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The theory of vibration-rotational perturbations in tetrahedral XY, mole-
cules has been reexamined in the light of the modern theory of angular momen-
tum coupling. It is shown that, even to third order of approximation, the split-
ting of a vibration rotation level into its tetrahedral sublevels is governed only
by perturbation terms of one basic symmetry in all states in which vibrational
quanta of »; , »3 , and »4 are excited and to a certain approximation in many of
the infrared active states in which quanta of both », and »; or », are excited.
The perturbation term is identified as the tetrahedrally symmetric linear
combination of fourth rank spherical tensor operators. In dominant approxi-
mation the rotational fine structure splitting patterns are characterized solely
by the rotational angular momentum of the state. Only the overall extent of
the patterns depends on the vibrational and total angular momentum quantum
numbers and the vibrational character of the state. In next approximation the
basie splitting patterns are all deformed to a certain extent by matrix elements
off-diagonal in the rotational angular momentum quantum number. These
cannot be neglected if theory is to account for the modern high resolution
spectra.

The terms of the vibration-rotation Hamiltonian to third order of approxi-
mation are classified according to their symmetry. Explicit expressions are
given for the pure vibrational energies of the simpler bands. Explicit numeri-
cal values are also given for the matrix elements of the rotational sublevels of
types A, As , E, Fi , and F. from which the rotational energies of the vibra-
tional ground state and the infrared active fundamentals can be computed.
These matrix elements also give the numbers for the basic splitting patterns of
the dominant approximation for any state involving combinations of »; ,»; , and
Vg .

* A preliminary report on this work was given by the author at the 1957 Symposium on
Molecular Structure and Spectroscopy, Columbus, Ohio [Appl. Spectroscopy 11, 203 (1957)].
A similar approach has been used by J. D. Louck [Dissertation Abst. 19, 840 (1958)].
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INTRODUCTION

Advances in infrared spectroscopy in recent years have made it possible to
completely resolve the complex rotational fine structure of many of the vibra-
tional bands of the methane molecule (1-4). In order to account for the experi-
mentally observed spectra it has proved useful to reexamine the theory of the
vibration-rotation interactions in spherical top molecules in the light of the
modern theory of angular momentum coupling and the concept of irreducible
spherical tensor operators (5, 6).

The complete vibration-rotation Hamiltonian for tetrahedrally symmetric
XY, molecules has been derived to second order of approximation by Shaffer
et al. (7, 8) who have also computed the matrix elements of this Hamiltonian for
the states which give rise to the fundamentals and the simpler combination and
overtone bands. In order to compute the energies of the vibration-rotation levels,
however, it is almost mandatory to make full use of the symmetry of the mole-
cule to factor the Hamiltonian matrix as much as possible. This symmetry has
been exploited by Jahn (9, 10) to facilitate the computation of the energy levels
of the fundamental »,. Jahn, however, has considered only the dominant per-
turbation for this band, the Coriolis interaction with the nearby fundamental
v» . In order to account for the modern high resolution speetra it is important to
include the effects of all vibration-rotation interactions not only to second order
but to third order of approximation. By classifying the perturbation terms ac-
cording to their symmetry, however, it can be shown that the task of computing
the vibration-rotation energy levels, even to third order, 1s not much more com-
plicated than that undertaken by Jahn since the perturbation terms group
themselves into a very few basic types. Since the Hamiltonian has spherical and
inversion symmetry in zeroth approximation it is advantageous to classify the
perturbation terms according to the irreducible representations of the full rota-
tion-inversion group, where the possible types of perturbation terms are severely
restricted by the additional requirement that they must transform according to
the totally symmetric irreducible representation (A;) of the point group of the
regular tetrahedron (7T;). Because of this restriction it can be seen that most of
the vibrational states of the molecule are influenced by only two types of per-
turbation terms. There are scalar perturbation terms which cannot remove the
first order degeneracy of the vibration-rotation levels but merely shift the posi-
tions of the levels giving contributions to the effective B, D, and zeta values of
the bands. There is in addition, in the case of most states, only one basie type of
tensor perturbation operator which can split a vibration-rotation level into its
Ay, Aqs, E, Fy, and F, sublevels without influencing its center of gravity. In
dominant approximation this perturbation gives rise to a basic fine structure
pattern which is characterized solely by the rotational angular momentum and
is completely independent of the total angular momentum or the vibrational
angular momentum of the level, the vibrational character of the state, or the
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TABLE I

OBSERVED FINE STRUCTURE PATTERNS FOR STATES WITH A ROTATIONAL
ANGULAR MoMENTUM, R = 4

Theory

(Dominant approximation) v P4 v QM) a‘ ,
A1(4y) + 14 A; 4+ 14.0 X (0.0138 ecm™) A, + 14.0% (—0.0173 em™1)
Fi(Ff) + 7 F,4+ 70 F,+ 7.5
E + 2 E + 23 E + 4.4
Fs(F,) — 13 F, — 13.3 L Fi—-15.0
¥1 + vy P(4)P vy P(4)° va + v3 R(4)b
A, + 14.0 X (0.061 ecm™!) A, 4+ 14.0 X (.060 em™!) Ay + 14.0 X (022 em™1)
Fr4 7.1 E + 7.7 F, 4+ 8.0
E + 1.8 F + 25 ) E + 3.8
F;'~ 13.0 F, — 14.0 Fy, — 15.2
s Reference 1. b Reference 2. ¢ Reference 4.

dynamical nature of the dominant perturbation term (whether of Coriolis,
centrifugal distortion, anharmonie, etc., type). Only the extent of the pattern
depends on all these latter quantities. The effect is illustrated in Table I by some
of the experimentally observed fine structure patterns where states with a rota-
tional angular momentum of four units have been chosen. Such states have four
rotational sublevels, either of symmetry A,, F;, E, and F;, or of symmetry
Ay, Fy, E, and F, (9). In dominant approximation theory predicts that the four
sublevels are split from their center of gravity in the ratios 14, 7, 2, and —13,
respectively, where the A, E, and F sublevels are given weights of 1, 2, and 3,
respectively, in determining their common center of gravity. It can be seen that
the experimentally observed splittings follow the predicted patterns rather closely
for states of very different vibrational character as well as for P, @, and R branch
transitions for which the total angular momentum quantum numbers of the
upper state are 3, 4, and 5, respectively. (The observed splittings in these exam-
ples arise almost exclusively from the upper state). The differences between the
experimentally observed splitting ratios and the theoretically predicted numbers
may arise partly from experimental uncertainties (the overall separation of the
four lines, determined by the numbers in parentheses, is considerably less than
1 em™! in some of the examples). However, theory predicts that the basic split-
ting patterns can be deformed if the splitting of a vibration-rotation level into
its Ay, As, E, Fi, and F. components is large compared with the first-order
energy separation of states with the same total but different rotational angular
momentum. In that case the fact that the rotational angular momentum is not
a “good quantum number’’ becomes important. Matrix elements between nearby
states of different rotational angular momentum (which were neglected by Jahn)
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may give significant contributions to the energy and lead to states which are
mixtures involving several rotational angular momenta. Since the basice theoreti-
cal splitting patterns of the dominant approximation are characterized by the
rotational angular momentum quantum numbers such a mixing will lead to a
deformation of the basic patterns which may become especially important for
states with large angular momentum quantum numbers. Since the degree of
mixing depends on the separations of states of different rotational angular
momentum which in turn are funetions of the B and zeta values of the band, the
rotational fine structure patterns will differ somewhat from band to band.

