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We argue that the perturbation expansion of massless field theories are uniquely and unambiguously defined for properly formed 
observables. In so doing, we generalize the Kinoshita-Lee-Nauenberg theorem to show that there are no observable "mass-shell 
anomalies". Paradoxically, in realistic circumstances, massive electrons give rise to non-intuitive, enhanced effects, for example, 
an unexpected background to the search for right-handed charged currents at HERA. 

Singularities associated with massless particles have 
found an uneasy coexistence with perturbation the- 
ory. These singularities are of  two varieties: ( 1 ) in- 

frared singularities associated with massless particles 
o f  zero energy, or (2)  collinear singularities associ- 
ated with the degeneracy between massless, on-shell 
particles travelling in identical directions. The "in- 
frared catastrophe" associated with the masslessness 
of  the photon is believed not to be a problem, owing 
to the Bloch-Nordsieck theorem [ 1,2 ] that the sum 
over experimentally degenerate final states is free o f  
singularities associated with the masslessness o f  the 
photon. On the other hand, the failure o f  this theo- 
rem in non-abelian gauge theories [3,4] and its im- 
plications have been much debated. While it was 
shown that the inclusion of  initial-state degeneracy 
restorted the cancellation o f  divergences [ 5 ], this does 
not establish whether physical observables always 
must involve such initial-state degeneracy, and there 
seems to be a divergence of  opinion on this score. 

The Kinoshi ta -Lee-Nauenberg  ( K L N )  theorem 
[ 6,7 ] is a generalization o f  the Bloch-Nordsieck re- 
sult proving, modulo certain subtleties having to do 

with renormalization, the non-occurrence o f  mass 
singularities in certain averaged or inclusive quan- 
tities involving degenerate states. However, although 
universally accepted since its elaboration over 25 
years ago, this theorem leaves certain questions un- 
resolved. For example, Lee and Nauenberg [7] 
pointed out a paradox in QED associated with the 
fact that, owing to a collinear singularity, the total 
probability for an electron to emit forward brems- 
strahlung while undergoing helicity flip remains fi- 
nite in the limit that the electron mass tends to zero. 
If  correct, this would have profound implications, for 
it would mean that chiral symmetry was not restored 
in the massless limit. Another illustration of  this phe- 
nomenon is that if, instead o f  the electron, one gives 
the photon a mass so that chirality is preserved, one 
finds that the forward bremsstrahlung of  a longitu- 
dinal photon does not vanish in the limit that the 
photon mass tends to zero [ 8 ]. Thus, it would seem 
that massless QED is inherently ambiguous, its pre- 
dictions appearing to depend on the method of  regu- 
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larization and the symmetries enforced, a kind of  in- 
frared anomaly #~. [9] .  

The situation is even more confused for non- 
abelian theories, especially in applications to quan- 
tum chromodynamics  (QCD) .  Indeed, people per- 
forming radiative corrections frequently cite the in- 
applicability o f  the KL N theorems to non-abelian 
gauge theories [ 4, l 0 ], and there remain uncompen- 
sated logarithmic dependences on light quark masses 
in these radiative corrections as traditionally calcu- 
lated. It has been argued that, since the initial-state 
cancellation required by the KL N theorem would re- 
quire a very special relationship between the quark 
structure function and the two-particle, quark-gluon 
structure function, the cancellation should not be ex- 
pected to occur [4].  This confusion is o f  some prac- 
tical import, not only because of  how radiative cor- 
rections are to be calculated, but also because it 
renders suspect the factorization of  hard hadronic 
processes into a non-perturbative, long-distance con- 
tribution and a perturbative, short-distance contri- 
bution. This factorization is undermined by the ap- 
pearance of  mass singularities, a long-distance 
phenomenon,  in the perturbative evaluation of  
quark-gluon S-matrix elements. 

These issues provide ample motivat ion to take up 
this old subject once more and to at tempt to resolve 
these matters. In a series of  papers [ 1 l -  14 ] we have 
examined these issues and at tempted to resolve the 
conceptual puzzles. In this letter, we shall summarize 
our conclusions; for mathematical details, we refer the 
reader to our longer papers. 

