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Assessing Construct Validity in Personality Research: Applications
to Measures of Self-Esteem
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University of Michigan

This article addresses the assessment of convergent and discriminant validity in
personality research. Four approaches are compared and contrasted for the anal-
ysis of classic multitrait-multimethod data, where three or more traits are measured
with indicators derived from three or more methods. The approaches are the
Campbell and Fiske criteria, the confirmatory factor analysis model, the correlated
uniqueness model, and the direct product model. Pros and cons of the approaches
are pointed out through a reanalysis of data originally coliected by Van Tuinen
and Ramanaiah, where global self-esteem, social self-esteem, and orderliness were
each measured by true—false inventories, multipoint inventories, and simple self-
reports. The Discussion considers guidelines for choosing among the approaches
and further addresses procedures for nontraditional multitrait-multimethod data.
© 1993 Academic Press, Inc.

Measures of personality traits or states reflect measurement error as
well as the theoretical content presumed to underlie the traits or states.
In turn, measurement error can be conceived to consist of random and
systematic components. Thus, one might represent measure variance as
the sum of true or theoretical variance, plus random error and systematic
error.

A common source of systematic error in personality research is method
error. Method error refers to variance attributable to the measurement
procedure(s) rather than to the construct of interest, and examples include
halo effects, social desirability distortions, acquiescence tendencies, eval-
uation apprehension, demand artifacts, and key informant biases asso-
ciated with peer or expert ratings (e.g., Campbell, 1955; Funder, 1989;
Ganster, Hennessey, & Luthans, 1983; Nicholls, Licht, & Pearl, 1982;
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Paulhus, 1989; Rosenthal & Rosnow, 1969; Seidler, 1974; Winkler, Kan-
ouse, & Ware, 1982).

Personality researchers should be concerned with measurement error
because such error can have serious confounding influences on the inter-
pretation of empirical research (e.g., Campbell & Fiske, 1959; Fiske,
1982). It is well known that random error frequently attenuates the ob-
served relationships among variables in statistical analyses and therefore
may produce errors in inference. Less well known is the possibility that
random error can actually inflate parameter estimates under some cir-
cumstances in multivariate analyses, depending on the pattern and mag-
nitude of such errors among predictors (e.g., Bollen, 1989). Likewise,
method error may suppress or magnify relationships among variables and
contribute to Type 1 or Type II errors if not taken into account (e.g.,
Bagozzi, Yi, & Phillips, 1991).

Because measurement error (i.e., random error and method variance)
provide potential threats to the interpretation of research findings, it is
important to validate measures and disentangle the distorting influences
of these errors in the course of testing personality theories. This can be
achieved by using multiple measures and multiple methods in measure-
ment and hypotheses testing (e.g., Campbell & Fiske, 1959). Using a
single measure of each variable in a theory under test does not permit
one to take reliability into account in analyses. Similarly, with only a
single method one cannot distinguish substantive (i.e., trait) variance from
unwanted method variance, because each attempt to measure a concept
is contaminated by irrelevant aspects of the method employed.

Construct validity, which is defined broadly as the extent to which an
operationalization measures the concept it is supposed to measure (e.g.,
Cook & Campbell, 1979), is a central issue in personality research (e.g.,
Ozer, 1989). Given multiple measures obtained with multiple methods,
construct validation can be assessed through an inspection of the multi-
trait—-multimethod (MTMM) matrix, the correlation matrix for different
concepts (i.e., traits or states) when each of the concepts is measured by
different methods (e.g., Campbell & Fiske, 1959). Without assessing con-
struct validity one cannot estimate and correct for the confounding influ-
ences of random error and method variance, and the results of theory
testing may be ambiguous. That is, a hypothesis might be rejected or
accepted because of excessive error in measurement, not necessarily be-
cause of the inadequacy or adequacy of theory.

In recent years, there has been an explosion in procedures advocated
for the investigation of construct validity, and at least a dozen can be
identified.! Unfortunately, the assumptions upon which the procedures

' The procedures are, in rough chronological order: the classic criteria of Campbell and
Fiske (1959), the analysis of variance (e.g., Boruch & Wolins, 1970), first-order confirmatory
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are based vary widely, their implementation is confusing to all but the
most technically oriented researchers, and the interpretation of findings
harbor numerous pitfalls. Little guidance exists on when and how to select
among procedures. Individual articles in both the psychometric and ap-
plied psychology literatures generally focus on only one procedure and
give passing reference to alternatives without fully considering the stan-
dards and trade-offs of each. Moreover, little integrative critical com-
mentary exists on the approaches. As a consequence, we lack a coherent
approach to construct validity, and the body of knowledge reflected in
empirical work is rather piecemeal and inconclusive.

The present article compares and contrasts state of the art methods for
investigating construct validity in personality research. The aim is to point
out pros and cons of leading procedures and suggest guidelines for con-
ducting construct validation studies. Empirical illustrations are performed
through reanalyses of data originally examined by Van Tuinen and Ra-
manaiah (1979). Van Tuinen and Ramanaiah (1979) used a MTMM matrix
to investigate three traits—global self-esteem, social self-esteem, and or-
derliness—measured by three methods: true—false inventories, multipoint
inventories, and simple self-ratings.> A sample of 196 undergraduate psy-
chology students was used. Table 1 presents the MTMM matrix.

To facilitate the presentation, each procedure is described, illustrated,
and critiqued, in turn, before considering another procedure. The pro-
cedures are the Campbell and Fiske method, the first-order confirmatory
factor analysis model, the correlated uniqueness model, and the direct
product model. Because of serious shortcomings pointed out by others
(e.g., Bagozzi, Yi, & Phillips, 1991; Schmitt & Stults, 1986), we will not

factor analysis (e.g., Werts & Linn, 1970; Joreskog, 1974), exploratory factor analysis (e.g.,
Golding & Seidman, 1974; Jackson, 1975), the generalized proximity function (e.g., Hubert
& Baker, 1979), smallest space analysis (e.g., Levin, Montag, & Comrey, 1983), the direct
product model (e.g., Browne, 1984), the second-order confirmatory factor analysis model
with measures loading indirectly on traits and methods (e.g., Marsh & Hocevar, 1988), the
correlated uniqueness model (e.g., Kenny, 1976; Marsh, 1989), the first-order confirmatory
factor analysis model with separate factors for traits, methods, and measure specificity (e.g.,
Kumar & Dillon, 1990), and panel models (e.g., Bagozzi & Heatherton, 1992).

? To measure simple self-ratings, the researchers presented each subject with a description
of the respective traits, and responses indicating the extent to which one felt he or she
possessed the traits were recorded on seven-point rating scales. Global self-esteem was
measured with (a) the 25-item true—false short form of Coopersmith’s (1967) Self-Esteem
Inventory (Crandall, 1973) and (b) the Tennessee Self-Concept Scale, a H-item inventory
using five-point rating scales (Fitts, 1965; Fitts, Adams, Radfor, Richard, Thomas, & Thomp-
son, 1971). Social self-esteem was measured with (a) the 20-item true—false JPI Self-Esteem
Scale (Jackson, 1970) and (b) Eagly’s (1967) revised version of the Janis-Field Feelings of
Inadequacy Scale (Hovland & Janis, 1959), a 20-item inventory. Orderliness was measured
by (a) the 20-item true—false PRF Order Scale (Jackson, 1967) and (b) the 20-item CPS
Order Scale (Comrey, 1970), which used seven-point response items.
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TABLE 1
PEARSON PRODUCT-MOMENT CORRELATIONS AMONG MEASURES OF GLOBAL SELE-ESTEEM, So-
ciat SELF-ESTEEM, AND NEED FOR ORDER As ProviDeED BY TRUE-FALSE, MULTIPOINT, AND
SIMPLE SELF-RATING SCALES (AFTER VAN TUINEN AND RamaNalal, 1979)

Measures Al A2 A3 B1 B2 B3 C1 C2 C3

A. True—faise inventory
1. Global self-esteem
2. Social self-esteem
3. Need for order (.74)

83)

B. Multipoint inventory
1. Global self-esteem 57145 T 23
2. Social self-esteem 72~ 08~ 16
3. Need for order .09 06~ _.68~i

e — =

C. Simple self-rating

1. Global self-esteem S833 AT 627V T 09 (63)
2. Social self-esteem 4T~ JE~C 10 ] 140>~ 69~ 07 | [.SB(.74)
3. Need for order 122 B _.63~1 134 2> 8%~ |30 . (.82)

_________ ~ e

Note. N = 196. Reliability coefficients are in parentheses. Monotrait—heteromethod cor-
relations (i.e., convergent validity coefficients) are shown in boldface. Heterotrait—-mono-
method correlations are enclosed by solid triangles, and heterotrait-heteromethod corre-
lations are enclosed by dashed triangles.

discuss the use of the analysis of variance, exploratory factor analysis,
smallest-space analysis, the generalized proximity function, and the sec-
ond-order confirmatory factor analysis model with measures loading di-
rectly on trait and method factors. We reserve for the Discussion the
treatment of the hierarchical confirmatory factor analysis model with mea-
sures loading indirectly on traits and methods, the first-order confirmatory
factor analysis model with separate factors for traits, methods, and mea-
sure specificity, and panel models. The latter three procedures make more
assumptions and/or require a greater number of measures for each trait—
method combination than the procedures considered in detail herein and
therefore are more difficult to implement in practice. Hence our decision
to place less emphasis on them.

