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The electronicspectrumofsheetsofgraphite (planehoneycomblattice) foldedinto regular
polyhedrais studied. A continuum limit valid for sufficiently large moleculesand based
on the tight-binding approximationis derived.It is found that a Dirac equationdescribes
the flat graphite lattice. Curving the lattice by insertion of odd-numberedrings can be
mimickedby couplingeffectivegaugefields. In particular theC

60 andrelatedmoleculesare
well describedby theDirac equationon the surfaceof a spherecoupledto a color monopole
sitting at its center.

1. Introduction

Fullerenemolecules[1] arecarboncageswhichappearin thevaporizationof
graphite.They havebecomea sourceof greatfun for physicistin differentareas
dueto their curiouspropertiesand the relativeeasein which theycan now be
synthesizedandmanipulated.Oneof their mostbeautifulfeaturesfrom aformal
point of view is their geometricalcharacterandthe exciting possibilityof pro-
ducingthemin all sortsof geometricalshapeshavingasbuildingblockssections
of thehoneycombgraphitelattice.Themoreabundantofthem,theC60 molecule
nicknamed“bucky ball”, is alsothe mostspherical.The sixty carbonatomsare
placedat the verticesof atruncatedicosahedron,obtainedafter replacingeach
of theicosahedronverticesby a regularpentagon.The shapeof theC60 molecule
is then thatof a soccerball, consistingof 12 pentagonsand20 hexagons.This
moleculehasshowntopossessstrikingmagneticandelectricproperties,the most
importantof which is the superconductingnatureof its alkalinecompounds.In
the processof graphitevaporization,thereappeartogetherwith C60 afull set of
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Fig. 1. Generictriangularblock for honeycomblattices folded on the tetrahedron,the octahedron
and the icosahedron.

family membersof variouscategories.Someare slightly deformed,as the C70
whoseshapeis more like an americanfootball —an elliptical deformation—,
someothersare directly relatedwith C60 in the sensethat theyarebigger but
havethe symmetrygroup of the icosahedron.Theselargermoleculesmaybe
imaginedas built from triangularpiecesof the honeycomblatticeof the type
shownin fig. 1. Whenthetrianglesareassembledasthefacesof the icosahedron
we end up with a lattice which hasconstantcoordinationnumberfor all the
sites.The first moleculesof this seriesfrom the C60, namelythe C240 andthe
C540 molecules,havealreadybeensynthesized~‘. Thehoneycomblatticeis very
interestingin the studyof two-dimensionalstatisticalmodelsasarathernontriv-
ial tessellationof the plane.Thecombinationof the honeycomblatticewith the
truncatedicosahedronstructuretogetherwith the existenceof largermolecules
grownfrom the motherC60 opensa totally new field of research,namelythisof
two-dimensionalstatisticalmodelson curvedlattices. Moreover, the compact
geometryof the icosahedronis not the only possibility to fold the honeycomb
lattice. Thetriangularpiecesof thetypeshown in fig. 1 can bematchedto form
a latticewith constantcoordinationnumberinscribedin the tetrahedronor the
octahedron.It turnsout that, for all regular polyhedrawhosefacesareequilat-
eraltriangles,onemaydevisea recursiveprocedureto build respectiveseriesof
latticeswith growing numberof pointsandpreservingthe symmetrygroup of
the original polyhedra.

The mainpurposeof the presentarticle is to studytheelectronicpropertiesof
* A nice descriptionof the fullerenesand their most curiousfeaturescanbefound in ref. [21.
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the seriesof moleculeswhich, startingfrom C60,havethesymmetrygroupof the
icosahedron.Of the four valenceelectronswhicheachcarbonatomhas,threeof
them build up the a-orbitalsalongthe lattice links andareresponsiblefor the
elasticproperties.Theremainingm- orbitalsgiveriseto theconductingproperties
of themolecules,which canbeconsideredas peculiarlatticesat half-filling. In
the descriptionof the electronicexcitationswe will rely on the tight-binding
method,which translatesthe probleminto thatof finding the spectrumof the
hoppinghamiltonianfor the fermionoperatorsat,a5~,

H=y~a~a1, (1)
(i,j~

thesumrunningovernearestneighborsi, j in the curvedlattice.In orderto make
contactwith experiment,two differenty hoppingparametersshouldbe taken
for pentagonlinks andfor links belongingto pairsof hexagons.This is consistent
with thefact thatin theC60molecule,for instance,the interatomicdistancealong
a pentagonlink is slightly greaterthanthe distancebetweenneighboringatoms
in different pentagons.It hasbeenpointedout, however,that anyratio of the
two hoppingparametersbetween0.9 and 1.0 gives quite reasonableresults [3].
It is importantto stressthat, in spite of neglectingthe coulombic interaction
betweenthe electrons,the tight-bindingapproximationpredictsenergy levels
which arein good quantitativeagreementwith the existingexperimentalresults
[3,4].

In thispaperwe undertakethe problemof diagonalizing(1) in two steps.We
first investigatethe planehoneycomblattice and we then fold it to form the
given polyhedron.The puregraphitesheetis alreadyvery interestingin its own.
The more important characteristicwe find is that, insteadof having a Fermi
line, it hasafinite set of isolatedFermi pointswhenstudiedat half-filling. This
is thephysically interestingsituationfor carbonlatticesas discussedin sect.2.
This is the basis which allows us to build a local field theory to describethe
low-energyexcitationsof the electronichamiltonianabout eachof the Fermi
points.Thegeometryandcoordinationof the lattice— it is in fact madeof two
interpenetratingtriangularsublattices— determinesthe field theory to bethat
of a two-componentDirac spinor,while the existenceof two independentFermi
pointsdoublesthe spectrum.