By way of  application, we shall point  out that these 
matters are relevant to the search for right-handed 
currents in deeply inelastic electron scattering, espe- 
cially at HERA [ 11 ]. As a result, there is a previously 
unnoticed electromagnetic background of  order or. 
When polarized electron beams become available at 
HERA, it is intended to search for interactions of  
right-helicity electrons o f  the form e~p--~VR+X, 
where, experimentally, va simply represents no elec- 
tron in the detector, i.e., a veto on neutral currents. I f  
there were a right-handed charged current, VR would 
correspond to a right-handed neutrino. In the SM, 
there are no right-handed charged currents, so the rate 

~ We shall refer to these effects as "mass-shell anomalies," in- 
asmuch as they do not occur in off-shell Green's functions. 

for this is expected to be extremely small. Since the 
electron is not massless, helicity and chiral eigen- 
states differ slightly, and the rate for the SM charged 
current interaction is not precisely zero, but, com- 
pared to the rate observed for a left-helicity electron 
eL-, it should be down by a factor of  order (me~E) 2, 
where me and E are the mass and energy of  the elec- 
tron. For HERA, this ratio is about 4 ×  l0 -~° and 
presents a negligible rate. So observation of  any 
charged current interaction o f  a right-handed elec- 
tron would be o f  great significance #z. However, con- 
sider the reaction e~ p---~VeL]tq-X. The right-handed 
electron may emit a photon, flip its helicity, and 
undergo a normal weak interaction. I f  the photon 
proceeds down the beam pipe, it will go undetected, 
so this reaction presents a background for the non- 
radiative process. The amplitude for bremsstrahlung 
of  a photon accompanied by helicity flip is propor- 
tional to me, so one would naively expect this rate to 
be quite negligible, of  order oe(rndE) 2, times the 
usual rate for a charged-current weak interaction. 
However, because o f  a collinear singularity associ- 
ated with forward emission of  the photon, the calcu- 
lated rate is only suppressed by a factor of  or, a dra- 
matic consequence o f  the original observation of  Lee 
and Nauenberg [ 7 ]. One of  the consequences of  our 
work is to resolve this paradox and to show that, 
strictly speaking, in the limit rne-~0, the observable 
rate would in fact vanish. Remarkably, it turns out 
that, for the physically relevant parameters, the naive 
calculation is very nearly correct, and the rate is only 
suppressed by a factor of  or! 

Returning to the general theory, the presence of  
mass singularities is evidence that the usual 
Feynman-Dyson  S-matrix SFD does not exist. This is 
because the free hamiltonian Ho does not describe the 
asymptotic states in theories with massless parti- 
cles #3. However, rather than modify the hamilto- 
nian, the traditional approach has been either to sum 
incoherent cross sections [ 1 ] which we shall refer to 
as the "cross-section method",  or to seek "coherent"  
states [ 17 ] between which SvD will be free o f  mass 
singularities. The latter view was justified and exten- 

~2 All the more so since the CDF collaboration reports [ 15 ] a 
lower limit on a new charged vector boson of 520 GeV, be- 
yond the range of sensitivity of the HERA experiment. 

#3 Apparently, the first person to identify this as the origin of the 
infrared catastrophe was Friedrichs [ 16 ]. 
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sively developed by Kibble [18] and, later, by 
Zwanziger [ 19 ], who developed an LSZ-type reduc- 
tion formalism. The close connection between coher- 
ent states and the observation of Friedrichs [ 16 ] was 
made more transparent by development of an alter- 
nate S-matrix in a number of  special cases [ 20-23 ]. 
This stems from the supposition that, starting with a 
hamiltonian H describing the interaction of one or 
more massless particles, one can find asymptotic 
hamiltonians HA describing asymptotic states for 
which the corresponding S-matrix SA does exist, i.e., 
is free of mass singularities ~4. A common character- 
istic of such hamiltonians HA--HA(3) is that they 
depend on parameters 3 not present in the original 
theory H, so that the interpretation OfSA-- SA [A ] re- 
quires further discussion. While it is not necessary in 
principle, for any given observable, it is extremely 
convenient to choose such parameters to coincide 
with the experimental resolutions characteristic of the 
particular measurement being considered. 