THE CAMPBELL AND FISKE APPROACH

Rationale

Campbell and Fiske (1959) proposed two aspects of construct validity:
convergent and discriminant validity. Convergent validity is the degree
to which multiple attempts to measure the same concept are in agreement.
The idea is that two or more measures of the same thing should covary
highly if they are valid measures of the concept. Discriminant validity is
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the degree to which measures of different concepts are distinct. The notion
is that if two or more concepts are unique, then valid measures of each
should not correlate too highly.

Campbell and Fiske (1959) originally asserted that the most stringent
test of construct validity requires that maximally dissimilar methods be
employed. Such a practice increases our confidence in the interpretation
of evidence for convergent validity in that agreement among putative
measures of the same concept are unlikely to be determined by shared
method biases. While we agree with Campbell and Fiske’s rationale for
use of maximally different methods in the assessment of convergent va-
lidity, we would argue that such a practice actually makes it easier to
achieve discriminant validity. A more stringent test of discriminant validity
results when methods are similar. Because similar methods are likely to
inflate correlations among measures of different concepts, achievement
of discriminant validity under such conditions actually provides strong
evidence for the distinctiveness of measures of different concepts. Thus,
the most informative tests of construct validity will be obtained when one
uses both maximally dissimilar and similar methods in the same investi-
gation. Of course, this recommendation represents an ideal and may be
difficult to implement in practice.

To make formal the ideas contained in the definitions of convergent
and discriminant validity, Campbell and Fiske (1959) developed four de-
siderata based on the inspection of the MTMM matrix. First, convergent
validity is achieved when the monotrait-heteromethod correlations be-
tween the same traits across different methods (i.e., “‘the validity diag-
onal” values) are “significantly different from zero and sufficiently large”
(Campbell & Fiske, 1959, p. 82). The validity diagonal values represent
correlations between measures of the same concept by different methods
(see Table 1). Measures of the same concept, no matter how derived,
should be highly correlated if they validly measure a common concept.
Establishment of convergent validity provides evidence that multiple mea-
sures of a concept obtained by multiple methods potentially indicate the
same underlying concept. If the validity diagonal values are nonsignificant
or too low in magnitude, there is little basis to argue that the measures
tap the same concept, and consideration of discriminant validity is not
warranted.

However, if convergent validity is attained, this only provides minimal
evidence for the construct validity of measures. It is also possible that
the measures reflect variance due to other concepts or methods biases
and are not unique. Campbell and Fiske (1959) therefore recommended
that discriminant validity also be assessed and proposed three criteria to
do so. The first stipulates that the validity diagonal values should be higher
than their corresponding heterotrait—heteromethod coefficients (see Table
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1). That is, each validity diagonal value should be higher than the coef-
ficients lying in the columns and rows of its adjacent heterotrait—heter-
omethod triangles. In other words, efforts to measure the same concept
by different methods should yield higher correlations than efforts to mea-
sure different concepts by different methods. For example, in Table 1,

razp: = .74 (the correlation between the measures of social self-esteem
as obtained by the true—false and multipoint inventories) is greater than
aip2 — .72, rAZ'B'g = 06., rAZ‘B] = .45, and azp: — 16, Similar ine'

qualities should hold for comparisons of each remaining validity diagonal
value with the appropriate heterotrait—heteromethod coefficients. If this
criterion for discriminant validity fails, the implication is that convergence
of measures on any individual concept is dependent on convergence of
measures on other concepts and/or confounded with method variance,
thereby bringing into question discriminant validity.

The second discriminant validity criterion specifies that the monotrait-
heteromethod coefficients should be higher than their corresponding het-
erotrait—-monomethod coefficients. Efforts to measure the same concept
by different methods should produce higher correlations than efforts to
measure different concepts by the same method. For instance, in Table
1 rgicr = .62 is greater than rg; 3 = 25, rej 0 = .58, and re 3 = .30
but less than rg, g; = .65, thus revealing one violation of the second
discriminant validity criterion; similar comparisons should be made be-
tween each remaining validity diagonal value and its corresponding coef-
ficients in the adjacent heterotrait—-monomethod triangles. The failure of
this criterion points to a confounding of method variance with true vari-
ance and suggests problems with discriminant validity.

The final criterion for discriminant validity is that the patterns of cor-
relations should be the same among the heterotrait-monomethod and
heterotrait—heteromethod correlations. For example, this criterion is met
when we compare the correlations in the heterotrait—-monomethod triangle
for the true—false inventory in Table 1 to the correlations in the lower
heterotrait—heteromethod triangle between the true—false inventory and
simple self-rating methods: 74, a2 > Faia3 > Fazas and ra1c0 > Fajcs >
raz.c3. The ordering of correlations within triangles can be compared across
all triangles by use of Kendall’s Coefficient of Concordance (Siegel, 1956,
pp. 229-238). When this criterion holds, correlations among measures of
concepts will be independent of methods. But when it fails, method var-
iance will be operative differentially across the correlations.

Hlustration of Campbell and Fiske’s Criteria

Campbell and Fiske’s (1959) criteria were applied to the data in Table
1. Because the validity diagonal values are all large and significantly
different from zero (p < .01)—i.e., the correlations range from .56 to
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.75—it can be concluded that convergent validity is achieved. The first
discriminant validity criterion involves 36 comparisons of correlations.
Only one of the comparisons shows a violation of the criterion: rg, ¢, =
.62 is actually less than rg; ¢, = .68. As the proportion of failures of the
first criterion for discriminant validity is p = Vi = .028, which is less
than what one would expect at a chance level of .05, and at the same
time the magnitude of the violation is relatively small (i.e., Ar = .06),
one might conclude that the criterion is met overall. A more stringent
standard would be to require that the results of all comparisons of cor-
relations with the validity diagonal values not only be in the proper di-
rection but achieve statistical significance (at say, p < .05). For the first
discriminant validity criterion, this results in six violations, which is greater
than what one would expect by chance.

The second discriminant validity criterion also entails 36 comparisons.
Here we find that three violations of directionality can be identified: ra; ¢
= .58 is not greater than either 74, o2 = 58 or roy > = .58, and rg; ¢
= .62 is in fact less than rg; g, = .65. Although the differences between
the correlations are relatively smali (i.e., they range from .00 to .03), the
proportion of failures of the criterion is p = ¥ = .083, which is greater
than what one would expect at a chance level of .05. Consequently,
achievement of the second discriminant validity criterion is questionable.

The third discriminant validity criterion was examined through a com-
parison of the rank order of correlations across triangles shown in Table
1. The coefficient of concordance was .222 which results in a nonsignificant
X’ (2, N = 196) = 4.00. Hence, one cannot reject the hypothesis that
the patterns of correlations in the heterotrait—heteromethod and het-
erotrait-monomethod triangles are the same, and the third discriminant
validity criterion is therefore met.

Critique of Campbell and Fiske’s Procedure

How well can Campbell and Fiske’s criteria be relied upon? One answer
to this question can be addressed by evaluating the assumptions underlying
Campbell and Fiske’s criteria. Four assumptions are noteworthy: namely,
the criteria are based on the premises that traits and methods are un-
correlated, methods affect all traits equally, methods are orthogonal, and
measures are equally reliable (e.g., Campbell & Fiske, 1959; Schmitt &
Stults, 1986). The first assumption may not be unreasonable in practice,
as traits and methods are frequently unconfounded. However, one case
where traits and methods can be related in personality research is when
peers or experts rate subjects and the subjects rate themselves on char-
acteristics for which they and the key informants possess an implicit theory
as to the nature or origin of the characteristics.

The other three assumptions behind the Campbell and Fiske procedure
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are highly unlikely in most contexts for personality research. Measures
of traits will be differentially affected by methods to the extent of het-
erogeneity in the traits and methods under study. Studies dealing with
scale development, particularly with multifaceted constructs (e.g., Carver,
1989), and investigations into construct validation strive for heterogeneity
by design. Intercorrelations among methods are difficult to avoid as well.
Alternative methods based on self-reports or judgments performed by
key informants typically correlate at least at moderate levels. Further,
method variance and measure reliability generally vary considerably even
when similar instrumentation is used to tap traits. Thus, there is reason
to question the assumptions underlying the Campbell and Fiske procedure
when applied in typical personality research contexts.

Another problem with Campbell and Fiske’s procedure is that no precise
standards are provided for ascertaining how well the criteria are met. The
rules of thumb offered as to the proportion of violations are rather ar-
bitrary and depend on a qualitative assessment of confirming and discon-
firming incidents of differences in observed correlations. By focusing on
the number of times selected correlations are greater than others, Camp-
bell and Fiske’s procedure neglects the importance of the magnitudes of
differences between pairs of correlations.