Next we cometo the studyof the folded lattices,having in mind in partic-
ular the lattices of the threebasic regular polyhedra: tetrahedron,octahedron
and icosahedron.All of them produceby simple truncationa lattice that can
thenbe grown indefinitely the sameway as the C60 does.Being regularpolyhe-
dra, all of them can be flattenedoff on the planein a certainway so thatwe
are back to the study of the honeycomblattice in a portion of the planewith
rathernontrivial boundaryconditions.Notice thatthis approach,by emphasiz-
ing the translationalinvarianceof the problem, is orthogonalto the ones that
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usegroup-theoreticalmethodsbasedon therotationalsymmetryof the molecule
[4]. Whenthis procedureis appliedto the tetrahedronthe first thing that we
observeis that its conicalsingularities(vertices),althoughtruncated,generate
linesof frustrationin the lattice.Moreconcretely,its two triangularsublattices
areinterchangedby theboundaryconditions.As a consequenceof this, we learn
abouttheinterchangeofFermi points(orof theatomsin thebasisof theBravais
lattice) that takesplace in the tetrahedronas well as in the icosahedron~ The
effect of frustrationis then twofold, since on onesidewe havecurvatureand
on the othersidewe haveto couplethe formerly independentDirac spinorsto
producethe mentionedinterchange.For that we treatthe two Dirac spinorsas
the two componentsof an SU(2) color doublet.Eachvertex is traversedby a
quantumof color magneticflux mimicking the interchangeof color amplitudes
inducedby the verticesof the polyhedron.We are able in this way to make
contactwith the phenomenologicalstudypresentedin ref. [5]. Therethe effect
of the magneticfield was smoothedover the sphereby consideringa monopole
sitting at its center,and the simplified model for the icosahedralC60 with an
abelianmonopoleof charge~ reproducedthe observedlow-energyspectrum.
The refinementpresentedhererepresentsa qualitativelybetter understanding
of theproblemandallows usto predictthecorrectvalueof themonopolecharge.

The presentationof the article goes as follows: in sect. 2 we study in full
detailtheplanehoneycomblattice,performthetight-bindingapproximationand
extractthe continuumlimit. In sect.3 we describethetechniquefor solving the
free-fieldhamiltonianin thehoneycomblatticefolded on regularpolyhedra.The
caseof the grown tetrahedronwith 48 latticepointsis workedout as an explicit
example.In sect.4weexplain in detail thephenomenologicalmodelproposedto
computethespectrumof largeicosahedralmolecules.We will justify thevalidity
of the continuumlimit for the fullerene molecules,discussthe role playedby
the peculiargeometryof thehoneycomblattice,andwrite the appropriateDirac
equation.In sect.5 wewill write down asummaryof themain pointsdeveloped
throughthe paperhighlighting the more importantissuesand will discussits
implicationsandprospects.

2. The planarhoneycomblattice

We will seein what follows that the tight-bindingapproximationappliedto
the computationof the electronicspectrumin periodicpotentialsleadsto the
equivalentproblemof the spectrumof a free-fieldtheory on alattice. We will
focuson the resolutionof the honeycomblatticeon the two-dimensionalplane.

In solid-stateapplicationsoneis interestedin periodicpotentialswhich cor-

* We noteby passingthat suchinterchangedoesnot take placein the octahedronwhich will be

treatedin a different publication.
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respondto a given dispositionof the atoms in a crystal. The set of discrete
translationsunder which the potential V(r) is invariant can be generatedby
independenttransformationsT1 andT2 (in two dimensions)so that

V(r+pT1 +qT2) = V(r) Vp,qE7L. (2)

The statementofBloch theoremis thattheenergyeigenfunctionsof thequantum

problemcanbe expressedas
!I~k(r) = exp(ikr)uflk(r), (3)

with Unk (r) beinga periodic function

uflk(r+pTl +qT2) = uflk(r) Vp,qE7L. (4)

In the aboveexpressionn standsfor the bandlabel, while k labelsdifferent
statesin aband.A way of exploiting the contentof Bloch theoremis to write
the energyeigenfunctions(3) in the form of the so-calledWannierfunctions

Wnk(r)=~7~>exp(ik.rl)cbn(r—r,), (5)

wherethe sumrunsoverall the latticepoints

r=p1T1-~-q1T2, p,q1e7L. (6)

It canbeshown that (5) is a Bloch wavefunctionand,vice versa,thatan eigen-
function with the property (3) can alwaysbe cast in the form (5) (seefor
instanceref. [6]).

The simplestinstancein applyingthe tight-bindingmethodoccurswhenthere
isno significantmixing betweenstatesbelongingto differentbands.Thenonecan
insertonelinear combination(5) in thecomputationof the energyeigenvalues.
Sincethe energyeigenfunctionsarealwaysexpressiblein the form (5), wemay
takeadvantageofthe variationalapproachto concludethatthe energylevelsare
given by

fd
2r~i1kH~1-’k >~

1exp(ik.rt)fd
2r~(r)Hcb(r—rj)

fd2r WkWk >
1exp(ik .r~)fd

2rçb(r)q~(r—r
1)

In physicalsituationsin which the orbitals q~are localizedaroundeach lattice
site, it maybe appropriateto approximatethe numeratorby integralsinvolving
only nearest-neighbororbitals,which is the essenceof the tight-bindingmethod.
In practice,it is alsoreasonableto takethe norm ofthe Wannierwavefunctions
asconstant,whichwe set to oneby a propernormalization.Thisgivesthe result
for the energylevelsin tight-bindingapproximation

Ek = f d
2r~(r)Hq~(r)+ ~ exp(ik.rj)fd2r~(r)Hq~(r_rj), (8)

nearest
neighbors
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Fig. 2. The planarhoneycomblattice.