In this first paper of a seriex an outline of the basic theory is given. The
vibration-rotation perturbation terms to third order of approximation are classi-
fied according to their symmetry, and it is shown how this classification can be
used to simplify the caleulation of the energies. Explicit expressions are given
for the pure vibrational energies of the simpler bands. Explicit numerical values
are also given for the matrix elements of the Hamiltonian for the rotational sub-
levels of types A, A», £, Fy, and F, from which the rotational energies of the
vibrational ground state and the nfrared active fundamentals can be computed.
Tn the second paper the numerical results for the fundamental »y of CHy will be
presented and compared with the experimentally observed spectrum which has
recently been remeasured by Plyler et al. (1) under high resolution. In subsequent
papers some of the simpler overtone and combination hands will be diseussed.

CLASSIFICATION OF THE WAVIES FUNCTIONS AND PERTURBATIONS TERMS

The complete vibration-rotation Hamiltonian can be written in the usual way
(8) in terms of the PP, , the components of the total angular momentum along
a molecule-fixed coordinate system, and the nine normal coordinates Q;, Q.. ,
Qu , Qsr, Qs Qszy Qur, Qo , and Qy, associated with the four fundamental fre-
quencies. It is convenient to introduce dimensionless coordinates ¢, e, f, .
Yas 2. e Ya . 20, which are related to the @, as follows

2 12 2 12
O = (h|trea) g, Qu = (hl4rcw) "o,
21 2 12
(2% = (h \ 4 Cws) _f, Q;;,r = (h l 4 cwy) Xy,
etc., in which the w; or (»;/¢) are the normal frequencies expressed in em ' In
terms of these coordinates the zeroth order Hamiltonian becomes

H,

he = % (p12 -+ qlz) + (’%’ (P.z“) -+ r:zz,)

(1)
+ w_); (p:f + )+ S)f (‘pf + ) + B

<

! An attempt has been made to retain the notation of both Jahn and Shaffer et al. ax much
as possible.
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in which p* = —8%/dq ' = & + f*, p’ = —(8%/9¢" + 3%/9f%), " = x +
ys + 2, p = pi. + phy + 5. = —(9*/9x + 8%/ays’ + 9°/92), ete., and

= (h|8x%l.), while P’ = P, + P, 4+ P} is also a dimensionless quantity
with eigenvalue J(J + 1). In order to obtain the correct stabilized zeroth-
order wave functions the Hamiltonian H,’ must be added to H,

Hi/he = —2B, (Pl + P-L), (2)

in which 1; and 1, are the internal vibrational angular momentum vectors. The
components along the molecule-fixed coordinate system are given by

ly. = (y3p32 - Zspau), by = (Zspsz - xspsz), . = (-’Ifspsy - yspsz)

with similar expressions for 1,. In states in which vibrational quanta of both
normal modes »; and v, are excited the internal angular momenta couple quantum
vectorially to a resultant total vibrational angular momentum 1. The eigenvalues
of 1%, I, 17, and Iy, are I3(ls + 1), mg, Iy(ly + 1), and m,, respectively, while
the eigenvalues of I and [, are I(! + 1) and m = ms + m, where the integer ! has
the possible values (I + 1), -, | Is — 1], as usual. The vibrational angular
momentum 1 couples with the rotational angular momentum, to be denoted by
R, to give the resultant total angular momentum P.* The eigenvalues of R, P
and the molecule-fixed components R, and P, will be denoted by R(R + 1),
J(J + 1), Kz, and K, respectively. The operators 1. satisfy the usual angular
momentum commutation relations

Lo, 4] = +il, ---

The operators P, (and similarly R.), on the other hand, satisfy the commuta-
tion relations with the anomalous algebraic sign before ¢

[Py, P} = —iP, ---.

As a consequence it is natural to speak of quantum vector subtraction rather
than quantum vector addition (see for example Van Vleck (11), or to build up
the states by adding the vector (—1) to the vector P to give a resultant R =
P — L. This is the natural way to perform the addition since all the components
of P commute with all the components of 1, whereas the components of R do not
commute with those of 1. The wave functions must therefore be built up from
linear combinations of products of eigenfunctions of the vectors P and 1, re-
spectively. The wave function of a state characterized by the resultant rota-
tional angular momentum quantum numbers R and Ky is given by

V(T exy = X UJmK | IJRK 2)btubix , (3)

2 The angular momenta R and 1 are identical with Nielsen’s P, and P, (Ref. 8). In this
paper the subseripts 1 and 2 will be reserved for the normal modes 1 and 2.
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in which the coupling coefficients (IJmK | [JRKy) are the usual angular mo-
mentum addition or Clebsch-Gordan coefficients with K = (K, — m).* The
formula for the coupled wave function in the case of angular momentum sub-
traction is therefore the same as the usual addition formula with the exception
that the eigenfunctions of the negative vector, —1, are replaced by their com-
plex conjugate, where

¢>lkm = (_1)m¢l—m .

With this small modification the whole machinery of angular momentum addi-
tion theory (5, 6), can be applied to the problem of angular momentum subtrac-
tion of molecular physics. The ¢, are the usual vibrational eigenfunctions. The
dependence on all the principal vibrational quantum numbers v; has not been
written explicitly. For example, if only one vibrational quantum of »; is excited,
that iswithv; = 1,5 = 1, (v, = va = vy = 0,1, = 0), the functions ¢ are given
by

1
b1 = ¢\—@- [¢(100) & ¢(010)], ¢ = ¢(001),

in which ¢(vs; vy vs.) are products of one-dimensional harmonic oscillator fune-
tions in the coordinates a3, %3, and 23 with quantum numbers vy, , v3, , and vy, ,
respectively. If vibrational quanta of both »; and », are excited the vibrational
wave functions ¢, are themselves given by the angular momentum addition
formula as linear combinations of produects of eigenfunctions of 1; and 1; .

b = 2 {llimamy | Lldm)dr,mdi,m, my = (m —my). (1)
mg

The y.x are the spherical (or symmetric) rotator eigenfunctions, functions of
the three Euler angles which give the orientation of the molecular framework
in space. In Eq. (3) the dependence of y,x on the quantum number M, the
eigenvalue of the sapce-fixed z-component of P, has not been written explicitly.
The rotational wave functions are related to the coefficients, Dz, of the
(2J 4+ 1)-dimensional irreducible representations of the rotation group as de-
fined in (4), by

Voux = (2 + 1)/87° " Dyx .

The wave functions ¢, transform according to the irreducible representations
of the group of all rotations and reflections, according to D,” (for J even) and
D.” (for J odd). Since the vibrational wave functions, ¢, . transform according
to the product representations of the eigenfunctions of 1; and 1, , they transform
according to D, (if I; + L is even) or D} (if I; + I, is odd). The eigenfunctions
of the resultant rotational angular momentum, yzx,, , therefore transform aceord-

3 For the case [ = 1 the wave functions (3) have been written out explicitly by Jahn.



THEORY OF SPHERICAL TOP MOLECULES 361

ing to the representation D,* (if J + I; + lyiseven) or D, (if J + I; + 1, is
odd).

Since the zeroth-order wave functions transform according to one of the ir-
reducible representations of the full rotation-reflection group it is advantageous
to classify the tetrahedrally symmetric vibration-rotation perturbation terms
according to their transformation properties under this more extended group.
It should be pointed out, however, that not all vibrational wave functions trans-
form according to one of the irreducible representations of the full rotation-
reflection group. For example, the vibrational wave functions of the doubly
degenerate fundamental state v, (a state of zero vibrational angular momentum)
transform according to the irreducible representation E of the tetrahedral group.
This is not one of the irreducible representations of the full rotation-reflection
group. The rotational fine structure patterns for the “infrared forbidden”
fundamental », are therefore very different from the basic patterns discussed in
connection with Table I. In this paper the discussion will be restricted to vibra-
tional states whose wave functions transform according to one of the irreducible
representations of the full rotation-reflection group. This includes all possible
combinations and overtones of the states »;, »;, and »y. Although it does not
include the fundamental », itself it does include many states in which quanta of
both », and »; or vy are excited. (The excited states for all “infrared active”
transitions originating from the vibrational ground state fall into this category.)
The combination state ». + »;, for example, has vibrational substates Fy and Fy
whose wave functions transform according to the irreducible representations
D.' and D,', respectively. As a result the rotational fine structure patterns for
this band are the basic ones discussed in connection with Table 1.

