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The Wigner function is a promising method for including such effects
as time dependence, self consistency, and inelastic scattering in quan-
tum transport calculations. However, issues regarding the accuracy and
consistency of the methad need to be resolved. This paper presents a
numerical method for determining the Wigner function which is derived
from an accurate discretization of the Schrédinger equation. All of the
density matrix information is preserved in this method, rather than half,
as in previous methods. Results of self -consistent calculations under
low bias conditions are presented. Further wark must be done on the
praper formulation of scattering rates and to determine the device
dimensions and k-space discretizations that are required for realistic
quantum device calculations. € 1994 Academic Press, Inc.

1. INTRODUCTION

The Wigner function method has been used to include
time dependence [1-27, inelastic phonon scattering [3-41],
and the self-consistent potential [5-7] in quantum trans-
port modeling. However, questions have been raised about
the accuracy of the method, especially when compared with
results obtained from an ensemble Schrddinger equation
calculation [47. In practice, consistently good agreement
with the Schrddinger equation method has not been
obtained, even for the case where inelastic scattering and
self-consistency are ignored. It has been suggested that the
discrepancy arises from an inherent difference in the
assumptions made by these two methods; however, a
serious problem remains that cannot be explained by this
argument: using only the Wigner function method, the
authors have found that consistent results are not obtained
as parameters of the simulation are varied. For example,
one expects that refining the mesh in k-space would cause
the method to converge to the correct answer. In fact, cases
have been observed where the method diverges or changes
unpredictably. Also, consistent results as physical
parameters of the structure are varied are not always
obtained; if, for example, the barrier widths of a resonant
tunneling diode are increased, the peak current should
decrease and the current peak-to-valley ratio should
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increase. Such behavior is not consistently obtained with
Wigner function simulations.

Some work has been carried out to formulate a more
accurate approach for solving the Wigner function equa-
tions [ 4, 8, 9]. However, it has been the authors’ experience
that none of the reported methods has satisfactorily solved
the problem.

In this paper, a numericai method is developed for deter-
mining the Wigner function, which 1s based on an accurate
discretization of the Schridinger equation. As will be dis-
cussed, problems still remain in the implementation of the
method, particularly regarding the proper formulation of
scattering rates and the inciusion of sufficient range in the
real-space and k-space discretizations.

2. THE PROBLEM WITH CURRENT METHODS

The usual approach is to begin with the analytic form of
the equation for the time evolution of the Wigner function

Jlx. k) [10],
of(x, k)

at m dx

X {2Jm dy sin([k— k"] y)x[V(x+§)

Rk oftx, k]+<af(x, k]) 1

ot C_z_TUFIJij a’

(1)

where the time derivative with subscript “C” denotes the as
yet unspecified term due to scattering, The next step in the
conventional approach is to discretize the terms in Eq. (1}.
The spatial derivative term on the right side has been
discretized using upwind differencing [2], second-order
upwind differencing [9], and explicit Lax—Wendroff dif-
ferencing [5]. Although some improvement is obtained by
using second-order accurate discretizations, it has been the
authors’ experience that sufficient accuracy is not obtained
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by simply modifying this term. A more serious problem is
encountered in discretizing the potential energy term in
Eq. (1), which involves two nested, infinite integrals. It
would seem natural to discretize the integral over dk’ by
simply summing over all the values in the k-space discretiza-
tion. However, it is not clear what the upper limit of the
integral over dy should be. In practice, significantly different
results may be obtained by using different values for this
upper limit.

The analytic expression for the Wigner function in terms
of a single wave fonction is

L= .
Sy == dyras - et @)

(Throughout this paper a single wave function will be used
for clarity; however, it is understood that factually consists
of a superposition of many terms such as in Eq. (2), each
with a statistical weighting.) Equation (2) is typically
discretized as

1 Ninax

= Voik Y, g*(x,+nAx)

n=—Nmay

X (X, —n Ax) " Fmn,

f(xj! km)
3)

where N, is the number of points in k-space, and N, is yet
to be determined. Note that in arriving at the discretization
in Eq. (3), the lollowing relation has been assumed for the
steps in real space and k-space,
Ax Ak =n/N,, (4)
which is required for Fourier completeness. This leads to a
k-space discretization of the form:
kn=mdk; m=—N

os Ve (5)

max:

Now, using Eq. (3) as the discrete definition of the Wigner
function, the inverse transform is defined as

Yrx;+n Ax)y(x;—n" Ax)

= Ak Y e BN (X k). {6)

In order for Egs. (3) and (6) to be a valid transform pair, the
following restrictions must be placed on the extent of »” in
Eq‘ (6)3 . '

— y_" gn’ < N_"". s

2 2
where the square brackets in Eq. (7) denote the greatest
integer function. The quantity on thé left in Eq. (6} is just

(7)
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the density matrix in the coordinate representation (again,
when like terms are summed over a statistical ensemble).
However, according to {6), only products of wave functions
i separated by an even number of space steps Ax are within
the space of the inverse transform; the density matrix within
the simulated region, however, contains all products of
wave functions. Therefore, if only the discrete Wigner func-
tion definition according to Eq. (3) is used, half the informa-
tion contained in the density matrix will be lost. This
problem has been previously noted by Frensley [11].
One may wonder why this loss of information necessarily
constitutes a problem; cannot one include only half the
information contained in the density matrix and still have a
useful simulation model? The answer will become clear in
the following section; in order to develop a scheme that is
consistent with Schrédinger’s equation, aff the information
contained in the discrete density matrix must be retained.