wherethe sumrunsoverall nearestneighborsi of the origin.
The derivationwehavemadeis appropriateto latticeswhich haveonly one

atomperprimitive cell, thoughthe extensionof themethodto thegeneralcaseis
straightforward.For thelatticewhichis theobjectof our interest,the honeycomb
latticeof graphiteshownin fig. 2, therearetwo atomsin the primitive cell. We
maytakeas generatorsof the latticethe vectors

= ~/ie~, T2 = ~ ~e ~ (9)

Thenwe needto placean atomat the origin of the primitive cell andanother
displacedatd = e~,for instance,to producethe honeycomblatticeby repeated
applicationof the generators.The wavefunctionsq~may be thoughtof being
composedof two identicalorbitalsç~,and~ localizedrespectivelyaroundeach
of thetwo mentionedpointsof theprimitive cell. We mayexploit thevariational
freedomby consideringan arbitrarylinear combinationof thesetwo orbitals,
which we write in the form

~(r) = c.ç~.(r) + c0exp(ik d)~0(r—d). (10)

By introducingthisexpressioninto the energyfunctionalwe get,in tight-binding
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approximation,

Ek = ~.c.fd2rc~.(r)Hcb.(r) + ~ocofd2r~0(r_d)Hcbo(r_d)

+~.c0 >exp(ik . u1) fd2r ~.(r)Hçb0(r — u1)

+~c. ~ exp(ik . p~)fd2r ~0(r — d)Hq~.(r — d — v1), (11)

where{u~} is a triad of vectors of link length pointing respectively in the direction
of the nearestneighborsof a. point, and{v1} the triad madeof their respective
opposites(seefig. 2). We facetheidealsituationin whichneithertheç~.-northe
~0-orbitalsaredirectionatedoverthetwo-dimensionalplane.Thenthesymmetry
of theproblemimposesthat

f d
2rçb•(r)Hçb.(r) = f d2rçbo(r~d)Hçb

0(r~d)= /3, (12)

fd2r~.(r)H~o(r_ut)=fd2r~o(r_d)H~.(r_d_vi)=y. (13)

The variationalproblemfor the honeycomblatticebecomes,then,the diago-
nalizationof the quadraticform

/3 y~exp(ik.u1)

Ek = R. ~) . I (c.) (14)

y>exp(ik.v1) /3

We will disregardin what follows the diagonalcontributionin (14) as long as
it is independentof k. We will comeback later to the bandstructureof the
honeycomblatticeof graphite.

The approximationsmadeby the tight-binding methodreducethe problem,
in practice,to thatof a set of coupledoscillatorson the lattice.This can be ap-
preciatedin the expressionof the energyfunctional (14), in whichwhat matters
is essentiallythe coordinationbetweenthe lattice sites. By applicationof the
tight-binding methodwhat we aredoing actually is diagonalizingthe hamilto-
nian

H=y>a~aj, (15)
(1,1)

wherethe sumis overpairs of nearest-neighborsatoms i, j on the latticeanda~
a~arecanonicallyanticommutingoperators

{at,a1}={a~,a~}=0, {aj,a7}=5j1. (16)

In fact, this problem can be solved by a variant of the method sketched above.



778 J. Gonzalezet al. / Electronic spectrumoffullerenes

We first form the eigenstateof T1 andT2

= ~c.exp(ik r1)a,
t 0) + ~c

0exp(ik •r1)a,~0), (17)

assigningdifferentcoefficientsc. andc0 to blackandblank points,respectively,
asdepictedin fig. 2. Underthe actionof thehamiltonian,however,blackpoints
aremappedinto blank pointsandvice versa.We have,indeed,

H ~I’ = y c0 exp(ik . r~)a~10) + y c. exp(ik . r~)a~0)
i • (i,j) 1 o (if)

= y>exp(ik u1) ~c0exp(ik .r1)a1~lO)

+ y>exp(ik.vj) >c.exp(ik.rj)a,~I0). (18)

It is clearthatthe state(17) is aneigenvectorof H providedthatthe coefficients
c, andc0 aresolutionsof the eigenvalueproblem

0 y~exp(ik.u1)
J (c~’\ E 19

y~exp(ik~v1) 0 \~c0)= kk~c0

This is nothingbut a differentexpressionof the variationalproblem (14).
From (19) a straightforwardcomputationgives the bandof levels

Ek = +y~l+ 4cos2~~kx+ ~ (20)

The structureof this bandhasvery striking propertieswhenconsideredat half-
filling. This is the situation which hasphysical interest, since in the caseof
graphiteeachsite of the honeycomblatticeyieldsoneelectronto the Fermi sea.
Eachlevel of thebandmayaccommodatetwo statesdueto the spindegeneracy,
andthe Fermi level turns out to be at the midpointof theband, Ek = 0. Quite
amazingly,the honeycomblattice at half-filling hassix isolatedFermi points,
insteadof a wholeFermi line. In the reciprocallatticegeneratedby

K1 = — ~1re~, K2 = ~ (21)

the first Brillouin zonehasas many momentaas primitive cells containsthe
original lattice. Suchaprimitive cell of the reciprocallatticeis an hexagon,as
shownin fig. 3. The only pointswhich reachthe Fermi level arethe six vertices
of the hexagon

k~=+-~, k~=0,

= ±3V_~ k~= ±~it. (22)
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Fig. 3. The reciprocallattice in momentumspace.The hexagondepictedin the figure represents
the first Brillouin zone. The dots standfor independentenergyeigenstatesof the lattice in fig. 5.

It canbe checkedthat thesearethe only roots of Ek = 0. The representation
of the lower branchof the bandin fig. 4 illustratesthe peculiar form of the
Fermi sea.At last, the independentnumberof Fermi pointsis two, sinceany
two momentacongruentby K1, K2 arejust differentlabelsof the samestate.