Reliance on the observed correlations provides a rather imprecise and
potentially misleading basis for assessing construct validity. An observed
correlation will reflect random error and method biases in addition to the
true association among measures of traits. The Campbell and Fiske pro-
cedure provides no information as to the separate amounts of variation
in measures due to traits, methods, and random error.

CONFIRMATORY FACTOR ANALYSIS MODEL

Rationale

An alternative to the Campbell and Fiske procedure that has seen recent
application in personality research (e.g., Bagozzi, 1991) is the confirmatory
factor analysis (CFA) model (e.g., Joreskog, 1974). As applied to MTMM
matrix data, the CFA model hypothesizes that the total variation in mea-
sures can be written as a linear combination of trait, method, and error
effects (e.g., Joreskog, 1974).

The CFA model is perhaps best introduced by way of a diagram. Figure
1 presents an intuitive description of the CFA model. The three hypoth-
esized traits—global self-esteem, social self-esteem, and orderliness—and
the three methods—true-false inventory, multipoint inventory, and simple
self-rating—are drawn as circles. These correspond to factors in factor
analysis. Note that each trait factor is connected to three boxes with
arrows. The boxes represent the actual observed measurements obtained



CONSTRUCT VALIDITY 57

Need
for Order

Self-Rating
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Fic. 1. Illustration of the confirmatory factor analysis model for three traits (global self-
esteem, social self-esteem, need for order) and three methods (true-false inventory, mul-
tipoint inventory, simple seif-rating).

by Van Tuinen and Ramanaiah (1979), of which a total of nine result for
the three traits obtained by the three methods. For example, y, refers to
the measurement of global self-esteem by the true-false inventory, y, to
the measurement of global self-esteem by the multipoint inventory, and
y; to the measurement of global self-esteem by the simple self-rating.
Each measurement has three arrows terminating into it. The arrows from
the trait factors to measures stand for variance in the measures that is
due to the underlying trait; the nine As connected to these arrows are
factor loadings relating trait factors to observed measures. The arrows
from the methods to measures reflect variance that is due to the procedures
used to obtain responses; the nine As attached to these arrows are factor
loadings relating method factors to observed measures. The nine short
arrows with g at the origins represent variation in the measures that is
due to random error plus measure specificity. Finally, the curved lines
connecting pairs of factors indicate correlations between factors and are
designated as ¢,

If we interpret each measure as an observation whose variation we
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desire to explain, we can interpret the CFA model in Fig. 1 as displaying
the sources of that variation in three senses: variation due to trait (i.e.,
the theoretical concept of interest), method (i.e., the measurement pro-
cedures), and error (i.e., unexplained random fluctuations). More for-
mally, the general form of the CFA model for the MTMM matrix with
r traits and s methods can be expressed through two sets of equations
(e.g., Joreskog, 1974):

M

y = [Ar Aul ,'1” + e (1)

2 = AT‘I’TA'T + AM‘PMA'M + 0,

where y is a vector of r X s observed measures for r traits and s methods,
N = [mru) is an (r + s5) X 1 vector of trait and method factors, € is
a vector of r X s residuals for y, X is the implied variance—covariance
matrix for y, ¥y is an r X r correlation matrix for traits, Wy is an s X
s correlation matrix for methods, © is the vector of unique variances for

£, Ar = [A}, Ay -, AJ]', A;is an r X r diagonal matrix with trait factor
loadings for the r traits measured by the jth method, and
- -
A0 -0
0 A,---0
o
a0
00 --0A

where A; is an r X 1 vector of factor loadings for the jth method.
Four useful hypotheses to examine with respect to method and trait
effects in the CFA model are the following (e.g., Widaman, 1985):

Model 1. The model hypothesizing that only unique variances in
measures of personality traits are freely estimated (i.e., the null model).
This model hypothesizes that the observed measures correlate zero in the
population.

Model 2. The model hypothesizing that variation in measures can be
explained completely by traits plus random error (i.e., the trait-only
model). This model assumes that method variance is negligible and that
the measures reflect only trait and error variance.

Model 3. The model hypothesizing that variation in measures can be
explained completely by methods plus random error (i.e., the method-
only model). This model assumes that trait variance is negligible and that
the measures reflect only method and error variance.

Model 4. The model hypothesizing that variation in measures can be
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explained completely by traits, methods, and error (i.e., the trait-method
model). This model is the structural equation operationalization of the
MTMM matrix as shown in Eqs. (1) and (2) and Fig. 1.

The four models defined above can be tested with statistical programs
such as EQS (Bentler, 1989) or LISREL (Joreskog & Sorbom, 1989).
The overall fit of each model can be tested by using the maximum like-
lihood chi-square statistic provided in the outputs of these programs.
Assuming that the models are valid and that the observed measures follow
multivariate normal distributions, the statistic is asymptotically distributed
as a chi-square variable with its associated degrees of freedom. A non-
significant chi-square indicates that one can accept (fail to reject) a model.
Interpretation of a significant chi-square, which suggests lack of fit, may
be ambiguous in the sense of reflecting model misspecification and/or
violation of assumptions such as multivariate normality (e.g., Mulaik et
al., 1989). In addition, large values of the chi-square test relative to
degrees of freedom can result from large sample sizes. It is useful to use
chi-square measures to compare models in nested sequences of hypotheses
(e.g., Bentler & Bonett, 1980; Mulaik et al., 1989).

The nested hypotheses implied by Models 1-4 above can be tested by
comparing chi-square values. A model is nested in another when con-
straints placed on the latter yield the former. The difference in chi-square
values for the models will be distributed chi-square with degrees of free-
dom equal to the difference between the two models. A test of the
significance of trait variance is provided by comparing chi-square tests
between Models 1 and 2 and between Models 3 and 4. Similarly, a test
of the significance of method variance is provided by comparing Models
1 and 3, as well as Models 2 and 4.

In addition to testing formally for trait and method effects, the CFA
models can be used to partition the variance in measures in diagnostically
useful ways and to estimate parameters that provide insights into mea-
surement properties and construct validity. The partitioning of variance
into trait, method, and error is revealed, respectively, in the squared
factor loadings in Ay and Ay, and in ©. Further, as we illustrate in the
empirical analyses below, useful information is provided in parameter
estimates for correlations among traits and among methods, as well as in
error variances and factor loadings.

Before we illustrate the CFA model, it is important to point out its
advantages over the Campbell and Fiske procedure. Under the CFA
model, a variety of measures of fit are provided for an overall model,
whereas no omnibus test is possible for the Campbell and Fiske procedure.
Moreover, estimates and tests of significance of parameters are derived
for the CFA model, and formal tests of trait and method effects are
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Null
x2(36) = 1086.46
p=.00

Method-Only
¥2(24) = 358.04
p=.00

(12) = 728.42
p <.001

Trait-Only
x2(24) = 11127

p=.00

Trait-Method
x2(12) = 11.27

p=.51

x§(12) = 975.19

x§(1 2) = 346.77

x5(12) = 100.00
p <.001

p < .001 p < .001

Fic. 2. Summary of nested additive confirmatory factor analysis tests for trait and method
effects.

possible. These features are not part of the Campbell and Fiske procedure.
Likewise, the CFA model yields a partitioning of variance into trait,
method, and error components, but the Campbell and Fiske procedure
only suggests qualitative hints as to the presence of trait and method
effects. Finally, with regard to the restrictive assumptions noted above
for the Campbell and Fiske procedure, it should be noted that methods
can correlate freely and affect measures to different degrees under the
CFA model, and the reliability of measures can be freely estimated, rather
than assuming that they are equal to unknown values. Indeed, by imposing
certain restrictions, it is possible to estimate correlations between traits
and methods.’

Hlustration of the CFA Model

We applied the CFA model to the data in Table 1.* Figure 2 summarizes
the chi-square goodness-of-fit measures for the four models described

*> For many CFA models, it is possible to permit all traits and methods to intercorrelate
freely among themselves and achieve identification in a technical sense. However, in practice
such a specification nearly always leads to empirical identification problems (e.g., Marsh,
1989). However, if one has reason to expect that either traits or methods are orthogonal,
this can be exploited through appropriate constraints and the correlations between traits
and methods can be estimated, if desired.