The perturbation terms of the vibration-rotation Hamiltonian will be ordered
according to the scheme of Nielsen et al. (12, 13) in which the w; and the rota-
tional energy BJ(J + 1) are considered to be quantities of the same order of
magnitude.* The Hamiltonian is subjected to the usual contact transformation
(7,12, 13) so that the transformed Hamiltonian, H,’, contains only terms diag-
onal in the vibrational quantum numbers, »;, Eq. (2). In order to exploit the
symmetries of the zeroth-order wave functions the perturbation terms of H,,
H;' will be classified according to their tensor character. An examination of the
transformed Hamiltonian, H’, shows that the individual perturbation terms in
H, H{, HY, --- are at most tensors of rank 4, 5, or 6 - - -, respectively. Char-
acteristic terms of Hy'. for example, have the form g.ps/’oPsP, oF q.qoqepaP o (12),
in which the individual ¢a, o, Pa, - -+ transform at most as tensors of rank 1.
Calculation of the vibration-rotation energies to third order of approximation
will therefore involve only tensors of rank =5. In order to apply the machinery

4 In this scheme quantities of order B, (B?/w)J?, (B%/w?)J*, the quartic'potential con-

stants, and the squares of the cubic constants divided by w are all considered to be of second
order, whereas quantities of order (B2/w)J, (B3/w?)J3, - - - are considered to be of third order.
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of angular momentum coupling theory the perturbation terms must be classi-
fied as irreducible spherical tensor operators (5), but the possible types of tensor
operators are restricted by the requirement that they must transform according
to the totally symmetric irreducible representation (A;) of the group 7. Only
those linear combinations of spherical tensor operators which remain invariant
under all the symmetry operations of the tetrahedral group can occur in the
Hamiltonian. The reduction of the representations D,’, D.’ of the full rotation-
inversion group into irreducible representations of 7'y has been given by Jahn
(9). The result is shown in Table II for small values of j. For j £ 5 the only
representations which contain A, are those with j = 0, 3, and 4. The only tetra-
hedrally symmetric linear combinations of spherical tensor operators of rank
<5 therefore involve only tensors of rank 0, 3, and 4. The correct linear combina-
tions have also been given by Jahn. They are

T(00),

(5)
(T(3-2) — T(32)],

and
{(2:5-7)"°T(40) + 5[T(44) + T(4+-4)]},

in which the individual tensor operators T'(jm) transform under rotations and
inversion as do the spherical harmonics Y ;. . It is to be noted that the inclusion
of third-order perturbation terms (tensors of rank =<5) cannot introduce any
new types of spherical tensor operators, (D° does not contain 4;), so that the
calculation of the vibration-rotation energies to third order of approximation
imvolves terms of the same basic symmetries as the caleulation to second order.
Inclusion of fourth-order perturbation terms, on the other hand, would intro-
duce entirely new types of tensor operators since the representations D° contain
the irreducible representation A;. It is to be noted further that the third-rank
tensor operator [T(3-2) — T(32)] transforms according to a representation of
type u. In calculating energies of the levels to third order, however, only matrix

TABLE II

RepuctioNn oF Dy, D,/ INTO IRREDUCIBLE REPRESENTATIONS OF Ty
j Dg:‘ D
0 Ay A
1 171 F,
2 E + F, E + F
3 As+ F1 + F, é+F2+F1
4 Ay +E+ F, + F. A+ E+Fo+ Fy
5 E 4 2F + P, E + 2F;, + F,
6 A+ Ay + E + Fy 4 2F, A + 414+ B+ F: 4 2F,




THEORY OF SPHERICAL TOP MOLECULES 363

elements diagonal in v; and J are needed. For given »; the angular momentum
quantum numbers [; are etther even or odd. The required matrix elements of H’
therefore connect states which are either both of type g (if J + Iz + I, is even)
or both of type u (if J 4+ I3 + I, is odd). Consequently matrix elements of an
operator of type u are zero, and the operator {T(3-2) — T(32)] cannot con-
tribute to the vibration-rotation energies. The spacing of the vibration-rotation
levels is therefore governed by only two types of perturbation terms, scalars
T(00) which, as will be shown, ecannot remove the first-order degeneracies of the
levels, and one linear combination of fourth-rank tensors which can split a level
into its 4., 4., E, F1, and F, fine structure components. The splitting patterns
are therefore governed by perturbation terms of one basic symmetry. The above
applies strictly only to states in which quanta of only v, »;, and » are excited.
Combination bands involving » may have vibrational substates of both type ¢
and w. The state », + »;, for example, has vibrational substates F, and F, with
I = 1 which transform according to D.' and D,’, respectively (Table IT). The
third-rank tensor operator may make contributions to the energies of this state
since it may have nonzero matrix elements connecting the vibrational substate
F, with the substate F; . The scalar and fourth-rank operators on the other hand
can connect only either the vibrational substate F, with F. or F, with F,. If
the separation into the rotational fine structure components is small compared
with the separation of the F, and F; vibrational substates, it might be expected,
however, that the splitting patterns are dominated by the fourth-rank tensor
operators. This seems to be the case for the states of small angular momentum
so that the basic splitting patterns of »s 4 »; are very similar to those of all other
infrared active bands (Table I). For states of large angular momentum, however,
the effect of the third-rank tensor operator seems to become important and the
splitting patterns diverge more and more from the basic ones (2).

THE VIBRATION-ROTATION HAMILTONIAN

To carry out the calculation of the energy levels of an XY, molecule to third
order of approximation the tetrahedrally symmetric cubic and quartic potential
terms must be added to the harmonie part of the potential function. These have
been given by Shaffer et al. (7) but are listed again in Appendix I in order to
establish the notation to be used in this paper. The individual terms of the trans-
formed Hamiltonian are listed below. The only terms which can contribute to
the energies to within third order of approximation are those terms of H," and
Hj' whose matrix elements are diagonal in the principal vibrational quantum
numbers v; . These will be denoted by H’(diag). To pick out these terms from
the complete Hamiltonian, H’, it is only necessary to rewrite the vibrational
operators. The operator ¢°, for example, can be rewritten

‘112 = }5(2712 + QIZ) - }"é(plz - Q12)-
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The only nonzero matrix elements of the first term are diagonal in the quantum
number »; , whereas the diagonal matrix elements of the second term are zero.
Since the second term has matrix elements off-diagonal in »; ouly, it can be
neglected to within the approximation of interest. As another example of this
process the operator :c32y32 can be written

oy = 138(P3 + &) (P34 v) — L4l — L)
— V(P — x ) (Phy + ys) — Li(pie + 00 (phy — ¥
+ 1/8[(1)?’:: - .l‘;;z)('pgy - !/32) - (p:s:I:; + »l‘3psx)(p3u!/3 + y3p3u)]'

Only the first term, enclosed in braces { }, is completely diagonal in »; whereas
the remaining terms are completely off-diagonal in v; and can therefore be neg-
lected.

For convenience the terms of H'(diag) are subdivided into pure vibrational
perturbation terms and vibration-rotation terms which are classified according
to their dependence on the angular momentum quantum number J.

H'(diag) = Hy(vib, diag) + HY(P*") + H,' (I, diag) + Hy' (I, diag)
+ H/(P,diag) + ---.