3. DEVELOPMENT OF THE NEW FORMULATION

Rather than attempting to discretize Eq. (1), let us start
with an accurate discretization of Schrodinger’s equation

f127:

dfr(x +nAdx)
dr
(lﬁ(x +{n+1)Ax)—2f(x+n Ax))
ih +y(x+(rn—1)4x)
Ax7

2m*

,é Fix+nAdAxyfr(x+ndx). (8)

For now, the time derivative in (8} is not discretized. Let us
also adopt the definition of f(x,, k,,), the discrete Wigner
function, given by Eq. (3). The parameter &, must be an
odd integer, so that f is symmetric about &, =0 and
includes this value. The parameter N, in Eq. (3) is taken
to be

Nmaxz[Nk/z]a (9)

where the square brackets denote the greatest integer func-
tion (e.g., if N, =61, then N_,, = 30). This choice for N,
leads to an equation for @/t that is entirely expressible in
terms of defined Wigner function values,

As was previously mentioned, using f(x,, k,,) only retains
half the density matrix values on the simulated region. Also,
it is not possible to derive an equation consistent with
Eq. (8) for 8f/dt using only f as defined in Eq. (3). To over-
come these difficulties, a second Wigner function is defined
midway between meshpoints,



AN ACCURATE
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where k£ denotes k-values associated with the Wigner func-
tion g, which are different from the k,, values associated
with f, and where x is located between meshpoints ¥, :

xM = x; + Ax/2. (11)

Note in Eq. (10) that the indices # and m are incremented by
two at each step. Therefore the quantity g is defined in terms
of products of wave functions separated by an odd number
of mesh points, thereby including the previously missing
half of the density matrix. The inverse transform associated
with g is

. Ax i Ax
IJI*(XJ d+n?)q‘}(xf id n—2—>

Ny
=Akg z g(x;_md’ k,ﬁg) e—i(Zn(m/Z)ln/Z)f{N;,+ l)]’
nt= — Ny
(Am=2)
n=—Nk, —_Nk+25v"s+Nk' (12)

Note from Egq. (10) that there are N, +1 =N, values of g
at each midpoint; the motivation for this choice will become
clearer in the derivation of the update equations. The
quantity Ak, in Eqgs. (10) and (12) is also defined so that
Fourier completeness is satisfied:

Ak, Ax=n/N,,. (13)

The derivation of the discrete equation for df/¢ét will now
be presented (the scattering term is not included in the
derivation; rather it will be added later). Differentiating
Eq. (3) yields

ZACTY S S S
dr Akaﬂ:—[Nk,Q]
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RE-FORMULATION
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Next substitute the discrete equation (8} and its complex
conjugate into Eq. {14) for /3t and dyy*/é¢; the result is

ofapky) WD
_ Y [*(x+n dx)
ot 2m*rAx [¥/2] '

xY(x;— (n—1) Ax) + §*(x;+ n Ax)
xy{x;— (n+ 1)y Axy—fi(x;—n Ax)
Xp*(x,+(n+ 1) Ax)—(x;—n Ax)

XP*(x;+ {n—1) 4x)] PN
iAdx [ve/2]

- Y D*(x;+ndx)
L 3]

X (x; —n Ax} V(x;4+n Ax)

— V(x,—n Ax)}] emmine, (15)

The next step in the derivation is to replace the products of
the wave functions appearing in Eq. (15) by the correspond-
ing Wigner function f or g as defined by Eq. (3) or (10). It
is at this point that the difficulty of using only the Wigner
function f becomes apparent. Since Eq.(15) contains
products of wave functions separated by both odd and even
numbers of space steps Ax, it is not possible to express this
equation entirely in terms of f-values (it is possible,
however, if the step size is doubled to 2 4x in Eq. (8)). For
example, the following shows how the first wave function
product term may be transformed so that the Wigner
function definition may be used:

Y*(x;+ndx)y(x,— (n—1}) dx)
=y*(x;+n Axjg(x;—n" Ax),

where X[=x;+ n —n——

il 16
= (16)

It is seen that the x; value defined in Eq. (16) is between
meshpoints, so that these products may be replaced by g
values according to Eq. {10), provided of course that the x;
and »' values fall within the range of definition of g in
Eq. (10). If the mesh is set up so that the first and last
meshpoints are f-points and the first g-values on the left are
at x, + Ax/2, and on the right at x y_— Ax/2, where N, is the
number of meshpoeints, then all the x; values will be within
the range of g provided we are at interior points, i.e., exclud-
ing x, and x . At the boundaries, different equations must
be used for . For the n’ values to be included, from Eq. (12)
they must have the property that 2n in each case is an odd
integer, within the range — N, ..., + N, which is readily
verified since 7 cannot be larger than [N, /2] (see Eq. {7)).

Therefore, the first four product terms in Eq. (15) may be
expressed in terms of g-values as follows, where the
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appropriate definition for x; and »" must be used for each
term:

W*(x; +n' Ax) yix; —n' Ax)

Ni
= Akg Z g(x}.’, ki) e _,'[211()1:/2)11'/!\1’&.(). (] 7)
m= — Ny
(den=2)

Also, the wave function product in the potential energy term
of Eq. (15) is directly expressible in terms of fusing Eq. (6).
Using this equation and incorporating g-values as in Eqs.
(16) and (17) leads to the following form for the equation
for of/or:

oftxy, k) #i § sin( m
8t m* AN+, AN+ 1)
{dm'=12)

x [g(x[™, ki) — g(x™ — 4x, kf,)]

J
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2 [Ne/2]
TN, y flx;, k)
K opr=—[N/2]
[Ne/21

X Z [V{x,+ndx)— V{x;—n dx)]

=1 .

