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The hydrodynamic forces resulting from small-amplitude harmonic oscillations of ar- 
bitrarily shaped cylinders are considered both experimentally and theoretically. The fluid is 
assumed to be initially at rest. The theoretical model assumes a laminar, nonseparating 
flow, where the in-line force has two components, one due to normal pressure stresses and 
one due to skin friction. In the limit of zero amplitude oscillations, comparisons between 
theory and experiment demonstrate that the nonseparating theoretical model captures the 
essential behavior of real fluid hydrodynamics. This is valid for a variety of shapes 
including sharp-edged bodies such as squares. Through model testing, it is possible to 
estimate an "effective eddy viscosity" which can then be used in conjunction with the 
theoretical laminar flow model to give empirical drag coefficients. 

1. I N T R O D U C T I O N  

A N  IMPORTANT AREA OF HYDROELASTIC DYNAMICS is t h e  hydrodynamic force acting u p o n  

structural members while they undergo relatively high frequency,  small amplitude 
oscillations. Offshore engineering examples of this include local riser dynamics, vertical 
motions of tension-leg platforms (TLPs),  or longitudinal motions of stiffly-moored 
vessels. These vibratory motions are due to a number  of sources, but all may be 
characterized as responses of lightly damped systems where the viscous contribution to 
the small, but non-zero,  damping is a significant part of the total system damping. In 
off-resonant conditions, the damping is unimportant  and the response is primarily a 
function of the system inertia, the system stiffness, and the external system excitation. 
However,  near or at resonance the large stiffness and inertia forces cancel, and the 
response is governed solely by the ratio of the excitation to the damping. 

Historically, much of the effort to understand the hydrodynamics of this problem has 
concentrated on the flow associated with simple geometric shapes such as circles. There  
are many articles in the available literature that discuss the viscous forces on circular 
cylinders in oscillating planar flows. Two representative textbooks are Sarpkaya and 
Isaacson (1981) for offshore applications or Chen (1987) for reactor  component  design. 
In addition to the circular geometry,  much of the previous work was also limited to 
moderate Keulegan-Carpenter  number and moderate  Reynolds number flows. Rela- 
tively little consideration had been given to the hydrodynamic force in the flow regime 
characterized by small amplitude and large frequency. See Sarpkaya (1984, 1986) for 
example, where three types of flow transitions at low Keulegan-Carpen te r  number 
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were investigated: turbulence, vortex shedding and the Honji instability. Sarpkaya also 
examined the resulting behavior of the drag and inertia coefficients for a circular 
cylinder at Keulegan-Carpenter numbers less than 4. In another recent work, 
Bearman et al. (1985) considered vortex shedding effects on drag coefficients for 
sharp-edged bodies such as square cylinders. In those experiments and calculations, the 
Keulegan-Carpenter numbers varied between 1 and 4 and the flow was assumed 
laminar. 

Due to difficulties associated with damping force measurements, there has been little 
data for drag coefficients at large Reynolds number where the Keulegan-Carpenter 
number is less than 1. The purpose of this paper is to show how drag and inertia 
coefficients vary as a function of cylindrical cross-section when the amplitude of 
oscillation approaches zero. Comparisons between previously published experimental 
results and those shown in this paper are discussed. Simularities, as in the case of the 
circular cross-section, and differences, as in the case of the square cross-section, are 
noted. The experimental technique described herein introduced a system resonance 
where a variable system stiffness approximately canceled the total system inertial force. 
The force measurement was then comprised primarily of the damping force. As a 
result, the experiments were able to produce reliable data points in the low 
Keulegan-Carpenter number range. Comparisons between these experimental measu- 
rements and a laminar, non-separating theory are also presented and discussed. 

2. THEORETICAL PRELIMINARIES 

Consider a two-dimensional body oscillating with known frequency if2 and amplitude 
A0 in an incompressible Newtonian fluid. The fluid is initially assumed to be at rest. 
This is kinematically equivalent to the problem of a stationary cylinder in an 
oscillatory-free stream and only dynamically different from that problem by the 
pressure gradient force which is in phase with the acceleration. This acceleration force 
can be found by integration of the pressure gradients of the onset flow over the body 
contour. Assume that the flow resulting from the unsteady body boundary condition is 
laminar and that separation does not take place. These assumptions lead to the 
classical streaming flow problem investigated by Faraday (1831), Schlichting (1932), 
Holtzmark et al. (1954), Stuart (1966), Riley (1965), and Wang (1968) among others. 
Generally, these authors used a circular body geometry, and the resultant absence of 
separated flow seemed reasonable. More recently, Kim & Troesch (1989) applied the 
same set of assumptions to noncircular two-dimensional sections, including conformaUy 
mapped Lewis Forms (1929) and squares. 