As an illustration, consider the interaction in QED, 

V} QED) (t) = e  J d3x : ~P(~)(x)7"~ u~ (x) :Au(x) , 

(1) 

where the operators are in the interaction picture, i.e., 
they have free field time dependence. After Fourier 
transforming and expressing the fields in terms of 
creation and annihilation operators, we obtain eight 
terms involving absorption or emission of photons, 
electrons, or positrons which can be abbreviated as 

f d3kl d3k2 
v<OED)(t) =e j x/(2n132m(k, ) x/(2n132co(k z ) 

8 

X ~ ht(k,,k2, k v) exp[ - i (Se to) t t ]  , (2) 
l = 1  

where the exponent involves sums or differences of 
the energies associated with the quanta involved in 
the vertex h~. For example, a typical vertex is 

~4 This was proved for potential theory in ref. [21 ] and for the 
Pauli-Fierz model in ref. [22], but has only been demon- 
strated for certain processes and cases in QED in ref. [23 ]. 

h, = . , . ~  \2oJ (-~, m v ) /  

X b~otl (k l )  bo£2 (k2)a~(k v ) 0 '~' (kl)~a(k v ) U ~2 (k2) ,  

(3) 

where the b~(k) (aa(k)) are the usual annihilation 
operators for electrons (photons) of  definite helicity 
and momenta, U~'(k) are Dirac spinors, and ~z are 
the photon polarization vectors. (For the complete 
explicit expression, see ref. [ 13 ]. ) Mass singularities 
are either of infrared type, arising when the photon 
momentum k v vanishes, or, for massless electrons, of  
collinear type, arising from vertices in which the three- 
momenta at the vertex are parallel, configurations for 
which the phase factor (5~to) t vanishes. To give an 
example of an acceptable asymptotic hamiltonian, 
one may define the modified interaction 

f dakl d3k2 
V~AQED'(3;t) = e j  x / ( 2 n ~ - w ( k l  ) x/(2n)32co(k 2 ) 

8 

× ~ Oa(ki)ht(k,, k2, ~ )  exp[-i(5~og)t t]  . 
/ = 1  

(4) 

Here we have simply inserted an unspecified func- 
tion of the momenta Oa(ki). Its purpose is to include 
the infrared and collinear contributions. For these 
configurations, it must reproduce V ~QED) exactly, so, 
in the massless limit, the O function must take the 
value one for the precisely collinear (k~ ock2) or in- 
frared (to3 = 0 ) configurations. An example of the sort 
of function we have in mind is 0(31-I  (SPto)ll), 
where O(x) denotes the usual step-function, and 3~ 
are in general a set of arbitrary parameters but most 
conveniently identified with the experimental reso- 
lutions. The full asymptotic hamiltonian is taken to 
be H A ( 3 ) - H o +  VA, where Ho is the usual free 
hamiltonian. 

More abstractly, the idea is to find a hamiltonian, 
HA, and associated states ]~uf, ) so that, for any 
(normalizable) state I~u), its time evolution 
e x p ( - i H t )  ]~t) approaches exp(--iHAt) I~U + )A as 
t ~  $ ~ .  To state the same thing more precisely, it is 
assumed that HA can be found so that the Moller wave 
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operators g2~/~/~ exist as (proper) unitary operators 
in Fock space ~F, i.e. ~5, 

12b~d~= lim exp(iHt)  e x p ( - i H a t ) .  (5) 
t~Too 

The utility of these M~ller operators is that they pro- 
vide the correspondence between an arbitrary state 
I~t) and its associated in- and out-states #6 i q/+ )a,  
viz., I~) = g2~+/~ I~u + )A. If  the theory described by 
H only involves massive particles, then the free ham- 
iltonian Ho is one such admissible HA, but this is usu- 
ally not the case when the theory contains one or more 
massless particles. The corresponding S-matrix #7 

is associated with transitions between an arbitrary 
in-state I~ +)A and out-state i q ~-)A, viz., 
A(q~- i ~+ )A_A(~+ ISAI ~U + )A. It is this S-matrix SA 
that is expected to be a proper unitary operator, or, 
more physically stated, this S-matrix has matrix ele- 
ments in Fock space ~v that are free of any mass sin- 
gularities. Although the existence of such singularity- 
free transition operators has not been proved in gen- 
eral, there is substantial evidence that such asymp- 
totic hamiltonians do indeed exist. Since the pertur- 
bative Feynman-Dyson S-matrix Svo in gauge 
theories has mass singularities, we know that the free 
hamiltonian Ho is not in this class. However, if the 
massless theory is somehow regulated, such as by giv- 
ing the vector boson a mass or dimensionally regulat- 
ing by continuation to 4 + e dimensions [ 25,26 ], then, 
of course, in the regulated theory, the modified free 
hamiltonian H6 ~ becomes acceptable. But, while op- 
erators that are well-defined for the massless theory 
are approached smoothly as the regulator e is re- 