* 1In all analyses to follow, the correlation matrix of variables is used as input for didactic
purposes. In general, it is preferable to use the covariance matrix as input in order to obtain
correct chi-square measures and estimates of standard errors (Cudeck, 1989). Under certain
conditions (e.g., when a model is scale invariant and no constraints are imposed on cor-
relations among factors and on error variances), use of a correlation matrix as input may
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above and presents the relevant chi-square difference tests for the nested
model comparisons. The first thing to note is that the trait-method model
fits quite well: x*(12, N = 196) = 11.27, p = .51. This is the model
hypothesizing that variation in measures can be explained as an additive
function of trait, method, and error effects. To formally test for method
effects, we compare the null model to the method-only model and the
trait-only model to the trait—-method model. It can be seen that the ad-
dition of method effects results in a significant improvement in fit for both
comparisons: x3(12, N = 196) = 728.42, p < .001 and x5(12, N = 196)
= 100.00, p < .001. To formally test for trait effects, we compare the
null model to the trait-only model and the method-only model to the
trait—-method model. The results show that the addition of trait effects
leads to a significant improvement in fit for both comparisons: x3(12, N
= 196) = 975.19, p < .001 and x3(12, N = 196) = 346.77, p < .001.
Thus, we find that significant amounts of both trait and method variance
are present.

Before we examine the nature and extent of trait and method effects
and the degree of error in measures, it is informative to scrutinize the
overall magnitude of information accounted for by the CFA model from
a practical standpoint. One way to do this is to compute the noncentralized
normed fit index (NCNFI).> The NCNFI is defined as

NCNET = &6 = df) = (G = df)
(X6 ~ dfo)

where x is the chi-square value for the null model, x; is the chi-square
value for a focal model (e.g., the trait-method model), df; is the degrees
of freedom for the null model, and df; is the degrees of freedom for the
focal model. The NCNFI is a modification of an index originally proposed
by Bentler and Bonett (1980). By subtracting the degrees of freedom from
their corresponding chi-square values, we correct for any bias that is due
to small samples (e.g., Bentler, 1990; McDonald & Marsh, 1990). Com-
putation of the NCNFI for the trait—-method model yields a value of 1.00,
which is greater than the .90 rule of thumb suggested as a minimum
satisfactory level by Bentler and Bonett (1980). Therefore, the trait—
method model accounts for a significant proportion of variance from a
practical point of view. Had the NCNFI fallen below .90, we would have

»

yield correct asymptotic standard errors and chi-square values. This holds for some of the
models considered in this article.

> The NCNFI has been termed the “relative noncentrality index” (RNI) by McDonald
and Marsh (1990). The NCNFI will be equal to the normed fit index in large samples.
Bentler (1990) and McDonald and Marsh (1990) performed simulations showing the prop-
erties of the NCNFI and comparing it with many other indexes.
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concluded that a significant proportion of variance remained unexplained,
bringing into question the adequacy of the model. It should be acknowl-
edged that the NCNFI is a heuristic, not a statistic. Its sampling distri-
bution is unknown, and the .90 rule of thumb should be regarded as only
a rough guideline. A final point to make is that, if one desires to ascertain
practical relevance while incorporating a penalty based on the number of
parameters estimated (i.e., the complexity of a model), then one may
employ the Tucker and Lewis (1973) index or a noncentralized adaptation
where appropriate degrees of freedom are subtracted from the chi-square
values (Bentler, 1990; McDonald & Marsh, 1990).

A relatively common outcome when performing a CFA of the trait-
method model is the presence of negative error variance estimates. In-
deed, the findings for the trait-method model summarized in Fig. 2 re-
vealed three negative error variances, albett all nonsignificant. One so-
lution to the problem of negative error variances is to fix these to zero.
We will discuss the pros and cons of such a practice and consider other
alternatives below under “Critique of the CFA Model.” For now, we
illustrate this remedy on the data at hand. When multiple error terms
show negative values, it is sometimes sufficient to fix only the highest
value to zero and to rerun the trait-method model. This was in fact done
(i.e., B, = —~1.28, SE = 1.10, was constrained to zero). The results
show that the overall model fit well with this specification (i.e., x*(13, N
= 196 = 13.99, p = .37), and, importantly, no negative error variances
occurred and no improper solutions were found for any parameter esti-
mates.

Table 2 presents the parameter estimates for the trait-method model.
The factor loading matrix in the top of the table corresponds to the pattern
shown in Fig. 1, in which 18 factor loadings are estimated. Note that the
factor loadings for traits are relatively high for the multipoint inventory
of global self-esteem and the three measures of orderliness and are mod-
erately high for the true—false inventory and self-rating of social self-
esteem. These findings suggest that the measures are reasonable indicators
of their respective trait factors. The factor loadings for the true—false
inventory and self-rating of global self-esteem and the multipoint inventory
of social self-esteem are quite low. These results suggest that the measures
are poor indicators of their respective factors. Notice also that the factor
loadings of methods for all measures of global and social self-esteem are
quite high. This indicates that methods biases strongly influence the mea-
sures of self-esteem. The factor loadings of methods on the three order-
liness measures are quite low, pointing to small methods biases.

As can be seen in the bottom of Table 2, all traits are distinct (i.e.,
each is correlated with the others at a level significantly less than 1.00).
Note that the correlations among traits are corrected for measurement



TABLE 2
SUMMARY OF PARAMETER ESTIMATES FOR THE ADDITIVE CONFIRMATORY FACTOR ANALYSIS MODEL WITH THREE TRAITS AND THREE METHODS

Traits Methods
Global Social True-false Multipoint
self-esteem self-esteem Order inventory inventory Self-rating

Construct FL SE FL SE FL SE FL SE FL SE FL SE
Gilobal self-esteem by

True—false inventory .21 .18 0 .00° .83 .08 .00° .00

Multipoint inventory 64 13 00 .00° 007 i 12 .00°

Self-rating .05 17 00° Ki.0y 007 .00 .82 .07 A
Social self-esteem by %

True—false inventory 00 .51 12 .00¢ .74 .08 .o .00 4

Muiltipoint inventory 0 17 .13 .00 .00 .90 09 .00 @

Self-rating .00° .55 .09 00° .00° Ki.ig N\ 09 Q
Order by <

True—false inventory 007 00" .84 06 .20 .08 .00 007 g

Multipoint inventory 0 o .79 07 .00° 12 .08 .00 S

Self-rating .00° .00° .69 07 .00° .00 .33 .08 3

Factor intercorrelations

Traits

Global self-esteem 1.00¢

Social seif-esteem -.32 .23 1.00°

Order 26 .09 00 A1 1.00°
Methods

True-false inventory 007 0 0 1.00°

Multipoint inventory .00° 00° 00¢ .98 .04 1.00°

Self-rating .00° .00° .00° .85 .04 92 .05 1.007

Note. FL. = factor loading. All parameter estimates differing significantly from zero are underscored.
“ Fixed at the value reported.

€9
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TABLE 3
PARTITIONING OF VARIANCE INTO TRAIT, METHOD, AND ERROR FOR THE ADDITIVE
CONFIRMATORY FACTOR ANALYSIS MODEL

Variance component

Construct Trait Method Error

Global self-esteem by

True—false inventory .04 69 27

Multipoint inventory 41 .60 .00

Self-rating .02 68 32
Social self-esteem by

True-false inventory .26 .55 .19

Multipoint inventory .03 .80 17

Self-rating 31 51 18
Order by

True—false inventory A\ .04 .26

Multipoint inventory .62 02 37

Self-rating A8 11 42

* Constrained parameter.

error. The bottom of Table 2 also displays the disattenuated correlations
among methods, where it can be seen that all methods correlate at very
high levels. Indeed, the correlation between the true—false and multipoint
inventories (W, = .98, SE = .04) and the correlation between the mul-
tipoint inventory and the self-rating (5, = .92, SE = .05) are not
significantly different than 1.00.

Table 3 illustrates the partitioning of variance for the measures into
trait, method, and error components. The findings show that only the
measures of orderliness achieve reasonably high levels of trait variance,
and all measures of global and social self-esteem exhibit very high levels
of method bias. Error variance is generally low. The above findings for
the particular CFA performed herein should be interpreted in the light
of the shortcomings pointed out below. Note also that the disturbance
term does not, strictly speaking, represent only random error. Measure
specificity will in general be confounded with random error in the CFA
and other approaches discussed in this article.

Critique of the CFA Model

A major shortcoming of the application of the CFA model to MTMM
matrix data is the all too frequent occurrence of ill-defined solutions. In
their examination of 435 MTMM matrices based on actual and simulated
data, Marsh and Bailey (1991) report that 77 percent resulted in improper
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solutions. Marsh (1989) identifies four types of ill-defined solutions com-
mon to CFA investigations of the MTMM matrix: ‘“underidentified or
empirically underidentified models . . . , failures in the convergence of
the iterative procedure used to estimate parameters, parameter estimates
that are outside their permissible range values (e.g., negative variance
estimates called Heywood cases), or standard errors of parameter esti-
mates that are excessively large” (p. 339).