The existenceof a finite numberof Fermi pointsat half-filling hasimpor-
tant consequencesin the descriptionof the spectrumabouttheFermi level. The
low-energyexcitationscan be studiedby takingthe continuumlimit at anytwo
independentFermi points.As longas the numberof themis finite, the outcome
is thata simplefield theorysufficesto describethe electronicspectrumof large
honeycomblattices.The continuumlimit can be takenby naïvescaling of di-
mensionfulquantitiessincewe aredealingwith a free theory.For this purpose
we introducea parameterameasuringthe link lengthandexpandthe 2 x 2 op-
eratorin (19) at anyof two independentFermi points.At the first Fermi point
in (22), for instance,wehave

(23)
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Fig. 4. Representationin (E, k) spaceof the lower branchof the electronic dispersionrelation
(y = 1). The cuspsappearat the six cornersof the first Brillouin zone.

and

0 y>exp(lak.uf)

y~exp(iak.vf) 0

—~ya(~k~~ ~ +iok~) + O((a ok)2). (24)

The naïvescaling

lim 7-1/a = ~yaT.ök (25)
a—~0

dictatesthe effectivehamiltonianin the continuumlimit, whichturns out to be
the Dirac operatorin two dimensions.The sameresultis obtainedat anyof the
six points in (22). Given the existenceof two independentFermi points, we
concludethat the low-energyexcitationsof the honeycomblatticeat half-filling
aredescribedby aneffective theoryof two two-dimensionalDiracspinors.This
resultisatoddswith the morestandardcontinuumapproximationto latticethe-
oriesin condensedmatterphysics,the effectivemasstheory.There,a quadratic
dispersionrelationathigh-symmetrypointsof theBrillouin zonegives riseto an
effectiveSchrödingerequation,with oneparameter,the mass,chosento repro-
ducetheexactcurvature.Only one-dimensionalsystems,andthree-dimensional
semiconductorswith the diamondstructureandno gap, areknownto give rise
to the Dirac equation.
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Fig. 5. Curvedhoneycomblatticeunfoldedon the plane.The outerlines indicatetheidentifications
betweenboundarysegmentswhich embedthe lattice on the tetrahedron.

3. Foldedhoneycomblattices

In thissectionwe describethe generalmethodby which thefree-fermionthe-
ory canbe solvedon homogeneouscurvedlattices.By an homogeneouslattice
we meanone in which the coordinationnumberremainsconstantfor all the
vertices.Thesearehoneycomblatticesinscribedon thetetrahedron,the octahe-
dronor theicosahedron.Toillustratethe methodwetaketheparticularcaseofa
generichoneycomblatticeinscribedon thetetrahedron.On topologicalgrounds,
the tetrahedronis anorbifold, i.e. amanifoldwith severalsingularpoints.There
exists aparticularsetof coordinateswhich mapsthis orbifold into a bounded
region of the two-dimensionalplane, as shownin fig. 5 [7]. When such a co-
ordinatesystemis chosenthe latticecanbe unfoldedon the plane,bearingin
mind the appropriateidentificationsof points.

We want to solvethe hamiltonianof coupledfermionoscillators (16),

H=y>a~ai, (26)
(1,1)

wherethe sum is now overpairsof nearestneighborsi, I on the folded honey-
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comblattice.Supposethat we introducea would-beeigenvector

W=~Ja~~I0), (27)

then,underthe actionof the hamiltonianwe have

WI-’ = y~~f1a~l0), (28)
i (i,f)

wherethesumoverj is overnearestneighborsofthe i vertex.We haveasolution
of the eigenvalueproblemif andonly if the quantity

(29)
(i,J)

is constantoverthelattice. In the particularcoordinatesystemwhich mapsthe
tetrahedronon the region of fig. 5, it is not difficult to think of functionswhich
satisfy (29), with )~being a constant.Actually, the most general solution of
thisdifferenceequationis givenby a combinationof exponentialfunctions.We
haveto require,however, that the given combinationbe single valued on the
tetrahedron.At thispoint, it provesusefulto turnfor amomentto theboundary
valueproblemon the continuum.

Supposethatwewere lookingfor singlevaluedanddifferentiablefunctionson
theregionof fig. 5, with all pertinentidentificationsmade.The setof planewaves
allows us to build a completeset matchingall boundaryconditionsimpliedby
the identifications.Theseare, in units in which the sideof the triangularfaces
is L,

W(O,y) = W(O,—y), (30)

n VW(0,y) = —n V~P(0,—y), (31)

/~L,~L+y)= W(/~L,~L_y), (32)

n.VJ(/~L,~L+y) = n.V~J(~~L,~LY), (33)

W(x,y) = ~P(x,y + 2L), (34)

wheren denotesalways the normal unit vector pointing outwards the given
boundary.The first two boundaryconditionscanbe satisfiedat onceby taking

W’-..~cos(k.r). (35)

The requirementof periodicity (34) implies that

k~=~n, nEZ. (36)

Finally, it is easilyseenthat (32) and (33) are satisfiedprovidedthat

+ = ~m, m e 1, (37)
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which givesthe constraint

k~= ~ (m — in). (38)

We havefound, therefore,acompleteset {~P(m,n)},with

= cos(k(m~~~.r), (39)
(mn) 1

k ‘ = —j=—(m—~n)ex+7ne~, ~ (40)

for the differentiablefunctionson the tetrahedron.
Going backto our original problem,one finds that the functions W(mfl) are

not by themselvessolutionsto eq. (29). However, it is now an easytask to
producesolutionsfor the eigenvalueproblemon the lattice. One hasfirst to
split artificially the pointsin fig. 5 in two categories,sayblackpointsandblank
points, dependingon the orientationof the adjacentlinks as shown in fig. 5.
Then,onemayform a function~ on the latticeof the type (27) with