The traditional nondimensional numbers which determine the flow characteristics are 
defined as follows: 

UoL 
• Reynolds number: R e -  

v 

U0 2:rA0 
• Keulegan-Carpenter number: K C -  - -  

L T m -  L 

Re f L  2 
• Frequency parameter: fl = Kcc = v 

where L is a length dimension of the two-dimensional cylinder, ~ = 2arf is a circular 
frequency, Tm is a period of the oscillation and U0 = ~Ao. Only two of these numbers 
are independent. 
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Using experiments and theory, Kim & Troesch (1989) found that in the limit of zero 
KC the flow remained attached in a mean sense, even for sharp-edged bodies such as 
squares. Vortex shedding on the time scale of the streaming flow was not present. This 
conclusion was reached through the comparison of time lapsed flow visualizations and 
computed theoretical streamlines. The theoretical model developed by Kim & Troesch 
(1989) followed Wang (1968) and Davidson & Riley (1972), where the flow regime was 
separated into inner and outer regions. The reader is referred to that paper for the 
details on the theoretical model. Briefly, in the inner region, the flow was assumed to 
be governed by the classical Stokes boundary layer equation. In the outer region, the 
full Navier-Stokes equation for the steady streaming flow was solved numerically by 
using a finite difference method coupled with conformal mapping techniques. 

Under the assumptions and conditions described by Kim & Troesch (1989), the flow 
in the inner region, up through first-order, can be represented by the outer potential 
flow and the Stokes layer where the flow is assumed to be attached. While the 
zero-order inviscid outer solution gives only the inertia force component at the basic 
frequency, the first-order boundary layer solution and first-order correction to the 
potential flow produce both inertia and drag force components whose nondimensional 
force coefficients are of O(fl-v2). To this order, there is no effect due to the curvature 
or streaming flow, other than that present in the first-order potential calculations 
(Wang 1968). 

The theoretical drag force has two sources, normal pressure and skin friction. These 
components are found to be equal for arbitrary two-dimensional bodies (Bearman et al. 
1985). From the results of Bearman et al. (1985), the force computed from the Stokes 
layer solution, FBL, is represented by 

1 + i 
p~2D~ Up dz, (1) F~L = ( ~q3).2 Js 

where D, the body diameter, replaces the length scale, L, defined earlier and Up is the 
potential tangential velocity on the body surface. The body boundary condition has a 
sinusoidal time dependence given by e i~t. 

Conformal mapping offers a convenient way to get closed form expressions for Up. 
The nomenclature used to define the mapping functionals and variables are given as 
z =f(¢) = X +jY, ¢ = e j" and O = ~ - 0 + arg[f'(~)]. 

For a conformally transformed body, Up is given as 

upe_JO = d w _  dWd~ 
dz d~ dz '  (2) 

dWd~ C.o, 
Up - d~ dz 

where W(~) is a complex velocity potential in the computational domain, w(z) is the 
corresponding one in the physical domain, and j2=  _ 1. Equation (1) becomes 

1 + i  f dWd~ -o 
FBL = (Zfl)la p ~ D y  s ~ - ~ z  e' dz, 

or (3) 

1 + i  ~ dW jo 
FBL -- pQD~ d~. (~$.~)1/2 S " ~  e 
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Now define various nondimensional force coefficients. The drag and inertia coefficients 
per unit length are 

~{FBL} 5~m{F v + FBL} 
C d  1 2 ' C m = , (4) 

-~p U oD p ~'~ U o S  1 

respectively, where Fp is the inertial force due to the zeroth order potential flow and $1 
is the cross-sectional area of the cylinder. To compare with the published results based 
upon the Morrison equation, (Sarpkaya & Isaacson 1981), drag and inertia coefficients 
are introduced as follows: 

Ca 3~r 9q.e{FBL} -- ~¢m{Fe + FBL} 
= 8 1 2 ' C m - -  (5) ~pUoD ~pQUoD 2 ' 

where the Morrison equation is 

F=½pUI UI D-Cd + ~ pD2 dUc 
dt m" (6) 

2.1. 

