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Abstract-Methods are described for calculating the spectral absorption coefficient for lines with com- 
bined Doppler and Lorentz broadening. 

RADIATIVE transfer calculations involving gases at low pressures require values for the 

absorption coefficient incorporating Doppler and collisional broadening. The appropriate 
absorption coefficient can be written (cf. PENNER(~)), 

k, = key m exp[ --PI s dt (1) 77 _ m y2 + (x - ry 

where 
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F(‘” ;,1n 2)‘” 
, the Doppler half-width 

Lorentz half-width 
wave number of the line center 

wave number at which k, is to be evaluated. 

Unforturlately (1) is not easy to integrate for the range of x and y which would apply 
to a planetary atmosphere. PENNER (l) discusses and references some methods for evaluat- 
ing (1) which are rather restricted in their range of applicability and accuracy. Some 
recent tabulations are given by POSENER,‘~) FADDEEVA and TERENTEV’~) and FRIED and 

549 



550 CHARLES YOUW 

CONTE.‘“) Tables are not particularly convenient if radiative transfer calculations arc 
being performed on a digital computer. SHVED and TSARITSYNA(~) detail a procedure fog 
calculating (I); their method, however, appears ineficient for routine use on a digital 
computer. The method used by FADDEE~A and TERENI‘EV 13) to generate their tables i4 
not readily adaptable for computer use. FRIED and CONTE,‘“) on the other hand, generated 
their tables using a digital computer and a rather elegant method. A variation of‘ theil 
method was used to evaluate (1) over part of the range of interest. 

The integral appearing in (1) is related to the probability integral for complex argu- 
ment, 

where 
I = (.V+iA,): U’(Z) = !I(.\‘.>‘) +ir(.\-.,\,) 

It is easy to show (cf. FADDE~VA and TER~NTI-.v”~‘) that 

ti, 1’(.\..1‘) 

Ii0 \ 77 

Equation (2) may also be expressed as a differential equation 

\I”( z) + 2;1r( II + 2i = 0 (3) 

with the initial condition H,(O) = i\ r. Equation (3) may bc alternatively written in the 

form 
ill 

-I- 2.vr + 3.l.U = 0 
i .\’ 

with initial conditions 
M(O.0) = 0. L’( 0.0) = \ ii 

Integrating (4) along the y-axis allows ~(0.~3) and I,(O.J~) to be determined while integrating 
along the x-axis gives u(x,O) and v(.\-.O). The values obtained arc 

U(O..l’) = 0, ~j0.j.) = 1 (77) cxp[.~,~]( I -erf(j,) ) 

u(.Y.O) = -2 exp[ -.Y”] i‘ exp[t”] d/, r,(.\-,011 = 1 (7~) exp[ -.I-‘] 
.l 
0 

To evaluate (2) for 4’ < 1, FRIED and CONTE’“) solved the differential equations (4) 

using a numerical technique. Knowing ~(0.1~) and ~(O,JJ) they integrated in the s-direction 
until the desired value of s was reached. The integrating step size was 0.01. This method 
is satisfactory for producing a set of tables but on a routine basis it would involve a large 
amount of computer time for even moderately large values of s. Also round-off error is 
increased if a large number of integrating steps are used. The method adopted was to 
integrate in the y-direction using u(s,O) and rjs,O) as initial values. Since y will not be 
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greater than unity reasonably few iterations are required. It was determined that a step 

size of 0.02 gave six significant figure accuracy if a fourth order Runge-Kutta procedure 
was used. The value 0(x,0) is readily calculated but u(x,O) is somewhat more difficult. 
For values of x 3 4.5 an asymptotic expansion (ERDELYI et al.@)) was used, 

5 

exp[ -.P] 
s 

exp[t2] dt = k[i-sl] 

0 ??I=0 

where 
(a), = a(a+l). . .(n+n-1), rz = 1,2,3,. . . 