We have already mentioned the problem of negative error variances
and additional comments are in order. For the data used as an illustration
in this article, negative but nonsignificant error variances were the only
ill-defined solutions to arise. A negative error variance is, of course,
impossible theoretically and points to serious problems. Often negative
error variances will be nonsignificant, suggesting that no random error
exists. However, because one normally expects at least a small amount
of residual variance in self-report data, the presence of nonsignificant
error variances should in the general case lead one to conclude that
overfitting or a misspecified model is the case (e.g., Maxwell, 1977, p.
58; Van Driel, 1978). There is perhaps one exception to this generalization
which applies to personality research. When measures of factors are
formed as the sum of many well-chosen items, it is possible that this will
reduce considerably the residual variance. Indeed, a particular measure
so formed may exhibit nonsignificant random error. We would expect,
however, that this would be a relatively rare event. Thus, while one might
tolerate the occurrence of a single measure showing a nonsignificant error
variance in CFA applications, when the measure is formed as the sum of
many items, it would seem unwise to accept more than one such occur-
rence in a CFA application to the MTMM matrix. And when measures
of factors consist of a single item or the sum of a small number of items,
we would argue that the presence of even a single nonsignificant error
variance points to an overfitted or misspecified model. For the data in-
vestigated in this paper, proper solutions were found when the error
variance corresponding to the multipoint inventory of global self-esteem
was fixed to zero. As this measure of self-esteem was formed as the sum
of 90 five-point items, it could be argued that random error might be low
and that most of the variance in the measure is due to trait and method
effects.

Rindskopf (1983) proposed that negative error variances can be avoided
in the CFA model by creating a new factor for each error term in the
model such that the factor loading corresponding to each new factor is
the square root of the error. This will guarantee that the error variance
will be non-negative. One problem with this procedure is that it can lead
one to accept a misspecified model. For this reason, Jéreskog and S6rbom
(1989, p. 215) counsel against imposing constraints to ensure that non-
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negative parameter estimates for error variances do not arise. Some evi-
dence can be found showing that the Rindskopf parameterization is equiv-
alent to simply fixing the offending error variance to zero (e.g., Dillon,
Kumar, & Mulani, 1987). Note, however, that programs such as EQS
(Bentler, 1989) derive optimal parameter estimates while assuming non-
negativity.

Another shortcoming to point out with regard to the CFA model is
that the partitioning of variance into trait and method components may
not, in general, yield “trait-free’” and “method-free” interpretations (Ku-
mar & Dillon, 1992). This is because the individual factor loadings take
on different values corresponding to the distinct trait-method pairings.
For example, factor loadings concerning a trait can vary across methods,
and the corresponding variation cannot be attributed solely to the trait
factor. Since each factor loading is specific to the particular trait—-method
combination, the associated variation is not really ““trait-free’’ or “method-
free.” If the correlations among traits and the correlations among methods
approach zero, the variance due to traits will be reflected in the trait
loadings and the variance due to methods will be reflected in the method
loadings.

However, as the correlations among traits and among methods increase,
trait and method variance will be confounded. For example, a general
trait factor may underlie traits such that traits are highly correlated and
substantial variance in measures is primarily due to traits, while methods
are relatively distinct. In such circumstances, application of the CFA
model can misleadingly yield highly correlated methods, accounting for
much variation in measures (e.g., Marsh, 1989). However, a good fitting
CFA model in this case should not be believed because the apparent
method effects are really confounded with trait effects from a general
trait factor. That is, correlations among method factors may represent
the convergence of the general trait factor across methods, rather than
true relationships among methods. Since many applications of the MTMM
matrix involve substantially correlated traits and/or methods, the inter-
pretation of results from a CFA model should consider the potential
confounding noted above.

A related and final issue to mention with respect to the use of the CFA
model is that researchers sometimes jump to applications and interpre-
tations of the trait-method model without considering the possibility that
variation in measures could be a function of only traits and random error.
That is, although true method effects may be absent, when the trait-
method model is fit to data, the results may misleadingly show the presence
of method effects. A good fitting model in such cases reflects confounding
similar to that noted above. One way to avoid making false inferences in
this sense is to carefully examine the trait-only model. The very high
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Fic. 3. Illustration of the correlated uniqueness model for three traits (global self-esteem,
social self-esteem, need for order) and three methods (true-false inventory, mulitipoint
inventory, simple self-rating).

correlations found among methods for findings summarized in Table 2,
coupled with the unexpected nonsignificant correlation between global
and social self-esteem, suggest that the inclusion of method factors may
constitute overfitting. Indeed, although the fit of the trait-only model is
unacceptable based on the chi-square test (i.e., x* (24, N = 196) =
111.27, p = .00), the results of the NCNFI = .92 indicate that the model
fits well as a practical matter. Overfitting with the CFA model is more
common than generally recognized. Bagozzi and Yi (1990, 1991) found
that 9 of 11 MTMM matrix investigations of job satisfaction in the applied
psychology literature and 2 of 4 investigations of consumer behavior in
the marketing literature revealed such outcomes, yet the trait-only model
could not be rejected on the basis of the NCNFI.

CORRELATED UNIQUENESS MODEL

Rationale

As a remedy for problems of overfitting and ill-defined solutions, Marsh
(1989) proposed a new approach which he termed the correlated unique-
ness (CU) model (see also, Kenny, 1976, 1979). Figure 3 presents the
CU model as applied to the personality traits studied by Van Tuinen and
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Ramanaiah (1979). The interpretation of Fig. 3 is similar to that noted
for the CFA model (Fig. 2) except for the meaning of method effects.
The effects of methods under the CU model are represented as corre-
lations among error terms. This permits one to capture differential impacts
of each method on the multiple measures corresponding to that method.

Three advantages of the CU model over the CFA model are the fol-
lowing. Most importantly, the CU model seldom produces ill-defined
solutions. For example, only 2% of the 435 MTMM matrices examined
by Marsh and Bailey (1991) exhibited improper solutions. A second ad-
vantage of the CU model is that methods are not assumed to be unidi-
mensional as under the CFA model. The confounding of method variance
with trait variance is avoided (when this is due to common trait variation
across methods and traits are highly correlated). Finally, when four or
more traits are measured with at least three methods, one can test the
assumption that all correlated uniquenesses associated with one particular
method can be explained in terms of a single, unidimensional method
factor. This can be done, for instance, by comparing goodness-of-fit indices
for the alternative approaches. It turns out that the CFA model with
correlations among methods constrained to be zero is a special case of
the CU model. For cases where three traits and three methods are used,
the models are identical. But when four or more traits are examined,
more parameters are associated with each method under the CU model
than the CFA model with orthogonal methods.

Hlustration of the CU Model

The CU model shown in Fig. 3 was applied to the data in Table 1.
The model provided a poor fit to the data based on the chi-square test:
X? (15, N = 196) = 80.04, p = .00. Nevertheless, from a practical
standpoint, little variation remains to be explained in the data: NCNFI
= .94. Table 4 summarizes the parameter estimates for the CU model.
The first thing to note is that all factor loadings of measures on traits are
high (range: .72 — .92; mean: .81). This demonstrates that the traits
relate strongly to measures and provides support for convergent validity.
Error variances are generally low, with the values for the simple self-
rating showing the highest values and approaching moderate levels. The
correlated uniquenesses for the true—false and multipoint inventories are
all nonsignificant. This shows that method effects are negligible for these
two methods. All three correlated uniquenesses for the simple self-ratings
are significant and thus reveal method effects. However, the magnitudes
of the correlations are generally small, suggesting relatively weak method
effects. Finally, the correlations among factors show that global and social
self-esteem are highly correlated (¥,, = .81, SE = .03), but the evidence
indicates that global self-esteem and orderliness are quite distinct (¥;, =
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TABLE 4a
SUMMARY OF PARAMETER ESTIMATES FOR THE CORRELATED UNIQUENESS MODEL
Traits
Global Social
self-esteem self-esteem Order

Construct FL SE FL SE FL SE
True—False inventory

Global self-esteem .88 .06 007 007

Social self-esteem 007 .83 .06 .00°

Order .00* .89 .06
Multipoint inventory

Global self-esteem .83 06 007 .00°

Social self-esteem .00° .92 .06 007

Order o 007 W15 .06
Self-rating

Global self-esteem 12 .06 .00° .00”

Social self-esteem 007 a5 .06 .00*

Order o 00" 12 .07

Factor intercorrelations

Global self-esteem 1.00°
Social self-esteem .81 .03 100"
Order .28 .08 .19 .08 1.00°

Note. FL = factor loading. U = unique variance or covariance. All parameter estimates
differing significantly from zero are underscored.
* Fixed at the value reported.

.28, SE = .08), as are social self-esteem and orderliness (¥, = .19, SE
= .08). These latter findings are more consistent with theory than the
CFA findings (compare Tables 2 and 4).