. (2an(m—m")

X sin ( N, ) (18)
It is seen from Eq. (18) that the spatial derivative term,
df/8x, in the analytic equation (1), is expressed as space-
centered derivatives involving the surrounding values of g.
Also, whereas the spatial derivative term occurs {or a single
k-value in the analytic equation, in Eq. (18) a sum of spatial
derivatives over all k¥, values results; however, the k}. x k,,
term is heavily weighted in Eq. (18), since this case
corresponds to m a m’/2 s0 that the cosine argument goes to
zero. Also, replacing the sine function in (18) by its argu-
ment for small #m’ shows a correspondence with the & factor
multiplying the spatial derivative in Eq. (1), at least for
small k5., The potential energy term in Eq. (18} is a
straightforward discretization of the analytic term in (1);
however, the ambiguity as to the upper limit of the spatial
integration (the sum over n} is now resolved.

It can be seen from the potentiai energy term in Eq. (18)
that, for equations near the boundary, potential energy
values are required beyond the domain of simulation. One
method of obtaining these values is to assume that the
potential is constant in the contacts, given by the last value
at the boundaries. A better method is to assume that the
potential energy varies linearly in the contacts, with a slope
given by the last two points at the boundary. This is 2 more
realistic choice since we expect the electric field in the
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contacts to be nearly constant, which corresponds to a
linear potential variation.

Although some of the terms in Eq. (18} are recognizable
from the analytic equation, it is not an intuitive discretiza-
tion of Eq. (1). However, it 1s the more accurate result that
is consistent with Schrédinger’s equation.

If the electron density is given by

{Ngi21

Y Sx k),

m=—[Np2]

- n(x;) = 4k {19)

and if the current density is defined at the midpoints as

gfi AKN g‘i RS
MmN, i) Ax
(dm’ =2)

: nm’ hi
x $in (2N )g(x, k2,

kg

7, (xpid) =

(20)

then by summing terms in Eq. (18) over m it is easily shown
that a discrete form of the continuity equation is exactly
satisfied by this formulation, ie.,

on —13dJ,
&g o @l
If we further define an effective k2,
ks —-Lsin( o ) (22)
" Ax T \2Ng /)

and using 4k, as defined in Eq. (13), the current density
may be expressed in a more familier form:

Ny

Y kE g(x™ kL) dk,.

g

mi qﬁ
Jrz(xj d)=;;

(23)

m=—Ny
{dm’ = 2)

The next step in the derivation is the development of a
cortesponding equation for the time evolution of g
Proceeding in the same manner, Eq. (10} is differentiated
with respect 10 time, and the resulting dy/0r and &y*/dt
terms are replaced by the discrete equation (8) and its
og(x™d, k&) ifi Ny on+2

- == z | (X'-“‘" +
at m*w Ax = !
mid HA * mid n‘ZA
X | x] —§X+l[l X; +-—2—x
mi i i h
xn]f(xj "—-j,dx)——\,f;* (x;?‘d+54x)

complex conjugate, respectively, which yields
A.x)
(dn=2)
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o= 2 mid | #
xu'/(xj 4 5 Ax)—y!f* (xj d+§zlx)
mid n+ 2 A Hamn/2{Ng + 1))
x| x™ — 5 Ax]|e
idx M

* mid n
— mid f— 4
G 2 ()

an=2

o et

_ V(x;pid _gdx)}] ei(nmn/Z(Nk+i]}' (24)

The wave function product terms in the first group on the
right side are separated by an even number of meshpoints
(since n is odd), so they may be replaced by f-values. In the
potential terms, the wave functions are separated by odd
numbers of meshpoints so they are expressed in terms of g.
For this equation, however, for some values of # the product
terms in the first group will be outside the range of the
definition of f. The following shows the transformations of
the product terms within the first group in preparation for
the substitution of f-values, and the value of » for which the
substitution is not possible is mentioned for each case:

g omt2 . n
w* (x}“’d +3 Ax) W (x}md -3 Ax)

=y*(x;+n" Ax)(x;—n' Ax),

where  x/=x"4+Ax/2,  n'=(n+1)2,
does not work for n =N (25a)
mi n_z mi n
* (xj d+—2—Ax) i (xj d —3 Ax)
=y*(x;+n" dx)(x;—n' Ax),
where x;=x™—Ax/2, n'=(n—1)2,
does not work forn=—N; (25b)
. -2
W* (x”"d + " ax i (x’?"d I Ax)
J 2 J 2
=¥ (x;+n Ax)P{x;—n" 4x),
where x;=xP4+4x/2, n'=(n-1)2,
does not work forn= — N; (25¢)
mid | P mag_AH2
y* (x_,- d+§ Ax) V (xj d ——2f—~Ax)
=y*xj+n Ax)(x;—n' Ax),
where x/=x™—dx/2, n'=(n+1)2,
does not work forn=N,. (254d)
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To proceed further, Eq. (6) is used to introduce f-values
for the terms in Eqs. (25) that can be replaced; this will yield
a spatial derivative term involving f-values; however,
“boundary terms” will be left over corresponding to the
values of n noted in Egs. (25) (boundary terms in the sense
that they are just outside the boundary of the definition for
£, not that they necessarily occur on the simulation bound-
ary). Substituting f-values for the terms that can be replaced
and using Eq. (12} to replace the wave function preducts in
the potential energy terms of Eg. (24) yields the discrete
relation for dg/dt,

dg(xT, k&) h _ (

=— sin
ét m* Ax’N,

[Ne/2]

onm
XN+ 1))
x X

S b
l:f(x;md + __Y’ km)
m' = —[Ng/2Z] 2

nNe—1

x[1+ >

wmn’
n =2

5 _ nm’n')]
CC\VIN T N,
{An' =21

2 b

—_—— cmid Lg
N, L, S

{4m' =2}
n=1

mi ndx
()
{An =2}
_ mid_nAx . nn(m—m’))
V("' 2 )]SIH(Z(MH)