= exp(+irj.k(m~h1)) for blackpoints,

= exp(_irj.k(mt~)) for blank points. (41)

Alternatively,one mayalsoform a function~I-ri
2)with

f(2) = exp(_irj.k(mh1)) for blackpoints,

f(2) = exp(+irjk(m~) for blank points. (42)

It isobviousthateitherof thesetwo choicesgivesriseto asingle valuedfunction
for the lattice on the tetrahedron.On the other hand, by applicationof the
hamiltonianon weget

H!I’~I) = y ~ exp(—ir~.k (m,r~)a~JO) + y ~ exp(ir
1.k(m,t~)a~JO)

I • (if) I o (if)

= y~exp(_irj.k(m )~exp(_iuf.k(m~~)aj4 0)

+ y ~ exp(+ irj.k(m~~~)~ exp( + iv1k (m~n))a±0), (43)

where{u1} and{v~}arethe two triadsmentionedin the previoussection.The
quantity

~ exp(_iuj.k(m~~))= ~ exp(iv~.k(mn)) = (m,n) (44)

is constantoverthe lattice, so that W”~is mappedinto ~[/(2) by the actionof
thehamiltonian,andvice versa.In this way we havebuilt, for eachpair (m, n),
a two-dimensionalspacewhich is held invariant under the actionof H. The
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eigenvaluesof this operatorcan beexpressed,therefore,in the form

E(m,n) = +yI~(rn,fl)J= +y~l + 4cos2i~k(m,~ + ~

(45)

At thispoint, we mayaskwhetherall the momentawhichsatisfytheboundary
conditionsin the continuumarecompatiblewith the quantizationconditions
imposedby thelattice.Thesearisefrom thefact that, undercertaintranslations,
the latticemapsinto itself. An independentset of them is given by the transfor-
mations2P(T1 + T2) and2P(—T 1 + 2T ~),whereP is a positiveintegerequal
to ~ timesthe numberof hexagonsalongthe x-direction.Theprojectionsof the
allowed momentaonto thesetwo vectorsare quantizedin the form

2Pk.(T1+T2)=2mp, pEl, (46)

2Pk.(—T1 + 2T2) = 2irq, q E 7L. (47)

The momenta(40) found in the continuumsatisfyautomaticallythesecondi-
tions. This is easily seenafter adjustingproperly the length L of the sides of
the triangularfacesto its latticedimension,3P. We end up with the outcome
that the allowedmomentaon the continuumfill up the first Brillouin zoneof
the lattice. In general,every two oppositemomentagive rise to two solutions
with oppositeenergyon the lattice.Thereareonly a few exceptionsto thisrule,
correspondingto thosemomentasitting on the boundaryof the first Brillouin
zone, in which the latticeactually identifies modescorrespondingto different
momenta.Only in suchcasesthereisonemodeforeachpair ofoppositepointsin
the reciprocallattice.This explainswhy in all the honeycomblatticesinscribed
in the tetrahedronthe numberof zero modesis two, one for eachof the two
independentFermi points. We give in table 1 the spectrumof the independent
modescontainedin the first Brillouin zone,in the particularcaseP = 2 which
correspondsto the latticeof fig. 5 (we set y = —1).The energyeigenvaluesco-
incidepreciselywith thoseobtainedby numericaldiagonalizationof the lattice
hamiltonian,representedin thetop diagramof fig. 7.

The methodwe havejust illustrated in the caseof the tetrahedroncanbe
applied to solve the spectrumof honeycomblattices inscribed in any of the
remainingorbifolds, namely the octahedronandthe icosahedron.The lesson
thatwelearnby following thisapproachis that the eigenfunctionsof the curved
latticearegivenby momentastill lying in thefirst Brillouin zone, in whichsome
pointshavebeenidentified accordingto the symmetriesof the latticeunfolded
on the plane. In the caseof the icosahedron,however,one may devisemore
economictechniquesin order to predictthe relevantpropertiesfor solid-state
applications.It is possible,aswewill seein what follows, to extracttheessentials
of the methoddescribedabove,in orderto modelthe propertiesof the modes
nearthe Fermi pointsto a high degreeof approximation.
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TABLE 1

Spectrumof the hoppinghamiltonian for the lattice in fig. 5

k
5 E

0 0 —3

±(l +
ir/6
ir/6

r/2v~ m/6
ir/ 3

—m/2v~

2m/3~/~ +2

ir/3

5m/6v~ ir/6
2ir/3v”~ ir/3

ir/2
—5ir/6v’~

,r/3

m/v~ ±1

7r/2

m/3
2ir/ 3

—7t/vI~

7ir/6v’~ m/6
2m/3
ir/6

4ir/3’J~ 0
2ir/3’/~ 2~r/3

4. Effective field theories in the continuum limit

In this section,ratherthanpursuingthe exact diagonalizationof the hamil-
tonian (26) we undertakethe formulationof effective field theoriesdescribing
the low-energyexcitationsof the folded honeycomblatticesat half-filling. The
analysisof the previoussectionindicatesthe generalway to proceed,in a man-
ner which makespossiblethe treatmentof the morecomplicatedlatticeon the
icosahedron.The resolutionof the honeycomblatticeon the tetrahedronshows
that the formal expressionof the dispersionrelationremainsuntouchedin the
curvedlattice, andsusceptibleof beingconsideredin the continuumlimit to
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producea simplefield theory.Takingthe continuumlimit is a way of amplify-
ing the structureof the levelsinfinitely closeto eachof the Fermi points. For
this reason,the statesof the effective field theory are attachedto any of the
two independentFermi points,giving risein the caseof the planarlatticeto the
spectrumof two uncoupledDirac spinors.Regardingfolded latticesin which
the two sublatticesof black andblank pointsare exchangedby going around
a conicalsingularity, the admissiblewavefunctionsaremadeof pairsof plane
waveswith oppositemomenta.We havealreadyapplied this constructionfor
the latticeon the tetrahedron,andit turns out to be alsopertinentfor the lattice
on theicosahedron.In momentumspacetheinversionwith respectto the origin
exchangesthetwo independentclassesof Fermipoints.It becomesclearthat,for
thementionedhoneycomblattices,thestatesof thetheoryhaveto accommodate
into the spectrumof two coupledDirac spinors.

