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Reactions of A+A+product on one-dimensional lattices with steady state mput sources are simulated with various local reac- 

tlon probatnhtles, P. Among others the reaction order, X. is examined at different P. Our results demonstrate that X goes down 

from 3 to 2 as P goes from 1 to 0. The nearest neighbor distance dlstrlbution (NNDD) for the reaction A+A+O at P= 1.0, i.e. 

dlffuslon-limited reaction, follows the previously reported skewed exponential shape. This 1s no longer true for P< 1. Similarly, 

for the reaction A+A+A, the NNDD changes with P. Finally, at P-O, as expected, an exponential (Poissoman) distribution is 

obtained for both reactions. 

1. Introduction 

The textbook rate equation for the elementary re- 
action A+A+products, with transient batch condi- 
tion, is usually written as 

dp -_=-kp2, 
dt 

where p is the density of the reactant and k is the re- 

action coefficient. On one hand, the product can be a 
species that whenever formed will leave the system 
immediately or one that is inert so that it does not 
participate in any further reactions. This type of re- 
action can be formulated by AS A+0 (“annihila- 
tion”). On the other hand, if the reaction is a “fu- 

sion” type reaction, the product may be exactly the 
same species as the reactant except that one of them 
disappears after the reaction. While strict “fusion” 
reactions may only occur in exotic situations such as 
exciton fusion (see below), already Smoluchowski 
has treated coagulation reactions with this model [ 1 ] 
and it is still used for dimerization and polymeriza- 
tion reactions [ 2 1. 
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Occasionally the real reaction is bounded by the 
“annihilation” and the “fusion” case: 

A+A+O, 

ASA+A. (2) 

This is the situation for triplet-exciton-triplet-exci- 
ton fusion (annihilation) [ 31, where the fusion is 
much more likely than the annihilation process. Re- 
cently, similar exciton reactions were performed by 
us on isolated polymer chains, with a strictly one-di- 
mensional topology [ 4,5]. This stimulated the pres- 
ent work. 

It has been demonstrated over the last decade that 
when a diffusion-limited elementary bimolecular re- 
action is carried out in media less than three dimen- 
sional, the reaction order may not be an integer any 
more and it may well be above the commonly ac- 
cepted value of two [ 6- 111. Specifically, in the pres- 
ence of a steady state source of reactant A, with the 
adding rate R, eq. ( 1) is replaced by 

dp dt =R-kp.‘, (3) 

where X is the reaction order, which is 2 for classical 
reaction kinetics. Recent computer simulations [ 121, 
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theoretical work [ 131 and experiments [ 5,141 have 

demonstrated that X can be a number bigger than 2 
for reactions carried out in media with dimensional- 
ity smaller than 3 or on fractal spaces. For both the 
A+A+A and A+A+O reactions in 1-D media and 
within the diffusion-limited regime, there is now 
agreement that the reaction order X+3. For a reac- 
tion-limited reaction, however, we believe that X= 2 
still holds, and is independent of the reaction me- 
dium. This question is addressed below. 

In this paper we report the relation of the steady- 

state reaction order X with the local reaction proba- 
bility, P, for the reactions A+A+O and A+A+A on 
1 -D lattices. When P= 1 .O, the reaction is a diffusion- 

limited one, while when P-0, it is considered to be a 
reaction-limited reaction. Indeed, for P= 1 .O we con- 
firm the non-classical result for the low-dimensional 
reaction media. On the other hand, for P-+0, the clas- 
sical result is confirmed. However, for P ranging be- 
tween 0 and 1.0, the X values have not been deter- 
mined before. Our simulations appear to give the first 
information on the behavior of X with P. We note 
here that for one-dimensional batch reactions [ 15 1, 
the asymptotic (t-co) results are X= 3 for all P (ex- 
cept that X=2 for P+O). However, this is not the 
case found here for the steady state reactions. Also 
the interparticle distribution functions are found to 
change with P. 

2. Methods of simulations 

In all these simulations, a 1-D lattice with 50000 

sites is used. Preset adding rates, such as 1, 2 or 10 
walkers per time step, are used to randomly add the 
required number of walkers to the system at each time 
step. If the chosen site has been occupied already then 
another site is chosen randomly. At each step this 
process is repeated until all the added walkers find 
their positions on the lattice. Once the landing pro- 
cess is over all the present walkers in the system are 
moved once. With cyclic boundary conditions, each 
walker has equal possibility to move to the left and to 
the right of its present position. 

