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Abstract A topology and shape optimization method is presented for structural eigenfrequency 
optimization problems using the concept of Optimal Material Distribution (OMD). First, a mean-eigen- 
value corresponding to the multiple eigenfrequencies of a structure is defined. Three optimization problems 
are then considered for obtaining the desired eigenfrequencies using this mean-eigenvalue: maximization 
of the specified structural eigenfrequencies, maximization of the distances of the specified structural 
eigenfrequencies from a given frequency or frequencies, and optimization of the structure for obtaining 
prescribed eigenfrequencies. Several examples are presented to demonstrate the capability of this new 
technique which can be used to deal with a wide range of practical design problems for improving the 
dynamic nature of a structure. 

NOMENCLATURE 

a(a~) design variable of the microstructure (element) 
b(b,3 design variable of the micro structure (element) 
B,, strain shape function of a finite element 
D h homogenized elasticity matrix without rotation 
D,, rotated homogenized elasticity matrix with respect 

to element e 
k,,, K stiffness matrix (element/global) 
me,M mass matrix (element/global) 
N,. shape function of a finite element 
T,, rotation matrix 
,,~ weighting function 
x, ~ ith design variable in the kth iteration 
p the mass density 
ph homogenized density matrix without rotation 
p,, shift homogenized density matrix with respect to 

element e 
/1 ~ shift parameter in the kth iteration [Eqs (22) and 

(23)1 
q given power parameter [Eq. (22)] 
). Lagrange multiplier 
2. nth eigenvalue of a structure 
2 * mean eigenvalue 
2",20, parameters in the mean eigenvalue [Eq.(5)] 
q5 nth eigenvector of a structure 
qSn,.,, components of the n~th eigenvector with respect to 

the eth element 
0(0,.) orientation of microstructure (with respect to 

element e ) 
structural domain 

~), domain of finite element e 

1. INTRODUCTION 

Despite that structural opt imum design problems 
have been extensively studied in the last few 

tPresented at the Second U.S. National Congress on 
Computational Mechanics, 16 18 August 1993, Washing- 
ton, D.C. 

decades, 13 there are few works on the subject of  
structural dynamic optimization. Most  of  these 
efforts are concentrated on optimization problems 
with dynamic constraints, 46 but not  problems with 
treat the dynamic nature of  a structure as the subject 
in the optimization process. In many cases, however, 
modifying a structure to maximally improve the 
dynamic behavior of  the structure is very important.  
For  example, in a car body design, it is a very 
important  to minimize the vibration and noise under 
known design constraints and loading conditions for 
developing a high-quality automobile.  Another  
example is in the design of  space vehicles. In this case 
it is highly desirable to optimize several structural 
eigenfrequencies for the desired values in order to 
avoid coupling with the control system] In these 
cases, the dynamic behavior of  a system should be 
treated as an object of  the optimization process 
instead of  dealing with it as a constraint, as most 
research does. 

Niordson 8 opened the field of  the eigenfrequency 
optimization. He considered a problem of  maximiz- 
ing the fundamental  eigenfrequency of  a vibrating 
beam with a specified volume constraint. Brach 9 
extended Niordson's  work by considering other 
boundary conditions. Prager and Taylor ~° presented 
a necessary and sufficient condition for maximizing 
fundamental  eigenfrequency of  sandwich structures. 
Zarghamee ~ reported a discrete problem of  the maxi- 
mum eigenfrequency type using a gradient projection 
method. Prato 12 then improved the computational  
scheme for this class of  problems. Olhoff  13 presented 
results for maximizing a higher-order eigenfrequency 
subject to a given volume constraint. Bendsee and 
Olhoff ~4 also considered the problem of maximizing 
the difference between two adjacent eigenfrequencies 
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of a beam. An extensive review paper was given by 
OlhoW s about this field. 

Even though the use of previous techniques devel- 
oped for sizing optimization problems has made it 
possible to obtain the optimal structure for some 
particular eigenfrequency optimization problems, it is 
still difficult to obtain the desired structural eigen- 
frequencies because only a limited modification can 
be made by changing the structural sizes. Thus, it is 
necessary to consider modifying both the topology 
and shape for a truly optimal design. Bendsoe and 
Kikuchi ~6 presented a method based on the concept 
of Optimal Material Distribution (OMD) which 
transfers the structural optimization problem to the 
problem of finding the OMD with a specified design 
domain. This idea has opened up a new class of 
structural optimization problems, and it has been 
successfully applied to the cases for structural stiff- 
ness, ~6 structural eigenfrequency, 17"18 and frequency 
response problems. 19 

There are three kinds of optimization problems 
which can be considered for the eigenfrequency 
optimization of a structural system. The first one is 
to maximize the specified structural eigenfrequencies, 
the second is to maximize the distances of the 
specified structural eigenfrequencies from a given 
frequency or frequencies, and the third is to optimize 
a structure for obtaining prescribed desired eigen- 
frequencies. It is noted that previous research dealt 
with only the first kind of problem except Bendsoe 
and Olhoff,14 which studied a problem of the second 
kind for very simple structural models. Furthermore, 
only changing of structural sizes such as the radius of 
the cross-section of a beam has been considered in the 
previous work. 