O m i t t i n g  e i~t, Up and Fp are 

and 
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Up = 2 Uo sin 0 

Fp = ½ pE~Uo~D 2. 

From equation (1), the force due to the boundary layer is 

1 + /  f0 TM D ~ )  FaL = (Xrfl)V 2 pff2D 2U0 sin 2 0 ~- dO = (1 + i)pg2Uo D2/ar\l/2 

and the corresponding force coefficients are 

C d = 4 ~ 3 / 2 K f - 1 f l - 1 / 2 ,  C m = 2 + 4 ( ~ f l )  -1/2, 
(7) 

Cd = 3 erS/2KC-lfl-m" Cm = Cm" 

The values compare well with experiments in the laminar flow range, as shown by 
Bearman et al. (1985) and Sarpkaya (1984, 1986). 

2.2. HYDRODYNAMIC FORCE ON A LEWlS-FORM CYLINDER 

Introduce a Lewis Transformation (Lewis 1929) of the form 

b 

In order to have the same potential velocity, U0, at infinity in both the physical and 
computational domains, consider a slightly different form of the mapping function. 
This form maps a Lewis-form cylinder with width D into a circle with diameter 
do = DR*,  where the aspect ratio, R*, is obtained by 

b 
R* +~--~= 1. 
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Body shapes that correspond to b = - 0 . 0 4 ,  -0 .06 ,  -0 .08 ,  -0 .10 ,  - 0 . 1 2  and the 
rounded square used in the forced oscillation experiments (solid line) are depicted in 
Figure 1. 

With a known complex potential,  W = U0(~ + ~), where ~ = re m, the derivatives 
become 

and 

dW 
= -2U0 sin Oje - j °  

d¢ 

FBL-- 

where 

d~ = jei°dO. 

After substitution of these into equation (3), the force is then represented by 

2 ( 1 + i )  f 2= D ( 1 + i )  
(~fl)1/2 J0 sin 0(cos O - j  sin O)R* ~-dO - (~rfl)l/2 p~D2Uo(I I  + jI2), 

11 = R* sin 0 cos O dO, 12 = R*  sin 0 sin ® dO = 0. 

Let  Ib = I1/~ and the ratio between the area of a Lewis form and the area of a circle be 

31/2b 
S b =R* R ,  3 . 

From these results, the force coefficients are 

Ca = 4~3/2KC- ~ f l -  ~/2Ib = Ib[ f d]circle, 
4Ib 1 

Cm = 2 +  - -  (~fl)1,2 sb' 
(8) 

-Ca = 3 ~5/2KC-lfl-1/2ib ' Cm = 2.41 + 4Ib 
( ~ f l ) , , 2  . 

force coefficients and values of Ib for the Lewis-forms with values of b varying from 0.0 
to -0 .13  are given in Table 1. The coefficients are normalized with respect to KC and 
ft. Presented in this form, comparisons can readily be made with experiments where 
both KC and/3 change. 

The different shape types used in theory and experiments,  Lewis forms and rounded 
square, were selected for ease in computation and manufacture,  respectively. While 

_ _ _ _ . ~ :  - 0 4 2  

/ x x \ ~  

b= - 0 " 0 4  ~\~, "~ 
',2,,'I 

Figure 1. Bodies generated by the Lewis transformation with b = -0.12, -0.10, -0.08, -0.06, -0.04 (in 
dashed lines); - - ,  body used in the experiments. 
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TABLE 1 
Force coefficients for various shaped bodies 

Shape b Ib Sb CdKCV~ CdKCVCfl ( C m - 2 ) V ~  

Circle 

Lewis 
form 

Square 

0 1 1 22-273 26.24 4 

-0.01 1 - 0 0 9 5  1.0265 22-485 26-489 3.934 
-0-02 1.0180 1.0517 22.674 26-712 3.872 
-0.03 1.0256 1.0755 22-843 26"912 3-814 
-0.04 1-0322 1 - 0 9 8 3  22.991 27.085 3-759 
-0-05 1.0381 1 . 1 2 0 1  23.121 27"240 3.707 
-0-06 1.0414 1.1398 23.196 27"326 3.655 
-0.07 1-0472 1.1611 23-324 27-479 3-608 
- 0-08 1 - 0 5 0 5  1-1804 23. 398 27" 565 3. 560 
-0.09 1.0531 1.1991 23.455 27.633 3-513 
-0.10 1 - 0 5 4 8  1-2172 23.493 27.678 3-466 
-0.11 1-0557 1 - 2 3 4 7  23.514 27.702 3.420 
-0.12 1 " 0 5 5 8  1.2517 23-517 27.705 3-374 
-0.13 1 - 0 5 5 1  1.2682 23.501 27.689 3.328 