The motion of the walkers always starts with walker 
no. 1 although walker no. 1 may not be the same one 
at each step due to reactions. All the walkers in the 
system have infinite lifetimes. That is, once landed 

in the lattice they will remain in the system unless 
they are eliminated by reactions. If at a given time 
step, two reactants happen to occupy the same lattice 
site, there is a tendency for the reaction to occur. This 
depends on the preset reaction probability, P (P is set 
at the beginning of the simulation). If P equals 1 (the 
diffusion limited reaction), a product will be formed 
whenever two reactants collide. If P is less than one, 
then when two reactant collide, a random number is 
picked and compared to the P value and the “reac- 
tion or no reaction” decision is made. If the reaction 
is not to occur, the two reactants will remain in their 
locations and the presently moving reactant is not 
considered any more during this time step. For the 
reaction A+ A-t0 the product of a successful reac- 
tion will leave the system. However, for the reaction 
A+A+A a successful reaction means that the mov- 
ing particle is removed from the system, while the one 
it collides with survives. At each time step, the num- 
ber of remaining walkers in the system is recorded. 
After all the walkers in the system have been moved 
once the first time step is over and the “clock” is in- 
cremented by one and the system is ready for another 
landing of walkers. 

When the density of the reactant does not change 
with time, that is when p(t) =const., the system can 
be said to be in its steady state. In practice, the den- 
sity does fluctuate even when the system is consid- 
ered to be at its steady state. In order to ensure that 
this fluctuation does not affect the simulation results, 
the time window over which the average number of 
walkers is calculated is usually long enough so that 
the average is the true representative of the system. 
In our simulations the typical length of the time win- 
dow used to calculate the average number of parti- 
cles, N,,, is 25000 steps. The systems are well in the 
steady state after the first 25000 steps. Therefore a 
total of 50000 steps are used in all the simulations 
except that for P=O.OOl and 2 walkers per 10 steps 
(0.2 walker per each step) 200000 total steps were 
used to ensure that the system has reached steady 
state. 

When two adjacent reactants collide and the reac- 
tion does not occur these two walkers will remain one 
lattice apart neighbors. The nearest neighbor dis- 
tance distribution (NNDD), which is essentially the 
same as the gap distribution [ 16,171, is obtained by 
calculating the distance of each walker from its near- 
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est neighbors. In our program this is done by first 
finding the ith walker’s coordinate, X, (i= 1, 2, . . . . N, 
where N is the total number of walkers in the sys- 
tem). Then the searching for the nearest neighbor 
starts with lattice sites x,? 1. If a walker is found then 
the nearest neighbor distance is 1, otherwise the co- 
ordinates are incremented by 1 in both right and left 
directions, i.e. x, * 2. This process is continued until 
one or two reactants are encountered. When the 
nearest neighbor is found, no matter one or two, the 
distance only contributes once to the whole distribu- 
tion spectrum. In other words, for any given walker 
only one nearest neighbor distance is recorded. One 
should note that if the ith walker’s nearest neighbor 
is thejth walker, this does not guarantee that thejth 
walkers’s nearest neighbor is the rth walker unless they 
are only one lattice apart. 

3. Results and discussion 

It is easy to understand that at a fixed reaction 
probability, P, the more particles added at each step, 
the faster the steady state is reached (see fig. 1, for 
example. Only the A + A- 0 result is given here). This 
is simply because when more particles are present in 
the system they have a better chance to encounter each 
other and react. This is also the reason that at a fixed 
landing rate, say 2 walkers per step, the bigger P, the 
less time it takes for the steady state to occur. This 
result can be seen from fig. 2. For the same reason, 
the more reactants are consumed, the quicker the 
steady state can be reached. The system of A+ A-+0 
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Fig. 1. Normahzed walker population versus time steps ( 100 runs) 

for the reactton A+A+O at P=O.Ol with 0.2, 1. 2, 10 and 20 

walker(s) per step (from right to left). 
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Fig. 2. Normalized walker population versus time steps ( 100 runs) 

for the reaction A+A+O with 2 walkers per step at P=O.OOl, 
0.01,O.l and 1.0 (from right to left). 
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Fig. 3. Normalized walker population versus time steps ( 100 runs) 

for reactions A+A+O and A+A+A with 2 walkers per step at 

P=O.Ol. 