In order to solve a general eigenfrequency optimiz- 
ation problem, a multi-eigenvalue optimization tech- 
nique is presented with the use of the topology 
and shape optimization method in this work. First, 
a mean-eigenvalue is proposed as a combination of 
multiple eigenvalue to define a mathematical formu- 
lation of the optimization problem, and three new 
objective functions are then proposed for obtaining 
desired structural eigenfrequencies using the mean- 
eigenvalue. It will be shown that the use of the new 
technique presented in this paper can greatly improve 
the solution of eigenfrequency optimization prob- 
lems, and can be applied to a wide range of practical 
problems to improve the dynamic behavior of a 
structure. 

2. E I G E N F R E Q U E N C Y  O P T I M I Z A T I O N  P R O B L E M S  

2.1. State equation 

Using the finite element method the state equation 
for the natural frequencies of a linearly elastic struc- 
ture can be written as follows: 

(K - 2.M)~b. = O, (1) 

where, 2n stands for the nth eigenvalue, ~b, its corre- 
sponding eigenvevctor, M the mass matrix and K the 
stiffness matrix defined by: 

nel nel 

K =  A k~, M =  A me, (2) 
e = l  e = l  

respectively, where A e"~'= ~ stands for the finite element 
element assembly operator. Here k~ and me are the 
element stiffness and mass matrices obtained by 

k e = f n ,  BrD~BedfL me=fn~ Nrp~NedffL (3) 

where D e and Pe stand for the homogenized elasticity 
and density with respect to the element e, respectively, 
B e the strain shape function, N e the displacement 
shape function. 

2.2. Mean eigenvalue 

Maximizing a chosen eigenfrequency of a structure 
in the structural eigenfrequency optimization prob- 
lem has been extensively discussed. ~3 However, in 
a vibrating system, there may be several excitation 
frequencies distributed in the different frequency do- 
mains. In order to avoid these excitation frequencies, 
we may need to deal with not only a single eigenfre- 
quency of the structure, but also several chosen 
eigenfrequencies. Even in the case of maximizing a 
single eigenfrequency of a structure, it is necessary to 
consider multiple eigenfrequencies as the projective 
function in the optimization process. As previously 
discussed, ~8 for example, in topology and shape 
optimization problems, large changes in structural 
eigenfrequencies may cause structural eigen- 
frequencies to switch their orders within the optimiz- 
ation process. In this case, if we only use a single 
eigenfrequency as the objective function, the sensi- 
tivities of the objective function may be discontinu- 
ous, and oscillation and divergence may be caused 
in the optimization process. In order to overcome 
this problem, a specified multi-frequency objective 
function was suggested as follows: ~8 

2" = 20 + ~ w~ 
\ i  = 1 /~n, - -  2 0 / /  ' 

(4) 

where, 2,, (ni = nl, n2 . . . . .  r tm)  stand for the specified 
eigenvalues, while 2,, is the n, th eigenvalue 
(i = 1, 2 . . . . .  m) (noting here, orders n~, n 2 . . . . .  nm 
can be discontinuous integers, e.g. we can choose 
n1=2, n2=5, etc.), w ~ ( i = l , 2  . . . . .  m) stands for 
given weighting coefficients, and 20 ~> 0 a given par- 
ameter. It was still considered that the major purpose 
of the optimization is to maximize a single eigenvalue. 
As shown in Eq. (4), the eigenvalue which is closest 
to the parameter 2o has the greatest contribution to 
the objective function 2* assuming all weighting 
coefficients are the same, therefore this eigenvalue will 
be the major object in the optimization process. In a 
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special case, if choose 20 = 0, then the smallest eigen- 
value in ;%(n~=nl ,n  2 . . . . .  nm) will be the major 
object in the optimization process, i.e. it will experi- 
ence the largest change in the optimization process. 
Since when two modes whose eigenvalues are in 
Eq. (4) switch their orders within the optimization 
process, the change in the objective function will be 
smoother than in the case when one of these eigen- 
values is not  in 2,~(ni=n:,n 2 . . . . .  nm). Therefore, 
objective function Eq. (4) can improve the solution 
comparing with the use of only one single eigenvalue. 

As shown in Eq. (4), if assuming m = 1, Eq. (4) is 
reduced to ),* = 2,,, and the corresponding optimiz- 
ation problem becomes identical to that of  optimizing 
a single eigenfrequency. In this work, we shall call 2" 
as the mean-eigenvalue. In addition, in order to 
consider more general optimization problems, we 
extend the mean-eigenvalue to the following form: 

eigenfrequency optimization problems mentioned be- 
fore can be defined by the mean-eigenvalue: (1) 
maximizing the specified structural eigenfrequencies; 
(2) maximizing the distances between the specified 
structural eigenfrequencies and a given frequency or 
frequencies; and (3) optimizing the structure for 
obtaining the prescribed desired eigenfrequencies. 