23.68 27"89 3-339 

the two shapes cannot  be compared  directly, the variat ion in the coefficients for the 
different Lewis forms is small (Table 1), indicating that  the theoretical difference 
between the Lewis form results and rounded square would also be small. 

2.3. HYDRODYNAMIC FORCE ON A SQUARE CYLINDER 

Bearman et al. (1985) derived the force computed  f rom the Stokes layer solution and 
that solution is briefly outlined here for completeness.  Consider the Schwartz-  
Christoffel t ransformation for a square cylinder as shown in Figure 2. 

The mapping function is 

fo ~ ( ~2 _ ~2,] d z = \C ~ -  C~/ 

With W(~) = U0~, equat ion (2) is now 

2(1 + i) pg2DUo ~s eJ°(s) FBL= (~),,2 d~, 

where O(s) is the orientation of the body surface in the physical domain in the 

¥ 

U° I Uo 
z : r l ~ )  

, 2> 
C D E ~ x  I 

B F , ~ "  

i f 

Figure 2. Schwartz-Christoffel transformation of the square cylinder. 
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tangential direction, s. Here, O = Jr/2 for s between points B and C, and 0 for s 
between points C and D, as shown in Figure 2. 

From symmetry arguments, the boundary layer force becomes 

2(1 + i) I y FBL (jr~)l~2 pf2DUo.,, e j° d~ 

where the constant as is found to be 0-835. 
Therefore, the force coefficients are 

4 2/2 (1 + i) 
= -  (~) KC fll/e pU~oDI2a,], 

C d -- ~3/2a 1 KC-lf1-1/2--- 23"68 KC-l f1-1 /2 ,  C m = 2 + 4al = 2 + 1.884 fl--1/2 
(Yrj~) 1,2 ' ( 9 )  

Cd = 27.9 KC-If l  -l/e, C,~ = 2-5465 + 2-4fl -1/a. 

These force coefficients are also included in Table 1. 

3. E X P E R I M E N T A L  FORCE MEASUREMENTS 

Forced oscillation experiments using a vertical motion mechanism were conducted in 
the Ship Hydrodynamics Laboratory at The University of Michigan. The test cylinders 
were mounted horizontally between fixed end plates and oscillated vertically. 

When oscillating a cylinder with small amplitude and large frequency, the inertia 
force dominates the force measurement,  making it difficult to accurately determine the 
drag force. To briefly illustrate this, consider the forced vibration with known 
amplitude Ao and frequency Q. Assuming a linear system, 

M;? + b~ = Foe i(~t+a), z = Aoe i~t, 
o r  

[-Mff22 + ib~]Ao = Foe/a, (10) 

where M is a total system mass including added mass, b is the equivalent linear 
damping coefficient and 6 is a phase lag. Digitized data of the force measurements can 
be transformed to give F0 and 6 by using the Fast Fourier Transform (FFT). Then M 
and b are found from equation (10): 

M =  Fo & b Fo 
A0f2 ~ cos = ~ 0 0  sin & (11) 

For a lightly damped system, b / M ~  << 1 and 6 -  180 °. Therefore,  a small error in 
obtaining 6 in the experiments results in a significant error in drag force estimates. In 
experiments, phase shift errors can exist due to mechanical load cells, signal 
processing, system damping, etc. These effects may be nonlinear and they significantly 
increase the difficulty in conducting experiments for KC < 1 with large ft. This may be 
one of the principal reasons why previously published experimental results have 
significant scatter for small KC. 