~5 To be mathematically precise, we assume strong convergence 
to the limit. In general, the asymptotic hamiltonian HA may 
depend explicitly on time, as was done in ref. [23], the for- 
mal ism is a bit simpler if we restrict our attention to time- 
independent HA. 

~6 Lest there be any confusion with non-Fock asymptotic states 
employed in the literature [ 18,23 ], we emphasize that our 
physical Hilbert space o-ugV is a conventional Fock space, and 
these asymptotic states necessarily are in the same .,ufv since 
~2~t*-~)~ are unitary operators within this space. 

a7 A pedagogical review of  scattering theory in this language may 
be found in chapters 6 and 7 of  Newton [24]. While this ref- 
erence does not treat the massless case, his formal discussion 
carries over with the replacement of  H0 by HA. 

moved, certain other quantities such as the usual 
Feynman-Dyson S-matrix S ~  diverge. 

It is a simple exercise to relate S-matrices corre- 
sponding to different asymptotic hamiltonians, since 
the asymptotic states are simply related by a unitary 
change of basis. For the regulated theory, one may 
relate StA ') tO S ~ :  

S~A ~) (-)  (~) (+)t =ff2 H~,),H~O SFD [ H ] ,.Q H~),H~O , (7) 

where SFD[H] ¢`) is the usual Feynman-Dyson S- 
matrix 

SvD[H](~)=,-,(-)* ~(+) 

The relation (7) is closely related to the definition of 
coherent states. If ]~y) is any Fock state, then 

_ ~ ( + ) ¢  
I~u; + )¢A~h~')= ~,/¢~,,,,ng, I~u) (9) 

defines the associated coherent states [~u; _+ )Aa~,). By 
definition, the Fock space matrix elements of S~, ̀) 
may be written as 

(0 IS2)  I~) = Agh~')(q~;- I SFD [H] (') Iq/; + ) A,;h~'), 
(10) 

for any two Fock states I~),  [ ~ ) .  In other words, the 
desired transition amplitudes, the Fock space matrix 
elements of S~ ~ that tend to finite limits as ~-~ 0, may 
be thought of as the matrix elements of the usual 
Feynman-Dyson S-matrix S F D [ H ]  (~) between co- 
herent states [ 17,18 ] ~a 

For the case of scattering of an electron in an exter- 
nal field, we have shown by explicit calculation [ 13 ] 
of the lowest non-trivial radiative corrections that the 
evaluation of  the single-particle matrix element 
( e ' l S g [ A ] l e )  reproduces the classic results ob- 
tained by the cross-section method, for example, in 
ref. [ 7 ]. This correspondence results if (and only if)  
one identifies the parameters A in the asymptotic 
hamiltonian with the experimental energy and angu- 
lar resolutions. It was established in ref. [ 12 ] that (a) 
the same result is obtained if one uses either mass 
regularizations for the electron and photon or if one 
uses dimensional regularization and that (b) the re- 

~s Although these coherent states are frequently described as the 
asymptotic states dressed by soft and collinear particles, in fact 
one can show [ 13 ] that, in the limit ¢--. 0, these coherent states 
are orthogonal to the true asymptotic scattering states, so such 
an interpretation is misleading. 
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sult is non-singular in the limit that the regulators are 
removed. This gives us confidence in the conclusions 
for the novel applications below. 