Eigenfrequency optimization problem 1. If we 
choose power n as an odd number  (note that if power 
n is an odd number,  then the increase of any eigen- 
value in the objective function )~* will result in the 
increase of 2"), and define the optimization problem 
a s :  

Maximize 2", (6) 

the eigenvalues 2,~(n~= nl, n2 . . . . .  n,,), which are 
in the mean-eigenvalue, will be maximized in the 

2 * =  

2* + wA2,, - 20, )" 
i 1 

/ 1 m 
2* + e x p l w ~  ,•. wi lnp2,, -- 20: 

~i . ~ l  Wi = 

where, n is a given power and 2* and 
20, (i = 1,2 . . . . .  m) are the given parameters. 

As shown in Eq. (5), when n i> 0 the eigenvalue 
(assume 2,,) which is the farthest from the corre- 
sponding given parameter 20, has the largest contri- 
but ion to the mean-eigenvalue (assuming that all 
weighting coefficients w i ( i = . l , 2  . . . .  , m )  are the 
same). Conversely, if n < 0, the eigenvalue which 
is the closest to the corresponding given parameter 
has the largest contribution to the mean-eigenvalue. 
Therefore, if use the mean-eigenvalue as the objective 
function, the eigenvalue which is the closest to (when 
n < 0) or the farthest from (when n >~ 0) the corre- 
sponding given parameter will be the major object 
in the optimization problem. In a special case, if 
let 2o, = 0(i = 1,2 . . . . .  m), the highest (when n ~> 0) 
or lowest (when n < 0 )  eigenvalue in )%(ni= 
n~, n2 . . . . .  n,,) will have the largest contribution to 
the mean-eigenvalue, and then it becomes the major 
object of the optimization while the rest would make 
very minor contr ibution to the objective function. 

Note that proper choice of the weighting co- 
efficients w~(i = 1, 2 . . . . .  m) can yield an increase or 
reduction of the contribution of eigenvalues 
2, , (n~=nl ,n  2 . . . . .  n,,), and then we can make a 
desired multi-eigenfrequency optimization. 

2.3. Ol~jective functions using the mean-eigenvalue 

Choosing different values of parameters n and 
20,(i = 1,2 . . . . .  m)  of Eq. (5), all three kinds of 

(forn = + l ,  + 2  . . . . .  n # 0 )  

) (for n = 0) 

(5) 

sense of the weighted average of the reciprocals 
of the eigenvalues. Here, parameters 2* and 
20~(i = 1,2 . . . . .  m) can be specified as any values, 
for example, zero or a given constant. Assuming 
all weighting coefficients w i ( i = l , 2  . . . . .  m) are 
the same, the eigenvalue which is the closest 
to (when n < 0) or the farthest from (when n />  0) 
the corresponding given parameter 201 will be 
subject to the largest increase in the optimization 
process. 

Eigenfrequency optimization problem 2. In order to 
maximize the distances among specified structural 
eigenfrequencies and a given frequency or frequen- 
cies, we can choose n as a negative even number, e.g. 
n = - 2 ,  and w0~(i = 1,2 . . . . .  m) as the given fre- 
quencies, while 2o, = (2nto0~)2. (Note that if power n 
is chosen as an even number,  then the increase 
(decrease) of any distance [2,~-20, ] included in 
the objective function 2* will result in the increase 
(decrease of 2*). The optimization problem is then 
defined as: 

Maximize 2*. (7) 

In this case, distances ])% - 20, [ (i = 1, 2 . . . . .  m) will 
be maximized in the sense of the weighted average. 

Note that if power n is chosen to be a negative even 
number,  then the eigenfrequency that is the closest to 
the given frequency would be away from this one with 
the fastest speed. 

CSE ~,'l D 
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Eigenfrequency optimization problem 3. In order to 
obtain prescribed eigenfrequencies desired for a struc- 
ture, we can choose n to be positive even number, 
e.g. n = 2, and o90~ (20i = (2nWoi)2; i = 1, 2 . . . . .  m) as 
desired eigenfrequencies, while the optimization 
problem is defined as: 

Minimize 2 *. (8) 

Then, distances between the structural eigen- 
frequencies and the desired ones, i.e. 12,,-201l 
(i = 1,2 . . . .  ,m),  will be minimized in the optimiz- 
ation process. 

Note that if we choose n as a positive even number, 
the eigenfrequency which is the most away from its 
desired value will approach to its desired value with 
the fastest speed. 

3. STRUCTURAL MODEL USING A MICROSTRUCTURE 

The topology and shape optimization technique 
proposed by Bendsoe and Kikuchi ~6 is employed for 
solving the problems defined in above. To simplify 
the problem, we shall only consider plane-stress 
problems, and a prescribed admissible structural 
domain that is filled by variable microstructures. 
Figure 1 shows a microstructure assumed in the 
present work that contains an empty rectangle inside 
a unit  cell in a structural domain. The inside cavity 
of the unit cell is varying in the design domain along 
with the design variables, a and b. The microstructure 
becomes a complete void when a = b = 0  and a 
complete solid when a = b  = 1. The unit cell is 
also rotated by the orientation 0 from a given x-y  
coordinate system as shown in Fig. 1 to consider 
preference of the possibly orthotropic material prin- 
ciple axes. 