The pure vibrational terms are given by

H,' (vib, diag)

(pl2 + (I12) (I)lﬂ + (]12‘) 1+ X (p; + 7'22) (p22 + ng)

= Xu 2 2 2 2

2 2 2 2 2 2, 2 2
+ X (ps ‘;‘ 75 ) (py ;‘ T3 ) + Xu (ps ‘5 ry) (pa 'f)‘ Ty )

&

(p + ¢*) (p* + r.0) (py’ + ¢) (ps° + %)
2 2 : ‘

+ X 5 5 + X 5 5
2 P 2 2, 2 2 2 3 (7)
+ X {(; “‘2‘ 0 ) (p4 “f)— Ty) + X (pz ‘f)‘ s ) (ps ‘;‘ 5)

2 2 2 2 2 2 2 2
+X24(p2 -2Fr2)(p4 ;“)-FXM(M i—ra)(m ju)

+ G?‘zmgz -+ G33132 + G44142 + G34(13'l4:) + S;M()s,;(scalar)
+ T30 (tensor) + Tu0s(tensor) 4+ TawOu(tensor)
+ T9304(tensor) + Tou0a4(tensor).

The operator mq, is the angular momentum operator in the space of the two-fold
degenerate normal coordinates (but not in three-dimensional space), m,. =
—1(ed/df —fa/de). Its eigenvalues are z=vs , &= (12 — 2), £ (v2 — 4), --- .



THEORY OF SPHERICAL TOP MOLECULES 365

The operators Oy, O3, - - - are given by

Ou(scalar) = (pi. + 2°) (pi. + &) + (05, + ') (p3y + yi)
+ (p5. + 27) (phe + 26°) + 2(Psupu + E3) (PacPry + 24ye)
+ 2(pacps: + 0323) (ParPr: + La24)
+ 2(paps: + yos) (Papse + yaze) — F3(ps’ +15°) (pi* + 145),
Ou(tensor) = 33(ps, + 23') (pi + 21°) + 33(psy + 45°) (Pay + 4s°)
+ 34(ps: + &) (pi. + 2°)
= 2(Pspaw + Tsya) (PecPay + Tays)
— 2 (DszPs: + 325) (DaaDsz + Ta2a) (8)
= 2(pupse + yz:) (PuPe: + Yszs)
— 15(pss + ) (pd + 1),
Osn(tensor) = (pi, + 2°)(P5: + &) + (Phy + y) (V5 + yi')

+ (p3: + &) (P + z) — 3(pi. + @) (P + ¥s)
— 3(pss + ") (P3: + &) — 3(phy + y) (13 + 25)
+ 21 + 6,
Ou(tensor) = (p,” + & — p/ — f)(ps’ + s’ — 3ps. — 32")
+ 23 (pps + o) (pic + " — piy — ¥s).

The operators Oy, 0., are obtained from Oy, and Oy by an interchange of
indices 3 and 4. The coefficients X,;, G:;, S;;, and T;; are tabulated in terms
of the molecular parameters in Appendix I.

The purely vibrational corrections to the zeroth order energies are

AEvib = Z X.[j(vi + di/2)(1)j + dj/2) + W(m2z, ls, l4 , l, symmetry). (9)
1< 7

The first sum gives an anharmonicity correction similar to that found in less
symmetrical molecules. The contribution W, which is a function of the vibra-
tional angular momentum quantum numbers and the symmetries of the vibra-
tional substates, gives the eigenvalues of the operators I;* and O,; and determines
the splitting of a pure vibrational level into its possible tetrahedral sublevels.
The energies W are listed in Table 111 for all vibrational states in which one, two,
or three vibrational quanta have been excited. These energies have been com-
puted by the techniques to be discussed in connection with the computation of
the vibration-rotation energies.
The vibration-rotation perturbation terms are given by

H/(PY) — —D.P' = D.Opppp(tensor), (10)



TABLE III
VIBRATIONAL ENERGIES

State

W(ms,, U3, b, I, symmetry)

Ground state
V3 F2 l3 = 1

A1l3=0
21’3El3=2
Fgl3=2

3

3

(Al =
3)’341“1 l3 =
|2F; 1 = 3, 18

@
o~
s
]
-

3 2

iiizl3=2

14 + 21’351'—'1 la =2
|F2l3=2

ma, = 1{2E1; = 2

va + m +

my, = 1
ls
1

2V3+ Vi
l4'—= 1

]

-
[N]
=

|
~
—

[
»
-

[

w

0

2G33

0

6Gy + 12T
6Gs; — 8T’
12Gy; — 24Ty,
12Gy — 4T

TGy + 6Ts 4+ ((5Gs + 6T3)2 + 384T 5112

10G5; + 12T & [(10Gy + 12T55)2 + 1,53675]12
18G5 + 18T £ [(TGy — (1034)T')2 + (38’400/49)71;3]”2
20G5 + 12T

13Gs — 22T £ [(TGy — (29)Tw)? + (9:60049) 512

2(Gx + Gas) — 2G5 + (295)8w
2(Gy + Gu) — Goy — (194)8s

2(Ga + Gus) + Gas + (24)82 + 675
2(Gim + G-H) + GM + (2§)S.g4 - 4T34

2
ma,Gas

G-_>2 + 2G33 + 8T23
G + 2G5 — 8T

4G + 2G
26 + 205 £ [(2G2)? + 256TH]V2

G + 6Gy + 1275 + 167

G22 + 6G3:{ + 12’1'33 - 16T23

Ga + 6Gy — 8T + 8T

Gy + 6Gy — 8Ty — 8Ty

G 4 3Gy + 67w = [ (3G + 6Tw)? + 256T5]1/2

Goy + 2(Gs + Gu) + Ga + (25)8ss + 675 + 8(Tas + Ta)
Gz + 2(Gn + Gus) + Gag + (28) 8 + 615 — 8(Tos + 1)

Gar + 26 + Gus) + (=16Gss + 1155 + 3T40)
+ [(39Gs — 3834 + 3T54)% + 64 (T + Tay)2]/2
Ga + 2(Gss + Gas) — %583 — 2T,

+ [(GZM + 2S3~l — 27‘34 - 4T23 - '1T24)2 + 48(7v23 - T‘.‘A)z]l/z

GQE + 2(G33 + Gu) - %Ss; - 2’1734

=+ [(G34 + 2834 - 2’1,34 + 4T23 + 4T‘.’4)2 + 48 (’1‘_‘3 - T?vt)z]”

2Gy; + 6Gs + 2Go — 8T + (35)Su — 8T
2w + 6Gi — Gu ~ 8T — (145)Su — 2T

26s + 6Gu + (3G + 2Tas = (g)s“
1 2
ES [(gGu — ‘SQTza - gT:m + 3Sa4)

+ 5 (1 -

2712
)]
366
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TABLE III—Continued

State W(ms., s, ls, I, symmetry)
Eigenvalues of the 3 X 3 matriz:
2v3 + v 3F,
I, = 2\ 2Gu + 6Gs; + 2G; Cum 410
(125) "I B8 4 am, | ~4VETs + COT) Vi
I =2 - _ _
k=1(42%) -sveir, + coma 20u + 66 — 30 g |~ %V
=0 110
(; = 1) \/é T“ —§é\/5334 2644

» The notation 3»32F; 3 = 3, 1is to be interpreted as follows: The state 3»; has two sub-
states of symmetry F. with eigenfunctions which are mixtures of wave functions withl; =
3 and I; = 1. In the limit in which Gy >> T, the wave function of the state listed first
(I3 = 3) becomes the eigenfunction associated with the eigenvalue given by the upper sign
in the expression for W.

b Excited states involving », are obtained from those involving »; by an interchange of
subscripts 3 and 4. Combinations with v, do not affect the energies W.

with
Opper(tensor) = 4(P. + P, + P.) an
— 6(PP} + PP+ PP} + PP’ 4+ PP+ PP} + 2P,
H) (P, diag) = Y[Va(p’ + @) + Ya(p' + ') 4+ Ya(ps’ + r5)
+ Yi(pd + )PP 4 Z30ppss(scalar) (12)
+ Z4Oppu(scalar) 4+ Z30ppss(tensor)
+ Z4Oppy(tensor) + ZyOppo(tensor),
where the operators are given by
Oppns(scalar) = L3[(P-1;)(P-r;) + (P-ps)(P-py) — L5P*(ps’ + r5)),
Open(tensor) = [ PJR2(pi + ") — (P + ys) — (pi: + 251
P25 + y1') — (95 4 @') — (pe + 2°)]
(13)

— 2(P.Py + P,P:)(pspsy + Tsys)

— 2(P.P. + P.P.)(Dyps: + Xs25)

— 2(PyP, + P.Py)(pasyps: + Ys2s)

Oppsr = — 34UP + P/ — 2P (pd + & — p/* — f7)
+ 2V3 (P2 ~ P))(pps + €f)).

