300 
2.142 22 10.850 
2.697 23 13.330 
2.800 24 14.290 