One experimental technique to overcome this difficulty is to introduce a spring that 
counteracts the inertial force of the system. That is, forced vibration experiments are 
run near the resonance frequency of the spring-mass-damper system. To control the 
natural frequency easily, a slender aluminum beam is employed as a spring. The 
approximate value of the resonant frequency is found by using the effective spring 
constant for a cantilever beam from simple slender beam theory, 

3EI 
kerr = 3 = M ~  2. (12) 

Cspring 

The beam mass and damping are ignored. 
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From equation (12), the system natural frequency can be controlled easily by 
changing Lspring and then fine tuned through trial and error by varying f2 in small 
increments to give 6-~ 90 °. With the spring included in the equation of motion, the 
inertial and drag forces can easily be shown to be 

F1 = k~nAo - Fo cos/t, Fa = Fo sin 6, (13) 

where kerr is the effective spring constant of the cantilever beam. To illustrate the 
effectiveness of this technique, consider a typical example, one which occurred 
frequently during the tests. Without the spring, a recorded 6 = 179-9 with 0.6 ° error in 
the measured phase angle gives an 66-7% error in the damping force. However, with 
the spring, 6 might be 82 ° and the same error in the phase angle produces only a 0-15% 
error in the damping force. The experimental test apparatus was configured to 
maximize the effectiveness of this idea. Load cells were mounted on the spring and on 
the oscillating cylinder. Both the external exciting force, F0, and the effective spring 
force, k~ffAo, were measured directly. 

Each experimental test run produced three data sets, a displacement, the force on 
the cylinder, and the force on the spring. Typically, the FFT analysis routine 
transformed data of ten periods of oscillation after a start-up of approximately ten 
periods. The sampling period of the A / D  converter was adjusted for each run so that 
the time histories represented an integral number of cycles. Since the sampling period 
could be set to only three significant figures, ten cycles were collected to minimize 
leakage effects. The springs were made of 2-54 cm by 1-27 cm rectangular pieces of 
aluminum, varying in length from 42.5 cm to 76.8 cm. The lengths of the springs were 
adjusted so that fl = 23,200 and 48,600 for the three test cylinders. The amplitude of 
the oscillator was adjusted to produce a range of KC from 0-079 to 0-58. The 
experimental test matrix is given in Table 2. 

For the values of fl =23,200 and 48,600, the flow is turbulent (Sarpkaya 1984). 
Consequently, the theoretical laminar formulas for the inertial and drag coefficients, 
equations (7)-(9), cannot be compared directly with the experimental results. These 
large values of fl were selected, however, since the turbulent experimental conditions 
represent those more likely to be encountered in full-scale ocean structures. Also, 
based upon Sarpkaya (1984), it was expected that the turbulent drag coefficients versus 
KC on log-log graph scales would have the same slope as the laminar flow condition. 

Experimental results for a circular cylinder of 20-3 cm in diameter and 1.82 m in 
length are depicted in Figures 3 and 4. Results for a rounded square are given in 
Figures 5 and 6. The rounded square was manufactured from a 1-82 m long cylinder 
with a 15.2cm by 15-2cm cross-section. The radius of the corner rounds was 5-1 cm. 
The geometry is shown in Figure 2. Results for a square cylinder are depicted in 
Figures 7 and 8. In these figures, Cm and Ca are the inertia and drag coefficients which 

TABLE 2 
Test matrix for forced oscillation experiments 

Shape fl KC range Period (s) 

Circular cylinder 48,600 0.095-0.51 0-85 
23,200 0-098-0.2 1.78 

Rounded square 48,600 0.079-0-51 0-85 
cylinder 23,200 0.11 -0.58 1-78 

Square cylinder 48,600 0.079-0.51 0-85 
23,200 0-079-0-58 1-78 
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KC 

Figure 3. Drag and inertial coefficients of a circular cylinder with fl = 23,200; IS], Ca; 41~, laminar flow Ca; 
III, C,,. 

are defined in equation (4). Cdlaminar denotes the theoretical value of the drag 
coefficient for laminar flow, shown in equations (7), (8) and (9). These results are 
discussed and compared with theory in the next section. 