is thus expected to reach steady state faster than that 
of A+ A-+A, when the same P and the same landing 
rate are used. One also expects a smaller steady state 
walker density for the reaction A + A+ 0 than that for 
A+A--+A, based on the above arguments. The simu- 
lation results, which are presented in figs. 3 and 4, 
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Fig. 4. Walker population versus time steps for reacttons A+ A-O 
and A + A-A with 2 walkers per step at P= O!O 1 (average from 
100 runs). 
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agree well with the above expectations. 
At steady state, dpldt = 0, and therefore eq. (3) can 

be simplified as 

R=kp'. (4) 

Eq. (4) can also be written as 

(5) 

where Jis the number of walkers added per time step, 
L is the number of lattice sites and N,, the average 
number of walkers at steady state. By taking the log- 
arithm of both sides of eq. (5) and a linear square fit 
of log(J) versus log (N,,), the slope of the plot, which 
is X, can easily be obtained. Also, from the intercept 
of the above log-log plot the reaction coefficient k 
can be calculated. 

In figs. 5a and 5b we plot log(N,,) versus log(J) 
for P= 0.001, 0.01, 0.1 and 1 .O, respectively, for both 
reactions. For each Pvalue we use five different land- 
ing rates which cover two orders of magnitude. An 
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Fug. 5. Log(N,,) versus log(J) for (a) the reaction A+A+O and 

(b) the reaction A+A+A when different f’, are used. Note that 

for each P. the N,, is normalized to that with 0.2 walker per step. 
The slopes give the Xvalues (results from 100 runs). 

important result is the constancy of the order X over 
the investigated density range (note the linear fits). 
The value of N,, is normalized to that of 2 walkers 
per 10 steps. This normalization does not affect the 
slopes of the plots, i.e. X (but it does affect the inter- 
cept). From this figure one sees that for both reac- 
tions the reaction order at P= 0.0 1 is closer to that at 
P=O.OOl than to that at P=O. 1. In other words, the 
reaction order X has a sharp change in the region of 
around 0.1. This can be clearly seen from fig. 6, where 
Xis plotted versus P. When P=O.OOl, Xis close to 2, 
i.e. to that of reaction-limited kinetics. However, for 
P= 1 .O a reaction order close to 3 is obtained indicat- 
ing a non-classical, diffusion-limited reaction regime. 
At a specific reaction probability, P, the X value for 
the reaction A+A+A is always slightly higher than 
that for A + A- 0. This may indicate that for the same 
P, the reaction A+A+A slightly favors diffusion- 
limited kinetics compared to that of A+A-0. 

In table 1 we list the reaction rate coefficients for 
the reaction A+A-+O with P=O.OOl, 0.01. 0.1 and 
1 .O, respectively. They generally follow the trend that 
the higher the reaction probability, the larger the re- 
action coefficient (note, however, that their units also 
change with P, i.e. with X). In table 2 are given the 
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Ftg. 6. Reactron order X versus reaction probability P for reac- 

tionsA+A+O (0) andA+A-A (0). 

Table 1 

Reaction coefftcients k versus reaction probability P ( 100 runs) 

P k 

0.001 0.0020 
0.01 0.023 1 
0.1 0.513 

1.0 2.748 



Table 2 

Z.-Y. Shl andR. Kopelman /Chemrcal Phvsrcs 167 (1992) 149-155 153 

Densttyp at steady state with different adding rates ( 100 runs) 

R P 

0.001 0.01 0.1 1.0 

2/10steps 0.0458 0.0163 0.00855 0.00734 

1 /step 0.101 0.0346 0.0160 0.0126 

Z/step 0.143 0.048 1 0.211 0.0159 

IO/step 0.317 0.104 0.0412 0.0274 

20/step 0.447 0.145 0.0554 0.0346 

reactant densities at steady state with the above four 
P values. They agree with the trend that the higher 
the P. the bigger the k and the smaller the reactant 
density. However, the effect of the higher X is also 
evident in the less sharp rise of the steady state den- 
sity with R at high P. We note that in classical kinet- 
ics k-P (for constant reaction order X). This ob- 
viously is not the case here (even the units of k change 
with P). Similar overall trends are obtained for the 
reaction A+ A-A, which are not listed here, al- 
though the density at any given P and landing rate is 
larger than that of the corresponding reaction 
A+A+O. 