What if we had chosen HA (3) with parameters 3 
not equal to the experimental resolution? The fore- 
going discussion applies to both massless quanta and 
to particles having a small but finite mass. (For mas- 
sive particles, choosing 3 sufficiently small removes 
any possibility of  degeneracy. ) Thus, for sufficiently 
small 3, SA[3] reduces to SFD. I f  this choice of  3 is 
small compared to the experimental resolutions, then, 
clearly, the cross-section method must be used to 
construct the observable cross section. This observa- 
tion generalizes as follows: I f  the choice of asymp- 
totic hamiltonian HA(3) involves parameters 3 that 
are smaller than the observational degeneracy, one 
must add to the elastic cross section, the inelastic 
contributions of soft and collinear quanta that the 
measurement cannot resolve. More precisely stated, 
if 3exp denotes the experimental resolution, and 
3 < A~xp, then 

daobs(Acxp) = [ ( l '  [SA[A~xp] II)12 

=l( l ' lSA[3]l l )  l 2+ Z l(f lsn['~]li) l  2, (11) 
i,f 

where the second term represents a sum over those 
inelastic initial and final states that cannot be exper- 
imentally distinguished from the elastic contribu- 
tion. This formula has been explicitly verified in the 
case of scattering of an electron in an external field. ~9 
The necessity to include initial-state degeneracy dif- 
fers from the Bloch-Nordsieck [ 1 ] result for abelian 
theories. However, it is well known to be required 
generally for collinear singularities [ 7,25 ] and for in- 
frared singularities in non-abelian theories in those 
amplitudes involving non-singlet initial states [ 3,4 ]. 

Another way to understand the significance of the 
parameters 3 in the asymptotic hamiltonian is as fol- 
lows: The parameters 3 may be thought of  a specify- 
ing a degeneracy domain within which particles are 
either sufficiently soft or sufficiently collinear. Then 
one can show that all matrix elements of SA [3] be- 
tween states having quanta lying within the degener- 
ate phase space vanish [ 13 ] ! This makes it clear why, 
when one chooses 3 equal to the experimental reso- 

lution, the SA-matrix is completely characterized by 
those matrix elements having only non-degenerate 
particles in the initial and final states. 

In most applications, the initial-state resolutions 
and final-state resolutions differ, and it is not neces- 
sary to choose the same asymptotic hamiltonian to 
describe the initial and final states. Indeed, it is sim- 
pler to define a modified scattering matrix 

SARA, [3 f A i] = £2 b,,~*f D~+,~A,, (12) 

where HAt is associated with out-states and HAi with 
in-states. For abelian theories, so long as the initial- 
state energy resolution AEi is less than the detector 
resolution, as is normally the case, then the matrix 
element will in fact be independent of  AE~. However, 
this is not true for collinear singularities, and the ma- 
trix element is not independent of the initial-state an- 
gular resolution 80i or, alternatively, the initial-state 
transverse momentum resolution. (We shall defer for 
the moment a discussion of how that resolution is to 
be experimentally determined. ) Generally, for mas- 
sive particles, the cutoff on the collinear singularity 
is governed not simply by the angular resolution die n 
or the corresponding transverse momentum resolu- 
tion 8p±, but rather by the so-called transverse mass 
m ~ + m  2 or corresponding angle m±/E= 
x/dion 2 +Z2, where Z c-  m/E. This is the quantity that 
sets the scale of  the cutoffon the collinear singularity. 
Thus, if db" >>Ze, then the mass may be neglected, 
whereas, ifd~o n <<Z c, it is the mass rather than the res- 
olution that is the important parameter. In this latter 
case, treating the incoming state as a single particle 
state and neglecting the experimental resolutions is a 
valid approximation. 

Now let us return to the paradox posed earlier con- 
cerning helicity-flip bremsstrahlung in the forward 
direction. A straightforward application of the pre- 
ceding formalism [ 1 l, 14 ] leads to the result that the 
cross section for eft p--+Ve Ly-I- X is proportional to the 
corresponding cross section for e~-p--,ve L + X  times 
the factor 

f d0 2 
Og• 2 . (Z2.4.02)2,  (13)  

~9 See appendix B ofref. [ 13 ]. 
where 3re is the smallest angle outside of which we 
can be certain that no photon was emitted and ~n is 
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the initial-state angular resolution, presumed to be 
smaller than A f. This has the properties advertised: 
In the limit that Z~--,0, this vanishes so that helicity 
conservation is restored for the massless theory. 
However, for usual experimental situations in which 
3 ~n < X~ << A f, this is a term of O ( a )  and not of order 
aX 2. Given the anticipated luminosity and degree of 
polarization expected for HERA, and given the va- 
lidity of  the CDF lower bound [ 15 ], any events ob- 
served with a right-handed eft would presumably be 
due to this background ~to 