; (26)

Ny
x L

where the final term labeled B.T. represents the boundary
terms that are not expressible i terms of Wigner function
values, either for g. These boundary terms are, specifically,
ag(x™, k8)

ot

—ih

2rm* Ax

i 2
oty

X (x;.“i" —%’5 Ax)

mi Nk
—y* (xj d+7zlx)

w Net2
X (x;“d — —£2+— Axﬂ

x ei{nmN;,,’Z(Ng-F 1 _ C.C.},

(27)
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where cc. in (27) denotes the complex conjugate of the
previous term.

There are two possible approaches to these boundary
terms. One is to simply ignore them and hope that they are
insignificant. However, another approach is taken here. For
the case where ¢ in (27) 13 an energy cigenstate of the
Schradinger equation, the boundary terms can be reduced
to a form that is expressible in terms of defined Wigner func-
tion values. To do this, the following property for energy
eigenstates is developed. First, multiplying the discretized
time-independent Schrédinger equation at point v by
P*{y +n dx) yields

—h? Axy— — A
W*(y-l—ndx){ *l/’(y+ X) 24’({))“"»{’(}’ Ax})
2m Ax*
V) () =Ew(y)}. (28)
Similarly, multiplying the complex conjugate of

Schrédinger’s equation at the point v +# dx by Y(y) and
subtracting the result from Eq. (28}, and finally setting
y=x—(N,/2) 4x, n= N, yields

!//*(x+(%+ 1>Ax)t,b(x—£v2—kdx)
RGNS
=w*(x+iv2—ux)w(x_(%_ I)Ax)
PR
+*2£;£f¢(x‘]—v2—kdx)lll*(x+%dx)
x[V(x+%Ax)~V(x-%Ax)].

It is seen that the left side of Eq. (29) is just the boundary
term of Eq. {27). The right side, however, is still not in a
form where the Wigner function definitions can be used. The
terms on the right can further be transformed as

y* (x+%£dx) " (x*(%f 1) Ax)

=y*(x' + 0 Ax) P (x —n' Ax),

(29)

where x'=x+ 4x/2. n'= (N, - 1)/2;

oo (s (B ) ) (o)

=y *(x + 1 Ax)Y(x —n Ax),
where x'=x—Ax/2, ' = (N, — 1)/2.

(30)
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The terms in Eq. (30) are now in a form to which Eq. (6)
may be appiied (it is easily verified that the x" and »’ values
in (30} are within the range of definition of f). Also, the
potential energy wave function product term in Eq. (29) is
readily replaced using Eq. {12) for the inverse transform of
g. Making these substitutions, the boundary terms in the
equation for g may finally be reduced to the form

dglx, k3)
at BI.
o
T m* Ax*N,
[Me/23 A; A
x Z [f(x'f'_’fa km‘)_—f(x“_fz km)]
m'= — [ Ne/2] 2 2
. amiN, am'(N,— 1)
e [2(Nk+ n A ]

2 Nk Nk
+h~——F(Nk+I)|:V(x+—2—Ax>—V(x—?dx):l

e , n[m—m”)Nk:I
X x, k,ysin| ———————=1], 31
L, B e .
(dm™ =2}

where it is understood in (31} that x is between meshpoints.
Comparing the potential encrgy boundary term with the
term in Eq. (26), it is seen that it may be taken into account
by simply reducing the upper limit of the sum over n from
N to N, — 2. Including the boundary terms in Eq. (26) then
leads to the equation for dg/dt,

dg(x™, k2) #

o T m* AXN,

[~e/2]

SRR B Gt o
s )]{S”‘ (2(Nk+1))

N1 wmn’ nm n
x| 1+ 2 cos ( )]
[ 2 AN+ Ny

=2

(dn = 2)

—sin[ N, _nm’(N,,-l) }
2N, +1) N,
2 o] a

—_— mid gn

ﬁ(Nk+1)m,:271vk g(xj ’ m)

{am’'=2)

Np—2
x z [V( mld+ndx)

n=1 2

(drt=2}

wia_BAXNY . (mn(m—m')
“V( 2 )]S'"(z(mﬂ))'

(32)
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It should be remarked that Eq. (32) will be exactly correct
under steady state conditions for the case without scatter-
ing, since energy eigenstates were assumed to transform the
boundary terms; for transient conditions the boundary
terms will be only approximately correct. The effect of
assuming this form for the boundary terms on transient
calculations and calculations including scattering has not
yet been determined.

4. BOUNDARY CONDITIONS AND SCATTERING TERMS

As mentioned previously, Eq. (18) is solved at interior
meshpoints to determine f. However, at boundary
meshpoints (the first and last meshpoints of the simulated
region, where f values are defined) this equation cannot be
used in its present form. Mathematically, this is so since the
surrounding g-values required for the spatial derivatives are
not defined on both sides of the meshpoint. Physically,
boundary conditions must be set at these points to model
the irreversible interaction with the contact regions, as dis-
cussed by Frensley [11]: the incident distribution is fixed
according to the statistics of the contact region, and outgo-
ing waves should be permitted to exit the simulation region
without reflection at the boundaries. This can be accom-
plished in different ways, with varying degrees of success.
One approach is to formulate mathematicaily absorbing
boundary conditions [13, 14]. Another is to introduce
imaginary potentials near the boundaries for wave packet
simulations, which dissipate the reflected packets [ 5, 16];
since in the present formulation wave packets are not used
and the self-consistent potential is required, this method is
not feasible. Another approach, used in the present formu-
lation, is to assume that at the boundaries an equilibrium
distribution consistent with the electric field there 1s estab-
lished; this can only work provided sufficient scattering is
included to drive the distribution to equilibrium at the
boundaries.