If the reaction probability is very very small the 
reactants will get close to a random (Poissonian) dis- 
tribution. This will result in changes in the NNDD. 
Again one can see that when P increases from 0.001 
to 1 .O the shapes of the NNDD curves undergo a sharp 
change. With P= 1 .O one expects a skewed exponen- 
tial distribution of the nearest neighbors for reaction 
A+A+O [ 17,181 and an Airy function shape [ 161 
for reaction A+A+A. At steady state with decreas- 
ing P the NNDD approaches a Poissonian (simple 
exponential) shape for both reactions when P+O. 
These results can be seen from figs. 7a and 7b. Here 
(r) is the average distance between reactants in the 
lattice at steady state, which is the reciprocal of the 
reactant density. At P= 0.001, for both reactions there 
are relatively large discrepancies between the simu- 
lated data and the exponential fitting curves at small 
( r). This deviation may be explained by the fact that 
the exponential curve for the NNDD is the result of 
P+O, i.e. there is no reaction at all. With reaction 
probability P= 0.00 1, however, the reaction is still not 
totally in the reaction-limited regime! 

0.0 0.5 1.0 1.5 2.0 2.5 3 0 3 5 4 0 

(r-l)/(<r>-1) 

Ftg.7.NNDDversus(r-1)/((r)-l)for(a)reactronA+A-0 

and (b) reaction A+A+A with 2 walkers per step adding rate at 

P= 0.00 1 and 1 .O (results from 100 runs). The solid lines are the 

fitted curves. Curve 1: exponential (P=O.OOl ); curve 2; skewed 

exponential (P=l.O) for reaction A+A+O. Note that for 

A+A+A a different fitting curve than that ofA+A-0 at P= 1.0 

is used (see text). 

different P at a fixed landing rate of two walkers per 
step. These results show that the NNDD curves for 
P= 0.0 1 are more similar to that for P= 0.001 than to 
that for P= 0.1, while for P= 0.1 the curve is closer to 
that of P= 1 .O. These results agree well with those in 
fig. 5. 

Figs. 8a and 8b illustrate the NNDD curves versus At a specific P, the shapes of the NNDD curves are 
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(a) I 

Frg. 8. NNDD versus (r- l)/( (r) - 1) for (a) reaction A+A+O 

and (b) reaction A+A+A, wrth four different reaction proba- 

brhttes. Adding rate 1s 2 per step for all four of them. From curve 

1 to 4, P=O.OOl, 0.01,O.l and 1.0. respectively (rsults from 5000 

runs). 

not affected by the number of particles added at each 
step. One should note that this is true only if the 
NNDD curves are plotted in a normalized form as 
done here. If one plots the NNDD with r instead of 
(r- 1) / ( ( r) - 1)) the more walkers added at each 
step the faster decay the NNDD curves will show. 
However, the basic form of the function will not 
change. These results can be seen from figs. 9a and 
9b. 

It may appear that having a finite reaction proba- 
bility 0 <P-c 1 is equivalent to having a reverse reac- 
tion, e.g. the dissociation A+A+A. However, for the 
reversible reactions that are usually treated in the lit- 
erature [ 2 1, the assumption is that there is no steady 
state source, only an internal one (the dissociation). 
Under these circumstances it is obvious that the 

I ~~. 

0 20 40 60 RO 100 
r 

Fig.9.(a)NNDDversus(r-1)/((r)-l)forreacttonA+A-0 

with P~0.01 with 0.2, 2 and 20 walker(s) per step, respectively. 

(b) Same as (a) except that NNDD IS plotted against r. The 

symbols are the simulated data and the solid lmes the exponen- 

tial fitting curves (results from 5000 runs). 

steady state of the reversible reaction is an equilib- 
rium state. For equilibrium reactions the classical an- 
swer is always valid. Likewise, the particle distribu- 
tion (NNDD) is always Poissonian (i.e. random). 
The latter is the embodiment of the Maxwell postu- 
late (random distribution at equilibrium) which un- 
derlies the classical reaction laws [ 61. 

4. Conclusions 

With changes in reaction probability, we observe 
sharp changes of the reaction orders, X, with P, at 
around P=O.l for both the A+AAA and A+A+O 
reactions on a I-D lattice. At the two extreme values 
of P, the reaction- and diffusion-limited kinetics are 
verified, giving X= 2 and 3, respectively. Both the re- 
action rate coefficient and the reactant density follow 
this trend. The NNDD for the A+ A-0 reaction 
changes from skewed exponential shape to one which 
is close to exponential (Poissonian) when P-to. 
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Similarly, for the reaction A +A+A the NNDD is an 
Airy function at P= 1 .O and changes continuously to- 
wards an exponential form at P+O. 
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