To understandthe natureof the interactionbetweenthe two spinorswe may
havea deeperlook at the processof diagonalizationof the latticehamiltonian.
The boundaryconditionsimposedin (30)—(33) area resortto obviate the fact
that, inprinciple, twochartsareneededto covereachof theconicalsingularities.
Focusingon the singularity at the origin, for instance,two appropriatelocal
coordinatesystemsaredepictedin fig. 6. In eachseparatecoordinatepatchthe
two wavefunctions

= ~exp(ik . r1)a~ JO), (48)

= >Jexp(ik.rj)a~JO) (49)

spana two-dimensionalinvariant subspacein which the effective hamiltonian
is the sameas in (19),

0 y~exp(ikuf)

7-1 — (50)

+ — y>exp(ik.vf) 0

A similar pair of wavefunctionswith the oppositemomentumgives rise to a
secondeffective hamiltonian

0 y~exp(—ik.uf)

— y~exp(—ikvf) I 0 (51)

The respectiveregionsto the left of the two coordinatepatchesare in corre-
spondenceby an appropriatemap,andthe importantpoint is that underthis
mappingeveryvector in the tangentspacesuffersa rotationof it. This applies
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51

I

Fig. 6. The conicalsingularity at the origin. The two different shadedregionsrepresenttwo local
coordinatesystemsneededto coverthe tetrahedronvertex.

in particular to the momenta,so that whengoing from the left of region I to
the left of region II in fig. 6 the two effectivehamiltonians(50) and (51) are
exchanged.

In the continuumlimit, the rotationof the momentahasthe following conse-
quences.A momentumk aboutthe Fermi level like (23) is mappedinto

4it

—k = —----~=e~—ök. (52)

This implies thatan operatorlike 7L~in the continuumlimit

lim 7-1+/a = 3yaT.ök~ (53)
a—~0 k=(4ir/3v”~)e~

goesby the mentionedmappinginto the operator

lim 7-I_/a = . (54)
a—’O

The rotationsufferedby ök is of the kind producedby the spin connectionfor
the curvatureaccumulatedat the conical singularity. However, the changeof
Fermipointwhengoingfrom (53) to (54) hasa differentcharacter,andhasto
bedealtwith separatelyby meansof a differentconnection.
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The mappingbetweenthe two local coordinatesystemsI and II exchanges
excitationswhich areboundedrespectivelyto two independentFermi points.
In the continuumlimit this meansthe exchangeof the two Dirac spinors,and
thiskind of twist can berealizedby aproperconnectionin the internalspaceof
thesetwo fields. In general,the connectioncan begiven supporton aset of dis-
joint segmentslinking pairsof neighboringsingularitieson the two-dimensional
surface.On thetetrahedronandtheicosahedronwemayform, respectively,two
andsix of such cuts, acrossof which the rotation in the internal spaceof the
two spinorstakesplace. More physically, the rotation can be implementedby
insertinga line of magneticflux at eachof the conicalsingularities.Theflux has
to be nonabelianandproperlyadjustedto producethe twist by going around
the puncture.A correctparametrizationis achievedby introducingthe SU(2)-
valuedconnection

a = 1,2,3, (55)

with {r~°)}beingthe threePauli matrices.The only nonvanishingcomponent

maybetakento be, in local polarcoordinatesaroundeachpuncture,

Act, = “~~.(2) (56)

By settingthe magneticflux to J~= ~m,the nonabelianphaseacquiredby the
doubletof spinorsafter going aroundeachconicalsingularity is, as required,

exp(1f4) = (~l ~ (57)

Thispictureimplies the existenceof afictitious magneticmonopoleinsidethe
surface.Its chargeg canbecomputedby addingup the individual fluxes of all
the lines

g=~~ir=~N, (58)

Nbeingthenumberof conicalsingularitieson thesurface.It isworth mentioning
thatthevaluesof g requiredfor thetetrahedronandtheicosahedronare~and~,
respectively,andthereforecompatiblewith the standardquantizationcondition
of the monopolecharge[8].

To summarize,we havedevelopeda picture in which the continuumlimit
for honeycomblatticeson the tetrahedronandthe icosahedronat half-filling is
given by the effective field theoryof a doubletof spinorsinteractingwith the
curvatureandcolor magneticfieldsaccumulatedat a certainnumberof conical
singularities.Although the exactresolutionof this model is beyondthe scopeof
the presentpaper,it is possibleto showwith muchlesseffort that it reproduces
the low-energyspectraandcorrectnumbersof zero modesfor the mentioned
lattices in the limit of large numberof points. As a first approximation,one
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may considerthe model in which bothcurvatureandmagneticfield aremade
uniform over the two-dimensionalsurface.Thenthe systembecomesthatof a
coupleof spinorson the spherewith magneticmonopolefield. The spectrum
is obtainedby solving the eigenvalueproblemfor the covariantDirac operator
[9],

iaae~(v~— iAn) !P, = e,7~, a,u = 1,2, (59)

wheree~is the zweibeinfor the sphereand,in sphericalcoordinates,

V8 = 3~, (60)

= O~—~.[a’,a
2]cosO, (61)