This helicity-flip bremsstrahlung is an example of  
what we have called an "evanescent" process, in that 
it involves a transition that naively appears to exist 
for the massless limit of  the massive theory, but in 
fact does not exist in the massless theory. Despite their 
common origins, this is a different type of mass sin- 
gularity than the more familiar infrared or collinear 
ones that manifestly diverge in the limit of zero mass. 
Evanescent processes remain perfectly finite in the 
massless limit of  a massive theory, but in fact vanish 
when experimental resolutions are taken into ac- 
count. What we have illustrated is a general result 
concerning such processes: the massless limit is 
smooth but subtle. Another application concerns the 
decoupling of longitudinal photons from massless 
electrons, or longitudinal gluons from massless 
quarks, a subject on which there has been some con- 
fusion [9 ]. Using this formalism, it is straightfor- 
ward to show that these longitudinal modes decouple 
from observables [ 14 ]. 

Until now, although we asserted some knowledge 
of the magnitude of the experimental initial-state an- 
gular resolution, we have not explained how it is to 
be determined in a given situation. This is an unfa- 
miliar concept and requires considerable discussion 
to do it justice [ 13,14]. One would think that a clas- 
sical source could have arbitrarily precise resolution, 
given that there is an infinite amount of  time to pre- 
pare the beam. In such a case, the initial-state reso- 
lution could be inferred from the geometry of the ex- 
periment and the quantum limits on the precision of 
a measurement resulting from the uncertainty prin- 
ciple. For example, an electron travels a finite dis- 
lance in a finite time T from where it emerges from 

~1o Complete derivations and numerical results have been given 
in ref. [l l t .  

the accelerator to the intersection point and this, in 
turn, implies a minimum energy uncertainty AE= 
h/T. (For a hard photon and a sufficiently energetic 
electron, this can be shown to yield a non-zero ~" .  ) 
Similarly, the knowledge that the particle lies within 
a certain region in the transverse plane sets a lower 
limit on the transverse momentum resolution which 
may in turn be translated into an initial-state angular 
resolution. However, in practice, we believe the ini- 
tial-state angular resolution is set by limiting factors 
in the accelerating structures themselves, associated 
with betatron oscillations that are excited by the 
quantum fluctuations in the emission of bremsstrah- 
lung photons by a relativistic electron [27]. Such 
bremsstrahlung form a "searchlight" peaking at an 
angle Z ~ with respect to the initial direction of the 
electron. The electron's recoil, this inevitable jitter in 
the electron's direction due to random emission of 
photons, is the mechanism that drives the betatron 
oscillations and creates uncertainty in the electron's 
direction. Thus, we anticipate that, in an optimally 
designed accelerator, the initial-state angular resolu- 
tion fib" will be not so much smaller than Z~, al- 
though, since the probability of  bremsstrahlung is 
rather small, the resolution may be smaller than this 
on the average. As we have seen, the relative size of  
~bn and Ze is all-important in determining whether 
initial-state degeneracy or coherence is important in 
practice, so one must be more precise than this order- 
of-magnitude estimate. In refs. [ 13,14] we have 
evaluated this angle directly from the betatron am- 
plitude and transverse emittance of the beam and 
have found that ~"/Xe is about 0. ! for SLC, 0.3-0.4 
for LEP, and about 0.16 for HERA. Sin~e this ratio 
is squared in calculating corrections to initial-state 
collinear singularities, this has a small effect. Thus, it 
is the electron mass and not the accelerator parame- 
ters that serves as the cutoff on the physical singular- 
ity. In these cases, naive calculations with SFD S- 
matrix elements ought to be accurate to 10% or better 
when compared with the correct answer based on 
SA[A]. In proposed future e - e  + colliders, the de- 
mands for luminosity lead to even smaller estimates 
of ~o"/Ze. In this sense, higher energies do not ap- 
proach the massless limit. 