+ P32[2(p§z + 232) - (p?i: + 1732) - (ng + !/32)] T
|
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The coefficients D, and D, are independent of the anharmonic potential con-
stants. The coefficients ¥'; and Z; are functions of the unknown cubic potential
constants. All these coefficients are again tabulated in terms of the molecular
parameters in Appendix I.

The third-order vibration-rotation perturbation terms are given hy

Hy(P*, diag) = FsP*(P-1y) + Ful*(P-1)
+ F30ppps(tensor) + Fy0pppi(tensor)
+ Fo(me/N/3)(P.PyP. + P.P.P, + P,P.P,
+ P,P.P, + P.P,P, + P.P,P.),
Hy (P, diag) = [Ms(p® + ¢°) + Mam(ps + ) + Maa(pss + rd)

+ Mau(p + rHIPL) + Mul(p’ + )

+ Mas(ps' + 7°) + Mag(ps’ + 1))

+ Mau(ps® + r))(P-L)

+ Moggmo[ L (psyps: + 1a23) + Py(papsr + 2303)

+ P pacpsy + C3ya)] + Mosmo [P paps: + yazs) (15)

+ Py(paupe: + 2:04) + Po(papay + Tays)]

+ Ni3uOpsu(scalar) 4+ N0 pgs(scalar)

+ N3uwOpsa(tensor) + NaaOpyss(tensor)

+ NiOpas(tensor) + NayOpys(tensor)

+ N32Opso + NepaOpaza s

(14)

where the operators are
Opeps(tensor) = 10(P.ly + Py, + Pll) — 6PYP-1L) + 2(P-L), (16)
BIP-r) (1) + (P-p) (L-p) — 24(P-L) (p" + 7)),
BP.ls.(pix + ') + 3Pulay(Phy + ys) + 3Puls(pi. + 2)
= 2(Pulsy + Pyls:) (Pazpay + Taya)
— 2(Pds. + P.ly.) (parpe: + Xa2a)
— 2(Pyls. + Pulsy) (pape: + yaz) — (P-1) (ps + 1),
Opsss(tensor) = Pl [4(ps. + 20) — (Poy + y5) — (ph: + 25)]
+ Pulsld(pis, + y3') — (pir + &') — (. + 25)]
+ Pl ld(ps: + z°) — (ps + ) — (psy + 457)),

1

Opaa(scalar)

It

Op3u(tensor)

(17)
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Orme - % [(pf + 1) — (p2 + &) — 28/3(peps + )]
+ %lﬁ Upt 4+ ) — (pd + &) + 24/3(pops + ¢f)]
+ P ;lsz (2 + &) — (07 + /).

The coeflicients F; are tabulated in Appendix I. The coefficients M,;, and N,
are extremely complicated functions of both the cubic and quartic potential
constants, and although their numerical value may be deduced from the ex-
perimentally observed rotational fine structures, these values will never be useful
in the determination of the molecular parameters. ¥or this reason these coeffi-
cients are not explicitly tabulated although one of the very simplest is given in
Appendix I to illustrate their dependence on the potential constants. Third-order
perturbation terms have to be included in order to get a good fit between theory
and experiment and may even be important in making correct assignments of
the rotational fine structure lines in regions where there is much overlapping of
lines, but it is doubtful whether they give significant information about the
molecule. Because of the breakdown of the Born—-Oppenheimer approximation
in this order it may in fact even be questioned whether the coefficients of these
terms are meaningful when computed by the usual methods (72, 13). Because
of symmetry considerations it may perhaps be expected that the omitted elec-
tronie-vibration-rotation corrections will give terms of the same general form
and will thus merely alter the coefficients.

EVALUATION OF THE MATRIX ELEMENTS

The terms of the Hamiltonian, H’'(diag), have been classified according to
their irreducible spherical tensor character and will now be identified as tensors
of rank k, with the possible values & = 0, 3, and 4. The individual tensors are
all built up from the vector P and vectors such as ry, ps, and L. The spherical
components of these vectors are given, for example, by

L (x5 + iyg), (T:;)o = 23, (r3)_1 = —lt (Ia - iys)-

V2 2

On the other hand

(r3); = —

1 . 1 .
P1 = _7‘2" (1)1 — 'Ll)y), PQ = I)z, P_1 = —% ([)_,; + ll)y).
The anomalous sign before ¢ is related to the anomalous sign in the commutation
relations of the P, . The vibration rotation tensor operators of rank & are built
up from pure vibrational tensor operators of rank k; and commuting rotational
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tensor operators of rank %, , where spherical vibration-rotational tensors of any
rank k& may be constructed by the usual vector coupling methods
T(kg) = 2 (bikoqgs | kikekg)Tvin(kig)*Troe(kags) With @2 = (g — @), (18)
q1
The coefficients are the angular momentum addition coefficients. The anomalous
complex conjugate sign arises from the anomalous behavior of the P, and the
related fact that the operators are to be applied to an angular momentum sub-
traction coupling scheme. [Compare with Eq. (3).] The vibrational and rotational
tensor operators are themselves built up from the vibrational and rotational
vectors by a repeated application of analogous vector coupling formulas.
Matrix elements of these tensor operators in the coupling scheme (I J R) are
given by the Wigner-Eckart theorem

WUIR'KR | T(kq) | olJRK )

_ (RkKaq|RRR'K,
(2R + 1)ie

N 19)
WUIR' | T(k) || IR

The dependence on K is given solely by the Clebseh—Gordan coefficient. The
reduced or double-bar matrix element is a function only of the quantum numbers
l, J, R, and v which stands as a collective label for the remaining vibrational
quantum numbers. Since the 4,, 4., E, Fy, and F; fine structure components
of a given vibration-rotation level differ only in their K, values (the specifie
linear ecombinations of Kz values have been given by Jahn), it ecan now be seen
that the relative splittings in the fine structure patterns are characterized solely
by the rotational angular momentum quantum number, R. With & = 0 the
Clebsch—Gordan coefficient is unity (independent of Kg). Scalar perturbation
operators can therefore not split a vibration-rotation level into its fine structure
components.

The reduced or double-bar matrix element can itself be written in terms of
vibrational and rotational reduced matrix elements and a 9-j symbol.