A further motivation to inclnde scattering is based on the
following observation. For the DC problem, if boundary
conditions are specified only at the first and last simulation
point, the equations so far presented are singular for the
case without scattering, so that a well-defined solution does
not exist. That this is the case can be mathematically
observed; however, it also has a physical basis that is
illustrated by the following simple example. Let us assume
that at both boundaries, the solution is described by a plane
wave traveling to the right of the form,

el’(km-x+ rr,f4], (33)
and by a wave of equal amplitude traveling to the left,
e—:‘(k,,,-x+rr,f4]’ (34)
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where &, is one of the discrete wavevectors given in Eq. (5).
If we assume these waves are uncorrelated, then using
Eq. (3) there are two non-zero terms in the Wigner
function £

f(xj!km=km']=f(xj1 km= _km')= I/Ak (35)
This result is obtained by applying Eq. {3) to each of the
terms in Eqgs. (33} and (34) separately. Now, however, if we
have a single wavefunction of the foliowing form, where the
waves are correlated,

'10 — ei(km‘.\: + n/d) + e-—:‘[km-x + n/4 )’ (36)

then we still have the terms in Eq.(33); however, an
additional term appears at k =0,

2 2m'j
£(x;, b,y =0) = -— cos (mTfn*%)

(37)
If we chose the simulation x; boundaries to correspond, for
example, with the values of j,

(38)

then the £ =0 term in Eq. (37) will be zero at the bound-
aries. Therefore, we have two distinct solutions that have
exactly the same boundary conditions, so that the solution
is ill-defined if only boundary conditions are specified.
Physically, this is so because, in addition to the boundary
conditions, the correlations of the problem must be
specified.

This situation changes if scattering is introduced into the
problem. In that case the solution, assuming correlated
waves to x = F o0, is no longer possible, since scattering
processes will eventually destroy the coherence. In practice,
it has been found that in solving the equations presented
here for the DC case, well-defined solutions exist, provided
sufficient scattering is introduced into the problem. (It
should be mentioned that for the transient probiem, it may
not be required to include scattering, since the correlations
can be specified in the initial conditions. However for this
case, the boundary condition problem is more difficult. )

Based on the forgoing discussion, scattering processes
have been included in formulating the boundary conditions
for the results presented here. For that case, at equilibrium
near a contact boundary the electric field will be constant
and the fdistribution will be spatially constant, driven to an
equilibrium distribution by the scattering processes. To find
the distribution, Eq. (18) is solved with scattering included,
g is assumed constant (so that the spatial derivative terms
involving g disappear), and the potential V(x) {given by
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the electric field at the boundary) is assumed to be linear.
This solution yields an f,,, (k) distribution which is then used
to set boundary conditions on fin the simulation,

In order to determine f,,, it is first necessary to specify the
form of the scattering rates. For the results presented in this
paper, scattering terms of the following form were used in
the equations for f

a.f(xj: km) _ f
ot C_— Soutmf(xjs km)
[Ne/2]
+ X SLAxK) (39)
= 7£Nk/2]

where the first term on the right is the scattering rate out of
state k,, to all other states, and the second term is the
scattering rate from all other states into state k,,.. A similar
form is used for the g equations; however, for g to have a
well-defined distribution at equilibrium, a coupling term for
scattering from f states into g states is also included:

dg(x, k5 )
ot c

. N
= =82, 8P kEY+ Y SE g(x™ kF)
I= — Ny
Al=2:1#m

[A&/2) f(xi+lskm')+f(xj’km’)
P .

)

=~ [ Ng/2]

S (40)

It is emphasized that Egs. (39) and (40) are not the only or
necessarily the best choices for the forms of the scattering
rates. In particular, the coupling term for scattering into g
states from f'states without a corresponding loss term in the
fequations is suspect; further work needs to be done on the
formulation of proper scattering rates. It is important that
the scattering rates used have certain properties, such as
maintaining current continuity and driving the distributions
1o the equilibrium boundary conditions assumed at the con-
tacts. For the calculations presented here, the scattering
rates appearing in Egs. {39) and (40) are assumed to be
characterized by a relaxation time. At equilibrium with zero
electric field, the form for the f'scattering rates that ensures
that Eq. (39) s zero is

Sf _ fO(km)
m 3
T Zj[gk_{z[]m‘jz] fO(kJ) (41)
[Me/2]
Sgurm = Z Sﬁrl’
1= —[Ni/2]
{#m

where 7 is a relaxation time related to the material low-field
mobility u as

7= um*/g (42)
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and where f; is the zero-field equilibrium distribution given
by
m*kg T

Folkn) == log[1 o Wknzm® —Evka T (43)
{Note that the second relation of Eq. (41) ensures that the
sum of terms over m in Eq. {39) will be zero, which guaran-
tees current continuity as described in Eqgs. {19)-(23)). For
the g scattering terms, the definitions that ensure that
Eq. (40) is zero at equilibrium are

£
s =g0(km),
" D
Ni [Nk /2]
Sﬁum,=( Y SL+ Y fo(ki))/o, (44)
m=— Ny i= — [Ng/2]
{(Am" = 2,m" # )
go(k;i
Sie ,
mm D
where D is given by
[Ne/2] N
D=T< Z Jolky) + Z go(ki,')) {(43)
i= —[Ny2) = - Ng

(Ao’ =2)

and where go(kZ ) is obtained from Eq. (43) by replacing the
k., by k3 values.