As a mathematical aside, the coherent state for- 
malism [ 18,23 ] has been underutilized, at least in el- 
ementary particle physics, because it seems to re- 

350 



Volume 277, number 3 PHYSICS LETTERS B 5 March 1992 

quire the introduction of unfamiliar concepts, such 
as a generalization of the Hilbert space of states to 
yon Neumann space, to take into account unitarily 
non-equivalent representations of the canonical 
commutation relations. In this work, we have re- 
vived an observation originally due to Blanchard [ 22 ] 
that one option for treating massless particles is to 
continue to associate the physical space with Fock 
space and identify the more familiar states associated 
with non-interacting particles described by Ho with a 
non-equivalent representation of the canonical com- 
mutation relations *~ 

In summary, we have developed the interpretation 
of the S-matrix approach to mass singularities. This 
demonstrates that the summation over degenerate 
initial states involves neither an ensemble average nor 
a modification of quantum mechanics but is intrin- 
sically necessary to form meaningful observables or a 
sensible S-matrix. One consequence of this work is 
that, for properly formed transition amplitudes and 
observable cross sections, perturbation theory can be 
used for massless QED. Although electric charge is 
screened in the limit that the electron mass is zero, in 
fact, the usual Feynman rules may be used for mass- 
less electrons to evaluate meaningful transitions, pro- 
vided initial-state and final-state resolutions are taken 
into account. We have ignored questions of gauge in- 
variance here but wish to note that, despite HA not 
being gauge invariant, results obtained thus far are 
gauge invariant, suggesting that, generally, gauge in- 
variance will be maintained up to terms that vanish 
with the resolutions. 

There are many other potential applications of this 
formalism. As a practical matter, initial-state radia- 
tive corrections, crucial for interpreting experiments 
at accelerators such as LEP, can be performed more 
precisely and efficiently because one does not require 
a cancellation between divergent cross sections but 
can display transition amplitudes with integrands that 
are free of mass singularities. On the theoretical side, 
non-abelian theories are more complicated, espe- 

~1 ~ This is very much in keeping with the philosophy elaborated 
by Wightman 128 ] and the conventional view of observables. 
While we will not elaborate on this here, we wish to emphasize 
that the use of this formalism requires the introduction of no 
new principles into quantum field theory and that calcula- 
tions may be performed in Fock space. 

cially because of the difficulties presented by con- 
finement as in QCD ~2. Matrix elements must be 
factored into hadronic, long-distance pieces and short- 
distance pieces, involving quarks and gluons, to which 
perturbative QCD may be applied. The existence of 
mass singularities in the Feynman-Dyson perturba- 
tion expansion of quark-gluon amplitudes under- 
mines factorization and requires a certain amount of 
fancy footwork to keep things straight. One would ex- 
pect that using the SA matrix which is free of mass 
singularities would be simpler, but what parameters 
are to be associated with the resolution A? This is a 
subject for further research, but we would hazard the 
guess that the energy resolution is to be associated 
with the characteristic scale AOCD involved in the fac- 
torization into parton amplitudes and structure func- 
tions. The initial-state transverse momentum reso- 
lution for partons is presumably of order AQCD, from 
which can be deduced an initial-state angular resolu- 
tion for "beams" of quarks or gluons and the final- 
state angular resolution is presumably whatever con- 
vention is used to define a quark or gluon jet. This 
formalism might also illuminate the proper role of 
higher-twist or quark mass effects that are important 
for determining the approach to the asymptotic limit. 
It appears that this approach also resolves some of 
the technical complications associated with the inter- 
pretation of anomalies in the parton model [29,30]. 

We are grateful to D.N. Williams for numerous 
discussions and for pointing out that one could choose 
to regard the physical subspace as Fock space rather 
than a v o n  Neumann space. We wish to thank J.D. 
Bjorken for discussions and correspondence. We wish 
to thank D.R.T. Jones, A. Mueller, G. Sterman, and 
A.S. Wightman for helpful discussions as well. Por- 
tions of this work were supported by the Department 
of Energy and by the National Science Foundation 
(Grants No. PHY89-04035 and No. PHY91-08054. ) 

a~2 QCD with more than 16 flavors is thought to have a pertur- 
bative phase resembling QED, and this formalism should go 
through essentially unchanged for the evaluation of perturba- 
tive transition amplitudes in this weak coupling phase. 
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