WUJR' | T(k) || WlJR)
[(2k + 1)(2R + 1) (2R’ + 1)]2

fz' I & (20)
=<J I kep OV || Town(ky) | 0T || Trotlkz) || J).
IR’ R k

The notation of Edmonds (5) is used throughout this section. The 9-j symbol
can be evaluated in terms of 6-j symbols (or Racah coefficients) which are
tabulated by Edmonds. The matrix elements are diagonal in J, (P* commutes
with H), but not in general diagonal in K and I. If the vibrational tensor operator
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of rank k, is itself built up from operators of rank k; and %, which are in turn
built up from vectors r;, ps, Iz and rs, ps, L, respectively, the vibrational
reduced matrix element can be further written as a product of reduced matrix
elements

QU || Toin(ky) || o1)
[(2k, + 1)(21 + 1)(2V 4+ 1)]2

[131 I ]ﬂal (21)
= l4, Iy k4( (vals’ ” Tvib(ka) H vsl3><v4l4, ” Toin(ks) ” Vals).
L’zm

The pure vibrational perturbation operators Os(scalar) and Os(tensor) are
examples of such operators with ks = ky = 2, and k; = 0 or 4, respectively;
(k; = 0). The matrix elements of the pure vibrational states are again given by
the Wigner-Eckart theorem, where the m dependence is given solely by a
Clebseh—Gordan coefficient.

SCALAR PERTURBATION OPERATORS. THE EFFECTIVE ROTATIONAL
CONSTANTS OF THE INFRARED ACTIVE FUNDAMENTALS

The effective rotational constants of a vibration-rotation band are determined
by the scalar perturbation terms. For states in which only quanta of »; are
excited, for example, the rotational constants are determined by the following
scalar perturbation terms

H'(scalar, ) = Hy — 2B43(P 1) — D.P' + Z3.0ppss(scalar)
+ FuPA(P-1y) + Y[Yi(p’ + @) + Ya(p’ + 1)
+ Yi(ps' + 75) + Ya(pd + r)IP* (22)
+ Dan(p’ + @) + Man(ps" + 1)
+ Mays(ps + 75) + Mau(pd + r)I(P-L).

The simplest type of scalar vibration-rotation perturbation operators are those
which are themselves built up from scalar perturbation operators, that is those
for which k; = k. = & = 0. Operators such as (ps’ + r5°) I’ fall into this category.
Examples of operators with k; = k, = 1, k = 0 are given by P*(P-L), (ps’ + 75°) -
(P-13), and operators such as Opsu(scalar). In all but combination states of »;
and »4 their matrix elements can be written down at once. A third class of scalar
perturbation operators are those with k, = k. = 2, k = 0. The operator Oppa-
(scalar) is an example [as defined by Eq. (13) Oppss(scalar) = (5)2 T(00)].
Since this operator contributes to the energy of the rotational levels of the funda-
mental p; its matrix elements will be evaluated explicitly. With & = 0, the 9+
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symbol of Eq. (20) reduces to a single 6-j symbol and the matrix element is
diagonal in R and K

<1)3l,JRKR [ 0PP33 [ U’;ZJRKR>

12 ? 2
_ (_])z+J+n;1 }<v3l' | Ty (2, ps + 7’3)

N
J JR 2 vl

I Teoe(2) [ Ty

The reduced matrix elements are listed in Table IV. They have been computed
by application of the Wigner—Eckart theorem to specific vibrational and rota-

TABLE 1V
REpUCED MATRIX ELEMENTS

| Troel®) || Iy = (2 + 1)1 A Tvin(0) | 1) = (20 + 1)1
T TroeD) || J) = (T + 1)(2J + D]

TN Troul2) | ) = 5(?31552 (27 — D2J2J + D@J + 2)2] + 3)]e
U Teos®) | ) = L 2T = DT = D2I@T + DT + 22T + 3)(2T + H]»

N Trot) || ) = (27 — 3@ - 27 -1

4(70)172
20T + 12T + 22T+ 3)(2T + D@ + 5)jie

<U:;l3 ” Tvib(l,ls) “ Vsl:i) = ”3(53 + 1)(213 + 1)]“2

I, 1)(2L, 1) |2
<Uslx ” Tvn)[Z,(paZ + 7"32)/2] || vyly) = '—(21)3 + 3) I:“(“—i_—)(“‘j: )]

6(2l; — 1)(2l; + 3)
s + L+ D — b + 250 — 1) Ju2
@, — 1)

(s(ly — 2) I Tvih[zy(l’a2 + 32 /2) “ v3ls) = "[

als || Tvinl4,(ps® + r392/4] || v3ls)
_ [3(20, + 3)2 — (20, — 1)L + (2L + )24 + 2)(2, + 1)25,(21, — 22
B 8[70(2l + 5)(2l; + 3)(2L, — 1)(2l, — 3|~
(Us(la - 2) H Tvib[4y(p32 + 432)2/4] H v3l3)
_ (2v; + 3(vs + L+ Doy, — L + 2)@2l; + 22021, — 2)(2l; — ]2
B 47(2; — 5)(2 — 1)(2 4 )
(Us(lz —4) ” 7'vib[4,(pa2 + 7'32)2/4] ” vsls)

_ llos — L+ Doy — L+ (s + L — Diws + L + D2L — 6)(2; — 4)(2h; ~ 2)2L]1%
h 42l — 5)(2 — 32 — D
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tional tensor operators. Since the 6-j symbol is zero unless (I, [, 2) satisfy the
triangular condition of quantum vector addition the operator Ozps; does not
contribute to the vibrational ground state energies (I = I' = 0). The 6-j sym-
bols with , '’ > 0 can be evaluated from the tables of Edmonds (5). In the
fundamental state v;, with { = l; = I’ = 1, the operator Opps; has the following
eigenvalues

—L3J(J 4+ 1) + LoJ for states R = J + 1,

+24J(J + 1) — 15 for states R = .J,

—J(J + 1) — 5(J + 1) forstates B =.J — L
Since the eigenvalues of (P-1;) are —J, 1, and (J + 1) for the states

R=(J4+1),J, and (J — 1),

respectively, it can be seen that the operator Opps; gives contributions to both
the effective B-value (coefficient of the J(J 4 1) term), and the effective ( B{)-
value (coefficient of the (P-1;) term) of the fundamental state. It is to be noted,
however, that the effective B-value for the J; levels (R = J) differs from that
of the J,4; and J,;_; levels,

The eigenvalues of the operator P*(P-1;) can be written in similar fashion and
are

—(J+ 1D +2S T+ +J + 1 forstates R = J + 1,
JJ+1) -1 + 1 forstates R = J,
+ J? +2J(J+1) —(J+1)+1 forstatess R=J — 1,

so that this operator contributes not only to the effective B and (B¢)-values but
also to the vibrational energy (through the constant +1) and to a term cubic
in the angular momentum quantum numbers. Since the scalar centrifugal dis-
tortion term gives a contribution +4D,(J + 1)* to the allowed P-branch fre-
quencies of the vibrational fundamentals (transitions to states J,41) and a con-
tribution —4D,J° to the allowed R-branch frequencies (transitions to states
J;—1) while it does not affect the allowed @-branch lines (transitions to states
J;), it can be seen that the operator P*(P-1;) in practice also makes a contribu-
tion to the effective D-value. The eigenvalues of the remaining operators of Eq.
(22) can be written down at once and together with the above give the expres-
sion for the effective rotational constants of the infrared active fundamentals
which are written out in Table V.

TENSOR PERTURBATION OPERATORS. THE SPLITTING PATTERNS

In a state in which only vibrational quanta of » , v»;, and », are excited the
splitting of the vibration-rotation levels into tetrahedral sublevels is governed
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TABLE V
ErrEcTIVE ROTATIONAL CONSTANTS OF THE INFRARED ACTIVE FUNDAMENTALS
Rotational constant Value
Byr vs5=1* R=(J - 1) B.+ ()Y 4+ Yo+ 3)Y. 4 (39)Y: — (14)Zs + 2F;,
or (J + 1)
Best 2=1 R=1J B.+ ()Y1+ Yo+ G)Yu+ 52)Ys + (24)Zs + Fi
Best v3 =0 B, + (38)Y, + Yo+ 32)Y, 4+ (32)Y;
(Bts)ets v3 =1 Bofs — (3)Man — Mgz — (38)Mswe — (38)Mus + (14)Zs,
+ (14)Fu
Deff Da - (]/{4)F3s

» Constants for the fundamental v, = 1 are obtained from the above through an inter-
change of the indices 3 and 4.

solely by the fourth-rank tensor operators. In states in which only vibrational
quanta of »; are excited, for example, the splitting patterns are determined en-
tirely by the following perturbation terms

H'(4, v;) = —D, Opppr(tensor) + F3, Oppps(tensor) + Zs, Oppg(tensor)

(23)
+ Niss: Opass(tensor) + T's3 Og(tensor),

where the operators, which are defined by Eqs. (8) through (17), are all nor-
malized in the same way and are of the baste type

1(2:5-7)" T(40) + 5[T(44) + T(+4)]}.