For the case at equilibrium near a contact boundary the
electric field will be constant and the f and g distributions
will be spatially constant. Retaining only the potential
energy term in Eq. (18), expressing the potential energy dif-
ference in terms of the electric field £ at the boundary, and
including the scattering terms of Eq. (39) yields the follow-
ing set of equations for £, at steady-state equilibrium:

0=—'Suumfc (kmﬁE]+ [ mm T Az
' 4 = — [M/2] ﬁNk
(pr* #m)
[ Ne/2] 2 —m’
x 3 gEnAxsin (—m—(’:,——m—))] Jeqlk s E),
n=1 &

N, N,

m= [2],[2} (46)
The above system of equations may be used to determine £,
for a given electric field E. However, summing the equations
in (46) over m yields zero, so that the equations are not
independent. To uniguely determine f,,, one of the depend-
ent equations in (46) must be replaced by the normalization
condition,

[Ne/2]

s Y.

m' = —[N/2]

feq(km'!E)"_'NDa (47)
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where N, is the contact doping. Equations (46) and (47)
may be solved for the f., boundary conditions for any
electric field F.

A similar set of equations may be solved to determine g,
in the contact regions; this system has a well-defined solu-
tion even without a normalization condition, due to the
coupling term with £,

5. INCLUDING VARIABLE EFFECTIVE MASS

So far in the development of the equations, a constant
effective mass m* has been assumed. To include the effect of
variable effective mass, the starting point is the following
discretized form of Schrodinger’s equation [177, rather
than Eq. (8),

(x+ndx) ih 1
at T 24x? [m*(x+(n+ 1/2) 4x)
X ({x+ (n+1)dx)—y{x +n Ax))

1
_m*(x +(n—1/2) Ax)

x(W(x+ndx)—(x+(n—1) Ax))]

_é V(x+ndx)f(x +n 4x), (48}

where the variable effective mass m* is defined on the
midpoints (or g-points).

The derivations of the equations for fand g are not given
here, but only the results; to derive these equations, a
procedure similar to the case for a constant effective mass is
followed, but Eq. (48) is used. The counterpart of Eq. (18)
for 8f/0r with a variable effective mass is

é‘f(xj,km)_ —h
dt  AxXUN,+1)
Ni [Ne/2]
x X )
m'= Ny n=—[Ni/2]
(4m’ = 2)
xsin(znmﬂ w'n + w’ )
N, N.+1 2N+ 1)

glx;+Ax/2, kE.)
[m*(xj~ (n—1/2) Ax)
8lx;— Ax/2, kL)
Cm*x 4 (n— 1/2)Ax)]

2 [NiQ]
- Sxp k)
ANG oo Twea ™
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[Ne/2]
x 3 [V(x,+ndx)- V(x,—n dx))

n=1

. {2nn(m—m"} #
X §in —
Ny Ax’N,

[N:/2]

x X

m =~ — [Ny/2]

[Nes2] 2n(m’ —m)n
% Y sin ((—J—)
n=—[Ne/2] Ny

f(x_jy km')

1
x[m*(x,+(n+1/2)Ax)

1
+m*(xj+ (n— I/Z)Ax)]' (49)

It can be shown that the first term on the right side of
Eq. (49) reduces to that of Eq. (18) if m* is constant. The
potential energy term is identical to that of Eq. (18). The
last term in Eq. (49) has no counterpart in the constant m*
case; it has a form similar to the potential energy term and
couples all the values of fat a single meshpoint. Note that
this term vanishes when m* is constant, since for that case
the term is odd in the index n.
The counterpart of Eq. (26} for dg/dt is

ag(x™, k&) —h
ot TN, Ax?
[V2] N2 ' 1y 7mn
x y Y sin(:rr (1) )
m'= < [N/2] n=—N, Ni 2Ny,
(dn=2}

[ f(xj‘.“id +4x/2, k)
X
(x4 ((n+ 1)2) 4x)

SO = Ax(2, k) }
m"‘(x;.“'ld —((n+1)/2) 4x)

2§ 3
- g™, k%)
AN o S, /
(Am" =12)

Ny
x )

n=1

[V (x}“id + g Ax) -V (xj?“id —% Ax)]
(An=2)

. {a{m—m) h N "
_ mid e,
xsm( IN,, ) szng,,,,z gL ko)

= — Ny
{dm'=2)
N % Sin(n(m—m')n)[ 1
n=— Ny 2ng m*(x}m‘d+((n+l)/2)dx)
(dn=2}
1 dg(x, k&)
+ , + , (50
m*(xj-r“d+((n~1)/2)z1x):| ot BT. 0
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where, assuming energy eigenstates as before, the boundary
terms are given by

oglx™ ki) 4
ot B,T._szNk
[Ne/2] [ Fx + Ax/2, k)

X .