Because of existence of the micro-cavities, the 
elasticity and density are non-homogeneous in the 

Fig. 1. The microstructure in a structural domain. 

using the finite element method for the averaged 
(i.e. homogenized) problem, we can further assume 
that in an individual finite element, the micro- 
structures are constant together with the sizes and 
rotation, a = ae, b = b e and 0 = 0 e in element e, where 
a~, be and 0 e stand for the discrete design variables 
assigned in finite element e which are finite element 
approximations of the distributed design variables a, 
b and 0. Thus, the homogenized elasticity and density 
in element e are the functions of a~, b~ and 0~. 

Without considering rotation of the micro- 
structure, i.e. with 0e = 0, the homogenized elasticity 
and density of a microstructure may be computed as: 

and 

[D?I D?2 ] 
Dh = e Dhe 00 = Dh(ae, b,,) 

ph = ph(ae, be ) (9) 

where  D h stands for the homogenized elasticity and ph 
the homogenized density. 

The homogenized elasticity is then rotated by the 
rotation matrix, 

COS2 0 e 

Te = sin e 0~ 

- 2 cos 0e sin 0e 

sin-' O~ cos 0 e sin 0 e ] 

cos 2 0 e - c o s  O~ sin 0 e / '  

2 cos Oe sin O~ cos 2 0,, - sin 20~J 

(1o) 

structural domain. Thus, the state equations cannot 
be solved in the closed form using a conventional 
analysis method. Furthermore, if the size of cavities 
are asumed to be finite, it becomes considerably 
difficult to analyse them by conventional finite 
element methods. Thus, it is assumed that the micro- 
structures are infinitely small, and in an arbitrary 
point of the structural domain,  around the point 
there are infinitely many repeated microstructures, 
i.e. the sizes a, b and the orientation 0 can be defined 
at an arbitrary point in the design domain. Under  this 
assumption, the homogenization method can be uti- 
lized to define an average model for solving state 
equations which are characterized by the continuous 
homogenized elasticity and density. Furthermore, 

for a rotated microstructure. Then we have: 

De=T~rDhT~, pe=p h. (11) 

Since the density is a scalar function, we have 
the same for the rotated and unrotated micro- 
structure. 

Using a~, be and 0 e (e = 1, 2 . . . . .  net) as the design 
variables, the structural optimization problem is then 
conceived to an Optimal Material Distribution 
(OMD) problem. In the optimization process, the 
microstructures are varying between empty and solid. 
Thus, if the total amount  of the material of the 
structure is assumed to be constant, then the pieces 
of the material are moved from a part of the structure 
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to another while the optimization process is pro- 
gressed. By moving the material to optimize the 
object function, we can obtain an O M D  that define 
the optimal structure. 

It should be noted that even though the orienta- 
tional variable 0 does not  change the amount  of 
material of  a structure, it plays a very important  role 
in the optimization process. Without  rotation of the 
microstructure, the optimization process may not 
converge to an optimal structure. 2° 

The sensitivity of the mean-eigenvalue with respect 
to an orientational design variable can be rewritten 
as:  2o 

~2" 
- -  = 2(g~ cos 20~ - g2 sin 20< 

+g3cos40<-g4s in40<) ,  (16) 

where, coefficients g~ (k = 1, 2, 3.4) are independent 
of 0 e 

4. SENSITIVITIES OF THE MEAN-EIGENVALUE 

4.1. Sensitivity for  a size design variable 

The sensitivity of the mean-eigenvalue with 
respect to a size design variable, a~ or b,., can be 
obtained as 

5. CONSTRAINT FUNCTION AND ITS SENSITIVITIES 

It is assumed that the total mass of a structure is 
constrained by 

fnp< d[2<~ V o (17) 

#2" 

8x 

, - . ,  ~7-x/4, . . . .  (2., - 2o, ) 
Wi l= l  

i=1 

1 2 ~ - 2 " 1 L  w~ r /Ok< 2 ~m~\ 

r .  - , ,  ' : '  12,,,-2o, i +.,.<t - ..... 

i = 1  

( f o r n = _ + l ,  + 2 , . . . ; n ~ 0 ) ,  

(for n = 0), 

(12) 

where, x stands for a design variable ae or b< that 
belongs to element e, Ck,,.e the components of the n~th 
eigenvector with respect to the eth element, while 
Ok</?x and ~m</Ox are calculated by 

~3k< fQ rSD~ 

Om<_fo  ~NrSP~N~dn'~x (13) 