Critique of the CU Model

At least two shortcomings of the CU model should be mentioned. First,
the interpretation of correlated uniqueness as method effects is not always
clear. Two possible outcomes make the meaning of findings potentially
ambiguous: the presence within the same method of (a) significant positive
and negative correlations and (b) significant and nonsignificant correla-
tions. The former is incongruous, since it is difficult to conceive of reasons
why the same method has opposite effects on measures of different traits
when the traits are expected to covary in either a positive or negative
direction. The [atter finding is possible in theory, but in practice is difficult
to explain unless one has a priori methodological reasons accounting for



TABLE 4b
SUMMARY OF PARAMETER ESTIMATES FOR THE CORRELATED UNIQUENESSES MODEL

Unique variances and covariances

True—false inventory Multipoint inventory Self-rating

Construct u SE U SE U SE U SE U SE U SE U SE U SE U
True-false inventory

Global self-esteem .23 .05

Social self-esteem 01 03 31 .04

Order 00 03 03 .03 22 06
Multipoint inventory

Global self-esteem .00 .00 .00° 3 05

Social self-esteem .00° .00r .00° 05 .03 .16 .04

Order 0 00 00 0 04 -02 .03 42 .06
Self-rating

Global self-esteem  .00° .00 00" O B\ ia oo A48 06

Social self-esteem .00° 007 007 007 .00* o A2 04 40 05

Order 007 o0 .00° i1 00° 007 A0 04 08 .04 48

SE

06

Note. FL. = factor loading. U = unique variance or covariance. All parameter estimates differing significantly from zero are underscored.

* Fixed at the value reported.
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differences in the significance and nonsignificance of correlated unique-
nesses for a common method. In sum, whereas a CU model may fit
MTMM matrix data well, the presence of one or both of the above
outcomes for the correlated uniqueness may be a consequence of capi-
talization on chance.

A second, broad limitation of the CU model is that it assumes that
methods are uncorrelated. This may be reasonable when highly different
methods are purposefully chosen in a construct validation study. But for
the typical study where different self-reports constitute the methods, meth-
ods would be expected to be significantly correlated, perhaps highly so.
Even in cases where self-ratings and peer or expert ratings are used, one
generally anticipates at least a moderate amount of association between
methods because of the common format of items, shared experiences and
outlooks, and other factors.

For the data in Table 1, it is interesting to note that the findings for
the trait-only model (not shown) and the CU model reveal nearly equiv-
alent parameter estimates for factor loadings, error variances, and cor-
relations among traits. This occurs because apparently no linear method
effects exist for the true—false and multipoint inventories and the method
effects for the simple self-ratings are relatively small.

DIRECT PRODUCT MODEL

Rationale

Up to this point, we have considered linear models where traits, meth-
ods, and error terms have additive effects on measures. It is also possible
that methods may interact with traits in a multiplicative way. That is, a
multiplicative interaction can occur such that “‘the higher the basic rela-
tionship between two traits, the more that relationship is increased when
the same method is shared” (Campbell & O’Connell, 1982, p. 95). Camp-
bell and O’Connell (1967, p. 421) implied that trait—-method interactions
may be the rule rather than the exception, and some of the conditions
governing such interactions will be explored below after a procedure is
described for modeling interactions.

Until recently, no unambiguous procedure existed for representing
trait—-method interactions, and Campbell and O’Connell’s ideas remained
little more than speculations. The foundation for a formal model repre-
senting the multiplicative interaction between traits and methods was
developed by Swain (1975). Swain (1975) proposed that

2=3,® %, 3

where X is the covariance matrix of the observed measures in a MTMM
matrix design, %, and % are method and trait covariance matrices, re-



72 RICHARD P. BAGOZZ1

spectively, and ) indicates a right direct (Kronecker) product. This model
expresses the covariance matrix of measurements as the direct product
of a covariance matrix of methods and a covariance matrix of traits.
However, the model does not allow for measurement errors or different
scales for different measures, oversights that limit the applicability of the
model for typical MTMM matrix applications in personality research.

Browne (1984, 1989) extended Swain’s (1975) approach to incorporate
unique variances and scale factors and proposed the following direct prod-
uct (DP) model (see also Cudeck, 1988):

3= Z(P, ® P + EZ)Z’ 4)

where Z is a diagonal matrix of scale constants, P,, and P; are method
and trait correlation matrixes, respectively, whose elements are particular
multiplicative components of common score correlations (i.e., correlations
corrected for attenuation), and E? is a diagonal matrix of unique variances.

It is possible to give an intuitive description of the DP model as follows.
The DP model hypothesizes multiplicative effects of methods and traits
such that sharing a method exaggerates the correlations between highly
correlated traits relative to traits that are relatively independent. That is,
the higher the intertrait correlation, the more the relationship is enhanced
when both measures share the same method, whereas the relationship is
not affected when intertrait correlations are zero.

Two different processes lead to multiplicative effects. One might be
called differential augmentation (e.g., Campbell & O’Connell, 1967,
1982). Here, multiplicative effects are a consequence of an interaction
between the ‘““true” level of trait correlation and the magnitude of method
bias. A conventional position is that method factors add irrelevant sys-
tematic (method-specific, trait-irrelevant) variance to the observed rela-
tionships among measures. In other words, sharing a method is expected
to increase the correlations between two measures above the true rela-
tionship; halo effects and response sets are two common sources of such
outcomes. However, not all relationships are exaggerated by sharing a
common method; only those relationships that are large enough to be
noted are likely to be exaggerated. Campbell and O’Connell (1967, pp.
421-422) provide an example of such effects where ratings (e.g., self-
ratings and peer-ratings) are used as methods. Each rater might have an
implicit theory and set of expectations about the co-occurrence of certain
traits, which lead to rater-specific biases. In such cases, the stronger the
“true” associations are between traits, the more likely they are to be
noted and exaggerated, thus producing the multiplicative method—effect
pattern.

A second process producing multiplicative effects is differential atten-
uation (e.g., Campbell & O’Connell, 1967, 1982). A conceptual basis for
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this view is that using different methods will attenuate the relationships
between traits that are better represented when methods are held constant
rather than varied. That is, methods are seen as diluting trait relationships
rather than as adding irrelevant systematic variance. Not sharing a method
attenuates the observed correlations differently, depending on the level
of true trait relationships. Suppose, for example, that multiple occasions
are used as methods in a MTMM matrix design. This approach was taken
by Marsh and Hocevar (1988) in their development of the hierarchical
confirmatory factor analysis (HCFA) model. The results of longitudinal
studies often show that correlations are lower for longer than for shorter
lapses in time, demonstrating an autoregressive process. Accordingly, a
high correlation between two traits will be more attenuated over time
than will a fow correlation (see also, Campbell & O’Connell, 1982, pp.
100-106). In contrast, a correlation of zero can erode no further, and it
remains zero when computed across methods (i.e., occasions). Differential
attenuation might be expected in key-informant data to the extent that
functional relations over time are monitored.

The DP model can be estimated with programs such as EQS or LISREL
(e.g., Wothke & Browne, 1990), but certain advantages result when the
MUTMUM program is used (Browne, 1990). The MUTMUM program
is less cumbersome than EQS or LISREL, provides standard errors for
both trait and method correlations (a particular EQS or LISREL run only
computes standard errors for trait or method correlations and must be
reparameterized and run twice to yield these estimates), and accommo-
dates constraints on both trait and method correlation matrixes.

Campbell and Fiske’s (1959) original criteria for convergent and dis-
criminant validity have the following interpretations under the DPM (e.g.,
Browne, 1984, pp. 9-10). Evidence for convergent validity is achieved
when the correlations among methods in P, are positive and large. The
first criterion for discriminant validity is met when the correlations among
traits in P are less than unity. The second criterion for discriminant
validity is attained when the method correlations in P, are greater than
the trait correlations in Py. The final discriminant validity criterion is
satisfied whenever the DP model holds as determined, for example, by
the results for goodness-of-fit indices. These interpretations follow from
the specification of the DP model, and a demonstration showing this can
be found in Bagozzi and Yi (1990, pp. 549-550). More formal tests of
most of these conditions as well as other useful hypotheses are possible
and will be described below when we consider an example.

Ilustration of the DP Model

The MUTMUM program was applied to the data in Table 1, giving
the following results: x*(25, N = 196) = 98.06, p = .00. Table 5 presents



TABLE 5

PARAMETER ESTIMATES FOR THE DIRECT PRODUCT MODEL ANALYSIS

Trait intercorrelations

Method intercorrelations

Measures Communalities Error Ti T2 T3 M1 M2 M3
True-false

Global SE .86 (.03)° .14 1.00° 1.00°

Social SE 89 (.02) A1 T8 (.04) 1.00* 93 (.03) 1.00°

Order .85 (.03) .15 33 (.07) .20 (.07) 1.00° .88 (.04) 83 ((4) 1.00°
Multipoint

Global SE .89 (.02) 11

Social SE .91 (.02) .09

Order .88 (.03) 12
Self-rating

Global SE .85 (.03) .15

Social SE .88 (.03) 12

Order .83 (.04) 17

“ Standard errors in parentheses.
® Fixed at the value reported.
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TABLE 6
Tests oF HYPOTHESES FOR THE DIRECT PRODUCT MODEL
Model Chi-square Chi-square
goodness-of-fit difference test
Baseline X(25) = 98.06
p = .00
All traits equivalent x*(30) = 578.17 Xa(5) = 480.11
P21 = Puz = Por T p=.00 p < .001