A
6 = 0, (62)

A4 = gcosO ~ (63)
The Dirac operatorcan be diagonalizedby introducingthe angularmomentum
ofthewholesystemmadeof spinorfields, magneticfield andcurvature.Thetotal
angular-momentumoperatorsturn out to be, for the lower spinor component

J±= ±exp(±i~)Vo+iexp(±i~)~(V4_igcosOx(2))

— exp(±iç~)sinO(~— gT(2)) (64)

= —i (v4 — igcosO T(2)) — cosO (~— gr(2)) (65)

For theuppercomponent~Pf,thecorrespondingoperatorsaresimilarexceptfor
achangeof signin front of the ~ fractions.By squaringtheDirac operator,each
of the spinorcomponentscomesto obey the equation,with respectiveangular-
momentumoperators,

(j2 + — g2) !P, = ~ (66)

wherer parametrizesthe radiusof the sphere.The spectrumis given in terms
of theangular-momentumquantumnumberj

= 1(1 + 1) + ~ —g
2 = (i + ~)2g2 (67)

As is well known,thereis aminimumvalueof theangularmomentumj dictated
by g, sothat the numberof zeromodesin the spectrumdependsexclusively on
the valueof the monopolecharge.

Let usspecializenow to the modelscorresponding,respectively,to the tetra-
hedronandthe icosahedron.In the first casethe monopolechargerequiredis
g = ~, andthe model predictsthe existenceof two zero modes,one for each
spinor component,in the continuumlimit of the honeycomblattice at half-
filling. This resultcanbe testedwith the spectraobtainedby numericaldiago-
nalizationof the hamiltonian (26). Let uscall genericallya honeycomblattice
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Fig. 7. Spectraof different honeycomblatticeson the tetrahedron.The horizontalaxis standsfor
energyvaluesand the heightof the segmentgives in each casethe degeneracyof the multiplet.

The threediagramscorrespond,respectively,to the lattices ~ 6192 and 6300.

inscribedon the tetrahedronby 9m, m beingthe total numberof pointsin the
lattice. Theselatticescanbe orderedalonga sequenceof increasingm, whose
generalterm is of the form &l2(fl+1)2 , n E 7L~.We havedepictedthe resultof
thenumericaldiagonalizationof threeof theselatticesin fig. 7 (we takeunits in
which y = — 1). In all cases,two statesappearwith an energycompatiblewith
zerowithin the computerprecision,showingthatourmean-fieldapproximation
alreadyproducesthe correctnumberof zeromodes.Furthermore,from t9

192 on
the next low-energystatesaregiven by two closetriplets abovethe Fermilevel
andtwo otherwith the oppositeenergy.Thisbearsareasonableagreementwith
whatisexpectedfrom theformula(67).Thehighestdimensionof an irreducible
representationfor the tetrahedronsymmetrygroup is threeand, consequently,
a significantdeparturefrom sphericalsymmetrydevelopsabove j = 1 in the
spectrum.

We deal similarly with the honeycomblattices folded on the icosahedron.
The effective field theory demandsnow a monopolechargeg = ~. Relying
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againon the sphericalapproximationto computethe numberof zero modes,
we comeout with the theoreticalprediction that thereshouldbe a couple of
triplets lying at zero energy,in the continuumlimit. We denotethe fullerene
latticesby Cm accordingto the total numberof latticepointsm. The sequence
with increasingnumberofpointsis givenby the generalterm C60(n+ 1)2, fl E ~

We haverepresentedin fig. 8 thespectraobtainedby numericaldiagonalization
of threesuch lattices (we haveset againy = —1). Although we do not find as
before any zero modesfrom the start, thereis clearevidencethat the couple
oftriplets closeto zero energyapproachasymptoticallythe origin of the energy
scalein the limit of largelattices.The levels given by the formula (67) are in
goodagreementwith thosein thenumericalspectraup to thepoint in which the
highestdimensionof anirreduciblerepresentationof the icosahedronsymmetry
group is reached.This happensfor j = 2. The levels next to the couple of
quintupletsateachsideof the spectrumarea coupleof quadrupletsandotherof
triplets, which maybe thoughtas arisingfrom the split of two j = 3 multiplets
by breakingdownto the icosahedronsymmetrygroup.

The resultsof the numericaldiagonalizationof the latticehamiltonian (26)
support the correctnessof the effective field theory developedto accountfor
the continuumlimit of the curvedlattices.Let us mention,finally, that there
is a similar sequenceof honeycomblattices folded on the octahedron.In all
of them onemaydefineconsistentlytwo sublatticesof blackandblank points,
respectively,over the whole surface.Accordingto our picture, the continuum
limit for theselattices at half-filling should be given by a field theory on the
octahedronin the absenceof magneticfield. The inspectionof the numerical
spectrafor theselatticesshowsthatnoneof them hasanymodesitting at zero
energy,northisvalueis approachedasymptoticallyin the continuumlimit. It is
reassuringto find that this is, in fact, the predictionobtainedin the framework
of thetheoreticalmodelafter switchingoff the magneticfield.

5. Summary and prospects

The leitmotif of this paperwas to explain the details of how a continuum
model can be usedto studythe electronicandelasticpropertiesof the fullerene
molecules[5]. Along the way we havefound someinterestingpoints that we
will highlightandcommenthere.

This work is basedon two fundamentalpoints. Thefirst oneis the existence
of isolatedFermi pointsinsteadof lines in the graphitemoleculeat half-filling.
This leadsto the formulationof acontinuumlimit for describingthe spectrum
of electronic excitationsaround any of thesepoints. We haveseenthat the
particulargeometryof the latticedeterminesthecontinuummodelto be thatof
two massless,independent,free, Dirac spinors.
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Fig. 8. Spectra of honeycomb lattices on the icosahedron. Energy eigenvaluesare plotted in the
horizontal axis and the multiplet degeneracyis given along the vertical direction as in fig. 7. The

diagrams correspond, respectively,to the lattices C
240, C960 and C1500.