4.2. Sensith~ity for  an orientational design variable 

For  an orientational design variable 0<, the 
sensitivity of the mean-eigenvalue can be obtained 
as  

where V 0 is the given maximal total mass of the struc- 
ture. In the present formulation with the microstruc- 
ture shown in Fig. 1, we have p< = Po(ae + b~ - a<b<), 
and then the constraint function becomes 

nel 
h(a~, b<) = ~ pof~(a~ + b~ - a~b<) - V o <~ O. (18) 

e=l  

The sensitivities of the constraint function with 
respect to the design variables a~ and b,, can be 
obtained as 

~h 
_ _  = P0~e(1  --  be) 

where 

~2" 

" (/~* 7 2 '  )1--n ~ ~&i r C~ke 

i=1 

" wi r ~k< 

Z _ 2o, r + . . . . .  
Wi 

and 

g k e =  ~ r 8D~ 
~o< 3o,.s"~7 B'd~ (15) 

(forn = -L-_I, + 2  . . . .  ;n  #0 ) ,  

(for n = 0), 

~h 
1 = porte( 1 _ ae). 
ub e 

(14) 

(19) 
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6. UPDATING ALGORITHM 

6.1. Updating the she design variables 

An improved optimization algorithm, the Modified 
Optimality Criteria method (MOC), has been pre- 
sented ~9 for updating the size variables in the top- 
ology and shape optimization problem of a vibrating 
structure. The basic idea is to apply a convex gener- 
alized-linearization approach using the shift par- 
ameter which corresponds to the Lagrange multiplier. 
The dual method is also employed to separate 
a multi-variable minimization problem to a series 
of one-dimensional problems. The updating rule 
proposed is: 

x~+l ~ I i ~  k [OflDx~[ ]" k 
- -  - -  X i ,  

• tOhl xJl.,,=. J 

( f o r x i < x ~  +1<£i) ,  (20) 

where x~ is the ith design variable in the kth iter- 
ation, x~ +~ the updated size design variable, f 
the object function, h the constraint function, )~k 
the q th power of the Lagrange multiplier in the 
kth iteration, and q a given step parameter. Here pk 
is the shift parameter in the kth iteration, which 
satisfies 

#k >1 ~ I c~xiAIx, :.~ 

( f o r x i < x ~  + ~ < £ ~ ; i = 1 , 2  . . . . .  N), (21) 

where, N = 2nej. 
The optimization algorithm based on this updating 

rule has been sucessfully applied to solve the fre- 
quency response optimization problem ~9 and the 
structural eigenfrequency optimization problem dis- 
cussed in Ma et al. ~8 

6.2. Updating the orientational design variables 

In order to determine the updating scheme for the 
orientational design variable, we shall describe an 
approach given as follows. 

The first we shall find the orientations, 
Oe(-~/2<~O,~<~/2, e =  l ,2  . . . . .  nel), which make 
the objective function to be maximal (for the problem 
1 and 2) or minimal (for the problem 3). Since the 
Kuhn-Tucker condition with respect to an orienta- 
tional design variable can be written as: 

t72" 
- 0  (-n/2<~O<<<,Tt/2), (22) 

c~0e 

it follows from Eq. (16) that 

g) cos 20< - g2 sin 20 e + g3 cos 40e 

- g~ sin 40<, = 0(-7z/2 ~< 0,, <~ ~/2). (23) 

Equation (24) can also be transformed to a poly- 
nomial equation by assuming z = tg 0~, 

b4 Z4 + b3 Z3 + b2 Z2 + blZ + b0 = 0. (24) 

Note that there may be several solutions satisfying 
Eqs (23) and (24). In order to determine a unique 
solution, we defined an evaluation function: z° 

a,,(0~) = g~ sin 20,, + g~ cos 20,, 

+ g<3 sin 20< cos 20,, - g~ sin 2 20~. (25) 

By comparing the values of the evaluation function 
with respect to all the solutions of Eq. (23) and 
0~ =- t -n/2 ,  respectively, a unique solution, which 
makes the objective function to be optimal, can be 
determined 20 

7. EXAMPLES 

Several examples of the above stated three kinds of 
eigenfrequency optimization are described to demon- 
strate the feasibility of the approach presented in this 
paper. To this end we shall compare the results with 
those obtained by using a conventional beam model 
without changing the topology of the initial structure. 

7.1. Results of  different power n in the mean-eigen- 
value 

As shown in Fig. 2, a narrow beam-like rectangular 
design domain is specified: 14.0cm in horizontal 
length and 2.0 cm in vertical height with two fixed 
supported boundaries at the left and right ends with 
a concentrated mass at the center of domain. Young's 
modulus is given as 100 kgcm -2, the mass density 
P0 = 10 6 kg cm -3, and the concentrated mass 
5.0× 10-6kgcm 3. The finite-element model is 
defined by 140 × 20 4 node quadrilateral plane stress 
elements with 2961 nodes. The constraint of total 
mass is given by V0 = 9.0 × 10 -6 kg cm -3. The initial 
design is assumed to be uniformly perforated as 
a,, = b< = 0.176, so that the total mass constraint is 
nearly satisfied. 