1.00
Traits 1 and 2 equivalent

X(28) = 185.81

Xi3) = 87.75

P = 1.00 p = .00 p < .001
Traits 2 and 3 equivalent x’(28) = 495.85 xi(3) = 397.79
p = 1.00 p = .00 p < .001
Traits 1 and 3 equivalent X(28) = 426.50 Xi(3) = 328.44
pa = 1.00 p = .00 p < .001

All methods equivalent

X(30) = 137.14

Xi(5) = 39.08

Pm2i = Pmxz = Pmn = p=.00 p < .001
1.00
Methods 1 and 2 x(28) = 105.04 xi(3) = 6.98
equivalent
Pmn = 1.00 p = .00 p > .05
Methods 2 and 3 x(28) = 130.37 Xi(3) = 3231
equivalent
Pz = 1.00 p = .00 p < .001
Methods 1 and 3 x’(28) = 125.30 Xi(3) = 27.24
equivalent
Pmn = 1.00 p=.00 p < .001

the parameter estimates. Note first that the communalities are all high
and significant, and error variances are relatively low. The criterion for
convergent validity is satisfied in that all intermethod correlations are
large and significant. The first criterion for discriminant validity is satisfied
in that each correlation among pairs of traits is less than 1.00 by an
amount greater than twice its standard error. The second criterion for
discriminant validity is met since every intermethod correlation is greater
than every intertrait correlation. The final criterion for discriminant va-
lidity holds if we rely on a measure of practical relevance: NCNFI = .93.

The above assessment of construct validity was based on a visual in-
spection of correlations. It is desirable to more formally examine specific
hypotheses concerning construct validity, reliability, trait effects, and
method effects (e.g., Bagozzi & Yi, 1992a). Table 6 shows the results of
various hypotheses of interest. The first set of comparisons in the table
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focuses on the equivalence of traits and tests whether each intertrait
correlation is lower than 1.00 in an absolute sense. This provides a formal
test of the first discriminant validity criterion. The null hypothesis main-
tains that all intertrait correlations are 1.00 (i.e., pp; = P = po1 =
1.00). A comparison of this null model to the baseline DP model shows
that one must reject this hypothesis (i.e., x5(5, N= 480.11 p < .001).
This omnibus test indicates that one or more correlations among traits is
significantly less than unity. Table 6 shows, further, that the correlations
are less than 1.00 between traits 1 and 2 (i.e., global self-esteem and
social self-esteem: x3(3, N = 196) = 87.75, p < .001), traits 2 and 3
(i.e., social self-esteem and orderliness: Xi(3, N = 196) = 379.79, p <
.001), and traits 1 and 3 (i.e., global self-esteem and orderliness: x3(3,
N = 196) = 328.44, p < .001).

The second set of comparisons in Table 6 scrutinizes the associations
among methods and tests whether each intermethod correlation is lower
than 1.00 in an absolute sense. These tests of the equivalency of methods
are not related to construct validity, per se, but are useful for discovering
any redundancy in methods. The null hypothesis maintains that all in-
termethod correlations are 1.00 (i.€., pm21 = Pmnz = Pmn = 1.00). A
comparison of this null model to the baseline DP model shows that one
must reject this hypothesis (i.e., x3(5) = 39.08, p < .001). Thus, at least
one of the intermethod correlations is less than 1.00. Inspection of the
findings in the bottom of Table 6 shows that methods 2 and 3 (the mul-
tipoint inventory and self-ratings) are distinct (x3(3, N = 196) = 32.31,
p < .001) and methods 1 and 3 (the true—false inventory and self-ratings)
are distinct (x3(3, N = 196) = 27.24, p < .001). However, we cannot
reject the hypothesis that methods 1 and 2 (the true—false and multipoint
inventories) are equivalent (x3(3, N = 196) = 6.98, p >.05).

A number of other hypotheses might also be examined, depending on
the needs of the researcher. For instance, a researcher might wish to
discover which traits among a set under scrutiny are orthogonal in order
to choose promising candidates for a future test where traits will enter
as independent variables in a regression analysis. This can be investigated
by comparing a model with intertrait correlations constrained to be zero
to the baseline DP model. Formal comparisons could be made as well
between intertrait and intermethod correlations to see whether the latter
are greater than the former, as is required by the second discriminant
validity criterion. This can be examined with tests imposing inequality
constraints but was not done herein because the significance levels derived
do not strictly apply. A proper test could be developed, if desired, based
on asymptotic distributions with the analysis of moment structures. Fur-
ther, tests of the orthogonality of methods might be of interest in some
circumstances and can be pursued with a similar strategy to that outlined
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above for tests of the orthogonality of traits. Finally, it is possible to test
whether the communality of each trait remains constant across methods.
This can be accomplished by comparing the baseline DP model to a model
fixing the diagonal matrix of errors corresponding to methods to unity.

Critique of the DP Model

One drawback with the DP model is that convergent validity is assessed
by a rather global standard (e.g., Bagozzi & Yi, 1990, p. 556). The
requirement that method correlations be substantial is a composite in-
dicator of sorts for convergence of multiple measures of each trait. The
criterion for convergent validity does not supply information about the
degree of convergent validity or point out which measure(s) is satisfactory
or not. In this sense, the DP model is less informative than the CFA
model.

A related shortcoming of the DP model is that it is not possible to
arrive at an estimate of variation in a method due to traits, as is possible
with the CFA model. Trait and method variance are confounded in the
DP model.

A final point to note is that, on occasion, the DP model and either the
CFA model or the CU model can fit the same data set. Bagozzi and Yi
(1991) found, for example, that two of four data sets in their study were
explained satisfactorily by both the DP and CFA models. However, be-
cause improper solutions arose for the CFA models, there is reason to
reject these models and accept the DP model. On the other hand, the
CU model and the DP model both fit the two data sets in question (not
shown in Bagozzi & Yi, 1991). One of these data sets can be accounted
for by the trait-only model (Bagozzi & Yi, 1991, p. 438}, so it appears
that only one data set actually can be explained by both the CU and DP
models. Because the trait-only model is more parsimonious than the DP
model, we might accept the former and reject the latter for the data set
in question.

It thus appears that the DP model and the CFA and CU models can
fit the same data, although the likelihood of this happening in practice is
unknown. Unfortunately, little is known as well about the conditions under
which both models will fit the same data. One decision rule that can be
applied until we learn more about the relationship between the two models
is to rely on differences in parsimony between the two models. From the
point of view of the number of parameters to estimate, the DP model
has fewer parameters than the CU (or CFA) model. But it could be
argued that linear effects are conceptually more parsimonious than mul-
tiplicative effects. A choice between the two, when both fit the same data,
will depend on one’s interpretation of parsimony.
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DISCUSSION

The assessment of convergent and discriminant validity is a complex
endeavor with many options and many pitfalls. We considered the ra-
tionales, assumptions, and pros and cons of four leading approaches to
the analysis of MTMM matrix data. Figure 4 presents guidelines for using
the procedures in studies of construct validity.

It is useful to think of the analysis of MTMM data from the point of
view of either of one of two goals, based upon whether one has strong
or weak criteria for making hypotheses. When one has strong reasons for
expecting a particular kind of structure underlying the data or desires
information of a specific nature, either the confirmatory factor analysis
model, correlated uniqueness model, or direct product model may be
tried first. For example, if one has reason to believe that traits and methods
interact (e.g., this might be expected when self and expert ratings are
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gathered of states or traits and respondents have an implicit personality
theory which affects their judgments), then the direct product model
should be examined first. If, on the other hand, one believes that traits
and methods have additive effects (a likely outcome in many contexts),
then either the confirmatory factor analysis model or correlated uniqueness
model can be investigated. The former would be preferred when the
researcher desires to partition variance into trait, method, and error com-
ponents. The latter is advantageous when (a) improper solutions result
in a confirmatory factor analysis or (b) trait and method variance are
suspected to be confounded (e.g., when traits are highly correlated and
a general method factor reflects trait variance).

When one lacks a strong rationale for hypothesizing an underlying
structure, the exploratory sequence outlined in the right-hand side of Fig.
4 might be appropriate. It is helpful often in these cases to begin with
the classic Campbell and Fiske (1959) procedure. Satisfaction of the four
criteria suggested by Campbell and Fiske (1959) is incomplete, however,
for making definitive conclusions, and the approach rests on unrealistic
assumptions. Nevertheless, positive results from the classic analysis pro-
vide tentative information that a linear model might capture the rela-
tionships in the MTMM matrix. A failure to satisfy the Campbell and
Fiske (1959) criteria could stem from many reasons, some of which include
excessive random error and unreliable measures, method effects which
are highly correlated and/or nonproportional across measures of traits,
and unknown relations between traits and methods. Marsh (1988), build-
ing on general observations made by Campbell and Fiske (1959, p. 84),
suggested that an inspection of the MTMM matrix can point to the likely
presence or not of method effects. Specifically, Marsh (1988) proposed
that the mean of the correlations in the heterotrait-monomethod triangles
be compared to the mean of the correlations in the heterotrait—hetero-
method triangles. The larger the difference, the more likely that method
effects and/or shared method effects occur. One might perform this com-
parison separately by methods as well, to discover which methods con-
tribute more than others. In sum, when little a priori information exists
to forecast the nature of trait, method, and error effects, it is sometimes
helpful to begin with an application of the Campbell and Fiske (1959)
criteria.