Thesecondbasicfact in thispaperisthe existenceofbiggerfullerenemolecules
derivedfrom a given geometryand the regularity found in their spectrumof
excitationsaroundtheFermi level. That is whatallowsusto proposethevalidity
for them of the continuumlimit found in the — infinite — graphitelattice.

Oncewe know the propertiesof the flat graphitelattice, the next interesting
point refersto the boundaryconditionsthatcanbe imposedon thelatticewith-
out destroyingits main features.At this respectit is worth noticing that the
standardprocedureto studythe propertiesof Bravaislatticesassumesmostof
thetimesthechoiceofVon Karman,i.e. periodic,boundaryconditions.While it
is obviousthatanychoiceofflat boundaryconditionsshouldnot alter themain
propertiesof the bulk lattice, we must be carefulwhen consideringboundary
conditionsof the typedescribedin sect.3. Despitethe innocentpresentationof
fig. 5, the identificationsdoneto form the polyhedraarecurvingthe lattice—as
is clear from fig. 6 — and this is a nontrivial operation.The simplestway to
look at it is to think on the way that curvatureis inducedon the hexagonaltes-
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sellation.This is doneby substitutingsomehexagonsby n-gonswith n lessthan
six. Such substitutionwill, in general,induce frustrationon the Bravaislattice
that underliesthe hexagonallattice. In particular,for odd n, the two triangu-
lar sublatticesareinterchanged.It is thennot trivial that we could successfully
completethe studyof the tetrahedron.

Beforeleavingthe subjectof the boundaryconditions,let us mention some
resultsconcerningthe simplestsituation,namely, the caseof a graphitesheet
with periodic boundaryconditions.When the lattice is folded so as to form
a torus, i.e., a compactsurfacewith no intrinsic curvature,one finds that the
electronicspectrumis preciselythe onepredictedby the continuummodel:the
doubledspectrumof a Dirac spinorin a planewith doublyperiodicalboundary
conditions.What we observenumerically is a structureof quadruplets (one
doubletfor eachDiracspinor)equallyspacedinenergy.We endthiscommentby
mentioningthatcylindrical shapesandtubularstructuresclosedat the extremes
with conicalsingularities(capsules)havebeendescribedin ref. [121.

The phenomenologicalmodeldescribedin sect.4 summarizesall the features
discussedso far.We areled to studytwo Dirac spinorson compactsurfaceswith
curvaturesingularitiesand edgesof frustration.The spheretakesinto account
the compactnessandcurvatureof the lattice, and the monopolemimics the
frustration.

We envisagevariousdirectionsin which this work can be continued.The
first concernsthestatisticalmechanicsapplications.We haveseenhow, starting
from the fullerene molecules,we cameto the study of an entirely new family
of two-dimensionallattices whereone can solve the spectrumof the hopping
hamiltonian:honeycomblatticesfolded andwrappedaroundtruncatedregular
polyhedra.Any exactlysolvablemodelin statisticalmechanicshassomeinterest
on its own, regardlessof its immediateapplicability to physicalproblems.In
our case,we camethe otherway aroundas we took our modelsdirectly from
existingphysicalexamples.Let us noticethatalthoughsomeof thislatticeshave
alreadyappearedin the literature [10,11], theywere formedby a fixed number
of points.The main noveltyherelies in thefact thatour latticescangrow while
preservingthe coordinationand the global symmetrygroup so that it makes
senseto studythe continuumandthermodynamicallimits. Wethen havetwo-
dimensionalstatisticalmodelsdefinedon curved,compactsurfaces.Work on the
studyof the thermodynamiclimit of two-dimensionalmodelssuchas the Ising
or Hubbardmodelsdefinedin the new latticesis currentlyin progress.

As for the solid-stateimplications, the universalcharacterof themethodpro-
posedallows its immediateapplicability to the studyof the electronicspectrum
of all kind of fullerenesexisting (as the family of the elliptical C70) or pro-
posed.Among those,the geometrieswith negativecurvature[13] maypresent
newchallengesas they live in curvedbut noncompactsurfaces.Thegeometries
proposedso far, however,havethe advantageof building a three-dimensional
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lattice, so that the problemneedsonly to be solvedwithin one unit cell. The
existenceof odd-numberedrings,which now areheptagons,exchangesthe two
sublatticesof the graphitestructure.Thus, following the analysisof thispaper,
a fictitious gaugefield needsto be introduced.The detailednatureof this field
is postponedto afuture publication.Onthe otherhand,the fact that thesquare
of the Dirac equationis the Laplaceequation,andthe useof periodicboundary
conditions,allowsusto makesomegeneralremarksaboutthespectrumof these
systems[5].

Finally, we leave out of this papera discussionof the elastic modesof these
molecules.For simplecentralforcemodels,the projectionof the structureon a
plane,andthe impositionof nontrivialboundaryconditionscanbe generalized
in a straightforwardway. The maindifferenceis that thelong-wavelengthacous-
tical modesare relatedto the centerof the Brillouin zoneof the flat graphite
sheets.For theseexcitations,frustrationdoesnot playthe samestriking role as
at the cornersof the Brillouin zone.Thus,we expectthat thesemodeswill be
well describedby the standardtheoryof elasticityof curvedshells.

It is a pleasureto thankG.Sierrafor interestingdiscussionson the subjectof
the hoppinghamiltonian.M.A.H.V. thanksthe departmentof FIsicaTeóricaof
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of thiswork. This work hasbeenpartially supportedby the CICyT (Spain).
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