To investigate the effect of power n in the mean- 
eigenvalue, we consider the problems maximizing the 
mean-eigenvalue with respect to different values of n, 
i.e. n = - 2 ,  - 1 ,  0, 1, 2. Here, the lowest three 
eigenfrequencies of the structure are used to define 
the mean-eigenvalue, and wi= 1.0 (i = 1,2, 3) are 
assumed with 20, = 0.0 (i = 1, 2, 3). 

z.o-~- i 

I 
• Concentrated Mass 

-I 14.0 

Fig. 2. Design domain of  the structure. 
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Table 1. Eigenfrequencies at the optimized structure with respect to the different n 

83 

Frequency Initial n = 2 n = 1 n = 0 n = - 1 n = - 2  

~o~ 16.3 21.0 29.8 53.2 62.2 63.2 
092 51.6 53.6 110.3 139.2 134.2 124.8 
~o 3 63.8 239.3 244.9 202.2 156.3 162.7 

Max. + % 275% 284% 226% 282% 287% 

T a b l e  1 s h o w s  the  e i g e n f r e q u e n c i e s  o f  the  ini t ial  

a n d  o p t i m a l  s t r u c t u r e s  o b t a i n e d  by the  m e t h o d  pre-  

s en t ed  in th i s  pape r ,  whi le  Fig. 3 s h o w s  the  o p t i m a l  

c o n f i g u r a t i o n  ( l ayou t )  o f  s t ruc tu re s .  As  s h o w n  in 

T a b l e  1, w h e n  n = 0, n = - 1 a n d  n = - 2 ,  the  lowes t  

e i g e n f r e q u e n c y  ~o~ h a s  the  b igges t  i m p r o v e m e n t  in 

th is  o p t i m i z a t i o n .  O n  the  o t h e r  h a n d ,  w h e n  n = 1 a n d  

n = 2, t h e  h ighes t  e i g e n f r e q u e n c y  093 in th ree  c h o s e n  

(a) n=2 

(b) n=l  

(c) n--O 

(d) n - -  1 

(e) n=-2 
Fig. 3. Optimal structures with respect to different values of  n for the microstructural model: (a) n = 2" 

(b) n = 1; (c) n = 0 ;  (d) n = - I ;  and (e) n = - 2 .  
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T a b l e  2. O p t i m i z e d  e igenf requenc ies  wi th  respect  to the  different  va lues  o f  n for  the b e a m  m o d e l  

F r e q u e n c y  Ini t ial  n = 2 n = 1 n = 0 n = - 1 n = - 2  

~o~ 21.6 10.8 11.1 25.2 28.2 28.3 
(o 2 92.8 43.0 44.6 111.6 100.4 96.4 
~o 3 149.4 279.7 280.2 209.4  177.1 171.9 

M a x . + %  8 7 %  8 8 %  17% 3 1 %  3 1 %  

(a) n=2 

(b) n=l 

(c) n--O 

(d) n=- 1 

(e) n=-2 
Fig.  4. O p t i m a l  s t ruc tu res  wi th  respect  to  different  va lues  o f  n for  the  b e a m  model :  (a) n = 2; (b) n = l 

(c) n = 0 ;  (d) n = - l ;  a n d  (e) n = - 2 .  
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(a) o~0=80Hz 

(b) o~o= 150Hz 

(c) o0=200Hz 
Fig. 5. Maximization of gaps between structural eigenfrequencies and a given frequency: (a) ~o 0 = 80 Hz; 

(b) oJ 0 = 150 Hz; and (c) co o = 200 Hz. 

eigenfrequencies has the biggest improvements.  It has 
been mentioned previously that when n ~< 0, the 
lowest eigenfrequency has the largest contribution to 
the mean-eigenvalue, thus the problem becomes 
mainly to maximize the lowest eigenfrequency; con- 
versely the highest eigenfrequency has the largest 
contribution to the mean-eigenvalue, thus the 
problem becomes mainly to maximize the highest 
eigenfrequency. Table 1 also shows that a 287% 
improvement  can be obtained for the lowest 
eigenfrequency, while 283% for the highest eigen- 
frequency. Note  that, as shown in Fig. 3, the optimal 
structure becomes stiffer and stiffer along with the 
decreasing of  power n, this is because that the lowest 
eigenfrequency has a larger and larger contribution to 
the mean-eigenvalue when the power n is decreasing. 
Therefore, for obtaining a stiffer structure, n should 
be chosen as a non-positive number. 

To compare the above results, a conventional beam 
model is developed and is optimized using the size 
variables. Here 224 beam elements with 225 nodes 
are used to define a finite-element beam model. 
The objective function, volume constraint, Young's  
modulus and mass density are all the same as the 
problem discussed above. Table 2 gives the eigen- 
frequencies of  the initial and final structures of  the 
beam model. As shown in Table 2, the same tendency 
is obtained as the topology and shape optimization. 
However,  the maximal improvement  in the lowest 
eigenfrequency is only 31%, and in the highest eigen- 
frequency 88%. It is only one-tenth (for the lowest 
eigenfrequency) or one-third (for the highest eigen- 
frequency) of  that obtained by changing the topology 
and shape. Therefore, using the topology and shape 
optimization method presented in this paper can 
greatly improve the design. 