= 2] Len* (x4 — (N, = 1)/2) 4x)

FOxP — Ax/2, k) ]

(X (N —1)/2) Ax)

. (nme ﬂ:m'(Nk)U)
X 511 -

2N, N
2 . N
i omia 2k 4
+hng[ (rj + 3 x)
N & i
—l/( mid ?"Ax)] ;N g(x™ k)
Tam =2}
. [(mim—m') N, # o id
mid jeg
XSIn( 2ng )+Ax2ng m’=Z‘-Nk g(XJ m)
{dm =12)

1
X[m (om0 g (N +1)/2) dx)
!
A (x™ 4 (N
1
N, —1)/2) 4x)

+
—1)/2) 4x)

¥ (™ — ((

1
(™ (N 4 1)2) 4 ]

csin (L2215

W, (51)

It can be shown that the first term on the right side of
Eq. (50) reduces to that of Eq. (26) if m* is constant. The
potential energy terms are identical for both equations. The
third term on the right in Eq. (50) is new and clearly
vanishes for the constant m* case. Comparing the boundary
terms in Eq. (51) with Eq. (27), it is seen that the first term
on the right is slightly modified for the variable m* case; the
potential energy terms are identical, and a third term on the
right of Eq. (51) now appears, which vanishes for the con-
stant m* case.

It is easily shown that a discrete form of the continuity
equation will be satisfied if the current density for the
variable m* case is defined as

By =— TS g g ks gk, (52)
vy % .mid
M)
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6. NUMERICAL METHODS AND RESULTS

The basic problem is to solve Egs. (18} and (32), subject
to boundary conditions for f as determined by solving Eqgs.
(46) and {47) and by including scattering terms of the form
given by Eqs. (39)}-(45). Since the boundary conditions
obtained from Eq. (46} depend on the clectric field at the
boundary, it is necessary to perform a sell-consistent
calculation where Poisson’s equation Is included at interior
meshpoints x;

;+1"2V + V.:-l
Ax?t

Q'(Noj—

Ak Em f(xﬂ km))’ (53)

where the second derivative on the left has been discretized
and where V' represents the potential energy for electrons,
but with potential variations due only to material discon-
tinuities not included. At the boundary meshpoints, Dirichlet
conditions are set on the poltential energy as

V?l = 0’ V}V\, = - anpplied ’ (54)

where V', .4 is the voltage applied across the device with
positive reference polarity assumed on the right.

This set of equations constitutes a non-linear problem
that must be solved using an iterative technique. These
equations may in principle be solved either for the DC or for
the transient case, However, for the transient case the equa-
tions are solved implicitly so that a large matrix must be
solved several times per time step advancement. Consider-
ing the computation time required for each matrix solution
(about 1.5h on an Apollo DN4000 workstation for a
problem of modest size}), it is not presently feasible to carry
out a transient case of several hundred time steps. Instead,
the DC problem will be addressed here, where on the order
of 5-10 matrix solutions are required per DC bias point.
(For the time-dependent calculation the matrix structure is
the same as presented here, but additional terms from the
time derivatives are included in the matrix entries.)

The unknowns are ordered as follows. Starting at the left-
hand stde, we have a block of f'values at x,, ranging over all
values of k,,. This is followed by a block of g values at the

xed mldpomt between x, and x,, ranging over all values of
kf,’, This structure is repeated as we progress from left to
right, with a block of f followed by a block of g at the next
midpoint. On the right-hand side, we have the final block of
S values. Next the values of the electron potential energy are
included as variables, but in order to minimize the number
of fills in the resulting matrix these values are ordered from
Vv, to V1. Finally, the values of electric field at the bound-
aties, £, and Ey are included as variables, which are
related to the potential energy values as

Vi— V]

Ey =
oL qdx

(55)
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FIG. 1. Structure of the Jacobian matrix entries for solving the self-
consistent Wigner function equations.

and

7 2
Ny VN_\— 1

g Adx (56)

OR =

Figure I shows the resulting matrix structure (for the
calculations here an expanded matrix structure was used
that contains more entries near the boundaries, since many
different boundary treatment methods have been tried in the
course of this work). The ordering of the equations (rows)
for this matrix exactly corresponds to the ordering of
unknowns described earlier. In the figure, the values
enclosed in boxes indicate either single or multiple non-zero
entries of the matrix. If the enclosed value is indexed, such
as [, or E, . a single entry 1s indicated; an enclosed value
without an index indicates a block of variables. For exam-
ple, the enclosed V indicates the block of potential entries

. -+ V1, and an enclosed F indicates a block of ail /-type
Wigner function values at a particular meshpoint. The
matrix is sparse, so that all entries not indicated with boxes
are zero. Some of the entries in Fig. 1 are not directly
generated by the equation corresponding to that row but
are generated by fills during the Gaussian elimination
matrix solution process. Newton's method is used, so that at
each iteration a matrix equation of the following form must
be solved:

JAU=—EQ. (57)

S81/112/1-11
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In Eq. (57), J is the Jacobian matrix with the structure of
Fig. 1, which is defined as follows: Let eq; be the equation
corresponding to the ith unknown w,, set up so that eq; is
cxactly zero when the equation is solved. Then the (i, j}th
entry of J is given by

J.= 0 eq,.

if
U;

(58)

In Eq. (57), AU is a vector of the predicted changes for the
next iteration of all the variables; and EQ is a vector
containing the present numerical value of each equation.

For calculation, the unknowns are normalized as follows.
Wigner function values are divided by the maximum value
of the equilibrium distribution function f;, potential energy
variables are divided by ¢, and the two electric field
variables are multiplied by Ax so they are in units of V.

As an example of the method, a GaAs—Gagy;Aly;As
structure is simulated with 16.8 A barriers and a 44.8 A well.
The barrier height is 0.246 eV, and a constant effective mass
of m* =0.067m, is used. The donor doping concentration is
10** m 3 in the contact regions, and the barriers and well
are undoped. The overall device length simulated is 442.4 A
with a space step of 4x=25.6 A, so that N =80. For the
k-space discretization, N, = 61 is used; according to Eq. (4),
Ak =9.1967 x 10" m~'. The scattering relaxation time t is
1.9045 x 10~ 5, corresponding to a low-field mobility of
0.5 m?/V-s, and the temperature is 300°K.