4. RESULTS AND DISCUSSION 

Based on the experimental results of Sarpkaya (1984, 1986), Bearman (1984) and 
Bearman et al. (1985), a harmonically oscillating cylinder in calm water or a stationary 
cylinder in a harmonically oscillatory onset flow, produces a drag coefficient line which 
can exhibit three types of flow transitions; KCt, transition from laminar flow to 
turbulent flow, KCv, onset of vortex shedding, and KCcr, inception of "the Honji 

(,.3 

10 

1 

0-1 
10  -2  

[] 
[] 

[] 

[] 

I q I I I I ) 1 1  I I ] I I I l L  
10 -~ 10 ° 

KC 

Figure 4. Drag and inertial coefficients of a circular cylinder with fl = 48,600; r-q, Ca; ~,, laminar flow Ca; 
II, Cm. 
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10 

[] 

[] 

o o  R ~ o o  

0 '3  I I I I I I I I I  I I I I I I I I 
) ' 01  0"1 

K C  

Figure 5. Drag  and inertial coefficients of  a rounded square  cylinder with fl = 23,200; D, Cd; ~i~, laminar  
flow Ca; II, Cm. 

Vortical Instability". The last transition occurs only for a vertically mounted cylinder 
where the gravity effects in line with the cylinder axis become important. This type of 
instability is therefore not relevant to the horizontally mounted cylinders described in 
this work. In this section, the results of the forced vibration experiments are discussed 
and compared with the laminar, nonseparating theoretical calculations. 

4.1. CIRCULAR AND ROUNDED SQUARE CYLINDERS 

There is no evidence of vortex shedding when KC < 0.6 for/3 = 23,200 or 48,600 for 
both cylinders. In turbulent flow, onset of vortex shedding is initiated at a larger KC 
than in laminar flow, typically at KC---3 for fl = O(104) (Sarpkaya 1986). Therefore, 
the experimental drag coefficients form lines parallel to the theoretical drag coefficient 

1 0  

1 

0"1  
0 " 0 1  

[] 

• • •  

I I I I I I I I L  I I I I 
0"1 

KC 

I I I l i  

Figure 6. Drag  and inertial coefficients of  a rounded  square  cylinder with fl = 48,600; I-1, Ca; 0 ,  laminar  
flow Ca; II, C,,,. 
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rnrn 
'0 
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0 . 1  I I I I I I I 1 [  I I t z ~ ~ ~f  
0 - O l  0 .1  

K C  

Figure 7. Drag and inertial coefficients of a square cylinder with fl = 23,200; D,  Ca; 0 ,  laminar flow Ca; 
II, Cm. 

lines of laminar flow (Wang 1968) or equations (7) and (8) as depicted in Figures 3-6.  
Their magnitudes, however,  are about 4.5 times greater than the theoretical ones. 
Bearman, in Sarpkaya's paper (1984), suggested that if fl is formed using an effective 
eddy viscosity, then the experimental  and theoretical values of the drag coefficient may 
be made to coincide for KCt < KC < KC~ at large ft. In Sarpkaya's U-tube experimen- 
tal results for a smooth circular cylinder, the ratio between the eddy and kinematic 
viscosities, vt/v, was about  25 : 1. The experimental  results presented here require that 
vt/v be approximately 20 at fl = 23,200 and 48,000. In addition, the cylinders used in 
this work were mounted horizontally and were oscillating in calm water, while the free 
stream was oscillating in Sarpkaya's experiments. A possible explanation for the 
relatively smaller eddy viscosity at higher fl is that the present experiments had less 
free stream turbulence and no Honji  instability. 

I0 

DE]D 
[] 

J 

0 " 1  I I I I i I I I I  I I I 1 1  I I 
0 ' 0 1  0 .1  

K C  

Figure 8. Drag and inertial coefficients of a square cylinder with fl = 48,600; [3, Cd; 0,  laminar flow Ca; 
I ,  C,,,. 



124 A. W. TROESCH AND S. K. KIM 

From comparison of Figures 3 and 4 to Figures 5 and 6, it is clear that the drag 
coefficients for a rounded square have nearly the same slope as that of a circular 
cylinder, with only a small difference in magnitudes. This may have been anticipated, 
since the amplitude of oscillation is smaller than the radius of curvature of the corners 
in the rounded square, and consequently separation should not occur (Batchelor 1973). 
The small difference is also consistent with the theoretical values given in Table 1. In 
the limiting case for KC---~ 0, a theory that does not include vortex shedding appears 
valid for bodies with increasingly sharp edges. One hydrodynamic difference between 
the two shapes is that transition to turbulent flow seems to occur at smaller KC for the 
rounded square cylinder. Actual data at fl -- 23,200 and KC < 0.2 are scattered for the 
circular cylinder because the transition to turbulent flow may happen around 
KC=0.07-0.2,  Ret = 1,000-2,000 (Sarpkaya 1984). Data for the rounded square, 
however, are not as scattered. 