Table 3. Eigenfrequency results for maximizing gaps using the beam model 

Frequency Initial co 0 = 80 Hz o90 = 150 Hz e~ 0 = 200 Hz 

o) I 21.6 8.95 9.67 5.51 
o J2 92.8 124.6 35.9 32.4 
o) 3 149.4 138.6 271.4 40.0 
(04 300.8 280.5 298.3 399.8 
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20 T 
I 

• Concentrated Mass 
,q 

14.0 

Fig. 6. Reinforcement optimization problem. 

0.15 Table 4. Eigenfrequency results of the reinforcement optim- 
ization 

Frequency Initial n = - 1 n = - 2 

o h 21.6 62.2 27.7 
co 2 62.5 207.0 215.1 
0) 3 81.7 216.8 215.1 
~o 4 89.3 279.7 237.8 
0) 5 151.2 410.6 250.2 

Figure 4 show the opt imal  structures obta ined  
using the sizing opt imizat ion.  Compar ing  Fig. 4 with 
Fig. 3, bo th  the topology and  shape opt imizat ion and  
the sizing opt imizat ion obta in  the similar shapes of  
the outside in the cases of  n < 0. However,  every 
different s tructures were obta ined  in the case n > 0, 
since higher modes  of  two different models are no t  
comparable .  

7.2. Examples of maximizing the gaps between the 
frequencies 

First  the convent ional  beam for the sizing optimiz- 
at ion,  then the microstructure  model for the re- 
inforcement  opt imizat ion  are used to demons t ra te  the 
second kind opt imizat ion problem that  maximizes the 
gaps between the specified s tructural  eigenfrequencies 
and  the given frequencies co0, (i = 1, 2 . . . .  , m). 

The beam model  used here is the same with tha t  
in the previous example except the shift parameters  
co0, (i = 1,2 . . . . .  m). Here they are assumed not  
to be zeros. Three cases are calculated for this 
example, with respect to the different parameters  
(the different given frequencies): (a) coo = 80 Hz, (b) 
coo = 150 Hz; and (c) coo = 200 Hz, where, ~o0, = coo 
(i = 1, 2 . . . . .  m).  In case (a) the 1st and  2nd modes  
were used, i.e. m = 2; in the case (b) m = 3; in case 
(c) m = 4 .  It is also assumed to be n = - 2 .  

Figure 5 shows the final shape of  the beam struc- 
ture, while Table  3 shows the eigenfrequencies ob- 
tained. As shown in Table  3, the maximal  gap 
obta ined  is between the 1st and  2nd eigenfrequencies 

when c o 0 = 8 0 H z ;  between 2nd and  3rd eigen- 
frequencies when coo = 150 Hz; between the 3rd and  
4th eigenfrequencies when co o = 200 Hz. 

For  the re inforcement  opt imizat ion problem,  the 
design domain  is the same as in Fig. 2, but  a 
core-structure as a non-design area is specified as 
shown in Fig. 6. Here, the lowest five eigenfrequencies 
are used in the opt imizat ion  problem, and  the given 
eigenfrequency ~o 0 is assumed to be 100 Hz, where 
coo, = coo (i = 1,2 . . . . .  5). 

Two cases with the different power n, (a) n = - 1; 
and  (b) n = - 2 ,  are considered. Figure 7 shows the 
opt imal  reinforcements obta ined  by the me thod  pre- 
sented in this paper.  Table 4 shows the eigen- 
frequency result. As shown in Table 4, in the bo th  
cases, the maximal  gap is between the 1st and 2nd 
eigenfrequencies. In the case (a), the first eigenfre- 
quency has a large undesirable increment.  Conversely 
the first eigenfrequency only has a small increment  in 
the case (b). The maximal  gap between the 1st and  
2nd eigenfrequencies can be improved 29% by use of  
an even n u m b e r  for n compar ing  with the use of  an 
odd number .  

7.3. Examples of obtaining prescribed eigenfrequen- 
cies 

In order to obta in  the prescribed desired structural  
eigenfrequencies, the parameters  coo, (i = 1, 2 . . . . .  m)  
are given in the desired eigenfrequencies, and the 
power n is given as a positive even number ,  i.e. n = 2. 
Moreover ,  the weighting coefficients are chosen as 

(a) n=-I 

(b) n=-2 
Fig. 7. Optimal reinforcements: (a) n = - l ;  and (b) n = - 2 .  