They are again built up from vibrational operators of rank k, and rotational oper-
ators of rank ks . In Oppppki = 0, k2 = 4;in Opppa ks = 1, ke = 3;1In Oppp k) = 2,
ke = 2; in Opsss k1 = 3, ks = 1; while in O3 k, = 4, k; = 0. The matrix ele-
ments of these operators between states olJR and vl'JR' are zero unless (I, 1, k;)
satisfy the triangular condition of quantum vector addition. In the vibrational
ground state therefore the only operator with nonzero matrix elements is the
operator Opppp since ' = [ = 0 implies £, = 0. The splitting patterns of the
vibrational ground state are therefore governed solely by this operator and in-
crease essentially in proportion to J*. With &, = 0,7 = 1 = 0, R = J, the 9
symbol of Eq. (20) reduces to 13(2J + 1). The reduced matrix elements are
given in Table IV, and the nonzero matrix elements of Opppr in the vibrational
ground state become

(O0JJK | Opppr | 0JIK) = gos(J; J) (JAKO | JAIK),
(OJJ(K % 4) | Opppp | 0JJK) (24)
= gos(J; JY(3{2) " J4K (£4) | JAI(K + 4)).
with
g = [(2 — 3)(J — 1)(2] — 1)J(J + 1)(2] + 3)(J + 2)(2J + 5)]'"".
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In the state of the vibrational fundamental, [ = [’ = 1. The triangular condi-
tion 1s satisfied only by operators with k; = 0, 1, or 2, hence only by the opera-
tors Opprp , Orpps, and Oppss . The operators Opsss and Oz cannot contribute to
the energies of v;. With the reduced matrix elements of Table IV and the 9-j
symbols evaluated through the use of the 6-7 symbols tabulated by Edmonds
(5), the nonzero matrix elements of the tensor operators for the state r; = 1
become

(1JR'K; | H'(4) | 1JRKR) = fi,(R’; R)(RAK:0 | R4R'K:),
(1JR'(Kr = 4) | H'(4) | 1JRKR) (25)
= fir(R'; R)(3{4)""(R4K p(£4) | R4R'(Kr= 1)),
in which the coefficients fi,( R'; R) are listed in Table VI as funections of the pos-

TABLE VI
(R B) = gus(R'; R) (2 tinnfinn(T, R’, R))

R R Ti(R"R)

[~ - 172
G4D D @ + 7)(@J + 6)2J + 5T + 42J2J 1)]

@7+ 1Nes+2)
{14(2J2 — 5J + los + (J — Dbiga — oo}

527 + 6)(2T + 5)(2F + (2T + 3)(@2T — 1)(@J — 2|2
J U+ - 227 + D@J + 2)
{(ZJ - 3)t044 - /lé(![ - 3)1134 + t‘l?«i}
527 + 5)(27 + 4)(2J + 3)(2J — 2)(2] — 3) =
2027 + 1)

L.

-1 U+

L.

{Btass — 39tiza — fan}

(2J + 5)@2J + 49)(2J + 32 — 1S — 2)(2] — 3) |1~
2J(2J + 2)

{(J2 + J — 10)boas + $ti3a + 2ba04}

52 + H@J + 3)@2J — 2)(2J — 3)(2] — 4) |
2-2J

(2 + B)loss — 18(J + 4bza — o}

(2J + 3)(2J + 22T — 2)(2] — 3)@2J — 4)(2J — 5) i
2J@2J + 1)

{(2J2 4 9J 4+ 10)
2

V-1 -1

[
-1 J —[
[

toss — (J + tyze — 5-324}
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sible rotational angular momentum gquantum numbers R and R’. Tt is convenient
to use the following notation v addition:

fiARR) = gu(R; R) {; twfin R R)Y,
ijk

in which the £, are the coefficients of the perturbation operators with subseripts
i =k ,j =k ,and k = 4 to indicate their specific tensor character. To third
order of approximation s = — D, tiw = Fi,, and fey = Z3,. The Clebsch-
Gordan coefficients which oceur in Eqgs. (24) and (25) are given as functions of
J and K in Table V1I. The matrix elements of the Hamiltonian, H'(4), can con-
nect only vibration-rotational substates of the same tetrahedral symmetry, for
example A, states with A, , K. states with F., --- . Tetrahedrally irreducible
harmonic funetions have heen tabulated by Jahn (9) up to the tenth angular
momentum guantum number. Since they involve specific linear combinations of
the vibration-rotation wave functions, yrx, , with different values of K., the
matrix elements of H'(4) between the tetrahderal substates always involve

TABLE VII
CLEBsCH-GORDAN COEFFICIENTS

6J(J — DI + D + 2) — 10K26J2 + 6J — 5) + T0K*
(2] + 5)(2J + H(©2J + 3)(@J + 222 — 1)(2J — 2)(2] — 3~

(J4K0 | JAJK) =

) o K@J! — 5 ~ 1K3)5(J — K)(J + K)'=
KO [ 4 = V) = (60 50T + 90 + D@J + DI0U - D@J — U — 2js

(J + D4Ko | (J + D4 — DK)

=224+ J -2 - TKIY0J - K)J+ K)J - K+ DU + K + DY
[(2J 4+ 8)2J + DT + 3)(2J + 2)(27 + D2J(2J — 2)(2] — )2

JAK + 4) —4 | J4IK)
(70 —K)J —K-1DJ —K=-2J —K—-3)J +K+DJ+K+2
J+ K43+ K+ e
(2 + 5@ + DT + 3)(©2J + 227 @J — D@ — (2] — 3~

JHK + 4 —4|J4J — DK)

M + KNI + K+ DI + K+ DU+ K+3J +K+4HJ - K—1)
e =K =29 - K =3
(@) + DT + 32T + 22 + D2J@T — 22 — 3)(©2J — Hpe

((J+ DAK + 9 ~4 | + D4J ~ DK)

AWJI+KJ+EKE+DJ+EK+DJ +K+3)J + K+ DU + K+ 5
. U =K-DJ =-K-2p"
(2] + 5)2J + 4)(2] + 302 + 2)@2F + V2J @] — 2)(2J — 3
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specific linear combinations of the Clebsch—Gordan coefficients of Egs. (24) and
(25). For example, the wave function for the state 3, Fs, the (Fs, vibration-rota-
tional substate of the level with J = 3, R = 4) has the form

1 .
o (Yaz — Yun). (26)

The matrix element, diagonal in R, for this particular substate, is therefore pro-
portional to the following linear combination of Clebsch—Gordan coefficients

gus(4; 4),15!(44 — 20| 444 — 2) + (4420 | 4442)

27
| = (544)"[(44 — 24 | 4442) 4 (442 — 4| 444 — 2)]] 27)

with the numerical value —(390/7). Numeriecal values such as this one are given
in Table VII1 where the numbers listed are ¢,,( R’; R) multiplied by the specific
linear combinations of Clebsech—Gordan coefficients required by the symmetry
of the tetrahedral substate. Only matrix elements connecting states J, . with
Jin, Jr, and J,_; are tabulated, since matrix elements connecting states
(J + 1)y with (J + 1)s4qand (J 4+ 1),, for example, or those connecting
states (J 4+ 2),41 with (J + 2),4 involve exactly the same linear combina-
tions of Clebsch—Gordan coefficients as those listed and differ from the numbers
given in Table VIII only by the ratios of the g;; values. For example, the wave
functions for the states 5, Fy, and 4, F1¢, with R = 4, also involve the linear com-
bination of Ky values of Eq. (26).° The matrix elements, diagonal in R, for these
two states are therefore given by (gis/g13) (—390/7) and (gi/g1s) (—390/7), re-
spectively.