When eddy viscosity is included, inertia coefficients for both shapes display trends 
shown by the theoretical values determined from equations (7) and (8). These trends 
indicate that viscosity acts to slightly increase the inertial coefficient over its 
potential-flow value of 2.0. As can be seen in Figures 3-6, most of the experimental 
values are between 2.03-2.09, while the theoretical values are 2-015 at fl = 23,200 and 
2-01 at fl -- 48, 600. If fl is formed using an eddy viscosity, then the theoretical inertia 
coefficient is approximately 2-05. Inertia coefficients also increase very slowly with 
increasing KC. 

4.2. SQUARE CYLINDER 

The experimental drag coefficient data with two theoretical reference lines are shown 
in Figure 9. One solid line (left, with the larger negative slope) is parallel to the 
theoretical values, given in equation (9) and the other (right, with the smaller negative 
slope) is parallel to the theoretical values obtained including the effect of vortex 
shedding by using the inviscid shedding model of an isolated edge (Bearman et al. 

1985). The theoretical values for the drag coefficients based upon the vortex shedding 
model are denoted as squares. 

Through comparison of Figures 7, 8 and 9 with the results of Bearman et al. (1985), 
it is clear that for a square cylinder with sharp edges at large fl there exists a region free 

2.0 ~ 

1.8- 

1 ' 6 -  
O - -  

J 

1"'0'- _ t~  ~ [] [] [] [] 

1.2- _ ~ 

1.r~3.0 I ~ _  I I I 
-2.5 -2.0 -1-5 -1-0 -0 -5  0.0 

Log (KC) 

Figure 9. Transition in the drag coefficient of a square cylinder; v1 Bearman et al. (1985), O, Log(Cd). 
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of vortex shedding (KC -< 0.2). The drag coefficient based upon the theoretical vortex 
shedding model shows only a moderate dependence upon KC, while the theoretical 
unseparated flow, nonvortex shedding model shows a larger dependence upon KC. The 
experiments indicate that the transition from one of these models to the other occurs at 
approximately KC--0.2. This implies that KCt is smaller than KCo and that in a real 
fluid, the assumption of ignoring vortex shedding at small KC for streaming type flow 
seems to be valid. This statement would not be true if there were an initial uniform 
stream. 

The ratio between the eddy and laminar viscosity, vt/v, is about 50, which is a much 
larger ratio than that of the other two shapes at K C -  0-2 and fl = 48,600. This implies 
that shape is important even when vortex shedding is not present due to the increased 
turbulence level associated with a sharp-edged body at large ft. 

Inertia coefficients for a square cylinder have values that are almost constant, around 
2.05-2.13. These agree well with the theoretical values predicted by equation (9), 
which is about 2.01 for laminar flow, or 2.06 if the eddy viscosity is introduced. Both 
experiment and theory show that viscous effects increase the value of the inertial 
coefficients over the potential-flow value by a few per cent. 

5. CONCLUSION 

The hydrodynamic inertia and drag forces resulting from small-amplitude harmonic 
oscillations of a circle, rounded square, and square have been determined both 
experimentally and theoretically. The results are valid for small, near-zero values of 
KC and large values of ft. 

For a sharp-edged cylinder, such as a square cylinder, the transition from laminar to 
turbulent flow for fixed fl occurs at smaller KC than the onset of vortex shedding. As fl 
increases, the onset of vortex shedding occurs at relatively larger KC. For a value of 
fl = O(104), vortex shedding for an oscillating square cylinder occurs at approximately 
KC = 0.2. 

The theoretical model for the shapes tested, assumes a laminar, nonseparating flow. 
The drag force at small KC is proportional to the amplitude of oscillation. As a result, 
the drag coefficient line, when plotted on a log-scaled Cd versus KC graph, has the 
same slope, but not intercept, as that of the experiments. The experimental results 
have made it possible to estimate effective eddy viscosities which can be used in 
conjunction with the theoretical laminar flow model to give empirical drag coefficients. 
The inertia coefficients obtained using these values of the eddy viscosity also compare 
well with the experimental results. 
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