Whether the Campbell and Fiske (1959) criteria are met or not, we
recommend that the confirmatory factor analysis model be applied next
in an exploratory investigation. Because the confirmatory factor analysis
model overcomes so many limitations of the Campbell and Fiske (1959)
approach and at the same time yields a partitioning of variance into trait,
method, and error components, it is a potentially informative window
into construct validity. We recommend that the trait-only model be run
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first in this regard. If it fits satisfactorily, then the addition of method
factors should be done warily, as it will lead to overfitting and improper
solutions with high likelihood. A poorly fitting trait-only model might be
caused by a failure to model method effects, which the results from an
analysis of a trait—-method analysis should confirm.

As Marsh and Bailey (1991) show, the confirmatory factor analysis
model is often unsuccessful in the sense that either iterations fail to con-
verge and no proper solution is possible or else the solution that one finds
results in improper parameter estimates such as negative or nonsignificant
error variances. Of course, proper solutions can result but the model may
deviate significantly from the data. For all these instances, the confir-
matory factor analysis model must be rejected. When this happens, the
correlated uniqueness model should be explored. Indeed, this model is
highly robust and is likely to fit most data sets, assuming the assumptions
upon which it is based are met.

In those cases where the correlated uniqueness model fails to account
for the pattern of relations in a MTMM matrix, it might be a consequence
of interactions between traits and methods. Here the researcher can apply
the direct product model. It should be noted that none of the models
may fit a particular data set if complex patterns underlie the relationships
such as additive effects among some traits and methods and multiplicative
effects among others. When this happens and if enough traits and methods
exist, it may prove fruitful to explore different models for different subsets
of measures.

All the models considered up to this point are applicable to data sum-
marized in the classic MTMM matrix. Each trait is measured by a single
indicator from each of multiple methods. A drawback common to the
approaches is the property that random error is confounded with specific
error in the disturbances. The consequence of this is especially important
when the reliabilities of different scales vary, because ‘“‘such differences
will distort inferred relations among the scales, the factor loadings on the
latent method and trait factors, relations among the latent factors, and
summary statistics that are based on these parameter estimates” (Marsh
& Hocevar, 1988, p. 108).

Three approaches that represent both random error and measure spec-
ificity, and thus circumvent the confounding mentioned above, are the
hierarchical confirmatory factor analysis (HCFA) model (Marsh & Ho-
cevar, 1988), the first-order, multiple-informant, multiple-indicator (FOM-
IMI) model (Kumar & Dillon, 1990), and certain panel models (e.g.,
Bagozzi & Heatherton, 1991; Bagozzi & Yi, 1992b). Unlike the procedures
presented in this paper, the HCFA, FOMIMI, and panel models have
data requirements going beyond the classic MTMM matrix. The HCFA
model uses first-order factors to represent latent trait-method combina-
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tions, where two or more measures load on each trait-method factor.
Thus, the correlation matrix needed for a HCFA model is at least twice
as large as the traditional MTMM matrix which uses one measure for
each trait-method unit. Under the HCFA model, trait and method factors
are modeled as second-order latent variables. A further limitation of the
HCFA model that potentially limits its usefulness in practice is the fol-
lowing: constant proportions for each measure k are assumed for (a) trait
variance to method variance, (b) trait variance to measure specificity, and
(c¢) method variance to measure specificity (Bagozzi, Yi, & Phillips, 1991,
Appendix B). The FOMIMI model uses first-order latent variables to
represent trait and method effects, as with the confirmatory factor analysis
model. But to capture measure specificity, additional first-order factors
are introduced. To achieve an identifiable model, at least two and pref-
erably three measures are required for each trait~method combination
(Bagozzi, Yi, & Phillips, 1991). This means that the correlation matrix
required for a FOMIMI analysis is at least twice the size of a traditional
MTMM matrix. Because the ratio of factors to measures in a FOMIMI
model is often larger than what one would like to have in a factor analysis,
the potential for overfitting and either failures to converge or improper
solutions is great. This property and the large data requirements make
the FOMIMI model less useful in practice. Panel models can be used to
model random error and measure specificity, while testing for convergent
and discriminant validity for measures of two or more traits. The drawback
with this approach is that the models become unwieldy when multiple
methods are used, because as with the HCFA and FOMIMI models,
multiple measures of each trait—method combination are required. Cou-
pled with the need to obtain responses from the same respondents over
time, this feature of the approach limits its applicability in practice. The
HCFA, FOMIMI, and panel models are important procedures for the
investigation of construct validity, but because of their complexity and
data requirements, nothing more will be said about them herein. Table
7 summarizes the advantages and disadvantages of these approaches to
construct validation as well as the ones scrutinized in more detail in this
article.

In sum, many procedures can be used for analyzing MTMM matrix
data. No single approach dominates the others. No universal procedure
can be recommended. The choice of one or more models will depend on
the purposes of the researcher. Nevertheless, it is important to recognize
the pros and cons of the different approaches. We presented guidelines
for conducting the investigation of construct validity with MTMM matrix
data. A researcher must be aware of the assumptions of the different
procedures and their implications for the information derived from their
application. The choice of a procedure should be guided by the nature



TABLE 7

SUMMARY OF Pros AND Cons wWiTH REGARD TO CONTEMPORARY PROCEDURES FOR ASSESSING CONSTRUCT VALIDITY

Procedure

Advantages

Disadvantages

Campbell and Fiske
(1959)

Confirmatory factor analy-
sis (e.g., Widaman
1985)

Correlated uniquenesses
model (e.g., Marsh
1989)

Direct Product model
(e.g., Browne 1984)

Intuitive

Easy to apply

Methods can correlate freely and affect measures to
different degrees.

Measures of fit provided for an overall model.

Estimates of tests of significance provided for
parameters.

Variance can be partitioned into trait, method, error
components.

Under certain conditions, can estimate correlations
between traits and methods.

Likelihood of ill-defined solutions low.

Avoids confounding of method variance with trait
variance under certain conditions.

Possible to test assumption that all correlated
uniquenesses associated with one method can be
accounted for by a single factor (when at least
four traits and three methods exist).

Provides direct translation of Campbell and Fiske
criteria.

Represents interaction of traits and methods.

Can work for models as small as two traits and two
methods.

No precise standards for ascertaining convergent and
discriminant validity.

Cannot determine degree of trait, method, and error
variance.

Assumes that traits and methods are uncorrelated,
methods influence all traits equally, methods are
uncorrelated, measures are equally reliable.

Disturbances reflect both specific and error
variances.

Partitioning of variance may not yield “trait-free”
and “method free” interpretations.

Ill-defined solutions frequently result (e.g., negative
error variances).

Requires at least three traits and three methods,
four traits and two methods, or two traits and
four methods.

Confounds random error with measure speciality.

Interpretation of correlated uniquenesses may be
difficult.

Assumes methods are uncorrelated.

Requires at least three traits and three methods.

Confounds random error with measure specificity.
Trait and method variance confounded.
Degree of convergent validity difficult to interpret.
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Second-order confirmatory
factor analysis model
(e.g., Anderson 1987)

Hierarchical confirmatory
factor analysis model
(e.g., Marsh & Hocevar
1988)

First-order multiple-in-
formant, multiple indi-
cator model (e.g., Ku-
mar & Dillon 1990)

Panel models with multi-
traits (e.g., Bagozzi &
Heatherton 1992)

Random error and measure specificity estimated
separately.

Random error and measure specificity estimated
separately.

Random error and measure specificity estimated
separately.

Avoids assumptions on ratios made by second-order
and hierarchical confirmatory factor analysis
models.

Random error and measure specificity estimated
separately.

Temporal stability and true reliability can be
estimated.

Applies to as few as two traits and three methods.

Assumes ratios of trait variance to measure specific-
ity are identical for any particular measure, re-
gardless of the method.

Requires at least twice, and preferably three times,
as many measures as standard procedures.

Assumes constant proportions for measure k for the
ratios of
(a) trait variance to method variance
(b) trait variance to measure specificity
(c) method variance to measure specificity.
Requires at least twice, and preferably three times,
as many measures as standard procedures.

Required at least twice, and preferably three times,
as many measures as standard procedures.

Likelihood of overfitting high (i.e., failures to con-
verge or ill-defined solutions are likely).

Needs at least two points in time for each measure.
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of the traits under investigation, the properties of the methods used to
measure traits, the correspondence of traits and methods to the underlying
rationale of the model under consideration, the assumptions of the model
and its sensitivity to their violation, and the kind of information desired
(e.g., partitioning of variance into components). Properly used, the var-
ious procedures provide numerous insights into construct validity.
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