As an example the complete Hamiltonian matrix for the substates Fy of J = 3
is exhibited on page 378 (I).

If the values of the ;. are small compared with BtJ; that is, if the elements
off-diagonal in R are small compared with the differences between the diagonal
matrix elements, the energies of the three states 3; F, are given to good approxi-
mation by the diagonal matrix elements. The off-diagonal matrix elements give
contributions to the energies of the order of ( B/co®) P, a quantity which is for-
mally of third order in the Nielsen et al. (12, 13) ordering scheme; but the off-
diagonal matrix elements may in some cases give sizable contributions to the
energies. In dominant approximation, in which the off-diagonal matrix elements
are neglected, the tetrahedral substate 34 F, is split from its unperturbed position
by an amount — (390/7)(3tus + 264 — ts4). From Table VIII it can be seen

8 It must be remembered that the wave functions for states 3, and 5, with J + I; even
transform according to D,%, whereas those for 4, with J + {3 odd transform according to
Dt Those linear combinations of spherical harmonies which transform according to F,
in a g representation transform according to F; in a u representation and vice versa. A
change from g to u also involves an interchange of 4, with A, and E, with E; .
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that the K, Fy, and A4, tetrahedral substates of 3, are similarly split from their
unperturbed position by amounts of +(60/7), +30, and +60, all times

(Btosa + 26130 — to).

The four levels are therefore split from their common center of gravity in the
ratios —13, 2, 7, and 14, the splitting pattern used as an example in connection
with Table I. In the same approximation the F., Fy , E, and second F. substates
of 45 are split from their unperturbed position by the amounts +16(21)"%
(112/3), —56, and — 16(21 )”2 il“ timeS [( 15/2)t044 + 35134 - tzg.;], see T{LbleS VI
and VIII, where the splitting ratios are characteristic of any state with R = 5.
The numbers 16(21)" are the eigenvalues of the 2 X 2 F, matrix, diagonal in
R. The examples show that the fourth-rank tensor operators do not shift the
center of gravity of a vibration-rotation level and therefore cannot make any
contribution to the effective B, D, and zeta values of the bands. (The 4, E, and
F levels are of course given weights of 1, 2, and 3, respectively, in determining
their common center of gravity.)

In the second paper of this series the theoretical predictions will be compared
with the recent high resolution spectra of the fundamental »; of CHy (7). In
order to get good agreement between theory and experiment the matrix elements
off-diagonal in the quantum number R must be taken into account. The basic
splitting patterns are therefore all deformed to a certain extent. This effect may
become particularly significant in the case of large angular momentum quantum
numbers. The true wave functions are mixtures of the wave functions for the
three types of states J,.1, J,, and J,-;. As a result some of the lines in the
infrared-forbidden P°, ™, Q~, Q, R and R™ branches become active. Such lines
have been observed by Plyler and Allen (7, 14). Since the most severe test of the
theory is given by states of large angular momentum the caleulations have heen
carried out to include states with angular momenta of 13. The tetrahedrally ir-
reducible harmonie functions for .J = 11, 12, and 13 are listed in Table IX, an
extension of the table of tetrahedral harmonic functions given by Jahn (9).
The notation of Jahn has been used in connection with Table IX. The Ux”,
Vi’ W,  are real spherical harmonies as defined in (9).

APPENDIX I. COEFFICIENTS OF THE VIBRATION-ROTATION HAMILTONTAN

The cubie and quartic parts of the potential function, V; and Vs, have heen
given by Shaffer et al. (7) but are listed again below in order to establish the
notation. There are some minor differences between V, and that listed in Ref. 7.
V, = 0111C]13 -+ 01221]17'22 -+ 0133(117'32 + 0144(117‘42 + 0134(]1(1'3'1'4) + Casslsls?z + Caaalelals

+ caa(3yazs + yavszs + 2304ys) + Con(Xays2s -+ yatszs + 24rsys)

+ 6222(362f - f‘i) + 0233[0(1“32 - Z/sg) + (Vf/\ﬂg)(-rxz + .U:&2 b 2232)]
+ coule(xs — .1/42) -+ (f/\/g)(-l'«;g + 2/42 - 2242)]

+ cole(asrs — yaya) + (F/V3)(rars + yays — 22521)).
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Ve = dung + dunq’rs + dusgirs + dyug’rd + dogsrs’ + dossaro’rs
+ doouarsrs + daggars’ + dassasts' + dsssgearsrs + dossan(1315)°
+ dassdef(xs — yid) + (€8 — (2 + y5' — 227)/2/3)

+ doudef(x — yd) + (¢ — (a8 + yd — 22°)/24/3]

+ dasxst + yst + 2t — 32y — ey — 3u'ad)

+ duas(xt + yst 4 20— 320y — 3rded — Bydad)

+ (30508 + 3ytyd + Bz'e — rird — dvgsrag — drgzte
— dyzayezs) + dung’ (T5Ty) + dossaers (T5T) 4 dagans (Ts-Ty)
+ donaers (1310) + dossalef (xsts — yaya) + (€8 — 1) (2ars + yaya
— 22) /20/3] + dadl(—V3e — fyaes + (V3e — fysusza
+ 2fzstays] + duul(—V3e — fayszs + (V3e — fyarszs

+ 2fzvays) + dusal5(@als’ + Yy’ + 22’) — 3r5(rs1,)]

+ dasad5(0ars’ + yays' + z2’) — 3rli(15-1)] + domqi(36f — )
+ dumgsyszs + duugtyizs + dusple(xs’ — ys)

+ (F/V3) (x5 + y' — 26)] + dougile(svs — ysys)

+ (f/\/g)(;vgn + Ysys — 22z24)] + d1244q1[e('x42 - y4z)

+ (F/V3) (2 + yi® = 225)] 4 duuqi(zsyazs + yavszs + 2524y4)
+ dunqilryszs + yarszs + 2.0ys).

The coefficients of the pure vibrational perturbation terms are given below as
functions of the cubic and quartic potential constants.

o
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The coefficient X4 is obtained from X by replacing the index 3 by 4, ete.
The scalar and tensor D values and the second-order vibration-rotation inter-
action constants are listed next.
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I'inally, some of the third-order interaction constants are listed. Only the very
simplest coefficient. M, 1s listed as an example sinece these coefficients are very
complicated functions of both the cubic and quartic potential constants.

32 i 32 . 1,
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{ 5 w 5

2 2 5. 2 3,2
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432 B 2B 3/2 4B 3/2 : /2
My = — Tlfx - \/6 <-w—1> s — (\/)2 w;—i%

2 2
crasfa(ws — wy)

(or + ws + w1) (01 + ws — o1) (01 + w1 — ws)(ws + s — wr)

. 1/2
1 ZB§' 3401116134( 0-?30)4)

wi(ws? — wi)

+
243(3461330134(w3w4)]/2w3(w12 - w;;z — w42)
(w3 — wa) (w1 + w3 + ws) (w1 + ws — ws) (01 + w1 — ws) (ws + w3 — 1)
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(wr + w3 + @) + w3 — @) (@ + we — w3)*wy + ws — @y)?
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_|_

In these expressions the quantities {s and {» have the opposite sign from that
defined by Shaffer, ef al. (7).
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