For this particular problem, the Jacobian matrix of Fig. 1
requires 2,961,765 entries, and since the calculation must be
performed in double precision this requires approximately
23.69 Mbytes of numerical storage (in fact, more storage
than this is required when the other arrays are included;
however the Jacobian matrix is by far the most demanding
storage requirement). Since the memory requirements
increase faster than linearly with the problem size, it can be
seen that the level of complexity of probiems that can be
treated using this method is limited. (The above memory
requirement assumes that full advantage is taken of the
sparse nature of the Jacobian matrix, so that only the
non-zero matrix entries are processed.)

For the zero-bias case, an initial condition for the DC
iterative method was generated by assuming a flat potential
profile and solving for an ensemble of energy eigenstates of
Schrodinger’s equation [ [3 ] over the set of £-values used in
the f discretization {except that k£ = is not included). Each
of these eigenstates produces a contribution to f according
to Eq. (3) and to g according to Eq. (10). Starting from this
initial condition, five Newton iterations were required to
obtain convergence below a tolerance of 107 {this is deter-
mined by monitoring the maximum change of the variables
per iteration with respect to the reference values). Figure 2a
shows the resulting zero-bias solution for electron concen-
tration and potential energy, where the self-consistent
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FIG. 2. Zero-bias solution for the GaAs-Ga,, Al As structure showing potential profile with {(a) electron concentration profile and (b) current

density profile.

coupling between space charge and potential energy can be
observed. Figure 2b shows the zero-bias current density,
which is constant (except for some numerical error) as it
should be since the discrete equations satisfy the current
continuity equation according to Eq. (21), which implies
spatially constant current density for the DC case.

Figure 3a shows the electron concentration and Fig. 3b
shows the electron current density for a DC solution with an
applied voitage of 0.05 V (note that negative current density
in the figure implies that electrons are flowing to the right).
It can be seen that severe problems are encountered at this
bias voltage. The most distressing is that the electron den-
sity {caiculated using Eq. (19)) is undershooting below zero,
Also, oscillations in the electron concentration profile
indicate that there are boundary reflection problems.
However, the fact that the current density profile of Fig. 3b
is constant indicates that the DC equations are being solved
correctly.

Because of such problems, it has not yet been possible to
obtain a complete -V (current-voltage) curve for a reso-
nant tunneling device through the negative differential
resistance region using this method. Some possible reasons
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which should be further investigated are as follows. First,
the scattering formulation given in Eqs. (39) and {40} is not
entirely consistent, since a scattering term from f'states into
g states is present in the g-equations, without a correspond-
ing loss term in the f-equations. The reasons that this form
was adopted for the present calcuiations are, first, that some
coupling of the g scattering terms with fterms is required in
order to have a well-defined solution for g at equilibrium,
far removed into the contacts. However, if a corresponding
loss term is put in Eq. {39) to account for f terms scattering
to g states, then the sum over all k,,, of the scattering terms
is not zero, so that current continuity is lost. It may be that
a more generalized definition of current density than that
given by Eq. (23) is required to handle this coupling, or
perhaps the reader can come up with a different scattering
rate formulation which avoids this problem.

Another likely problem that may be causing the dif-
ficulties evident in Fig. 3 is that the device may simply not
be long enough for the equilibrium boundary conditions set
on fto be valid. These boundary conditions assume that the
f distribution has relaxed to an equilibrium condition
(characterized by the electric field in the respective contact)
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DC solution with applied voltage of 0.05 V showing potential energy and (a) electron concentration (b} current density profile.
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by the time the contacts are reached; if this is not the case,
reflections will be set up at the boundary. The difficulty at
present with testing this hypothesis is that the CPU memory
storage and time requirements increase rapidly with the
length of the region simulated.

A further potential problem, whose resolution is also
limited by available computer resources, is the discretiza-
tion used in k-space. Figure 4a shows a calculation of the
I-V curve for this device using an ensemble of eigenstates
from the Schrédinger equation [137, where 60 points were
used in k-space (i.e., 60 cigenstates were determined). This
k-space discretization corresponds to that used in the
Wigner function calculations. It can be seen that the curve
is not smooth. To show that the wiggles are an effect of the
rather coarse discretization in £-space, Fig. 4b shows the
results of a similar calculation but where 200 points in
k-space were used (the k-space limits k., and k., were
basically the same for the two discretizations). It can be seen
that the discretization using 60 points is not sufficient for
this problem. The inadequacy may become worse when self-
consistency is taken into account, where a “notch” forms on
the cathode side of the device which can accommodate
(nearly} bound clectron states that constitute the accumula-
tion layer on the left-hand side (see Fig. 3).

In spite of these problems, it is believed that the method
presented in this paper is a more accurate numerical for-
mulation of the Wigner function equations than has been
previously developed. However, further work must be
carried out to address these problems, in order to determine
the potential of this method for quantum device simulation.

7. CONCLUSION

An accurate formulation of the equations for the Wigner
function has been presented, based on a finite-difference
discretization of the Schrodinger equation. The resulting

161

2y

100.0 T T r

oo
Lo ]
<
T
L

04A cm

60.0

40.0 -

20,0 1

0.1 0.2 0.3 0.4
Voltoge (volts)

-0
0.0

Current Density (1

I-V calculation using the Schrddinger equation {a} for the case with 60 points in k-space and (b) for the case with 200 points in A-space.

matrix structure and the method for solving the equations
have been presented. Preliminary results have been shown
which indicate that further problems must be resolved
before the method can reliably be used. These problems and
potential solutions have been discussed.
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