Structural design for obtaining desired frequencies 

Table 5. Desired eigenfrequencies and obtained eigenfrequencies for beam model 

(a) (b) 
Frequency Initial Desired Obtained Desired Obtained 

o~ t 21.5 25.0 24.8 65.0 12.4 
e) 2 92.8 120.0 118.5 75.0 71.7 
~o 3 149.7 190.0 189.4 110.0 115.9 
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a) Desired eigenfrequencies: 25.0, 120.0, 190.0 I-Iz 

(b) Desired eigenfrequencies: 65.0, 75.0, 110.0 Hz 
Fig. 8. Optimal structure for beam model. Desired eigenfrequencies: (a) 25,120 and 190 Hz: and (b) 65, 

75 and l l0Hz.  

% = 1/20, (i = 1, 2 . . . . .  m). This is to yield a dimen- 
sionless object, and then all eigenfrequencies in the 
mean-eigenvalue will be able to have equal rates to 
reach their desired values. 

For  this example, first, the conventional beam 
model is considered using the lowest three modes. As 
shown in Table 5, the three lowest eigenfrequencies 
of  the initial beam are 0)1 = 21.5 Hz, 0)2 = 92.8 Hz 
and o93= 149.7Hz. Figure 9(a) shows the final 
structure obtained for the desired eigenfrequencies 
0)1 = 2 5  Hz, 0 ) :=  120Hz and 0)3= 190Hz (case a). 
Figure 9(b) shows the final structure obtained for the 
desired eigenfrequencies ~o I = 65 Hz, 0)2 = 75 Hz and 
o)3= l l 0 H z  (case b). As shown in Table 5, the 
maximum error between the desired eigenfrequencies 
and obtained eigenfrequencies is less than 1.3% for 
the case (a), but near 80% for the case (b). It implies 
that large changes in the structural eigenfrequencies 
can not be expected for a sizing optimization 
problem. 

Table 6 shows the results using the microstructure 
model for the same desired eigenfrequencies given in 
the case (b) of  the beam model. The initial structure 

Table 6. Desired eigenfrequencies and obtained eigenfre- 
quencies for microstructure model 

Frequency Initial Desired Obtained 

e h 16.3 65.0 63.5 
o9, 51.6 75.0 74.1 
~t) 3 63.8 110.0 110.4 

has the eigenfrequencies o) 1 = 16.3 Hz, u)2 = 51.6 Hz 
and 0) 3= 63.8Hz. As shown in the Table 6, the 
final eigenfrequencies obtained are 0)~ = 6 3 . 5 H z ,  
0)2 = 74.1 Hz and 0) 3 = 110.4 Hz. The maximum error 
between the desired eigenfrequencies and computed 
eigenfrequencies is less than 2.4%. Therefore, the use 
of  the microstructure model makes it possible to 
obtain the desired eigenfrequencies which have larger 
changes from the initial ones. Figure 9 shows the final 
configuration obtained by using the microstructure 
model. 

Another  example for the desired eigenfrequency 
problem is also calculated in this paper. The purpose 
is to design a plane bridge-like structure for the 
prescribed structural eigenfrequencies. The design 

Fig. 9. Optimal structure for the microstructure model (desired eigenfrequencies: 65.0, 75.0, 110.0 Hz). 
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2.0 po 4.0 po 2.0 po 

(a) Design domain and loading 

(b) Case I 

(c) Case 1I 

Fig. 10. Optimal topologies for the bridge-like structure: (a) design domain and loading; (b) Case I; and 
(c) Case II. 

domain and boundary conditions are given in 
Fig. 10(a). The loading is assumed by the three 
concentrated masses, 2.0p0, 4.0p0 and 2.0p0 on 
the bot tom of bridges as shown in Fig. 10(a). Two 
cases with respect to different groups of desired 
eigenfrequencies are calculated. Figures 10(b) and 
10(c) describe the final structures. Table 7 gives 
the comparison between the initial eigenfrequencies, 
the desired eigenfrequencies and the final eigen- 
frequencies obtained. It is shown that the use of the 
method presented in this paper makes it possible to 
obtain the desired eigenfrequencies with quite good 
accuracy. 

8. CONCLUSIONS 

A mean-eigenvalue is defined and three kinds of 
optimization problems are discussed to obtain desired 
eigenfrequencies of a structure. The topology and 
shape optimization technique using the concept of 
OM D is utilized to determine the optimum. The 
sensitivity analysis of the mean-eigenvalue is also 
given. An improved updating algorithm is then ap- 
plied for solving the optimization problem. Several 
examples are given to demonstrate the feasibility of 
the approach presented in this paper. It has been 
shown that the method presented in this paper is 

Table 7. Desired eigenfrequencies and obtained eigenfrequencies for the bridge-like 
structure 

Case I Case II 
Frequency Initial Desired Obtained Desired Obtained 

co I 21.5 80.0 79.5 110.0 108.7 
052 34.7 170.0 169.2 130.0 128.4 
053 49.9 200.0 199.9 170.0 170.9 
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applicable to various eigenfrequency opt imizat ion  
problems in s t ructural  design, and  makes  it possible 
to ob ta in  a truly opt imal  structures,  which is opt imal  
in the size, shape and  topology at once. 
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