(alo = 1 

The number of terms needed to obtain seven significant figure accuracy is given approxi- 
mately by 2+40/.x. For 2.0 cxc4.5 an expansion in terms of Chebyshev polynomials 
given by HUMMER(~) was used. This expansion is very accurate, fourteen significant 
figure accuracy being obtained if all the terms are included. Seven significant figure 
accuracy being obtained by taking the first 21 terms. For values of xG2.0 a convergent 
series expansion (ERD~LYI et ~11.~~)) was used, 

3 

exp[ -_y2] 
co ( _ l)nxzn+l 

exp[t2] dt = x--(- 

0 ?I=0 2 n 

The number of terms required for seven significant figure accuracy is approximately 
(12 +5x2). Both of the above series were evaluated by nesting the sums to reduce round- 
off error. 

FRIED and CONTE’~) give a continued fraction expansion for (2), derived using the 
quotient difference algorithm, applicable for y > 0. It can be written 

where 

A, 
IV(Z) = lim B 

n-tee n 

A - ~n+IA,+4t+,A,-, ?L+1 - 

B n+1 - - bn+lBn+a,+,B,-, 

A_1 = 1 : A, = 0: B_, = 0 : B, = 1 

a n+l = -n(2n -1)/2, n = 1,2, . . . 

a, = z 

b n+l = -z2+? +211, 11 = 0,1,2,. . . 

The continued fraction expansion converges slowly for y< 1 but rapid convergence is 
obtained for y > 1. For example for y = 10.0, x = 10.0 only three terms are required for 
six significant figure accuracy and only six terms are required for the same accuracy for 
y = 2.0, x = 05. The continued fraction expansion was used for y > 1 .O. 
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It was determined that the Runge-Kutta method became unstable for .Y> 50.0. 
However, equation (1) is in a form suitable for integration using Hermite-Gauss quad- 
rature (cf. HILDEBRAND'")). Unfortunately Hermite-Gauss quadrature is satisfactory 
only for fairly large x or 4’ due to the very sharp peak in the curve exp[ - t’],‘(~“- (.\-- 1)‘) 
vb. / for small .V and y. It was found that for .Y zx 104. J’;zO, 20-point Hermite-Gauss 
quadrature gave results comparable to the Runge--Kutta and continued fraction expan- 
sion. The disagreement varied from 2 to 5 in the sixth significant figure cxccpt for small 

values of_v (~)<0.01) and large .Y (.I-> 20) when the disagreement became larger, up to 3 in 
the fifth significant figure. In these c;~ses /i,,lX,, \\3lr in the range IO-’ to IO-’ 50 this error 

\V:IS considered negligible. 

The results obtained were compared with the wlues given by FADDHSA and ‘I? ICI \- 

TI:Y’~) and FKIID and CONTE.‘~’ Complete agreement wan obtained. Needless to s:~y v.hen 

the above procedure was being developed the three methods used to evaluate (I) \\CK 
chcckcd by overlapping the regions they covered, excellent ugrecment was obtained. 

To sum LIP, equation (1) WRS cvalunted for 

J’ < 1 .O, s< IO.0 using Runge-Kutta method 
J i I .O, .Y < 10.0 using continued fraction expansion 
J’ > 0. .Y > 10.0. using 20-point Hcrmite+Gauss quadrature. 

A Fortran program and tabulations of the integral in ( I ) for selected values of .Y anti 

J‘ can be obtained by contacting the author. 

Al~kr,o,rl~rl~~~I~lL’llt.s This work was supported by N.4Si\ under contract NASr-54(03). The author I\ 
grateful lo S. ROLAhn DRAYSON and PA~IL B. H,zus for several interesting discussions and to Dz\ II) 1. 
CHILIIS for translating the MAD* program into an efficient assembly language (UMAP+) program. 
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* MAD--Michigan Alogorithm Decoder, a programming language similar to Fortran. 
.i_ UMAP University of Michigan Assembly Program, an assembly language similar to FAP. 


